2,951 research outputs found

    EXIT-chart aided quantum code design improves the normalised throughput of realistic quantum devices

    No full text
    In this contribution, the Hashing bound of Entanglement Assisted Quantum Channels (EAQC) is investigated in the context of quantum devices built from a range of popular materials, such as trapped ion and relying on solid state Nuclear Magnetic Resonance (NMR), which can be modelled as a so-called asymmetric channel. Then, Quantum Error Correction Codes (QECC) are designed based on Extrinsic Information Transfer (EXIT) charts for improving performance when employing these quantum devices. The results are also verified by simulations. Our QECC schemes are capable of operating close to the corresponding Hashing bound

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    On Code Design for Interference Channels

    Get PDF
    abstract: There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed. Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Optimization of a Coded-Modulation System with Shaped Constellation

    Get PDF
    Conventional communication systems transmit signals that are selected from a signal constellation with uniform probability. However, information-theoretic results suggest that performance may be improved by shaping the constellation such that lower-energy signals are selected more frequently than higher-energy signals. This dissertation presents an energy efficient approach for shaping the constellations used by coded-modulation systems. The focus is on designing shaping techniques for systems that use a combination of amplitude phase shift keying (APSK) and low-density parity check (LDPC) coding. Such a combination is typical of modern satellite communications, such as the system used by the DVB-S2 standard.;The system implementation requires that a subset of the bits at the output of the LDPC encoder are passed through a nonlinear shaping encoder whose output bits are more likely to be a zero than a one. The constellation is partitioned into a plurality of sub-constellations, each with a different average signal energy, and the shaping bits are used to select the sub-constellation. An iterative receiver exchanges soft information among the demodulator, LDPC decoder, and shaping decoder. Parameters associated with the modulation and shaping code are optimized with respect to information rate, while the design of the LDPC code is optimized for the shaped modulation with the assistance of extrinsic-information transfer (EXIT) charts. The rule for labeling the constellation with bits is optimized using a novel hybrid cost function and a binary switching algorithm.;Simulation results show that the combination of constellation shaping, LDPC code optimization, and optimized bit labeling can achieve a gain in excess of 1 dB in an additive white Gaussian noise (AWGN) channel at a rate of 3 bits/symbol compared with a system that adheres directly to the DVB-S2 standard

    Design and Performance Analysis for LDPC Coded Modulation in Multiuser MIMO Systems

    Get PDF
    The channel capacity can be greatly increased by using multiple transmit and receive antennas, which is usually called multi-input multi-output (MIMO) systems. Iterative processing has achieved near-capacity on a single-antenna Gaussian or Rayleigh fading channel. How to use the iterative technique to exploit the capacity potential in single-user and/or multiuser MIMO systems is of great interest. We propose a low-density parity-check (LDPC) coded modulation scheme in multiuser MIMO systems. The receiver can be regarded as a serially concatenated iterative detection and decoding scheme, where the LDPC decoder performs the role of outer decoder and the multiuser demapper does that of the inner decoder. For the proposed scheme, appropriate selection of a bit-to-symbol mapping is crucial to achieve a good performance, so we investigate and find the best mapping under various cases.Analytical bound serves as a useful tool to assess system performance. The search for powerful codes has motivated the introduction of efficient bounding techniques tailored to some ensembles of codes. We then investigate combinatorial union bounding techniques for fast fading multiuser MIMO systems. The union upper bound on maximum likelihood (ML) decoding error probability provides a prediction for the system performance, with which the simulated system performance can be compared. Closed-form expression for the union bound is obtained, which can be evaluated efficiently by using a polynomial expansion. In addition, the constrained channel capacity and the threshold obtained from extrinsic information transfer (EXIT) chart can also serve as performance measures. Based on the analysis for fast fading case, we generalize the union upper bound to the block fading case

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    User's manual for three-dimensional analysis of propeller flow fields

    Get PDF
    A detailed operating manual is presented for the prop-fan computer code (in addition to supporting programs) recently developed by Kutler, Chaussee, Sorenson, and Pulliam while at the NASA'S Ames Research Center. This code solves the inviscid Euler equations using an implicit numerical procedure developed by Beam and Warming of Ames. A description of the underlying theory, numerical techniques, and boundary conditions with equations, formulas, and methods for the mesh generation program (MGP), three dimensional prop-fan flow field program (3DPFP), and data reduction program (DRP) is provided, together with complete operating instructions. In addition, a programmer's manual is also provided to assist the user interested in modifying the codes. Included in the programmer's manual for each program is a description of the input and output variables, flow charts, program listings, sample input and output data, and operating hints

    Design of serially-concatenated LDGM codes

    Get PDF
    [Resumen] Since Shannon demonstrated in 1948 the feasibility of achieving an arbitrarily low error probability in a communications system provided that the transmission rate was kept below a certain limit, one of the greatest challenges in the realm of digital communications and, more specifically, in the channel coding field, has been finding codes that are able to approach this limit as much as possible with a reasonable encoding and decoding complexity, However, it was not until 1993, when Berrou et al. presented the turbo codes, that a coding scheme capable of performing at less than 1dB from Shannon's limit with an extremely low error probability was found. The idea on which these codes are based is the iterative decoding of concatenated components that exchange information about the transmitted bits, which is known as the "turbo principle". The generalization of this idea led in 1995 to the rediscovery of LDPC (Low Density Parity Check) codes, proposed for the first time by Gallager in the 60s. LDPC codes are linear block codes with a sparse parity check matrix that are able to surpass the performance of turbo codes with a smaller decoding complexity. However, due to the fact that the generator matrix of general LDPC codes is not sparse, their encoding complexity can be excessively high. LDGM (Low Density Generator Matrix) codes, a particular case of LDPC codes, are codes with a sparse generator matrix, thanks to which they present a lower encoding complexity. However, except for the case of very high rate codes, LDGM codes are "bad", i.e., they have a non-zero error probability that is independent of the code block length. More recently, IRA (Irregular Repeat-Accumulated) codes, consisting of the serial concatenation of a LDGM code and an accumulator, have been proposed. IRA codes are able to get close to the performance of LDPC codes with an encoding complexity similar to that of LDGM codes. In this thesis we explore an alternative to IRA codes consisting in the serial concatenation of two LDGM codes, a scheme that we will denote SCLDGM (Serially-Concatenated Low-Density Generator Matrix). The basic premise of SCLDGM codes is that an inner code of rate close to the desired transmission rate fixes most of the errors, and an external code of rate close to one corrects the few errors that result from decoding the inner code. For any of these schemes to perform as close as possible to the capacity limit it is necessary to determine the code parameters that best fit the channel over which the transmission will be done. The two techniques most commonly used in the literature to optimize LDPC codes are Density Evolution (DE) and EXtrinsic Information Transfer (EXIT) charts, which have been employed to obtain optimized codes that perform at a few tenths of a decibel of the AWGN channel capacity. However, no optimization techniques have been presented for SCLDGM codes, which so far have been designed heuristically and therefore their performance is far from the performance achieved by IRA and LDPC codes. Other of the most important advances that have occurred in recent years is the utilization of multiple antennas at the trasmitter and the receiver, which is known as MIMO (Multiple-Input Multiple-Output) systems. Telatar showed that the channel capacity in these kind of systems scales linearly with the minimum number of transmit and receive antennas, which enables us to achieve spectral efficiencies far greater than with systems with a single transmit and receive antenna (or Single Input Single Output (SISO) systems). This important advantage has attracted a lot of attention from the research community, and has caused that many of the new standards, such as WiMax 802.16e or WiFi 802.11n, as well as future 4G systems are based on MIMO systems. The main problem of MIMO systems is the high complexity of optimum detection, which grows exponentially with the number of transmit antennas and the number of modulation levels. Several suboptimum algorithms have been proposed to reduce this complexity, most notably the SIC-MMSE (Soft-Interference Cancellation Minimum Mean Square Error) and spherical detectors. Another major issue is the high complexity of the channel estimation, due to the large number of coefficients which determine it. There are techniques, such as Maximum-Likelihood-Expectation-Maximization (ML-EM), that have been successfully applied to estimate MIMO channels but, as in the case of detection, they suffer from the problem of a very high complexity when the number of transmit antennas or the size of the constellation increase. The main objective of this work is the study and optimization of SCLDGM codes in SISO and MIMO channels. To this end, we propose an optimization method for SCLDGM codes based on EXIT charts that allow these codes to exceed the performance of IRA codes existing in the literature and get close to the performance of LDPC codes, with the advantage over the latter of a lower encoding complexity. We also propose optimized SCLDGM codes for both spherical and SIC-MMSE suboptimal MIMO detectors, constituting a system that is capable of approaching the capacity limits of MIMO channels with a low complexity encoding, detection and decoding. We analyze the BICM (Bit-Interleaved Coded Modulation) scheme and the concatenation of SCLDGM codes with Space-Time Codes (STC) in ergodic and quasi-static MIMO channels. Furthermore, we explore the combination of these codes with different channel estimation algorithms that will take advantage of the low complexity of the suboptimum detectors to reduce the complexity of the estimation process while keeping a low distance to the capacity limit. Finally, we propose coding schemes for low rates involving the serial concatenation of several LDGM codes, reducing the complexity of recently proposed schemes based on Hadamard codes

    Parametric design and optimization of high speed train nose

    Get PDF
    Aiming at shortening the design period and improve the design efficiency of the nose shape of high speed trains, a parametric shape optimization method is developed for the design of the nose shape has been proposed in the present paper based on the VMF parametric approach, NURBS curves and discrete control point method. 33 design variables have been utilized to control the nose shape, and totally different shapes could be obtained by varying the values of design variables. Based on the above parametric method, multi-objective particle swarm algorithm, CFD numerical simulation and supported vector machine regression model, multi-objective aerodynamic shape optimization has been performed. Results reveal that the parametric shape design method proposed here could precisely describe the three-dimensional nose shape of high speed trains and could be applied to the concept design and optimization of the nose shape. Besides, the SVM regression model based the multi-points criterion could accurately describe the non-linear relationship between the design variables and objectives, and could be generally utilized in other fields. No matter the simplified model or the real model, the aerodynamic performance of the model after optimization has been greatly improved. Based on the SVR model, the nonlinear relation between the aerodynamic drag and the design variables is obtained, which could provide guidance for the engineering design and optimization
    • …
    corecore