
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2002-28

2002-05-01

Patterns for Providing Real-Time Guarantees in DOC Middleware - Patterns for Providing Real-Time Guarantees in DOC Middleware -

Doctoral Dissertation, May 2002 Doctoral Dissertation, May 2002

Irfan Pyarali

The advent of open and widely adopted standards such as Common Object Request Broker

Architecture (CORBA) [47] has simplified and standardized the development of distributed

applications. For applications with real-time constraints, including avionics, manufacturing, and

defense systems, these standards are evolving to include Quality-of-Service (QoS)

specifications. Operating systems such as Real-time Linux [60] have responded with interfaces

and algorithms to guarantee real-time response; similarly, languages such as Real-time Java

[59] include mechanisms for specifying real-time properties for threads. However, the

middleware upon which large distributed applications are based has not yet addressed end-to-

end guarantees of QoS specifications. Unless this... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Pyarali, Irfan, "Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral Dissertation,
May 2002" Report Number: WUCSE-2002-28 (2002). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1145

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233200207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1145?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1145

Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral
Dissertation, May 2002 Dissertation, May 2002

Irfan Pyarali

Complete Abstract: Complete Abstract:

The advent of open and widely adopted standards such as Common Object Request Broker Architecture
(CORBA) [47] has simplified and standardized the development of distributed applications. For
applications with real-time constraints, including avionics, manufacturing, and defense systems, these
standards are evolving to include Quality-of-Service (QoS) specifications. Operating systems such as
Real-time Linux [60] have responded with interfaces and algorithms to guarantee real-time response;
similarly, languages such as Real-time Java [59] include mechanisms for specifying real-time properties
for threads. However, the middleware upon which large distributed applications are based has not yet
addressed end-to-end guarantees of QoS specifications. Unless this challenge can be met, developers
must resort to ad hoc solutions that may not scale or migrate well among different platforms. This thesis
provides two contributions to the study of real-time Distributed Object Computing (DOC) middleware.
First, it identifies potential bottlenecks and problems with respect to guaranteeing real-time performance
in contemporary middleware. Experimental results illustrate how these problems lead to incorrect real-
time behavior in contemporary middleware platforms. Second, this thesis presents designs and
techniques for providing real-time QoS guarantees in DOC middleware in the context of TAO [6], an open-
source and widely adopted implementation of real-time CORBA. Architectural solutions presented here
are coupled with empirical evaluations of end-to-end real-time behavior. Analysis of the problems, forces,
solutions, and consequences are presented in terms of patterns and frame-works, so that solutions
obtained for TAO can be appropriately applied to other real-time systems.

https://openscholarship.wustl.edu/cse_research/1145?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1145?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages

Short Title: Real-time DOC Middleware Pyarali, D.Sc. 2002

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

PATTERNS FOR PROVIDING REAL-TIME GUARANTEES IN DOC MIDDLEWARE

by

Irfan Pyarali

Prepared under the direction of Dr. Ron K. Cytron and Dr. Douglas C. Schmidt

A dissertation presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Doctor of Science

May, 2002

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

ABSTRACT

PATTERNS FOR PROVIDING REAL-TIME GUARANTEES IN DOC MIDDLEWARE

by Irfan Pyarali

ADVISORS: Dr. Ron K. Cytron and Dr. Douglas C. Schmidt

May, 2002

Saint Louis, Missouri

The advent of open and widely adopted standards such as Common Object Re-

quest Broker Architecture (CORBA) [47] has simplified and standardized the development

of distributed applications. For applications with real-time constraints, including avion-

ics, manufacturing, and defense systems, these standards are evolving to include Quality-

of-Service (QoS) specifications. Operating systems such as Real-time Linux [60] have

responded with interfaces and algorithms to guarantee real-time response; similarly, lan-

guages such as Real-time Java [59] include mechanisms for specifying real-time properties

for threads. However, the middleware upon which large distributed applications are based

has not yet addressed end-to-end guarantees of QoS specifications. Unless this challenge

can be met, developers must resort toad hocsolutions that may not scale or migrate well

among different platforms.

This thesis provides two contributions to the study of real-time Distributed Object

Computing (DOC) middleware. First, it identifies potential bottlenecks and problems with

respect to guaranteeing real-time performance in contemporary middleware. Experimental

results illustrate how these problems lead to incorrect real-time behavior in contemporary

middleware platforms.

Second, this thesis presents designs and techniques for providing real-time QoS

guarantees in DOC middleware in the context of TAO [6], an open-source and widely

adopted implementation of real-time CORBA. Architectural solutions presented here are

coupled with empirical evaluations of end-to-end real-time behavior. Analysis of the prob-

lems, forces, solutions, and consequences are presented in terms of patterns and frame-

works, so that solutions obtained for TAO can be appropriately applied to other real-time

systems.

Contents

List of Tables : vi

List of Figures : vii

Acknowledgments : x

1 Introduction : 1

1.1 Thesis Scope and Related Work . 1

1.2 Thesis Organization . 2

1.3 Design Patterns . 4

2 Overview of Real-time CORBA : 6

2.1 Introduction to CORBA 6

2.2 Overview of Real-time CORBA. 8

2.3 Propagating Priorities with RT-CORBA 9

2.3.1 Priority Type System . .. 10

2.3.2 Priority Models 10

2.4 Managing Processor Resources with RT-CORBA

Thread Pools . 12

2.5 Concluding Remarks . 15

3 Scalable, Predictable, and Efficient Request Demultiplexing: : : : : : : : : 16

3.1 Introduction to Demultiplexing CORBA Requests 16

3.1.1 Organization of a Prototypical Server. 17

3.2 A Simple Demultiplexing Scheme 18

3.2.1 Shortcomings of Simple Demultiplexing Scheme 19

3.3 Scalable, Predictable, and Efficient CORBA Request Demultiplexing 20

3.3.1 Summary of Optimized Demultiplexing Strategies 22

iii

3.4 Related Work . 24

3.5 Concluding Remarks . 24

4 Patterns for Efficient, Predictable, Scalable, and Flexible Dispatching Compo-

nents : 25

4.1 Introduction to Dispatching 26

4.2 Patterns for Dispatching to a Single Object 28

4.2.1 Serialized Dispatching .. 29

4.2.2 Serialized Dispatching with a Recursive Mutex 30

4.2.3 Dispatching with a Readers/Writer Lock 31

4.2.4 Reference Counting during Dispatch 33

4.3 Concluding Remarks . 34

5 Patterns for Implementing Thread Pools in Real-Time CORBA : : : : : : : 36

5.1 Introduction to Implementing Thread Pools 36

5.2 Half-Sync/Half-Async . 37

5.2.1 Problem . .. 37

5.2.2 Solution . .. 39

5.2.3 Structure and Collaboration 39

5.2.4 Implementation Synopsis. 41

5.2.5 Consequences 42

5.3 Leader/Followers . 43

5.3.1 Problem . .. 44

5.3.2 Solution . .. 44

5.3.3 Structure and Collaboration 45

5.3.4 Implementation Synopsis. 46

5.3.5 Consequences 48

5.4 Empirical Results . 49

5.5 Related Work . 51

5.6 Concluding Remarks . 52

6 Real-time ORB Design : 53

6.1 Tracing an Invocation . 53

6.2 Identifying Sources of Unbounded Priority Inversion. 55

6.3 Eliminating Sources of Unbounded Priority Inversion. 57

6.4 Endpoint Selection. 58

iv

6.5 Collocation Challenges in RT-CORBA . 60

6.6 Memory Management Mechanisms to Improve Performance and Predictabil-

ity . 62

6.6.1 Client-side Memory Management in the ORB. 64

6.7 Concluding Remarks . 64

7 Empirical Validation of End-to-End Real-time ORB Behavior : : : : : : : : 65

7.1 Introduction to Real-time Experiments 65

7.2 Description of Test Bed . 67

7.2.1 Invocation .. 68

7.2.2 Rate-based Threads 68

7.2.3 Continuous Threads . .. 70

7.3 Experiment Configurations and Performance Results 70

Experiment 1: Increasing Workload . 70

Experiment 2: Increasing Invocation Rate 70

Experiment 4: Increasing Workload in Non-RT CORBA 73

Experiment 5: Increasing Workload in RT-CORBA with Lanes:

Increasing Priority! Increasing Rate 74

Experiment 6: Increasing Workload in RT-CORBA with Lanes:

Increasing Priority! Decreasing Rate 75

Experiment 7: Increasing Best-effort Work in Non-RT CORBA 77

Experiment 8: Increasing Best-effort Work in RT-CORBA with Lanes . . . 78

Experiment 9: Increasing Workload in RT-CORBA without Lanes. 79

7.4 Concluding Remarks . 82

8 Conclusions and Future Research Directions: : : : : : : : : : : : : : : : : 83

8.1 Future Research Directions . 84

References : 87

Vita : 96

v

List of Tables

1.1 Summary of challenges addressed and contributions made by this research . 3

1.2 Summary of related research for providing predictable end-to-end behavior 3

3.1 Time spent in each demultiplexing step 23

4.1 Summary of dispatching to single object 35

5.1 Evaluation of Half-Sync/Half-Async thread pools 44

5.2 Evaluation of Leader/Followers thread pools 49

5.3 Salient operations invoked by the Half-Sync/Half-Async and the Leader/Followers

thread pool implementations . .. 49

7.1 Description of test bed . 68

8.1 TAO has been successfully used in a variety of domains 84

vi

List of Figures

1.1 Thesis scope and related work . 2

1.2 Patterns for real-time DOC middleware 5

2.1 Key components in the CORBA 2.x reference model. 7

2.2 ORB endsystem features for RT-CORBA 9

2.3 Mapping CORBA priorities to native priorities. 10

2.4 SERVERDECLAREDRT-CORBA priority model 11

2.5 CLIENT PROPAGATEDRT-CORBA priority model 11

2.6 (a) Thread pool without lanes;(b) Thread pool with lanes 12

2.7 POAs and thread pools in RT-CORBA 13

2.8 Buffering requests in RT-CORBA thread pools 14

3.1 Demultiplexing layers in a CORBA server 17

3.2 Organization of a prototypical server . 18

3.3 Simple identification of target object and operation 19

3.4 (a) Skeleton demultiplexing layer;(b) Perfect hashing used in the skeleton

layer . 20

3.5 (a) Servant demultiplexing layer;(b) Active demultiplexing used in the

servant layer . 21

3.6 (a) POA demultiplexing layer;(b) Flattened POA demultiplexing layer;(c)

Active demultiplexing used in POA layer 22

3.7 Optimized organization of a prototypical server 23

3.8 Optimized identification of target object and operation 23

4.1 Multiple dispatching components in DOC middleware 26

4.2 Object Adapter structure and interactions 27

4.3 Participants in the COS Event Service architecture 28

4.4 Serialized dispatching with a Monitor lock 29

vii

4.5 Dispatching with a Readers/Writer lock 32

4.6 Dispatching with reference counted table entries 33

5.1 Structure of participants in the Half-Sync/Half-Async pattern 39

5.2 Collaboration between layers in the Half-Sync/Half-Async pattern 40

5.3 Implementing a RT-CORBA thread pool using the Half-Sync/Half-Async

pattern . 41

5.4 Structure of participants in the Leader/Followers pattern 45

5.5 A thread’s state transitions in the Leader/Followers pattern 46

5.6 Collaboration in the Leader/Followers pattern 47

5.7 Implementing a RT-CORBA thread pool using the Leader/Followers pattern 47

5.8 Performance of Half-Sync/Half-Async vs. the Leader/Followers thread

pool implementations 50

6.1 Tracing an invocation through the ORB 54

6.2 Real-time CORBA architecture .. 57

6.3 IOR creation and endpoint selection 58

6.4 Non-RT CORBA collocation decision tree 60

6.5 RT-CORBA collocation scenarios . 61

6.6 RT-CORBA collocation decision tree . 62

6.7 Comparing memory management schemes:(a) Salient operations;(b) Per-

formance measurements . 63

7.1 Test bed:(a) Client and server on same machine(b) Client and server

distributed across different machines on a network 67

7.2 Invocation completes within its period . 69

7.3 Invocation takes longer than its period 69

7.4 Invocation misses deadline . 70

7.5 Increasing workload:(a) Configuration of test bed(b) Performance mea-

surements . 71

7.6 Increasing invocation rate:(a) Configuration of test bed(b) Performance

measurements . 72

7.7 Increasing concurrency:(a) Configuration of test bed(b) Performance

measurements . 72

7.8 Increasing workload in non-RT CORBA:(a) Configuration of test bed(b)

Performance measurements . 74

viii

7.9 Increasing workload in RT-CORBA (increasing priority! increasing rate):

Configuration of test bed . 75

7.10 Increasing workload in RT-CORBA (increasing priority! increasing rate):

Performance measurements:(a) Client and server are on the same machine

(b) Client and server are remote . 76

7.11 Increasing workload in RT-CORBA (increasing priority! decreasing rate):

(a) Configuration of test bed(b) Performance measurements 76

7.12 Increasing best-effort work in non-RT CORBA:(a) Configuration of test

bed(b) Performance measurements . 77

7.13 Increasing best-effort work in RT-CORBA:(a) Configuration of test bed

(b) Performance measurements: system running at capacity (work = 30);

client and server are on the same machine 78

7.14 Increasing best-effort work in RT-CORBA: Performance measurements:

system running slightly below capacity (work = 28):(a) Client and server

are on the same machine(b) Client and server are remote 79

7.15 Increasing workload in RT-CORBA without lanes:(a)Configuration of test

bed(b) Performance measurements: server thread pool priority = low . . . 80

7.16 Increasing workload in RT-CORBA without lanes: Performance measure-

ments: (a) server thread pool priority = medium(b) server thread pool

priority = high . 81

8.1 Dynamic scheduling . 85

ix

Acknowledgments

First and foremost, thanks to God Almighty for His help, blessings, and mercy which
made this decade long journey possible. Thanks to my family for giving me unparalleled
encouragement and love. Thanks to my advisors, professors, and mentors for their guidance
and wisdom. Thanks to my friends and coworkers for their friendship and support. And
thanks to Washington University for a decade of enlightenment.

Here are some people I would like to acknowledge by name:

Pyarali Family: Mohammad Hussain, Gulshan, Yasra, Shahid, Arif, and Asif.

Advisors and Mentors: Dr. Douglas C. Schmidt, Dr. Ron K. Cytron,
Dr. David L. Levine, Dr. Christopher D. Gill, Dr. G. James Blaine, Dr. Douglas Niehaus,
Dr. Robert B. Pless, Dr. Jeremy Buhler, Stephen M. Moore, Chris Cleeland, Fred Kuhns,
Dr. Karlheinz Dorn, Dr. Ebrahim Moshiri, Dr. Richard Schantz, Dr. Joseph Loyall,
Craig Rodrigues, Stephen T. Bachinsky, Dr. Russ Noseworthy, and Steve Huston.

Friends: Balachandran Natarajan, Carlos O’Ryan, Marina Spivak, Angelo Corsaro,
Pradeep Gore, Jeff Parsons, James Hu, Tim Harrison, Nanbor Wang, Aniruddha Gokhale,
Yamuna Krishnamurthy, Prashant Jain, Joe Hoffert, Sumedh Mungee, Michael Kircher, Os-
sama Othman, Darrell Brunsch, Vishal Kachroo, Kirthika Parameswaran, Sharath Cholleti,
and Krishnakumar Balasubramanian.

Irfan Pyarali

Washington University in Saint Louis
May 2002

x

1

Chapter 1

Introduction

1.1 Thesis Scope and Related Work

Figure 1.1 shows an endsystem [66] that consists of network interfaces, operating system

I/O subsystems, and middleware services. Real-time resources in these subsystems must be

vertically (i.e., network interface$ application layer) andhorizontally(i.e., peer-to-peer)

integrated and managed to ensure end-to-end predictable behavior foractivities1 that flow

between clients and servers. These real-time resources are outlined below, starting from

the lowest level abstraction and building up to higher level services and applications.

1. Communication infrastructure resource management: A real-time endsystem must

leverage policies and mechanisms in the underlying communication infrastructure that sup-

port resource guarantees. This support can range from managing the choice of the connec-

tion used for a particular invocation to exploiting advanced QoS features, such as control-

ling the ATM virtual circuit cell pacing rate [10].

2. OS scheduling mechanisms: A real-time endsystem must exploit OS thread schedul-

ing mechanisms to schedule application-level activities end-to-end.

3. Real-time Middleware: Middleware facilitates transparent communication between

clients and servers. Real-time middleware must provide standard interfaces that allow spec-

ification of resource requirements, such as thread priorities and buffering constraints.

4. Real-time services and applications: Real-time middleware must preserve efficient,

scalable, and predictable end-to-end behavior for higher-level services and application

1An activity represents the end-to-end flow of information between a client and its server that includes the
request when it is in memory, within the transport, as well when it is being processed by one or more threads.

2

NETWORK

OS KERNEL

OS I/O SUBSYSTEM

NETWORK INTERFACES

ORB
INTERFACE

ORB
CORE

operation()

IDL
STUBS

OBJECT

ADAPTER

IDL
SKELETON

in args

out args + return
value

CLIENT

GIOP

OBJECT
(SERVANT)

CONCURRENCY

MODELS

TRANSPORT

PROTOCOLS

I/O

SUBSYSTEM

NETWORK

ADAPTER

PRESENTATION

LAYER

DEMUXING &

DISPATCHING

DATA

COPYING

& MEMORY

ALLOCATION

CONNECTION

MANAGEMENT

OS KERNEL

OS I/O SUBSYSTEM

NETWORK INTERFACES

OBJ

REF

END-TO-END

PRIORITY

PROPAGATION

Figure 1.1: Thesis scope and related work

components. For example, a global scheduling service [66, 18] can be used to manage

and schedule distributed resources.

This thesis focuses on the middleware layer and presents patterns for providing real-time,

end-to-end timeliness guarantees. Figure 1.1 highlights the areas of this thesis, namely (1)

end-to-end priority propagation, (2) dispatching and demultiplexing, and (3) concurrency

models. Table 1.1 summarizes the challenges addresses and the contributions made by this

research and Table 1.2 summarizes research done in related areas illustrated in Figure 1.1.

Our previous work has examined many dimensions of ORB middleware design, in-

cluding static [66] and dynamic [18] operation scheduling, event processing [23], I/O sub-

system [34] and pluggable protocol [48] integration, synchronous [68] and asynchronous [2]

ORB Core architectures, IDL compiler features [1] and optimizations [22], systematic

benchmarking of multiple ORBs [19], patterns for ORB extensibility [70], and ORB per-

formance [54].

1.2 Thesis Organization

The rest of this thesis is organized as follows:

� Chapter 2 gives an overview of Real-time CORBA and describes the priority propa-

gation models and thread pool features defined in the RT-CORBA specification.

3

Table 1.1: Summary of challenges addressed and contributions made by this research

Empirical evaluation of end-to-end predictability of
applications using RT-CORBA

COTS feasibility for RT
applications

Document and evaluate design patterns for scalable
and predictable concurrency architectures

Concurrency architectures for
RT applications

Document design patterns for predictable, scalable,
efficient, flexible demultiplexing and dispatching

Bounding priority inversion in
demultiplexing and dispatching

1. Identify sources of unbounded priority inversion

2. Eliminate unbounded priority inversion by:

- Using non-multiplexed resources where possible

- Bounding priority inversion for shared resources

Eliminate sources of
unbounded priority inversion

ContributionsResearch Challenges

Table 1.2: Summary of related research for providing predictable end-to-end behavior

Area Research
Presentation Layer Time/space tradeoffs of compiled vs. interpreted stubs [22].
Data Copying and Gather-write and scatter-read I/O calls to avoid excessive
Memory Allocations data copying and stack and TSS allocators

to avoid heap allocations [55].
Transport Protocols Principles for optimizing CORBA IIOP performance [21], and

a
I
t
P
m, a synergistic combination of IP and ATM technologies

to design a highly scalable gigabit IP router [50].
Connection ManagementNon-multiplexed connection model to avoid priority inversion [67].
OS Scheduling Empirical evaluation of context switching overhead and

priority inversion overhead for several real-time and
general purpose operating systems [36].

I/O Subsystems RIO, an extensible and predictable I/O framework
that can integrate seamlessly with real-time middleware [33].

Network Adapters APIC, a high-performance ATM Port Interface Controller
that supports efficient zero-copy buffer management
by sharing request buffers across OS protection domains [9].

4

� Chapter 3 describes the demultiplexing layers in a CORBA server and shows how

the unpredictability of naive demultiplexing schemes can lead to unbounded priority

inversion. It then presents patterns for constant time demultiplexing that allows an

ORB to provide real-time guarantees.

� Chapter 4 describes the challenges of dispatching in multi-threaded environments.

Several dispatching patterns and their relative strengths and weaknesses are pre-

sented, including one that is ideal for real-time ORB because of its predictable be-

havior.

� Chapter 5 describes and evaluates patterns for implementing RT-CORBA thread

pools. It explores issues of priority inversion, efficiency, and optimizations, in im-

plementing thread pools.

� Chapter 6 traces the critical code path of a CORBA request and identifies poten-

tial predictability bottlenecks within the ORB. It then shows how the ORB can be

redesigned to use non-multiplexed resources to eliminate these bottlenecks.

� Chapter 7 presents experiments that measure end-to-end predictability of the TAO

ORB. Clients in these experiments feature threads of various priorities making rate

monotonic invocations, along with best-effort threads trying to disrupt system pre-

dictability by stealing resources from threads of higher priorities. Servers feature

thread pools with and without lanes.

� Chapter 8 summarizes the work presented in this thesis and suggests areas of future

work.

1.3 Design Patterns

A pattern is a recurring solution to a standard problem within a particular context [16].

Patterns help researchers and developers communicate architectural knowledge, learn a

new design paradigm or architectural style, and avoid traps and pitfalls that have been

learned traditionally only through costly experience [7].

This thesis captures key design and performance characteristics of software com-

ponents proven for their predictable, efficient, and scalable behavior in terms of patterns.

Each pattern in this thesis resolves a particular set of forces, with varying consequences

on performance, functionality, and flexibility. In general, simpler solutions result in better

performance, but do not resolve all the forces that more complex solutions can handle. Ap-

plication developers should not disregard simpler patterns, however. Instead, they should

5

ACTIVE
OBJECT

ACCEPTOR-
CONNECTOR

ABSTRACT
FACTORY

COMPONENT
CONFIGURATOR

REACTOR

WRAPPER FACADES

ADAPTER
PROXY

STRATEGY
THREAD-
SPECIFIC
STORAGE FORWARDER-

RECEIVER
WRAPPER FACADES

LEADER /
FOLLOWERS

HALF -SYNC/
HALF -ASYNC

INTERCEPTOR

EXTENSION
INTERFACE

OBSERVER

EVICTOR

SERIALIZER

ASYNCHRONOUS
COMPLETION TOKEN

REMOTE
OPERATION

ACTIVATOR

BROKER

MONITOR
OBJECT

Figure 1.2: Patterns for real-time DOC middleware

apply the patterns that are most appropriate for the problem at hand, balancing the need

to support advanced features with the performance and flexibility requirements of their

applications.

Our long-term goal is to develop a “engineering handbook” of patterns for develop-

ing real-time distributed object computing (DOC) middleware as shown in Figure 1.2.

6

Chapter 2

Overview of Real-time CORBA

Abstract

This chapter provides an overview to the Common Object Request Broker Architecture

(CORBA) [47] and describes the key components in the model. This chapter also introduces

the Real-time CORBA specification [45] and illustrates the components and interfaces in

the specification that can be used for propagating priorities end-to-end and for managing

processor resources.

2.1 Introduction to CORBA

CORBA Object Request Brokers (ORBs) allow clients to invoke operations on distributed

objects without concern for object location, programming language, OS platform, com-

munication protocols and interconnects, and hardware [24]. Figure 2.1 illustrates the key

components in the CORBA reference model [47] that collaborate to provide this degree of

portability, interoperability, and transparency.1 Each component in the CORBA reference

model is outlined below:

Client: A client is arole that obtains references to objects and invokes operations on them

to perform application tasks. A client has no knowledge of the implementation of the object

but does know its logical structure according to its interface. It also doesn’t know of the

object’s location - objects can be remote or collocated relative to the client. Ideally, a client

can access a remote object just like a local object,i.e., object !operation(args) .

1This overview only focuses on the CORBA components relevant to this thesis. For a complete synopsis
of CORBA’s components see [46].

7

ORB CORE

OBJECT

ADAPTER

GIOP/IIOP

IDL
STUBS

operation()
in argsin args

out args + return valueout args + return value

CLIENTCLIENT
OBJECTOBJECT
((SERVANTSERVANT))

OBJOBJ

REFREF

STANDARD INTERFACESTANDARD INTERFACE STANDARD LANGUAGE MAPPINGSTANDARD LANGUAGE MAPPING

ORB-ORB-SPECIFIC INTERFACESPECIFIC INTERFACE STANDARD PROTOCOLSTANDARD PROTOCOL

IDLIDL
SKELETONSKELETON

IDL
COMPILER

IDL
COMPILER

Figure 2.1: Key components in the CORBA 2.x reference model

Figure 2.1 shows how the underlying ORB components described below transmit remote

operation requests transparently from client to object.

Object: In CORBA, an object is an instance of an OMG Interface Definition Language

(IDL) interface. Each object is identified by anobject reference, which associates one or

more paths through which a client can access an object on a server. Anobject IDassociates

an object with its implementation, called a servant, and is unique within the scope of an

Object Adapter. Over its lifetime, an object has one or more servants associated with it that

implement its interface.

Servant: This component implements the operations defined by an OMG IDL interface.

In object-oriented (OO) languages, such as C++ and Java, servants are implemented using

one or more class instances. In non-OO languages, such as C, servants are typically imple-

mented using functions andstruct s. A client never interacts with servants directly, but

always through objects identified by object references.

ORB Core: When a client invokes an operation on an object, the ORB Core is responsi-

ble for delivering the request to the object and returning a response, if any, to the client. An

ORB Core is implemented as a run-time library linked into client and server applications.

For objects executing remotely, a CORBA-compliant ORB Core communicates via a ver-

sion of the General Inter-ORB Protocol (GIOP), such as the Internet Inter-ORB Protocol

(IIOP) that runs atop the TCP transport protocol. In addition, custom Environment-Specific

Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons serve as a “glue” between the

client and servants, respectively, and the ORB. Stubs implement theProxypattern [16] and

marshal application parameters into a common message-level representation. Conversely,

8

skeletons implement theAdapterpattern [16] and demarshal the message-level representa-

tion back into typed parameters that are meaningful to an application.

IDL Compiler: An IDL compiler transforms OMG IDL definitions into stubs and skele-

tons that are generated automatically in an application programming language, such as

C++ or Java. In addition to providing programming language transparency, IDL compilers

eliminate common sources of network programming errors and provide opportunities for

automated compiler optimizations [11].

Object Adapter: An Object Adapter is a composite component that associates servants

with objects, creates object references, demultiplexes incoming requests to servants, and

collaborates with the IDL skeleton to dispatch the appropriate operation upcall on a ser-

vant. Object Adapters enable ORBs to support various types of servants that possess simi-

lar requirements. This design results in a smaller and simpler ORB that can support a wide

range of object granularities, lifetimes, policies, implementation styles, and other proper-

ties. Even though different types of Object Adapters may be used by an ORB, the only

Object Adapter defined in the CORBA specification is the Portable Object Adapter (POA).

2.2 Overview of Real-time CORBA

Historically, CORBA has lacked features that allow applications to allocate, schedule, and

control key CPU, memory, and networking resources necessary to ensure end-to-end qual-

ity of service. The Real-time CORBA (RT-CORBA) 1.0 specification [45] defines standard

features shown in Figure 2.2 that support end-to-end predictability for operations infixed-

priority CORBA applications. RT-CORBA includes standard interfaces and QoS policies

that allow applications to configure and control the following:

� Processor resourcesvia thread pools, priority mechanisms, intra-process mutexes,

and a global scheduling service;

� Communication resourcesvia protocol properties and explicit bindings; and

� Memory resourcesvia buffering requests in queues and bounding the size of thread

pools.

Applications typically specify these real-time QoS policies along with other policies when

they invoke standard ORB operations. For instance, when an object reference is created

9

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

STANDARD

SYNCHRONIZERS

END-TO-END PRIORITY

PROPAGATION

ORB CORE

OBJECT ADAPTER

CLIENT

GIOP

PROTOCOL

PROPERTIES

THREAD

POOLS
EXPLICIT

BINDING

NETWORK

OS KERNEL

OS I/O SUBSYSTEM

NETWORK ADAPTERS

operation()

out args + return value

in args

OBJECT

REF

OBJECT

(SERVANT)

STUBS
SKELETON

Figure 2.2: ORB endsystem features for RT-CORBA

using a QoS-enabled Object Adapter, the Object Adapter ensures that any server-side poli-

cies that affect client-side requests are embedded within atagged component2 in the object

reference. This enables clients who invoke operations on such object references to honor

the policies required by the target object.

Strict control over the scheduling and execution of processor resources is essential

for many fixed-priority real-time applications. Therefore, RT-CORBA enables client and

server applications to (1) determine the priority at which CORBA invocations will be pro-

cessed and (2) allow servers to pre-define pools of threads to service incoming invocations.

It is important to recognize that RT-CORBA’s priority mechanisms cannot overcome

inherent sources of non-determinism. In particular, ORB middleware cannot imbue a non-

real-time OS or communication infrastructure with completely deterministic behavior [36].

When used in the appropriate environment, however, certain RT-CORBA features help ap-

plication developers and integrators configure heterogeneous systems to preserve priorities

end-to-end, as described below.

2.3 Propagating Priorities with RT-CORBA

Conventional [46] CORBA ORBs provide no standard way for clients to indicate the rela-

tive priorities of their requests to ORB endsystems. This feature is necessary, however, to

2Tagged components are name/value pairs that can be used to export attributes, such as security or QoS
values, from a server to its clients within object references [46].

10

ORB ENDSYSTEM A

32767

0

R
T

C
O

R
B

A
::P

rio
rity

0

255

ORB ENDSYSTEM B

0

31

Figure 2.3: Mapping CORBA priorities to native priorities

reduce end-to-end priority inversion, as well as to bound latency and jitter for applications

with deterministic real-time QoS requirements. Priority inversion is a scheduling hazard

that occurs when a low priority thread or request blocks the execution of a higher prior-

ity thread or request. Therefore, RT-CORBA defines the following platform-independent

mechanisms to specify the priority of operation invocations.

2.3.1 Priority Type System

RT-CORBA defines two types of priorities –CORBAandnative– to handle OS hetero-

geneity. Each CORBA operation can be assigned a CORBA priority, which ranges in value

between 0 and 32767, 0 being the minimum while 32767 is the maximum. Each ORB

endsystem along an activity path can be customized to map CORBA priorities to native pri-

orities, which may be unique on different endsystems. Figure 2.3 illustrates how CORBA

priorities can be mapped onto two different native ORB endsystem priorities.

2.3.2 Priority Models

RT-CORBA defines aPriorityModel policy with two values,SERVER_DECLAREDand

CLIENT_PROPAGATED, as described below.

11

ServerClient

1. Server Priority
 is pre-set

2. Priority is
 exported in IOR

3. Priority is NOT
 propagated by
 invocation

Figure 2.4:SERVERDECLAREDRT-CORBA priority model

Middle-tier
Server

Client

Service Context
carries priority = 100

QNX
priority

 = 16

LynxOS
priority
 = 128

Service Context
carries priority = 100

Server

Solaris
priority
 = 136

Figure 2.5:CLIENT PROPAGATEDRT-CORBA priority model

Server declared priorities: This model allows a server to dictate the priority at which an

invocation made on a particular object will execute. In the server declared model, the pri-

ority is designateda priori by the server and is encoded into the object reference published

to the client, as shown in Figure 2.4. Although the server declares the priority, the client

is aware of the selected priority and can use this information to match its priority with the

server selected priority to minimize end-to-end priority inversion.

Client propagated priorities: Although the server declared model is useful for certain

real-time applications, it is not suited for all application use-cases. For instance, one way

for a server to avoid priority inversion is to process incoming requests at a priority of

the client thread [58]. The RT-CORBA client propagated model allows clients to declare

invocation priorities that must be honored by servers. In this model, each invocation carries

the CORBA priority of the operation in the service context list that is tunneled with its

GIOP request. Each ORB endsystem along the activity path between the client and server

maps this end-to-end CORBA priority to a native OS priority and processes the request at

this priority. Moreover, if the client invokes a two-way operation, its CORBA priority will

determine the priority of the reply.

Figure 2.5 depicts the case where an invocation from a client to a server goes through

a middle-tier server. Each host has a different operating system with different native thread

priority ranges. The CORBA priority of the client is propagated with the request. Each

12

PRIORITY

20

Thread Pool Thread Pool with Lanes

PRIORITY

35
PRIORITY

50
PRIORITY

10

(a) (b)

Figure 2.6:(a) Thread pool without lanes;(b) Thread pool with lanes

intervening server along the activity path maps the client’s CORBA priority to a native pri-

ority that is appropriate for its host platform. For example, on LynxOS, the global CORBA

priority of 100 can be mapped to a native OS priority of 128. Likewise, on Solaris, the

same global CORBA priority can be mapped to a real-time thread with a priority of 136.

2.4 Managing Processor Resources with RT-CORBA

Thread Pools

Many real-time systems use multi-threading to (a) distinguish between different types of

service, such as high-priority vs. low-priority. tasks [23]; (b) support thread preemption to

prevent unbounded priority inversion and deadlock; and (c) support complex object imple-

mentations that run for variable and/or long durations. To allow real-time ORB endsystems

and applications to leverage these benefits of multi-threading, while controlling the amount

of memory and processor resources they consume, RT-CORBA defines a serverthread pool

model [68]. There are two types of thread pools in RT-CORBA:

� Thread pool without lanes– All threads in this basic thread pool model have the same

assigned priority. This model is illustrated in Figure 2.6 (a).

� Thread pool with lanes– Threads in this advanced thread pool model are divided into

lanesthat are assigned different priorities. This model is illustrated in Figure 2.6 (b).

Each thread pool is then associated with one or more POA(s). The threads in a pool perform

processing of client requests targeted at its associated POA(s). While a thread pool can be

associated with more than one POA, a POA can be associated with only one thread pool.

Figure 2.7 illustrates the creation and association of thread pools in a server.

A thread pool is configured with the following properties:

13

SERVER ORB COREI/O
THREADS

Root POA

Thread Pool A

PRIORITY

10
PRIORITY

35
PRIORITY

50
PRIORITY

20

Thread Pool B

DEFAULT

PRIORITY

Default
Thread Pool

S3
DEFAULT

S1
DEFAULT

S2
DEFAULT

POA A

S4
10

S5
50

S6
50

S7
35 POA B

S8 S9 S10

POA C

S11
20

S12
25

S13
15

Figure 2.7: POAs and thread pools in RT-CORBA

� Static threadsdefines the number of threads in the thread pool pre-allocated at thread

pool creation time.

� Dynamic threadsdefines the maximum number of threads that can be created on-

demand. If a request arrives when all existing threads are busy, a new thread is

created to handle the request if the number of dynamic threads in the pool has not

exceeded thedynamicvalue specified by the user.

The ability to configure the number of threads allows developers to bound the pro-

cessing resources. Also, developers can choose between dynamic and static threads

to trade off the jitter introduced by dynamic thread creation/destruction with the

wastefulness of underutilized static threads.

� Priority defines the CORBA priority with which threads are created. Depending on

the policiesconfigured in the ORB, the priority of the threads can change subse-

quently. The priority of threads in thread pools with lanes does not change except

when thread borrowingis used as described below. The priority of a thread in a

thread pool without lanes is changed to match the priority of a client making the re-

quest. POA B serviced by thread pool B in Figure 2.7 illustrates this scenario. The

14

SERVER ORB COREI/O
THREADS

Thead Pool A

PRIORITY 10 PRIORITY 35 PRIORITY 20

Thead Pool B

Figure 2.8: Buffering requests in RT-CORBA thread pools

priority of a thread in a thread pool without lanes is also changed to match the prior-

ity of the servant that uses this thread. POA C serviced by thread pool B in Figure 2.7

illustrates this scenario. The priority of the thread is restored after the client request

has been processed.

� Stack sizedefines in bytes the size of stack space allocated for each thread.

� Request bufferingbounds the maximum client request buffering resources used when

all threads are busy, specified in number of bytes or requests. If a request arrives

when all threads are busy and the buffering space is exhausted, the ORB should raise

aTRANSIENT exception, that indicates a temporary resource shortage. When a client

receives this exception it can reissue the request at a later time. Figure 2.8 illustrates

the thread pool request buffering feature.

� Thread borrowingcontrols whether a thread lane is allowed to “borrow” threads from

lower priority lanes when it exhausts its maximum number of threads (both static and

dynamic) and requires an additional threads to service new requests. The borrowed

thread has its priority raised to that of the lane that requires it. When the thread is no

longer required, its priority is lowered back to its previous value, and it is returned to

the lower priority lane. This property applies only to thread pools with lanes.

Static threads, dynamic threads, andpriority are per-lane properties in thread pool with

lanes model.

15

2.5 Concluding Remarks

The Real-time CORBA (RT-CORBA) 1.0 specification [45] offers solutions to resource

management challenges facing researchers and developers of real-time systems, particu-

larly when applications can be designed using fixed priority scheduling. However, for

applications that execute under dynamic load conditions [18] and cannot determine the pri-

orities of various operationsa priori without significantly underutilizing various resources,

the OMG is standardizing dynamic scheduling [43] techniques, such as deadline-based [78]

or value-based [29] scheduling. This thesis focus primarily on systems that require fixed

priority scheduling.

16

Chapter 3

Scalable, Predictable, and Efficient

Request Demultiplexing

Abstract

Time spent by an ORB demultiplexing requests to servants can constitute a significant

source of overhead for real-time applications [20]. This chapter describes how the de-

multiplexing strategies used impact the scalability and predictability of real-time ORBs.

This chapter also illustrates how optimizations can enable constant time request demulti-

plexing in the average- and worst-case, regardless of organization of the POA hierarchy or

number of POAs, servants, or operations configured in an ORB.

3.1 Introduction to Demultiplexing CORBA Requests

Demultiplexing requires routing requests through the layers of a server endsystem as shown

in Figure 3.1. A CORBA request contains the identity of its object and operation. An object

is identified by an object key, which is a sequence of octets. An operation is represented

as a string. An ORB has to perform the following three layers of demultiplexing to deliver

a CORBA request to the target object implementation,i.e., servant, once the request has

been read by the ORB I/O subsystem:

POA Layer: The first demultiplexing layer locates the POA where the target servant has

been registered. POAs can be nested arbitrarily. Although nesting provides a useful way to

organize policies and namespaces hierarchically, it complicates demultiplexing.

17

O
P

E
R

A
T

IO
N

 1

O
P

E
R

A
T

IO
N

 2

O
P

E
R

A
T

IO
N

 K

2: DEMUX TO

 I/O HANDLE

...

...

...POA1

OS I/O SUBSYSTEM

NETWORK ADAPTERS

SERVANT 1

5: DEMUX TO

 SKELETON

6: DISPATCH

 OPERATION

1: DEMUX THRU

 PROTOCOL STACK

4: DEMUX TO

 SERVANT

ORB CORE

ROOT POA
3: DEMUX TO

 OBJECT

 ADAPTER

POA2 POAN

SERVANT N

...SKEL 1 SKEL 2 SKEL N

SERVANT 2

OS

KERNEL

LAYER

ORB

LAYER

SERVANT

LAYER

Figure 3.1: Demultiplexing layers in a CORBA server

Servant Layer: The object key identifies the target POA and the target servant. Once the

target POA is found, the next demultiplexing layer finds the target servant.

Skeleton Layer: Once the target servant is found, the final demultiplexing layer finds the

target skeleton. The operation name identifies the appropriate IDL skeleton that demarshals

the request buffer into operation parameters and performs the upcall to code supplied by

servant developers to implement the object’s operation.

3.1.1 Organization of a Prototypical Server

Figure 3.2 shows the organization of a prototypical server. The POA layer has several hier-

archically organized POAs, each providing a unique namespace for the servants registered

with it. The first POA level in this example server represents television networks, namely

Fox andDisney. The second POA level represents television shows hosted by these net-

works, namely,SimpsonsandKing of the Hill by theFoxnetwork andWinnie the Poohby

theDisneynetwork.

The servant layer represents the characters on the television shows. SinceSimpsons

has a large number of characters appearing on the show, an extra POA layer is added to

further organize the characters intoFamily andTownspeople. Each of the leaf POAs has

18

ORB I/O

TiggerPooh

Root POA

Simpsons

Homer Lisa

Winnie the Pooh

Family

Mr. Burns Moe

Townspeople

Fox Disney

HankBobby

King of the Hill

D
o

h
!

D
ri

n
k

B
e

e
r

P
la

y
S

a
xo

p
ho

n
e

S
el

lP
ro

p
an

e

E
a

tH
o

n
e

y

B
o

un
ce

M
a

ke
M

o
ne

y

S
el

lB
ee

r

P
la

y
P

o
o

hS
tic

ks

R
u

n
N

u
cl

e
a

r
P

la
nt

Im
p

re
ss

G
irl

s

W
o

rk
a

tN
uc

le
a

r
P

la
nt

POA Layer

Servant Layer

Skeleton Layer

ORB Core Layer

Hash
Map

Hash
Map

Hash
Map

Hash
Map

Hash
Map

Figure 3.2: Organization of a prototypical server

several servants registered with it1. For example,HomerandLisa are registered with the

POA representingSimpsons Familymembers.

Finally, the skeleton layer represents favorite habits or actions by the characters in

the television shows. This includesDrinking Beerand exclaimingDoh! by Homerand

Eating HoneyandPlaying PoohSticksby Winnie the Pooh.

3.2 A Simple Demultiplexing Scheme

A simple way of demultiplexing a request would be to perform a dynamic hash lookup at

each demultiplexing step. For example, to perform theDoh! operation onHomerwho is

part of theSimpsons Familyon theFoxnetwork, this demultiplexing scheme would:

1. LookupFoxnetwork POA on theRootPOA;

2. LookupSimpsonstelevision show POA on theFoxPOA;

3. LookupFamilycategory POA on theSimpsonsPOA;

1It is not necessary that only the leaf POAs have servants register with them. Any POA, including the
RootPOAcan have servants registered with it.

19

Fox/Simpsons/Family
POA Id

Homer

Servant
Id

Doh!

Operation
Name

Figure 3.3: Simple identification of target object and operation

4. LookupHomercharacter servant on theFamilyPOA;

5. LookupDoh! action skeleton on theHomerservant.

Figure 3.3 shows a request header that identifies the object and operation that should be

invoked on the server. The object key, made up of the POA ID and the servant ID, contains

the complete name of the target POA2 and the name of the servant.

3.2.1 Shortcomings of Simple Demultiplexing Scheme

The simple demultiplexing scheme described in Section 3.2 is generally inappropriate for

high-performance and real-time applications for the following reasons [74]:

Variable number of lookups required: The number of lookups required to reach the

target POA depends on the organization of the POA hierarchy on the server. To reach the

Fox/Simpsons/FamilyPOA, three dynamic hash lookups were required, while two lookups

were required to reach theDisney/Winnie the PoohPOA.

High worst-case time for dynamic hashing: Dynamic hashing providesO(1) perfor-

mance for the average case. However, due to the potential for collisions, its worst-case

execution time isO(n), wheren is the number of entries in the map.

Server reorganization leads to new worst-case time: Even though dynamic hashing

has a high worst-case execution time, the worst-case demultiplexing time can be calculated

given the depth of the POA hierarchy, the number of POAs at each level of the hierarchy,

the number of servants in each POA, and the number of operations for each servant. Unfor-

tunately, that calculation is invalidated if the server is reorganized either to add or remove

additional levels to the POA hierarchy or to change the number of POAs, servants, or op-

erations. In addition, when calculating the worst-case demultiplexing time, the maximum

number of the above parameters has to be considered, even though they may fluctuate con-

siderably during the lifetime of the server. This may lead to highly underutilized systems.

2A complete POA name includes the name of the POA plus the names of all its ancestors.

20

Homer

Doh!

Drink Beer

Work at Nuclear Plant

Play trick on Ned

Bowl

Bowl

Doh!

Work at Nuclear Plant

Play trick on Ned

Drink Beer

(a) (b)

Figure 3.4: (a) Skeleton demultiplexing layer;(b) Perfect hashing used in the skeleton
layer

3.3 Scalable, Predictable, and Efficient CORBA Request

Demultiplexing

Optimizing a POA to support real-time applications requires the resolution of several de-

sign challenges. This section outlines these challenges and describes the patterns we ap-

plied to improve the predictability, performance, and scalability of each demultiplexing

layer.

Skeleton demultiplexing: Figure 3.4 (a) provides a closer look at the demultiplexing

occurring in the skeleton layer. The lookup key for this layer is the operation name defined

by developers when declaring the IDL interface3. Since an IDL interface is defineda priori,

all the operation names are known at compile time.

Given the above constraints,perfect hashingis suitable for demultiplexing in this

layer. Perfect hashing improves on dynamic hashing by pre-computing a collision-free

perfect hash function[62]. Figure 3.4 (b) illustrates a hash map used in this layer which

executes in constant time because there are no collisions.

Servant demultiplexing: Figure 3.5 (a) provides a closer look at the demultiplexing oc-

curring in the servant layer. Although the number and names of operations is knowna

priori , the number and names of servants are generally dynamic. However, it is possible

to have a custom representation of the servant ID in the object key since the object key is

ORB-specific and needs to be evaluated only by the ORB that created it.

3It is not possible to modify the operation name to include any additional indexing information without
violating the GIOP protocol.

21

Family

Marge

Bart

Maggie

Lisa

Homer Index
Generation

Count
Servant

0 5 Homer

1 2 Marge

2 1 Bart

3 10 Lisa

4 3 Maggie

(a) (b)

Figure 3.5:(a) Servant demultiplexing layer;(b) Active demultiplexing used in the servant
layer

Given the above constraints,active demultiplexing[20] is suitable for demultiplex-

ing in this layer. Active demultiplexing replaces the servant name with direct indexing

information. Figure 3.5 (b) illustrates an active map used in this layer that executes in con-

stant time because of direct indexing4. Active demultiplexing has low latency and is highly

predictable. In contrast, dynamic hashing incurs higher constant overhead to compute the

hash function. Moreover, unlike in active demultiplexing, the performance of dynamic

hashing degrades gradually as the number of servants increases.

POA demultiplexing: Figure 3.6 (a) provides a closer look at the demultiplexing occur-

ring in the POA layer. Similar to the servant layer, the number and names of POAs are

generally dynamic. And similar to the servant ID, it is possible to have a custom represen-

tation of the POA ID in the object key. However, unlike the servant layer, POAs can be

organized in a hierarchy.

To alleviate the problem of performing multiple lookups, one of each level of the

POA hierarchy, the POA hierarchy is flattened as shown in Figure 3.6 (b). Even though

the POA hierarchy is flattened for demultiplexing purposes, it is logically still the same:

a POA can be asked for its parent or for the list of its children. Once flattened, active

demultiplexing is suitable for demultiplexing in this layer. Figure 3.6 (c) illustrates an

active map used in this layer that executes in constant time because of direct indexing.

Active demultiplexing for the POA layer provides optimal predictability and scalability,

just as it does when used for the servant layer.

4A generation countin the active map allows recycling of indexes as old servants are removed and new
servants are added to the map.

22

Simpsons
Family

Townspeople

Fox

King of the Hill

Fox /
Simpsons

Fox /
Simpsons /

Family

Fox /
Simpsons /

Townspeople

Fox

Fox /
King of the Hill

Index
Generation

Count
POA

0 5 Fox

1 2
Fox /

Simpsons

2 1
Fox /

Simpsons /
Family

3 10
Fox /

Simpsons /
Townpeople

4 3
Fox /

King of the Hill

(a) (b) (c)

Figure 3.6: (a) POA demultiplexing layer;(b) Flattened POA demultiplexing layer;(c)
Active demultiplexing used in POA layer

3.3.1 Summary of Optimized Demultiplexing Strategies

Figure 3.7 summarizes the demultiplexing strategies most appropriate for real-time appli-

cations [23]. The POA hierarchy is flattened thus requiring only one active lookup. Active

demultiplexing is used for the servant layer and perfect hashing is used for the skeleton

layer.

Figure 3.8 shows the revised request header that identifies the object and operation

that should be invoked on the server. The object key now contains active demultiplexing

keys instead of the complete name of the POA and the name of the servant.

Table 3.1 [55] depicts the time in microseconds (�s) spent in each layer as a server

processes a request on the quad-CPU 400 MHz Pentium II Xeon. The key observation is

that the times presented in table are independent of the organization of the server. There-

fore, unlike the case of the simple demultiplexing scheme presented in Section 3.2, a change

in the POA hierarchy structure, or a change in the number of POAs, servants, or operations

will not require a reevaluation of the worst-case execution time.

23

ORB I/O

TiggerPooh

Fox /
Simpsons

Homer Lisa

Disney /
Winnie the Pooh

Fox /
Simpsons /

Family

Mr. Burns Moe

Fox /
Simpsons /

Townspeople
Fox Disney

HankBobby

Fox /
King of the Hill

D
o

h
!

D
ri

n
k

B
e

e
r

P
la

y
S

a
xo

p
ho

n
e

S
el

lP
ro

p
an

e

E
a

tH
o

n
e

y

B
o

un
ce

M
a

ke
M

o
ne

y

S
el

lB
ee

r

P
la

y
P

o
o

hS
tic

ks

R
u

n
N

u
cl

e
a

r
P

la
nt

Im
p

re
ss

G
irl

s

W
o

rk
a

tN
uc

le
a

r
P

la
nt

POA Layer

Servant Layer

Skeleton Layer

ORB Core Layer

Root POA
Active
Map

Active
Map

Perfect
Hash Map

Figure 3.7: Optimized organization of a prototypical server

2:1

POA Id

0:5

Servant
Id

Doh!

Operation
Name

Figure 3.8: Optimized identification of target object and operation

Table 3.1: Time spent in each demultiplexing step

Operation dependent7. Return value marshal

Servant dependent6. User upcall

Operation dependent5. Parameter demarshal

34. Operation demux

33. Servant demux

22. POA demux

21. Parsing Object Key

Absolute Time (ÿs)Demultiplexing Stage

24

3.4 Related Work

Most I/O subsystems demultiplex messages through several layers of the protocol stack.

Likewise, CORBA ORBs perform several extra levels of demultiplexing at the middle-

ware layer to associate incoming client requests with the appropriate servant and opera-

tion. Related work on demultiplexing focuses largely on the lower layers of the proto-

col stack,i.e., the transport layer and below, as opposed to the middleware layer. For

instance, [74, 15, 9, 12] study demultiplexing issues in communication systems and show

how layered demultiplexing is not suitable for applications that require real-time QoS guar-

antees.

Packet filters are a mechanism for efficiently demultiplexing incoming packets to

application endpoints [41]. A number of schemes to implement fast and efficient packet

filters are available. These include the BSD Packet Filter (BPF) [39], the Mach Packet

Filter (MPF) [80], PathFinder [3], demultiplexing based on automatic parsing [28], and the

Dynamic Packet Filter (DPF) [12].

3.5 Concluding Remarks

Demultiplexing in conventional CORBA implementations is typically inefficient and un-

predictable. For instance, [19, 20] show that conventional ORBs spend�17% of the to-

tal server time processing demultiplexing requests. This chapter describes methodologies

that demultiplex predictably while reducing average- and worst-case overhead. Constant

time request demultiplexingregardlessof organization of the POA hierarchy or number of

POAs, servants, or operations, allows an ORB to provide uniform, scalable QoS guarantees

to real-time applications.

25

Chapter 4

Patterns for Efficient, Predictable,

Scalable, and Flexible Dispatching

Components

Abstract

Dispatching components are responsible for delivering upcalls to one or more application

objects when events or requests arrive in a system. Implementing efficient, predictable, and

scalable dispatching components is challenging, and implementing them for multi-threaded

systems is even more challenging. In particular, dispatching components must be prepared

to (1) deliver the same upcall to multiple objects, (2) dispatch multiple requests simulta-

neously, (3) handle recursive requests originating from application-provided upcalls, (4)

collaborate with applications to control object life-cycles, and (5) add and remove objects

in dispatching tables while upcalls are in progress.

In our distributed object computing (DOC) middleware research, we have imple-

mented many dispatching components that apply common solutions repeatedly to solve the

challenges outlined above. Moreover, we have discovered that the forces constraining dis-

patching components often differ slightly, thereby requiring alternative solution strategies.

This chapter presents a set of patterns that describe successful solutions appropriate for

key dispatching challenges arising in various real-time DOC middleware and applications.

26

REPLICATION

SERVICE

OBJECT REQUEST BROKER

1: SENSORS

GENERATE

DATA

FLIRGPS IFF

3:PUSH (EVENTS)

2: SENSOR PROXIES DEMARSHAL DATA

& PASS TO EVENT CHANNEL

3:PUSH (EVENTS)

EVENT

CHANNEL

HUD Nav
Air

Frame
WTS

4: PULL(DATA)

Figure 4.1: Multiple dispatching components in DOC middleware

4.1 Introduction to Dispatching

This chapter presents a family of related patterns that we have used to develop efficient,

predictable, and scalable dispatching components in a variety of application domains, an

example of which is shown in Figure 4.1. These domains include real-time avionics mission

computing with strict periodic dead-line requirements [23] and distributed interactive sim-

ulations with high scalability requirements [49]. In addition, various dispatching-oriented

framework components, such as Reactors [64], Proactors [52], Observers [16], and Model-

View-Controllers [5] are implemented using these patterns.

This section summarizes the functionality and requirements of two common use-

cases that illustrate the challenges associated with developing dispatching components. In

the first use-case, events are dispatched to a single object,e.g., through a CORBA ORB.

The second use-case occurs when events are dispatched to multiple objects,e.g., through

an Event Channel [42].

Object Adapter dispatching components: The core responsibilities of a CORBA Ob-

ject Adapter include (1) generating identifiers for objects that are exported to clients and

(2) mapping subsequent client requests to the appropriate object implementations, that

CORBA callsservants. Figure 4.2 illustrates the general structure and interactions of a

CORBA Object Adapter. In addition to its core responsibilities, a CORBA Object Adapter

must handle the following situations correctly, robustly, and efficiently:

27

OBJECTOBJECT ADAPTERADAPTER

II//OO SUBSYSTEMSUBSYSTEM

ORB CORB COREORE

SERVANTSSERVANTS

SERVANTSSERVANTS

RootRoot
POAPOA

ACTIVEACTIVE OBJECTOBJECT MAPMAP

SERVANTSSERVANTS

OOBJECTBJECT IDID

OOBJECTBJECT IDID

OOBJECTBJECT IDID

PERSISTENTPERSISTENT

POAPOA

OBJECT ID

OBJECT ID

SERVANTS

SERVANTS

Figure 4.2: Object Adapter structure and interactions

� Non-existent objects:Clients may invoke requests on “stale” identifiers,i.e., on ob-

jects that have been deactivated from the Object Adapter. In this case, the Object

Adapter should not use the stale object because it may have been deleted by the

application. Instead, it must propagate an appropriate exception back to the client.

� Unusual object activation/deactivation:Object Adapters are responsible for activat-

ing and deactivating objects on-demand. Moreover, server application objects can

activate or deactivate other objects in response to client requests. An object can even

deactivate itself while in its own upcall,e.g., if the request is a “shut yourself down”

message.

� Multi-threading hazards:Implementing an Object Adapter that works correctly and

efficiently in a multi-threaded environment is challenging. For instance, there are

many opportunities for deadlock, unduly reduced concurrency, and priority inversion

that may arise from recursive calls to an Object Adapter while it is dispatching re-

quests. Likewise, excessive synchronization overhead may arise from coarse-grained

or imprecise locking performed on a dispatching table.

Event Channel dispatching components: The CORBA Event Service defines partici-

pants that provide a asynchronous and decoupled type of communication service that alle-

viates some restrictions [23] with the standard synchronous CORBA ORB operation invo-

cation models. As shown in Figure 4.3suppliersgenerate events andconsumersprocess

events received from suppliers. This figure also illustrates theEvent Channel, which is

28

SUPPLIER

SUPPLIER

CONSUMER

CONSUMER

CONSUMER

EVENT

CHANNEL

PUSH

PUSH PUSH

PUSH

PUSH

Figure 4.3: Participants in the COS Event Service architecture

a mediator [16] that dispatches events to consumers on behalf of suppliers. By using an

Event Channel, a supplier can deliver events to one or more consumers without requiring

any of these participants to know about each other explicitly.

Components that dispatch events to multiple objects must address a different set of

challenges relative to components dispatching to a single object. These challenges include

managing additions and removals to consumer subscriptions while dispatching to multiple

consumers is in progress. Patterns that describe and address these challenges are presented

in [53]. This chapter focuses mainly on components that dispatch to a single object.

Historically, a variety ofad hocstrategies have emerged to address the dispatching

challenges outlined above. No one strategy is optimal for all application domains or use-

cases, however. For instance, real-time implementations may impose too much overhead

for high-performance, “best-effort” systems. Likewise, implementations tailored for multi-

threading may impose excessive locking overhead for single-threaded reactive systems. In

addition, strategies that support recursive access can incur excessive overhead if all upcalls

are dispatched to separate threads or remote servers. Thus, what is required are strategies

and methodologies that systematically capture the range of possible solutions that arise in

the design space of dispatching components. One family of these strategies is described in

the following section.

4.2 Patterns for Dispatching to a Single Object

Certain patterns, such as Strategized Locking [65] or Strategy [16] address some of the

challenges associated with developing efficient, predictable, scalable, and flexible dispatch-

ing components. In other cases, however, the relationships and collaborations between

dispatching components require more specialized solutions. Moreover, as noted in Sec-

tion 4.1, no single pattern or strategy alone resolves all the forces faced by developers of

29

MONITOR LOCK

DISPATCHING TABLE

UPCALL

THREAD

WAITING

THREADS

Figure 4.4: Serialized dispatching with a Monitor lock

complex dispatching components. Therefore, this section presentspatternsthat addresses

the challenges for dispatching components outlined in Section 4.1. The initial patterns are

relatively straightforward and are intended for less complex systems. The latter patterns

are more intricate and address more complex requirements for efficiency, predictability,

scalability, and flexibility.

4.2.1 Serialized Dispatching

Context: Dispatching components typically contain a collection of target objects that

reside in one or more dispatching tables. These tables are used to select appropriate objects

based upon identifiers contained in incoming requests.

Problem: Multi-threaded applications must serialize access to their dispatching table(s)

to prevent data corruption.

Forces: Serialization mechanisms, such as mutexes or semaphores, should be used care-

fully to avoid excessive locking, priority inversion, and non-determinism. High-performance

and real-time systems can maximize parallelism by minimizing serialization. However, ap-

plication correctness cannot be sacrificed to improve performance,e.g., a multi-threaded

applications should be able to add and remove objects registered with the dispatching table

efficiently during run-time without corrupting the dispatching table.

Solution: Serialize dispatching of requests by using the Monitor Object pattern [70]

where a single monitor lock serializes access to the entire dispatching table, as shown

in Figure 4.4. The monitor lock is held both while (1) searching the table to locate the

object and (2) dispatching the appropriate operation call on the application-provided code.

30

In addition, the same monitor lock is used when inserting and removing entries from the

table.

Consequences: A regular monitor lock is sufficient to achieve the level of serialization

necessary for this dispatching component. Serialization overhead is minimal since only

one set of acquire/release calls is made on the lock during an upcall. Thus, this design is

appropriate when there is little or no contention for the dispatching table or when upcalls

to application code are short-lived.

A simple protocol can control the life-cycle of objects registered with the dispatch-

ing component. For instance, an object cannot be destroyed while it is still registered in the

dispatching table. Since the table’s monitor lock is used for dispatching and modifying the

table, other threads cannot delete an object that is in the midst of being dispatched.

However, this pattern may be inadequate for systems with stringent real-time re-

quirements. In particular, the monitor lock is held during the execution of application code,

which makes it hard for the dispatching component to predict how long it will take to re-

lease the monitor lock. Likewise, this pattern does not work well when there is significant

contention for the dispatching table. For instance, if two requests arrive simultaneously for

different target objects in the same dispatching table, only one of them can be dispatched

at a time.

4.2.2 Serialized Dispatching with a Recursive Mutex

Context: Same as outlined in Section 4.2.1.

Problem: Monitor locks are not recursive on many OS platforms. When using non-

recursive locks, attempts to query or modify the dispatch table while holding the lock will

cause deadlock. Thus application upcall code cannot query or modify the dispatch table

since it is called while the lock is held.

Forces: A monitor lock cannot be released before dispatching the application upcall be-

cause another thread could remove and destroy the object while it is still being dispatched.

Solution: Serialize dispatching of requests by using arecursivemonitor lock [51]. A

recursive lock allows the calling thread to re-acquire the lock if that thread already owns

it. The structure of this solution is identical to the one shown in Figure 4.4, except that a

recursive monitor lock is used in lieu of a non-recursive lock.

31

Consequences: As before, the monitor lock serializes concurrent access to avoid corrup-

tion of the dispatching table. Unlike the Serialized Dispatching pattern outlined in Sec-

tion 4.2.1, however, application upcalls can modify the dispatching table or dispatch new

upcalls.

Unfortunately, this solution does not resolve the concurrency and predictability

problems since the monitor is held through the upcall. In particular, it is (1) still hard

for the dispatching component to predict how long the monitor lock will be held and (2)

the component does not allow multiple requests to be dispatched simultaneously. More-

over, recursive monitor locks are usually more expensive than their non-recursive counter-

parts [63].

4.2.3 Dispatching with a Readers/Writer Lock

Context: In complex DOC middleware and applications, requests often arrive simulta-

neously. Unless application upcalls are sharing resources that must be serialized, these

operations should be dispatched and executed concurrently. Even if hardware support is

not available for parallel execution, it may be possible to execute events and requests con-

currently by overlapping CPU-intensive operations with I/O-intensive operations.

Problem: Serialized Dispatching patterns are inefficient for implementing concurrent

dispatching upcalls since they do not distinguish between read and write operations, and

thus serialize all operations on the dispatching table.

Forces: Although dispatching table modifications typically require exclusive access, dis-

patching operations does not. However, the dispatching component must ensure that the

table is not modified while a thread is dispatching an upcall.

Solution: Use a readers/writer lock to serialize access to the dispatching table. The criti-

cal path,i.e., looking up the target object and invoking an operation on it, does not modify

the table. Therefore, aread lock will suffice for this path. Operations that modify the

dispatching table, such as adding or removing objects from it, require exclusive access.

Therefore, awrite lock is required for these operations. Figure 4.5 illustrates the struc-

ture of this solution, where multiple reader threads can dispatch operations concurrently,

whereas writer threads are serialized.

Consequences: Readers/writer locks allow multiple readers to access a shared resource

simultaneously, while only allowing one writer to access the shared resource at a time.

Thus, the solution described above allows multiple concurrent dispatch calls.

32

MONITOR R/W LOCK

DISPATCHING TABLE

UPCALL

READ

THREADS

WAITING

WRITER

THREADS

Figure 4.5: Dispatching with a Readers/Writer lock

Some DOC middlewares execute the upcall in a separate thread in the same process

or on a remote object. Other middlewares execute the upcall in the same thread after releas-

ing theread lock. Yet others don’t allow upcalls to make changes to the dispatch table.

Thus, this readers/writer locking pattern [51] can be applied to such systems without any

risk of deadlocks. However, this solution is not applicable to systems that change the table

from within an upcall while theread lock is held. This would require upgrading the read-

ers/writer lock from aread lock to awrite lock. Unfortunately, standard readers/writer

lock implementations, such as Solaris/UI threads [13], do not support upgradable locks.

Even when this support exists, if multiple threads require simultaneous upgrades, only one

lock upgrade will succeed.

Note that applications using readers/writer locks become responsible for providing

appropriate serialization of their data structures since they cannot rely on the dispatching

component itself to serialize upcalls. As with recursive locks, the serialization overhead

of readers/writer locks may be higher compared to regular locks [63] when little or no

contention occurs on the dispatching table.

Implementors of this pattern must analyze their dispatching component carefully to

identify operations that require only aread lock versus those that require awrite lock.

For example, the CORBA Object Adapter supports activation of objects within upcalls.

Thus, when a dispatch lookup is initiated, the Object Adapter cannot be certain whether

the upcall will modify the dispatching table. Note that gratuitously acquiring awrite

lock is self-defeating since it may impede concurrent access to the table unnecessarily.

Finally, this solution does not resolve the predictability problem. In particular, un-

bounded priority inversion may occur when high-priority writer threads are suspended wait-

ing for low-priority reader threads to complete dispatching upcalls.

33

MONITOR LOCK

DISPATCHING TABLE

UPCALL &
MODIFICATION

THREADS

1 2 10 0 0 000

Figure 4.6: Dispatching with reference counted table entries

4.2.4 Reference Counting during Dispatch

Context: A multi-threaded system has stringent QoS requirements that demand pre-

dictable and efficient behavior from the dispatching component.

Problem: To be predictable, the system must eliminate all unbounded priority inversions.

In addition, system efficiency should be maximized by reducing bounded priority inver-

sions.

Forces: During an upcall, an application can invoke operations that modify the dispatch-

ing table. In addition, the dispatching component must be efficient and scalable, maximiz-

ing concurrency whenever possible.

Solution: Reference count the entries of the dispatching table during dispatch by using

a single lock to serialize (1) changes to the reference count and (2) modifications to the

table. As shown in Figure 4.6, the lock is acquired during the upcall, the appropriate entry

is located, its reference count increased, and the lock is released before performing the

application upcall. Once the upcall completes, the lock is re-acquired, the reference count

on the entry is decremented, and the lock is released.

As long as the reference count on the entry remains greater than zero, the entry

is not removed and the corresponding object is not destroyed. Concurrency hazards are

avoided, therefore, because the reference count is always greater than zero while a thread

is processing an upcall for that entry. If an object is removed from the dispatching table,

its entry is onlylogically removed if outstanding upcalls are pending on it. The thread that

brings the reference count to zero is responsible for deleting this entry from the table.

In programming languages, such as C and C++, that lack built-in garbage collec-

tion, the dispatching table must collaborate with the application to control the objects’

34

life-cycle. In this case, objects are usually reference counted1. For example, the reference

count is usually incremented when the object is registered with the dispatching table and

decremented when the object is removed from the dispatching table.

Consequences: This pattern supports multiple simultaneous upcalls since the lock is not

held during the upcall. For the same reason, this model also supports recursive calls . An

important benefit of this pattern is that the level of priority inversion does not depend on the

duration of the upcall. In fact, priority inversion can be calculated as a function of the time

needed to search the dispatching table. In Chapter 3, we have shown that bounded and very

low search times can be achieved using techniques like active demultiplexing and perfect

hashing. Implementations that use these techniques in conjunction with the serialization

pattern described here can achieve predictable dispatching with bounded priority inversion.

A disadvantage of this pattern, however, is that it acquires and releases the lock

twice per upcall. In practice, this usually does not exceed the cost of a single recursive

monitor lock or a single readers/writer monitor lock [63]. This solution does, however,

warrant extra care in the following special circumstances:

� Accessing “logically deleted” objects– A new request arrives for an object that has

been logically but not physically removed from the dispatching table. Additional

state can be used to record that this object has been removed and should therefore

receive no new requests.

� Reactivating “logically deleted” objects– An implementation must handle the case

where an object has been logically deleted and a client application requests a new

object to be inserted for the same identifier as the logically deleted object. Typically,

the new insertion must block until upcalls on the old object complete and the old

object is physically removed from the dispatching table.

4.3 Concluding Remarks

This chapter described patterns for developing and selecting appropriate solutions to com-

mon problems encountered when developing efficient, scalable, predictable, and flexible

dispatching components. Table 4.1 summarizes the different patterns for dispatching to a

single object and compares their relative strengths and weaknesses. Real-time ORBs can

use the reference counting dispatching pattern (described in Section 4.2.4) to bound priority

inversion and hence provide timeliness guarantees to real-time applications.

1Note that this reference count is different from the per-entry reference count described above.

35

Table 4.1: Summary of dispatching to single object

2

1

1

1

Times lock
acquired

Predictable behaviorBoundedYes
Reference

Counting

Concurrent upcallsUnboundedLimited
Readers/

Writer Lock

Same as above &
nested upcalls

UnboundedYes
Recursive
Lock

Little/no contention &
short-lived upcalls

UnboundedNo
Serialized

Dispatching

Appropriate

when

Priority

Inversion

Nested

Upcalls
Pattern

36

Chapter 5

Patterns for Implementing Thread Pools

in Real-Time CORBA

Abstract

This chapter presents two contributions to improving the quality of implementation of RT-

CORBA thread pools. First, the key patterns underlying common strategies for implement-

ing RT-CORBA thread pools are described. Second, we evaluate each thread pool strategy

in terms of its consequences for (1) feature support, such as request buffering and thread

borrowing, (2) scalability in terms of endpoints and event demultiplexers required, (3) effi-

ciency in terms of data movement, context switches, memory allocations, and synchroniza-

tions required, (4) optimizations in terms of stack and thread specific storage allocations,

and (5) bounded and unbounded priority inversions incurred in each implementation. This

chapter also provides results that illustrate empirically how different thread pool imple-

mentation strategies perform in different ORB configurations.

5.1 Introduction to Implementing Thread Pools

We present two general strategies for implementing RT-CORBA thread pools. The first

strategy uses theHalf-Sync/Half-Asyncpattern [70], where I/O thread(s) buffer the incom-

ing requests in a queue and a different set of worker threads then process the requests.

The second strategy uses theLeader/Followerspattern [69] to demultiplex I/O events into

threads in a pool without requiring additional I/O threads. Each strategy is preferable for

certain application domains,e.g.:

37

� Internet servers may use the Half-Sync/Half-Async pattern to improve scalability, at

the expense of increased average- and worst-case latency.

� Telecom servers may tolerate some degree of priority inversion when using the Half-

Sync/Half-Async pattern to support buffering and borrowing across different priority

bands.

� Embedded avionics control systems may trade resource duplication for avoiding pri-

ority inversions by using the Leader/Followers pattern.

Although RT-CORBA defines a standard set of interfaces and policy types, it intention-

ally underspecifies manyquality of implementationdetails, such as the ORB’s memory

management and connection management strategies. Though this approach maximizes the

freedom of RT-CORBA ORB developers, it requires that application developers and end-

users understand how an ORB is designed and how its design affects the schedulability,

scalability, and predictability of their application.

The thread pool architecture is an essential dimension of an RT-CORBA ORB that

also falls into the category of quality of implementation detail. In this section, we use

patternsto describe these two strategies in detail, outlining their structure, dynamics, im-

plementation, and consequences1. We focus on patterns in this chapter to generalize the

applicability of our work.

5.2 Half-Sync/Half-Async

The Half-Sync/Half-Async architectural pattern decouples asynchronous and synchronous

service processing in concurrent systems, to simplify programming without unduly reduc-

ing performance. The pattern introduces two intercommunicating layers, one for asyn-

chronous and one for synchronous service processing.

5.2.1 Problem

Concurrent systems often contain a mixture of asynchronous and synchronous processing.

For example, asynchronous events that an RT-CORBA server must react to include network

messages and software signals. However, there are several components of an RT-CORBA

1For completeness, this chapter contains abbreviated descriptions of the Half-Sync/Half-Async and
Leader/Followers patterns, focusing on the implementation of thread pools in RT-CORBA. Thorough dis-
cussion of these patterns appear in [70] and [69].

38

server that require synchronous processing, such as execution of application-specific ser-

vant code.

Synchronous programming is usually less complex compared to asynchronous pro-

gramming because the thread of control can block awaiting the completion of operations.

Blocking operations allow programs to maintain state information and execution history

in their run-time activation record stack. If all tasks are processed synchronously within

separate threads of control, however, thread management overhead can be excessive. Each

thread contains resources that must be created, stored, retrieved, synchronized, and de-

stroyed by a thread manager.

Conversely, asynchronous programming is generally more efficient. In particular,

interrupt-driven asynchronous systems may incur less context switching overhead [71] than

synchronous threaded systems. In addition, asynchronous services can be mapped directly

onto OS asynchrony mechanisms, such as WinNT I/O completion ports [61, 70]. However,

asynchronous programs are harder to develop, debug, and maintain. Asynchronous pro-

grams must manage additional data structures that contain state information and execution

history, which must be saved and restored when a thread of control is preempted by an

interrupt handler.

Two forces must therefore be resolved when specifying an RT-CORBA threading

architecture that executes services both synchronously and asynchronously:

� The architecture should be designed so parts of the ORB that can benefit from the

simplicity of synchronous processing need not address the complexities of asyn-

chrony. Similarly, ORB services that must maximize performance should not need

to suffer the inefficiencies of synchronous processing.

� The architecture should enable the synchronous and asynchronous processing ser-

vices to communicate without complicating their programming model or unduly de-

grading their performance.

Although the need for both programming simplicity and high performance may seem con-

tradictory, it is essential that both these forces be resolved in scalable RT-CORBA imple-

mentations.

39

Q
U

E
U

E
IN

G

L
A

Y
E

R

A
S

Y
N

C
H

R
O

N
O

U
S

T

A
S

K

L
A

Y
E

R

S
Y

N
C

H
R

O
N

O
U

S

 T
A

S
K

L

A
Y

E
R

1, 4: read(data)

3: enqueue(data)

2: interrupt

MESSAGE QUEUES

SYNC

TASK 1

SYNC

TASK 2

SYNC

TASK 3

EXTERNAL

EVENT SOURCES

ASYNC

TASK

Figure 5.1: Structure of participants in the Half-Sync/Half-Async pattern

5.2.2 Solution

An RT-CORBA ORB endsystem can be decomposed into two layers [5], synchronous and

asynchronous; a queueing layer is introduced to mediate the communication between ser-

vices in the asynchronous and synchronous layers.

5.2.3 Structure and Collaboration

The structure of the Half-Sync/Half-Async pattern is illustrated in Figure 5.1 and the col-

laborations are illustrated in Figure 5.2. This design follows the Layers pattern [5] and

includes the following participants:

Synchronous service layer: This layer performs high-level processing services. Services

in the synchronous layer run in separate threads that can block while performing operations.

In an RT-CORBA server, this layer:

1. Dequeues a request from the queueing layer;

2. Finds the target servant for the request;

3. Demarshals the request;

40

EXTERNAL EVENTEXTERNAL EVENT

PROCESS MSGPROCESS MSG

read(msg)

EXECUTE TASKEXECUTE TASK

ENQUEUE MSGENQUEUE MSG

ExternalExternal
Event SourceEvent Source

AsyncAsync
TaskTask

SyncSync
TaskTask

MessageMessage
QueueQueue

work()

DEQUEUE MSGDEQUEUE MSG

A
S
Y

N
C

A
S
Y

N
C

P
H

A
S

E
P

H
A

S
E

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

P
H

A
S

E
P

H
A

S
E

S
Y

N
C

S
Y

N
C

P
H

A
S

E
P

H
A

S
E

RECV MSGRECV MSG

notification()

read(msg)

work()

enqueue(msg)

Figure 5.2: Collaboration between layers in the Half-Sync/Half-Async pattern

4. Performs upcalls into application-specific code by calling into the target servant reg-

istered in the POA by the application;

5. Marshals the reply (if any) to the client; and

6. Enqueues the reply (if any) in the queueing layer.

Asynchronous service layer: This layer performs lower-level processing services, which

typically emanate from one or more external event sources. Services in the asynchronous

layer cannot block while performing operations without unduly degrading the performance

of other services. In an RT-CORBA server, this layer:

1. Reads the incoming request from the network;

2. Finds the target thread pool that will handle this request; and

3. Adds the request to the thread pool’s queue that has the appropriate priority.

Queueing layer: This layer provides the mechanism for communicating between ser-

vices in the synchronous and asynchronous layers. For example, messages containing data

and control information are produced by asynchronous services, then buffered at the queue-

ing layer for subsequent retrieval by synchronous services, and vice versa. The queueing

layer is responsible for notifying services in one layer when messages are passed to them

41

POA B

LANE 3

15

POA THREAD
POOL

POA A

LANE 1

5
LANE 2

10
LANE 3

20

POA THREAD
POOL

LANE 1

10
LANE 2

15

POA C

ACCEPTOR

20

NETWORK

REACTOR REACTOR REACTOR REACTOR

15105MAX

Figure 5.3: Implementing a RT-CORBA thread pool using the Half-Sync/Half-Async pat-
tern

from the other layer. The queueing layer therefore enables the asynchronous and syn-

chronous layers to interact in a “producer/consumer” manner, similar to the structure de-

fined by the Pipes and Filters pattern [5]. For an RT-CORBA server, this layer queues

incoming requests from and outgoing replies to clients.

External event sources: These sources generate events that are received and processed

by the asynchronous service layer. For an RT-CORBA server, common sources of external

events include sensors, network interfaces, disk controllers, and end-user terminals.

5.2.4 Implementation Synopsis

Figure 5.3 illustrates the architecture of a RT-CORBA ORB where thread pools are de-

signed using the Half-Sync/Half-Async pattern. The asynchronous layer performs I/O pro-

cessing, demultiplexing of incoming requests, and multiplexing of outgoing replies. It

consists of the following components:

� Acceptor– An Acceptor [70] services connection requests from clients. The client

establishes multiple connections to the server, one for every range of priorities that

42

will be used by the client when making requests. After a connection has been es-

tablished, it is moved to the Reactor with the corresponding priority during the first

request.

� Reactors– Each priority supported by the server has a corresponding Reactor [70],

which is used to demultiplex and dispatch incoming client requests.

� Threads– The Acceptor is serviced by a thread running at an ORB-defined priority.

Each Reactor is serviced by thread(s) at the appropriate priority.

To avoid priority inversion, the queueing layer consists of multiple queues, one for every

thread pool lane. I/O threads read the incoming request, determine their target thread pool,

and deposit the request into the right queue for processing. The synchronous layer consists

of the threads in thread pool lanes. These threads block on a condition variable, waiting

for requests to show up in their queue. After dequeuing the request, the target servant is

found in the target POA, the request is demarshaled and application-level servant code is

executed.

5.2.5 Consequences

The Half-Sync/Half-Async implementation of RT-CORBA thread pools has the following

benefits:

� Simplified programming:The programming of the synchronous phase is simplified

without degrading the performance of the asynchronous layer. Distributed systems

based on RT-CORBA often have a larger quantity and variety of high-level process-

ing services than lower-level services. Decoupling higher-level synchronous services

from lower-level asynchronous processing services can therefore simplify ORB de-

velopment because complex concurrency control, interrupt handling, and timing ser-

vices can be localized within the asynchronous service layer. The asynchronous

layer can also handle low-level details that are difficult to program robustly and can

manage the interaction with hardware-specific components, such as DMA (Direct

Memory Access), memory management, and network I/O.

� Support for request buffering and thread borrowing:Since a request remains in the

queueing layer until a thread is available to service it, the queueing layer can be

used to buffer requests by bursty clients. Thread borrowing can also be implemented

relatively easily by buffering the request in a queue that has threads available to

process the request.

43

� Sharing of I/O resources:ORB resources, such as reactors and acceptors, are per-

priority resources in the I/O layer. Therefore, if a server is configured with many

thread pools that have similar lane priorities, I/O layer resources are shared by these

lanes.

� Easier piece-by-piece integration into the ORB:Ease of implementation and integra-

tion are important practical considerations in any project. Due to its layered structure,

this approach is easier to design, implement, integrate, and test incrementally.

The Half-Sync/Half-Async implementation of RT-CORBA thread pools also has the fol-

lowing liabilities:

� Data exchange overhead:When exchanging data between the synchronous and asyn-

chronous layers, the queueing layer can incur a significant performance overhead

due to context switching, synchronization, cache coherency management, and data-

copying overhead [71].

� No memory management optimizations:Since a request is handed off from an I/O

thread in the asynchronous layer to a thread pool thread in the synchronous layer,

stack memory and thread-specific storage (TSS) [70] cannot be used to optimize

memory management for client requests. Instead, a shared memory pool must be

used to allocate storage for the requests. Unfortunately, synchronization for this

shared memory pool can lead to extra overhead. Moreover, if the memory pool is

shared between threads of different priorities, it can lead to priority inversion.

Table 5.1 summarizes the evaluation for Half-Sync/Half-Async implementation of RT-

CORBA thread pools.

5.3 Leader/Followers

The Leader/Followers architectural pattern provides an efficient concurrency strategy where

multiple threads take turns sharing a set of event sources in order to detect, demultiplex,

dispatch, and process service requests that occur on the event sources.

44

Table 5.1: Evaluation of Half-Sync/Half-Async thread pools

Poor: some unbounded, many boundedPriority Inversion

Poor: stack and TSS memory not supportedOptimizations

Poor: high overhead for data movement, context
switches, memory allocations, and synchronizations

Efficiency

Good:I/O layer resources sharedScalability

Good:supports request buffering and thread borrowingFeature Support

EvaluationCriteria

5.3.1 Problem

Mission-critical RT-CORBA servers often process a high volume of requests that arrive

simultaneously. To process these requests efficiently, the following three forces must be

resolved:

� Associating a thread with each connected client may be infeasible due to the scala-

bility limitations of applications or the underlying OS and hardware platforms.

� Allocating memory dynamically for each request passed between multiple threads

incurs significant overhead on conventional multiprocessor operating systems.

� Multiple threads that demultiplex events from a shared set of event sources must

coordinate to prevent race conditions. Race conditions can occur if multiple threads

try to access or modify certain types of event sources simultaneously.

5.3.2 Solution

A pool of threads is structured to share incoming client requests by taking turns demulti-

plexing the requests and synchronously dispatching the associated servant code that pro-

cesses the request.

More specifically, this thread pool mechanism allows multiple threads to coordi-

nate themselves and protect critical sections while detecting, demultiplexing, dispatch-

ing, and processing requests. In this mechanism, one thread at a time—the leader—waits

for a request to arrive from the set of connected clients. Meanwhile, other threads—the

45

HANDLE SET

handle_events()
select()
suspend_handler()
resume_handler()

HANDLE

<<USES>>
<<

U
SES>>

0..*

CONCRETE

EVENT HANDLER

EVENT HANDLER

handle_event()
get_handle()

TTHREAD HREAD PPOOLOOL

join ()

promote_new_leader()

synchronizer(s)

<<demuxes>>

Figure 5.4: Structure of participants in the Leader/Followers pattern

followers—can queue up waiting their turn to become the leader. After the current leader

thread detects a new client request, it first promotes a follower thread to become the new

leader. It then plays the role of a processing thread, demultiplexing and dispatching the

request to application-specific code. Multiple processing threads can handle requests con-

currently while the current leader thread waits for new requests. After handling its request,

a processing thread reverts to a follower role and waits to become the leader thread again.

5.3.3 Structure and Collaboration

The key participants in the Leader/Followers pattern are shown in Figure 5.4 and are de-

scribed below:

Handles and handle sets: Handles identify operating systems objects, such as network

connections, that indicate when new requests arrive from clients. A handle set is a collec-

tion of handles that can be used to wait for one or more clients to send requests.

Event Handlers: The ORB event handler dispatches the incoming request to the target

servant. This process includes:

1. Reading the request from the network;

2. Finding the target servant for the request;

3. Demarshaling the request;

4. Performing the upcall into application-specific code by calling into the target servant

registered in the POA by the application;

46

LEADING FOLLOWING

NEW

EVENT

NEW LEADER

EVENT

HANDOFF

PROCESSING

COMPLETED;

LEADER

AVAILABLE

PROCESSING

COMPLETED;

NO LEADER

AVAILABLE

PROCESSING

Figure 5.5: A thread’s state transitions in the Leader/Followers pattern

5. Marshaling the reply (if any) to the client; and

6. Sending the reply (if any) back to the client.

Thread Pool: At the heart of the Leader/Followers pattern is a thread pool, which is a

group of threads that share a synchronizer, such as a condition variable, and implement a

protocol for coordinating their transition between various roles. A thread’s state transitions

are shown in Figure 5.5 and collaborations in the Leader/Followers pattern are shown in

Figure 5.6.

5.3.4 Implementation Synopsis

In this design, each RT-CORBA thread pool lane has an integrated I/O layer,i.e., there is

one acceptor and one reactor for every lane. Clients connect to the acceptor endpoint with

the desired priority and as shown in Figure 5.7, all client request processing (as described

in Section 5.3.3) is performed by the thread of desired priority from very beginning. Thus,

there are no context switches and priority inversions are minimized.

In addition, the ORB does not create any internal I/O threads. This allows appli-

cation programmers full control over the number and properties of all the threads with the

RT-CORBA thread pool APIs. In contrast, the Half-Sync/Half-Async implementation has

I/O layer threads, so either a proprietary API must be added or the application programmer

will not have full control over all the thread resources.

47

:: THREAD THREAD

POOLPOOL

:: HANDLE HANDLE

SETSET

join()join()
BECOMEBECOME

FOLLOWERFOLLOWER

THREADTHREAD

handle_events()handle_events()

select()select()

:: CONCRETE CONCRETE

EVENT HANDLEREVENT HANDLER
:: THREAD THREAD22:: THREAD THREAD11

join()join()

handle_event()handle_event()

EVENT ARRIVESEVENT ARRIVES

BECOME NEW LEADER THREADBECOME NEW LEADER THREAD

handle_events()handle_events()

BECOME NEW LEADER THREADBECOME NEW LEADER THREAD

join()join()

BECOME PROCESSING THREADBECOME PROCESSING THREAD

BECOMEBECOME

FOLLOWERFOLLOWER

THREADTHREAD

select()select()

promote_new_leader()promote_new_leader()

Figure 5.6: Collaboration in the Leader/Followers pattern

A

REACTOR

POA B

LANE 3

15

POA THREAD
POOL

POA A

LANE 1

5
LANE 2

10
LANE 3

20

POA THREAD
POOL

LANE 1

10
LANE 2

15

POA C

NETWORK

A

REACTOR

A

REACTOR

A

REACTOR

A

REACTOR

A

REACTOR

Figure 5.7: Implementing a RT-CORBA thread pool using the Leader/Followers pattern

48

5.3.5 Consequences

The Leader/Followers pattern provides severalbenefitsand improvementscompared with

the Half-Sync/Half-Async thread pool strategy described in Section 5.2:

� Memory optimizations:It enhances cache affinity and eliminates the need for dy-

namic memory allocation and data buffer sharing between threads. For example,

a processing thread can read the request into buffer space allocated on its run-time

stack or by using thread-specific storage (TSS) [70].

� Reduced synchronization:It minimizes locking overhead by not exchanging data

between threads, thereby reducing thread synchronization.

� Reduced priority inversion:It can reduce priority inversion because no extra queue-

ing is introduced in the server. When combined with real-time I/O subsystems [34],

the Leader/Followers thread pool implementation can reduce sources of non-determinism

in server request processing significantly.

� Improved dispatch latency:It does not require a context switch to handle each re-

quest, reducing the request dispatching latency. Note that promoting a follower

thread to fulfill the leader role does require a context switch. If two events arrive

simultaneously, this increases the dispatching latency for the second event, but the

performance is no worse than the Half-Sync/Half-Async thread pool implementation.

However, the Leader/Followers pattern has the followingliabilities:

� Implementation complexity:The advanced variants of the Leader/Followers pattern

are harder to implement than Half-Sync/Half-Async thread pools. A thorough dis-

cussion of these variants appears in [70].

� Lack of flexibility:The queueing layer in the Half-Sync/Half-Async thread pool im-

plementation makes it easy to support features like request buffering and thread bor-

rowing. In the Leader/Followers implementation, however, it is harder to implement

these features because there is no explicit queue.

Table 5.2 summarizes the evaluation for Leader/Followers implementation of RT-CORBA

thread pools.

49

Table 5.2: Evaluation of Leader/Followers thread pools

Good: little or no priority inversionsPriority Inversion

Good:stack and TSS memory supportedOptimizations

Good: little or no overhead for data movement, memory
allocations, or synchronizations

Efficiency

Poor: I/O layer resources not sharedScalability

Poor: not easy to support request buffering or thread borrowingFeature Support

EvaluationCriteria

Table 5.3: Salient operations invoked by the Half-Sync/Half-Async and the
Leader/Followers thread pool implementations

02dequeue

02enqueue

28locks

12signal

02malloc

02free

Times called
for LF

Times called
for HS/HA

Operations

5.4 Empirical Results

This section empirically compares the performance of the Half-Sync/Half-Async vs. the

Leader/Followers thread pool implementation. Table 5.3 shows the salient operations in-

voked by the two thread pool implementations in the critical path of processing a request.

The Half-Sync/Half-Async thread pool implementation invokesmalloc twice: (1)

to create a buffer for the request, and (2) to create a buffer for the reply. Correspondingly,

free is called twice to delete the dynamically allocated buffers.enqueue is called twice:

(1) when the asynchronous layer queues the request for the synchronous layer, and (2)

when the synchronous layer queues the reply for the asynchronous layer. Correspondingly,

50

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4

Threads in Pool

T
hr

ou
gh

pu
t

Leader / Follow ers Half Sync / Half Async

Figure 5.8: Performance of Half-Sync/Half-Async vs. the Leader/Followers thread pool
implementations

dequeue is called twice to remove the request and reply from the queuing layer.signal

is called twice, once after everyenqueue operation to notify the receiving layer. Eight

locks are held in the critical path, once for everymalloc and free to synchronize the

shared memory pool, and once of everyenqueue anddequeue operation to synchronize

the queuing layer.

Conversely, the Leader/Followers thread pool implementation creates the request

and reply buffers utilizing space allocated on its run-time stack. Therefore, does not invoke

malloc or free . In addition, since the request is completely processed by a single thread,

it eliminates the queuing layer and the correspondingenqueue anddequeue operations.

signal is called once to promote a follower to leader before processing the request. Two

locks are held in the critical path: (1) to promote a new leader, and (2) to become a follower.

Figure 5.8 compares the relative performance of the two thread pool implementa-

tions as the number of threads in the pool increases. Not only does the Leader/Followers

thread pool implementation outperform the Half-Sync/Half-Async implementation, it scales

much better as the number of threads increases. This is because the Half-Sync/Half-Async

thread pool implementation incurs higher overhead for memory allocation, locking, and

data movement compared to the Leader/Followers implementation.

51

5.5 Related Work

In this section, we compare our work on TAO’s RT-CORBA thread pools with related work

on CORBA.

URI TDMI. Wolfe et al. developed a real-time CORBA system at the US Navy Research

and Development Laboratories (NRaD) and the University of Rhode Island (URI) [79]. The

system supports expression and enforcement of dynamic end-to-end timing constraints

through timed distributed method invocations (TDMIs) [14]. A difference between TAO

and the URI approach is thatTDMIs are based on timing constraints,e.g., deadlines rela-

tive to the current time, whereas TAO’s threading strategies are based on the fixed-priority

scheduling features defined in the RT-CORBA specification.

BBN QuO. TheQuality Objects(QuO) distributed object middleware was developed at

BBN Technologies [81]. QuO is based on CORBA and provides the following support for

QoS-enabled applications:

� Run-time performance tuning and configurationthrough the specification of oper-

ating regions, behavior alternatives, and reconfiguration strategies. This allows the

QuO run-time to trigger reconfiguration adaptively as system conditions change (rep-

resented by transitions between operating regions); and

� Feedbackacross software and distribution boundaries based on a control loop in

which client applications and server objects request levels of service and are noti-

fied of changes in service.

The QuO model employs severalQoS definition languages(QDLs) that describe the

QoS characteristics of various objects, such as expected usage patterns, structural details

of objects, and resource availability. QuO’s QDLs are based on the separation of concerns

advocated by Aspect-Oriented Programming (AoP) [30]. The QuO middleware adds sig-

nificant value to adaptive real-time ORBs such as TAO. We are currently collaborating [37]

with the BBN QuO team to integrate the TAO and QuO middleware as part of the DARPA

Quorum project [8].

UCI TMO. The Time-triggered Message-triggered Objects (TMO) project [31] at the

University of California, Irvine, supports the integrated design of distributed OO systems

and real-time simulators of their operating environments. The TMO model provides struc-

tured timing semantics for distributed real-time object-oriented applications by extending

conventional invocation semantics for object methods,i.e., CORBA operations, to include

52

(1) invocation of time-triggered operations based on system times and (2) invocation and

time bounded execution of conventional message-triggered operations.

TAO differs from TMO in that TAO provides a complete CORBA ORB, as well as

CORBA ORB services and real-time extensions. Timer-based invocation capabilities are

provided through TAO’s Real-Time Event Service [23]. Where the TMO model creates

new ORB services to provide its time-based invocation capabilities [32], TAO provides a

subset of these capabilities by extending the standard CORBA Event Service. We believe

TMO and TAO are complementary technologies because (1) TMO extends and generalizes

TAO’s existing time-based invocation capabilities and (2) TAO provides a configurable and

dependable connection infrastructure needed by the TMO CNCM service. We are currently

collaborating with the UCI TMO team to integrate the TAO and TMO middleware as part

of the DARPA NEST project.

5.6 Concluding Remarks

Thread pools are an important RT-CORBA capability since they allow application devel-

opers and end-users to control and bound the amount of resources dedicated to concur-

rency and queueing. There are various strategies for implementing thread pools in the

RT-CORBA. Since certain strategies are optimal for certain application domains, users of

RT-CORBA middleware must understand the trade-offs between the different strategies.

This chapter described the Half-Sync/Half-Async and the Leader/Followers strate-

gies for implementing RT-CORBA thread pools. We evaluated these strategies using sev-

eral different factors and presented results that illustrate empirically how different thread

pool implementation strategies perform in different ORB configurations. Our pattern-

based descriptions are intended to help application developers and end-users understand

the schedulability, scalability, and predictability consequences of a particular thread pool

implementation in an RT-CORBA ORB.

53

Chapter 6

Real-time ORB Design

Abstract

This chapter takes a careful look at the end-to-end critical code path of a CORBA request

and identifies sources of unbounded priority inversion within the ORB. It then shows how

the ORB can be redesigned to use non-multiplexed resources to eliminate the sources of

unbounded priority inversion. This chapter also examines how RT-CORBA adds several

new challenges to collocation, endpoint selection, and memory management schemes and

how these mechanisms can be redesigned to improve performance and predictability.

6.1 Tracing an Invocation

In order to identify sources of unbounded priority inversion within the ORB, this section

traces the end-to-end critical code path of a CORBA request. The first part sets up a con-

nection between the client and the server. The second part involves (a) the client sending a

request to the server, (b) the server processing the request and sending a reply, and (c) the

client processing the reply.

Client activities for creating a connection:

1. Query the connection cache for an existing connection to the server.

2. Use the Connector [70] to create a new connection if there are no previously cached

connections to the server.

3. Add the newly established connectionS to the connection cache.

4. Also add connectionS to the Reactor [70] sinceS is bi-directional and the server

may send requests to the client usingS.

54

Leader/Followers

Connection Cache Memory Pool

ConnectorReactor

A B
CV2

A

POA
S

CV1

Client ORB

B S Connection Cache Memory Pool

Acceptor
Reactor

A B

A

S

Server ORB

B C

1, 3

2

4

5

6

9

10

11

12, 14, 16

13

15

19
7, 8, 17

18, 20

Figure 6.1: Tracing an invocation through the ORB

Server activities for accepting a connection:

5. Accept the new connectionC from the client.

6. AddC to the connection cache sinceC is bi-directional and the server can use it to

make requests to the client.

7. Also add connectionC to the Reactor so that the server is notified when a request

from the client arrives at the server.

8. Wait in the Reactor for new events.

Client activities for sending a request:

9. Allocate a buffer from the memory pool to marshal the invocation parameters.

10. Send the marshaled data to the server using connectionS. ConnectionS is locked

for the duration of the transfer.

11. Wait in the Leader/Follower [70] for a reply from the server. Assuming that a leader

thread is already available1, the client thread waits as a follower on a condition vari-

able in the Leader/Follower.
1The leader thread may be a server thread waiting for incoming requests or another client thread waiting

for its reply.

55

Server activities for processing a request:

12. Read the header of the request arriving on connectionC to determine the size of the

request.

13. Allocate a buffer from the memory pool for the request.

14. Read the request data into the buffer.

15. Demultiplex the request to find the target POA [56], servant, and skeleton. Dispatch

an upcall to the servant after demarshaling the request parameters.

16. Send the reply (if any) to the client on connectionC. ConnectionC is locked for the

duration of the transfer.

17. Wait in the Reactor for new events.

Client activities for processing a reply:

18. Leader thread reads the reply from the server on connectionS.

19. Leader thread hands off the reply to the follower thread after identifying that the

reply belongs to the follower. This is done by signaling the condition variable used

by the follower.

20. Follower thread demarshals the parameters and processes the reply.

6.2 Identifying Sources of Unbounded Priority Inversion

Predictable components and subsystems are essential in providing end-to-end QoS guaran-

tees. This section identifies resources in the critical path (described in Section 6.1) that can

cause unbounded priority inversion.

Connection Cache: In steps 10 and 16, the connection is locked for the duration of the

data transfer. Mutual exclusion of the connection prevents multiple threads from writing to

the connection simultaneously and hence avoids corruption of the request and reply data.

However, the time required to send the request data depends on availability of net-

work resources and the size of the request. Unless the underlying network provides time-

liness guarantees for data delivery, mutual exclusion of the connection can cause a higher

priority thread to wait indefinitely, leading to unbounded priority inversion. If priority in-

heritance is not supported by the mutual exclusion mechanism used to lock the connection,

priority inversion can be further exacerbated.

56

One approach to alleviate this problem would be to create a new connection to

the peer ORB instead of waiting for existing connection to become available. However,

creating a new connection can also take an indefinite amount of time.

Memory Pool: In steps 9 and 13, buffers are allocated for marshaling and demarshaling

requests. Typically, the memory pool is locked while finding a buffer large enough to hold

the processed data. Mutual exclusion of the memory pool prevents multiple threads from

accessing the memory pool simultaneously and hence avoids corruption of the free and

occupied buffer lists in the memory pool.

However, the time required to allocate a new buffer depends on pool fragmentation

and the memory management algorithm. Unless the memory pool provides timeliness

guarantees for buffer allocation and deletion, mutual exclusion of access to the memory

pool can cause a higher priority thread to wait indefinitely, leading to unbounded priority

inversion. As in the case of connections, if priority inheritance is not supported by the

mutual exclusion mechanism that locks the memory pool, priority inversion can be further

exacerbated.

One approach to alleviate this problem would be to use stack or thread-specific

storage based memory pool, which do not need mutual exclusion since they are not shared

among multiple threads. However, it may not be possible to use such memory pools if

buffers need to be shared by multiple threads.

Leader/Followers: Assume that the leader thread is of low priority while the follower

thread is of high priority. In steps 18 and 19, the leader thread handles the reply for the

follower thread. During this time, the leader thread may be preempted by some other

thread of medium priority before the reply is handed off to the follower.

This problem can be avoided if the leader thread can inherit the priority of the fol-

lower thread through the condition variable. Unfortunately, most condition variable imple-

mentations don’t support priority inheritance.

Reactor: There is no way to distinguish a high priority client request from one of lower

priority at the Reactor level. This can also lead to unbounded priority inversion if the lower

priority request is serviced before one of higher priority.

POA: In step 15, the POA dispatches the upcall after locating the target POA, servant,

and skeleton. The time required to demultiplex the request may depend on the organiza-

tion of the POA hierarchy and number of POAs, servants, or operations configured in the

57

Connector

ORB A

High Priority Lane

Leader/Followers

Connection Cache Memory Pool

Reactor
A B

CV1

CV2

A B S

S

Acceptor

Low Priority Lane

Leader/Followers

Connection Cache Memory Pool

Reactor
A B

CV1

CV2

A B S

S

Acceptor

ORB B

High Priority Lane

Leader/Followers

Connection Cache Memory Pool

Reactor
A B

CV1

CV2

A B S

S

Acceptor

Low Priority Lane

Leader/Followers

Connection Cache Memory Pool

Reactor
A B

CV1

CV2

A B S

S

Acceptor

POA Connector POA

Figure 6.2: Real-time CORBA architecture

server. The time required to dispatch the request may depend on contention on POA dis-

patching table. Demultiplexing and dispatching in conventional CORBA implementations

is typically inefficient and unpredictable [19, 20].

6.3 Eliminating Sources of Unbounded Priority Inversion

Figure 6.2 shows the redesigned ORB using non-multiplexed resources where each thread

lane has it own set of resources, including its own (a) connection cache, (b) memory pool,

(c) leader/followers manager that includes a reactor, and (d) acceptor. Components and fac-

tories that are not in the critical path or do not contribute to priority inversion, such as the

connector, are shared by all lanes in the ORB. Conversely, the POA is a shared component

that can be a potential source of non-determinism. Chapter 3 on demultiplexing describes

methodologies that demultiplex predictably while reducing average- and worst-case over-

head,regardlessof organization of the POA hierarchy or number of POAs, servants, or

operations. Also, Chapter 4 on efficient, scalable, and, predictable dispatching components

58

Model CLIENT PROPAGATED

Bands 0-15 and 45-55

0-15 ENDPOINT A

45-55 ENDPOINT C

10 ENDPOINT A

20 ENDPOINT B

50 ENDPOINT C

Model CLIENT PROPAGATED

Bands None

Model SERVER DECLARED

Bands Any

ENDPOINT B

ENDPOINT C

ENDPOINT D

Model EITHER

Bands Any

Figure 6.3: IOR creation and endpoint selection

shows how it is possible to bound priority inversion and hence provide timeliness guaran-

tees to real-time applications.

Lane-specific resources are only shared by the threads in the lane. Since all the

threads in a lane have the same priority, priority inversion is avoided. However, this tech-

nique is resource intensive. For example, assume that a thread in a high priority lane has

established a connection to a particular server. If a thread in a low priority lane wants to

communicate with the same server, it is not allowed to use the connection cached in the

high priority lane.

Distributed systems typically deal with a handful of distinct priorities and therefore

the above scheme is generally not a problem in practice. Even when hundreds of prior-

ities are desired, priorities can be banded into ranges to ease resource requirements and

schedulability analysis of the system.

6.4 Endpoint Selection

To propagate and preserve priorities, a client thread must communicate with a server thread

of appropriate priority. With the multiplicity of acceptors on the server (as shown in Fig-

ure 6.2), care must be taken to ensure that the client thread selects an appropriate endpoint.

This section describes the endpoints a server should publicize and how a client should select

an appropriate endpoint. Figure 6.3 illustrates the range of possible endpoint publication

and selection scenarios as described below:

59

Thread Pool Without Lanes: Servant 5 (S5) is registered in POA IV. POA IV is serviced

by thread pool B, a thread pool without lanes. Thread pool B has one endpoint D2. When

creating an IOR for S5, the server publicizes endpoint D.

Thread Pool With Lanes and SERVER DECLARED Priority Model: Servants 3 and

4 (S3 and S4) are registered in POA III with priorities 20 and 50 respectively. POA III has

theSERVER_DECLAREDpriority model and is serviced by thread pool A. Thread pool A

has three lanes and each lane has its own endpoint. When creating an IOR for S3, the

server only publicizes endpoint B since requests for this servant will only be processed by

threads in the lane of priority 20. Similarly, when creating an IOR for S4, the server only

publicizes endpoint C since requests for this servant will only be processed by threads in

the lane of priority 50.

Thread Pool With Lanes and CLIENT PROPAGATED Priority Model, but no Prior-

ity Bands: Servant 2 (S2) is registered in POA II. POA II has theCLIENT_PROPAGATED

priority model and is serviced by thread pool A, but does not have priority bands. When

creating an IOR for S2, the server has to publicize all three endpoints since it does not

knowa priori the priority of requests on S2. Depending on the priority of the client thread

making an invocation on S2, one of the three endpoints will be selected. Note that the client

is restricted to invocation priorities 10, 20, and 50 since the priorities of threads in lanes

cannot change. Any other client invocation priority will cause an exception.

Thread Pool With Lanes, CLIENT PROPAGATED Priority Model, and Priority Bands:

Servant 1 (S1) is registered in POA I. POA I has theCLIENT_PROPAGATEDpriority

model with two priority bands of 0–15 and 45–55, and is serviced by thread pool A. When

creating an IOR for S1, the server publicizes endpoints A and C since the lane of priority

10 satisfies the 0–15 band and the lane of priority 50 satisfies the 45–55 band. Endpoint B

need not be publicized in this case. Depending on the priority of the client thread making

invocation on S1, one of the two endpoints will be selected. Note that the client is restricted

to invocation priority ranges of 0–15 and 45–55.

2A thread pool without lanes can thought of as a thread pool with one lane, with the addition flexibility of
allowing the threads to vary their priorities when processing requests.

60

IOR

Local
Object

Profile MatchNo Match for Profile

Check all Acceptor
Registries to match profile

Remote
Object

Figure 6.4: Non-RT CORBA collocation decision tree

6.5 Collocation Challenges in RT-CORBA

CORBA is primarily used to communicate between distributed applications, where clients

useremotestubs to invoke operations on distributed servants. However, there are con-

figurations where clients and servants arecollocatedin the same address space [72]. In

such cases, there is no need to incur the overhead of transmitting requests/replies through a

“loopback” transport device. In many collocated configurations, the overhead of data mar-

shaling can also be avoided. In these configurations, clients usecollocatedstubs to invoke

operations on servants.

To ensure location transparency, the client is unaware of which stub it is using – it is

the ORB’s responsibility to generate the correct stub for the client. As shown in Figure 6.4,

if the ORB determines that the servant is collocated with the client, it generates a collocated

stub; otherwise, it generates a remote stub.

RT-CORBA adds several new challenges to collocation. In RT-CORBA, if a servant

is registered with a POA that is associated with a thread pool, then only threads belonging

to that pool can execute upcalls on the servant. Therefore, collocated stubs, that use the

client’s thread of control to execute upcalls on servants, will not suffice for RT-CORBA. A

newcross pool/lanestub is introduced that is somewhat similar to a collocated stub since

it also avoids the transport and marshaling overhead incurred by a remote stub. However, a

cross pool/lane stub does not use the client’s thread to execute upcalls on the servant. The

upcall is executed by a thread in the thread pool associated with the POA where the servant

is registered.

RT-CORBA collocation decisions are further complicated by the use of lanes in the

thread pool and by the priority model policy in effect. The following use cases illustrate

various RT-CORBA collocation scenarios. The use cases are based on the server process

illustrated in Figure 6.5, with several POA, thread pool, and priority model policy combi-

nations.

61

CLIENT PROPAGATED CLIENT PROPAGATED SERVER DECLAREDSERVER DECLAREDNONE

Figure 6.5: RT-CORBA collocation scenarios

Invocation on S1: Servant 1 (S1) is registered with POA I that does not have a priority

model policy and is not associated with a thread pool,i.e., it is associated with the default

thread pool. In this case, there is no restriction on which thread can execute upcalls on S1.

Therefore, all invocations on S1 are collocated, irrespective of which thread in the process

makes the invocation.

Invocation on S2: Servant 2 (S2) is registered with POA II that has theCLIENT_

PROPAGATEDpriority model policy and is associated with thread pool A. An invoca-

tion on S2 made by the thread in the default thread pool running at default priority is not

collocated. This invocation is handled by a cross pool/lane stub and the upcall on S2 is ex-

ecuted by one of the threads in thread pool A. The priority of the upcall thread is changed

to default priority for the duration of the upcall to match the priority of the client thread.

Invocation on S3: Servant 3 (S3) is registered with POA III that has theSERVER_

DECLAREDpriority model policy and is associated with thread pool A. An invocation

on S3 made by a thread in thread pool A running at priority 100 is collocated. The priority

of the thread is changed to priority 50 for the duration of the upcall to match the server

declared priority of S3.

Invocation on S4: Servant 4 (S4) is registered with POA IV that has theCLIENT_

PROPAGATEDpriority model policy and is associated with thread pool B. An invocation on

S4 made by a thread in thread pool B running at priority 20 is collocated. No modification

needs to be made to the priority of the thread during the upcall.

Invocation on S5: Servant 5 (S5) is registered with POA V that has theSERVER_

DECLAREDpriority model policy and is associated with thread pool B. An invocation

on S5 made by a thread in thread pool B running at priority 10 is not collocated because

it does not match the server declared priority of S5. This invocation is handled by a cross

62

IOR

Local
Object

Remote
Object

Profile MatchNo Match for Profile

Check all Acceptor
Registries to match profile

Servant
in Pool

Servant
in Lane

Servant in
Default Pool

Default Pool
Thread

RT-Pool
Thread

Client
Thread

RT-Lane
Thread

Default Pool
Thread

RT-Pool
Thread

Client
Thread

RT-Lane
Thread

Thread Pool !=
Servant Pool

Thread Pool =
Servant Pool

CLIENT
PROPAGATED

SERVER
DECLARED

Set Prority to
Server Declared

Reset Prority to
Pool Priority

Thread Pool !=
Servant Pool

Thread Pool =
Servant Pool

Remote Invocation

Cross Pool/Lane
Proxy

Collocated
Invocation

Thread Lane !=
Servant Lane

Thread Lane =
Servant Lane

Figure 6.6: RT-CORBA collocation decision tree

pool/lane stub and the upcall on S5 is executed by one of the threads in thread pool B of

priority 20.

Figure 6.6 details the decision tree that is evaluated in RT-CORBA to determine if an invo-

cation is collocated.

6.6 Memory Management Mechanisms to Improve Per-

formance and Predictability

The memory management mechanisms used by an application can have significant affects

on its performance and predictability. This section compares the behavior, properties, and

performance of three memory management mechanisms: global memory pool, thread-

specific storage (TSS) memory pool, and stack memory pool. Figure 6.7 (a) summarizes

the behavior and properties of the three pools.

63

Variable

Yes

Yes

1. Acquire lock

2. Manipulate pool

3. Release lock

1. Acquire lock

2. Manipulate pool

3. Release lock

Global Memory Pool

Variable

No

No

1. TSS access

2. Manipulate pool

1. TSS access

2. Manipulate pool

TSS Memory Pool

FixedSize

NoContention

NoShare Memory

NothingFree

1. Stack allocationMalloc

Stack Memory Pool
Behavior &

Properties

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Competing Threads

N
o

rm
a

liz
e

d
T

h
ro

u
g

h
p

u
t

Global Memory Pool TSS Memory Pool Stack Memory Pool

(a) (b)

Figure 6.7: Comparing memory management schemes:(a) Salient operations;(b) Perfor-
mance measurements

Global: A global memory pool is shared by all the threads in a process, and therefore

requires synchronization inmalloc andfree . This pool can grow in size within the data

segment size limits of the process.

Thread-specific storage: A TSS memory pool is specific to each thread but access to

it requires a TSS lookup. Since it is not a shared resource, there is no synchronization

required inmalloc andfree . This pool can also grow in size.

Stack: A stack memory pool is based on space allocated on the run-time stack of a thread.

It is automatically reclaimed and cleaned up when the stack unwinds. Therefore,free for

this pool is a no-op. This pool also does not require synchronization since it is not shared.

One major drawback of this pool is that its size is determined at compile-time and cannot

change during run-time. Therefore, it cannot be used for allocating buffers larger than the

predetermined size of the pool.

Figure 6.7 (b) compares the relative performance of the three memory pools as the number

of threads callingmalloc and free increases. When the threads are using a global

memory pool, the increased competition significantly affects the throughput achieved by

each thread. However, when using TSS and stack memory pools, each thread has its own

pool, and therefore increasing the number of threads does not affect competition for the

pool nor does it affect each thread’s performance.

Applications can get the best performance and predictability when using a stack

memory pool compared to the other two pools. Therefore, if sharing is not required and

allocation requests do not exceed the size of the stack memory pool, then the stack memory

64

pool should be used. Otherwise, the TSS memory pool should be used. When sharing is

required, a global or shared memory pool is the only valid option.

6.6.1 Client-side Memory Management in the ORB

This section examines the design of the client-side memory management mechanism used

in the ORB. This design is highly influenced by the results obtained in Section 6.6.

If the size of the marshaled user request data is less than the size of stack memory

pool, the ORB marshals the user request data into a buffer allocated from the stack memory

pool. Otherwise, it marshals the user request data into a buffer allocated from the TSS

memory pool. Once marshaled, the ORB tries to send the request data to the server. If

there is no network congestion, all the data is delivered to the server. If there is network

congestion and only part of the data is delivered to the server, the remaining data is copied

into a buffer allocated from the global memory pool. This allows any available thread to

complete the delivery of the unsent data once the network congestion subsides at a later

time.

This memory management design is well suited for predictable networks with little

or no congestion. Network congestion forces an additional allocation and data copy to

move the unsent data into a buffer allocated from the global memory pool. However, this

is probably not a major performance issue since network congestion has already slowed

down application progress and the extra allocation and data copy overhead will probably

not be very significant.

6.7 Concluding Remarks

The Real-time CORBA specification [45] has introduced several novel concepts and re-

quirements to the CORBA model. These new requirements for providing end-to-end pre-

dictability have added to the challenges faced by the ORB developers. This chapter de-

scribed how to identify and eliminate sources of unbounded priority inversion in the crit-

ical code path of the ORB. This is primarily done using non-multiplexed resources where

possible or by bounding priority inversion for shared resources. The chapter also illustrated

how certain key ORB components, including collocation and memory management, can be

redesigned to improve predictability and performance.

65

Chapter 7

Empirical Validation of End-to-End

Real-time ORB Behavior

Abstract

This chapter presents an empirical analysis of end-to-end ORB behavior. First we illustrate

incorrect real-time performance that is characteristic of contemporary middleware solu-

tions that are unable to satisfy QoS requirements. We then perform the same experiments

using TAO and show that true end-to-end predictability can be achieved if the underlying

middleware (a) respects and propagates thread priorities, (b) avoids unbounded priority

inversions, and (c) allows applications to configure and control processor, communication,

and memory resources.

7.1 Introduction to Real-time Experiments

The experiments presented here illustrate real-time, deterministic, and predictable behav-

ior of the ORB middleware. These experiments demonstrate end-to-end predictability by

utilizing the ORB to propagate and preserve priorities, to exercise strict control over the

management of resources, and to avoid unbounded priority inversions. End-to-end pre-

dictability of timeliness in a fixed priority CORBA system is defined as:

� Respecting thread priorities for resolving resource contention during the processing

of CORBA invocations.

� Bounding the duration of thread priority inversions during end-to-end processing.

� Bounding operation invocations latencies.

66

In these experiments, different aspects and parameters of the test bed (described in Sec-

tion 7.2) are varied to ensure that the above conditions are being met by the ORB mid-

dleware. Some experiments measure system reaction to increased workload, going from

unloaded to an overloaded situation; others measure system reaction to increased best-effort

work. The following experiments illustrate the real-time behavior of the ORB:

1. Increasing workload

2. Increasing invocation rate

3. Increasing client and server concurrency

4. Increasing workload in non-RT CORBA

5. Increasing workload in RT-CORBA with lanes

Increasing priority! Increasing rate

6. Increasing workload in RT-CORBA with lanes

Increasing priority! Decreasing rate

7. Increasing best-effort work in non-RT CORBA

8. Increasing best-effort work in RT-CORBA with lanes

9. Increasing workload in RT-CORBA without lanes

The first three experiments are basic non-real-time tests that illustrate the general charac-

teristics of the test bed. All threads in these three experiments have default priority and are

scheduled in the default scheduling class. Experiment 1 measures throughput as the work-

load increases. Experiment 2 measures deadlines made/missed as the target invocation rate

goes beyond the system capacity. Experiment 3 measures throughput as both client and

server concurrency increases while also adding additional CPU support.

The remaining six experiments have several client threads of different importance.

The importance of each thread is mapped to its relative priority. Experiments 4 through 6

measure throughput with and without RT-CORBA as the workload increases. Experiments

7 and 8 measure throughput with and without RT-CORBA as best-effort work increases.

Finally, Experiment 9 measures throughput with RT-CORBA thread pools without lanes as

workload increases. Experiments 5, 6, and 8 use RT-CORBA thread pools with lanes.

All the RT-CORBA experiments exercise theCLIENT_PROPAGATEDpolicy to

preserve end-to-end priority. The priority of threads in a thread pool with lanes is fixed.

However, the priority of threads in a thread pool without lanes is adjusted to match the

priority of the client when processing the CORBA request. Once processing completes, the

thread’s priority is restored to the priority of the thread pool.

67

Network

(a) (b)

Figure 7.1: Test bed:(a) Client and server on same machine(b) Client and server dis-
tributed across different machines on a network

7.2 Description of Test Bed

Figure 7.1 illustrates and Table 7.1 describes the test bed used for these experiments. To

make it easier to understand and interpret the performance results, most experiments have

the client and server located on the same machine utilizing a single CPU. Explicit mention

is made when the client and server are distributed across different machines on a network

or when a second CPU is enabled.

Threads used in the real-time experiments are placed in the First-In-First-Out (FIFO)

scheduling class and system scheduling scope. The FIFO scheduling class provides the

most predictable behavior since threads scheduled to this policy will proceed to comple-

tion unless preempted by a higher priority thread.

CORBA priorities are linearly mapped to native OS priorities and vice versa – on

Linux 2.4, RTCORBA::maxPriority of 32767 maps to the maximum priority in the

FIFO scheduling class of 99,RTCORBA::minPriority of 0 maps to the minimum pri-

ority in the FIFO scheduling class of 1, and everything in between is evenly apportioned1.

1Similar performance results were obtained when these experiments were conducted on Solaris 2.7. Sim-
ilar behavior is also expected on other platforms with comparable real-time characteristics.

68

Table 7.1: Description of test bed

Name hermes.doc.wustl.edu

OS Linux 2.4 (Redhat 7.1)
Processor (2) Intel Pentium III 930 MHz
Memory 500 Megabytes
CPU Cache 256 KB

ORBSchedPolicy SCHED_FIFO
ORBScopePolicy SYSTEM
ORBPriorityMapping linear

High Priority Lane 32767
Medium Priority Lane 21844
Low Priority Lane 10922
Best Effort Lane 0

Hardware Profile

Threads Profile

Priority Profile

The CORBA priority range is divided up evenly such that the high priority thread

lane is assigned 32767, medium priority lane is assigned 21844, low priority lane is as-

signed 10922, and the best-effort thread lane is assigned 0.

7.2.1 Invocation

The invocation made by the client on the server is:

void method (in unsigned long work);

The <work> parameter specifies the amount of CPU intensive work the server will per-

form to service this invocation. Hence, the higher the value of<work> , the more the load

on the server.

7.2.2 Rate-based Threads

Rate-based threads are identified by their frequency of invocation. AnH Hertz thread tries

to makeH invocations to the server every second. The periodP of a rate-based thread is the

multiplicative inverse of its frequency.E is the time it takes for an invocation to complete

and it depends on the<work> and the QoS it receives from the client endsystem, the

network, and the server endsystem.

69

PN PN+1 PN+2 PN+3

EN

SN

EN+1

SN+1

EN+2

SN+2

Figure 7.2: Invocation completes within its period

PN PN+1 PN+2 PN+3

EN EN+1

Figure 7.3: Invocation takes longer than its period

In presenting the performance results, an invocation is considered to have missed its

deadline when it cannot be started within its period. No explicit consideration is given to

the time when the invocation completes. However, these experiments can also be config-

ured with more stringent requirements to consider an invocation to have missed its deadline

when it cannot complete execution within its period. There are three scenarios of an invo-

cation’s execution with respect to its period:

Invocation completes within period (Figure 7.2): A rate-based thread sleeps for timeS

equal to(P � E) before making its next invocation. No deadlines are missed in this case.

Invocation execution time exceeds period (Figure 7.3): The execution time of invoca-

tion N (EN) is such that invocationN + 1 is invoked immediately since there is no time

to sleep,i.e., (P � E) <= 0. Note that since the invocations are twoway CORBA calls,

a second invocation can only be made once the first one completes. Also notice that ac-

cording to the above definition of a missed deadline, invocationsN andN +1 did not miss

their deadlines. However, if the execution time is consistently greater than the period, then

(E � P)=E deadlines will be missed.

Invocation misses deadline (Figure 7.4): The execution time of invocationN (EN) is

such that invocationN + 1 could not be made during timePN+1 throughPN+2. In this

case, invocationN + 1 missed its deadline and was not invoked.

70

PN PN+1 PN+2 PN+3

EN

Figure 7.4: Invocation misses deadline

7.2.3 Continuous Threads

Continuous threads make continuous invocations on the server,i.e., they do not pause be-

tween successive invocations.

7.3 Experiment Configurations and Performance Results

This section describes the configurations used and the performance results obtained for the

various real-time CORBA experiments performed.

Experiment 1: Increasing Workload

This experiment measures the affect of increasing workload in the test bed. As shown in

Figure 7.5 (a), the server has one thread handling incoming requests and the client has one

continuous thread making invocations. Workload is increased by increasing the<work>

parameter in the invocation and hence making the server do more work for every client

request.

The performance graph in Figure 7.5 (b) plots the throughput achieved (invoca-

tions/second) as the workload increases. As the workload increases, the throughput de-

creases.

Experiment 2: Increasing Invocation Rate

This experiment measures the affect of increasing the target frequency for a rate-based

thread beyond the capacity of the system. As shown in Figure 7.6 (a), the server has one

thread handling incoming requests and the client has one rate-based thread making in-

vocations. The frequency of the rate-based thread is increased, eventually exceeding the

capacity of the system. Workload is kept constant in this experiment at 30. Correlating this

71

0

20

40

60

80

100

120

140

160

180

200

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

(a) (b)

Figure 7.5: Increasing workload:(a) Configuration of test bed(b) Performance measure-
ments

workload to the performance graph in Experiment 1 (Figure 7.5 (b)), note that the continu-

ous thread was able to make about 150 invocations/second. Therefore, system capacity is

estimated at 150 invocations/second with a workload of 30.

The performance graph in Figure 7.6 (b) plots the percentage of deadline made as

the target frequency of the rate-based thread increases. Until about the point when the

target frequency increases to 150 invocations/second, the rate-based thread is able to meet

100% of its deadlines. Once the target frequency goes beyond 150 invocations/second,

the rate-based thread started missing deadlines. The number of deadlines missed increases

with the increased target frequency.

Experiment 3: Increasing Client and Server Concurrency

This experiment measures the affect of increasing the concurrency of both the client and

the server as shown in Figure 7.7 (a). The following three server configurations are used in

this experiment:

1. One thread to handle incoming requests; one CPU utilized.

2. Two threads to handle incoming requests; one CPU utilized.

3. Two threads to handle incoming requests; two CPUs utilized.

For each of the above server configurations, the number of client threads making continuous

invocations is increased from 1 to 20. As in Experiment 2, workload is kept constant at 30.

72

0

10

20

30

40

50

60

70

80

90

100

50 75 100 125 150 175 200 225 250

Invocation Rate

%
 o

f D
ea

dl
in

es
 M

ad
e

(a) (b)

Figure 7.6: Increasing invocation rate:(a) Configuration of test bed(b) Performance mea-
surements

0

50

100

150

200

250

300

350

0 5 10 15 20

Continuous Workers

In
vo

ca
tio

ns
 /

se
c

Collective (CPUs=1, Threads=1) Collective (CPUs=1, Threads=2)

Collective (CPUs=2, Threads=2)

(a) (b)

Figure 7.7: Increasing concurrency:(a) Configuration of test bed(b) Performance mea-
surements

73

The performance graph in Figure 7.7 (b) plots the collective/cumulative throughput

achieved for all the client threads as the number of client threads increases.

Configuration 1 (one server thread, one CPU): Increasing client concurrency did not

affect collective throughput of the client threads: as the number of client threads increased,

the throughput per thread decreased, but the collective throughput remained constant. This

is because most of the time is spent on the server and increasing client concurrency does

not affect the collective throughput for the client threads.

Configuration 2 (two server threads, one CPU): The results are almost identical to

server configuration 1 (one server thread, one CPU). Increasing server concurrency with-

out improving hardware support does not improve throughput when all the work is CPU

bound. In fact, the throughput degrades slightly since the server now has to coordinate and

synchronize the two threads on one CPU.

Configuration 3 (two server threads, two CPUs): Once the number of client threads

reaches two, the collective throughput doubles. The second client thread is able to engage

the second server thread, thus doubling the throughput2. Further increasing the number of

client threads does not improve collective throughput since both server threads are already

engaged.

Experiment 4: Increasing Workload in Non-RT CORBA

This experiment measures the disruption caused by increasing workload in non-RT CORBA.

As shown in Figure 7.8 (a), the server has three threads handling incoming requests3. The

client has three rate-based threads of different importance – the high priority thread is

at 75 Hertz, the medium priority thread is at 50 Hertz, and the low priority thread is at

25 Hertz.

The performance graph in Figure 7.8 (b) plots the throughput achieved for each of

the three client threads as the workload increases. The combined capacity desired by the

three client threads is 150 invocations/second (75 + 50 + 25). Correlating this desired

throughput of 150 invocations/second to the performance graph in Experiment 1 (Fig-

ure 7.5 (b)), note that the continuous thread was able to achieve that throughput with a

2Some applications may not be able to double the throughput using this configuration if synchronization
is required in the servant code while processing the CORBA requests.

3It is not necessary that there be three threads handling incoming requests on the server. As shown in
Figure 7.7 (b), one thread is sufficient since increasing server concurrency without increasing CPU support
does not affect throughput when the work is CPU bound.

74

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

(a) (b)

Figure 7.8: Increasing workload in non-RT CORBA:(a) Configuration of test bed(b)
Performance measurements

workload of 30 or less. Therefore, for workloads of 25 and 30 in Figure 7.8 (b), each of the

three client threads is able to achieve their desired frequency since the system capacity has

not been exceeded.

However, once the workload is increased beyond 30, deadlines start to be missed.

The expected behavior of a real-time system is to drop requests from client threads of lower

priority before dropping requests from those of higher priority. Unfortunately, since all the

three clients are treated equally by the server in non-RT CORBA, the first to be affected is

the high priority 75 Hertz client thread, followed by the medium priority 50 Hertz client

thread, and finally by the low priority 25 Hertz client thread. This behavior is unacceptable

for a real-time system.

Experiment 5: Increasing Workload in RT-CORBA with Lanes: In-

creasing Priority ! Increasing Rate

This experiment measures the disruption caused by increasing workload in RT-CORBA

with lanes. As shown in Figure 7.9, the server has three thread lanes of high, medium, and

low priorities handling incoming requests. Each lane has one thread. The client is identical

to the client in Experiment 4.

The performance graph in Figure 7.10 (a) plots the throughput achieved for each of

the three client threads as the workload increases. Note that for workloads of 25 and 30,

75

Figure 7.9: Increasing workload in RT-CORBA (increasing priority! increasing rate):
Configuration of test bed

each of the three client threads is able to achieve its desired frequency since the system

capacity has not been exceeded.

However, once the workload is increased beyond 30, deadlines start to be missed.

Unlike in the non-RT CORBA experiment (Figure 7.8 (b)), the first to be affected is the

low priority 25 Hertz client thread, followed by the medium priority 50 Hertz client thread,

and finally by the high priority 75 Hertz client thread. This behavior is expected from a

real-time system.

Figure 7.10 (b) shows the performance graph of the same experiment, except with

the client and server on two different machines across a network. The results are similar to

the result when the client and server are on the same machine (Figure 7.10 (a)). However,

between the time the high priority server thread sent a reply to the high priority client thread

and before it receives a new request from it, the server is free to process a request from a

client thread of lower priority. Therefore, the medium priority 50 Hertz client thread is able

to make some progress.

Experiment 6: Increasing Workload in RT-CORBA with Lanes: In-

creasing Priority ! Decreasing Rate

This experiment is similar to Experiment 5 except that, as shown in Figure 7.11 (a), the

high priority thread is at 25 Hertz, the medium priority thread is at 50 Hertz, and the low

priority thread is at 75 Hertz.

76

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

(a) (b)

Figure 7.10: Increasing workload in RT-CORBA (increasing priority! increasing rate):
Performance measurements:(a) Client and server are on the same machine(b) Client and
server are remote

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (high priority) 50 Hertz (medium priority) 75 Hertz (low priority)

(a) (b)

Figure 7.11: Increasing workload in RT-CORBA (increasing priority! decreasing rate):
(a) Configuration of test bed(b) Performance measurements

77

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

Continuous Workers

In
vo

ca
tio

ns
 /

se
c

25 Hertz (high priority) 50 Hertz (medium priority)

75 Hertz (low priority) Continuous Workers

(a) (b)

Figure 7.12: Increasing best-effort work in non-RT CORBA:(a) Configuration of test bed
(b) Performance measurements

The performance graph in Figure 7.11 (b) shows that the low priority 75 Hertz client

thread is affected first, followed by the medium priority 50 Hertz client thread. The high

priority 25 Hertz client thread is unaffected since the system capacity never dropped below

25 invocations/second. This behavior is also expected from a real-time system.

Experiment 7: Increasing Best-effort Work in Non-RT CORBA

This experiment measures the disruption caused by increasing best-effort work in non-

RT CORBA. As shown in Figure 7.12 (a), the server has four threads handling incoming

requests4. The client has three rate-based threads of different priorities – the high prior-

ity thread is at 75 Hertz, the medium priority thread is at 50 Hertz, and the low priority

thread is at 25 Hertz. The client also has a variable number of best-effort threads making

continuous invocations. Workload is kept constant at 30, as the number of best-effort con-

tinuous client threads is increased from 0 through 10. Note that the system capacity is 150

invocation/second for a workload of 30; therefore, any progress made by the best-effort

continuous client threads will cause the rate-based threads to miss deadlines.

The performance graph in Figure 7.12 (b) plots the throughput achieved for each

of the three rate-based client threads and the collective throughput achieved by the all the

best-effort continuous threads on the client as the number of best-effort continuous threads

increases.
4For the same reasons noted in Experiment 4, one server thread is sufficient for handling incoming

requests.

78

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10

Continuous Workers

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority)

75 Hertz (high priority) Continuous Workers

(a) (b)

Figure 7.13: Increasing best-effort work in RT-CORBA:(a) Configuration of test bed(b)
Performance measurements: system running at capacity (work = 30); client and server are
on the same machine

When there are no best-effort threads, the three rate-based threads are able to achieve

their desired frequency. However, once best-effort threads are added to the client, the non-

RT CORBA server treats all the client threads equally, and hence the collective throughput

of the best-effort threads increases at the expense of the higher priority threads. This be-

havior is unacceptable for a real-time system.

Experiment 8: Increasing Best-effort Work in RT-CORBA with Lanes

This experiment measures the disruption caused by increasing best-effort work in RT-

CORBA with lanes. As shown in Figure 7.13 (a), the server processes requests using

four thread lanes of high, medium, low, and best-effort priorities. Each lane has one thread.

The client is identical to the client in Experiment 7.

The performance graph in Figure 7.13 (b) shows that best-effort continuous threads

are not able to affect the higher priority rate-based threads. This behavior is expected from

a real-time system.

Figure 7.14 (a) shows the performance graph of the same experiment but with a

slightly lower workload(<work>=28) . Note that the slack produced by the lower work-

load is used by the best-effort threads. Also, increasing the number of best-effort threads

does not lead to any increase in the collective throughput of the best-effort threads and

the best-effort threads are not able to disrupt the higher priority rate-based threads. This

behavior is expected from a real-time system.

79

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10

Continuous Workers

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority)

75 Hertz (high priority) Continuous Workers

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10

Continuous Workers

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority)

75 Hertz (high priority) Continuous Workers

(a) (b)

Figure 7.14: Increasing best-effort work in RT-CORBA: Performance measurements: sys-
tem running slightly below capacity (work = 28):(a) Client and server are on the same
machine(b) Client and server are remote

Figure 7.14 (b) shows the performance graph of the same experiment(<work>

=28) but with the client and server on different machines across a network. Note that the

slack available for the best-effort threads increases since all the client processing is now

performed on the machine hosting the client, freeing up the server to do additional work.

Experiment 9: Increasing Workload in RT-CORBA without Lanes

This experiment measures the disruption caused by increasing workload in RT-CORBA

without lanes. As shown in Figure 7.15 (a), the server has a thread pool of three threads

handling incoming requests. The client is identical to the client in Experiment 4 and 5.

The performance graphs in Figures 7.15 (b), 7.16 (a), and 7.16 (b) plot the through-

put achieved for each of the three client threads as the workload increases. The difference

between the three graphs is the priority of the server thread pool: in Figure 7.15 (b) the

thread pool runs at low priority, in Figure 7.16 (a) the thread pool priority runs at medium

priority, and in Figure 7.16 (b) the thread pool runs at high priority.

Server thread pool priority = low (Figure 7.15 (b)): Assume that one of the server

threads is processing a request from a client thread of low priority. During that time, a

request arrives at the server from a higher priority client thread. Unfortunately, since the

request processing thread has the same priority as the waiting thread, the waiting thread

is not able to preempt the processing thread. The request from the higher priority client

thread has to wait until the low priority client thread request has been completely processed.

80

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

(a) (b)

Figure 7.15: Increasing workload in RT-CORBA without lanes:(a) Configuration of test
bed(b) Performance measurements: server thread pool priority = low

This leads to the three client threads being treated equally by the server. This behavior is

unacceptable for a real-time system.

Server thread pool priority = medium (Figure 7.16 (a)): Assume that one of the server

threads is processing a request from a client thread of medium priority. During this time,

a request arrives at the server from the high priority client thread. Unfortunately, since the

request processing thread has the same priority as the waiting thread, the waiting thread

is not able to preempt the request processing thread. The request from the high priority

client thread has to wait until the medium priority client thread request has been completely

processed.

However, the same does not apply when a medium or high priority request arrives

while a low priority request is being processed. Since the priority of the waiting thread is

greater than that of the priority of the request processing thread, it is able to preempt the

request processing thread and handle the higher priority request.

This behavior leads to the medium and high priority client threads being treated

equally but are given preference over the low priority client thread. However, this behavior

is also unacceptable for a real-time system.

Server thread pool priority = high (Figure 7.16 (b)): Assume that one of the server

threads is processing a request from a client thread of low priority. During this time, a

request arrives at the server from a higher priority client thread. Since the priority of the

waiting thread is greater than the priority of the request processing thread, it is able to

81

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

0

10

20

30

40

50

60

70

80

25 30 35 40 45 50 55 60 65 70 75 80 85

Work

In
vo

ca
tio

ns
 /

se
c

25 Hertz (low priority) 50 Hertz (medium priority) 75 Hertz (high priority)

(a) (b)

Figure 7.16: Increasing workload in RT-CORBA without lanes: Performance measure-
ments:(a) server thread pool priority = medium(b) server thread pool priority = high

preempt the request processing thread and handle the higher priority request. Note that a

high priority request can preempt both low and medium priority requests.

This behavior leads to the high priority client thread getting preference over the low

and medium priority client threads and the medium priority client thread getting preference

over the low priority client thread. This behavior is expected from a real-time system.

Notes on using RT-CORBA without lanes: The most desirable behavior is achieved

in Figure 7.16 (b) where the server thread pool priority is equal to the highest request

processing priority. A server using thread pools without lanes is more flexible than a server

using thread pools with lanes since the former is able to adapt to any priority propagated by

the client. A client invoking requests on a server using thread pools with lanes is restricted

to priorities used in the lanes by the server5.

However, a server without lanes can incur priority inversion. Consider the case

where the server thread pool priority is high. Assume that one of the server threads is

processing a request from a client thread of medium priority. During this time, a request

arrives at the server from the low priority client thread. Since the priority of the waiting

thread is greater than the priority of the request processing thread, it is able to preempt

the request processing thread to read the incoming request. If the request includes a large

amount of data, it can take a significant amount of time to read the request. Once this

thread reads the request, it sets its priority to low to match the client propagated priority.

5Priority bands can be used map a range of client priorities to a server lane. However, the server lane
priority is fixed and therefore, request processing priorities are limited to the priorities of the lanes.

82

The medium priority request processing thread is now able to preempt the low priority

thread and resume processing.

This interruption caused by the low priority request leads to priority inversion for

the medium priority thread. Depending on the number of waiting threads in the server

thread pool and the time it takes to read the incoming request, the priority inversion can be

significant or even unbounded.

7.4 Concluding Remarks

RT-CORBA ORBs mustvertically andhorizontallyintegrate and manage components to

ensure end-to-end predictable behavior. The empirical analysis presented in this chapter

illustrated that conventional non-RT ORBs are unsuitable for real-time systems that require

timeliness guarantees. Conversely, the experimental results validate end-to-end real-time,

deterministic behavior of the TAO RT-ORB. However, even when using a RT-ORB, care-

ful consideration must be given to several other factors to ensure end-to-end system pre-

dictability and scalability, including (a) the configuration and structure of the client and

server, (b) the use of lanes in thread pools, (c) the priorities assigned to the thread pools

and lanes used in the server, and (d) the priority propagation and banding policies used.

In general, even though thread pools with lanes are not as flexible as their counterparts

without lanes, they provide the most predictable execution and do not exhibit unbounded

priority inversions.

83

Chapter 8

Conclusions and Future Research

Directions

This thesis focused on presenting designs and techniques for providing real-time QoS guar-

antees in DOC middleware. Historically, DOC middleware has lacked the ability to specify

and enforce QoS and has failed to present real-time programming features to the user. How-

ever, the next generation of middleware must be QoS-enabled to support mission-critical

distributed applications, including command and control systems, telecom, distributed in-

teractive simulations, and financial services, that require stringent latency, determinism,

and priority preservation support.

The work presented in this thesis is in the context of TAO [6], a high-quality, freely

available, open-source CORBA-compliant middleware platform. TAO provides a com-

plete implementation of the Real-time CORBA (RT-CORBA) 1.0 specification [45] and

meets real-time requirements of fixed priority applications by (a) respecting and propagat-

ing thread priorities, (b) avoiding unbounded priority inversions, and (c) allowing applica-

tions to configure and control processor, communication, and memory resources. TAO has

matured into a stable COTS middleware framework and is being used in many commercial

projects, a representation of which is shown in Table 8.1.

Providing end-to-end QoS guarantees required careful engineering of the TAO’s

subsystems to ensure predictability, scalability, and performance. This work also focused

on demultiplexing, dispatching, and concurrency mechanisms that are key components in

the critical code path of the ORB. Analysis of the problems, forces, solutions, and conse-

quences are presented in terms of patterns and frameworks, so that solutions obtained here

can be appropriately applied to other real-time systems.

84

Table 8.1: TAO has been successfully used in a variety of domains

Monitor H.323 ServersCUSeeMe

Airborne Early Warning & ControlNorthrup-Grumman

SOFIA Airborne Telescope, Cassini Space ProbeJPL/NASA

Joint Tactical Radio SystemMarconi

Joint Tactical TerminalUS Army

Surface mounted “pick-and-place” machinesContact Systems

Shipboard Resource ManagementTurkish Navy

Process AutomationKrones

Hot Rolling Mill Control SystemSiemens

Shipboard Resource ManagementLockheed-Martin

Automated Stock TradingATD

High-performance network switch controlCisco

Aircraft Carrier self-defense SystemsRaytheon

Distributed Interactive Simulation (HLA/RTI-NG)SAIC

Aircraft Mission Control ComputerBoeing

DomainOrganization

Finally, the architectural solutions presented here are coupled with empirical evalu-

ations of end-to-end real-time behavior. The evaluations show that real-time, deterministic,

and predictable ORB behavior can be achieved by bounding the duration of thread priority

inversions end-to-end and by bounding the latencies of operation invocations.

8.1 Future Research Directions

The Object Request Broker (ORB) is the foundation of Common Object Request Broker

Architecture (CORBA) [47]. It enables objects to transparently make and receive requests

and responses in a distributed environment. It provides the basis for building distributed

applications and for interoperability between applications in hetero- and homogeneous en-

vironments. The ORB, however, needs to be combined with Object Services,e.g., Naming,

Trading, and Transaction Services, and Common Facilities,e.g.Secure Time, Internation-

alization, and Mobile Agent Facilities, to ensure meaningful and productive communica-

tion and to provide application semantic interoperability.

Similarly, RT-CORBA forms the basis of real-time distributed computing, and needs

to be integrated with higher-level architectures, models, services, and tools to be meaning-

ful and productive. The following integrations are of primary interest:

85

 struct RT_Info

 {

 wc_exec_time_;

 period_;

 criticality_;

 importance_;

 dependencies_;

 };

SCHEDULING

 STRATEGY

 RT_INFO

REPOSITORY

 OFF-LINE

STRATEGIZED

 SCHEDULER

OFF-LINE

ON-LINE

 RT_INFO

REPOSITORY

 RUN-TIME

SCHEDULER

 1. SPECIFY ATTRIBUTES

 3. ASSESS SCHEDULABILITY

 4. ASSIGN STATIC PRIORITIES

 2. POPULATE

 REPOSITORY

RT

Operation

RT

Operation

RT

Operation

I/O SUBSYSTEM

ORB CORE

OBJECT ADAPTER

(SCHEDULER'S

 OUTPUT

 INTERFACE)

(SCHEDULER'S

 INPUT

 INTERFACE)

 RT-ORB

ENDSYSTEM

5. REASSIGN PRIORITIES

 TO ADAPT TO CHANGING

 REQUIREMENTS

Figure 8.1: Dynamic scheduling

Scheduling Services and Resource Managers:RT-CORBA is well suited for applica-

tions using fixed priority scheduling. However, as shown in Figure 8.1, to ensure dynamic

end-to-end management of priorities, it must be integrated with dynamic scheduling ser-

vices [43], such as the Kokyu scheduling framework [17], and adaptive resource manage-

ment systems, such as the RT-ARM [27] and the QuO [73] frameworks.

Network QoS: RT-CORBA does allow the selection and configuration of protocols used

by the ORB. However, it needs to be integrated with network QoS protocols, such as

RSVP and DiffServ, to provide true end-to-end predictability that includes the network.

RSVP [57] is a network resource reservation protocol based on the Integrated Services

(IntServ) model [26] and has good scaling and robustness properties. RSVP reservations

are receiver-oriented and scale well for both unicast and multicast communication groups.

Conversely, the Differentiated Services model (DiffServ) [25] allows network providers to

allocate different levels of service to different users. This is accomplished by using the IP

TOS (type of service) field according to a contracted service profile.

Higher-level Services: RT-CORBA also needs to be integrated with higher level services

such as the Real-time Notification Service and the CORBA Component Model. The Real-

time Notification Service [40] allows real-time systems to enjoy predictable and bounded

behavior from the existing Notification Service [44] and would include priority ordering

86

and deadline scheduling of events. The CORBA Component Model [4] defines a stan-

dard configuration framework for packaging and deploying software components. It can

be used to configure real-time properties into applications flexibly, transparently, and adap-

tively [77].

Modeling and Monitoring Tools: Integration of RT-CORBA with modeling and mon-

itoring tools such as RapidRMA, TimeWiz, and TotalView, will make easier to analyze,

develop, and use real-time applications. RapidRMA [76] is a Rate Monotonic Analysis

(RMA) [35] visual modeling tool produced by Tri-Pacific. It allows real-time systems soft-

ware developers to provides worst-case schedulability analysis and isolate and identify tim-

ing problems. TimeWiz [75] is a performance prediction tool produced by TimeSys. It of-

fers architectural modeling, analysis and simulation for real-time systems. TotalView [38]

is a multi-process, distributed debugger produced by LynuxWorks. It is fast and intuitive,

making it easy to debug real-time applications running across multiple machines.

87

References

[1] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, and Michael Kircher.

Applying C++, Patterns, and Components to Develop an IDL Compiler for CORBA

AMI Callbacks.C++ Report, 12(3), March 2000.

[2] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael Kircher, and

Jeff Parsons. The Design and Performance of a Scalable ORB Architecture for

CORBA Asynchronous Messaging. InProceedings of the Middleware 2000 Con-

ference. ACM/IFIP, April 2000.

[3] Mary L. Bailey, Burra Gopal, Prasenjit Sarkar, Michael A. Pagels, and Larry L.

Peterson. Pathfinder: A pattern-based packet classifier. InProceedings of the1st

Symposium on Operating System Design and Implementation. USENIX Association,

November 1994.

[4] BEA Systems,et al. CORBA Component Model Joint Revised Submission. Object

Management Group, OMG Document orbos/99-07-01 edition, July 1999.

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal.Pattern-Oriented Software Architecture – A System of Patterns. Wiley and Sons,

New York, 1996.

[6] Center for Distributed Object Computing. The ACE ORB (TAO).

www.cs.wustl.edu/�schmidt/TAO.html, Washington University.

[7] James O. Coplien and Douglas C. Schmidt, editors.Pattern Languages of Program

Design. Addison-Wesley, Reading, Massachusetts, 1995.

[8] DARPA. The Quorum Program. www.darpa.mil/ito/research/quorum/index.html,

1999.

88

[9] Zubin D. Dittia, Jerome R. Cox, Jr., and Guru M. Parulkar. Design of the APIC:

A High Performance ATM Host-Network Interface Chip. InIEEE INFOCOM ’95,

pages 179–187, Boston, USA, April 1995. IEEE Computer Society Press.

[10] Zubin D. Dittia, Guru M. Parulkar, and Jerome R. Cox, Jr. The APIC Approach to

High Performance Network Interface Design: Protected DMA and Other Techniques.

In Proceedings of INFOCOM ’97, pages 179–187, Kobe, Japan, April 1997. IEEE.

[11] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lindstrom. Flick: A Flex-

ible, Optimizing IDL Compiler. InProceedings of ACM SIGPLAN ’97 Conference

on Programming Language Design and Implementation (PLDI), Las Vegas, NV, June

1997. ACM.

[12] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, Flexible Message Demulti-

plexing using Dynamic Code Generation. InProceedings of ACM SIGCOMM ’96

Conference in Computer Communication Review, pages 53–59, Stanford University,

California, USA, August 1996. ACM Press.

[13] J.R. Eykholt, S.R. Kleiman, S. Barton, R. Faulkner, A Shivalingiah, M. Smith,

D. Stein, J. Voll, M. Weeks, and D. Williams. Beyond Multiprocessing... Multi-

threading the SunOS Kernel. InProceedings of the Summer USENIX Conference,

San Antonio, Texas, June 1992.

[14] Victor Fay-Wolfe, John K. Black, Bhavanai Thuraisingham, and Peter Krupp. Real-

time Method Invocations in Distributed Environments. Technical Report 95-244, Uni-

versity of Rhode Island, Department of Computer Science and Statistics, 1995.

[15] David C. Feldmeier. Multiplexing Issues in Communications System Design. InPro-

ceedings of the Symposium on Communications Architectures and Protocols (SIG-

COMM), pages 209–219, Philadelphia, PA, September 1990. ACM.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mas-

sachusetts, 1995.

[17] Christopher D. Gill, Ron Cytron, and Douglas C. Schmidt. Middleware Scheduling

Optimization Techniques for Distributed Real-Time and Embedded Systems. InPro-

ceedings of the7th Workshop on Object-oriented Real-time Dependable Systems, San

Diego, CA, January 2002. IEEE.

89

[18] Christopher D. Gill, David L. Levine, and Douglas C. Schmidt. The Design and

Performance of a Real-Time CORBA Scheduling Service.Real-Time Systems, The

International Journal of Time-Critical Computing Systems, special issue on Real-

Time Middleware, 20(2), March 2001.

[19] Aniruddha Gokhale and Douglas C. Schmidt. Measuring the Performance of Com-

munication Middleware on High-Speed Networks. InProceedings of SIGCOMM ’96,

pages 306–317, Stanford, CA, August 1996. ACM.

[20] Aniruddha Gokhale and Douglas C. Schmidt. Measuring and Optimizing CORBA

Latency and Scalability Over High-speed Networks.Transactions on Computing,

47(4), 1998.

[21] Aniruddha Gokhale and Douglas C. Schmidt. Principles for Optimizing CORBA

Internet Inter-ORB Protocol Performance. InHawaiian International Conference on

System Sciences, January 1998.

[22] Aniruddha Gokhale and Douglas C. Schmidt. Optimizing a CORBA IIOP Protocol

Engine for Minimal Footprint Multimedia Systems.Journal on Selected Areas in

Communications special issue on Service Enabling Platforms for Networked Multi-

media Systems, 17(9), September 1999.

[23] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design and

Performance of a Real-time CORBA Event Service. InProceedings of OOPSLA ’97,

pages 184–199, Atlanta, GA, October 1997. ACM.

[24] Michi Henning and Steve Vinoski.Advanced CORBA Programming With C++.

Addison-Wesley, Reading, Massachusetts, 1999.

[25] Internet Engineering Task Force. Differentiated Services Working Group (diffserv)

Charter. www.ietf.org/html.charters/diffserv-charter.html, 2000.

[26] Internet Engineering Task Force. Integrated Services Working Group (intserv) Char-

ter. www.ietf.org/html.charters/intserv-charter.html, 2000.

[27] J. Huang and R. Jha and W. Heimerdinger and M. Muhammad and S. Lauzac and B.

Kannikeswaran and K. Schwan and W. Zhao and R. Bettati. RT-ARM: A Real-Time

Adaptive Resource Management System for Distributed Mission-Critical Applica-

tions. InWorkshop on Middleware for Distributed Real-Time Systems, RTSS-97, San

Francisco, California, 1997. IEEE.

90

[28] Mahesh Jayaram and Ron Cytron. Efficient Demultiplexing of Network Packets by

Automatic Parsing. InProceedings of the Workshop on Compiler Support for System

Software (WCSSS 96), University of Arizona, Tucson, AZ, February 1996.

[29] E. Douglas Jensen. Eliminating the Hard/Soft Real-Time Dichotomy.Embedded

Systems Programming, 7(10), October 1994.

[30] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. InPro-

ceedings of the 11th European Conference on Object-Oriented Programming, June

1997.

[31] K. H. (Kane) Kim. Object Structures for Real-Time Systems and Simulators.IEEE

Computer, pages 62–70, August 1997.

[32] Kane Kim and Eltefaat Shokri. Two CORBA Services Enabling TMO Network Pro-

gramming. InFourth International Workshop on Object-Oriented, Real-Time De-

pendable Systems. IEEE, January 1999.

[33] Fred Kuhns, Douglas C. Schmidt, and David L. Levine. The Design and Performance

of RIO – A Real-time I/O Subsystem for ORB Endsystems. InProceedings of the

International Symposium on Distributed Objects and Applications (DOA’99), Edin-

burgh, Scotland, September 1999. OMG.

[34] Fred Kuhns, Douglas C. Schmidt, Carlos O’Ryan, and David Levine. Supporting

High-performance I/O in QoS-enabled ORB Middleware.Cluster Computing: the

Journal on Networks, Software, and Applications, 3(3), 2000.

[35] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior. InProceedings of the 10th IEEE Real-

Time Systems Symposium, pages 166–171. IEEE Computer Society Press, 1989.

[36] David L. Levine, Douglas C. Schmidt, and Sergio Flores-Gaitan. An Empirical Eval-

uation of OS Support for Real-time CORBA Object Request Brokers. InProceedings

of Multimedia Computing and Networking 2000 (MMCN00), San Jose, CA, January

2000. ACM.

[37] J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal, R. Shapiro, C. Rodrigues,

M. Atighetchi, and D. Karr. Comparing and Contrasting Adaptive Middleware Sup-

port in Wide-Area and Embedded Distributed Object Applications. InProceedings

91

of the 21st International Conference on Distributed Computing Systems (ICDCS-21),

pages 625–634. IEEE, April 2001.

[38] LynuxWorks. TotalView. http://www.lynuxworks.com, 2002.

[39] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Architecture for

User-level Packet Capture. InProceedings of the Winter USENIX Conference, pages

259–270, San Diego, CA, January 1993.

[40] Middleware And Related Services (MARS) Platform Task Force. RT Notification

Request For Proposals, June 2000.

[41] Jeffrey C. Mogul, Richard F. Rashid, and Michal J. Accetta. The Packet Filter: an

Efficient Mechanism for User-level Network Code. InProceedings of the11th Sym-

posium on Operating System Principles (SOSP), November 1987.

[42] Object Management Group.CORBAServices: Common Object Services Specifica-

tion, Revised Edition, 95-3-31 edition, March 1995.

[43] Object Management Group.Dynamic Scheduling, OMG Document orbos/99-03-32

edition, March 1999.

[44] Object Management Group.Notification Service Specification, OMG Document

telecom/99-07-01 edition, July 1999.

[45] Object Management Group.Real-time CORBA Joint Revised Submission, OMG Doc-

ument orbos/99-02-12 edition, March 1999.

[46] Object Management Group.The Common Object Request Broker: Architecture and

Specification, 2.4 edition, October 2000.

[47] Object Management Group.The Common Object Request Broker: Architecture and

Specification, 2.6 edition, December 2001.

[48] Carlos O’Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama Othman, and Jeff Par-

sons. The Design and Performance of a Pluggable Protocols Framework for Real-

time Distributed Object Computing Middleware. InProceedings of the Middleware

2000 Conference. ACM/IFIP, April 2000.

92

[49] Carlos O’Ryan, Douglas C. Schmidt, David Levine, and Russell Noseworthy. Apply-

ing a Scalable CORBA Events Service to Large-scale Distributed Interactive Simula-

tions. InProceedings of the5th Workshop on Object-oriented Real-time Dependable

Systems, Montery, CA, November 1999. IEEE.

[50] Guru Parulkar, Douglas C. Schmidt, and Jonathan S. Turner.aItPm: a Strategy for

Integrating IP with ATM. InProceedings of the Symposium on Communications Ar-

chitectures and Protocols (SIGCOMM). ACM, September 1995.

[51] Paul E. McKinney. Selecting Locking Designs for Parallel Programs. In James O.

Coplien, John Vlissides, and Norm Kerth, editors,Pattern Languages of Program

Design. Addison-Wesley, Reading, Massachusetts, 1996.

[52] Irfan Pyarali, Timothy H. Harrison, Douglas C. Schmidt, and Thomas D. Jordan.

Proactor – An Architectural Pattern for Demultiplexing and Dispatching Handlers for

Asynchronous Events. In Brian Foote, Neil Harrison, and Hans Rohnert, editors,

Pattern Languages of Program Design. Addison-Wesley, Reading, Massachusetts,

1999.

[53] Irfan Pyarali, Carlos O’Ryan, and Douglas C. Schmidt. A Pattern Language for Ef-

ficient, Predictable, Scalable, and Flexible Dispatching Mechanisms for Distributed

Object Computing Middleware. InProceedings of the International Symposium on

Object-Oriented Real-time Distributed Computing (ISORC), Newport Beach, CA,

March 2000. IEEE/IFIP.

[54] Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang, Vishal Kachroo,

and Aniruddha Gokhale. Using Principle Patterns to Optimize Real-time ORBs.IEEE

Concurrency Magazine, 8(1), 2000.

[55] Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang, Vishal Kachroo,

and Aniruddha Gokhale. Applying Optimization Patterns to the Design of Real-time

ORBs. InProceedings of the5th Conference on Object-Oriented Technologies and

Systems, San Diego, CA, May 1999. USENIX.

[56] Irfan Pyarali and Douglas C. Schmidt. An Overview of the CORBA Portable Object

Adapter.ACM StandardView, 6(1), March 1998.

[57] R. Braden et al. Resource ReSerVation Protocol (RSVP) Version 1 Functional Speci-

fication. Network Working Group RFC 2205, pages 1–112, Sep 1997.

93

[58] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. Real-Time Synchronization

Protocols for Multiprocessors. InProceedings of the Real-Time Systems Symposium,

pages 259–269, Huntsville, Alabama, December 1988.

[59] Real-time Java Experts Group.Real-time Java Specification.

[60] Real-time Linux. www.realtimelinux.org.

[61] Jeffrey Richter.Advanced Windows, Third Edition. Microsoft Press, Redmond, WA,

1997.

[62] Douglas C. Schmidt. GPERF: A Perfect Hash Function Generator. InProceedings

of the2nd C++ Conference, pages 87–102, San Francisco, California, April 1990.

USENIX.

[63] Douglas C. Schmidt. An OO Encapsulation of Lightweight OS Concurrency Mech-

anisms in the ACE Toolkit. Technical Report WUCS-95-31, Washington University,

St. Louis, September 1995.

[64] Douglas C. Schmidt. Reactor: An Object Behavioral Pattern for Concurrent Event

Demultiplexing and Event Handler Dispatching. In James O. Coplien and Douglas C.

Schmidt, editors,Pattern Languages of Program Design, pages 529–545. Addison-

Wesley, Reading, Massachusetts, 1995.

[65] Douglas C. Schmidt. Strategized Locking, Thread-safe Interface, and Scoped Lock-

ing: Patterns and Idioms for Simplifying Multi-threaded C++ Components.C++

Report, 11(8), September 1999.

[66] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The Design and

Performance of Real-Time Object Request Brokers.Computer Communications,

21(4):294–324, April 1998.

[67] Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and Aniruddha

Gokhale. Alleviating Priority Inversion and Non-determinism in Real-time CORBA

ORB Core Architectures. InProceedings of the4th IEEE Real-Time Technology and

Applications Symposium, Denver, CO, June 1998. IEEE.

[68] Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and Aniruddha

Gokhale. Software Architectures for Reducing Priority Inversion and Non-

determinism in Real-time Object Request Brokers.Journal of Real-time Systems,

94

special issue on Real-time Computing in the Age of the Web and the Internet, 21(2),

2001.

[69] Douglas C. Schmidt, Carlos O’Ryan, Irfan Pyarali, Michael Kircher, and Frank

Buschmann. Leader/Followers: A Design Pattern for Efficient Multi-threaded Event

Demultiplexing and Dispatching. InProceedings of the6th Pattern Languages of

Programming Conference, Monticello, Illinois, August 2000.

[70] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.Pattern-

Oriented Software Architecture: Patterns for Concurrent and Networked Objects, Vol-

ume 2. Wiley & Sons, New York, 2000.

[71] Douglas C. Schmidt and Tatsuya Suda. Measuring the Performance of Parallel

Message-based Process Architectures. InProceedings of the Conference on Com-

puter Communications (INFOCOM), pages 624–633, Boston, April 1995. IEEE.

[72] Douglas C. Schmidt and Steve Vinoski. Developing C++ Servant Classes Using the

Portable Object Adapter.C++ Report, 10(5), June 1998.

[73] BBN Technologies. Quality Objects (QuO). www.dist-systems.bbn.com/papers.

[74] David L. Tennenhouse. Layered Multiplexing Considered Harmful. InProceedings

of the1st International Workshop on High-Speed Networks, May 1989.

[75] TimeSys. TimeWiz. http://www.timesys.com, 2002.

[76] Tri-Pacific. RapidRMA. http://www.tripac.com, 2002.

[77] Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and Michael Kircher.

Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA

Component Model Implementation. In24th Computer Software and Applications

Conference, Taipei, Taiwan, October 2000. IEEE.

[78] Yu-Chung Wang and Kwei-Jay Lin. Implementing A General Real-Time Schedul-

ing Framework in the RED-Linux Real-Time Kernel. InIEEE Real-Time Systems

Symposium, pages 246–255. IEEE, December 1999.

[79] Victor Fay Wolfe, Lisa Cingiser DiPippo, Roman Ginis, Michael Squadrito, Steven

Wohlever, Igor Zykh, and Russel Johnston. Real-Time CORBA. InProceedings of the

Third IEEE Real-Time Technology and Applications Symposium, Montréal, Canada,

June 1997.

95

[80] M. Yuhara, B. Bershad, C. Maeda, and E. Moss. Efficient Packet Demultiplexing

for Multiple Endpoints and Large Messages. InProceedings of the Winter Usenix

Conference, January 1994.

[81] John A. Zinky, David E. Bakken, and Richard Schantz. Architectural Support for

Quality of Service for CORBA Objects.Theory and Practice of Object Systems,

3(1):1–20, 1997.

96

Vita

Irfan Pyarali

Date of Birth August 1, 1973

Place of Birth Karachi, Pakistan

Degrees B.S. Computer Science, May 1995,
M.S. Computer Science, May 1998,

from Washington University in Saint Louis.

Book
Chapters

Irfan Pyarali, Tim Harrison, Douglas C. Schmidt, and Thomas
Jordan, “Proactor: An Object Behavioral Pattern for Demulti-
plexing and Dispatching Handlers for Asynchronous Events”,
Pattern Languages of Program Design 4 (PLoPD 4), (Harri-
son, Foote, and Rohnert, eds.), Addison-Wesley, Reading, MA,
1999.

Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt, “Asyn-
chronous Completion Token: An Object Behavioral Pattern for
Efficient Asynchronous Event Handling”, Pattern Languages of
Program Design 3 (PLoPD 3), (Martin, Buschmann, and Riehl,
eds.), Addison-Wesley, Reading, MA, 1997.

Journal
Publications

Carlos O’Ryan, Douglas C. Schmidt, Fred Kuhns, Marina Spi-
vak, Jeff Parsons Irfan Pyarali, and David L. Levine, “The De-
sign and Performance of a Real-time CORBA ORB Endsys-
tem”, The Journal of Concurrency: Practice and Experience
(Special Issue on Distributed Objects and Applications), Wiley
and Sons, 2000.

Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang,
Vishal Kachroo, and Aniruddha Gokhale, “Applying Optimiza-
tion Principle Patterns to Real-time ORBs”, IEEE Concurrency,

97

Object-Oriented Systems Track, edited by Murthy Devarakonda,
Volume 8, Number 1, January/March 2000.

James Hu, Irfan Pyarali, and Douglas C. Schmidt, “The Object-
Oriented Design and Performance of JAWS: A High-performance
Web Server Optimized for High-speed Networks”, The Parallel
and Distributed Computing Practices journal, special issue on
Distributed Object-Oriented Systems, edited by Maria Cobb, to
appear in 2000.

Irfan Pyarali and Douglas C. Schmidt, “An Overview of the CORBA
Portable Object Adapter”, Special Issue on CORBA in the ACM
StandardView magazine, Volume 6, Number 1, March 1998.

Irfan Pyarali, Douglas C. Schmidt, and Tim Harrison, “Design
and Performance of an Object-Oriented Framework for High-
Speed Electronic Medical Imaging”, USENIX Computing Sys-
tems, Volume 9, Number 4, November/December, 1996.

Conference
Publications

David A. Karr, Craig Rodrigues, Joseph P. Loyall, Richard E.
Schantz, Yamuna Krishnamurthy, Irfan Pyarali, and Douglas C.
Schmidt, “Application of the QuO Quality-of-Service Frame-
work to a Distributed Video Application”, proceedings of the
3rd International Symposium on Distributed Objects and Ap-
plications (DOA ’01) in Rome, Italy, 18-20 September, 2001.

Irfan Pyarali, Marina Spivak, Douglas C. Schmidt, and Ron Cytron,
“Optimizing Thread-Pool Strategies for Real-Time CORBA”,
proceedings of the ACM SIGPLAN Workshop on Optimization
of Middleware and Distributed Systems (OM ’01) in Snowbird,
Utah, June 18, 2001.

Irfan Pyarali, Carlos O’Ryan, and Douglas C. Schmidt, “Patterns
for Efficient, Predictable, Scalable, and Flexible Dispatching
Components”, proceedings of the 7th Pattern Languages of Pro-
grams Conference (PLoP ’00) in Allerton Park, Illinois, August
2000.

98

Douglas C. Schmidt, Carlos O’Ryan, Irfan Pyarali, Michael Kircher,
and Frank Buschmann, Leader/Followers: “A Design Pattern
for Efficient Multi-threaded Event Demultiplexing and Dispatch-
ing”, proceedings of the 7th Pattern Languages of Programs
Conference (PLoP ’00) in Allerton Park, Illinois, August 2000.

Carlos O’Ryan, Douglas C. Schmidt, Fred Kuhns, Marina Spi-
vak, Jeff Parsons, Irfan Pyarali and David L. Levine, “Evaluat-
ing Policies and Mechanisms for Supporting Embedded, Real-
Time Applications with CORBA 3.0”, proceedings of the 6th
IEEE Real-Time Technology and Applications Symposium (RTAS
’00) in Washington D.C., May 31-June 2, 2000.

Irfan Pyarali, Carlos O’Ryan, and Douglas C. Schmidt, “A Pat-
tern Language for Efficient, Predictable, Scalable, and Flexi-
ble Dispatching Mechanisms for Distributed Object Comput-
ing Middleware”, proceedings of the IEEE/IFIP International
Symposium on Object-Oriented Real-time Distributed Com-
puting (ISORC ’00) in Newport Beach, California, March 15-
17, 2000.

Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang,
Vishal Kachroo, and Aniruddha Gokhale, “Applying Optimiza-
tion Patterns to Design Real-time ORBs”, proceedings of the
5th USENIX Conference on Object-Oriented Technologies and
Systems (COOTS ’99) in San Diego, CA, May 3-7, 1999.

James Hu, Irfan Pyarali, and Douglas C. Schmidt, “Applying the
Proactor Pattern to High-Performance Web Servers”, proceed-
ings of the 10th International Conference on Parallel and Dis-
tributed Computing and Systems (IASTED ’98) in Las Vegas,
Nevada, October 28-31, 1998.

James Hu, Irfan Pyarali, and Douglas C. Schmidt, “Measuring the
Impact of Event Dispatching and Concurrency Models on Web
Server Performance Over High-speed Networks”, proceedings
of the 2nd Global Internet Conference (held as part of GLOBE-
COM ’97) in Phoenix, AZ, November 4-8, 1997.

99

Irfan Pyarali, Tim Harrison, Douglas C. Schmidt, and Thomas
Jordan, “Proactor: An Object Behavioral Pattern for Demulti-
plexing and Dispatching Handlers for Asynchronous Events”,
proceedings of the 4th Pattern Languages of Programs Confer-
ence (PLoP ’97) in Allerton Park, Illinois, September 1997.

Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt, “Asyn-
chronous Completion Token: An Object Behavioral Pattern for
Efficient Asynchronous Event Handling”, proceedings of the
3rd Pattern Languages of Programs Conference (PLoP ’96) in
Allerton Park, Illinois, September 4-6, 1996.

Irfan Pyarali, Tim Harrison, and Douglas. C. Schmidt, “Design
and Performance of an Object-Oriented Framework for High-
Speed Electronic Medical Imaging”, proceedings of the 2nd
USENIX Conference on Object-Oriented Technologies and Sys-
tems (COOTS ’96) in Toronto, Canada, June 18-22, 1996.

Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt, “An
Object-Oriented Framework for High-Performance Electronic
Medical Imaging”, proceedings of the Very High Resolution
and Quality Imaging mini-conference at the Symposium on Elec-
tronic Imaging in the International Symposia Photonics West
1996, SPIE in San Jose, California USA, January 27 - February
2, 1996.

Workshop
Publications

Irfan Pyarali, Marina Spivak, and Ron Cytron, “Evaluating Thread
Pool Strategies For Real-time CORBA”, OMG’s Second Work-
shop On Real-Time And Embedded Distributed Object Com-
puting in Herndon, VA, June 4-7, 2001.

Craig Rodrigues, David Karr, Yamuna Krishnamurthy, and Irfan
Pyarali, “QoS Control Of Video Streams Using Quality Ob-
jects And The CORBA Audio/Video Service”, OMG’s Second
Workshop On Real-Time And Embedded Distributed Object
Computing in Herndon, VA, June 4-7, 2001.

100

Trade-Journal
Publications

Douglas C. Schmidt and Irfan Pyarali, “Strategies for Implement-
ing POSIX Condition Variables on Win32, C++ Report”, SIGS,
Volume 10, Number 5, June, 1998.

May 2002

	Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral Dissertation, May 2002
	Recommended Citation
	Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral Dissertation, May 2002

	tmp.1472055847.pdf.Skp53

	Abstract: Abstract: The advent of open and widely adopted standards such as Common Object
Request Broker Architecture (CORBA) has simplified and standardized
the development of distributed applications. For applications with
real-time constraints, including avionics, manufacturing, and defense
systems, these standards are evolving to include Quality-of-Service
(QoS) specifications. Operating systems such as Real-time Linux have
responded with interfaces and algorithms to guarantee real-time
response; similarly, languages such as Real-time Java include
mechanisms for specifying real-time properties for threads. However,
the middleware upon which large distributed applications are based has
not yet addressed end-to-end guarantees of QoS specifications. Unless
this challenge can be met, developers must resort to ad hoc solutions
that may not scale or migrate well among different platforms.

This thesis provides two contributions to the study of real-time
Distributed Object Computing (DOC) middleware. First, it identifies
potential bottlenecks and problems with respect to guaranteeing
real-time performance in contemporary middleware. Experimental results
illustrate how these problems lead to incorrect real-time behavior in
contemporary middleware platforms.

Second, this thesis presents designs and techniques for providing
real-time QoS guarantees in DOC middleware in the context of TAO, an
open-source and widely adopted implementation of real-time
CORBA. Architectural solutions presented here are coupled with
empirical evaluations of end-to-end real-time behavior. Analysis of
the problems, forces, solutions, and consequences are presented in
terms of patterns and frameworks, so that solutions obtained for TAO
can be appropriately applied to other real-time systems.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: May 1, 2002
	Author: Authors: Pyarali, Irfan
	Title: Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral Dissertation, May 2002
	ReportNumber: 2002-28
	DepartmentName: Department of Computer Science & Engineering

