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ABSTRACT

There has been a lot of work on the characterization of capacity and achievable

rate regions, and rate region outer-bounds for various multi-user channels of inter-

est. Parallel to the developed information theoretic results, practical codes have also

been designed for some multi-user channels such as multiple access channels (MACs),

broadcast channels (BCs) and relay channels (RCs); however, interference chan-

nels (ICs) have not received much attention and only a limited amount of work has

been conducted on them. With this motivation, in this dissertation, design of practi-

cal and implementable channel codes is studied focusing on multi-user channels with

special emphasis on ICs; in particular, irregular low-density-parity-check (LDPC)

codes are exploited for a variety of cases and trellis based codes for short block length

designs are performed.

Novel code design approaches are first studied for the two-user Gaussian mul-

tiple access (GMAC). Exploiting Gaussian mixture approximation, new methods are

proposed wherein the optimized codes are shown to improve upon the available de-

signs and off-the-shelf point-to-point (P2P) codes applied to the MAC scenario. The

code design is then examined for the two-user Gaussian IC implementing the Han-

Kobayashi encoding and decoding strategy. Compared with the P2P codes, the newly

designed codes consistently offer better performance. Parallel to this work, code de-

sign is explored for the discrete memoryless interference channels (DMICs) wherein

the channel inputs and outputs are taken from a finite alphabet and it is demon-

strated that the designed codes are superior to the single user codes used with time

sharing (TS). Finally, the code design principles are also investigated for the two-user

GIC employing trellis-based codes with short block lengths for the case of strong and

mixed interference levels.
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Chapter 1

INTRODUCTION

Multi-user channels are general models for many communication scenarios. TV broad-

cast, communication of mobile users with a base station, exchange of information

among multiple nodes in an adhoc network are all instances of multi-user communica-

tions. In order to share the common medium, conventional strategies such as time di-

vision multiple access (TDMA), frequency division multiple access (FDMA), and code

division multiple access (CDMA) have been used for a long time to achieve reliable

communication. However, these schemes are typically suboptimal and new coding

schemes are needed in which all users can communicate and use the shared medium

in a near optimal manner. Progress along these lines, both theoretical developments

and in terms of practical designs, has shed light to different aspects of multi-user

communications and has made this literature very rich particularly in recent years.

Basic multi-user channel models can be categorized as multiple access channels

(MACs), broadcast channels (BCs), relay channels (RCs), and interference channels

(ICs). In a MAC, multiple nodes communicate with a single receiver. As a dual,

in a BC, a single transmitter transmits different messages to multiple receivers over

the same medium. RCs are suitable models for configurations in which intermediate

nodes assist the sender to communicate with its receiver, e.g., in adhoc networks.

Treatment of interference is one of the most important issues in multi-user commu-

nication systems as apparent in modern wireless networks, such as mobile cellular

communications where each receiver is interested in one signal among the received

superposition of transmitted signals. This can be, as an example, the downlink of a

cellular system, in which a mobile station tries to demodulate its own transmitted

information stream in the presence of interfering signals from different base stations.
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There has been a lot of work on characterization of the capacity and achiev-

able rate regions, and rate region outer bounds of the aforementioned multi-user

communication channels. Parallel to the information theoretic advancement, prac-

tical codes have been designed for some cases achieving points near the boundary

of the known achievable rate or capacity regions. For instance, capacity region of

the MAC has been characterized and specific low-density parity-check (LDPC) codes

have been found achieving points near the boundary of the region for Gaussian chan-

nels. Degraded BCs which form a particular class of BCs have also been studied in

terms of their capacity region [2], and very good practical channel codes have been

designed [3]. However, there exists numerous problems which are still open. Among

them is the capacity region of the interference channel which has been unknown for

many decades even for the case of Gaussian case. Although there are rate region

outer-bounds reported for the interference channel, only limited attempts have been

made on designing practical codes in the existing literature. Motivated by this, in

this dissertation, we study the code design for the ICs exploiting the irregular LDPC

codes for a variety of cases.

1.1 Outline of the Dissertation

In Chapter 2, we describe the system model for MACs, BCs, RCs and ICs. We first

present the models for the discrete memoryless channels and then provide the models

for the Gaussian case. We also review the existing information theoretic bounds and

comment on the performance of specific codes for the discussed channels.

In Chapter 3, we examine the code design principles for the two-user Gaussian

multiple access channel (GMAC) for fixed and quasi-static fading suitable for model-

ing wireless links. Adopting joint decoding (JD) at the receiver, we derive the prob-

ability density functions (PDFs) of log likelihood ratios (LLRs) sent from the state

2



nodes to the variable nodes and illustrate that they can be closely approximated

with a Gaussian mixture (GM) distribution, which is utilized in the two proposed

methods of decoding analysis of LDPC codes employed for two-user GMACs. For

fixed channel gains, we exploit the newly proposed method for code optimization and

design specific LDPC codes for equal-power and unequal-power link scenarios. The

performances of the optimized codes are compared against the existing designs in the

literature. For quasi-static scenario, due to the amount of computations involved, we

incorporate an existing (simple) approximate method and optimize codes for scenar-

ios with real and complex channel gains. The performances of the optimized codes

are compared against those of point-to-point (P2P) codes with time sharing (TS)

both asymptotically and for finite code block lengths.

In Chapter 4, we turn our attention to the two-user Gaussian interference

channel (GIC) when finite constellations are employed for transmission and the Han-

Kobayashi (HK) coding/decoding scheme is implemented at the transmitter and re-

ceiver sides. We prove the symmetry property of the exchanged LLRs within the joint

decoder and characterize the stability condition for different interference levels and

modulations. Code optimization is carried out for a multitude of examples. Particu-

larly, we consider examples of GICs experiencing strong and weak interference along

with binary phase shift keying (BPSK) and quaternary phase shift keying (QPSK)

modulation. Performances of the optimized codes are compared against naive and

non-naive TS schemes. In addition, the performances of the P2P codes with TS are

evaluated for the considered examples. Furthermore, as a different perspective, we

perform algebraic code designs optimized for GIC and compare the results with those

of random constructions for smaller block lengths.

In Chapter 5, we study LDPC code design for the two-user discrete memoryless

3



interference channel (DMIC) when the channel inputs and outputs are finite. As an

example, we focus on the one-sided Z interference channel (ZIC) wherein one receiver

is interference free and characterize a sub-region of the HK achievable rate region

(ARR). Instead of the computing the complete achievable rate region, we consider

a sub-region computed with no TS. We perform the code optimization exploiting

simple non-linear trellis codes (NLTCs) combined with outer LDPC codes, which are

employed to attain desired input distributions.

In Chapter 6, we focus on the code design for the two-user GIC when short

block length codes are employed. In particular, we exploit trellis-based codes and

perform code optimization for strong, weak and mixed interference levels. We derive

performance bounds and utilize them for code optimization. We provide examples of

the designed codes and compare their performance with that of LDPC codes.

Finally, we provide a summary of the results obtained in this dissertation and

discuss possible directions for future research in Chapter 7.
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Chapter 2

PRELIMINARIES

In this chapter, we present the system model for the MAC,the BC,the RC and the IC.

Models are first described for the discrete memoryless case and then Gaussian cases

are given. In addition, we review the existing information theoretic bounds and the

practical code design approaches for these channels to set the steps for the rest of the

thesis.

2.1 Multi-User Channels

2.1.1 Multiple Access Channel

Considering Figure 2.1, a two-user discrete memoryless MAC consists of X1, X2

as input alphabets, Y as its output alphabet and a probability transition matrix

p(y|x1, x2). A
(
(2nR1 , 2nR2), n

)
code for the MAC consists of two sets of messages,

M1 ∈ [1 : 2nR1 ] and M2 ∈ [1 : 2nR2 ], two encoding functions that map M1 and M2

to Xn
1 and Xn

2 , respectively, and a decoding function that maps the received signal

Y n to M̂1 ∈ [1 : 2nR1 ] and M̂2 ∈ [1 : 2nR2 ]1. The average probability of error for the(
(2nR1 , 2nR2), n

)
code is defined as follows

P (n)
e =

1

2n(R1+R2)

∑
(M1,M2)

Pr(M̂1(Y n
1 ) 6= M1 or M̂2(Y n

2 ) 6= M2). (2.1)

A rate pair (R1, R2) for the discrete memoryless MAC is said to be achievable if there

exists a sequence of
(
(2nR1 , 2nR2), n

)
codes with P

(n)
e → 0 as n → ∞. The capacity

region of the MAC is the closure of the set of all rate pairs.

GMAC is a common model for a MAC in which signals of different users are

added together and observed in Gaussian noise at the receiver. Figure 2.2 shows a

simple configuration of this channel model. The channel output corresponding to the

1The notations in this chapter are in accordance with [4].
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inputs X1 and X2 is given by

Y = h1X1 + h2X2 + Z, (2.2)

where Z is a zero mean white Gaussian noise with unit variance. Power constraints

for the users’ signals are given by

n∑
i=1

x2
ji(mj) ≤ nPj, j = 1, 2, (2.3)

where xji is the ith component of the user j’s codeword.

2.1.2 Broadcast Channel

A two-user discrete BC is illustrated in Figure 2.3. It consists of three sets: X as

the input alphabet, Y1, Y2 as output alphabets, and a channel transition probability

function p(y1, y2|x). A
(
(2nR1 , 2nR2), n

)
code for a BC consists of two sets of messages,

M1 ∈ [1 : 2nR1 ] and M2 ∈ [1 : 2nR2 ], an encoding function that maps M1 and M2 to

the codeword Xn, and two decoders that map the received signals, i.e., Y n
1 and Y n

2 ,
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�
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Figure 2.1: Multiple Access Channel
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Figure 2.2: Gaussian Multiple Access Channel
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Figure 2.3: General Broadcast Channel

to M̂1 ∈ [1 : 2nR1 ] and M̂2 ∈ [1 : 2nR2 ]. The probability of error P
(n)
e is defined as

P (n)
e =

1

2n(R1+R2)

∑
(M1,M2)

P (M̂1(Y n
1 ) 6= M1 or M̂2(Y n

2 ) 6= M2). (2.4)

The BC is said to be memoryless if

p(yn1 , y
n
2 |xn) =

n∏
i=1

p(y1i, y2i|xi). (2.5)

A rate pair (R1, R2) is said to be achievable for the BC if there exists a sequence of

Xn(M1,M2) with P
(n)
e → 0 as n → 0. The capacity region of the BC is the convex

hull of the set of all the achievable rates.

It is often the case that one of the receivers has a “better” version of the

received signal, formally stated as the following Markov chain

X → Y1 → Y2 (2.6)

being satisfied. In this case, the second receiver’s signal is a degraded version of the

first receiver’s signal. Such a channel is called a degraded BC. A BC is said to be

physically degraded if

p(y1, y2|x) = p(y1|x)p(y2|y1) (2.7)

and the channel is called stochastically degraded if there exists a distribution p′(y2|y1)

such that

p(y2|x) =
∑
y1

p(y1|x)p′(y2|y1). (2.8)
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Figure 2.5: Physically Degraded Gaussian Broadcast Channel

Considering Figure 2.4, a two-user Gaussian BC can be modeled as

Y1 = X + Z1,

Y2 = X + Z2, (2.9)

where Z1 and Z2 are independent Gaussian random variables with zero mean and

variances N1 and N2, respectively. Z1 and Z2 are also independent of the channel

inputs X. Power constraint is given by

n∑
i=1

x2
i (M1,M2) ≤ nP, (2.10)

where P is the total power for the transmitted signal, and xi is the ith bit of the

codeword. The Gaussian BC is a particular example of a degraded BC because the

channel can be modified as shown in Figure 2.5, where Z ′2 is a zero mean Gaussian

noise with variance N2 −N1 assuming that N1 ≤ N2.
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2.1.3 Relay Channel

The RC is a channel in which there is one sender and one receiver with a number

of intermediate nodes which act as relays to help with the communication from the

sender to the receiver. Here, we describe two models for the RC: discrete memoryless

version referred as discrete relay channel and Gaussian RC. The simplest RC has only

one intermediate or relay node. Consider the 3-node P2P communication system with

a relay as depicted in Figure 2.6. The channel model
(
X ×X1, p(y, y1|x, x1),Y ×Y1

)
consists of four finite sets of input and output alphabets and conditional probability

mass functions (PMFs) p(y, y1|x, x1). The interpretation is that x is the input to the

channel and y is the output of the channel, y1 is the relay’s observation, and x1 is the

input symbol chosen by the relay. The RC combines a BC (X to Y and Y1) and a

MAC (X and X1 to Y ). A (2nR, n) code for a discrete RC consists of a message set(
M ∈ [1 : 2nR]

)
, an encoder that assigns a codeword Xn(m) to each message, a relay

encoder that assigns a symbol X1i(Y
i−1) to each past received sequence Y i−1 ∈ Y i−1

for each i ∈ [1 : n], and a decoder that assigns an estimate m̂ to each received sequence

Y n
1 ∈ Yn1 . The probability of error P

(n)
e is defined as

P (n)
e =

1

2nR

∑
M

Pr
(
M̂(Y n) 6= M

)
. (2.11)

A rate R is said to be achievable for the RC if there exists a sequence of
(
2nR, n

)
codes with P

(n)
e → 0 as n → ∞. The capacity region of the RC is the convex hull

Encoder 
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Figure 2.6: Discrete Relay Channel
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of the set of all achievable rate pairs. The RC is said to be physically degraded if

p(y, y1|x, x1) can be written in the form

p(y, y1|x, x1) = p(y1|x, x1)p(y|y1, x1). (2.12)

Gaussian RC is a simple model for wireless cooperative communications with

a relay. The channel outputs corresponding to the inputs X and X1 with average

power constraints P and P1, are

Y1 = X + Z1,

Y = X +X1 + Z2, (2.13)

where Z1 and Z2 are independent zero mean Gaussian random variables with variances

N1 and N2, respectively. Power constraints for the users’ signals are given by

n∑
i=1

x2
i (m1) ≤ nP,

n∑
i=1

x2
1i(m2) ≤ nP1. (2.14)

where m1 ∈ [1 : 2nR] and m2 ∈ [1 : 2nR1 ]. For the degraded model the channel output

at the receiver Y is a corrupted version of that received at the relay Y1 conditioned

on X1. As a result, the channel output at the receiver can be expressed as

Y = Y1 +X1 + Z2. (2.15)

10



Encoder 1

Encoder 2

��

��

��

��

��
�

�(����|
)�(��, �� |
�, 
�)

Decoder 1

Decoder 2

��
�

��

��

Figure 2.8: General Interference Channel

2.1.4 Interference Channel

Two-user DMIC model, in general, as depicted in Figure 2.8, consists of two input

alphabets X1, X2, two output alphabets Y1, Y2, and channel transition probabili-

ties p(y1, y2|x1, x2). A sequence of
(
(2nR1 , 2nR2), n

)
codes for a DMIC consists of

Mi ∈ [1 : 2nRi ], i = 1, 2, as the message sets. M̂1 and M̂2 are the decoded messages

at their respective receivers. Probability of error is defined as

P (n)
e1

=
1

2n(R1+R2)

∑
(M1,M2)

Pr{M̂1(Y n
1 ) 6= M1|M1 = m1,M2 = m2},

P (n)
e2

=
1

2n(R1+R2)

∑
(M1,M2)

Pr{M̂2(Y n
2 ) 6= M2|M1 = m1,M2 = m2}, (2.16)

A rate pair (R1, R2) is said to be achievable for the DMIC if there exists a

sequence of
(
(2nR1 , 2nR2), n

)
codes with P

(n)
e1 , P

(n)
e2 → 0 as n → ∞. The capacity

region of the DMIC is the convex hull of the set of all achievable rate pairs. A DMIC

is said to have very strong interference if

I(X1;Y1|X2) ≤ I(X1;Y2),

I(X2;Y2|X1) ≤ I(X2;Y1), (2.17)

for all product distributions on the inputs p(x1)p(x2). A DMIC is said to have strong
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interference if

I(X1;Y1|X2) ≤ I(X1;Y2|X1),

I(X2;Y2|X1) ≤ I(X2;Y1|X2), (2.18)

for all product distributions on the inputs p(x1)p(x2).

GIC as a simple model for wireless communication is depicted in Figure 2.9.

Channel outputs for the system model can be written as

Y1 = h11X1 + h21X2 + Z1,

Y2 = h12X1 + h22X2 + Z2, (2.19)

where X1 and X2 have power constraints of P1 and P2. Z1 and Z2 are zero mean

Gaussian random variables with unit variances. Signal to noise ratios and interference

to noise ratios are defined as follows

SNR1 = |h11|2P1, SNR2 = |h22|2P2,

INR1 = |h21|2P2, INR2 = |h12|2P1. (2.20)

The interference conditions defined for the DMIC can be computed for the GIC. That

𝒁𝟏 

𝒀𝟏 

𝒀𝟐 

𝑿𝟏 

𝑿𝟐 

𝒁𝟐 

ℎ12 

ℎ22 

ℎ21 

ℎ11 

Figure 2.9: Gaussian Interference Channel
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is, a GIC satisfies (2.17), thus, is said to have very strong interference if

INR1 ≥ SNR2
2 + SNR2,

INR2 ≥ SNR2
1 + SNR1. (2.21)

Similarly, a GIC satisfies (2.18), therefore, is said to have strong interference if

SNR2 ≤ INR1 < SNR2
2 + SNR2,

SNR1 ≤ INR2 < SNR2
1 + SNR1. (2.22)

A GIC is said to have weak interference [4] if for some ρ1, ρ2 ∈ [0, 1],√
INR1

SNR2

(1 + INR2) ≤ ρ2

√
1− ρ2

1,√
INR2

SNR1

(1 + INR1) ≤ ρ1

√
1− ρ2

2. (2.23)

2.2 Review of Information Theoretic Results on Multi-User Channels

In this section, we review some existing results on the capacity and achievable rate

regions, and rate region outer bounds for the basic multi-user channels provided in

the previous section.

2.2.1 Multiple Access Channel

Considering the discrete memoryless MAC depicted in Figure 2.1, the capacity region

can be shown to be the convex hull of rate pairs, (R1, R2) satisfying [5]

R1 ≤ I(X1;Y |X2),

R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1, X2;Y ). (2.24)
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Similarly, the capacity region of the GMAC shown in Figure 2.2 is given by [5]

R1 ≤ log2(1 + P1),

R2 ≤ log2(1 + P2),

R1 +R2 ≤ log2(1 + P1 + P2). (2.25)

For the two-user configuration, the corner points of the capacity region of the GMAC

can be achieved by single user decoding also known as stripping, onion peeling, or

step-by-step decoding [6]. In this scheme, the decoder starts by decoding one of the

users data while treating the other as interference. Decoded data is then canceled

out from the received signal prior to decoding the other users’ signal. Using Gaussian

codebooks, this decoding rule achieves rate pair (R1, R2) given by [6]

R1 = log2(1 + P1),

R2 = log2

(
1 +

P2

1 + P1

)
. (2.26)

Similarly R2 = log2(1 + P2) and R1 = log2(1 + P1

1+P2
) can be achieved by using the

reverse decoding order. The drawback of this scheme is that one should perform

TS to achieve rate pairs on the dominant face of the rate region. As an alternative,

there is a different strategy called rate-splitting through which one can achieve these

points by single user decoding. The idea benefits from employing two codebooks at

each transmitter with C(ij) denoting the codebook j adopted at transmitter i. The

associated powers and rates for each codebook are [6]

R1 = R11 +R12, P1 = P11 + P12,

R2 = R21 +R22, P2 = P21 + P22. (2.27)

At the receiver, single user decoding is performed in three stages: first, the message

corresponding to C(21) code is decoded, then the messages corresponding to the codes

14



C(11) and C(12) are decoded. Finally, the message corresponding to the C(22) code is

decoded. Considering the decoding priorities, the following rate pair can be achieved,

R1 = log2

(
1 +

P1

1 + P22

)
,

R2 = R21 +R22

= log2

(
1 +

P21

1 + P1 + P22

)
+ log2(1 + P22). (2.28)

In special cases, assuming P22 = 0 or P22 = P2, one can achieve the corner points

of the capacity region. Simultaneous decoding, also known as JD, also achieves rate

pairs between the corner points without employing rate splitting or TS [7]. The

optimal joint decoder is, however, much more complex than the optimal single user

decoder due to considering all codeword pairs [6].

2.2.2 Broadcast Channel

The capacity region of the general BC has been an open problem for many years.

However, capacities of some classes of BCs have been characterized. For instance,

an achievable rate region for the degraded BC was first found by Cover [2] using

“superposition coding”, which is a layered coding scheme. Later, Bergman [8] showed

that Cover’s region is the actual capacity region given by the closure of all (R1, R2)

satisfying

R2 < I(U ;Y2),

R1 < I(X;Y1|U),

R1 +R2 < I(X;Y1), (2.29)

over probability mass function of p(u, x), where U is an auxiliary random variable

with a cardinality bound |U| ≤ min{|X |, |Y1|, |Y2|}. Marton [9] and Pinsker [10]

found the capacity region of the deterministic BC with y1 = f1(x) and y2 = f2(x)
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given by

R1 < H(Y1),

R2 < H(Y2),

R1 +R2 < H(Y1, Y2). (2.30)

For a general DMIC, Marton in [11] showed that the following rate region is achievable

R1 < I(U ;Y1),

R2 < I(V ;Y2),

R1 +R2 < I(U ;Y1) + I(V ;Y2)− I(U ;V ), (2.31)

for some p(u, v, x) on U × V × X , where U and V are auxiliary random variables. It is

also indicated that this achievable region is the capacity region if the BC has one de-

terministic component. El Gamal in [12] discussed that feedback cannot increase the

capacity of the physically degraded channel similar to the single user case. However,

authors in [13, 14] show that feedback can indeed increase the capacity of general

BCs. Korner and Marton [11] provided an outer bound for the capacity region by

showing that C is the subset of the region characterized by

R1 < I(U ;Y1),

R2 < I(V ;Y2),

R1 +R2 < I(U ;Y1) + I(V ;Y2|U),

R1 +R2 < I(V ;Y2) + I(U ;Y1|V ), (2.32)

for some p(u, v, x) on U × V × X .

The capacity region of the Gaussian broadcast channel (GBC) with power

constraint P , as a degraded BC shown in Figure 2.5, is shown to be the convex hull
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of the set of rate pairs (R1, R2) given by [5]

R1 ≤ log2

(
1 +

aP

N1

)
,

R2 ≤ log2

(
1 +

(1− a)P

aP +N2

)
, (2.33)

where a ∈ [0, 1]. There are also outer bounds reported in [15] and [16] for configuration

where there is a common message sent to both receivers. Authors in [17] also have

proposed a new outer bound called New-Jersey outer bound. Characterization of the

full capacity region of the Gaussian multiple input multiple output (MIMO) channel

was an open problem for a long time since it is non-degraded in general even when

there is no fading. Authors in [18] characterized a rate region for Gaussian MIMO

channels that achieve the sum rate capacity. It is proved later that the region is the

actual capacity region [19] by matching an inner bound due to Marton [11] with an

outer bound due to Sato [20].

2.2.3 Relay Channel

The capacity of the RC is not known in general, however, lower and upper bounds

for the capacity have been found in the previous literature, see e.g., [21], [22]. It can

be shown that the capacity of any RC is upper bounded as [4]

C ≤ max
p(x,x1)

min
{
I(X,X1;Y1), I(X;Y, Y1|X1)

}
, (2.34)

known as the cutset bound [4], which is tight for many classes of the discrete mem-

oryless RC with known capacity such as the degraded RC and the class of reversely

degraded RC in which X → Y1 → Y form a Markov chain conditioned on X1. It can

also be shown that the capacity of the RC is lower bounded by

C ≥ max
p(x,x1)

min
{
I(X,X1;Y1), I(X;Y |X1)

}
, (2.35)

known as decode and forward lower bound [4]. A simple lower bound can be obtained

by considering the P2P communication between sender and the receiver while the
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relay transmission is fixed at the favorable symbol to the channel from the sender to

the receiver, therefore the resulting capacity is lower bounded as [4]

C ≥ max
p(x),x1

I(X;Y1|X1 = x1). (2.36)

There are several coding schemes that are optimal in certain special cases. Among

them, there are two extreme schemes named direct transmission and decode-and-

forward. In the former scheme the relay is not actively involved in the communication

process whereas in the latter one it plays a central role. It decodes the message and

cooperates with the sender to communicate with the receiver. Direct transmission

can beat decode and forward when the channel from the sender to the relay is weaker

than that to the receiver. Considering the Gaussian RC depicted in Figure 2.7, the

capacity region is given by

C = max
0≤α≤1

min

{
log2

(
1 +

P + P1 + 2
√

¯αPP1

N1 +N2

)
, log2

(
αP

N1

)}
, (2.37)

where ᾱ = 1− α. It can be shown that if P1

N2
≥ P

N1
, the capacity is given by

C = log2

(
1 +

P

N1

)
. (2.38)

Although the capacity of the RC is still not known exactly even for the Gaussian case,

much progress has been made recently in the characterization of its approximate

capacity [23]. In [24], the capacity of a class of deterministic RCs with separate

noiseless communication links from the relay to the receiver is provided. Authors

in [25] provide an achievable rate for general Gaussian relay networks. They show that

the achievable rate is within a constant from the cutset upper bound. Furthermore,

it is shown that the constant does not depend on the values of the channel gains and

it only depends on the topology of the network. In [26] the results are extended to

include the case where the noises at the relay and at the destination are correlated.
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2.2.4 Interference Channel

Characterization of capacity region for ICs has been pursued for more than three

decades which have shed some light on various aspects of the problem. Carleial [27]

and Sato [28] have shown that interference does not degrade the performance of the

system if it is strong enough to be cancelled out from the received signal. For instance,

the capacity region of the DMIC shown in Figure 2.8 with very strong interference is

the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y1|X2, Q),

R2 ≤ I(X2;Y2|X1, Q), (2.39)

for some PMF p(q)p(x1|q)p(x2|q) with |Q| ≤ 2. Similarly, the capacity region of the

DMIC p(y1, y2|x1, x2) with strong interference can be shown to be the set of rate pairs

(R1, R2) such that

R1 ≤ I(X1;Y1|X2, Q),

R2 ≤ I(X2;Y2|X1, Q),

R1 +R2 ≤ min{I(X1, X2;Y1|Q), I(X1, X2;Y2|Q)}, (2.40)

for some PMF p(q)p(x1|q)p(x2|q) with |Q| ≤ 4. The capacity region of the GIC with

very strong interference can be shown to be the set of rate pairs (R1, R2) such that

R1 ≤ log2(1 + SNR1),

R2 ≤ log2(1 + SNR2). (2.41)
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Sato showed that the capacity region of GIC with strong interference is the intersec-

tion of the rate regions of two MAC channels [28], i.e.,

R1 ≤ log2(1 + SNR1),

R2 ≤ log2(1 + SNR2),

R1 +R2 ≤ min{log2(1 + SNR1 + INR1), log2(1 + SNR2 + INR2)}. (2.42)

Under weak interference, the capacity is unknown but a simple lower bound can be

obtained by treating the interference as noise leading to

Csum ≥ log2

(
1 +

SNR1

1 + INR1

)
+ log2

(
1 +

SNR2

1 + INR2

)
. (2.43)

It has been shown that if the interference is weak enough, the structure of the inter-

ference is not useful from an information theoretic perspective [29]. In other words,

treating interference as noise can still achieve the maximum possible throughput, if

it is below a certain level. It is proved that for the asymmetric IC satisfying∣∣∣∣∣h21

h11

(
1 +

(
h12

h22

)2

SNR1

)∣∣∣∣∣+

∣∣∣∣∣h12

h22

(
1 +

(
h21

h11

)2

SNR2

)∣∣∣∣∣ ≤ 1, (2.44)

treating interference as noise achieves sum capacity as

Csum = log2

(
1 +

SNR1

1 +
(
h21
h11

)2
SNR2

)
+ log2

(
1 +

SNR2

1 +
(
h12
h22

)2
SNR1

)
. (2.45)

The HK achievable rate region is the best known rate region for IC in the

general case [30]. In this scheme information of each user is divided into two parts,

namely, private (U) and public (W ). Public messages are intended to be decoded at

both users while the private messages are only decodable at the intended receivers.

At the receiver side, public messages are jointly decoded along with the intended
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private message. A simplified version of the region is given by [30]

R1 ≤ ρ1,

R2 ≤ ρ2,

R1 +R2 ≤ ρ12,

2R1 +R2 ≤ ρ10,

R1 + 2R2 ≤ ρ20, (2.46)

where

ρ1 = σ?1 + I(Y1;U1|W1W2Q),

ρ2 = σ?2 + I(Y2;U2|W1W2Q),

ρ12 = σ12 + I(Y1;U1|W1W2Q) + I(Y2;U2|W1W2Q),

ρ10 = 2σ?1 + 2I(Y1;U1|W1W2Q) + I(Y2;U2|W1W2Q)− [σ?1 − I(Y2;W1|W2Q)]+

+ min
{
I(Y2;W2|W1Q), I(Y2;W2|Q) + [I(Y2;W1|W2Q)− σ?1]+,

I(Y1;W2|W1Q), I(Y1;W1W2Q)− σ?1
}
,

ρ20 = 2σ?2 + I(Y1;U1|W1W2Q) + 2I(Y2;U2|W1W2Q)− [σ?2 − I(Y1;W2|W1Q)]+

+ min
{
I(Y1;W1|W2Q), I(Y1;W1|Q) + [I(Y1;W2|W1Q)− σ?2]+,

I(Y2;W1|W2Q), I(Y2;W1W2|Q)− σ?2
}
,

σ?1 = min
{
I(Y1;W1|W2Q), I(Y2;W1|U2W2Q)

}
,

σ?2 = min
{
I(Y2;W2|W1Q), I(Y1;W2|U1W1Q)

}
,

σ12 = min
{
I(Y1;W1W2|Q), I(Y2;W1W2|Q), I(Y1;W1|W2Q) + I(Y2;W2|W1Q),

I(Y2;W1|W2Q) + I(Y1;W2|W1Q)
}
,

with the following cardinality bounds

|U1| ≤ |X1|+ 2, |W1| ≤ |X1|+ 7,
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|U2| ≤ |X2|+ 2, |W2| ≤ |X2|+ 7, |Q| ≤ 11 (2.47)

where Q is the TS random variable. For Gaussian signaling, mutual information

functions are given by

I(Y1;U1|W1W2) = C(λ1P1/(1 + h21λ2P2)),

I(Y2;U2|W1W2) = C(λ2P2/(1 + h21λ1P1)),

I(Y1;W1|W2) = C(λ1P1/(1 + λ1P1 + h21λ2P2)),

I(Y1;W2|W1) = C(h21λ2P2/(1 + λ1P1 + h21λ2P2)),

I(Y1;W1W2) = C((λ1P1 + h21λ2P2)/(1 + λ1P1 + h21λ2P2)),

I(Y2;W2|W1) = C(λ2P2/(1 + λ2P2 + h12λ1P1)),

I(Y2;W1|W2) = C(h12λ1P1/(1 + λ2P2 + h12λ1P1)),

I(Y2;W1W2) = C((λ2P2 + h12λ1P1)/(1 + λ2P2 + h12λ1P1)),

I(Y1;W1) = C(λ1P1/(1 + λ1P1 + h21P2)),

I(Y2;W2) = C(λ2P2/(1 + λ2P2 + h12P1)),

I(Y1;W2|U1W1) = C(h21λ2P2/(1 + h21λ2P2),

I(Y2;W1|U2W2) = C(h12λ1P1/(1 + h12λ1P1), (2.48)

where C is a conventional P2P Gaussian capacity function in two dimensions defined

as C(x) = log2(1 + x) and λ1 and λ2 are private message power ratios of X1 and X2,

respectively, i.e.,

Pu1 = λ1P1,

Pu2 = λ2P2,

λ1 + λ1 = 1. (2.49)

Although the general rate region is formulated, computation of the entire region is

very difficult since one should perform optimization over PMFs of many random
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variables with large cardinalities. A simplified version of the general rate region is

proposed in [31] named Chong-Motani-Garg rate region and it is proved to be identical

to the HK rate region.

There are four main outer bounds for the GIC in the literature. The first bound

is obtained in [32] for the degraded GIC based on the capacity region of a specific

degraded BC. The second is due to Kramer for a GIC with weak interference where

the bound is attained by discarding one of the interfering links in the channel [33].

The third is proposed by Etkin et al. for a general GIC exploiting a genie-aided

technique [34]. The fourth, which is the most recent one, is reported by Motahari

and Khandani based on the concept of admissible channels [35]. The outer bounds

are revisited in [29] and tighter bounds are derived. A common feature of all these

given bounds is that they are all based on a genie providing side information to the

receivers.

Despite many information theoretic advances, practical solutions of interfer-

ence managements are either sub-optimal and do not leverage the spectrum fully.

Treating the interference as noise is a common approach from engineering point of

view, however, this strategy is optimal when interference is considerably weak [4]. An-

other practical solution is to avoid interference through orthogonalizing techniques,

such as TDMA, FDMA, CDMA, for which different users’ signals are transmitted

via channels separated in time, frequency, and code domains, respectively. Neither of

these approaches fully exploit the available degrees of freedom defined as the linear

growth factor of the logarithm of the capacity of the channel.

Another important line of work for transmission over ICs is interference align-

ment introduced in [36] by proposing an impressive coding scheme for MIMO X chan-

nel using dirty paper coding (DPC) and successive interference cancellation. The main
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idea is to obtain asymptotic results on the possible transmission rates called degrees

of freedom defined as

d = lim
SNR→∞

C

log(SNR)
, (2.50)

where C denotes the capacity of the channel. In essence, interference alignment

technique at each receiver aims at concatenating the interference roughly into one

half of the signal space, leaving the other half available to the desired signal and

free of interference, thus achieving more degrees of freedom [37]. Cadambe and Jafar

in [37] exploit the idea for k-user ICs demonstrating that suitably designed precoders

can result in achieving K
2

degrees of freedom. Wu et. al [38] explored the design

of linear precoders for K-user MIMO ICs employing finite alphabet inputs. They

demonstrate that the common interference alignment method for Gaussian inputs

results in a constant rate loss when applied haphazardly to finite alphabet inputs.

Despite the superiority of the interference alignment, the scheme requires

global channel knowledge so that users at the transmitter side can compute and

use appropriate beamforming vectors to make the interference signals aligned at the

receivers. Also, the results on this scheme are only asymptotic in terms of the SNRs

which may not be the regime of operation for practical wireless systems.

2.3 Review of Practical Coding Schemes for Multi-User Channels

Initial work on designing practical codes for the MAC has appeared in [39, 40] where

optimized codes were shown to achieve points close to the corner points of the capacity

region. Exploiting LDPC codes, authors in [7] showed that any rate pair in the

capacity region can be achieved without requiring TS or rate splitting. The codes

were designed employing the density evolution (DE) technique [41] which is a powerful

tool in tracking the probability density function of the LLRs exchanged among the

nodes of the Tanner [42] graph representation. Authors in [43] proposed an efficient
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coding scheme for MIMO MAC and showed that single user codes are not suitable

for the MIMO case highlighting that new codes should be optimized for such channel.

Authors in [1] explored the code design principles for the GMAC with equal-power for

the transmitted signals. In particular, they utilized an extrinsic information transfer

(EXIT) chart method, which visualizes the exchange of the information between the

constituent decoders of the LDPC decoder first introduced by ten Brink [44]. They

proposed a simple optimization approach based on Gaussian approximation of the

exchanged messages, and they have shown that the designed codes operate close to

the capacity boundary.

Practical codes using superposition coding, first introduced by Cover [2], ap-

peared in [3] for the degraded Gaussian BC which combines superposition coding with

trellis coded modulation. The designed codes have shown to achieve points within

1dB of the capacity region. DPC [45], which uses side information at the transmitter

for encoding has been used in [18] for non-degraded Gaussian MIMO BCs. DPC has

a performance gain over conventional schemes, e.g., TDMA, FDMA, especially when

the SNR is high and the number of transmit antennas is large. Authors in [46], [47]

designed practical and implementable capacity achieving codes utilizing DPC, which

involve joint source channel coding. However, the proposed schemes based on DPC

seem to be difficult to implement practically. As a result, authors in [48] analyzed the

performance of different coding techniques as sub-optimal approaches for the fading

MIMO Gaussian BC and they derived practical coding schemes that achieve points

very close to the theoretical bounds. Better codes for MIMO BC are reported in [49].

These codes are designed by using nested turbo codes and DPC. One should note that

superposition coding also achieves the capacity of simple Gaussian BC and practical

codes exploiting superposition technique preform well [3]. However, superposition

coding approach cannot be extended to include the MIMO Gaussian BC, where the

25



channels are not necessarily degraded. On the other hand, DPC achieves the capac-

ity of both degraded and non degraded BCs. In [50] LDPC codes are used for single

antenna fading BCs and suitable EXIT chart analysis is utilized to determine the

degree distributions.

Thanks to their excellent performance, LDPC codes are also exploited for RCs.

Khojastepour et. al. [51] discussed a novel method in designing LDPC codes for full

duplex Gaussian RC. Having used partial graph factor to avoid cycles, they designed

powerful codes that achieve points within 1dB of the theoretical outer bounds. Au-

thors in [52, 53] designed turbo-based coding/decoding schemes for MIMO RCs where

the relay forwards simultaneously its estimate for the previous coded block to the des-

tination after decoding and re-encoding and the destination uses an iterative decoding

algorithm to estimate the transmitted messages. They showed that the performances

of codes are within the 1.5 dB of the theoretical limits. They also proposed a coding

scheme in [54–56] for the half-duplex RCs and designed codes for the source and relay

nodes. Specifically, they compute the period of time during which the relay node

should listen and exploit it in their code design. The designed codes are shown to

operate about 1.2 dB away from the theoretical bounds.

Authors in [57] introduced a new type of codes called bi-layer LDPC codes

that operate simultaneously at two different SNRs to accommodate the different lev-

els of SNRs at the relay and the destination. The proposed scheme is shown to have

a close to optimal performance for the RC at high SNRs. Authors in [58] proposed

practical coding schemes and developed receiver structures for the half duplex RCs.

In particular, they utilized LDPC codes and designed codes operating within 1.1 dB

of the information theoretic limits. Authors in [59, 60] studied the code design for the

full duplex RCs with fading. EXIT charts analysis is exploited to optimize the codes
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which are shown to operate very close to the information theoretic limits. They also

examined the coded cooperation strategies for frequency selective fading RCs where

they develop a distributed turbo-coding strategy demonstrating that with the pro-

posed coding and iterative decoding method, one can approach existing approximate

information rates closely [61, 62]. LDPC codes are optimized in [63] for two-way

relay systems with physical-layer network coding wherein optimized codes shown to

outperform the off-the-shelf codes designed for the P2P channel considerably.

Unlike the rich literature for designing practical codes for aforementioned chan-

nels, there is very limited work for the IC in terms of practical code designs to achieve

points close to the boundaries of the known rate regions. Wu et. al [38] derive the

optimal linear precoder for K-user MIMO ICs utilizing finite alphabet inputs. They

employ LDPC codes and show that the bit error rate (BER) performance of the

optimal precoders significantly outperform the ones utilized based upon the com-

mon Gaussian signalling. Authors in [64] carry on a comparative study of the few

existing interference alignment schemes when combined with turbo coding. The re-

sults demonstrate the performance of the practical interference alignment techniques

in LTE-compliant systems. Recently, authors in [65] explored the problem of code

design for the two-user GIC optimizing codes for an example of symmetric GICs ex-

periencing weak interference. They utilized a soft information cancellation method

where the interfering signals at the receivers are partially decoded aiming at improv-

ing the decoding of the desired messages. The proposed implementation is, however,

limited to the symmetric scenarios where identical degree distributions are utilized

for both users’ messages, therefore it is not directly applicable for the general case.
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2.4 Chapter Summary

In this chapter, we have described the system models for MAC, BC, RC, and IC.

We have reviewed the existing literature on the discussed channels from information

theoretic point of view. In addition, we have summarized the existing results on prac-

tical and implementable channel codes designed for the studied multi-user channels.

It is noted that information theoretic limit approaching codes are reported for MAC,

BC and RC; however, a very limited work has been performed on optimizing codes

for the IC motivating us to study this problem further, which is precisely the main

contribution of this dissertation.
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Chapter 3

LDPC CODE DESIGN FOR TWO-USER MULTIPLE ACCESS CHANNELS

In this chapter, We study code design for two-user GMACs under fixed channel gains

and under quasi-static fading. We employ LDPC codes with BPSK modulation and

utilize an iterative joint decoder consisting of two component decoder interacting

through so-called state nodes. Adopting a belief propagation (BP) algorithm, we

characterize the PDF of the outgoing LLRs from the state nodes. Via examples, we

illustrate that the characterized PDF does not match a Gaussian density, and instead,

it resembles a GM distribution. We then exploit the GM assumption in predicting the

decoding performance of LDPC codes over GMACs and propose variants of existing

analysis methods, named modified DE and modified EXIT. We derive a stability

condition on the degree distributions of the LDPC code ensembles and utilize it in

the code optimization. Through our extensive results, we demonstrate that for the

case of fixed channel gains, the newly optimized codes perform close to the capacity

region boundary outperforming the existing designs and the off-the-shelf P2P codes.

Under quasi-static fading, optimized codes exhibit consistent improvements upon the

P2P codes as well. Finite block length simulations of specific codes picked from the

designed ensembles are also carried out where the performances of the optimized

codes are shown to be close to the outage limits of the channel.

The rest of the chapter is organized as follows. In Section 3.2, the system

model is described and coding/decoding schemes are elaborated. In Section 3.3, the

PDF of the outgoing LLRs from the state nodes is computed and a stability condi-

tion is derived for the LDPC codes employed for two-user GMACs. In Section 3.4,

we explain the proposed variants of the DE and the EXIT analysis based on GM

Full version of this work has been submitted to IEEE Transactions on Wireless Communica-
tions [66].
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assumption. In Section 3.5, we elaborate on the code optimization procedure. In Sec-

tion 3.6, numerical examples and simulation results are provided. Finally, Section 3.7

concludes the chapter.

3.1 Introduction

A Gaussian multiple access channel (GMAC) in its simplest form consists of two

users communicating with one receiver in the presence of additive white Gaussian

noise (AWGN). The capacity region of the two-user GMAC has been completely

characterized. The corner points of the capacity region can be achieved via single

user decoding (SUD), hence via time sharing one can achieve the points in between.

It is also shown that any rate pair in the capacity region can be attained utilizing rate

splitting or joint decoding without the need for time sharing [7]. From a practical

channel coding prospective, authors in [1, 7] utilize LDPC codes and implement a

joint decoding algorithm through iterative decoding achieving rate pairs close to the

boundary for a two-user GMAC with equal channel gains.

LDPC codes are powerful linear block codes introduced by Gallager in [67].

While they were forgotten for a long time (except for some sporadic works) pre-

sumably due to the complexity of the encoding and decoding schemes, they were

reintroduced in the work of MacKay [68] who rediscovered the potential of the linear

block codes with sparse parity-check matrices. These codes have been successfully

employed for various channels achieving promising rates close to the information the-

oretic limits. Motivated by their superior performance for different channels and their

premise in [1] and [7], in this chapter, we explore the problem of LDPC code design

for the more general two-user GMAC with BPSK modulation. We consider two sce-

narios for channel gains: fixed and quasi-static fading. The former scenario suits

time-invariant models, while the latter models the scenarios for which the fading is
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so slow that no matter how long the codeword is, the (random) channel gain remains

constant. We do not consider the fast fading scenario, since a similar model is already

investigated in [50] for the two-user degraded broadcast channel whose results can be

readily applied to the MAC scenario.

LDPC codes exhibit a threshold effect which determines, in terms of the chan-

nel parameters, when the decoding error probability can be made arbitrary small.

DE [41] is the primary technique in computing the decoding thresholds. Full imple-

mentation of the DE requires extensive calculations, therefore quantized DE [41] is

commonly employed in the literature. A similar approach is followed in [69] where

the authors employ DE for the two-user GMAC for a joint decoder wherein look-up

tables are exploited to update the PDFs of the log-likelihood-ratios (LLRs) fed to the

component LDPC decoders through the so-called state nodes [1].

EXIT analysis [70] is an alternative to the DE method tracking the evolution

of the mutual information between the transmitted bits and the corresponding LLRs

exchanged within the decoder. The common assumption in the EXIT analysis, which

greatly simplifies the computations, is to consider Gaussian densities for the LLRs.

Authors in [50] employ an EXIT analysis to optimize LDPC codes for the two-user

degraded broadcast channel utilizing a joint decoder at the better receiver where they

adopt a simple linear approximation to update the evolution of the mutual informa-

tion at the state nodes. The authors in [1] also utilize an EXIT analysis to optimize

irregular LDPC codes for the two-user GMAC with equal channel gains. Unlike [50],

they compute the evolution of the mutual information as the average of the values

obtained for two types of state nodes based on the transmitted (coded) bits. Au-

thors in [71] study a similar channel model and adopt an EXIT analysis to design

distributed joint source-channel codes. They show for some (simulation) examples
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that the PDFs of the outgoing LLRs from the state nodes resemble a Gaussian mix-

ture (GM) distribution, however, for simplification, they opt for using the Gaussian

assumption.

Motivated by the results of [71], we analytically characterize the PDF of the

outgoing LLRs from the state nodes for fixed channel gains and illustrate via ex-

amples that the PDF of the outgoing LLRs from the state nodes resembles a GM

distribution. Based on this observation, we utilize the GM assumption and modify

the existing DE [69] and EXIT analysis [50] methods. We refer to the new algorithms

as the modified DE and the modified EXIT analysis throughout the chapter. For

the modified DE, the PDFs of the outgoing LLRs from the state nodes are fitted

with GM distributions. The parameters of the GM distributions are estimated by

employing the expectation maximization (EM) method run over the samples gen-

erated via Monte Carlo simulations [72]. The obtained PDFs are then fed to the

component LDPC decoders where common method of [73] is adopted to track the

evolution of the PDFs exchanged between the check nodes and the variable nodes.

For the modified EXIT analysis, the evolution of the mutual information associated

with the exchanged LLRs are computed analytically exploiting the GM assumption.

Unlike [74], the computations are performed with no limitation on the ratio of the

variance to the mean of the PDFs. Considering the fixed channel gains scenario, we

incorporate the proposed methods of modified DE and modified EXIT analysis into

the LDPC code optimization, which is based on a random perturbation technique

also exploited in [75] for a different problem.

We provide many code design examples in the chapter. We demonstrate that

the optimized LDPC codes for the case of equal channel gains are shown to im-

prove upon the ones designed in [1]. For the case of unequal channel gains, we show
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that our optimized codes offer better performance compared to the ones attained via

the method of [50]. In addition, we highlight that the optimized codes outperform

the point-to-point (P2P) codes designed for binary-input AWGN (BI-AWGN) chan-

nels. For the quasi-static fading scenario, we consider the common outage probabil-

ity [76] as the performance measure. Despite the superiority of our proposed methods,

the amount of computations prohibits their use in quasi-static fading, hence to sim-

plify the analysis and reduce the amount of computations, we incorporate the simple

method of [50] in the code optimization process. We carry out the code design for ex-

amples of real and complex channel gains and demonstrate that the newly designed

codes consistently improve upon the existing P2P designs. We also perform finite

code block length simulations for the optimized codes and the P2P codes confirming

the superiority of the new designs.

3.2 System Model and Preliminaries

Consider a two-user GMAC where the received signal Y is expressed as

Y = H1X1 +H2X2 + Z,

where Xi represents the signal of the user i with the average power E{|Xi|2} =

1 (i = 1, 2), and Z denotes the circularly symmetric complex AWGN with variance

1
2

per dimension. The average received power of the user i is defined as Pi = |Hi|2

with Hi denoting the channel gain between the user i and the receiver. We consider

two scenarios: fixed channel gains and quasi-static fading. For the former case, the

channel gains are unchanged throughout the entire transmissions, while in the latter,

they are drawn randomly but kept fixed during the transmission of each codeword.
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3.2.1 Shannon Capacity vs Outage Capacity

For the case with fixed channel gains, the Shannon capacity of the two-user GMAC

is the convex hull of the rate pairs (R1, R2) characterized as [4]

R1 < I(X1;Y |X2),

R2 < I(X2;Y |X1),

R1 +R2 < I(X1, X2;Y ),

over all product distributions pX1(x1) · pX2(x2). Under quasi-static fading, reliable

transmission is not guaranteed for all the channel realizations, therefore the Shan-

non capacity is zero. Authors in [76] introduced the common outage capacity re-

gion (COCR) computed as

Pr{R1 < I(Y ;X1|X2)} ≥ 1− Po,

P r{R2 < I(Y ;X2|X1)} ≥ 1− Po,

P r{R1 +R2 < I(Y ;X1, X2)} ≥ 1− Po,

(3.1)

over all PDFs pX1(x1) · pX2(x2) where Po is called common outage probability.

The rate region in (3.1) can be calculated analytically for Gaussian signal-

ing [77]. For BPSK signaling, however, numerical calculations are needed. Here, we

adopt a grid search method to characterize COCR for BPSK signaling considering

real channel gains. The boundary of the COCR can be characterized by solving

min
R1,R2

|P̃o(R1, R2)− Po|

s.t. 0 ≤ R1 ≤ R1max ,

0 ≤ R2 ≤ R2max ,

where P̃o(R1, R2) is computed as

P̃o(R1, R2) =

∫ ∞
0

∫ ∞
0

1COCR(R1, R2, h1, h2)fH1(h1)fH2(h2)dh1dh2.

34



The function 1COCR equals 1 if, for a given (R1, R2, h1, h2), the rate pairs are inside

the conditional rate region (3.1), otherwise is set to 0. Rimax denotes the capacity of

the P2P channel between the user i and the receiver.

3.2.2 Coding and Decoding Schemes

At the transmitter sides, the information bits of each user are encoded with an LDPC

code. The ith encoded bits of message uj, denoted with cj(i), is modulated using

BPSK constellation and sent over the channel as Xj(i) =
(
1 − 2cj(i)

)
. At the re-

ceiver side, we can employ JD [1] or the successive cancellation method ([78, 79]).

In successive cancellation, decoding is done sequentially adopting component LDPC

decoders where the decoded messages at each stage are subtracted from the original

signal until all the messages are estimated (Fig. 3.1a). It is possible to improve the

overall performance by iterating between the component LDPC decoders.

Under JD, in contrast to successive cancellation, decoding of the messages

are performed concurrently and in rounds. Each round starts with computing the

LLRs to be fed to the component LDPC decoders, where each decoder runs for some

iterations utilizing the BP algorithm. The round is completed by passing the updated

LLRs from the variable nodes to the so-called state nodes [1], denoted with the black

circle in Fig. 3.1a. The exchange of LLRs between the component LDPC decoders and

the state nodes can be performed serially or in parallel. In parallel scheduling both

component LDPC decoders run simultaneously whereas in serial scheduling only one

component LDPC decoder is active at each iteration [1]. As in [1], we adopt parallel

scheduling in the rest of the chapter.

3.3 Analysis of Joint Decoding

In this chapter we utilize irregular LDPC codes which have been successfully employed

over various channels [1], [50], [60]. Following the notation in [41], an ensemble
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Figure 3.1: Block Diagram of the Decoder Structures (X̂ Denotes the Decoded Mes-
sage for the Transmitted Message X.)

of irregular LDPC codes (λ, ρ) is described with λ(x) =
∑dv

i=2 λix
i−1 and ρ(x) =∑dc

i=2 ρix
i−1, where dv and dc are maximum degrees of variable nodes and check nodes,

respectively, and the design rate of the code is computed as

r = 1−
∑dc

i=2 ρi/i∑dv
i=2 λi/i

. (3.2)

In the following, we review i.i.d. channel adapters and study the stability conditions

for the degree distributions of the LDPC employed for the two-user GMAC. In ad-

dition, we elaborate on the computation of the outgoing LLRs from the state nodes

and derive the associated PDF.

3.3.1 I.I.D. Channel Adapters

The decoding analysis of the LDPC codes can be greatly simplified for a symmetric

channel by analyzing the behavior of the decoder for the all-zero codeword [41]. A
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channel is called symmetric if fYi(y|Ci = 0) = fYi(−y|Ci = 1), where Ci and Yi refer

to the ith coded bit and the ith channel output, respectively, and fYi denotes the PDF

of Yi conditioned on Ci. Unlike the case of BI-AWGN channels, the channel symmetry

does not hold for multi-user channels in general. To address this issue in our setting,

we employ the independent and identically distributed (i.i.d.) channel adapters [80]

applied at the transmitter and receiver sides. The idea is to combine each codeword

with a random sequence prior to transmission and utilize the same set of sequences

at the receiver for decoding of each codeword in order to enforce symmetry. It should

be noted that the i.i.d. channel adapters are employed to simplify the analysis and

are not implemented during the actual encoding and decoding processes.

3.3.2 Stability Condition

Authors in [41] introduced a stability condition analyzing the asymptotic decoding

behavior of an LDPC code ensemble used over a BI-AWGN channel. The stability

condition is further studied for multi-user scenarios [1, 50, 75], for instance, authors

in [1] compute the stability condition for two-user GMACs when channel gains are

identical and real. Here, we derive the stability condition conditioned on the channel

gains for the general scenario of complex channel gains1. For simplicity of the analysis,

we follow the approach taken in [75] and assume that the joint decoder is operating

at steady state and close to successful decoding. We derive the stability condition

for the component LDPC decoder j assuming the other component LDPC decoder

has almost decoded its own message, therefore the modified channel output Y ′ [75] is

obtained as Y ′ = HjXj + Z, which resembles a P2P channel. As a consequence, the

LLR received at the ith variable node of component LDPC decoder j is simplified to

L
(
cj(i)

)
= 4 Re{HjY

∗}. Considering the symmetry condition [75], it is easy to show

that after applying the channel adapters, L
(
cj(i)

)
is distributed asN

(
4|Hj|2, 8|Hj|2

)
.

1The case of real channel gains can be handled similarly.

37



Hence, results of [41] can be utilized to derive the stability condition, given by

λ′j(0)ρ′j(1) < exp
(
|Hj|2

)
, (3.3)

where λ′j(0) denotes the derivative of polynomial λ of user j computed at zero. For

the quasi-static scenario, Hj changes from one codeword to another.

3.3.3 Characterization of Outgoing LLRs from State Nodes

Considering the BP rule at the state nodes, the LLR corresponding to the ith coded

bit of the message of user j is computed as

L
(
cj(i)

)
= log

(
fYi(y|cj(i) = 0)

fYi(y|cj(i) = 1)

)
. (3.4)

The update rule (3.4) is a non-linear operation, therefore existing performance anal-

ysis techniques employ look-up tables or numerical methods to evaluate the PDF of

the outgoing LLRs from the state nodes. In the following, we derive the PDF of

the LLRs analytically. To simplify the analysis, we consider the case of real channel

gains. Also, we discard the bit index in the expressions for the ease of the exposi-

tion. Without loss of generality, we consider the LLR sent from the state node to the

variable node of component LDPC decoder 1 computed as

L = 4Y (H1 −H2) + log

(
exp
(

4H2(Y−H1)
)

exp(X)+1

exp(X)+exp
(
−4H2(Y+H1)

))

= BY ′ + log

(
1+A exp(Y ′+X)

exp(X)
(

1+A exp(−Y ′−X)
)), (3.5)

where A = exp(−4H2H1), Y ′ = 4H2Y , B = (H1−H2)
H2

, and X denotes the LLR received

at the state node from the other component LDPC decoder. Considering i.i.d. channel

adapters, X can be written as t · X ′ where t is a random sequence consisting of 1

and −1 with equal probability for the user 2 [80] and X ′ denotes the LLR prior to

applying the channel adapters. Therefore, the PDF of the random variable X can be
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obtained as

fX(x) =
1

2

(
fX′(x) + fX′(−x)

)
.

Similarly, Y can be considered as the channel output corresponding to the transmis-

sion of all-ones sequence for user 1 and a sequence with symbols 1 and −1 drawn with

equal probability [1] for user 2. Hence, the PDF of Y ′ is computed as

fY ′(y
′) =

1

8H2

√
π

(
e
−
(

y′
4H2
−H1−H2

)2
+ e

−
(

y′
4H2
−H1+H2

)2)
.

We derive the PDF of L for the equal channel gains and the unequal channel gains,

separately.

3.3.3.1 Equal channel gains

Consider the transformation

Z1 = log

(
1 + A exp(Y ′ +X)

exp(X)
(
1 + A exp(−Y ′ −X)

)),
Z2 =Y ′,

implying

X =− Z1 + log

(
1− A exp(Z1 − Z2)

1− A exp(Z2 − Z1)

)
− | log(A)|+ Z2 ≤ Z1 ≤ | log(A)|+ Z2,

Y ′ =Z2.

Since L = Z1, fL(l) is obtained by marginalizing fZ1,Z2 over Z2, which is given by

fL(l) =

∫
F

|J(l, z2)|fZ1,Z2(l, z2)dz2,

(a)
=

∫ | log(A)|

−| log(A)|

∣∣∣∣ A2 − 1

(A2 − 2A cosh(z′2) + 1)

∣∣∣∣fX
(
− l + log

(
1− A exp(−z′2)

1− A exp(z′2)

))

× fY ′(z′2 + l)dz′2 (3.6)
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where (a) follows from the transformation z′2 = z2 − l and J(., .) is the Jacobian

function defined as

|J(z1, z2)| =

∣∣∣∣∣∣∣
∂x
∂z1

∂y′

∂z1

∂x
∂z2

∂y′

∂z2

∣∣∣∣∣∣∣ .

3.3.3.2 Unequal Channel Gains

Similar to the previous case, we adopt the random variable transformation

Z1 = log

(
1 + A exp(X + Y ′)

exp(X)
(
1 + A exp(−X − Y ′)

)),
Z2 =BY ′,

where

X =− Z1 + log

(
1− A exp

(
Z1 − Z2

B

)
1− A exp

(
− Z1 + Z2

B

)) − | log(A)|+ Z2

B
< Z1 < | log(A)|+ Z2

B
,

Y ′ =
Z2

B
.

Since L = Z2 + Z1, it follows that

fL(l) =

∫
fZ1Z2(l − z2, z2)dz2

=

∫ |B log(A)
1+B

|

−|B log(A)
1+B

|
fX

(
z2 −

l

B + 1
+ log

(
1− A exp

(
− z2(B+1

B
)
)

1− A exp
(
z2(B+1

B
)
) ))fY(z2 + Bl

B+1

B

)

×
∣∣∣∣J( l

B + 1
− z2, z2

)∣∣∣∣dz2 (3.7)

for B 6= −1 and

fL(l) =

∫ ∞
−∞
|J(l − z2, z2)|fX

(
z2 − l + log

(
1− A exp(l)

1− A exp(−l)

))
fY

(
z2

B

)
dz2 (3.8)

for B = −1. Note that at the zeroth iteration, X = 0, therefore fL(l) for both cases

of equal channel gains and unequal channel gains can be computed via the one-to-

one transformation from Y ′ to L. The computations of (3.6), (3.7), and (3.8), are
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costly for practical implementations. Therefore, we propose approximating the PDF

by a simpler form. In the following, we show that the GM distributions are good

candidates for approximating the PDFs.

3.3.4 GM Approximation

GM distributions are parametric PDFs represented as a weighted sum of Gaussian

component densities given by

fL(l) =
N∑
i=1

wi exp

(
− (l − µi)2

2σ2
i

)
,

where µi, σ
2
i , and wi denote the mean, the variance, and the mixing proportion

of the Gaussian component i, respectively, and N denotes the number of Gaussian

components involved. The GM distribution’s parameters are commonly estimated

via the EM [72] method run on the samples of the random variable.

GM distributions are commonly exploited to characterize a large class of sam-

ple distributions, primarily due to their ability to form smooth approximations for

various densities. In this chapter, we study their use in approximating the PDF of

the outgoing LLRs from the state nodes under joint decoding. To simplify the cal-

culations, similar to [1, 50], we assume that the LLRs sent from the variable nodes

to the state nodes have a Gaussian density. Fig. 3.2 illustrates the PDF of the out-

going LLRs sent from the state nodes to the variable nodes of component LDPC

decoder 1 computed with different methods. Ivs denotes the mutual information be-

tween the transmitted bits and the LLRs sent from the variable nodes of component

LDPC decoder 2 to the state nodes. According to the figure, the PDFs computed

via the Monte Carlo simulations match closely with the ones calculated through the

analytical derivations. Furthermore, it is clear that the PDFs do not resemble Gaus-

sian densities, instead they are well-approximated with a GM distribution with two

Gaussian components. Motivated by these observations, we propose two methods of
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Figure 3.2: Illustration of the PDFs of the Outgoing LLRs from the State Nodes to
the Variable Nodes of the Component LDPC Decoder of User 1 for Different Values
Ivs
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performance analysis exploiting GM approximation for the LLRs exchanged within

the joint decoder. For simplicity of the exposition, the methods are outlined for GM

distributions with two components. We note that extensions to higher number of

Gaussian components would follow similar steps.

3.4 Proposed Performance Evaluation Methods

3.4.1 Modified DE

For the proposed method, we utilize the GM approximation and track the PDF of the

LLRs exchanged among the nodes of the Tanner graph of the joint decoder. In the

following we elaborate on the computations performed for each phase of the decoding

iteration separately.

State Node to Variable Node: We exploit the GM assumption to characterize the PDF

of the outgoing LLRs from the state nodes. To estimate the parameters of the GM

distributions, we utilize the EM method on the samples of the actual PDF computed

through (3.4) based on the samples of the received LLRs from the variable nodes of

the other LDPC component decoder. These samples are generated by applying the

inverse transform sampling technique [81] on the corresponding PDF obtained in the

previous iteration. It is worth mentioning that the burden of the computations is

primarily due to the EM method. To reduce the amount of EM computations, the

initial estimates of the each parameter of the GM distribution at each iteration can

be chosen as the value for the corresponding parameter estimated in the previous

iteration.

Variable Node to Check Node: At the variable node with degree k, the LLR L
(k)
vcj sent

on the jth edge is computed as L
(k)
vcj = Lsv +

k∑
i= 1
i 6= j

Lcvi , where Lsv and Lcvi are the

LLRs received from the connected stated node and the ith connected check node,

respectively. For a cycle free Tanner graph, the incoming messages at each node are
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i.i.d, hence the PDF of L
(k)
vc is obtained as f

L
(k)
vc

= fLsv ⊗
(⊗dv−1

i=1 fLcv

)
where

⊗
denotes the convolution operation. Considering all the variable nodes, the PDF of

the Lvc is computed as fLvc =
∑dv

i=2 λi · fL(k)
vc

.

Check Node to Variable Node: At the check node with degree k, the LLR L
(k)
cvj sent

on the jth edge is computed as L
(k)
cvj = 2 tanh−1

(
k∏
i=1
i 6=j

tanh
(
Lvci

2

))
. Due to the non-

linearity of the update rule, the PDF of L
(k)
cv is typically computed via a look-up

table [73]. In this chapter, we follow a similar approach where the PDF is calculated

by applying a two-input operator R, that is, f
L
(k)
cv

= Rk−1fLvc , where R(a, b) =

Q
(

2 tanh−1
(

tanh
(
a
2

)
tanh

(
b
2

)))
with Q(.) representing the quantization operator.

Considering all the check nodes, the PDF of Lcv is obtained as fLcv =
∑dc

i=2 ρi · fL(k)
cv

.

Variable Node to State Node: The outgoing LLR from the variable node with degree

k to the connected state node is computed as Lsv =
∑k

i=1 Lcvi , therefore fLkvs =⊗k
i=1 fLcv and fLvs =

∑dv
i=2 λ̄i · fL(k)

vs
where λ̄i represents the node degree distribution

computed as λ̄i = λi∑dv
j=2

λj
j

.

Yedla et. al. in [69] also utilize the DE method to analyze the performance

of the joint decoder employed for the two-user GMAC. They exploit look-up tables

to characterize the PDFs of the outgoing LLRs from the state nodes. Despite the

accuracy of the method, considerable amount of memory is required to construct the

look-up tables. We need to highlight that the proposed method here is inherently dif-

ferent from [69] as in the modified DE the PDF of the outgoing LLRs from the state

nodes are approximated with a GM distribution rather than being exactly character-

ized. Moreover, compared to [69], the complexity of the modified DE does not grow

with the number of involved component LDPC decoders hence it is more amenable

for extension to higher number of users.
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We observe through examples that the proposed method provides accurate

threshold estimates for a large range of user powers; however, we also notice that for

large values of powers, when the channel gains are equal, the PDFs of the outgoing

LLRs from the state nodes contain spikes around zero which cannot be well approxi-

mated with GM distributions, hence leading to poor decoding threshold estimates.

3.4.2 Modified EXIT Analysis

We exploit the GM approximation in tracking the evolution of the mutual information

between the transmitted BPSK symbol X and the exchanged LLR L. It is shown

in [75] that under joint decoding the symmetry property of the exchanged LLRs is

preserved, therefore the associated mutual information can be obtained as [82]

I(X;L) = 1− E
{

log2

(
1 + exp(−L)

)}
, (3.9)

where the expectation is taken over L. For L with a GM distribution with N Gaussian

components, (3.9) can be computed as

I(X;L) =1−
∫ ∞
−∞

(
N∑
i=1

wi√
2πσ2

i

exp

(
− (l − µi)2

2σ2
i

)
log2

(
1 + exp(−l)

))
dl

=
N∑
i=1

wiJ
′(µi, σi), (3.10)

where N = 2 for the proposed method and J ′(µ, σ) is defined as

J ′(µ, σ) = 1− 1√
2πσ2

∫ ∞
−∞

exp

(
− (l − µ)2

2σ2

)
log2

(
1 + exp(−l)

)
dl. (3.11)

The J ′ function is analytically calculated in Appendix A. The introduced function can

be considered as an extension to the J function in [74]; however, no specific relation

is assumed between the mean and the variance in the computation. In the following,

we detail the approach taken to compute the mutual information associated with the

exchanged LLRs between the different nodes of the Tanner graph, separately.
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State Node to Variable Node: We consider a GM distribution for the PDF of Lsv.

To characterize the associated GM distribution, we generate samples of the outgo-

ing LLRs through (3.5) based on the samples of the received LLRs from the other

component LDPC decoder whose PDF is approximated with N (µvs, 2µvs) where

µvs = J−1(Ivs)
2

. The EM method is then utilized to calculate the parameters of the

GM distribution. The mutual information associated with Lsv is computed via (3.10).

Note that at the zeroth iteration µvs = Ivs = 0.

Variable Node to Check Node: Considering the factor graph, the outgoing LLR sent

on an edge from each variable node is computed by adding the received LLRs from

the connected check nodes and the neighboring state node. Assuming the factor

graph of the joint decoder is cycle free, the Central Limit Theorem (CLT) can be

invoked to approximate the PDF of the added LLRs received from the check nodes

with a Gaussian density. As a consequence, the PDF of the outgoing LLRs can be

computed as the convolution of a Gaussian density with a GM distribution, which

results in a GM distribution. The parameters of the GM distribution corresponding

to the variable nodes with degree k are computed as

µ(k)
vcm = (k − 1)µcv + µsvl ,

σ(k)
vcm =

√
(k − 1)σ2

cv + σ2
svl
,

w(k)
vcm = wsvm , (3.12)

where µsvm and σsvm denote the mean value and the standard deviation of the

mth (m = 1, 2) Gaussian component of the GM distribution associated with Lsv,

respectively. The subscripts cv and vc in (3.12) correspond to the LLRs sent from

the check nodes to the variable nodes and from the variable nodes to the check nodes,

respectively. The computed GM distribution parameters in (3.12) can then be used
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towards computation of the associated mutual information Ivc calculated as

Ivc(X;Lvc) =
dv∑
i=2

λi ·
(
w(i)
vc1
J ′(µ(i)

vc1
, σ(i)

vc1
) + w(i)

vc2
J ′(µ(i)

vc2
, σ(i)

vc2

))
. (3.13)

Check Node to Variable Node: Lcv is a non-linear function of Lvc, therefore we ap-

proximate the PDF of Lcv with a GM distribution computed based on the samples

of Lvc. For ease of computation, the samples are drawn from N (µvc, 2µvc) where

µvc =

(
J−1(Ivc)

)2
2

with J−1 introduced in [74]. The mutual information associated

with Lcv is obtained similar to (3.13).

Variable Node to State Node: The computation of Lvs is performed by simply adding

the received LLRs from the connected check nodes. Assuming the factor graph of the

joint decoder is cycle-free, the CLT can be involved approximating the PDF of L
(k)
vs

with a Gaussian density with µ
(k)
vs = k.µ̄cv and σ

(k)
vs =

√
k.σ̄cv where µ̄cv and σ̄cv denote

the mean and variance of the LLRs received from the check nodes, respectively. We

have

µ̄cv =wcv1µcv1 + wcv2µcv2 ,

σ̄cv =
√
wcv1(µ

2
cv1

+ σ2
cv1

) + wcv2(µ
2
cv2

+ σ2
cv2

)− (µ̄cv)2.

The average mutual information associated with Lvs is computed as

Ivs(X;Lvs) =
dv∑
i=2

λ̄i · J ′(µ(i)
vs , σ

(i)
vs ).

To asses the performance, we compute the decoding thresholds for the opti-

mized degree distributions in [1] utilizing the proposed and the existing methods of

EXIT analysis. Table 3.1 shows the decoding thresholds computed in terms of the

average received power measured in dB. We refer to the methods of [1], [50], and

the modified EXIT analysis as method (1), method (2), and method (3), respec-

tively. P ∗ denotes the true decoding threshold estimates obtained with the Monte
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Carlo simulations. P ∗(1), P
∗
(2), and P ∗(3) represent the values of the decoding thresholds

computed via the methods (1), (2), and (3), respectively. According to the table,

our proposed method provides better estimates of the decoding thresholds compared

to the two other methods. This superiority is especially prominent for the case of

R = 0.6. Fig. 3.3 demonstrates the PDF of the LLRs corresponding to the optimized

degree distributions in [1] for a two-user GMAC with equal channel gains computed

via different methods. It can be observed that our proposed method provides more

accurate PDF estimates compared to the methods adopted in [1] and [50]. According

to Fig. 3.3, the GM approximation matches with the PDF of the outgoing LLRs from

the state nodes; however, such accuracy is not achieved for the PDF associated with

the check nodes.

Table 3.1: Decoding Thresholds of the Optimized LDPC Codes in [1] Computed with
Different Methods of EXIT Analysis

R P ∗ P ∗(1) P ∗(2) P ∗(3)

0.3 −1.61 −1.75 −1.73 −1.64
0.4 0.32 0.35 0.32 0.32
0.5 2.19 2.11 2.11 2.19
0.6 4.4 4.16 4.01 4.31

3.5 LDPC Code Optimization

In order to design ensemble of good LDPC codes for GMACs, we utilize an instance

of differential evolution [83]. The optimization process is initialized with two LDPC

code ensembles selected from the P2P codes optimized for the BI-AWGN channel

utilizing the method of EXIT analysis in [74]. The adopted codes for a GMAC

with fixed channel gains are referred to as admissible if they lead to asymptotically

error free decoding. For the case of quasi-static fading scenario, the employed degree

distribution are called admissible if they asymptotically lead to error-free decoding

for 1 − Po of the considered channel realizations computed through Monte Carlo
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Figure 3.3: Comparison of the Different Methods in Characterizing the PDFs of the
LLRs Exchanged in the Joint Decoder at Iteration 100 for the Optimized Code in [1]
Corresponding to the Code Rate R = 0.3

simulations.

The admissibility of the employed degree distributions can be verified through

tracking the evolution of the PDF or the mutual information associated with the

LLRs exchanged within the joint decoder. For the next step of the code optimization,

the obtained admissible degree distributions are modified via the perturbing vectors.

For the general case, both variable node and check node degree distributions are

perturbed, however, to simplify the optimization, we consider a singleton distribution

for the check node degrees, therefore only the variable node degree distribution is

perturbed.
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The ith polynomial coefficient of variable node degree distribution is perturbed

as λ̃i = λi + ei, where ei is the ith element of the perturbing vector e. For simplifica-

tion, we only perturb the non-zero values of the polynomial coefficient of the initial

degree distributions, i.e., ei = 0 if λi = 0. The perturbed degree distribution should

satisfy λ̃(1) = 1, 0 ≤ λ̃i ≤ 1 implying

dv∑
i=2

ei = 0, 0 ≤ λi + ei ≤ 1. (3.14)

To control the variations at each iteration, it is beneficial to limit the variance of the

elements of the perturbing vector σ2
e computed as

σ2
e =

dv∑
i=2

e2
i . (3.15)

LDPC codes can be optimized with different objectives such as rate maxi-

mization or SNRs minimization. For rate maximization the decoding threshold is

fixed, and at each iteration of the perturbation, the code rates of the employed de-

gree distributions are incremented, therefore the perturbing vector should satisfy

1− 1
dc

1∑dv
i=2

λ̃i
i

= r0 + ∆, where ∆ denotes the rate increment. This constraint can be

written as
∑dv

i=2
λ̃i
i

= 1
dc

1
1−(r0+∆)

, which is equivalent to

dv∑
i=2

ei
i

=
∆/dc

(1− r0)2 −∆(1− r0)
. (3.16)

For minimization of required SNRs, the code rates are kept fixed, hence (3.16) is

simplified to
∑dv

i=2
ei
i

= 0. At each iteration of the code optimization, the admissibility

of the degree distributions are checked for a decrease in the received powers.

To generate the perturbing vector, we can draw all the elements except three

from a normal distribution, i.e., N (0, 1), and compute the remaining elements by

solving (3.14), (3.15) and (3.16). The perturbing vector is adopted if it satisfies

the inequality constraint (3.14) and the stability condition (3.3), otherwise a new
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perturbing vector is generated. The perturbed degree distributions will replace the

initial degree distributions if they are admissible, otherwise they are dismissed and

a new iteration is performed. The code optimization is concluded if new admissible

degree distributions cannot be found after a predetermined number of iterations.

Therefore, the last pair of admissible degree distributions is the optimum.

3.6 Simulation Results

In this section, we perform the LDPC code optimization for the two-user GMAC

considering two scenarios of fixed channel gains and quasi-static fading.

3.6.1 Fixed Channel Gains

For this scenario, we incorporate the proposed modified methods of EXIT analysis

and DE into the LDPC code optimization with the objective of minimization of

required SNRs. For equal channel gains, we compare our designed codes with those

corresponding to the code rates 0.3 and 0.6 in [1]. We employ the designed degree

distributions in [1] to initialize the code optimization. We utilize the modified DE

to design codes for the code rate 0.3. For the code rate 0.6, we perform the code

optimization employing the modified EXIT analysis.

Table 3.2 presents the resulting optimized degree distributions whose decoding

thresholds are denoted by P ∗ computed via Monte Carlo simulation. The decoding

thresholds of the optimized degree distributions [1] associated with code rates 0.3 and

0.6 are −1.61 dB and 4.4 dB which are inferior to our optimized codes by 0.12 dB

and 0.15 dB, respectively.

We also compute the performance of the P2P codes optimized for the BI-

AWGN channel when employed over the two-user GMAC. The degree distributions

are optimized for the code rates associated with those designed in [1]. The decoding

thresholds of the degree distributions corresponding to code rates 0.3, 0.4, 0.5 are
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−0.81 dB, 1.96 dB, and 5.06 dB. For the case of code rate 0.6, the P2P codes are not

supported over the two-user GMAC even if there is no noise. These findings suggest

that optimized codes achieve considerable improvement over P2P when employed for

the two-user GMAC with equal channel gains.

Table 3.2: Optimized Degree Distributions for Equal Channel Gains Scenario

R dc P
∗ (dB) λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ13 λ20 λ21 λ100

0.3 6 −1.73 0.2741 0.2113 0.0078 0.0178 0.0206 0.0063 0.0239 0.1992 0 0 0.2389
0.6 9 4.25 0.4771 0.0744 0 0 0 0 0 0 0.1322 0.1231 0.1931

For unequal channel gains, there are no specific designs in the literature. So,

we consider a degree profile with maximum degree 50 and choose the non-zero variable

node degrees as 2, 3, 4, 9, 10, 19, 20, 49, 50. Although there is no guarantee that this

is the best choice, the selected degree profile is motivated by the pattern suggested

in [41] for the optimized codes over the BI-AWGN channel for which the non-zero

variable node degrees are distributed around the minimum and maximum degrees and

a few values in between. Similar pattern is also followed by codes designed in [1, 50].

We consider P1 = 0 dB and P2 = −8 dB and select the rate pair (0.486, 0.059),

which corresponds to a corner point of the dominant face of the capacity region, as

the rates of the employed LDPC codes. For code optimization, we select a pair

of admissible off-the-shelf P2P codes with similar code rates as the initial degree

distributions. During the code optimization process, we start with higher values for

the received powers and decrease the values at each iteration keeping the power ratio

unchanged, i.e., P1

P2
= 6.31 throughout the code optimization. We perform separate

code designs utilizing the proposed modified EXIT analysis and DE method. The

decoding thresholds of the optimized codes are compared against the ones obtained

via the method (2). Furthermore, we calculate the decoding threshold of the off-the-

shelf P2P codes optimized over BI-AWGN channels when they are employed for the
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GMAC with the constraint P1

P2
= 6.31. Table 3.3 demonstrates the degree distributions

for the optimized codes. The decoding thresholds are computed via Monte Carlo

simulations and are provided in terms of P ∗1 with P ∗2 =
P ∗1
6.31

. It is clear from the table

that the codes designed via the proposed methods outperform the ones optimized

with method (2) and the P2P codes.

Similar code optimization is performed for the two-user GMAC considering

P1 = 1 dB and P2 = −7 dB for the rate pair (0.502, 0.131). Table 3.4 shows the

optimized degree distributions obtained via the modified EXIT, the modified DE,

and method (2) along with the best P2P codes with decoding thresholds 0.36 dB,

0.4 dB, 0.46 dB, and 0.55 dB away from the capacity boundary, respectively. As

another instance, we consider P1 = 3 dB and P2 = −5 dB and select the rate pair

(0.627, 0.197) for which the optimized degree distributions along with the best P2P

codes are shown in Table 3.5. The decoding thresholds corresponding to the degree

distributions, with the order presented in the table, are 0.22 dB, 0.18 dB, 0.28 dB,

and 0.42 dB away from the capacity boundary demonstrating the superiority of the

proposed methods in code design over the existing ones.

Table 3.3: Optimized Degree Distributions for Unequal Channel Gains Scenario (R1 =
0.486, R2 = 0.059)

P ∗1 Msg. dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

Modified EXIT

{
0.22

X1 8 0.2023 0.2635 0.0770 0.1730 0.0654 0.0948 0.0557 0.0547 0.0134
X2 3 0.5358 0.1017 0.1398 0.0362 0.1012 0.0052 0.0479 0.0254 0.0067

Modified DE

{
0.18

X1 8 0.2262 0.2251 0.0718 0.2688 0.0044 0.0115 0.0772 0.0250 0.0899
X2 3 0.5066 0.2330 0.0187 0.0711 0.0790 0.0248 0.0042 0.0380 0.0246

Method (2)

{
0.24

X1 8 0.2107 0.1903 0.1790 0.0768 0.1195 0.0665 0.0839 0.0103 0.0630
X2 3 0.4847 0.2578 0.0286 0.1214 0.0250 0.0179 0.0175 0.0426 0.0044

P2P

{
0.34

X1 8 0.2145 0.2397 0.0725 0.1293 0.1391 0.1383 0.0345 0.0171 0.0151
X2 3 0.4770 0.2569 0.0597 0.0579 0.0402 0.0392 0.0433 0.0210 0.0049

3.6.2 Quasi-Static Fading

To illustrate the code design principles for the fading case, we provide several exam-

ples. Two scenarios of real and complex channel gains are considered. We declare a

pair of degree distributions admissible if the computed decoding behavior, measured
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Table 3.4: Optimized Degree Distributions for Unequal Channel Gains Scenario (R1 =
0.502, R2 = 0.131)

dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

Modified EXIT

{
X1 9 0.1866 0.2731 0.0408 0.0761 0.0328 0.1925 0.0909 0.0909 0.0163
X2 4 0.3410 0.2352 0.0574 0.0206 0.1453 0.0454 0.0699 0.0161 0.0691

Modified DE

{
X1 9 0.1476 0.2703 0.1116 0.1770 0.0050 0.0781 0.0928 0.0552 0.0623
X2 4 0.3612 0.0804 0.2563 0.0566 0.0045 0.1146 0.0303 0.0181 0.0781

Method (2)

{
X1 9 0.2105 0.1359 0.1604 0.0593 0.1744 0.0483 0.0526 0.1049 0.0536
X2 4 0.3655 0.0860 0.2342 0.0300 0.0956 0.0098 0.0230 0.1180 0.0380

P2P

{
X1 9 0.1882 0.1987 0.1231 0.0477 0.1505 0.0910 0.0947 0.0445 0.0617
X2 4 0.3554 0.0929 0.2469 0.0368 0.0740 0.0311 0.0304 0.0166 0.1160

Table 3.5: Optimized Degree Distributions for Unequal Channel Gains Scenario (R1 =
0.627, R2 = 0.197)

dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

Modified EXIT

{
X1 11 0.2293 0.1212 0.2266 0.1347 0.1208 0.0068 0.0454 0.0837 0.0315
X2 4 0.3933 0.2023 0.0748 0.1143 0.1268 0.0214 0.0243 0.0178 0.0250

Modified DE

{
X1 11 0.1558 0.2643 0.1760 0.1550 0.0979 0.0749 0.0411 0.0236 0.0113
X2 4 0.3853 0.1697 0.1552 0.0793 0.0931 0.0797 0.0086 0.0178 0.0113

Method (2)

{
X1 11 0.2368 0.0361 0.3609 0.0104 0.0856 0.2368 0.0065 0.0124 0.0144
X2 4 0.3815 0.1499 0.1938 0.0615 0.1281 0.0186 0.0064 0.0422 0.0180

P2P

{
X1 11 0.1775 0.2965 0.0657 0.2346 0.0571 0.1263 0.0151 0.0069 0.0204
X2 4 0.3673 0.1742 0.2002 0.0677 0.0500 0.0836 0.0503 0.0040 0.0027

in frame error rate (FER), meets the given outage probability asymptotically. The

accuracy of the computations relies on the number of channel realizations taken into

account. In our designs, we consider the outage probability of 0.1 and perform the

computations for 104 channel realizations. It is easy to check that for the consid-

ered number of channel realizations the associated outage probability is bounded as

0.0941 < Po < 0.1059 for a 95% confidence level.

Due to extensive computations, for the case of quasi-static fading the proposed

methods of decoding threshold estimation (the modified DE and the modified EXIT

analysis) is not efficient in the current form to be incorporated into the code opti-

mization. Hence, we employ the EXIT chart analysis in [50] wherein the evolution

of the mutual information is computed through a simple linear approximation and

LLRs are assumed to have Gaussian distribution. Note that the linear approximation

used in [50] does not result in accurate decoding thresholds for some ranges of the

power values; however, the simplicity of the method renders it very efficient for the

54



involved computations under the quasi-static fading scenario.

Fig. 3.4 illustrates the COCRs for Gaussian and BPSK signaling computed

for real channel gains. Code optimization is performed for four instances of rate pairs

with the goal of rate maximization. The initial degree distributions are picked from

the P2P codes designed for the BI-AWGN channel. For each instance, the trajectory

of the rate increments is a straight line passing through the origin. Table 3.6 shows

the degree distributions of the optimized codes and those of the available P2P codes.

Fig. 3.4 presents the achieved rate pairs employing the optimized codes and the best

P2P ones clearly demonstrating the superiority of the newly optimized codes. Finally,

Fig. 3.5 shows the FERs for finite block lengths of the specific codes selected from

the optimized degree distributions corresponding to the code rate pair (0.139, 0.208)

where the FERs associated with 1k and 10k are 1.75 and 1.1 dB away from the

outage limit, respectively at an FER of 0.1. The newly designed codes provide better

performance than the P2P codes for the rate pair (0.133, 0.199) (at an FER of 0.1)

as well.

Table 3.6: Optimized Degree Distributions (Real Channel Gains), P1 = 5 dB, P2 =
4 dB, Po = 0.1

R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

O
p

t.

{
X1 0.064 3 0.4867 0.2377 0.0838 0.0498 0.0226 0.0065 0.0715 0.0030 0.0383
X2 0.256 5 0.3061 0.1309 0.2011 0.0734 0.0309 0.0968 0.0765 0.0554 0.0289

P
2
P

{
X1 0.058 3 0.4879 0.2134 0.0967 0.0676 0.0214 0.0822 0.0009 0.0044 0.0256
X2 0.232 5 0.2679 0.2237 0.1087 0.0408 0.0937 0.1633 0.0066 0.0331 0.0623

O
p

t.

{
X1 0.139 4 0.3301 0.2451 0.0917 0.0680 0.0291 0.0486 0.1259 0.0372 0.0242
X2 0.208 4 0.3853 0.1183 0.2652 0.1004 0.0166 0.0642 0.0027 0.0032 0.0442

P
2
P

{
X1 0.133 4 0.3385 0.1884 0.1455 0.0157 0.1059 0.0497 0.0614 0.0222 0.0729
X2 0.199 4 0.3851 0.1155 0.2426 0.0444 0.1067 0.0063 0.0843 0.0077 0.0076

O
p

t.

{
X1 0.216 4 0.3470 0.3315 0.0422 0.1338 0.0479 0.0811 0.0015 0.0040 0.0110
X2 0.144 4 0.3505 0.1134 0.2524 0.0110 0.0880 0.0199 0.0503 0.0872 0.0274

P
2
P

{
X1 0.207 5 0.2602 0.2339 0.0646 0.1279 0.0756 0.0373 0.0074 0.0908 0.1024
X2 0.138 4 0.3515 0.1390 0.1923 0.1162 0.0077 0.0701 0.0000 0.0806 0.0426

O
p

t.

{
X1 0.285 5 0.2935 0.1809 0.2107 0.0824 0.0151 0.1143 0.0363 0.0231 0.0437
X2 0.071 3 0.4668 0.2551 0.1187 0.0156 0.0461 0.0613 0.0120 0.0136 0.0108

P
2
P

{
X1 0.272 5 0.2875 0.2117 0.1342 0.0930 0.0707 0.0610 0.1129 0.0267 0.0023
X2 0.068 3 0.4950 0.1890 0.1403 0.0025 0.0739 0.0565 0.0201 0.0110 0.0117

As the second example, we consider a quasi-static fading channel with complex
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Figure 3.4: COCRs of Gaussian and BPSK Signaling Along with the Optimized and
the P2P Codes. P1 = 5 dB, P2 = 4 dB, and Po = 0.1

channel gains. Since characterization of the COCR for the BPSK signaling is difficult,

we calculate the Gaussian signaling COCR as an outer bound. Similar to the previous

example, we perform the code optimization for four instances and compare them with

the P2P codes optimized for the BI-AWGN channel. Degree distributions are shown

in Table 3.7 for the optimized codes and the reference P2P ones. Achieved rate pairs

are shown in Fig. 3.6. Fig. 3.7 demonstrates the decoding results for finite block

length codes picked from the optimized degree distributions corresponding to the

code rate pair (0.289, 0.072). At an FER of 0.1, the code block lengths with 1k and

10k operate 1.6 dB and 1.25 dB away from the outage limit computed for Gaussian

signaling, respectively. Furthermore, the optimized codes offer better performance

than the P2P codes corresponding to the rate pair (0.268, 0.067) as well.
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Table 3.7: Optimized Degree Distributions (Complex Channel Gains), P1 = 5 dB,
P2 = 4 dB, Po = 0.1

R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

O
p

t.

{
X1 0.068 3 0.4906 0.3029 0.0021 0.0125 0.0254 0.0963 0.0117 0.0243 0.0340
X2 0.272 5 0.2593 0.2876 0.1044 0.0948 0.0445 0.0599 0.0673 0.0252 0.0570

P
2
P

{
X1 0.059 3 0.4770 0.2569 0.0597 0.0579 0.0402 0.0392 0.0433 0.0210 0.0049
X2 0.234 5 0.2790 0.1898 0.1271 0.0680 0.1133 0.0895 0.0093 0.0838 0.0403

O
p

t.

{
X1 0.135 4 0.3344 0.2055 0.1097 0.1235 0.0597 0.0461 0.0409 0.0415 0.0387
X2 0.202 4 0.3732 0.2722 0.0354 0.1051 0.1222 0.0199 0.0250 0.0167 0.0304

P
2
P

{
X1 0.12 4 0.3243 0.2267 0.0965 0.0850 0.0743 0.0233 0.0248 0.0704 0.0748
X2 0.18 4 0.3587 0.2273 0.0973 0.1078 0.0848 0.0193 0.0613 0.0228 0.0206

O
p

t.

{
X1 0.21 4 0.3958 0.2366 0.0903 0.0747 0.0121 0.0117 0.1122 0.0576 0.0090
X2 0.14 4 0.3254 0.1985 0.1763 0.0740 0.0072 0.0255 0.1201 0.0429 0.0300

P
2
P

{
X1 0.176 4 0.3554 0.2131 0.1220 0.1638 0.0028 0.0787 0.0078 0.0363 0.0200
X2 0.117 4 0.3438 0.1145 0.2342 0.0087 0.0426 0.0474 0.0859 0.0345 0.0883

O
p

t.

{
X1 0.289 5 0.2634 0.3123 0.0900 0.0887 0.0448 0.0697 0.0779 0.0326 0.0205
X2 0.072 3 0.5259 0.1626 0.0962 0.0643 0.0823 0.0133 0.0258 0.0012 0.0283

P
2
P

{
X1 0.268 5 0.2948 0.2026 0.1153 0.1107 0.0959 0.0188 0.1104 0.0399 0.0116
X2 0.067 3 0.4910 0.2239 0.0849 0.1004 0.0002 0.0320 0.0578 0.0059 0.0040
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Figure 3.7: FER of the Optimized Codes and the P2P Codes Employing Complex
Channel Gains
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3.7 Chapter Summary

In this chapter, we studied the problem of LDPC code design for the two-user GMAC

exploring two scenarios of fixed and quasi-static fading channel gains. Considering

joint decoding of the two users coded bits, we characterized the PDF of the outgoing

LLRs from the state nodes and observed that it can be well approximated with

GM distributions. We then exploited the GM approximation to develop variants of

existing DE and EXIT analysis methods. We utilized the newly proposed methods

to design codes for fixed channel gain scenarios and showed that the optimized codes

obtained via the proposed methods offer better performance than the P2P codes

and those achieved from the already existing. For the quasi-static fading case, we

adopted an existing (simple) implementation of EXIT analysis and performed code

optimization for real and complex channel gains. The optimized codes improve upon

the P2P codes in this case too. Finally, finite code block lengths simulations of codes

from the designed ensembles demonstrate that the performance of the optimized codes

is close to the outage limits.
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Chapter 4

LDPC CODE DESIGN FOR GAUSSIAN INTERFERENCE CHANNELS

In this chapter, we focus on GICs and study the HK coding strategy for the two-user

case with the objective of designing implementable (explicit) channel codes. Specif-

ically, irregular LDPC codes are adopted for use over the channel. Iterative JD is

utilized at the receivers, where it is proved that LLRs exchanged among the nodes

of the Tanner graph enjoy symmetry when BPSK or QPSK with Gray coding is em-

ployed. We derive the stability condition for the admissible degree distributions under

strong and weak interference levels. Degree distribution optimization and convergence

threshold computations are carried out for different GICs employing finite constel-

lations by tracking the average mutual information. Via examples, it is observed

that optimized codes using BPSK or QPSK Gray coding operate close to capacity

boundary for strong interference. For the case of weak interference, it is shown that

nontrivial rate pairs are achievable via the newly designed codes, previously not pos-

sible by single user codes with TS. Performance of the designed codes is also studied

for finite block lengths through simulations of specific codes picked from the designed

code ensembles.

The rest of the chapter is organized as follows. In Section 4.1, we first give an

introduction on interference channels and state the contributions of this chapter. In

Section 4.2, the system model is described, i.i.d. channel adapters are introduced, and

the computation of the HK sub-region is summarized. In Section 4.3, we explain the

implementation of HK coding strategies and the operations at the transmitter and

receiver sides. In Section 4.4, symmetry property of the exchanged LLRs under JD

is proved, stability condition of the degree distribution profiles of public and private

Part of this work was presented at IEEE ISIT 2014 [84] and a full version is published in IEEE
Transactions on Communications in February 2015 [75].
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messages are derived and the proposed code optimization approach is detailed. In

Section 4.5, performance of the P2P and the optimized LDPC codes are investigated

via a multitude of examples. In Section 4.6, finite block length code simulation results

are provided, and finally, in Section VII the conclusions and future work are given.

4.1 Introduction

There is a large body of work on two-user GICs, in which two independent transmit-

ters communicate with their intended receivers through a shared medium. In spite

of this intense research, full characterization of the capacity region is still an open

problem, and only inner and outer bounds on achievable rates are available in the lit-

erature. The best reported inner bound to date is due to Han and Kobayashi referred

as the HK coding scheme [30]. Despite the superiority of the HK strategy, there is no

work on exploring explicit and implementable channel codes adopting this technique

in the current literature. With this motivation, in this chapter, we study the design

and performance of LDPC codes over GICs implementing the HK strategy.

LDPC codes have been shown to achieve a performance extremely close to

the Shannon limit for P2P channels [41]. They have also been successfully applied

to multi-user channels, where promising results have been obtained. For instance,

capacity (or capacity bound) approaching codes are designed for two-user MACs,

GBCs, and RCs [1, 50, 51, 57, 60, 69]. There is also a recent work on the use of

LDPC codes on symmetric GICs under weak interference [65]. However, there is no

work in the existing literature on explicit code designs for GICs implementing the

HK strategy in a practical manner.

In this chapter, we investigate the performance of irregular LDPC codes over

two-user GICs with fixed channel gains. We adopt finite constellations for transmis-

sion as Gaussian codebooks cannot be used due to practical transmission constraints
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such as synchronization, encoding, and decoding limitations. In the proposed scheme,

the message of each transmitter is split into private and public parts encoded by sepa-

rate LDPC codes. The encoded bits are modulated and superimposed to generate the

transmitted signal. At each receiver, the public messages and the intended private

message are jointly decoded in an iterative fashion.

Symmetry of the channel outputs considerably simplifies the analysis of the

decoder for LDPC codes over P2P channels. In order to simplify the analysis for

our multi-user setting in a similar manner, we exploit the i.i.d. channel adapters

introduced in [80]. We propose a code optimization based on a specific instance of

differential evolution [85] where, at each iteration, perturbing vectors are utilized to

generate admissible degree distributions. To simplify the code optimization, we prove

a symmetry property of the exchanged LLRs within the joint decoder for BPSK and

QPSK with Gray coding using the assumption that the Tanner graph of the joint de-

coder is cycle-free and the exchanged LLRs within the decoder are independent. The

symmetry property of the exchanged LLRs plays a key role in simplifying the mutual

information calculations exploited to verify the admissibility of the perturbed degree

distributions. Stability conditions are also derived for strong and weak interference

levels employing BPSK and QPSK with Gray coding to ensure that the optimized

codes do not suffer from elevated error floors.

Throughout the chapter, for comparison purposes we will use naive and non-

naive TS strategies. Under naive TS, we have individual power constraints for each

users’ transmitted symbols. This is motivated by the practical limitations in the

transmission process, e.g., due to restrictions on the power amplifiers. Under non-

naive TS the users can increase their individual power levels for a certain fraction of

the total transmission time while keeping the average power over the entire codeword
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under a certain value.

Having implemented the HK strategy, we carry out the code optimization for

symmetric and asymmetric GICs for various scenarios with different levels of interfer-

ence. In all the investigated examples, it is observed that the optimized codes for the

two-user GIC outperform P2P codes optimized for the binary-input additive white

Gaussian noise (BI-AWGN) channel, and for most cases significant improvements are

possible. Promising results are obtained under strong interference and rate pairs very

close to the capacity boundaries are achieved. Under weak interference, the message

of each transmitter is composed of private and public parts, therefore a power alloca-

tion optimization is performed prior to the code optimization. It is observed in this

case that non-trivial rate pairs, which are not achievable with P2P codes used with

TS, are attainable. We also provide simulation results with specific finite-length codes

picked from the optimized code ensembles utilizing random constructions. Further-

more, the performance of the random constructions is compared to that of structured

constructions utilizing an algebraic design approach.

4.2 System Model and Preliminaries

The input-output relationship for the two-user GIC (as illustrated in Fig. 4.1) is

expressed as

Y1 = h11X1 + h21X2 + Z1,

Y2 = h12X1 + h22X2 + Z2, (4.1)

where hij is the fixed complex channel gain from the user i to the receiver j. Z1 and

Z2 are i.i.d. circularly symmetric complex Gaussian noise samples with zero mean

and N0

2
variance per dimension. X1 and X2 are the transmitted complex signals

with individual power constraints of P1 and P2, respectively, that is, E{|Xi|2} ≤

Pi (i = 1, 2). Signal-to-noise-ratio (SNR) and interference-to-noise-ratio (INR) at
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receiver i are defined as SNRi = |hii|2Pi
N0

and INRi =
|hji|2Pj
N0

, respectively, where

i, j = 1, 2 and i 6= j. Based on the interference and signal levels, the interference

can be categorized as strong (if INRi > SNRj), weak (if SNRi > INRj), or mixed

(if INRi > SNRj, INRj < SNRi) with i 6= j. For the case of a symmetric GIC,

h11 = h22, h12 = h21, SNR1 = SNR2 = SNR, and INR1 = INR2 = INR.

Figure 4.1: Two-User GIC Block Diagram

HK ARR Computation

The HK ARR is the best known inner bound on the capacity of interference chan-

nels. Under strong interference, this inner bound treats all messages as public [4] and

characterizes the capacity region. Despite the superiority of the HK coding scheme,

the computation of the entire rate region is prohibitively difficult since one should

perform an optimization over the joint probability distribution of many random vari-

ables with large cardinalities. Authors in [31] provide a simplified expression of the

rate region which is still difficult to compute. In this chapter, the focus is on GICs,

and instead of the entire region, a sub-region is obtained with a lower complexity by

considering the superposition of independent uniformly distributed inputs from spe-

cific constellations as transmitted signals with no TS [30]. Denoting the code rates

at the transmitters 1 and 2 by R1 and R2, respectively, the rate vector R = [R1, R2]t
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is in the sub-region R0 if

R0 = {R|AR ≤ Ψ(P1, P2, α1, α2)}, (4.2)

where

Ψ = [ρ1, ρ2, ρ12, ρ10, ρ20]t,

At =

 1 0 1 2 1

0 1 1 1 2

 , (4.3)

and αi denotes the fraction of the power allocated to the private message of user i.

In (4.2), the inequality sign is applied element-wise and Ψ is defined in [30, pp. 54–

55]. As (4.2) suggests, different power allocations to the public and private messages

give rise to different sub-regions. Thus, the above sub-region can be enlarged to

R1 =
⋃

(α1,α2)∈[0,1]×[0,1]

R0(P1, P2, α1, α2). (4.4)

Since R1 is not necessarily convex, it can be further enlarged by a convex hull opera-

tion. We denote the resulting sub-region by R, which is an inner bound for the actual

ARR. We note that, as mentioned in [30], the introduced inner bound may not cover

the entire rate region obtained by non-naive TS. For instance, Fig. 4.9 demonstrates

the inner bounds (HK ARR) R1 for a finite constellation and for Gaussian signaling

where it is clear that the non-naive TS rate region is not contained within the inner

bound R1. To compute the outer bound on the capacity, we use the results of [34]

since the bounds require only simple calculations and are shown to be within one bit

of the capacity region.

4.3 Implementation of the HK Encoding and Decoding Scheme

Considering the HK coding scheme, the message of each user is divided into two parts,

namely, the private message (U) and the public message (W ). The public messages

65



are decodable at both receivers while the private messages are only decodable at the

intended receivers. Although in the general scheme messages are split into public

and private parts, there are special cases where there may be no need to allocate

the power to both; for instance, under strong interference, both users’ messages are

public (and no private message is transmitted) since all the messages are decodable

at both receivers.

Fig. 4.2 shows the block diagram of the transmitter incorporating the HK

coding scheme wherein the messages of each transmitter (U and W ) are encoded

with separate LDPC codes (resulting in Cu and Cw). The resulting bits are then

modulated (denoted by Xu and Xw) and superimposed to form the overall transmitted

signal (X). Here, we superimpose the two signals with standard addition; however,

it is also possible to consider other alternatives. For instance, superimposing of two

signals can be done in the “code” domain through modulo-2 addition (which may be

the proper choice in the case of binary input channels), however, this scheme would

require a different code optimization which is out of the scope of this chapter. As

another example, it is also possible to consider higher order signal constellations, and

perform mappings of the public and private coded bits to the constellation points

jointly. It should further be emphasized that our focus is on practical modulation

techniques such as PSK signaling since Gaussian signaling (as usually assumed in

information theoretic studies) cannot be used in practical systems.

Figure 4.2: Construction of the Transmitted Signal for the Proposed Implementation
of the HK Coding Scheme
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At the receiver side, the public messages and the private message of the desired

user are decoded by utilizing a BP algorithm wherein the soft-information about the

messages are exchanged within the decoder in an iterative fashion [86]. Similar to the

case of the GMAC, messages can be decoded successively and jointly, as illustrated

in Figs. 4.3a and 4.3b, respectively. We exploit a joint decoder at each receiver run

through the parallel scheduling.

(a) Successive Interference Canceler Block Diagram

(b) Joint Decoder Block Diagram

Figure 4.3: Block Diagram of the Decoder Structures at Receiver 1 (p, q = 1, 2, p 6=
q) (X̂ Denotes the Decoded Message for the Transmitted Message X.)

4.4 Analytic Properties and Optimization of LDPC Codes over GICs

The objective in this section is to develop an optimization method for LDPC code en-

sembles over GICs. Irregular LDPC codes have previously been employed for commu-

nication over different multi-user channels due to their excellent performance [1], [50], [60].

In this chapter, we follow similar ideas, and consider their use over GICs.
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DE is the most reliable method to compute the threshold of an LDPC code

ensemble, however, under JD, due to the non-linearity of the update rule at the state

nodes, it is very difficult to characterize the PDF of the outgoing LLRs from the state

nodes. Furthermore, the computation becomes cumbersome for multiuser scenarios

where the PDFs of multiple users’ LLRs are involved. An EXIT chart analysis is an

alternate method based on the Gaussian assumption on the LLRs exchanged within

the decoder, however, as highlighted in Chapter 3, the Gaussian assumption is not

accurate under JD. In fact, we notice that for certain ranges of the channel parameters,

the thresholds obtained with Gaussian assumption significantly differ from the ones

obtained through finite block length code simulations. Therefore, in this chapter,

we propose to track the evolution of the mutual information with no Gaussianity

assumption on the exchanged LLRs.

4.4.1 LLR Computation at the State Nodes

The LLR of the ith coded bit of message j at receiver k is computed as

L
(
cj(i), Yk(i)

)
= log

(
fYk(i)

(
Yk(i)|cj(i) = 0

)
fYk(i)

(
Yk(i)|cj(i) = 1

)) , (4.5)

where cj(i) is the ith coded bit of message j, which can be a public message or

the intended private message, and fYk(i) represents the PDF of Yk(i) conditioned on

Cj(i). Considering parallel scheduling, upon the start of each iteration, the LLR

corresponding to cj(i) provided to the component LDPC decoder of message j is

computed at the state nodes by marginalization, that is,

L
(
cj(i), Yk(i)

)
= log

(∑
Ci∈Sj+i

fYk(i)

(
Yk(i)|Ci

)
P
(
Ci
)∑

Ci∈Sj−i
fYk(i)

(
Yk(i)|Ci

)
P
(
Ci
)) , (4.6)

where Ci is the vector comprising the ith coded bits of all public and private code-

words, i.e., Ci = {cu1(i), cw1(i), cu2(i), cw2(i)} and P (Ci) denotes the probability of Ci

which is determined by the outputs of component LDPC decoders and gets updated
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at each iteration. Sj+i and Sj−i denote the subsets of the codewords with cj(i) = 0

and cj(i) = 1, respectively. Note that at the receiver r, Uk (k 6= r) is not decoded,

hence, the corresponding component in Ci does not get updated and remains con-

stant throughout the iterations. The computation of the extrinsic LLRs at the state

nodes for BPSK differs from that for higher order modulations such as QPSK. For

BPSK, the extrinsic LLRs sent to each component LDPC decoder are updated based

on the received LLRs from other component LDPC decoders. In contrast, for higher

order modulations, the LLR sent from each variable node to the connected state node

contributes to the updated extrinsic LLR sent to its neighbor node(s) from that state

node. For instance, Fig. 4.4 illustrates a portion of the joint decoder for QPSK, where

each state node is connected to two variable nodes, hence, the LLR sent from each

variable node to the state node contributes to the updated extrinsic LLR sent to its

neighbor.

Figure 4.4: The Tanner Graph Representation of LDPC Codes with QPSK Mapping

In the following, we prove a symmetry property of the exchanged LLRs within

the joint decoder. Furthermore, we study the stability conditions for the degree

distributions of the public and private messages for different interference levels.
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4.4.2 LLR Symmetry Property

The PDF of the LLRs sent from the state nodes to the component LDPC decoder of

message j is symmetric if

l = log

(
fL(l|cj(i) = 0)

fL(−l|cj(i) = 0)

)
, l ∈ R. (4.7)

It is shown in [73] that for a BI-AWGN channel the symmetry property holds for

the PDF of the channel LLRs delivered to the iterative decoder and the property is

preserved for the exchanged LLRs in the decoder throughout the decoding iterations.

In contrast to BI-AWGN channels, for multi-user channels, wherein a joint decoder

is employed at the receiver, the LLRs sent from the state nodes to each component

LDPC decoder depend on both the channel LLRs and the extrinsic LLRs received

from the other component LDPC decoders. In the following, we prove the symmetry

property for the LLRs exchanged within the joint decoder for the considered GICs

adopting BPSK or QPSK with Gray coding.

Theorem 1. Consider a receiver in a two-user output-symmetric GIC for which the

private and public messages are obtained by BPSK or QPSK with Gray coding1. For

a joint decoder with a cycle free Tanner graph, the extrinsic LLR sent from the state

node to the variable node of the component LDPC decoder of message j is inverted

if the signs of the channel outputs and the a-priori LLRs received from the other

component LDPC decoders are inverted.

Proof. We denote the LLR sent from the state node to the variable node of the

component LDPC decoder of message j obtained by inverting the signs of the channel

1The result also holds for higher order modulations if the corresponding constellation is sym-
metric with respect to origin and the sequences of bits assigned to two symmetric points in the
constellation are flipped versions of one another.
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outputs and the a-priori LLRs received from the other component LDPC decoders

by L′sv and show that

Lsv = −L′sv. (4.8)

We show the property for QPSK with Gray coding, and simply note that the case

of BPSK can be handled similarly. Considering Gray coding, the real and imaginary

parts of the ith transmitted symbol Xm(i) (m can be a public message or the intended

private message) are
√

Pm
2

(
1 − 2cm(2i)

)
and

√
Pm
2

(
1 − 2cm(2i + 1)

)
, respectively.

It can easily be shown that

P

(
Re
(
Xm(i)

)
= ±

√
Pm
2

)
=

exp
(
± Lvs(cm(2i))

)
1 + exp

(
± Lvs(cm(2i))

) ,
P

(
Im
(
Xm(i)

)
= ±

√
Pm
2

)
=

exp
(
± Lvs(cm(2i+ 1))

)
1 + exp

(
± Lvs(cm(2i+ 1))

) . (4.9)

Using (4.6), (4.9), and the fact that LLRs sent along all the edges in a cycle free

Tanner graph are independent, (4.8) follows completing the proof.

Considering (4.5) and Theorem 1, it is easy to show that the symmetry prop-

erty of the LLRs sent from the state nodes to the variable nodes holds, and since the

property is preserved under BP [41], the property holds for all the LLRs exchanged

within the joint decoder. The symmetry property of the LLRs can be exploited to

show that [82]

I(L; c) = 1− E
{

log2(1 + e−L)
}
, (4.10)

where I(L; c) denotes the mutual information between the exchanged LLR L and the

corresponding coded bit c assuming that the all zero-codeword is transmitted. The

expectation in (4.10) can be computed by invoking the ergodicity assumption for the

exchanged LLRs. As a result, the mutual information calculations can be performed

without requiring the analytical PDFs of the exchanged LLRs, which plays a key role

in the proposed code optimization approach.
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4.4.3 Stability Condition

We analyze the stability conditions for the joint decoder adopted for the two-user GIC

when the HK strategy is implemented for different cases. For the sake of analysis,

we assume that the joint decoder has run for a sufficient number of iterations so that

the performance of each component LDPC decoder has reached to steady state. To

analyze the stability condition, similar to [50], the PDFs of the LLRs corresponding

to the ith coded bit of message m (m can be a public message or the intended private

message), sent from the check nodes to the ith variable node of the corresponding

component LDPC decoder, conditioned on having transmitted all-zero codeword for

message m, is expressed as

fL(l) = (1− εm)∆∞ + εm∆0, (4.11)

where ∆a denotes the Dirac delta function at a and εm ≈ 0 is the probability of the

error for message m. Note that the assumption of transmitting the all-zero codeword

is valid for all the messages when channel adapters are employed. For a cycle free

Tanner graph, the PDF of the LLRs sent from the variable nodes to the state nodes

evolves from (4.11) to

fL(l) = (1− ε2m)∆∞ +O(ε2m), (4.12)

which implies that P
(
cm(i) = 0

)
= 1 − ε2m. Considering (4.6), at the receiver k, the

update rule at the state nodes for L
(
cj(i), Yk(i)

)
, can be written as

L
(
cj(i), Yk(i)

)
= L

(
cj(i), Y

′
k(i)
)

+O(ε2), (4.13)

where j can be a public message or the intended private message and ε = max{εm1 , εm2}.

Y ′k(i) is the ith modified channel output symbol with respect to the message j at the

receiver k, which is obtained by removing the effect of the messages m1 and m2.

72



To simplify the analysis, we neglect the effect of O(ε2) and work with the modified

channel output Y ′k .

Following the approach taken in [50], we derive the stability conditions for the

degree distributions of public and private messages under strong and weak interference

levels. Note that both receivers should be analyzed in deriving the stability condition

for the degree distributions of public messages while for the degree distribution of

each private message only the intended receiver needs to be considered. Since the

computations of the LLRs at the state nodes for real and complex signaling are not

the same (refer to Fig. 3 and Fig. 4), we separately derive the conditions for BPSK

with real channel gains and QPSK with Gray coding with complex channel gains.

4.4.3.1 Strong Interference

Under strong interference the messages are transmitted as public, therefore the sta-

bility condition is only derived for the degree distributions of public messages.

BPSK with Real Channel Gains : For this case, the channel gains and the transmitted

symbols are real, hence the imaginary part of the received signal can be discarded.

At receiver k, the modified channel output with respect to Wi is obtained as

Y ′k = hikXwi + Re(Zk), (4.14)

which resembles a P2P channel and the existing results in [2] can be utilized. Consid-

ering both receivers, since INRj > SNRi , i 6= j, the stability condition for (λwi , ρwi)

is expressed as

λ′wi(0)ρ′wi(1) < eSNRi , i = 1, 2. (4.15)

QPSK with Gray Coding and Complex Channel Gains : For QPSK with Gray cod-

ing, each state node in the Tanner graph of the joint decoder is connected to two

successive variable nodes corresponding to the real part and the imaginary part of
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the transmitted symbol. Without loss of generality, we consider the variable node

corresponding to the real part of the transmitted symbol Xwi in the joint decoder at

the receiver k. The modified channel output with respect to Re(Xwi) is obtained as

Y ′k = hik Re(Xwi) + Zk. (4.16)

Therefore, similar to the previous case, the stability condition for (λwi , ρwi) is

λ′wi(0)ρ′wi(1) < e
SNRi

2 , i = 1, 2. (4.17)

4.4.3.2 Weak Interference

Under weak interference, the two public messages and the intended private message

are decoded at each receiver, i.e., the private message of the interfering signal is not

decoded, and the corresponding part is present in the modified channel output.

BPSK with Real Channel Gains : For this scenario, the modified channel output at

the receiver k with respect to the message Uk is

Y ′k = hkkXuk + hrkXur + Re(Zk) k 6= r, (4.18)

which is similar to the channel studied in [50], hence the stability condition for

(λuk , ρuk) is given by

λ′uk(0)ρ′uk(1) <

(
e−αkSNRk−αrINRkEN1

{√
cosh(2N1

√
2αrINRk)+cosh(4

√
αrαkSNRkINRk)

2

})−1

,

(4.19)

where EN1 denotes the expectation taken with respect to a standard Gaussian random

variable N1 ∼ N (0, 1). Similarly, the modified channel outputs with respect to Wk

at the receiver k and r (k 6= r) are obtained as

Y ′k =hkkXwk + hrkXur + Re(Zk),

Y ′r =hkr(Xwk +Xuk) + Re(Zr). (4.20)
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Considering both receivers, the stability condition for (λwk , ρwk) is obtained as

λ′wk(0)ρ′wk(1) < min

{(
e−(1−αk)SNRk−αrINRk

×EN1

{√
cosh(2N1

√
2αrINRk)+cosh(4

√
(1−αk)αrSNRkINRk)

2

})−1

,(
e−INRr × EN1

{√
cosh(2N1

√
2αkINRr)+cosh(4INRr

√
(1−αk)(αk))

2

})−1}
.

(4.21)

QPSK with Gray Coding and Complex Channel Gains : Similar to the strong inter-

ference case, we consider the LLR sent from the state node to the variable node

corresponding to the real part of the message of interest. Therefore, the modified

channel output with respect to Uk is obtained as

Y ′k = hkk Re(Xuk) + hrkXur + Zk, (4.22)

where k 6= r. The stability condition for (λuk , ρuk) can be obtained by computing the

Bhattacharyya constant [50] for the modified channel output resulting in

λ′uk(0)ρ′uk(1) <

(
e−

αkSNRk
2

−αrINRkEN1N2

{√
g(N1, N2, hkk

√
αkPk

2
, hrk

√
αrPr

2
)

})−1

,

(4.23)

for r 6= k, where N1 and N2 are Gaussian random variables with zero mean and

variance 1
2
, and

g(N1, N2, A1, A2) =
1

16

1∑
a=0

1∑
b=0

1∑
c=0

1∑
d=0

exp

(
1

N0

(
2N1

(
A2i(−1)a

− A2q(−1)b + A2i(−1)c − A2q(−1)d
)
− 2A1i

(
A2i(−1)a

− A2q(−1)b − A2i(−1)c + A2q(−1)d
)

+ 2N2

(
A2i(−1)b

+ A2q(−1)a + A2i(−1)d + A2q(−1)c
)
− 2A1q

(
A2i(−1)b

+ A2q(−1)a − A2i(−1)d − A2q(−1)c
)))

, (4.24)
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where Aji and Ajq in (4.4.3.2) denote the real and imaginary parts of Aj, respectively,

with j = 1, 2. Similar analysis can be performed for (λwk , ρwk) considering both

receivers, where the stability condition is expressed as

λ′wk(0)ρ′wk(1) <min

{(
e−

(1−αk)SNRk
2

−αrINRk

× EN1N2

{√
g(N1, N2, hkk

√
(1− αk)Pk

2
, hrk

√
αrPr

2
)

})−1

,(
e−

(1+αk)INRr
2

× EN1N2

{√
g(N1, N2, hkr

√
(1− αr)Pr

2
, hkr

√
αrPr

2
)

})−1}
. (4.25)

4.4.4 Proposed Code Optimization Method

To initialize the code optimization procedure, for each of the involved messages, we

select the degree distributions of the LDPC codes among the optimized P2P codes

for BI-AWGN channels (obtained via the EXIT chart method in [74]). The selected

degree distributions are then employed for the two-user GIC and checked whether

they are admissible for the given channel parameters, meaning that the probability of

decoding error for the corresponding code goes to zero asymptotically. To verify this,

we assume that the joint decoder is cycle free and run the decoder with a sufficient

number of state nodes (taken as 106 in our examples) fed with realizations of the

channel outputs. The employed degree distributions are declared admissible if, for

each component LDPC decoder, the mutual information between the transmitted

bits and the exchanged LLRs within the component LDPC decoder evolves to 0.995.

Note that we do not simulate any specific code realization, hence the adopted method

captures the average behavior of the code ensembles by tracking the evolution of the
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mutual information without using any Gaussianity assumption for the PDFs of the

exchanged LLRs within the joint decoder.

Having obtained the admissible degree distributions, perturbing vectors are

utilized to generate a new instance of degree distributions with increased rates fol-

lowing the approach utilized in [83] in an iterative fashion. To simplify the code

optimization, we assume that the check node degree distribution is a singleton and it

does not change throughout the iterations; therefore, only the variable node degree

distribution is perturbed as λ̃i = λi + ei, where ei denotes the ith element of the

perturbing vector and λ̃i represents the ith coefficient of λ̃. For the variable node

degree distribution to be valid,
∑dv

i=2 λ̃i = 1, which enforces

dv∑
i=2

ei = 0 and 0 ≤ λi + ei ≤ 1. (4.26)

At each iteration, the current rate (r0) is increased with the rate increment K, that

is

1− 1

dc

1∑
i
λ̃i
i

= r0 +K, (4.27)

which implies that ∑
i

λ̃i
i

=
1

dc
(
1− r0 −K

) , (4.28)

resulting in ∑
i

ei
i

=
K

dc
(
(1− r0)2 −K(1− r0)

) . (4.29)

The perturbing vector is generated by drawing all the elements except two from a

standard normal distribution, i.e., N (0, 1). The remaining two elements are obtained

by solving the set of linear equations (4.26) and (4.29). The perturbing vector is

adopted if it meets the inequality constraints in (4.26) and the resulting variable node

degree distribution satisfies the stability condition, otherwise a new perturbing vector

is generated. The perturbed variable node degree distribution will replace the current
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one if the resulting degree distributions are admissible, otherwise it is dismissed and

a new perturbation is performed. The process is stopped if new admissible degree

distributions cannot be found after a predetermined number of perturbations.

Remark : Although we have assumed a singleton distribution for the check nodes,

this constraint can be relaxed by adding a separate perturbing vector. In this case,

both the check node and the variable node degree distributions are perturbed jointly

where the constraints on the perturbing vectors should be changed accordingly. Note

that the proposed optimization is not limited to a specific modulation, however, in

order to exploit the symmetry property of the LLRs in the computation of (4.10), the

employed constellation should be symmetric with respect to origin and the sequences

of bits assigned to two symmetric points in the constellation should be flipped versions

of one another.

4.5 Examples of LDPC Codes Over GICs

In this section, we investigate the performance of irregular LDPC codes adopted for

transmission over two-user GICs implementing the HK coding/decoding strategy. We

restrict our attention to the case of fixed channel gains and finite signal constellations.

A range of examples for different interference levels employing BPSK and QPSK

with Gray coding are studied. In all the instances, code optimization is performed

for symmetric and asymmetric rate pairs with the goal of sum rate maximization

where the rate increments are along a straight line in the rate region. Similar to

Chapter 3, we employ degree distributions with nonzero variable node degrees as

{2, 3, 4, 9, 10, 19, 20, 49, 50}, and singleton check nodes, i.e., ρ(x) = xdc−1. The degree

of the check nodes (dc) is determined by optimizing the initial degree distribution

for a BI-AWGN channel utilizing the EXIT chart analysis [74]. The performance of

the optimized codes for the two-user GIC is compared with that of the P2P codes
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optimized for a BI-AWGN achieving the highest sum-rate, which does not necessarily

correspond to the initial degree distributions. Note that for symmetric channels,

the degree distributions corresponding to the rate pair (R1, R2) can also be used to

achieve (R2, R1) by interchanging the employed degree distributions. Moreover, for

symmetric rate pairs (i.e., when R1 = R2) achieved for symmetric channels, identical

degree distributions (with distinct code realizations) are adopted for the messages of

both users.

4.5.1 GIC with Strong Interference

Under strong interference, all the messages are public and the capacity region is

known. Although the capacity region is determined by those of two MACs, the code

design method in [1] is not directly applicable since the channel gains are not equal

in general, and each message should be decodable at each of the receivers. In the

following, we study several different scenarios.

Scenario I – Symmetric GIC with BPSK

For this instance, a symmetric GIC is considered, whose capacity regions with different

inputs and achieved rate pairs are shown in Fig. 4.5. The best achievable rate pairs

obtained with P2P codes are also depicted in Fig. 4.5. It can be observed that,

for the optimized codes, the achieved rate pairs are close to the boundary of the

capacity region and they outperform the P2P codes. Moreover, the P2P codes and

the optimized codes perform better than the single user codes with non-naive TS.

Scenario II – Asymmetric GIC with BPSK

In this example, an asymmetric GIC with channel parameters shown in Fig. 4.6 is

considered. Unlike the previous example, for both symmetric and asymmetric rate

pairs, two degree distributions are optimized separately since the channels observed by

each receiver are different. It can be observed that, similar to the previous example,
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Figure 4.5: Scenario I: Capacity Regions and Achieved Rate Pairs for a Symmetric
GIC with Strong Interference SNR = −6 dB, INR = −5 dB

Table 4.1: Degree Distributions for Scenario I.

Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50
P2P W1,2 0.234 5 0.2790 0.1898 0.1271 0.0679 0.1133 0.0895 0.0093 0.0838 0.0403
Opt. W1,2 0.26 5 0.2695 0.3292 0.0050 0.1281 0.0246 0.0780 0.0136 0.1428 0.0092

P
2
P

{
W1 0.211 5 0.2845 0.1207 0.1863 0.0539 0.1322 0.0146 0.0091 0.0417 0.1570
W2 0.244 5 0.2691 0.2724 0.0219 0.2258 0.0320 0.0432 0.0141 0.0676 0.0539

O
p

t.

{
W1 0.237 5 0.3198 0.0985 0.2097 0.0400 0.0698 0.0037 0.0057 0.0683 0.1845
W2 0.274 5 0.2884 0.2563 0.0703 0.0890 0.1329 0.0467 0.0060 0.0394 0.0710

P
2
P

{
W1 0.201 5 0.2717 0.1798 0.1179 0.1454 0.0063 0.0557 0.0273 0.0807 0.1152
W2 0.251 5 0.2897 0.1963 0.1024 0.2137 0.0066 0.0388 0.0549 0.0232 0.0744

O
p

t.

{
W1 0.227 5 0.2988 0.1951 0.0890 0.0962 0.0415 0.0420 0.0077 0.1049 0.1248
W2 0.277 5 0.2935 0.2555 0.0486 0.1187 0.1137 0.1090 0.0336 0.0124 0.0150

P
2
P

{
W1 0.172 4 0.3494 0.2303 0.1019 0.1463 0.0380 0.0642 0.0043 0.0482 0.0174
W2 0.272 5 0.2875 0.2117 0.1342 0.0930 0.0707 0.0610 0.1129 0.0267 0.0023

O
p

t.

{
W1 0.18 4 0.2936 0.3264 0.1352 0.0012 0.1076 0.0332 0.0257 0.0596 0.0175
W2 0.28 5 0.2957 0.2261 0.1041 0.0809 0.1319 0.0199 0.0840 0.0393 0.0181

P
2
P

{
W1 0.125 4 0.3321 0.2067 0.1087 0.1679 0.0120 0.0014 0.0059 0.0801 0.0852
W2 0.275 5 0.2864 0.2289 0.1014 0.1580 0.0746 0.0155 0.0823 0.0041 0.0488

O
p

t.

{
W1 0.131 4 0.3715 0.1972 0.0594 0.1000 0.0147 0.0320 0.0840 0.0716 0.0696
W2 0.281 5 0.3088 0.2130 0.0785 0.1950 0.0657 0.0249 0.0440 0.0296 0.0405

the achieved rate pairs for the optimized degree distributions outperform the ones

obtained with the P2P codes. Furthermore, all the achieved rate pairs with the

P2P and optimized codes are superior to the ones obtained via the single user codes
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utilizing non-naive TS.
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Figure 4.6: Scenario II: Capacity Regions and Achieved Rate Pairs for an Asymmetric
GIC with Strong Interference SNR1 = −6 dB, INR1 = −5.25 dB, SNR2 =
−5.5 dB, INR2 = −4.75 dB

Table 4.2: Degree Distributions for Scenario II

Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

P
2
P

{
W1 0.272 5 0.2875 0.2117 0.1342 0.0930 0.0707 0.0610 0.1129 0.0267 0.0023
W2 0.172 4 0.3494 0.2303 0.1019 0.1463 0.0380 0.0642 0.0043 0.0482 0.0174

O
p

t.

{
W1 0.282 5 0.3188 0.1587 0.1549 0.0567 0.1369 0.0424 0.0903 0.0274 0.0139
W2 0.182 4 0.3708 0.1025 0.2918 0.0147 0.0645 0.0167 0.0445 0.0453 0.0492

P
2
P

{
W1 0.268 5 0.2948 0.2026 0.1153 0.1107 0.0959 0.0188 0.1104 0.0399 0.0116
W2 0.218 5 0.2823 0.1020 0.2457 0.0393 0.0500 0.0870 0.0457 0.0234 0.1246

O
p

t.

{
W1 0.278 5 0.3106 0.1901 0.1065 0.1691 0.0809 0.0337 0.0297 0.0033 0.0761
W2 0.228 4 0.3815 0.2999 0.0280 0.1453 0.0719 0.0340 0.0074 0.0093 0.0227

P2P W1,2 0.234 5 0.2790 0.1898 0.1271 0.0679 0.1133 0.0895 0.0093 0.0838 0.0403

O
p

t.

{
W1 0.258 5 0.3007 0.1981 0.1377 0.0228 0.0607 0.0291 0.1192 0.0963 0.0354
W2 0.258 5 0.3282 0.1432 0.1499 0.0567 0.0132 0.1182 0.0856 0.0902 0.0148

P
2
P

{
W1 0.202 5 0.2680 0.1786 0.1434 0.0359 0.0667 0.1314 0.0040 0.0141 0.1579
W2 0.252 5 0.2799 0.2054 0.1315 0.0421 0.1286 0.1237 0.0078 0.0733 0.0077

O
p

t.

{
W1 0.226 4 0.4126 0.2658 0.0247 0.0933 0.0754 0.0303 0.0176 0.0170 0.0633
W2 0.283 5 0.3066 0.2792 0.0384 0.0047 0.0777 0.2256 0.0485 0.0103 0.0090

P
2
P

{
W1 0.186 4 0.3501 0.2414 0.1135 0.0614 0.1191 0.0078 0.0648 0.0089 0.0330
W2 0.290 5 0.2954 0.2212 0.1310 0.1526 0.0311 0.0702 0.0592 0.0376 0.0017

O
p

t.

{
W1 0.198 4 0.4218 0.1239 0.1579 0.1236 0.0169 0.0314 0.0191 0.0671 0.0383
W2 0.304 5 0.3269 0.1697 0.1583 0.1164 0.1081 0.0261 0.0264 0.0335 0.0346

P
2
P

{
W1 0.134 4 0.3308 0.1876 0.1603 0.1012 0.0377 0.0450 0.0179 0.0292 0.0903
W2 0.295 5 0.2816 0.2614 0.1105 0.1229 0.0776 0.0622 0.0598 0.0064 0.0176

O
p

t.

{
W1 0.14 4 0.3283 0.1667 0.2039 0.0596 0.0285 0.0612 0.1450 0.0048 0.0020
W2 0.307 5 0.3146 0.2326 0.0770 0.2500 0.0139 0.0701 0.0289 0.0031 0.0098
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Scenario III – Symmetric GIC with QPSK

The details for this example are given in Fig. 4.7. The code optimization is performed

for both symmetric and asymmetric rate pairs. Similar to the BPSK example, only

one code is optimized for both messages when symmetric rate pairs are considered.

We observe that the achieved rate pairs with optimized codes outperform the ones

obtained with P2P codes, and that both optimized and P2P codes beat the non-naive

TS results with QPSK inputs. Furthermore, the optimized codes even outperform

the non-naive TS results with Gaussian signaling.
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Figure 4.7: Scenario III: Capacity Regions and Achieved Rate Pairs for a Symmetric
GIC with Strong Interference SNR = −1.75 dB, INR = −0.25 dB, ∠ h11 = ∠ h22 =
π
4
, ∠h21 = ∠h12 = π

3

Scenario IV – Asymmetric GIC with QPSK

For this example, an asymmetric channel is considered, and the corresponding results

are depicted in Fig. 4.8. Degree distributions are optimized for both symmetric and
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Table 4.3: Degree Distributions for Scenario III

Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50
P2P W1,2 0.302 6 0.2477 0.1277 0.1869 0.1308 0.0093 0.0537 0.0811 0.0633 0.0995
Opt. W1,2 0.331 6 0.2535 0.2346 0.0814 0.0950 0.0555 0.0287 0.0392 0.0152 0.1969

P
2
P

{
W1 0.245 5 0.2945 0.1266 0.2140 0.0621 0.0478 0.0706 0.0951 0.0497 0.0396
W2 0.323 6 0.2467 0.2076 0.0838 0.1042 0.1534 0.0084 0.0480 0.0192 0.1287

O
p

t.

{
W1 0.298 5 0.3413 0.1503 0.2040 0.0167 0.0473 0.0206 0.0376 0.0383 0.1439
W2 0.349 6 0.2758 0.1717 0.1256 0.1056 0.1292 0.0116 0.0184 0.0889 0.0732

P
2
P

{
W1 0.23 5 0.2816 0.1623 0.1576 0.1525 0.0045 0.0816 0.0164 0.1408 0.0027
W2 0.33 6 0.2148 0.3127 0.0166 0.1485 0.0877 0.0936 0.0077 0.0828 0.0356

O
p

t.

{
W1 0.256 5 0.2134 0.4389 0.0045 0.0357 0.0315 0.0399 0.0179 0.1086 0.1096
W2 0.356 6 0.2643 0.2181 0.0876 0.0881 0.1242 0.1050 0.0620 0.0120 0.0387

asymmetric rate pairs. Parallel to our previous findings, the optimized codes perform

better than the P2P codes both of which operating outside the non-naive TS rate

region. Specifically, all of the optimized codes and one instance of the P2P codes

outperform the single user codes with Gaussian signaling with non-naive TS.
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Figure 4.8: Scenario IV: Capacity Regions and Achieved Rate Pairs for an Asymmet-
ric GIC with Strong Interference SNR1 = −1.75 dB, INR1 = −0.25 dB, SNR2 =
−1.25 dB, INR2 = 0.25 dB, ∠h11 = π

4
, ∠h21 = π

3
, ∠h12 = ∠h22 = 0

4.5.2 GIC with Weak Interference

Under weak interference, the interfering signal cannot be decoded in its entirety, and

hence sending all the messages as public may not be optimal. As a result, unlike the
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Table 4.4: Degree Distributions for Scenario IV

Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

P
2
P

{
W1 0.345 6 0.2510 0.2298 0.0660 0.2137 0.0370 0.0624 0.0768 0.0076 0.0557
W2 0.245 5 0.2945 0.1266 0.2140 0.0621 0.0478 0.0706 0.0951 0.0497 0.0396

O
p

t.
{

W1 0.357 6 0.2605 0.2418 0.0513 0.1876 0.0752 0.0902 0.0107 0.0812 0.0015
W2 0.257 5 0.3307 0.1128 0.1725 0.0477 0.0847 0.0977 0.0304 0.0608 0.0627

P
2
P

{
W1 0.33 6 0.2148 0.3127 0.0166 0.1485 0.0877 0.0936 0.0077 0.0828 0.0356
W2 0.302 6 0.2477 0.1277 0.1869 0.1308 0.0093 0.0537 0.0811 0.0633 0.0995

O
p

t.

{
W1 0.349 6 0.2607 0.2043 0.1043 0.1252 0.1039 0.0325 0.0685 0.0712 0.0294
W2 0.321 6 0.2852 0.1184 0.1285 0.1856 0.0190 0.0723 0.0367 0.0997 0.0546

P
2
P

{
W1 0.263 5 0.2940 0.1676 0.1669 0.1030 0.0940 0.0463 0.0290 0.0679 0.0313
W2 0.316 6 0.2345 0.1804 0.1545 0.0309 0.1644 0.0002 0.1018 0.0522 0.0811

O
p

t.

{
W1 0.305 5 0.3028 0.3261 0.0418 0.0147 0.0533 0.0808 0.0787 0.0984 0.0034
W2 0.366 6 0.2840 0.2279 0.0762 0.1058 0.0500 0.0616 0.0660 0.0675 0.0610

P
2
P

{
W1 0.24 5 0.2701 0.2186 0.1115 0.0852 0.1123 0.0178 0.0665 0.0638 0.0542
W2 0.33 6 0.2148 0.3127 0.0166 0.1485 0.0877 0.0936 0.0077 0.0828 0.0356

O
p

t.

{
W1 0.294 5 0.3339 0.2518 0.0404 0.0393 0.0601 0.0852 0.1227 0.0434 0.0232
W2 0.379 6 0.2797 0.3078 0.0062 0.0965 0.0588 0.0649 0.0219 0.0247 0.1395

P
2
P

{
W1 0.219 5 0.2575 0.2490 0.0619 0.1320 0.0768 0.0586 0.0037 0.0494 0.1111
W2 0.36 6 0.2511 0.2213 0.1185 0.1178 0.0940 0.0334 0.1323 0.0118 0.0198

O
p

t.

{
W1 0.262 5 0.3020 0.2271 0.1038 0.0633 0.0208 0.0755 0.0317 0.0433 0.1325
W2 0.383 6 0.2851 0.1801 0.1842 0.0370 0.1036 0.0256 0.0660 0.0990 0.0194

case of strong interference, power allocation should be addressed prior to the code

optimization. To simplify the process, an optimization problem is solved to achieve

the largest rate region formulated as

max
α1,α2

Ru1 +Rw1 +Ru2 +Rw2

subject to
{
Ru1(α1), Rw1(α1), Ru2(α2), Rw2(α2)

}
∈ R1

0 ≤ αi ≤ 1, i = 1, 2,

Ru1 +Rw1 = Ru2 +Rw2 + ∆R, (4.30)

where Rui and Rwi denote the rates of the messages Ui and Wi at the transmitter

i, respectively. All the rates in (4.30) should be contained in the HK sub-region

R1 characterized through (4.2) computed for the employed constellations (BPSK or

QPSK with Gray coding), for which no TS is utilized and the private message and the

public message of each transmitter is combined through addition. The last constraint

in (4.30) is added to simplify the optimization process where ∆R is an arbitrary value

also employed and kept fixed during the code optimization.
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Scenario V – Symmetric GIC with BPSK

In this example, a symmetric GIC is considered with channel parameters given in

Fig. 4.9. The HK ARR is characterized for BPSK and Gaussian signaling. The

obtained ARRs are outerbounded utilizing the results of [34] as shown in the figure.

The power allocation is performed for ∆R = 0, ∆R = ±0.05, and ∆R = ±0.15. For

the rate increments during the code optimization, we adopt
Rui
Rwi

, i = 1, 2, obtained

from the power allocation optimization results. Fig. 4.9 clearly shows that for both

symmetric and asymmetric rate pairs the optimized codes are superior to the P2P

optimal codes. In addition both P2P and optimized codes beat the naive TS scheme,

however, they do not exceed the boundary of the non-naive TS region.
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Figure 4.9: Scenario V: Rate Regions and Achieved Rate Pairs for a Symmetric GIC
with Weak Interference SNR = −4.01 dB, INR = −5.01 dB
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Table 4.5: Degree Distributions for Scenario V

α1, α2 Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

P
2
P

{
α1 = 0.36 U1,2 0.132 4 0.3315 0.2088 0.1273 0.0790 0.0590 0.0235 0.0508 0.0099 0.1102
α2 = 0.36 W1,2 0.149 4 0.3613 0.0793 0.2874 0.0251 0.0504 0.0388 0.0596 0.0580 0.0401

O
p

t.

{
α1 = 0.36 U1,2 0.142 4 0.3634 0.1674 0.1106 0.0972 0.1013 0.0531 0.0075 0.0628 0.0367
α2 = 0.36 W1,2 0.161 4 0.3609 0.2671 0.0031 0.0721 0.1386 0.0504 0.0317 0.0325 0.0436

P
2
P

{
α1 = 0.5 U1 0.224 5 0.2659 0.2455 0.0512 0.1661 0.0542 0.0203 0.0415 0.0546 0.1007
α2 = 0 W1 0.136 4 0.3488 0.1237 0.2267 0.0161 0.0912 0.0299 0.0422 0.0971 0.0243

W2 0.209 5 0.2386 0.2859 0.0504 0.0920 0.0892 0.0326 0.0176 0.1183 0.0754

O
p

t.

{
α1 = 0.5 U1 0.229 5 0.2881 0.1978 0.0867 0.1136 0.0835 0.0679 0.0021 0.0953 0.0650
α2 = 0 W1 0.14 4 0.3535 0.2281 0.0474 0.1203 0.0706 0.0037 0.0628 0.0283 0.0853

W2 0.217 4 0.3835 0.2263 0.1377 0.0308 0.0711 0.0898 0.0365 0.0097 0.0146

P
2
P

{
α1 = 0.48 U1 0.172 4 0.3494 0.2303 0.1019 0.1463 0.0380 0.0642 0.0043 0.0482 0.0174
α2 = 0.35 W1 0.124 4 0.3386 0.1606 0.1633 0.1308 0.0293 0.0175 0.0040 0.1143 0.0416

U2 0.112 4 0.3300 0.1874 0.1410 0.0020 0.1268 0.0288 0.0234 0.0481 0.1125
W2 0.135 4 0.3400 0.2117 0.1038 0.0594 0.0962 0.0443 0.0348 0.0932 0.0166

O
p

t.

{
α1 = 0.48 U1 0.178 4 0.3814 0.1620 0.1543 0.0896 0.0321 0.0261 0.1088 0.0220 0.0237
α2 = 0.35 W1 0.129 4 0.3396 0.2320 0.0639 0.0584 0.1261 0.0294 0.0065 0.0539 0.0902

U2 0.117 4 0.3525 0.1999 0.0801 0.0610 0.0203 0.1622 0.0145 0.0085 0.1010
W2 0.141 4 0.3359 0.2870 0.0113 0.1037 0.0633 0.0624 0.0216 0.0790 0.0358

Scenario VI – Symmetric GIC with QPSK

In this example, we consider a symmetric GIC with channel parameters given in

Fig. 4.10. The power allocation optimization is performed for ∆R = 0, ∆R = ±0.3,

and ∆R = ±0.4. It can be observed that, similar to the previous example, the

optimized codes beat the P2P codes, both of which outperforming the naive TS rate

region. Furthermore, for the asymmetric rate pairs, all the optimized codes and some

of P2P codes outperform the non-naive TS rate region.

Table 4.6: Degree Distributions for Scenario VI

α1, α2 Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

P
2
P

{
α1 = 0.15 U1,2 0.119 4 0.3270 0.2106 0.1170 0.0227 0.1339 0.0104 0.0259 0.0126 0.1399
α2 = 0.15 W1,2 0.316 6 0.2345 0.1804 0.1545 0.0309 0.1644 0.0002 0.1018 0.0522 0.0811

O
p

t.

{
α1 = 0.15 U1,2 0.143 4 0.3682 0.1303 0.1657 0.0517 0.1055 0.0868 0.0021 0.0358 0.0539
α2 = 0.15 W1,2 0.377 6 0.3253 0.2005 0.0835 0.0414 0.0536 0.0125 0.0273 0.1647 0.0912

P
2
P

{
α1 = 0.51 U1 0.439 7 0.2110 0.3124 0.0295 0.2368 0.0272 0.1213 0.0336 0.0126 0.0156
α2 = 0 W1 0.196 4 0.3650 0.2180 0.1211 0.0224 0.2121 0.0154 0.0020 0.0404 0.0036

W2 0.335 6 0.2310 0.2712 0.0518 0.0337 0.2035 0.0197 0.0942 0.0732 0.0217

O
p

t.

{
α1 = 0.51 U1 0.475 7 0.2552 0.2896 0.0379 0.0662 0.2739 0.0364 0.0263 0.0020 0.0125
α2 = 0 W1 0.212 4 0.3893 0.2269 0.1236 0.0603 0.0323 0.0486 0.0397 0.0316 0.0477

W2 0.387 6 0.3448 0.0318 0.2799 0.0122 0.0958 0.0023 0.1080 0.0455 0.0797

P
2
P

{
α1 = 0.5 U1 0.448 8 0.2019 0.2004 0.1019 0.0789 0.1366 0.1071 0.0559 0.0703 0.0470
α2 = 0 W1 0.252 5 0.2799 0.2054 0.1315 0.0421 0.1286 0.1237 0.0078 0.0733 0.0077

W2 0.300 6 0.2365 0.2023 0.0902 0.1781 0.0009 0.0784 0.0506 0.1516 0.0114

O
p

t.

{
α1 = 0.5 U1 0.459 7 0.1867 0.3871 0.0485 0.0959 0.1084 0.1263 0.0127 0.0038 0.0306
α2 = 0 W1 0.258 5 0.2609 0.3292 0.0059 0.0491 0.1482 0.0740 0.0356 0.0490 0.0481

W2 0.317 5 0.3436 0.1022 0.2821 0.0281 0.0774 0.0531 0.0183 0.0113 0.0839
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Figure 4.10: Scenario VI : Rate Regions and Achieved Rate Pairs for a GIC with Weak
Interference SNR = 3 dB, INR = 2.5 dB, ∠h11 = ∠h22 = π

4
,∠h21 = ∠h12 = π

3

4.5.3 Summary of Results

We now summarize the results obtained in the above examples for GICs with strong

and weak interference levels. Under strong interference, we see that the optimized

codes and the P2P codes outperform both naive TS and non-naive TS schemes. More-

over, the optimized codes consistently improve upon the P2P codes. For all instances

with QPSK, the optimized codes also beat non-naive TS scheme for Gaussian signal-

ing, which is not achieved with BPSK. Under weak interference, similar to the case of

strong interference, all the optimized codes offer significantly better performance com-

pared to the off-the-shelf P2P codes. In addition, the optimized codes and the P2P

codes beat the naive TS schemes for QPSK and Gaussian inputs. Furthermore, the

performance of some of the optimized codes is shown to be superior to the non-naive

TS results.
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We also comment on the results of a recent paper [65] which designs LDPC

codes for a symmetric GIC example with weak interference. Considering the method

employed, the following distinctions are observed compared with our approach in

this chapter. First, [65] adopts no superposition at the transmitters, i.e., messages of

users are not split into distinct parts. Second, it exploits soft interference cancellation

(SIC) wherein the adopted decoder aims to decode the interfering signal as well as the

desired signal to reduce the effect of interference. Third, it employs density evolution

on the factor graphs assuming the no-interleaver-hypothesis [1]. This assumption is

only valid when identical degree distributions are utilized for both codes, and not

applicable to the general case where degree distributions of messages are distinct.

4.6 Finite Block Length Code Simulations

4.6.1 Random Constructions

In this section, we evaluate the performance of the optimized degree distributions

through finite block length code simulations. Parity check matrices are obtained

with tools in [87] where most of the length-4 cycles are removed. For the symmetric

scenarios, where identical degree distributions are employed at both transmitters,

different realizations are utilized in the simulation. The code block lengths are picked

as 50k and the maximum number of decoding iterations is set to 500. Fig. 4.11 shows

the decoding results at receiver 1, where for clarity of the presentation we only show

the results of the public message or the private message with the worst error rates

(i.e., the bottleneck), instead of giving the results for all the messages. Considering

a BER of 10−5 as reliable transmission, it can be observed that the decoding results for

BPSK and QPSK scenarios are within 0.33 dB and 0.92 dB of the decoding thresholds

computed earlier.
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Figure 4.11: Finite Block Length Decoding Results for Specific LDPC Codes with
Random Constructions

4.6.2 Algebraic Constructions

We observe that for random constructions the decoding behavior is close to the asymp-

totic results for large block lengths. However, in practice, LDPC codes with moderate

block lengths (≈ 1k) may also be adopted. In this case, a drawback of random designs

is the presence of short cycles in the graph which may degrade the decoding perfor-

mance and may lead to error floors for high SNRs. To remedy this problem, variants

of structured LDPC codes have been proposed and studied in the literature [88], [89],

where codes are optimized for different parameters, e.g., girth, stopping set, trapping

set, minimum distance. Protograph LDPC codes are shown to perform well com-

pared to the other approaches for P2P channels. As the name suggests, the design

of these codes is based on a lifted graph from a so-called base graph. In [90], proto-
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graph LDPC codes are optimized via algebraic designs utilizing voltage graphs and

non-abelian groups, and superior performance is observed compared to the previous

designs. In the following, we consider a GIC with strong interference and optimize the

degree distributions using moderate code block lengths, by employing the systematic

approach of [90].

For code optimization, we consider an asymmetric GIC with SNR1 = −1 dB,

INR1 = −0.25 dB, SNR2 = −1.5 dB, and INR2 = −0.75 utilizing BPSK with real

channel gains. We employ a base matrix with fixed dimensions of 3 × 5 for both

messages. At each iteration, the degree distributions are perturbed by drawing the

elements of the base matrix randomly from the set {0, 1}. Unlike the previous ex-

amples, since the dimension of the base matrix does not change throughout the op-

timization process, we opt for decreasing SNRi and INRi at each iteration keeping

the signal to interference ratio fixed. The resulting optimized degree distributions

λ(x) = 0.3077x+0.6923x2 and ρ(x) = 0.6154x3+0.3846x4 are admissible for the asym-

metric GIC with channel parameters SNR1 = −2.15 dB, INR1 = −1.4 dB, SNR2 =

−2.65 dB, and INR2 = −1.9 dB. We design the structured codes for block lengths

N = 1015 and N = 1525 utilizing non-abelian groups. A non-abelian group of order

m = pq is characterized by (p, q, s) where q and p are prime numbers, q divides p− 1,

and sq ≡ 1 (mod p). The non-abelian groups chosen for N = 1015 and N = 1525

are (29,7,7) and (61,5,9), respectively. Fig. 4.12 shows the decoding results for the

resulting random and structured constructions. It is observed that for N = 1015,

error floors occur at 10−4 and 4 × 10−5 for random constructions with girths 4 and

6, respectively. On the other hand, an error floor occurs around 10−6 for the struc-

tured code with girth 8. For N = 1525, error floors occur at around 2 × 10−6 for

random constructions with girths 4 and 6, however, no error floor is observed for the

structured code with girth 12 all the way down to 10−9 BER. We also considered the
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performance of the employed structured codes as a function of the SNRs and INRs at

BER 10−5 (considered as reliable transmission) and observed that the achieved rate

pairs outperform the naive and non-naive TS region for N = 1015 and N = 1525,

respectively.
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Figure 4.12: Decoding Results of Structured vs. Random Constructions

4.7 Chapter Summary

In this chapter, the Han-Kobayashi coding strategy was implemented for two-user

Gaussian interference channels. Fixed channel gains were considered and finite con-

stellations were employed for transmission. In order to analyze the behavior of the

decoder, a symmetry property was proved for the exchanged LLRs under JD and the

stability condition was derived for the degree distribution profiles of the private and

public messages under strong and weak interference levels. A robust method was pro-

posed for code optimization utilizing a random perturbation technique. Performance

of the explicit and implementable LDPC codes (as opposed to information theoretic
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random codes) were examined through numerous examples, and promising results

were obtained for various scenarios, e.g., for cases of strong and weak interference,

symmetric and asymmetric rates. Under strong interference, the capacity approach-

ing codes were designed which beat even the non-naive TS rate region with Gaussian

signaling. Under weak interference, it was observed that the optimized codes beat

the naive TS region (with Gaussian signaling) and operate close to the non-naive

TS region boundary. We also note that the designed codes improve consistently on

the codes optimized for the P2P channels (used with the same encoding/decoding

procedure). Furthermore, simulation results were provided using large block length

codes picked from the designed LDPC code ensembles and code optimization was

performed for moderate block lengths comparing the performance of structured ver-

sus randomized designs wherein the structured codes were shown to be superior to

random designs at high SNRs.
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Chapter 5

CODE DESIGN FOR FINITE INPUT FINITE OUTPUT INTERFERENCE

CHANNELS

In this chapter, we explore the code design problem for the two-user discrete memo-

ryless interference channel (DMIC), i.e., when the inputs and outputs of the channel

are finite. Specifically, we consider Z interference channels (ZICs) for which one of

the receivers is interference free. We employ irregular LDPC codes concatenated with

non-linear trellis codes (NLTCs). Here the NLTCs are utilized to introduce a desired

distribution of 0’s and 1’s in the transmitted codewords dictated by the information

theoretic results. At the receiver sides, MAP decoders are employed for the NLTCs

providing symbol-by-symbol LLRs to the iterative LDPC decoders. LDPC code op-

timization is performed for an example of a binary-input binary-output (BIBO) ZIC

where the transmitted and the received signals are binary. Through some specific

examples, it is observed that the optimized codes outperform single user codes used

with TS. In attempt to validate the accuracy of the results, decoding performance of

the specific codes picked from the optimized degree distributions are also computed

for finite code block lengths.

The chapter is organized as follows. In Section 5.1, we briefly review some

existing results for DMICs and describe the proposed framework for code optimiza-

tion. In Section 5.2, the system model is described in detail. In Section 5.3, we detail

the adopted encoding and decoding schemes. In Section 5.4, the HK inner bound for

DMICs is revisited and simplified for the case of ZICs. In addition, a sum-capacity

result developed in the recent literature is discussed. In Section 5.5, we elaborate on

the code optimization procedure. Section 5.6 studies specific examples and reports

Part of this work was presented at IEEE ISIT 2015 [91].
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on the achieved rate pairs obtained via the optimized degree distributions as well

as finite code block length simulation results. Finally, we provide a summary of the

chapter in Section 5.7.

5.1 Introduction

In Chapter 4, we examined LDPC code design principals for the two-user GIC wherein

inputs and outputs of the channel can take complex values in general and Gaussian

noise samples are added at the receiver sides. In this chapter, we focus on the two-user

DMIC first explored in [27]. To highlight some important results on these channels,

the capacity region of the DMIC is characterized when the interference is strong

enough to be decoded at the receivers [92]. The capacity region is also computed

for a class of deterministic ICs [93]. Authors in [94] utilize existing results for the

degraded IC [95] and derive a sum capacity for the ZIC with one-sided weak interfer-

ence satisfying a certain Markov chain condition. It is shown that the sum-capacity

is achieved by only decoding the desired messages while treating the interference as

noise.

In this chapter, we investigate the problem of practical code design for the

two-user BIBO DMIC utilizing the HK strategy. In particular, we consider an ex-

ample of two-user ZIC wherein the messages of the transmitters are sent as private.

Motivated by their excellent performance, we employ irregular LDPC codes to en-

code the messages of each user. Since LDPC codes belong to a class of linear block

codes, the distribution of the encoded bits is uniform which may not be the optimal

distribution for use over ICs as the information theoretic results suggest. To address

this issue, the output bits of each LDPC encoder are input to an NLTC encoder to

introduce a desired distribution in the transmitted signal. At the receiver side, we

implement a BCJR algorithm based decoder providing soft information for each of
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the LDPC encoded symbols, computed in terms of LLRs. The obtained LLRs are fed

to an LDPC decoder whose outputs are fed back to the BCJR decoder to improve

the decoding performance.

The code optimization performed in this chapter consists of two steps. First,

the NLTCs are designed to satisfy the required (optimal) distribution on the channel

inputs. Then, the LDPC codes are optimized keeping the designed NLTCs unchanged.

Optimization is carried out explicitly for an example of ZIC where the designed

codes are shown to outperform the single user codes used with TS. In addition, it

is demonstrated that some of the achieved rate pairs are not attainable by means

of only LDPC codes indicating the advantage of adopting NLTCs. We also perform

simulations with finite block length codes picked from the ensemble of optimized codes

and demonstrate that the resulting BER estimates confirm the computed decoding

thresholds.

5.2 System Model

Fig. 5.1 depicts the two-user DMIC comprising of two sender-receiver pairs communi-

cating through a shared medium. The channel is characterized by input sets (X1×X2),

output sets (Y1×Y2), which are finite, and the channel transition probability written

as

p(yn1 y
n
2 |xn1xn2 ) =

n∏
i=1

p(y1iy2i |x1ix2i), (5.1)

for n channel uses. A DMIC is under very strong interference if

I(X1;Y1|X2) ≤I(X1;Y2),

I(X2;Y2|X1) ≤I(X2;Y1), (5.2)
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for all product distributions of the form pX1(x1)pX2(x2) [4]. Similarly, a DMIC is said

to have strong interference if

I(X1;Y1|X2) ≤I(X1;Y2|X2),

I(X2;Y2|X1) ≤I(X2;Y1|X1), (5.3)

for all product distributions of the form p(x1)p(x2) [4]. From an information theoretic

 Encoder 1

 Encoder 2

 Decoder 1

 Decoder 2

Figure 5.1: Block Diagram of the Two-User DMIC

point of view, an
(
n,M1,M2, P

(n)
e1 , P

(n)
e2

)
code for a DMIC comprises of two message

sets M1 = {1, 2, . . . , 2nR1} and M2 = {1, 2, . . . , 2nR2} for transmitters 1 and 2,

respectively, with encoding functions f1 :M1 → X n
1 , f2 :M2 → X n

2 and decoding

functions g1 : Yn1 → M1, g2 : Yn2 → M2. The average probabilities of error are

defined as

P (n)
e1

=
1

|M1||M2|

2nR1∑
m1=1

2nR2∑
m2=1

Pr{g1(Y n
1 ) 6= m1|M1 = m1,M2 = m2},

P (n)
e2

=
1

|M1||M2|

2nR1∑
m1=1

2nR2∑
m2=1

Pr{g2(Y n
2 ) 6= m2|M1 = m1,M2 = m2}, (5.4)

where P
(n)
e1 and P

(n)
e2 are the average error probabilities at receiver 1 and 2, respectively.

A rate pair (R1, R2) is said to be achievable if P
(n)
e1 , P

(n)
e2 → 0 as n → ∞. The

capacity region is the closure of the all achievable rate pairs.

5.3 Proposed Encoding and Decoding Schemes

We consider the simple scheme of transmitting the messages as private where each

receiver decodes only its own desired message. Later in the chapter, we discuss
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the information theoretic bounds for the considered scheme. Block diagram of the

transmitter i is depicted in Fig. 5.2, i = 1, 2. At transmitter i each set of k information

bits, denoted by Uk
i , are encoded with an irregular LDPC code with rate k

m
. The

encoded bits, represented as Cm
i , are then input to an NLTC (Fig. 5.3) with code rate

m
n

to introduce the desired distribution of 0’s and 1’s in the transmitted codeword

Xn
i . As a result, the effective code rate of the proposed transmission scheme is R = k

n
.

LDPC Encoder NLTC 

𝑈𝑖
𝑘 𝑋𝑖

𝑛  𝐶𝑖
𝑚 

Figure 5.2: Block Diagram of the Transmitter i Implementing HK Strategy

𝑆0 𝑆1 𝑆𝑛 

Look-up 

Table 

𝐶𝑖
𝑚 

Non-linear Trellis Coding 

𝑋𝑖
𝑛 

Figure 5.3: Structure of an NLTC

At the receiver sides, the received binary digits are passed through a BCJR

algorithm based decoder followed by an LDPC (single user) decoder. The BCJR

decoder at receiver i computes the LLRs of the encoded LDPC codes of message i.

Having implemented the log-APP algorithm [96], the LLR of the jth LDPC encoded
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(b) Feedback from the BCJR Decoder to the LDPC Decoder.

Figure 5.4: Block Diagram of the Receiver i

bit of user i is computed as

L(cji ) = ln

( ∑
(σj−1,σj)∈S0

exp
(
α̃j−1(σj−1) + γ̃i(σj−1, σj) + β̃j(σj)

))

− ln

( ∑
(σj−1,σj)∈S1

exp
(
α̃j−1(σj−1) + γ̃j(σj−1, σj) + β̃j(σj)

))
, (5.5)

where

γ̃j(σj−1, σj) = ln
(
p(cji )p(y

j
i |c

j
i )
)
, (5.6)

and σl denotes the state of the trellis diagram at stage l for the NLTC adopted for

user i. Sk represents the subset of transitions in the trellis diagram corresponding to

cji = k. The backward recursion
(
β̃j(σj)

)
and forward recursion

(
α̃j(σj)

)
variables
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are calculated as

α̃j(σj) = ln

( ∑
σj−1∈

∑ exp
(
α̃j−1(σj−1) + γ̃j(σj−1, σj)

))
,

β̃j−1(σj−1) = ln

( ∑
σj∈

∑ exp
(
β̃j(σj) + γ̃j(σj−1, σj)

))
, (5.7)

where

α̃0(σ0) =

 0 σ0 = 0

−∞ σ0 6= 0
, β̃N(σN) =

 0 σN = 0

−∞ σN 6= 0
, (5.8)

with
∑

and N denoting the set of all states and the last stage of the trellis di-

agram, respectively. The computed LLRs are provided to the LDPC single user

decoder (Fig. 5.4 (a)). The soft output of the LDPC decoder can be converted to

the probability domain through P
(
cji = l

)
=

exp
(

(−1)lL
)

1+exp
(

(−1)lL
) which can be exploited

to update the gamma function in (5.6) for further improvement of the decoding. As

a consequence, we opt for utilizing the output of the LDPC decoder as an input to

the BCJR decoder in an iterative fashion improving the overall performance (Fig. 5.4

(b)).

5.4 Review of Some Relevant Information Theoretic Results

5.4.1 The HK Inner Bound

Capacity region of the DMIC is unknown in general, and it is only characterized for

a few special cases; for instance, when the interference is very strong [27], strong [4]

and when the channel is degraded [97]. The best achievable rate region to date is due

to Han and Kobayashi [30] characterized by

R1 < I(X1;Y1|W2, Q)

R2 < I(X2;Y2|W1, Q)

R1 +R2 < I(X1,W2;Y1|Q) + I(X2;Y2|W1,W2, Q)
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R1 +R2 < I(X2,W1;Y2|Q) + I(X1;Y1|W1,W2, Q)

R1 +R2 < I(X1,W2;Y1|W1, Q) + I(X2,W1;Y2|W2, Q)

2R1 +R2 < I(X1,W2;Y1|Q) + I(X1;Y1|W1,W2, Q) + I(X2,W1;Y2|W2, Q)

R1 + 2R2 < I(X2,W1;Y2|Q) + I(X2;Y2|W1,W2, Q) + I(X1,W2;Y1|W1, Q) (5.9)

for some PMF p(q)p(w1, x1|q)p(w2, x2|q), where |W1| ≤ |X1| + 4, |W2| ≤ |X2| + 4,

and |Q| ≤ 6. In these expressions, Wi carries the public message information of

user i, however, it does not represent any of the channel variables. The complete

characterization of the bound requires extensive computations primarily due to the

cardinality of the involved variables. Therefore, later in the chapter we attempt to

compute a sub-region of the HK inner bound (HK-IB).

5.4.2 The DMIC with One-Sided Interference

Authors in [94] define DMIC with one-sided interference as a DMIC satisfying

p(y2|x1x2) = p(y2|x2), (5.10)

for all input distribution p(x1)p(x2). The considered channel is also referred to as a

DM-ZIC. Fig. 5.5 illustrates an example of a two-user DM-ZIC wherein the receiver

2 does not experience interference from user 1, hence (5.10) is satisfied. Considering

the HK strategy, transmitter 1’s signal does not affect the received signal at receiver

2, hence, its message can be sent as private. This is equivalent to setting W1 = ∅

simplifying the HK-IB to

R1 < I(X1;Y1|W2, Q)

R2 < I(X2;Y2|Q)

R1 +R2 < I(X1,W2;Y1|Q) + I(X2;Y2|W2, Q). (5.11)

for some PMF p(q)p(x1|q)p(w2, x2|q), where |W2| ≤ |X2|+ 3, and |Q| ≤ 5.
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Figure 5.5: A Two-User DM-ZIC

5.4.3 Sum-Capacity of a DM-ZIC with Weak Interference

Authors in [94] declare a two-user DM-ZIC to have a weak interference if the Markov

chain X2 – X1Y2 – Y1 holds. They compute the sum-capacity of such a channel as

Csum = max
p(x1)p(x2)

{
I(X1;Y1) + I(X2;Y2)

}
, (5.12)

which is achieved by treating the interfering signal as noise. This translates into

sending the messages of both users as private, or equivalently W1 = W2 = ∅. It is

still unknown if the introduced Markov chain is a necessary condition for (5.12) to

hold. Parallel to the strong interference condition (5.3), another metric is introduced

in [94] for the weak interference as

I(X2;Y1|X1) ≤ I(X2;Y2), (5.13)

for all product input distribution on p(x1)p(x2).

5.5 LDPC and NLTC Optimization for DM-ZIC

The code optimization is comprised of designing NLTCs and optimizing the LDPC

degree distributions. To design an NLTC, the n output bits assigned to trellis branches

are chosen to maximize the Hamming distance between the branches. The assignment

should also satisfy the distribution of the 0’s and 1’s obtained through maximizing the

achievable sum-rate performed via an exhaustive search over different distribution of

0’s and 1’s for the transmitted codewords of both users. Fig. 5.6 illustrates an example
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of NLTC design for the given probability of PX(1) = 0.1875, where PX(1) denotes

the probability of X being 1.

��

��

��

��

{0001,0010}

{0000,1000}

0

1

1

0

Figure 5.6: An Example of NLTC

LDPC code optimization follows similar steps as in the previous chapters.

That is, at each iteration, degree distributions are perturbed and checked if they are

admissible verified by tracking the evolution of the mutual information associated with

the exchanged LLRs. Considering the all-zero codeword transmission assumption [41],

the computation of the mutual information can be performed as [82]

I(C;L)
(a)
=1− E

{
log2

(
1 + e−L

)}
(b)
≈1− 1

N

N∑
i=1

log2

(
1 + e−Ln

)
, (5.14)

where N is the number of encoded bits and Ln denotes the LLR corresponding to

the nth coded bit of the all-zero codeword. In (5.14), (a) follows from the all-zero

codeword transmission assumption and the symmetry property of the LLRs, and (b)

is obtained by invoking the ergodicity of the LLRs. In order to exploit (5.14) for

our setup, we adopt channel adapters [80] to enforce the channel symmetry, which

is required for the all-zero codeword transmission assumption. Since it is difficult

to validate the symmetry property of the LLRs delivered by the BCJR decoder, we

treat (5.14) as approximation.
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We declare the perturbed degree distribution admissible if the mutual infor-

mation exceeds 0.995. Note that the LDPC code optimization is performed after we

design the NLTC, therefore, the designed NLTCs are kept unchanged throughout the

LDPC code optimization.

5.6 Code Design Example

As a specific example, we consider a BIBO ZIC defined as1

Y1 = (X1 ⊗X2)⊕ Z1,

Y2 = X2 ⊕ Z2, (5.15)

where ⊕ and ⊗ represent the “XOR” function and the “OR” function. Z1 and Z2 are

noise samples at receiver 1 and 2 drawn from the Bernoulli distribution with param-

eters ε1 and ε2. To simplify the computation of the HK inner bound characterized

via (5.11), we consider W2 = ∅, and assume that no TS (Q) is utilized. This leads to a

sub-region of the complete HK-IB of the IC. Fig. 5.7 illustrates the TS line along with

the sub-region of the HK-IB computed for the parameters ε1 = 0.21 and ε1 = 0.25.

Details of the designed codes are shown in Table 5.1 wherein each row shows

the output bits correspond to the input bit u for the current state S. For each input

of the NLTC, y1, y2, and y3 represent the output of the NLTCs for PX1(1) = 0.5 and

the transmitter 2 for PX2(1) = 0.1875 and PX2(1) = 0.25, respectively. The constraint

length and the number of output bits are 1 and 4, respectively, that is, at each stage

of the trellis diagram a 1 bit input determines 4 bit outputs. Fig. 5.6 illustrates one of

the designed codes. The degree distribution of the optimized LDPC codes are shown

in Table 5.2.

1The considered example neither satisfy the Markov chain X2 – X1Y2 – Y1 nor the condi-
tion (5.13) for all product distribution of inputs; therefore, it is not an instance of a weak interference
channel. Unfortunately, the example is declared a weak interference channel in [91] by considering
a sub-region of all possible values of pX1

· pX2
.
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Table 5.1: Details of the Employed NLTCs

S u y1 y2 y3

0 0 1010 0001 1000
0 1 0101 0010 0100
1 0 0011 0000 0010
1 1 1100 1000 0001

Table 5.2: Degree Distributions of the Optimized Codes

pX1
(1), pX2

(1) R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

0.5, 0.1875
U1 0.547 9 0.2364 0.2810 0.0281 0.0947 0.0452 0.1118 0.0433 0.1342 0.0253
U2 0.379 6 0.2989 0.2294 0.0661 0.0521 0.1094 0.1161 0.0195 0.0759 0.0326

0.5, 0.25
U1 0.481 7 0.3245 0.1942 0.0883 0.0896 0.0860 0.0127 0.0894 0.1032 0.0121
U2 0.476 7 0.3077 0.1735 0.1522 0.0926 0.0417 0.0556 0.0673 0.0347 0.0747

0.5, 0.5
U1 0.058 3 0.4852 0.2330 0.0733 0.0167 0.0785 0.0685 0.0335 0.0092 0.0019
U2 0.161 4 0.3537 0.2239 0.0891 0.0578 0.1118 0.0330 0.0761 0.0395 0.0151

Fig. 5.7 demonstrates the achieved rate pairs employing the designed NLTCs

and LDPC codes2. To achieve the two middle rate pairs, we utilize NLTCs because the

distribution of X2 is not uniform. For the other two points, however, the distribution

of the 0’s and the 1’s for the transmitted codewords are uniform, therefore, we only

employ LDPC codes. Note that for PX2(1) = 0, transmitter 2 does not practically

participate in the transmission and the channel is essentially a P2P channel. It is

also worth mentioning that the two achieved middle points are located outside the

rate region achieved via uniform distribution. This implies that one cannot achieve

these points by means of only LDPC codes highlighting the advantage of proposed

approach for code design.

We also estimate the performance of the specific codes with finite block length

picked from optimized degree distributions via simulations. To measure the decoding

performance, we introduce α as 0.21
ε1

where ε1
ε2

is kept fixed for different values of ε1.

Fig. 5.8 shows the decoding results for the code block length 10k. Considering a

BER of 104 as reliable transmission, the decoding thresholds of the optimized codes

2The outer-bound (10) provided in [91] is unfortunately incorrect. In fact, the considered example
in the paper does not conform the Markov chain property, hence, the sum-capacity result, used as
the third inequality in the outer-bound, does not necessarily hold.
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Figure 5.7: Achievable Rate Regions and Achievable Points for the Considered Ex-
ample
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Figure 5.8: Decoding Results for the Optimized Degree Distributions
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corresponding to PX2(1) = 0.1875, PX2(1) = 0.25, PX2(1) = 0.5 are observed at

α = 1.2, α = 1.25, and α = 1.22, respectively, for the considered code block length.

5.7 Chapter Summary

In this chapter, we focused on code design for the two-user DMIC. In particular,

irregular LDPC codes concatenated with NLTCs are employed for transmission, and

a BCJR algorithm based decoder interacting with an LDPC single user decoder is used

at the receiver sides. Specifically, we considered the two-user BIBO ZIC, where one

receiver is interference free. We designed NLTCs based on the optimal distribution

obtained by maximizing the sum-rate computed for the HK sub-region. It is observed

that optimized codes achieve rate pairs exceeding the TS line implying that the

optimize codes offer better performance than the single user codes. In addition,

it is shown that some of achieved points in the rate region cannot be obtained by

means of employing only LDPC codes highlighting the benefits of employing NLTCs

along with irregular LDPC codes in this interference channel scenario.
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Chapter 6

DESIGN OF SHORT BLOCK LENGTH CODES FOR INTERFERENCE

CHANNELS

In the previous chapters, we have studied LDPC code design for different multi-user

channel models with specific emphasis on ICs. We explored different methods of code

optimization; however, the main underlying assumption of these methods was the

independence of the exchanged LLRs within the decoder which is only valid for a

code with a cycle-free bipartite graph corresponding to an infinite block length code.

The cycle-free assumption is justified by focusing on codes with large block lengths

for which the behavior of the code concentrates around the asymptotic thresholds.

However, codes with large block lengths impose extensive delays in the transmission,

hence, they are not suitable for delay constrained communications. With this moti-

vation, we now turn our attention to short block length codes for use over ICs in this

chapter.

Recently, short block length codes have been designed for two-user GMACs

employing trellis-based approaches [98]. Trellis-based codes have been successfully

employed for P2P channels and they can achieve superior performance in space-time

coding scenarios particularly for quasi-static fading channels. It is also possible to

implement optimal decoders for such codes even in certain multi-user setups, and

compute performance bounds in an efficient manner. Here, we consider two-user GICs

employing trellis-based codes and derive error-rate bounds in order to design optimal

codes with short block lengths and study their performance via some examples.

The chapter is organized as follows. In Section 6.1, we revisit the system model

for a two-user GIC. In Section 6.2, we review existing performance bounds developed

for two-user GMACs and two-user GBCs. In Section 6.3, we utilize the bounds
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derived for GMACs from the exisiting literature towards developing a framework for

designing trellis-based codes for two-user GICs under strong interference, and present

specific design examples. In Section 6.4, we turn our attention to the case of weak

interference levels and exploit the bounds developed for two-user GBCs to design

codes for this scenario. In Section 6.5, we extend our findings to the case of mixed

interference and provide several code design examples. Finally, in Section 6.6, we

summarize our contributions and conclude the chapter.

6.1 System Model

Fig. 6.1 illustrates the block diagram of a two-user GIC. Considering receiver i, the

n-length received signal vectors can be written as

yi = αic + zi, i = 1, 2, (6.1)

where c denotes the BPSK modulated transmitted codeword matrix as follows c1

c2

 =

 c1
1 c

1
2 . . . c1

n

c2
1 c

2
2 . . . c2

n

 , (6.2)

with c1 and c2 representing the codewords employed at transmitter 1 and transmitter

2, respectively. The channel gains from the transmitters to the receiver i are denoted

as αi = [α1i α2i], where αji is a real number denoting the gain of the channel from the

transmitter j to the receiver i. Note that for a more realistic channel model αji can

be taken as complex but we consider real values for the simplicity of the analysis. The

i.i.d. zero mean Gaussian noise samples with variance N0

2
at receiver i are represented

by the vector zi of length n. As in Chapter 4, the SNR and INR at receiver i are

defined as

SNRi =
α2
iiPi
N0

, INRi =
α2
jiPj

N0

, (6.3)

where i, j = 1, 2, and Pi is the average power of the transmitted codeword bits at

the transmitter i. Based on the interference and signal levels, the interference can
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be categorized as strong (if INRi > SNRj), weak (if SNRi > INRj), or mixed (if

INRi > SNRj, INRj < SNRi) with i 6= j.
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6.2 Error-Rate Bounds for GMACs and GBCs

Authors in [98] studied short block length trellis-based code designs for two-user

Gaussian MACs where they derive error rate bounds computed approximately used in

the optimization process. Authors in [99] considered two-user GBCs and developed an

upper bound on the performance of the successive interference cancellation employed

at the better receiver to decode the messages in two stages. In the following we

review these two bounds. These techniques will then be utilized to derive performance

bounds for the two-user GIC for our short block length code design problem.

6.2.1 Error-Rate Bounds for Two-User GMACs

A two-user GMAC is formed by considering one receiver and two transmitters where

the transmitters separately encode their messages. The n-length received signal vector

is expressed as

y = αc + z, (6.4)

following the definitions in the previous section. To compute the performance bound,

pairwise error probability can be utilized, which is defined as the two-codeword error
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probability, i.e., probability that the received signal is closer to ĉ given that c is

transmitted. A maximum likelihood decoder at the receiver sides decides according

to the Euclidean distance between codewords, therefore, the pairwise error probability

is computed as

P
(
c→ ĉ

∣∣c is transmitted
)

= Q

(√
Ed2(c, ĉ)

2N0

)
, (6.5)

where Q-function is the tail probability of the standard normal distribution defined

as

Q(x) =
1√
2π

∫ ∞
x

exp

(
− t2

2

)
dt, (6.6)

and Ed2(., .) is the squared Euclidean distance computed as

Ed2(c, ĉ) = αDc,ĉα
†, (6.7)

where † denotes the transpose and Dc,ĉ represents the codeword difference matrix,

given by

Dc,ĉ = (c− ĉ)(c− ĉ)†. (6.8)

Considering the union bound, the frame error probability is upper-bounded as

Pf ≤
1

|C|
∑
c

∑
ĉ6=c

P
(
c→ ĉ

∣∣c is transmitted
)
. (6.9)

One main difficulty in computing (6.9) is the complexity of enumeration of the mul-

tiplicities of the codeword difference matrix Dc,ĉ for all possible correct-erroneous

codeword pairs. On the other hand, for certain cases such as convolutional codes this

matrix can be computed efficiently and in a systematic manner. In the following, we

describe the approach developed in [98] to count the multiplicities of different Dc,ĉ

for use in the bound computations.

Consider a two-user joint trellis diagram with states labeled as (s1, s2) with si

representing the state of the trellis for the code of ith user. The joint trellis has ns1×
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ns2 states with nsi denoting the number of states for the ith user’s code. To track all

possible codeword pairs (c, ĉ), a product state trellis diagram with states (s1, s2, ŝ1, ŝ2)

is formed wherein si and ŝi represent the states of the trellises corresponding to the

codes ci and ĉi, respectively. To count the multiplicities, a state transition matrix

S1,2 is assigned to the product state trellis whose element in the kth row and the lth

column is expressed as

[S1,2]k,l = D
qk,l11
11 ×D

qk,l12
12 ×D

qk,l22
22 (6.10)

where D11, D12, D22 are dummy variables used to list the multiplicities of the different

types of errors between two pairs of codewords [100]. The exponent qk,li,j is used to

compute the contribution of the transition from state k to state l to the ith row and

jth column entry of the Dc,ĉ. Note that [Dc,ĉ]1,2 = [Dc,ĉ]
†
2,1, therefore the codeword

difference matrix can be characterized by keeping track of the multiplicities qk,l1,1, qk,l1,2,

and qk,l2,2 of dummy variables D11, D12, and D22, respectively.

The union bound can be tightened by considering only simple error events

defined as errors associated with the paths that merge only once with the correct

path in the trellis diagram. To efficiently count the simple error events, an expurga-

tion technique (given in [100]) is adopted. The technique is nothing but introducing

an error state in the product state trellis. The transition to the error state occurs

only from states corresponding to the paths for which c 6= ĉ. Also, the only pos-

sible transition from this state is to itself. Considering L stages of the joint trellis

state transition1, the complete list of possible Dc,ĉ for the transmitted codewords is

obtained via calculating the Lth power of S1,2. Taking the trellis termination into

account, the final stages of state transition matrix considered in the computation is

modified accordingly.

1This corresponds to m.L number of input bits for m bits assigned to each branch of a stage in
the joint trellis state transition.
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Despite the simplicity of the approach, the exact calculation of the bound

through this method has high computational cost therefore it is not directly suitable

for code design. Authors in [98] simplify the code design process by considering a

shorter frame length than the intended design length. This is motivated by the fact

that the decoding performance of the convolutional codes does not change significantly

by considering a traceback length of four to five times of the constraint length of the

code [101, Ch. 4]. In other words, even though the computed bounds would differ

for different codeword lengths, the performance of the codes can be ordered based on

their performance computed for a sufficiently large (but relatively small) length code

which is manageable.

Another simplification is performed in an attempt to cope with the memory

limitation where the number of terms for each entry of S1,2 is restricted to those

components (qij) with magnitudes less than a specific threshold. Although this greatly

helps with the computation, the final computations based on this truncation approach

should be considered as approximations rather than being true upper-bounds.

6.2.2 Error-Rate Bound for Two-User GBCs

A two-user GBC is formed by one transmitter and two receivers. The transmitted

signal can be obtained by superimposing the messages intended for each receiver,

which can be performed through a simple addition (assuming that superposition

coding is used). That is, with ci denoting the encoded message intended for receiver

i, i = 1, 2, the n-length symbols received at receiver 1 can be written as

y1 =
√
P1c

1 +
√
P2c

2 + z, (6.11)

where Pi represents the average power of the received signals of message i.

The two-user GBC is a degraded BC, hence the better receiver can decode

both messages. Without loss of generality, we assume that receiver 1 is the better
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receiver utilizing a successive interference cancellation. To simplify the analysis the

minimum-distance criterion is employed to decode the messages in [99], that is,

ĉ1 = arg min
c̃1

∥∥∥y1 −
√
P1c̃

1
∥∥∥2

, (6.12)

where c̃1 is the decoded codeword. Note that the employed decoding is not an in-

stance of ML decoding which is used for the GMAC. In fact, we obtain a similar

bound to the case of GMAC if the ML decoding is utilized, however, we adopt the

minimum-distance criterion to simplify the analysis providing an upper bound on

the performance of the ML decoding. The performance of the employed decoder be-

comes close to that of the ML decoder as the difference between the powers of the

transmitted codewords increases.

For the transmitted codeword pair c, the pairwise error probability at receiver

1 is defined as the probability that the received signal is closer to a different codeword

ĉ1 than the transmitted codeword c1. Therefore, the frame error probability for the

first stage of the decoding can be upper-bounded as

Pf ≤
1

|C|
∑
c

∑
ĉ1 6=c1

P
(
c1 → ĉ1

∣∣c is transmitted
)
, (6.13)

Considering (6.11), the pairwise error probability P
(
c1 → ĉ1

∣∣c is transmitted
)

is

equivalent to

P

(∥∥∥y1 −
√
P1ĉ

1
∥∥∥2

≤
∥∥∥y1 −

√
P1c

1
∥∥∥2
∣∣∣∣ c is transmitted

)
, (6.14)

therefore, (6.13) can be simplified to

Pf ≤
1

|C|
∑
c

∑
ĉ1 6=c1

P

(
n∑
i=1

y1i(c
1
i − ĉ1

i ) ≤ 0

∣∣∣∣ c is transmitted

)
. (6.15)

It is shown in [99] that

n∑
i=1

y1i(c
1
i − ĉ1

i ) = 2
(√

P1d1 +
√
P2(d1 − 2d2) +G

)
, (6.16)
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where d1 is the number of bit errors in ĉ1 and d2 is the number of positions where c1

and c2 differ for the positions where c1 6= ĉ1, andG is a Gaussian random variable with

zero mean and variance d1N0

2
. Therefore, an upper-bound for the error probability

in (6.13) can be calculated as

Pf ≤
1

|C|
∑
c

∑
ĉ1 6=c1

Q

(√
2f
(
d1, d2,

√
P1,
√
P2

)
N0

)
, (6.17)

where f is defined as

f
(
d1, d2,

√
P1,
√
P2

)
=

(√
P1d1 +

√
P2(d1 − 2d2)

)2

d1

. (6.18)

The major difficulty in computing the bound in (6.17) is that for any possible value

of d1, we are required to compute the distribution of the random variable d2 but the

conditional distribution P (d2|d1) depends on the geometry of the employed codes in

general. For the case of trellis-based codes, however, the computation of the bound

can be efficiently handled by listing the multiplicities of different values of d2 and

d1 by applying similar technique utilized in [98]. To this end, a product state trellis

with states (s, ŝ) is formed where s = (s1, s2) and ŝ = (̂s1, ŝ2) denote the states of two

codeword pairs. A state transition S ′1,2 is constructed with the entry in the kth row

and lth column expressed as

[S ′1,2]k,l = D
dk,l1
1 ×Ddk,l2

2 . (6.19)

Similar to the case of GMAC, for the L stage trellis, the multiplicities of the different

values of d1 and d2 can be obtained by computing the Lth power of S ′i,j. To address

the issue of the memory and complexity requirements, similar techniques as before can

be implemented where the number of the terms are limited to those with components

(d1 and d2) less than a specific threshold.
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6.3 Short Block Length Code Design for GIC with Strong Interference

For a GIC with strong interference, it is optimal to decode the interfering signal along

with the desired signal from the information theoretic view point. Therefore, we opt

for jointly decoding the messages of both users at each receiver. As a consequence,

the bounding technique utilized in [98] can be exploited to derive the performance

bound for the GIC under strong interference. In the following, we detail the derived

upper-bound and the code design framework.

6.3.1 Computation of Error-Rate Bounds

Since at each receiver, both the interfering and the desired signals are decoded, the

channel can be considered as two GMACs, therefore, the frame error probability can

be upper-bounded as

Pf <
1

|C|
∑
c

∑
ĉ 6=c

(
Q

(√
Ed2

1(c, ĉ)

2N0

)
+Q

(√
Ed2

2(c, ĉ)

2N0

))
, (6.20)

where Ed2
i (., .) is the squared Euclidean distance function computed at receiver i as

Ed2
i (c, ĉ) = αiDc,ĉα

†
i . (6.21)

Due to the similarity of the GIC under strong interference with the case of GMAC, the

codeword difference matrix Dc,ĉ for all the multiplicities can be efficiently computed

following similar steps as in [98]. The code optimization can then be simply performed

by searching for pairs of codes (one for each user) minimizing the bound (6.20) com-

puted at a specific SNR.

Similar to [98], we consider shorter length paths through the trellis than the

intended code block length for ordering the performance of the codes. Furthermore,

to compute the bound, we follow a similar simplification as in [98] and truncate the

number of terms kept for each entry of the multiplication matrix. We need to highlight
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that this simplification results in an approximate bound because the dismissed terms

during the computation may have significant effects to the final value. To be more

exact, the computation in (6.21) is a linear combination of Dc,ĉ’s components (qij),

hence components with large magnitude can still compensate each other leading to

a small value with appreciable effect on the computation. As a consequence, the

computation provided here should be considered as an approximation to the union

bound rather than an actual upper-bound on the error rate.

In the following subsection, we present examples of code design carried out for

instances of the GIC with strong interference.

6.3.2 Code Design Examples

We consider code rates of 1
2

and code block length of N = 96. The performance of the

optimized trellis-based codes are compared against that of LDPC codes (96.33.964)

and (96.33.966) taken from [102]. The constraint length of trellis-based codes is 2,

therefore termination for each user’s code is achieved via the last two information bits.

The trellis-based codes are represented in octal form; i.e., (m1, n1)/(m2, n2) represents

the codes adopted for the GIC where the code (mi, ni) represents the convolutional

encoder in octal notation for transmitter i. The code optimization is carried out

through ordering the codes’ performance by computing the approximate bounds. To

efficiently handle the matrix multiplications and cope with the memory limitations,

the number of terms for each entry of the state transition matrix is truncated to 25.

For the first example, we consider a GIC with SNR1 − SNR2 = 2 dB,

INR1 − SNR2 = 1 dB, and INR2 − SNR1 = 2 dB. Code design is performed

by minimizing the performance bound (6.20) at SNR1 = 8 dB over the codes with 4

states. The minimum value of the upper-bound is achieved for the code (2, 5)/(5, 7).

For comparison purposes, we also consider codes designed for P2P channels. In order
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to employ the P2P codes for the two-user setup, an interleaved scheme is adopted

where the same code with different assignment of generator matrices to the output

bits are used for the users. That is, for the first user we employ the code (5, 7), which

has the largest minimum distance among the codes with the constraint length 2. For

the second user, we adopt the code (7, 5), which obviously is the same code with (5, 7)

with a different assignment of coded bits.

Fig. 6.2 illustrates the decoding performance of the trellis-based codes and the

LDPC codes employed for the considered GIC. The performance of LDPC codes is

computed for both SIC [50] and SUD techniques obtained via simulations. For the

former technique, each receiver adopts a joint decoder and aims at partially decode

the interfering signal helping the overall decoding while for the latter, each receiver

treats the interfering signal as noise. It is evident that the SIC scheme provides

a better performance than the SUD. It is observed that the optimized trellis-based

codes outperform the P2P optimal codes, both offering a better performance than

LDPC codes even for the case of SIC.

As another example, code optimization is carried out for a GIC with SNR1−

SNR2 = 1 dB, INR1−SNR2 = 2 dB, and INR2−SNR1 = 1.5 dB. Unlike previous

example, code design is performed targeting different SNR values, that is, the upper-

bound is minimized for codes with 4 states at low and high SNRs separately. For

this example, we choose SNR1 = 3 dB and SNR1 = 8 dB for which (2, 7)/(7, 5) and

(6, 7)/(3, 5) minimize the upper-bound (6.20), respectively. Fig. 6.3 demonstrates the

decoding results for the codes adopted for the considered GIC. The codes optimized

at SNR1 = 3 dB have the best performance at low SNRs while (6, 7)/(3, 5) have

the best performance at high SNRs. In addition, both optimized codes considerably

outperform the P2P optimal codes at high SNRs. Similar to the previous example,
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the performance of the LDPC codes computed with SIC is better than that obtained

with SUD, however, both are inferior to the performance of trellis-based codes.

This poor performance of LDPC codes can be mainly attributed to the in-

feriority of the decoding algorithm in multi-user setups for short block lengths. A

similar observation is made for the GMAC in [98] where the authors show that the

performance of the short block length LDPC codes under joint decoding is inferior to

that of the trellis based codes. In fact, the considered BP based JD is sub-optimal

primarily due to the fact that for short block lengths, interference cancellation does

not work well as the individual decoding results are not very reliable unless one signal

is much stronger than the other [98]. Moreover, for the considered code block length

the short cycles affect the decoding performance of the BP.
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Figure 6.2: Total Frame Error Rate of LDPC Codes and Trellis-Based Codes Em-
ployed for a GIC with Strong Interference SNR1 − SNR2 = 2 dB, INR1 − SNR2 =
1 dB, and INR2 − SNR1 = 2 dB
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6.4 Short Block Length Code Design for GIC with Weak Interference

Under weak interference, decoding of interfering signals to their entirety is not an

optimal strategy from information theoretic point of view. Therefore, for comparison,

we investigate the performance of both JD and SUD in the numerical results. To

compute the performance bounds, which is exploited to optimize trellis-based codes,

we consider SUD which resembles the first stage of the decoding approach taken

in [99], hence similar arguments can be followed.

6.4.1 Computation of Error Rate Bound

Considering the upper-bound derived in (6.17), similar strategy can be followed to de-

rive the bound when interference is treated as noise, that is, the total error probability
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under weak interference is upper-bounded as

Pf ≤
1

|C|
∑
c

2∑
i=1

∑
ĉi 6=ci

Q

(√
2f(dii, dji, αii, αji)

N0

)
, i, j = 1, 2, i 6= j, (6.22)

where dii is the number of bit errors in ci and dji is the number of positions where

cj and ci differ for the positions where ĉi 6= ci. In order to list the multiplicities of

different values of dii and dji, a product state trellis is constructed to which two state

transition matrices S ′1,2 and S ′2,1 are associated. The entry in the kth and lth row of

S ′i,j is computed as

[S ′i,j]k,l = D
dk,lii
11 ×D

dk,lji
12 , (6.23)

where i, j ∈ {1, 2}, i 6= j. Similar to the approach taken in [98], the computed

state transition matrices are utilized towards listing the possible values of dij with

their multiplicities characterizing the upper-bound (6.22). Similar simplifications are

performed to cope with the memory limitations, therefore the computed values are

treated as approximations rather than being actual upper bounds.

The adopted decoding scheme for the weak interference level only aims at

decoding the desired signals. As a result, the decoding metrics should be modified

accordingly reflecting the fact that the interfering signal is treated as noise. Imple-

menting the minimum distance criterion, we ignore the code constraints of the weaker

signal, therefore the decoder i favors the codeword maximizing P (yi|ci), given by

logP (yi|ci) =
N∑
k=0

logP (yik|cik)

=
N∑
k=0

log

(
1

2
√
πN0

[
e
−

(
yik−αiic

i
k−αji

)2
N0 + e

−

(
yik−αiic

i
k+αji

)2
N0

])

=C +
N∑
k=0

log

(
e
−

(yik−αiic
i
k)

2+α2ji
N0

(
e

2αji(yik−αiic
i
k)

N0 + e
−

2αji(yik−αiic
i
k)

N0

))

=C ′ −
N∑
k=0

[
(yik − αiicik)2 − log

(
cosh

(
2αji(yik − αiicik)

N0

))]
,
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where C and C ′ are constant for all different codewords ci. The considered decoding

algorithm can be efficiently performed by employing a Viterbi decoder at each receiver

for which the metric of each branch is computed as

t∑
k=0

[
(yik − αiicik)2 − log

(
cosh

(
2αji(yik − αiicik)

N0

))]
, (6.24)

where t is the number of output bits for one stage of the trellis section.

It is worth mentioning that, similar to the case of strong interference, joint de-

coding can also be employed at each receiver resulting in similar performance bounds;

however, for simplicity of the computations, we utilize the minimum distance criterion

to compute the performance bounds, which is also exploited in the code optimization.

In essence, the performance of the employed decoding scheme becomes close to that

of joint decoding when the interference levels at the receivers are negligible compared

to the desired signals.

The code design is carried out by searching for the codeword pair minimizing

the upper-bound (6.22). In the following, we perform code optimization for examples

of GICs with weak interference.

6.4.2 Examples of Code Design

Consider a GIC with SNR1 − SNR2 = 0.5 dB, INR1 − SNR2 = −1 dB, and

INR2 − SNR1 = −1.5 dB where the SNR and INR constraints satisfy the weak

interference condition. The code design is pursued by minimizing (6.22) at SNR =

20 dB over codes with 4 states, which is achieved with (4, 5)/(5, 7). The performance

of the optimized codes is compared against that of the P2P optimal codes and the

off-the-shelf LDPC codes. Fig. 6.4 shows the decoding results of the codes employed

for the considered GIC. For comparison, the performance of the trellis based codes are

obtained for JD and SUD. It is shown that, under SUD where the interfering signal
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is treated as noise, the performance of the optimized codes is similar to that of the

P2P optimal codes. However, the optimize codes offer better performance than the

P2P optimal codes under JD. Moreover, the performance of the LDPC codes with

SUD is better than both the optimized codes and the P2P optimal codes, however,

they are inferior to the trellis based codes under JD. The poor performance of the

considered SUD can be attributed to the level of the interference at the receivers

which is comparable to the power of the desired signals.

For the second example, we consider a GIC with SNR1 − SNR2 = 1 dB,

INR1 − SNR2 = −1 dB, and INR2 − SNR1 = −2 dB. Code design is carried out

at SNR = 20 dB, where (4, 5)/(5, 7) achieves the minimum value of (6.22) among

all the codes with 4 states. Fig. 6.5 illustrates the decoding results computed for the

different codes. Similar to the previous example, the performance of the optimized

codes is superior to that of the P2P optimal codes under JD; however, both perform

similarly under SUD. Moreover, LDPC codes beat the employed trellis based codes

when SUD is adopted but they are outperformed under JD.

As another example, code optimization is carried out for a GIC with SNR1−

SNR2 = −0.75 dB, INR1 − SNR2 = −1.5 dB, and INR2 − SNR1 = −0.5 dB.

For this example P2P optimal codes achieve the minimum of the expression in (6.22)

considering all the codes with 4 states where the bounds are computed at SNR =

20 dB. For comparison, we also consider the codes ranked second in the minimization

which are (5, 7)/(6, 7). Fig. 6.6 demonstrates the performance of the employed codes

for the considered GIC. Under SUD, the P2P optimal codes and the optimized codes

have comparable performance both are outperformed by LDPC codes. For the case

of JD, however, LDPC codes are inferior to the trellis based codes and the optimized

codes provide better performance than the P2P optimal codes.
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Figure 6.4: Total Frame Error Rate of LDPC Codes and Trellis-Based Codes Em-
ployed for a GIC with Weak Interference SNR1−SNR2 = 0.5 dB, INR1−SNR2 =
−1 dB, and INR2 − SNR1 = −1.5 dB

6.5 Short Block Length GIC with Mixed Interference

For the mixed interference scenario, one receiver experiences strong interference while

the other is under weak interference. As a result, to compute the performance bounds,

parallel to the case of strong and weak interference regimes, we consider JD and

SUD for the receiver under strong interference and the receiver experiencing weak

interference, respectively. In the numerical results, we consider both JD and SUD for

the receiver under weak interference to assess the performance of the codes. In the

following, we elaborate on the computation of the performance bound for this case

for use in code design.
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Figure 6.5: Total Frame Error Rate of LDPC Codes and Trellis-Based Codes Em-
ployed for a GIC with Weak Interference SNR1 − SNR2 = 1 dB, INR1 − SNR2 =
−1 dB, and INR2 − SNR1 = −2 dB

6.5.1 Computation of Error Rate Bound

Without loss of generality, we assume that receiver 1 and receiver 2 experience weak

interference and strong interference, respectively. Parallel to the previous scenarios,

receiver 1 treats the interfering signal as noise while receiver 2 decodes both mes-

sages jointly. Considering the bounds derived for the previous scenarios, the frame

error probability, defined as the probability of codewords of either transmitters being

decoded to wrong codewords, can be upper bounded as

Pf ≤
1

|C|
∑
c

[ ∑
ĉ1 6=c1

Q

(√
2f(d11, d21, α11, α21)

N0

)
+
∑
ĉ 6=c

Q

(√
Ed2

2(c, ĉ)

2N0

)]
. (6.25)

Computation of (6.25) can be efficiently done utilizing the approach explained in

previous sections. Note that joint decoding can be also adopted at receiver 1 where

similar bounds to the case of strong interference will be obtained.
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Figure 6.6: Total Frame Error Rate of LDPC Codes and Trellis-Based Codes Em-
ployed for a GIC with Weak Interference SNR1−SNR2 = −0.75 dB, INR1−SNR2 =
−1.5 dB, and INR2 − SNR1 = −0.5 dB

The code design process is nothing but computing the bound for all the code-

word pairs and selecting the one corresponding to the best error rate estimate.

6.5.2 Examples of Code Design

For the first example, we consider a GIC with SNR1−SNR2 = 8 dB, INR1−SNR2 =

6 dB, and INR2 − SNR1 = −6 dB. The codes are designed through minimizing

the (6.25) at SNR1 = 15 dB computed for codes with 4 states. The P2P optimal

codes achieve the minimum value, therefore we consider the second best pair of codes

(5, 7)/(6, 7) as well. The performance of the optimized codes is compared against

that of the P2P optimal and the LPDC codes. We consider two decoding schemes.

In one scheme both messages are decoded at each receiver. For the other scheme,

the receiver under weak interference utilize SUD while the other receiver decode the

messages jointly.
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Fig. 6.7 shows the performance of the adopted codes for the considered GIC.

The optimized codes and the P2P optimal codes perform similarly when SUD is

adopted for receiver 1; however, the optimized codes outperform the P2P optimal

codes when JD is employed. It is worth mentioning that even though the P2P optimal

codes achieve the minimum value for the computed performance bound, the second

pair of best codes performs better emphasizing that the computed bounds should be

treated as only approximations.
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Figure 6.7: Total Frame Error Rates of LDPC Codes and Trellis-Based Codes Em-
ployed for a GIC with Mixed Interference SNR1 − SNR2 = 8 dB, INR1 − SNR2 =
6 dB, and INR2 − SNR1 = −6 dB

For the next example, we consider a GIC with SNR1−SNR2 = 4 dB, INR1−

SNR2 = 0.5 dB, and INR2 − SNR1 = −3 dB. At SNR1 = 7 dB, minimum of the

performance bound is achieved by (5, 7)/(6, 7). Fig. 6.8 illustrates the decoding results

computed for the codes adopted for the considered GIC. It is shown that the optimized

codes beat the P2P optimal codes under both JD and SUD. Moreover, trellis-based

codes considerably outperform the LDPC codes regardless of the employed decoding
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scheme. As shown, the performances of the LDPC codes are similar for both SUD and

SIC. This can be attributed to the fact that the overall frame error rate is controlled

by the second receiver which is under strong interference.
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Figure 6.8: Total Frame Error Rates of LDPC Codes and Trellis-Based Codes Em-
ployed for a GIC with Mixed Interference SNR1 − SNR2 = 4 dB, INR1 − SNR2 =
0.5 dB, and INR2 − SNR1 = −3 dB

As another example, we take a GIC with mixed interference into consideration

where SNR1−SNR2 = 5 dB, INR1−SNR2 = 1 dB, and INR2−SNR1 = −4 dB. We

design codes to achieve the minimum of the performance bound at SNR1 = 9 dB. The

optimization result is (5, 7)/(6, 7). Fig. 6.9 illustrates the decoding results obtained

for the individual and the total frame error rates. It is shown that the optimized codes

beat the P2P optimal codes both are superior to the LDPC codes. Moreover, the

performances of the trellis based codes are similar under JD and SUD. LDPC codes

also have similar performance under SIC and SUD. This is because, as shown in the

figure, the total frame error rate is controlled by the receiver 2 experiencing strong

interference, therefore decoding both messages at the receiver 1 does not improve the
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overall performance.
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Figure 6.9: Total and Individual Frame Error Rates of LDPC Codes and Trellis-
Based Codes Employed for a GIC with Mixed Interference SNR1 − SNR2 = 5 dB,
INR1 − SNR2 = 1 dB, and INR2 − SNR1 = −4 dB

To further explore this point, we consider a GIC with SNR1−SNR2 = 3 dB,

INR1−SNR2 = 1 dB, and INR2−SNR1 = −1 dB. Code optimization is performed

by minimizing the performance bound at SNR = 14 dB, which is attained by the P2P

optimal codes followed by (5, 7)/(6, 7). Fig. 6.10 demonstrates the individual and the

total frame error rate computed for different codes employed over the considered GIC.

It is shown that optimized codes and the P2P optimal codes have similar performances

under SUD; however, the optimized codes perform better under JD. Moreover, they

are superior to the LDPC codes under JD, however, they are outperformed when

SUD is employed. Unlike the previous example, we notice that receiver 1, which

experiences weak interference, dominates the overall performance for all the employed

codes. As a consequence, decoding both messages at receiver 1 results in considerable

improvements over SUD.
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Figure 6.10: Total and Individual Frame Error Rates of LDPC Codes and Trellis-
Based Codes Employed for a GIC with Mixed Interference SNR1 − SNR2 = 3 dB,
INR1 − SNR2 = 1 dB, and INR2 − SNR1 = −1 dB

6.6 Chapter Summary

In this chapter, we focused on code design for the two-user GIC when code block

length is short. In the first part, we reviewed the existing performance bounds de-

veloped for the two-user GMAC and the two-user GBC. These results were exploited

towards developing performance bounds for the two-user GIC for different interfer-

ence levels which were then utilized in designing trellis-based codes. It is shown that

under strong interference optimized trellis-based codes offer better performance than

the P2P optimal codes, both outperforming the LDPC codes. For the case of weak

interference, we noticed that optimized codes and the P2P optimal codes have simi-

lar performance, and both were inferior to LDPC codes under SUD. However, LDPC

codes are outperformed by the trellis-based codes and the optimized codes offer bet-

ter performance than the P2P optimal codes under JD. For the mixed interference

scenario, we observed that under JD the optimized trellis-based codes consistently
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outperform the P2P optimal codes and both were superior to the LDPC codes. How-

ever, LDPC codes provide better performance than the trellis-based codes when the

SUD is employed for the dominant receiver under weak interference.
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Chapter 7

SUMMARY AND CONCLUSIONS

In this dissertation, we study the design of LDPC codes and trellis-based codes for

different multi-user channels. We review the existing literature on the information

theoretic bounds and practical codes optimized for the GMAC, BC, and RCs. For

code optimization, we start with the two-user GMAC employing BPSK signaling.

We derive the PDF of the LLRs sent from the state nodes to the variable nodes

when joint decoding is adopted at the receiver. Through Monte-Carlo simulations,

we observe that the PDF of the LLRs sent from the state nodes to the variable

nodes can be closely approximated with a GMD. As such, we propose new iterative

decoding analysis methods based on the GMD assumption and provide the update

rule for the GMD parameters through the decoding iterations. We compare the

performance of the proposed GMD analysis to the existing mutual information update

rule approximations in the literature and notice that the proposed approach leads

to a better estimate of the decoding thresholds. The proposed methods are then

incorporated into code optimization performed for two scenarios of channel gains

being equal and unequal. For equal channel gains, we compare our optimized codes

to the existing designs and show that superior performance is attained. For unequal

channel gains, we perform the code optimization incorporating different methods in

the literature and show that the codes designed with the proposed methods offer the

best performance.

As another investigation, we study the code design for the two-user GMAC

for quasi-static Rayleigh fading channels. Common outage capacity is adopted as the

performance measure and the corresponding rate region is characterized for BPSK

signaling. Code optimization is performed for examples with real and complex chan-
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nel gains. The results indicate that the designed codes achieve rate pairs close to

the outage region boundaries consistently offering better performance than the P2P

codes. Finite code block length simulations of specific codes picked from designed en-

sembles demonstrate the superior performance of the optimized codes over the P2P

alternatives.

We also examine the code design principals for GICs with the fixed chan-

nel gains when BPSK and QPSK constellations are adopted for the transmission.

HK coding and decoding strategy is employed at the transmitter and receiver sides,

where public and private messages are encoded with separate LDPC codes and joint

decoding is implemented at the receiver. To simplify the computations of the HK

rate region characterization, a sub-region is considered for which public and private

messages are combined with standard addition and no TS is utilized. Unlike the two-

user GMAC, we exploit a variant of the EXIT chart analysis wherein no Gaussian

assumption is considered for mutual information evolution and instead, Monte-Carlo

simulation is adopted to compute the true mutual information at each node of the

decoder. Having utilized the i.i.d. channel adapters, we prove a symmetry property

of the exchanged LLRs under joint decoding of three messages, which plays a key role

in computing the mutual information in the EXIT chart analysis. Moreover, stability

condition is derived for BPSK and QPSK signaling for strong and weak interference

levels, separately. We perform the code optimization for a multitude of scenarios with

different interference levels. Under strong interference, the optimized codes beat the

non-naive TS rate region with Gaussian signaling. Under weak interference, opti-

mized codes outperform the naive TS region (with Gaussian signaling) and operate

close to the non-naive TS region boundary. Furthermore, the designed codes improve

consistently upon the codes optimized for the P2P channels. Finite code block length

simulations are also performed adopting the designed LDPC code validating the esti-
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mated thresholds. Considering practical applications, we also study the code design

for short/moderate block lengths utilizing structured LDPC codes, and demonstrate

that superior performance is observed over the codes with random constructions at

high SNRs.

We also study code design for the two-user DMIC adopting the HK cod-

ing/decoding strategy. Particularly, we consider the two-user BIBO ZIC, wherein

one receiver is interference free, and characterize the HK rate region. To simplify

the characterization, we assume that no TS is utilized and messages are transmitted

as private yielding a sub-region of the actual HK rate region. Through exhaustive

search, we obtain the optimal distributions for the transmitted codewords leading

to the maximum sum-rate computed for the HK sub-region. The proposed coding

scheme consists of employing LDPC codes along with NLTCs to introduce the desired

distributions into the transmitted bits and exploit BCJR-algorithm based decoders

in conjunction with LDPC single user decoders at the receiver sides. The code opti-

mization is nothing but design of NLTCs and the LDPC codes. Optimized codes are

shown to operate above the TS line hence offering a better performance than single

user codes used with TS. It is also shown that some of the achieved points cannot be

obtained through using only LDPC codes (which induce equal density of 0’s and 1’s)

emphasizing the advantage of the NLTCs in our implementation.

In the last part of the thesis, we investigate the code design principals for short

block length codes in the context of GICs. Previous methods in the earlier chapters

are not suited for short block length codes primarily because the underlying indepen-

dence assumption exploited for the exchanged LLRs within the iterative decoder is

no longer valid. As a consequence, we resort to short block length trellis-based codes

which are successfully employed for the two-user GMAC in recent literature. We
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utilize the existing bounding techniques originally developed for the two-user GMAC

and the two-user GBC, and develop performance bounds for the two-user GIC. The

derived performance bounds are then utilized towards designing short block length

trellis-based codes for examples with strong, weak and mixed interference levels. Un-

der strong interference, the optimized codes show superior performance to the LDPC

codes and the P2P optimal codes. For the weak interference examples, LDPC codes

perform the best under SUD and the performances of the P2P optimal codes are

close to those of optimized codes. Under JD, however, the optimized codes perform

better than the P2P optimal codes and both are superior to the LDPC codes. Similar

behavior is observed for the case of mixed interference where the trellis-based codes

outperform the LDPC codes when JD is employed for the receiver under weak inter-

ference while LDPC codes offer better performance for the case of SUD if the receiver

dominating the error rate is under weak interference.

In the rest of the chapter, we point out several promising research directions

following the line of research in this dissertation.

In Chapter 3, we utilize the EM method to estimate the parameters of the

GM PDFs for the two proposed techniques of modified EXIT chart analysis and the

modified DE. Despite the satisfactory performance of the EM method, it imposes a

high computational burden rendering the proposed techniques inefficient for the quasi-

static fading scenarios. So, a simpler method should be developed for estimating the

parameters of the GMDs. One possible solution is to exploit the special characteristic

of the PDFs of the exchanged LLRs and applying the existing analytical methods

developed in [103] to estimate the GM parameters. Another alternative is to simplify

the forms of the PDFs of the outgoing LLRs from the check nodes and the state nodes.

For instance, one may use a Taylor expansion and derive the mean and variance of

the GM components directly from this approximation.
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Another possible extension of the results in this thesis is to consider the LDPC

code design for the two-user GIC in the case of fading. New techniques should be

developed as the same approach applied to the fixed channel gains scenario may

be inefficient and one may resort to approximate methods such as the one adopted

in [50]. Also, it is interesting to explore the code design employing nested codes

suited for combining the public and private portion of the transmitted message before

modulation. Code design for the nested codes requires developing new methods of

code optimization as the update rules for decoding should be modified to reflect the

encoding scheme used at the transmitters. Parallel to the considered system model,

it is also worth exploring the code design for more than two users, possibly also

leveraging the interference alignment techniques developed in the current literature.

In the case of the two-user DMIC, we investigate the code design for a simple

HK coding strategy, that is, when the messages are sent as private. Better results may

be achieved by considering scenarios where the transmitted messages are composed

of both public and private parts. In addition, the overall performance of the designed

codes can be improved by considering more sophisticated NLTCs through introducing

more states and input bits per trellis stage.

Another possible line of research is in the context of short block length code

design. For instance, one can allow for both public and private messages to be incor-

porated in the transmitted signals. This may improve the results especially for the

case of weak interference where trellis-based codes fall short under SUD compared

to the LDPC codes. Moreover, to further assess the performance of the trellis-based

codes, it is interesting to compare the performance of these codes against the LDPC

codes optimized for such block length via the existing methods such as PEG [104] or

algebraic methods [105].
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APPENDIX A

DERIVATION OF THE MODIFIED J FUNCTION
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We compute the defined function J ′(µ, σ) in (3.11), given by

J ′(µ, σ) = 1− 1√
2πσ2

∫ ∞
−∞

exp

(
− (z − µ)2

2σ2

)
log2

(
1 + exp(−z)

)
dz. (A.1)

For the ease of exposition, we write J ′(µ, σ) as J ′(µ, σ) = 1− I

log(2)
√

2πσ2
. Also, I can

be split into two parts I1 and I2; that is I = I1 + I2, where

I1 =
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I1 can be expressed as I1 = I11 − I12 where

I12 =
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Expanding log
(
1 + exp(z)

)
to its Taylor series, I11 can be rewritten as

I11 =

∫ 0
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exp
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. (A.4)

The mth term of the summation in (A.4), denoted as Am, can be computed as

Am =
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Hence, I11 is computed as

I11 =
(√

2πσ2
)[ ∞∑

m=1

(−1)(m−1)
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1−Q(−µ+mσ2

σ
)
)

m
exp
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, (A.6)

where

Q(x) =
1√
2π

∫ ∞
x

exp

(
− t2

2

)
dt. (A.7)

Similarly, I2 can be written as

I2 =
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0

exp
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Considering (A.5), I2 is simplified to simplified to

I2 =
(√

2πσ2
)[ ∞∑

m=1

(−1)(m−1)Q
(
− µ−mσ2

σ

)
m

exp

(
σ2m2

2
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)]
. (A.9)

Note that for µ = σ2

2
, the J ′ reduces to the J function introduced in [74].
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