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Resumen
Desde que Shannon demostrara en 1948 la posibilidad de alcanzar probabilidades de error
arbitrariamente bajas en un sistema de comunicaciones siempre que la velocidad de transmisión
se mantuviese por debajo de cierto límite, uno de los mayores retos en el ámbito de las
comunicaciones y, más concretamente, en el campo de la codificación de canal, ha sido
encontrar códigos que se acercasen lo más posible a dicho límite con una complejidad de
codificación y decodificación razonable. Sin embargo, no fue hasta 1993, año en que Berrou
et al. presentaron los turbo códigos, cuando se encontró un esquema de codificación capaz
de aproximarse a fracciones de decibelio del límite de Shannon con probabilidades de error
extremadamente bajas. La idea en la que se basan estos códigos es la decodificación iterativa
de componentes concatenados que se intercambian información acerca de los bits transmitidos,
lo que se conoce como el "principio turbo".

La generalización de la idea de los turbo códigos llevó en 1995 al redescubrimiento de
los códigos LDPC (Low Density Parity Check), propuestos anteriormente por Gallager en la
década de los 60. Los códigos LDPC son códigos bloque lineales con matrices control de
paridad dispersas, capaces de superar el rendimiento de los códigos turbo con una complejidad
de decodificación menor que la de éstos. Sin embargo, el hecho de que la matriz generadora
de los códigos LDPC no sea dispersa hace que su complejidad de codificación pueda ser
excesivamente alta. Los códigos LDGM (Low Density Generator Matrix), un caso particular
de los LDPC, son códigos con una matriz generadora dispersa, gracias a lo cual presentan una
menor complejidad de codificación. Sin embargo, excepto para el caso de tasas de codificación
altas, los códigos LDGM son códigos "malos", es decir, tienen una probabilidad de error distinta
de cero independiente del tamaño de bloque. Más recientemente se han propuesto los códigos
IRA (Irregular Repeat-Accumulate), que consisten en la concatenación en serie de un código
LDGM y un acumulador y que consiguen acercarse al rendimiento de los códigos LDPC con
una complejidad de codificación similar a la de los LDGM.

En la presente tesis doctoral exploramos una alternativa a los códigos IRA que consiste en
la concatenación en serie de dos códigos LDGM, esquema que vamos a denominar SCLDGM
(Serially-Concatenated Low Density Generator Matrix). La premisa básica de los códigos
SCLDGM es que un código interno de tasa cercana a la deseada corrija la mayor parte de
los errores, y un código externo de tasa cercana a uno corrija los pocos errores que resultan de
la decodificación del código interno.

Para que cualquiera de estos esquemas consiga acercarse lo máximo posible al límite de la
capacidad es necesario determinar los parámetros del código que mejor se ajustan al canal sobre
el que se va a realizar la transmisión. Las dos técnicas más utilizadas en la bibliografía para
optimizar códigos LDPC son Density Evolution (DE) y EXtrinsic Information Transfer (EXIT)
charts, con las que se han obtenidos códigos optimizados que funcionan a pocas décimas
de decibelio de la capacidad del canal AWGN. Sin embargo, no se han descrito técnicas de
optimización para códigos SCLDGM, que hasta el momento han sido diseñados de forma
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heurística, alejándose del rendimiento conseguido por los códigos LDPC e IRA.
Otro de los avances más importantes que se han producido en los últimos años es la

utilización de múltiples antenas en transmisión y recepción, en lo que se conoce como sistema
MIMO (Multiple-Input Multiple-Output). Telatar demostró que la capacidad de este tipo de
canales crece linealmente con el mínimo entre el número de antenas transmisoras y receptoras,
lo que permite alcanzar eficiencias espectrales muy superiores a las de los sistemas con una
sola antena en transmisión y recepción (o sistemas SISO, Single Input Single Output). Esta
importante ventaja ha atraído una parte importante de la atención de la comunidad investigadora,
y ha provocado que gran parte de los nuevos estándares, tales como WiMax 802.16e y WiFi
802.11n, así como los futuros sistemas 4G, estén basados en sistemas MIMO.

El principal problema de los sistemas MIMO es la elevada complejidad de la detección
óptima, que crece exponencialmente con el número de antenas transmisoras y el número de
niveles de la modulación. Se han propuesto diferentes algoritmos subóptimos para intentar
reducir esta complejidad, entre los que destacan el SIC-MMSE (Soft Interference Cancellation-

Minimum Mean Square Error) y los detectores esféricos. Otro problema importante es
la elevada complejidad que conlleva la estimación de canal, debido al gran número de
coeficientes que lo determinan. Existen técnicas, tales como Maximum Likelihood-Expectation-

Maximization (ML-EM), que se han aplicado con éxito para estimar el canal MIMO pero que,
al igual que en el caso de la detección, sufren del problema de una elevada complejidad al
aumentar el número de antenas transmisoras o el tamaño de la constelación.

El principal objetivo del presente trabajo es el estudio y la optimización de códigos
SCLDGM en canales SISO y MIMO. Para este fin, se propone un método de optimización para
códigos SCLDGM basado en EXIT cha rts que permite a estos códigos superar el rendimiento
de códigos IRA existentes en la literatura y acercarse al de los códigos LDPC, con la ventaja
sobre éstos de una menor complejidad de codificación.

Asimismo, se proponen códigos SCLDGM optimizados para detectores subóptimos MIMO
tanto esféricos como SIC-MMSE, constituyendo un sistema capaz de acercarse a los límites
de la capacidad con una baja complejidad de codificación, detección y decodificación. Se
analizan el esquema BICM (Bit-Interleaved Coded Modulation) y la concatenación de códigos
SCLDGM con códigos espacio-temporales, en canales MIMO ergódicos y cuasiestáticos.

Se estudia también la combinación de estos códigos con diferentes algoritmos de estimación
de canal, en los que se aprovecha la baja complejidad de los detectores subóptimos para reducir
la complejidad de la estimación manteniendo una corta distancia al límite de la capacidad.

Finalmente, se proponen esquemas para tasas de codificación bajas consistentes en la
concatenación en serie de varios códigos LDGM, reduciendo la complejidad de los esquemas
propuestos recientemente basados en códigos Hadamard.



Summary
Since Shannon demonstrated in 1948 the feasibility of achieving an arbitrarily low error
probability in a communications System provided that the transmission rate was kept below
a certain limit, one of the greatest challenges in the realm of digital communications and, more
specifically, in the channel coding field, has been finding codes that are able to approach this
limit as much as possible with a reasonable encoding and decoding complexity. However, it
was not until 1993, when Berrou eta!. presented the turbo codes, that a coding scheme capable
of performing at less than ldB from Shannon's limit with an extremely low error probability
was found. The idea on which these codes are based is the iterative decoding of concatenated
components that exchange information about the transmitted bits, which is known as the "turbo
principle".

The generalization of this idea led in 1995 to the rediscovery of LDPC (Low Density Parity
Check) codes, proposed for the first time by Gallager in the 60s. LDPC codes are linear block
codes with a sparse parity check matrix that are able to surpass the performance of turbo codes
with a smaller decoding complexity. However, due to the fact that the generator matrix of
general LDPC codes is not sparse, their encoding complexity can be excessively high. LDGM
(Low Density Generator Matrix) codes, a particular case of LDPC codes, are codes with a
sparse generator matrix, thanks to which they present a lower encoding complexity. However,
except for the case of very high rate codes, LDGM codes are "bad", i.e., they have a non-zero
error probability that is independent of the code block length. More recently, IRA (Irregular
Repeat-Accumulated) codes, consisting of the serial concatenation of a LDGM code and an
accumulator, have been proposed. IRA codes are able to get close to the performance of LDPC
codes with an encoding complexity similar to that of LDGM codes.

In this thesis we explore an alternative to IRA codes consisting in the serial concatenation
of two LDGM codes, a scheme that we will denote SCLDGM (Serially-Concatenated Low-
Density Generator Matrix). The basic premise of SCLDGM codes is that an inner code of rate
close to the desired transmission rate fixes most of the errors, and an external code of rate close
to one corrects the few errors that result from decoding the inner code.

For any of these schemes to perform as close as possible to the capacity limit it is necessary
to determine the code parameters that best fit the channel over which the transmission will be
done. The two techniques most commonly used in the literature to optimize LDPC codes are
Density Evolution (DE) and EXtrinsic Information Transfer (EXIT) charts, which have been
employed to obtain optimized codes that perform at a few tenths of a decibel of the AWGN
channel capacity. However, no optimization techniques have been presented for SCLDGM
codes, which so far have been designed heuristically and therefore their performance is far from
the performance achieved by IRA and LDPC codes.

Other of the most important advances that have occurred in recent years is the utilization of
multiple antennas at the trasmitter and the receiver, which is known as MIMO (Multiple-Input
Multiple-Output) systems. Telatar showed that the channel capacity in these kind of systems
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scales linearly with the minimum number of transmit and receive antennas, which enables us
to achieve spectral efficiencies far greater than with systems with a single transmit and receive
antenna (or Single Input Single Output (SISO) systems). This important advantage has attracted
a lot of attention from the research community, and has caused that many of the new standards,
such as WiMax 802.16e or WiFi 802.11n, as well as future 4G systems are based on MIMO
systems.

The main problem of MIMO systems is the high complexity of Optimum detection, which
grows exponentially with the number of transmit antennas and the number of modulation levels.
Several suboptimum algorithms have been proposed to reduce this complexity, most notably
the SIC-MMSE (Soft-Interference Cancellation Minimum Mean Square Error) and spherical
detectors. Another major issue is the high complexity of the channel estimation, due to the large
number of coefficients which determine it. There are techniques, such as Maximum-Likelihood-
Expectation-Maximization (ML-EM), that have been successfully applied to estimate MIMO
channels but, as in the case of detection, they suffer from the problem of a very high complexity
when the number of transmit antennas or the size of the constellation increase.

The main objective of this work is the study and optimization of SCLDGM codes in SISO
and MIMO channels. To this end, we propose an optimization method for SCLDGM codes
based on EXIT charts that allow these codes to exceed the performance of IRA codes existing
in the literature and get close to the performance of LDPC codes, with the advantage over the
latter of a lower encoding complexity.

We also propose optimized SCLDGM codes for both spherical and SIC-MMSE suboptimal
MIMO detectors, constituting a system that is capable of approaching the capacity linnits of

MIMO channels with a low complexity encoding, detection and decoding. We analyze the
BICM (Bit-Interleaved Coded Modulation) scheme and the concatenation of SCLDGM codes
with Space-Time Codes (STC) in ergodic and quasi-static MIMO channels.

Furthermore, we explore the combination of these codes with different channel estimation
algorithms that will take advantage of the low complexity of the suboptimum detectors to reduce
the complexity of the estimation process while keeping a low distance to the capacity limit.

Finally, we propose coding schemes for low rates involving the serial concatenation
of several LDGM codes, reducing the complexity of recently proposed schemes based on
Hadamard codes.
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Chapter 1

Introduction

Achieving the channel capacity limit with a digital communications System of affordable
complexity has been the main goal of Information Theory since its birth, in 1948. That year
Shannon published his celebrated paper, "A mathematical theory of communication" [11, in
which the surprising result of the channel capacity was established. Before Shannon's paper, it
was believed that error-free digital communication was only possible by increasing the signal-
to-noise ratio to infinity or reducing the transmission rate to zero. Shannon demonstrated that,
with the appropriate channel code, it was possible to achieve error-free communication over a
noisy channel with a finite signal-to-noise ratio if and only if the transmission rate was lower
than a certain value greater than zero. This value was termed the channel capacity.

Since Shannon demonstrated the existence of this limit, much of the effort in the field of
digital communications has been devoted to the search of practical channel codes capable of
approaching it. Shannon's theorem only proved that infinitely long random codewords could
achieve the limit, but using that approach to design a real code was believed to be impossible.
Thus the search was initially directed towards small structured codes.

The first codes developed after the publication of Shannon's paper were short binary linear
block codes. The main objective when searching for good block codes was to maxirnize
their nninimum distance between codewords (that mainly determines their performance) while
at the same time keeping the decoding complexity at a manageable level, so the search for
good codes was initially treated as an algebraic problem. To perform decoding, early block
codes (such as Hamming [2], Golay [3] or Reed-Muller [4, 5]) used different algorithms
to search for the codeword that was closer in Hamming distance to the received one, that
was constructed by taking hard decisions over the observations from the channel. These
algorithms took advantage of the properties of the sub-vector space generated by the code to
avoid exhaustive searches over all the possible codewords, so their complexity was relatively
small. Nevertheless, the performance of these short codes was several dBs away from the
capacity limit predicted by Shannon. One of the reasons for their mediocre performance was
that although mininium Hamming distance is the Optimum decoding rule for some channels,
such as the Binary Simmetric Channel (BSC), when transmitting over an AWGN channel

1
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optimum decoding consists in looking for the codeword that is closer in Euclidean distance
to the received observations. Taking hard decisions over the received observations caused a loss
of information, that translated in a loss of performance. The first family of block codes that
used soft information from the channel (i.e., the channel observations directly) was presented in
1954 [6], but their minimum distance was only two and therefore their usefulness was limited.

Although the search for linear block codes with good algebraic properties continued for
a couple of decades before stalling, a different approach, inspired by Shannon's idea of
probabilistic coding, began to emerge soon after the presentation of his paper. The objective
was to simply search for codes by minimizing their error probability as a function of their
complexity. The most notable example of this more pragmatic approach was convolutional
coding [7]. Convolutional codes began to be widely used to the detriment of linear block codes,
especially after the presentation of the Viterbi algorithm [8]. The Viterbi algorithm provided a
simple way to find the maximum likelihood estimate of the transmitted sequence with linear
complexity. Also, the Viterbi algorithm considered the soft information from the detector
naturally, which had been already demonstrated as the best method for decoding in AWGN
channels. A few years later, Bah!, Cocke, Jelinek and Raviv [9] further extended the use of
soft information to the output of the convolutional codes, with an algorithm (known as BCJR)
that was able to calculate the a posteriori probabilities of the bits forming the codeword and
thus minimize the bit error probability. However, since the BCJR algorithm did not provide
an important advantage in performance over the Viterbi algorithm and its complexity was
significantly higher, the Viterbi algorithm continued to be the standard decoding method for
convolutional codes for the next decades.

By the time the Viterbi algorithm was introduced, another important step towards the
channel capacity limit carne in the form of concatenated codes [10]. The idea was to use
two simple codes, with a simple encoding and decoding algorithm, that when put together
led to a more powerful code. The Optimum decoding of this concatenated scheme would
involve cosidering the global code resulting from the concatenation, but simply decoding each
component code still could result in a good performance. It was originally presented as the
concatenation of two block codes, but soon was extended to convolutional codes. An scheme
concatenating an outer Reed-Solomon block code and an inner convolutional code became the
NASA standard in the 70s, with a performance that was less than 3dB away from the AWGN
capacity limit [11].

Although two of the key ideas to approach the Shannon limit were already discovered
(concatenated coding and a soft-input soft-output decoding algorithm), it was not until almost
two decades later that they were combined and put to practice. In 1993, Berrou, Glavieux and
Thitimajshima presented what would be the cornerstone of coding theory for the next years:
Turbo Coding [12]. Turbo codes took those two concepts and added the original Shannon's idea

of long random-like codes. The resulting scheme consisted of two simple convolutional codes

that encoded two different permutations of the same long information sequence. At the receiver,

the BJCR algorithm was used in each component decoder. These components interchanged
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their soft output information in an iterative fashion, each one using the output probabilities
frorn the other as a priori inforrnation. This simple scheme was able to perform at 0.5dB
from the AWGN capacity limit with reasonable complexity, which resulted in an impressive
improvement over the previous best codes. Turbo codes also introduced the concept of extrinsic
information, defined as the a posteriori information after removing the a priori information, i.e.,
the information added by each component to the input information. The exchange of extrinsic
information between components, known from then on as the turbo principie, constituted the
base for the decoding schemes developed after the Turbo codes.

Two years after Turbo codes were introduced, MacKay [131 rediscovered Gallager's Low
Density Parity Check (LDPC) codes [14], that had been introduced in 1962 and forgotten
due to their (for the time) extremely high encoding and decoding complexity. LDPC codes
were libe direct application of Shannon's idea of large, random codes to linear block coding,
with the added restriction of considering only sparse parity check matrices in order to allow
a feasible decoding. MacKay showed that LDPC codes were able to approach capacity with
linear decoding complexity thanks to the use of the Belief Propagation algorithm [15], and
the overwhelming increase in computation capacity from the early sixties to the mid nineties
allowed these codes to be implemented practically. His work motivated an outburst in the
study of codes defined by sparse matrices, which are seen today as the best codes for practical
applications and, consequently, the chosen for many modern standards, such as WiFi IEEE
802.11n [16, 17], WiMax IEEE 802.16e [18] and DVB-S2 [19, 20].

In his paper, MacKay also described Low Density Generator Matrix (LDGM) codes, a
subclass of LDPC codes with sparse generator matrices. Unlike LDPC codes, LDGM codes
cannot approach capacity due to their poor minimum distance, which caused them to be
disregarded for most practica! applications [21]. However, a coding scheme constituted by
two serially concatenated LDGM codes was presented a few years ago [22], showing that these
codes can indeed aproach capacity with practical block lengths. In this thesis we study the
desing and optimization of concatenated LDGM codes in a wide diversity of configurations and
channel models. We will show that, when properly optimized, these codes are able to perform
very close to the capacity limits and, in some cases, surpass the performance of general LDPC
codes with similar decoding complexity and a lower encoding complexity.

A more detailed review of the birth of Information Theory and the history of channel coding
can be found in [23, 241

1.1 Thesis Overview

This thesis is organized as follows. In Chapter 2 we introduce the concept of channel capacity
and review three coding techniques that are able to approach the capacity limits: Turbo
codes, Low Density Parity Check (LDPC) codes and Repeat-Accumulate (RA) codes. We
will pay special attention to LDPC codes, since they constitute the basis of the scheme that
will be studied in the rest of the Thesis: Serially-Concatenated Low Density Generator Matrix
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(SCLDGM) codes. In this chapter we also present the optimization procedures used to optimize
the previous coding schemes, focusing especially on EXtrinsic Information Transfer (EXIT)
charts, as they will be also utilized in the optimization of SCLDGM codes.

In Chapter 3 we introduce the SCLDGM scheme, and analyze its encoding, decoding and
optimization. We will study the performance of optimized SCLDGM codes over AWGN and
Rayleigh fading SISO channels and show that they are able to approach the capacity limits and
surpass the performance of IRA codes.

This study will be extended to Multiple Input Multiple Output (MIMO) systems in Chapter
4, in particular to a Bit-Interleaved Coded Modulation (BICM) scheme in which the modulated
symbols are simply multiplexed to the multiple transmit antennas. We examine several
suboptimal detectors that solve the problem of exponential complexity of MIMO detection,
and find Optimum SCLDGM codes for each of them.

In Chapter 5 we continue the study of SCLDGM-coded MIMO systems by considering the
concatenation of SCLDGM codes with Space-Time Block Codes (STBC). Specifically, we will

study three different STBC codes: the Alamouti code, a Linear Dispersion (LD) code and the
Golden code. We will analyze their advantages and disadvantages when compared with the
BICM scheme studied in the previous chapter.

In Chapter 6 we investigate the performance of the SCLDGM scheme when the channel is
estimated at the receiver. We focus on two Pilot Symbol Aided Modulation (PSAM) schemes
to estimate block and quasistatic channels: Least Squares (LS) and Maximum-Likelihood with
Expectation-Maximization (ML-EM).

In Chapter 7 we find a solution to the degradation in performance that the schemes presented
in previous chapters suffer when considering low rates. We present two schemes, Layered
LDGM (LLDGM) codes and IRA-LDGM codes, that are able to perform well even with rates
as low as 1/50. We also study the performance of LLDGM codes in a practical multiuser
Interleaved-Division Multiple Access (IDMA) scheme, where the use of low rates is mandatory
to be able to separate each transmitted stream.

Finally, Chapter 8 is devoted to the conclusions and future work.



Chapter 2

Capacity-approaching coding

A noisy channel poses a limit on the rate at which information can be transferred through it
without errors. This li mit is known as the channel capacity, and was first introduced by Shannon
in 1948 [1]. For many channels, their noisiness can be measured by a single parameter (for
example, the relation between the strength of the transmitted signal and the noise power, termed
as Signal-to-Noise Ratio (SNR)), and the value of this parameter uniquely determines the
maximum data transfer rate that can be achieved under the constraint of error-free transmissions.
Correspondingly, there is also a minimum value of the channel parameter for achieving a
transmission rate (without errors) greater than zero.

Although the channel capacity limit has been known for more than half a century, it was not
until the last decade that some coding schemes were able to approach it. In this chapter we will
review three of these schemes: Turbo codes [12], Low Density Parity Check (LDPC) codes [14]
and Repeat Accumulate (RA) codes [25]. We will mainly focus our attention in LDPC and RA
codes, since they render better performance than turbo codes with a lower complexity.

For these schemes to be able to perform close to the capacity limit, it is necessary to carefully
choose the parameters that determine their behavior. The optimization techniques that have been
proposed for this task are based on the Density Evolution (DE) principie [26, 27 ] , consisting
in tracking the evolution of the probability density function of the messages interchanged in
the decoding algorithm. The actual density of messages is continuous-valued, so it is not
possible to track it in practice. Two main practical approaches have arisen to overcome this
limitation: density quantization, which is computationally involved and its associated error is
not easy to control; and density characterization through parameters. Towards this aim, the usual
assumption is considering the densities as symmetric Gaussian with a know relation between
the variance and mean, so one parameter suffices to completely characterize the density. Two
main approaches have been proposed: tracking the mean, known as Density Evolution with
Gaussian Approximation (DE-GA) [28], and tracking the mutual information between the
message density and the a priori bit density, known as Information Content (IC) evolution 129 1 .
IC evolution is particularly useful when the decoding process can be structured in two decoding
modules, because in this case the two IC values can be simultaneously plotted, graphically

5
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Figure 2.1: Block diagram of a transmission System

showing the decoding process. This representation is known as Extrinsic Information Transfer
(EXIT) charts. We will explain how IC evolution and EXIT charts can be applied to the design
of good LDPC and RA codes for transmission over the AWGN channel.

2.1 Channel capacity

The ultimate characterization of communication systems is the realm of the discipline of
Information Theory. Information Theory models information sources as random variables,

where their possible outcomes constitute the messages emitted by them. In this context, the
information produced by a source S is defined as its entropy [1], given by

H(S) =A —Es {log (ps(s))1	 (2.1)

where 1E5 {1 denotes the expectation Operator with respect to the random variable S. The
logarithm base determines the entropy measurement unit. If we choose 2 as the base (the most
usual), the entropy is expressed in bits. When using natural logarithms, entropy is measured in

nats.
Let us assume a digital communication system in which a sequence of L symbols s =

[s i ,	 is transmitted through a noisy channel. Each symbol s, is an outcome of the random
variable S, i.e., 5,	 S. The received sequence will be denoted as x = [x1,...,xL], where

X (Figure 2.1). The channel input-output relationship is characterized by the conditional
distribution function p(x s). Assuming the channel is memoryless,

where px l s(xls) is the known, fixed conditional distribution function of X given S.

Shannon defined the capacity of such a channel as the maximum amount of information that
can be communicated through it with vanishing error probability. It can be shown [1] that this
equals the maximum, over all the possible distributions of the input S, of the mutual information
between the input and the output of the channel, i.e.,

C = max I (S; X)	 (2.3)
ps

where the mutual information is defined as

I (S; X) = Ex,s {log 7  Ps'x(s'x)(2.4)
\Ps(s)Px(x)/
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If the base of the logarithm is 2, the capacity is expressed in bits per channel use, and measures
how many bits of information can be sent in each symbol s. Elaborating Eq. (2.4) we have

=	 log{	
(PX1S(XIS) I(S; X)	 Ex,s)}

PX(X)

EX,S { log (Pxls(x l s ))/ — Ex {log(px (x))1

= H (X) — H(X1S)	 (2.5)

where
H(X) = —Ex {logpx(x)}	 (2.6)

is the entropy of X and
H(X1S) = —Ex , s {logpx i s(xls)}	 (2.7)

is the conditional entropy of X given S. Similarly, it can be easily shown that

I(S; X) = I(X; S) = H(S) — H(S1X). 	 (2.8)

The conditional entropy H(SIX) can be seen as the remaining uncertainty of the transmitted
symbols given the observations at the receiver. If the received observations do not provide
any information about the transmitted symbols, i.e., if Pslx( s l x ) = ps( s ), the conditional
entropy equals the entropy of the transmitted symbols, and the mutual information I(S; X) =
H(S) — H(S) = O. Conversely, if the channel introduces no distortion, it can be easily seen
that fl(SIX) = 0, so the mutual information equals the entropy of S and no information is lost
through the channel. From this we can soy that mutual information (capacity) measures how
much of the original inforrnation in fact traverses the channel.

Let us now assume that we have a binary source of information and that we pack that
inforrnation in words of K bits. A fixed-length binary channel code of rate R, = K IN is an
injective mapping from the set of 2 K possible binary inforrnation sequences to a set of binary
words of length N, with N > K. The function of the code is to add some redundancy to the
information bits, so that if the received word after the transmission through a channel is one
of the possible 2 N — 2K sequences that are not associated with any inforrnation sequence, it
is possible to detect that an error has been produced and proceed to correct it. After coding,
and prior to transmission through the channel, the resulting bits are grouped in words of length
M, and mapped to symbols from a set S, with S= 2 11/4 . The transmission rate is thus
information bits per transmitted symbol, or bits per channel use. Shannon demonstrated that,
for any transmission rate below the channel capacity, there exists a code that can achieve an
arbitrarily small block error probability, just by increasing the block length N. Conversely, if
the tranmission rate is greater than the channel capacity, the block error probability tends to 1
as the block length tends to infinity, regardless of the used code.

For example, let us consider an Additive White Gaussian Noise (AWGN) channel, in which
the transmitted real symbols have an average energy E, = Es{s2 } and the received symbols
are obtained as

Xk - Sk nk	(2.9)
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Figure 2.2: Capacity of an AWGN channel

where Tik are independent and identically distributed (i.i.d.) samples of Gaussian noise with
zero mean and variance 0- 7,2 = N0 /2. It can be shown that the distribution of the input that
maximizes the mutual information for this channel is the Gaussian distribution [1], and that the
capacity associated to it is given by

tit

•

1
C = —

2
 1og2 (1 + SNR) bits/channel use (2.10)

where SNR = Es /o-n2 = 2E/N0 is the Signal to Noise Ratio. Figure 2.2 shows the capacity
versus the SNR for an AWGN channel. For example, if we fix the SNR at the value OdB,
the Shannon theorem affirms that we can find a coding scheme allowing us to communicate
without errors through the AWGN channel as long as the transmission rate is below 0.5 bits
per channel use. Conversely, if we fix the information rate at 0.5 bits per channel use, we can
transmit without errors as long as SNR > OdB, whereas it is impossible to guarantee error-free
transmission for SNR < OdB, regardless of the employed coding scheme

lt is usually more interesting to express the capacity of a channel in terms of the parameter
Eb /N0 , where Eb is the average energy per information bit. If we use a code of rate R,

and transmit M, bits per symbol, the average energy per information bit is given by Eb =

Es/ (Rdlic.). This way, we can rewrite Eq. (2.10) as

1
C = — log 2 ( 1 + 2R,M, 

Eb
bits/channel use	 (2.11)

2	 \	 N0
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Since we are trying to transmit at a rate of R,M, bits per channel use, we have to satisfy

R,M, < C	 log2 1 + 217cMc —No	 vo > 		2 	 2/7,M,

	

(	
Eb\	 Eb	 22RciVie — 1	

(2.12)

When the information rate R,M, tends to 0, which means that the transmission speed also tends
to 0, we have

22R,M, 1

	

um 	  = ln(2);›,,- —1.59dB	 (2.13)
R,M,-43 2 Rc Mc

It can be easily seen that this is the minimum of all the Eb /No limits for the AWGN channel,
i.e., the lowest Eb /No for which it is possible to transmit without errors, and is usually known
as the ultimate Shannon limit.

2.2 Capacity-approaching codes

Since the introduction of the channel capacity concept, one of the main objectives in Information
Theory has been to find practical codes able to approach the Eb /No limit with vanishingly small
error probability. In the following sections we will review the most important results obtained
in the field of capacity-approaching codes during the last decade.

2.2.1 Turbo codes

Turbo codes [12] were originally presented as two parallel convolutional codes that encode two
different permutations u and u' of the same inforrnation sequence (Figure 2.3). The encoded
sequences c and c' are merged and sent through the channel. This results in that the produced
codewords show a pseudorandom structure.

At the receiver, the detector calculates the log-likelihood ratio (LLR) of each coded bit c„
defined as

	

Lch,z
	 log P(X I Cz	1) 

= 0)
and passes them to the decoder. In the decoder, a soft-output algorithm that calculates the log-a
posteriori probability ratios (LAPRs) of the source bits is employed over the trellis defined by
each convolutional code [9, 30]. The output LAPRs (Lo) of each decoder component are used
by the other as a priori information (LA ) to improve its previous decoding output in an iterative
fashion. To avoid positive feedback (i.e., counting the same information twice), the a priori
information is subtracted from the a posteriori information before being passed to the other
decoder, giving result to what is called the extrinsic information (LE).

The key idea behind the performance of turbo codes is the iterative exchange of extrinsic
information between the two component decoders. This is called the "turbo principie". Since
the introduction of turbo codes, it has been successfully applied to other problems, such as
equalization and detection [31, 32]. This same idea is the basis for the decoding of Low Density
Parity Check (LDPC) codes described in the following section.

(2.14)



Decoder I

Leh Decision

Conv.
encoder 1

EIIX
Detector

'E

Decoder 2

CHAPTER 2 CAPACITY-APPROACHING CODING10

Modulator
	

Channel

Conv.

u'
	 encoder 2	

C'

L'eh

Figure 2.3: Block diagram of a turbo code

2.2.2 LDPC codes

Low Density Parity Check (LDPC) codes [14] are linear block codes with a large parity check
matrix H that is sparse, i.e., with a very low number of elements different from zero. Assuming
that the codeword length is N, the code is formed by the sequences c = [c 1 , c2 , . . , c iv] that
satisfy

CHT = o

where the size of the parity check matrix is (N — K) x N, being K the length of the uncoded
sequence. Superindex T represents the matrix transpose Operator.

Encoding of a source vector u = [u 1 , u2, , UK] using a rate R, = KIN LDPC code is
performed by multiplying the source vector by aKxN generator matrix G which is calculated
from the parity check matrix, i.e.,

c =	 = uG

To find the generator matrix, the parity check matrix is first put in systematic form H —
[PT IN—K] using Gaussian elimination. The generator matrix is then simply constructed as
G = [I K 11)]. The problem with this method is that, in general, although the parity-check matrix
is sparse, the generator matrix will not be sparse after the Gaussian elimination, so the encoding
complexity can be extremely high. To avoid this issue there exist techniques [33] that transform
the parity check matrix without losing most of its sparseness in such a way that it can be used
to generate the codewords directly (i.e., without needing a generator matrix), so encoding can
be done with reasonable complexity.

Let us assume that the coded bits c are modulated, transmitted through a noisy channel
and received as the sequence x = [x 1 , x 2 , , xL ]. Optimum decoding of LDPC codes (and,

in general, of any other code) consists in searching for the codeword C that maximizes the a

posteriori probability (APP), that is,

c = arg max p(clx)	 (2.15)
ce C
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where C is the set of all the possible codewords. Since the number of codewords in C is 2K,
an exhaustive search is obviously infeasible (the problem is NP-complete). Instead, following
the idea of the turbo principle, we can use a suboptimum iterative algorithm that exchanges
extrinsic information between different decoding components to calculate the APP of the bits
forming the codeword, p(c, x). To do this, we must first represent the LDPC code using afactor
graph [34, 35, 361, a type of bipartite graph that relates a set of variable nodes and a set of factor
nodes.

Code representation is a specific application of factor graphs. Generally, factor graphs are
used to represent the factorization of a function of several variables

	

= H fj ( 3)
	

(2.16)
3=1

where the sets Xj are different subsets of X = {xi , x2 , ... ,xN }. The graph is formed by N
variable nodes representing the variables in X and F factor nodes representing the functions
fj . There exists a connection between a variable node i and a factor node j if and only if the
function fj has the variable x, as an argument, i.e., if xi E X.

When the function y is a joint probability mass function, we can calculate the marginal
probability functions of each variable as

g,(x,) =

	

	 g (xi,x2, • • . ,xN)
	

(2.17)
—{iz}

where the sum index represents all the possible values taken by all the variables except xi , which
is fixed, Le.,

g(x1,x2,...,XN) =A	 •••> g(xi,x2,...,xN)
	

(2.18)
X1 X2	 X1-1 X 2+1	 1N

If the fractor graph can be put in tree form (Le., if it has no loops) it can be easily
demonstrated by substituting (2.16) in (2.17) and using the distributive property that the
marginal probabilities can be calculated by applying a message-passing algorithm on the
graph. This algorithm, known as Sum-Product Algorithm (SPA) [14] (and sometimes as Belief
Propagation 137]), calculates two kind of messages: the messages passed by a variable node x,
to a factor node

( Xi )	 H	 (Xi)
k�j

and the messages passed by a factor node fi to a variable node xi

,
fx(Xj)	 f (Xj)	 f (X k))

k� i

(2.19)

(2.20)



if mod 2 = 0
c,ec,

in other case.
(2.24)
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where the sum is done over all the values that can be taken by all the variables in X x„
which is fixed. The SPA starts in the leaves and computes all the messages in the tree. After all
of them have been calculated, the marginal probabilities can be calculated as

g i (x i ) = H iifj „ ( Xi)	 (2.21)
1

We can also use the SPA to find the marginal probabilities when the graph contains cycles (as
will be the case of LDPC factor graphs), by calculating the messages iteratively following a
certain update schedule. However, in this case the SPA leads to a suboptimal solution [15].

When considering LDPC codes, our objective is to calculate the marginal probabilites of the
bits forming the codeword. Assuming that all the codewords have the same a priori probability
p(c), we can factorize the joint probability function of a codeword given the received symbol
sequence as

p(c x)	 P(C)P(XC)	 C1XC(C1, C2,	 CN)P(X
1 

A
el C2, . .	 CN

\
 — (
	

C2, . . . CN) (2.22)

where Cl = 2 K is the number of codewords and xc(c i , c2 ,	 , cN ) is the behavioral model of
the code, and is equal to 1 if the codeword e2 ,. , cN ] belongs to C and 0 otherwise. In a
LDPC code the codewords must satisfy the parity conditions imposed by each row in the parity
check matrix, so this function itself can be factorized as

XC ( C 1, C2,	 CN) H f(C	 (2.23)
3=1

being F the number of parity bits in the LDPC code and

where C contains the bits related to the j-th panty check.
For example, with the parity check matrix H of Figure 2.4, the behavioral model is given by

XC( C 1, C2, C3, C4, C5, C6, C7) — f ( C4, C5, C6, C7) f ( C2, C3, C6, C7) f ( C 1, C3, C5, C7)
	

(2.25)

With this factorization, we obtain the factor graph represented in that same figure. The variable
nodes in the factor graph represent the coded bits and correspond to the columns of the parity
check matrix, whereas the factor (or check) nodes represent a parity relation among a certain
number of bits and correspond to the rows of the parity check matrix. There exists a connection
(edge) between a factor node and a variable node if and only if there is a "1" in the con-esponding
row and column of the parity matrix. The number of edges connected to a node is called the



p(1) 
L = log

P(0)
(2.28)

2.2 CAPACITY-APPROACHING CODES	 13

Messages from the detector

Variable nodes

H
/0	 0

0	 1
\ 1	 0

0
1
1

1
0
0

1
0
1

1
1
0

i\
1
1

Check nodes

Figure 2.4: Factor graph of a 3 x 7 parity check matrix

degree of the node, and the set of different degrees of the variable and check nodes is the degree
profile of the code. Usually, the parity check matrices of LDPC codes are randomly generated,
following the restrictions imposed by the degree profile. If all the nodes of a type (either variable
or check) have the same degree, the code is said to be regular, and irregular in the other case.
This definition can also be applied to other codes defined on graphs.

When the SPA is applied to the particular problem of LDPC decoding, the variable to check
messages are calculated as

	

(Ci) =	 [I k
k �i

and, by substituting (2.24) in (2.20), the check to variable messages are simplified to

1-1 f	 > 
C' k� i

(2.26)

(2.27)

where C2i is the set of binary vectors in Ci such that their modulo-2 sum is 0 and the bit
corresponding to the variable node c is fixed.

Since the variables ci can only take two values, 0 and 1, instead of handling the messages
ti(0) and p(1), it is more efficient to use the L-values, defined as

The messages ti(1) and p(0) represent conditional probabilities of the two possible values of a
bit, so they must satisfy R(1) + ji(0) = 1, and thus we can recover both values with

1	 eL	 1 
P( 0) = 	 p(1) = 	 	 (2.29)

1 +	 1 + e L 1 ± e-L

If we particularize Eq. (2.19) for the factor graph of an LDPC code and express it as a function



e2x
tanh(x) = ex ± e-i	 e2x (2.33)
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of the L-values, we can compute the variable-to-check messages as

Pch ,z( 1 ) Fik �i f k-ci (1) 
= log

lich3( 0 ) nk�j il fk —c (0)

log 
/ich

'
,(1) 

+ 
z 

log 
pfk _ci (1)

Lch z	 (2.30)k
(°)	 kj	 fkcj(°)	 k�3

where [Ido (b) = p(xlc, = b) is the likelihood of the received symbols given the bit c„ calculated
by the detector, and Lch ,, is its corresponding LLR. Similarly, we can compute the check-to-
variable messages as

	

C 	 f, (GO

	

= log'	 (2.31)
cii° 1 Ik �i suck—f,(ck)

being Ca.i b the set of binary vectors in C that their modulo-2 sum is 0 and the bit
corresponding to the variable node e is equal to b. Substituting the expresions from (2.29)
in (2.31), it can be proven by induction [34 ] that the message can be calculated as

L
It eL ck f ± 1) ± fl (e L ck _, f	1)

k� i	 k� i
log

11 
(eLck _, f, 4_ 1) 11(eLck3 1)

k � i	 k � i

e

	 f	 1
1+

Ic �i e ck -f + 1
log k3	 1

1 — H -L
e	 + 1k � z

7
2 tanh -1 	tanh  k

L, f

2k� z
(2.32)

where

and
1

tanh	
1 + x

-1(x) = log 1 _ x	 (2.34)

The messages and L are iteratively calculated for every node in the factor graph
until the algorithm converges or a maximum number of iterations is performed. Then, a decision
is made based on the output L-values of the variable nodes, that represent the log ratio of the
bits APP, and that are calculated as

log 
p(ci = 11x) 

p(ci = 01x)
(2.35)L0 — Lch,i
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CND

Figure 2.5: LDPC coded system

Thus, if the output L-value is greater than 0, the bit is decided as 1, and 0 in the other case.
Each message Lch ,, passed to a variable node is calculated as the LLR of the coded bit

corresponding to that variable node (see Eq. (2.14)). The calculation of the LLR depends on
the modulation and channel model assumed for the transmission. For example, if the coded bits
are BPSK (i.e., s, = 2c, — I) and transmitted through an AWGN channel as the one given by
Eq. (2.9), Lch is calculated as

p(xlc, = 1)	 = +1)	 2x,
Lch,z log 	  = log	 (2.36)

p(x	 = 0)	 p(x,ls, = —1)	 o-`72,

The complexity of the SPA is linear with the block length of the code thanks to the
sparseness of the parity check matrix. This ensures that the number of messages to be calculated
for every node is a fixed small number. However, its complexity can be further reduced
by computing the messages calculated in the check nodes through an approximation rather
than in their exact form. In Appendix A we review some of the most important suboptimum
implementations of the SPA.

The LDPC decoder can be seen as an example of a turbo decoder with two components: a
Variable Node Decoder (VND) and a Check Node Decoder (CND). Each component calculates
extrinsic information about the coded bits and passes it to the other component to improve its
previous decoding iteration (Figure 2.5). Note that, in the computation of a message, variable
and check nodes do not make use of the input probability of the bit for which they are calculating
the message (i.e., for the computation of Lc, _  the message Lf7 is not used, and vice versa),
so there is no need for removal of the a priori information: the messages L f, and Lc_f are
already extrinsic information.

2.2.3 LDGM codes

VND
	 Decision

o

As explained previously, LDPC codes have, in general, a non-sparse generator matrix. There
exists a class of codes with a sparse generator matrix G, known as Low-Density Generator
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Figure 2.6: Factor graph of a 4 x 7 systematic generator matrix

Matrix (LDGM) codes [13], that will be a matter of intense study along this work. In particular,
we will consider systematic LDGM codes, i.e., codes whose gererator matrix have the form
G = where IK is the identity matrix of size K x K and P is aK x L sparse matrix,
with L = N — K. Since the parity check matrix of this generator matrix is given by the sparse
matrix H = [PT	 systematic LDGM codes are in fact a subclass of LDPC codes.

Encoding of LDGM codes is done in the same way as with LDPC codes: the codeword
vector c is obtained by multiplying the vector formed by the uncoded bits u by the generator
matrix G. Since we are considering systematic codes, the codeword can be written as

C =	 C2, .. . , CN] = uG =	 U2, •-, U K 	 P2, --,PL1

Due to the sparseness of the generator matrix, encoding can be done in linear time.
Decoding of LDGM codes is also carried out by applying the SPA over the factor graph

representing the code. In this case the factor graph is constructed based on the generator matrix.
In an LDGM factor graph there are two clearly different groups of variable nodes: one for the
K uncoded bits and another for the L parity bits. Each parity bit variable node is connected to
one (and only one) check node. The connections between the check nodes and the systematic
variable nodes are determined by the parity matrix P: there is an edge between a systematic
variable node and a check node if there is a "I" in the corresponding row and column of the
parity matrix. Figure 2.6 shows the relationship between a low dimension systematic generator
matrix and a factor graph.

LDGM codes can also be non-systematic. However, in this case we must impose certain
constraints in the degrees of the nodes. The reason for this is that, if the code is non-systematic,
the uncoded bit variable nodes in the factor graph do not receive inforrnation from the detector
(Figure 2.7), and the initial messages passed by them to the check nodes will all be equal to

zero. Due to the nature of a check node, an output message calculated by it will be equal to
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Figure 2.7: Factor graph of a 3 x 4 non-systematic generator matrix

zero when one of its inputs is zero, because the check is not able to provide any information
about a bit if it has no information about all the other bits involved in the modulo-2 sum. If
all the check nodes have a degree towards the systematic nodes greater than one, one of their
inputs will always be zero, and thus the SPA will not progress from the initial state. This issue
can be overcome by doping the code [38], which consists on ensuring that some percentage of
the checks are only connected to one systematic bit node. These check nodes are now able to
provide information to the variable nodes they are connected to and, if the percentage of doped
check nodes is high enough, that information will be propagated to all the factor graph.

Although LDGM codes have the advantage of a linear encoding complexity, unlike general
LDPC codes, LDGM codes are considered "bad" codes, since they can only attain an arbitrarily
low error probability by reducing the rate to zero. This is due to their poor nninimum distance
[131 which is independent of the block length and causes their performance to suffer a high error
floor (i.e., the bit error rate decreases very slowly as we increase the EbIN0 ). This problem has
made LDGM codes to be initially disregarded in favor of LDPC codes although, as we will
see in the next chapters, they can actually perform extremely well in a serially concatenated
scheme.

2.2.4 Repeat-Accumulate codes

Repeat-Accumulate (RA) codes [391 are another subclass of LDPC codes with linear encoding
cornplexity. RA codes consist of the serial concatenation of a repetition code, a bit interleaver,
a set of parity checks and an accumulator. RA codes are usually systematic, so the parity-
accumulated bits are appended to the uncoded bits to form the final coded sequence (Figure
2.8). Although this is the most usual representation of a RA code, the repeat, interleaving and
parity check stages can also be seen as a LDGM encoder with a generator matrix G = [I K P],
whose sparse parity matrix P is constructed based on the number of repetitions for each bit, that
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determine the number of ones in each row of P, the number of bits added modulo-2 in the parity
checks, that determine the number of ones in each column; and the interleaver, that determine
the position of the ones in the matrix. Encoding can thus be done simply by multiplying the
uncoded bits by the parity matrix to obtain the parity bits

uP = [P 1 , P21 •••,PL]

and then accumulating them modulo-2 to obtain the coded bits

CK+1 --=

cK+2 = pi+ P2 — CK+1 ± P2

CK+3	 Pi + P2 + P3 — elf+2 + P3

cN = pi + p2 + • • • + pr, = eN_i + PL

which are appended to the K uncoded bits u to form the final codeword. The objective of
the accumulator is to lower the typical error floor of LDGM codes by providing the code with a

means of increasing its minimum distance with the block length, making it potentially capacity-
achieving.

As occurs with LDPC and LDGM, we can use a factor graph to represent RA codes and
apply the SPA over it to decode it. In case the graph is irregular, the code is usually named
Irregular Repeat-Accumulate (IRA) code. Since the RA code can be viewed as an LDGM
code concatenated with an accumulator, the factor graph is constructed based on the generator
matrix (i.e., the repetition pattern, the interleaver and the checks) with a zigzag structure for the
accumulator. The zigzag structure accounts for the fact that each parity bit p, can be calculated

as

Pi	 CK+1

P2	 CK+2 CK+1

P3	 CK+3 CK+2

PN	 CN + CN-1

which means that the parity constraints must be obeyed by the systematic bits and two
consecutive coded bits. Figure 2.9 shows the factor graph representation of a RA code.

Also, similarly to LDGM codes, RA codes can be non-systematic, in which case they require
code doping in order to progress from the initial state [40].

2.3 Code optimization with EXIT charts

The performance of regular LDPC and RA codes is not very good when compared with that
of turbo codes. However, if an irregular degree profile is employed, their performance can
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easily surpass that of turbo codes and approach capacity. Optimization for LDPC and RA codes
consists in finding the degree profile that achieves the best performance on a given channel. Two
basic techniques have been proposed for the design of LDPC and RA codes: Density Evolution

(DE) [27] and Extrinsic Information Transfer (EXIT) charts [41].

Density Evolution (DE) is an optimization method based on studying the variation of the
probability density function (pdf) of the messages between variable and check nodes in the
factor graph representing a code. The code is assumed to have infinite block length and to
be randomly generated, although maintaining the restrictions imposed by its degree profile.

Although the method in its original form is relatively complex, because it traces the entire
variable and check messages pdf, there exist variations with lower complexity. One example is
DE with Gaussian Approximation (DE-GA) [28], that approximates the densities of messages
as symmetric Gaussian ones, thus tracking only the evolution of the mean. This idea is further
exploited by EXIT charts to provide a graphical representation of code convergence.

The idea behind the EXIT charts is to track the extrinsic information exchanged between the
components of an iterative decoder. Instead of tracking the pdf of the messages, a representative
value is used to simplify the problem and effectively capture the most relevant information about
the decoding process: the bitwise mutual information between the messages and the codeword
[42].
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2.3.1 EXIT charts for LDPC codes

EXIT charts can be applied to LDPC codes by considering that the decoder is formed by two
components that exchange extrinsic information about the coded bits: the VND and the CND
(see Figure 2.5). Therefore, we must calculate the mutual information I (M; C) between the
messages M (either L f or L f ,) and the coded bits represented by them. To compute these
mutual informations, we can take into account that the incoming messages to a variable node
L f, play the same role as the channel LLR La in Eq. (2.30). A reasonable assumption is to
model the messages M as the output LLR of an independent binary input AWGN (BIAWGN)
channel

m = log 
p(x s = +1) 
p(xls = —1)

where x = s + y , s = 2c — 1, and y	 .A[(0, an. Note that the noise variance	 used in the
channel model is independent and (in general) different from the variance	 Recalling Eq.
(2.36), we know that

2x	 2
m 2 	 (s y)	 (2.38)

UV

so the probability distribution of M given the transmitted symbol is Gaussian with mean 2s 1 o-,2
and variance If we denote u 2 then the message given the symbol s follows a
distribution

1	 	 ( (rn _ sa2/2)2 \

p(m s) = 	 exp	 (2.39)
N/27ro- 2 	 20-2	 /

Using this model, and taking into account that the relation between C and S is deterministic,
we can calculate the mutual information I (M ; C) as

P(M , s) 
P(m)P(s)

>2, 	 p(m, s) log2 P(M' s) dm
P(M)P(S)

+Do	
P(MS) E p(s) 

J	
p(m s) log2	 dm	 (2.40)

s=-1,+1	 P(M)

Assuming p(S = +1) = p(S = —1) = 1/2, we have

1 	 2p(ms) 
I (M ; S) = —

2	
p(m1s) log2 

p(m1S = —1) + p(m1S = +1) dm
	 (2.41)

Next, let us define the function

2p(m1S = +1)
1 — log2 

p(m1S = —1) + p(mIS = +1)
L +1 (m) = log2

p(mS = —1) + p(m1S = +1)	 p(TnIS = +1)
=

= 1 — log2 (I + 
p(m1S —1) n

	= 1 — log2 (1 + Cm )	 (2.42)
p(u4S = +1) /

(2.37)

so- 2 12, o- 2 ), and the probability density function is given by

r(m; c) = i(m; s) = EMS {1°.g2
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and, equivalently

2p(m1S = -1)

	

L_ i (m) log2 	  =
p(m1S —1) + p(m = +1)

	

1 - log2 (1 + ern ) = L± i (-m)	 (2.43)
= 

Using these expressions we can rewrite Eq. (2.41) as

1f+'

	

I (M; S) = -2	 p(m1S = +1)L +1 (m) dm + rx) p(m1S = -1)L _ 1 (m) dm
2

1 1f+"

	

-
2	

p(m1S = +1)L+i (m) dm + rc p(-	 mm1S = -1)L_ 1 (-m) d
2

Since p(-TrilS = — 1 ) = p ( m S = +1) and L_ 1 (-m) = L± i (m), we can calculate the mutual
information as

+00f
I (M ; S) = Lco p(m1S = +1) (1 - log 2 (1 + e- 772 )) dm

+00	 1	 m 0.2/2)2 \

1 - 00 \/271.0.2 exp

	

	 	  log2(1 + Cm ) dm	 (2.44)
2a2

lt is important to note that this mutual information depends only on the variance o- 2 , so we can
define a function J(0- 2 ) -=° I (M; C). Therefore, gives the variance o- 2 corresponding
to an incoming message with mutual information I. Figure 2.10 represents the function J(u2).
The functions 1(o- 2 ) and J -1 (/) can be numerically approximated for implementation purposes
with an error lower than 10- 3 by [41 ]

{a
1 u3 + b1u 2 + cia

/ = J(6,2 ) = 1 - exp(a2 o- 3 + b2 0- 2 + e20- + d2)
1

O < u < 1.6363
1.6363 < o- < 10	 (2.45)
a> 10

and

u	 J-1(I)
{a3

1
2 + b3 1 + C31/	 < I < 0.3646

=	 =
-a4 log(b4 (1 - I)) - c4 1 0.3646 < I < 1

being

	

= -0.0421061 b 1 = 0.209252	 ei = -0.00640081
a2 = 0.00181491 b2 = -0.142675 e2 = -0.0822054 d2 = 0.0549608

	

a3 = 1.09542	 b3 = 0.214217	 e3 = 2.33727

	

= 0.706692	 b4 = 0.386013	 e4 = -1.75017

(2.46)

(2.47)

These functions allow us to efficiently compute the inforrnation exchanged between the
VND and the CND. Indeed, let us first focus on the VND. From Eq. (2.30) we know that the
output message from a variable node i with degree d, to a check node j is simply the sum
of the d, - 1 messages passed from the check nodes different than j plus the message from
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Figure 2.10: Mutual information as a function of the rnessage variance in a BIAWGN channel

the detector. Since we are assuming an independent Gaussian model for the messages, this is
equivalent to saying that the variance cr 2 of the output message is the sum of the dv — 1 variances
of the input messages from the check nodes plus the variance of the message from the detector.
If we assume that all the messages passed from the CND carry an information equal to /A37ND,

and we denote the information from the detector as Ich, we can obtain the respective message
variances as J- (1 A,vND) and J-1 ( 1 ch)• Thus, the output information from a variable node of
degree d (or a set of them) is given by

/E,VND /A,VND ich Civ)	 ((clv — 1 ) VA,VND)	 J-1 (ich))	 (2.48)

The value J- 1 (Ich ) depends on the Eb/No of the channel. The greater the Eb /No we are
considering, the greater the information that comes from the detector, and thus the greater the
variance of the associated messages. For example, if we assume a BIAWGN channel such as
the one in (2.37), we have Es = Rc Eb = 1. The variance of the messages coming from the
detector can thus be easily calculated as

4	 8	 Ebj— 1 ( Tch
——	 8R,—	 (2.49)h	 2

an No	 No

For more complex channels or constellations, the information passed by the detector must be
estimated for each Eb /No via Monte Carlo simulations.

	

In case the code is irregular, and the variable nodes have Dv different degrees civ,1 ,	 ,
the mutual information must be calculated for every node degree, and then averaged by the
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Figure 2.11: EXIT curves for regular Variable Node Decoders (VND) with different degrees in
a BIAWGN channel.

number of edges carrying each amount of information. Thus, if we denote the fraction of

nodes having degree clv,„ we can calculate the fraction of edges outgoing from the nodes with
that degree as

av,z dv ,z

D,
j=1 ad,,i

and the average mutual information passed to the check nodes is

D,

bV,2 (2.50)

iE,VND ( 1-A,VND ich) —	 v, E,VND ( iA,VND, ich dv,j)
	

(2.51)
=1

Figure 2.11 shows the EXIT curves for regular variable node decoders with different degrees in
an BIAWGN channel. We can see that increasing the node degree also increases the amount of

extrinsic information provided by the VND.
When computing the 'mutual information of the check-to-variable messages, it is convenient

to resort to a duality property of the Binary Erasure Channel (BEC). A BEC is a channel that,
with probabilty p, "erases" the transmitted bit in a way that the receiver cannot recover it, and
with probability 1 — p leaves the bit untouched (Figure 2.12). In this channel, the output mutual

information of a check with degree d is related to that of a variable node of degree dc as follows
[43]

/E , CND /A,CND dc) — 1 — iE,VND ( 1 —	 dc)
	

(2.52)
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This property is very accurate (although not exact) for a BIAWGN channel, so we can
approximate the extrinsic messages from a CND with degree de by substituting (2.48) in (2.52)
as

/E,cND(iA,CND, de)	 1 — J((de — 1)J -1 (1 — 1-A,CND))
	

(2.53)

In case there are different check degrees, the output inforrnation must be averaged in the number
of edges corresponding to each degree, as in the case of variable nodes. Figure 2.13 shows
the EXIT curves for regular check node decoders with different degrees. Contrarily to what
occurs at the variable nodes, increasing the check node degree causes a decrease in the extrinsic
information provided by the CND.

When, as occurs with LDPC codes, the decoder is constituted by two components, the EXIT
curves can show in a graphical way if the code will be able to converge to the correct solution
for a given Eb l No. To do this, the extrinsic information produced by one of the decoding
components is plotted with the horizontal axis as the input information and the vertical as
the output, whereas for the other decoding component the axes are swapped (the vertical axis
represents the input and the horizontal axis the output). This way we can plot the trajectory
followed by the mutual information in the decoding process as a zigzag line, since the output
information from one of the components is the input inforrnation for the other. If there exists a
"tunnel" between the curves corresponding to each component that reaches the point (1, 1), the
decoder will be able to converge to the correct solution. If the curves intersect before that point,
the exchange of extrinsic information will get "stuck" before achieving the correct solution.

For example, let us consider a regular LDPC code of rate R, = 0.5 and a degree for the
variable nodes of d = 4. Since N = K Re = 2K, the number of checks is N — K = N/2,
and thus the degree of the checks in the factor graph is d, = 8 (an edge always connect one
variable node to one check node). Figure 2.14 shows the EXIT curves for the VND and CND
corresponding to this code in a BIAVVGN channel for Eb /No = 1.5dB and for Eb l No = 1.6dB.
Note that the horizontal and vertical axis are swapped for the CND curves. For the case of

Eb /No = 1.6dB, the mutual information between the coded bits and the messages passed by the
variable nodes to the check nodes reaches one, which means that we can recover the transmitted
coded bits by observing the variable node messages. For Eb /No = 1.5dB, however, the mutual
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IA.CND

Figure 2.13: EXIT curves for regular Check Node Decoders (CND) with different degrees.

information exchanged between the two components gets stuck at the point where the curves
i ntersect.

EXIT charts allow an easy understanding of the behavior of iterative decoding, and make it
easy to find codes that are able to converge close to the capacity limit. In the case of the previous
code, its predicted convergence threshold in a BIAWGN channel would be between 1.5dB and
1.6dB. Since the AWGN capacity limit for 0.5 bits per channel use is at E b /No = OdB, the code
would perform at more than 1.5dB away from the capacity limit. By studying the performance
of codes with irregular degree profiles it is possible to get much closer to the limits. In fact, it
can be shown that the optimization of a LDPC code can be reduced to a curve fitting problem
[431. For example, we can choose a fixed degree für the CND and search for an irregular
degree profile für the VND in order that its curve lies as close as possible to the CND without
intersecting. Figure 2.15 shows the EXIT chart of an optimized LDPC code with an irregular
variable node degree profile of [411

dt, = {2, 4, 18} av = {0.508, 0.419, 0.073} 	 (2.54)

and a degree for all the check nodes of de = 8. As we can see, this code is able to converge at
only 0.5dB away from the AWGN capacity limit.

It is important to note that this is the estimated average mutual information trajectory, and
not the actual decoding trajectory for an LDPC code with a finite block length. EXIT charts
assume independence between the different messages passed in the factor graph, which only
happens when the block length tends to infinity. As the block length decreases, EXIT charts
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Figure 2.14: EXIT chart of a regular LDPC code with rate R, = 0.5 over a BIAWGN channel,
for E6/N0 = 1.5dB (top) and Eb /No = 1.6dB (bottom)
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Figure 2.15: EXIT chart of an optimized irregular LDPC code with rate R, = 0.5 over a
BIAWGN channel, for E b /No = 0.5dB

become less accurate, and the actual performance of the optimized codes gets worse when

compared with the predicted behavior.

2.3.2 EXIT charts for LDGM codes

LDGM codes behavior can also be studied using EXIT charts by considering the exchange of

mutual information between the systematic variable nodes, that constitute now the VND, and

the check nodes. The function of the parity variable nodes is simply to pass the messages from

the channel to the check nodes, so we can calculate the output information from the check nodes

with degree cl, as

TE , cND /A,CND ich dc)	 1 — J((cic —1)J 1 (1 — /A,CND)	 J 1 ( 1 — -ich))
	

(2.55)

whereas the mutual information of the messages passed by the VND to the CND is the same as
in the case of LDPC codes, given by (2.48).

Figure 2.16 shows the EXIT function of LDGM CNDs with different degrees and for

different values of Eb l No. This EXIT function shows the limitation of LDGM codes: the mutual
information from the CND does not reach one for an input information of ikcND = 1, because

the maximum information that the check nodes can provide to the variable nodes is limited by
the information received by the check nodes from the channel (if the information from one of the

bits involved in a modulo-2 sum is innacurate, we cannot obtain accurate information about the



dc=2, Elb/N0.0dB
ci c=4, Eb/N10.0dB
dc=8, Eb/N0=0dB
ci c=2, EID/No=2dB
dc=4, Eb/N0=2dB
dc=8, Eb/No=2dB0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

2.3 CODE OPTIMIZATION WITH EXIT CHARTS	 29

o

IA,CND

Figure 2.16: EXIT curves for regular LDGM Check Node Decoders (CND) with different
degrees in a BIAWGN channel.

rest of the bits). This causes the exchange of the mutual information between the CND and the
VND to get stuck for any practical degree profile, because the VND needs an input information
of ift,VND /E,CND 1 to be able to produce an output information of IE,VND 1. Note that
LDPC codes do not suffer from this limitation, because their CND does not receive information
from the channel directly.

For example, let us consider a regular LDGM code of rate R, = 1/2 and a degree for the
systematic variable nodes of d, = 4. Since the number of systematic variable nodes is K, and
the number of check nodes is N — K = K, the degree of the check nodes is also d, = 4. Figure
2.17 shows the decoding trajectory of this code in a BIAWGN channel at Eb IN0 = 2dB. We
can see that the exchange of information stops approximately at the point (0.58, 0.96), which
means that a significative percentage of the information bits will be erroneous at the end of the
decoding process.

An exception to this behavior is that of very high rate LDGM codes [441. For high rates, the
capacity limit is at higher values of Eb IN0 , and since the information calculated by the detector
in a BIAWGN channel is proportional to the rate and the E b /No (see Eq. (2.49)), the CND is
able to get very close to /E , cND = 1, and thus systematic LDGM codes are able to converge to a
solution near the capacity limit, even with regular degree profiles. For example, let us consider
a rate R, = 0.95 regular LDGM code with a variable node degree of d, = 4. The number of
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Figure 2.17: EXIT chart of a regular LDGM code with rate R, = 0.5 over a BIAWGN channel,
for Eb /No = 2dB

check nodes is N — K = KIR,— K, which means that the check node degree is

4
cl, = 	  	 = 76

K I R, — K 1/0.95 — 1

Figure 2.18 shows the EXIT chart of this code in a BIAWGN channel for Eb /No = 4.6dB. As
we can see, the mutual information reaches one, which means that the LDGM code will coverge

to the solution. In the next chapter we will take advantage of this behavior to design a scheme

based of LDGM codes that is able to approach the capacity limits with medium rates.

2.3.3 EXIT charts for RA codes

When analyzing the performance of a RA code with a factor graph as that in Figure 2.9, the

two considered components are the variable node decoder (VND) constituted by the systematic

vari able nodes, and the union of the check node and the accumulator decoders (CNAD). The

output information from the VND is given by (2.48). The information passed by the CNAD to

the VND is calculated in a similar way as in the LDPC case, but we must add the information

passed from the accumulator to the check nodes, that we will denote as /E ,Acc• Since this

inforrnation arrives to the check nodes through two edges in each check, the information from

the checks to the systematic variable nodes is given by

/E,CNAD( /A,CNAD, TE,ACC, de) — 1 — J ((d, — 1)J 1 0_ — /A,CNAD) ± 2J 1 (1 — TE,ACC)))
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Figure 2.18: EXIT chart of a regular LDGM code with rate Re = 0.95 over a BIAWGN channel,
for Eb l No = 4.6dB

The information /E , Acc can be calculated by particularizing (2.48) to the degree-2 variable
nodes in the accumulator as

/E,ACCUA,ACC, Ich	 -I ( J-1 ( IA,ACC) ± J-1 (ich))
	

(2.56)

where /A,ACC is the input information to the accumulator passed from the check nodes,
computed as

	

LI,ACC( /A,CNAD, 1-E,ACC) = 1 — 1 (deJ 1 (1 — /A,cNAD) + J -1 (1 — /E,ACC))	 (2.57)

As occurs with LDGM codes, the two component curves depend on the information passed
by the detector (ich ). Since the computation of /E , Acc is recursive (i.e., it depends on /A,Acc,

which depends on /E , Acc), we must perform several inner iterations in the CNAD to obtain the
fi nal value for /E,cNAD.

Optimization of IRA codes can be performed in the same way as that of LDPC codes: we
fix the degree of the check nodes de and find a good irregular degree profile for the systematic
variable nodes by fitting the VND curve to the fixed CND curve. Figure 2.19 shows the EXIT
charts of an optimized systematic IRA code [40] over an AWGN channel for Eb l No = 0.5dB.
The degree profile of the IRA code is

	

de = {2, 3, 13} a, = {0.0603, 0.6307, 0.3063} 	 (2.58)

with a degree for all the check nodes of de = 6. Since the curves do not intersect, the predicted
threshold for this code is lower or equal than Eb l No = 0.5dB.
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Figure 2.19: EXIT chart of an optimized IRA code with rate R, = 0.5 over a BIAWGN channel,
for EbIN0 = 0.5dB

2.4 Simulation results

In this section we perform computer simulations to assess the accuracy of the EXIT chart
analysis for codes based in graphs.

We will start by analyzing the performance of the regular and irregular LDPC codes
considered in the previous section. To avoid the high complexity of the encoding process, the
simulations are performed by sending the all-zero codeword (since LDPC codes are algebraic
block codes, the all-zero sequence is always a valid codeword and has the same error probability
as any other codeword). The EXIT charts predict a Eb IN0 threshold of approximately 1.6dB
for the regular LDPC and 0.5dB for the irregular one (the Shannon limit is located at OdB).
Figure 2.20 shows the performance of these codes for a code length of N = 200000 bits. The
simulated threshold (measured at a BER of 10 -4 ) is in both cases at less than 0.1dB from the
predicted one. As mentioned in Section 2.3.1, the difference between the predicted and the
real performance can be explained because EXIT chart analysis assume in fi nite block lengths.
As we decrease the block length, we can expect the performance to get further away from the
predicted threshold, due to the higher variance of the mutual inforrnation of the messages and
the correlation between the coded bits. This can be clearly seen in Figure 2.21, that shows the
performance of the optimized LDPC code over an AWGN channel for different block lengths.
This figure also shows another limitation of the EXIT analysis: the appearance, even with long
block lengths, of relatively high error floors (at around 10 -5 ) that cannot be predicted by the
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Figure 2.20: Performance of rate R, = 0.5 regular and irregular LDPC codes over a BIAWGN
channel, K = 100000 information bits.

EXIT chart. These error floors can be caused by the high percentage of degree-2 variable nodes
(more than 50%), which makes the code minimum distance poor due to the high probability of
short cycles involving these nodes [45, 40].

Figure 2.22 shows the performance of different systematic LDGM codes in the same
BIAWGN channel. The high error floors due to the poor minimum distance prevents this class of
codes to be used in practical schemes as a standalone channel code. Note that these error floors
have a different nature from that of the LDPC code in the previous simulation, since these are
much higher, independent of the block length and clearly predicted by the EXIT charts with an
intersection between the VND and CND curves.

Finally, we can see in Figure 2.23 the performance of the optimized IRA code considered in
Section 2.3.3. As occurs with LDPC codes, the simulated threshold gets closer to the predicted
one as we increase the code block length. This optimized IRA code also presents an error floor,
but much lower than that of the previous LDPC for practical block lengths.

2.5 Conclusions

In this chapter we have reviewed the concept of channel capacity and presented some of the
coding schemes that are able to approach the capacity limits. After introducing turbo codes and
the turbo principle, we studied Low Density Parity Check (LDPC) codes, a class of random
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Figure 2.21: Performance of a rate R, = 0.5 optimized LDPC code over a BIAWGN channel,
for different block lengths.

Eb/No

Figure 2.22: Performance of rate R, = 0.5 regular LDGM codes over a BIAWGN channel, for
different variable node degrees. K = 100000 information bits
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Figure 2.23: Performance of a rate R, = 0.5 optimized IRA code over a BIAWGN channel, for
different block lengths.

block codes that are asymptotically "very good". Although Optimum decoding of LDPC codes
is infeasible, we can use the Sum-Product Algorithm (SPA) over a factor graph determined
by the parity-check matrix of the code. The SPA is an iterative message-passing algorithm
that exchanges extrinsic information between variable and check nodes, in a similar way as
the components of a turbo decoder. In addition to LDPC codes, we also studied systematic
Low Density Generator Matrix (LDGM) codes, a subclass of LDPC codes with linear encoding
complexity that have been historically disregarded due to their poor minimum distance; and
Repeat-Accumulate (RA) codes, another subclass of LDPC codes that also have a lower
encoding complexity than general LDPC codes but are still asymptotically "very good". Since
both LDGM and IRA codes are subclasses of LDPC codes, they can be decoded by applying
the same Sum-Product algorithm over their respective factor graphs.

In order to achieve a good performance with any of these LDPC-based codes, it is necessary
to obtain an appropriate degree profile for their factor graphs. We have presented the two
optimization techniques that can be used to find codes with a performance close to the capacity
limit: Density Evolution (DE) and EXtrinsic Information Transfer (EXIT) charts. We focused
on EXIT charts due to their lower complexity and their potential to graphically show the
trajectories followed by mutual information during the decoding process. We explained how
to easily calculate the extrinsic information of variable and check nodes messages in LDPC,
LDGM and IRA codes, which allows us to study their performance without having to resort to
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very time-consuming computer simulations. We have shown that both LDPC and IRA codes
are easily capable of performing very close to the Binary-Input AWGN (BIAWGN) capacity
limit when properly optimized. LDGM codes, on the other hand, cannot approach capacity
with an arbitrarily low error probability because of their graph structure, so they are not suitable
as standalone codes. However, their good performance in high rates and good threshold make
them attractive in concatenated schemes, as we will show in the next chapter.

Finally, to assess the accuracy of the EXIT Chart analysis, we performed several computer
simulations testing the different classes of codes. We showed that EXIT Charts predict the
convergence threshold of moderate length LDPC and IRA codes in BIAWGN channels with an

error lower than 0.1dB.



Chapter 3

Serially-Concatenated Low-Density
Generator Matrix (SCLDGM) codes

Although decoding of LDPC codes can be done at a reasonable complexity using easily
parallelizable algorithms, encoding of LDPC codes is a more involved Operation. On the
contrary, encoding is extremely simple in Low Density Generator Matrix (LDGM) codes. Since
LDGM codes are a particular case of LDPC codes, the decoding algorithm is the same. LDGM
codes have limited applicability because, in general, they present an unacceptably high error
floor, although for high-rates this error-floor may already be sufficiently low [44]. On the other
hand, LDGM codes present very good convergence thresholds, i.e., the Eb /No abscissas at
which the BER curves start to fall down is rather low. Thus, LDGM codes could be very
attractive if we manage to reduce the error floor below a certain level.

One way of reducing the error floor is to concatenate an LDGM code with an outer code
[46, 47 ] . This idea is motivated by the fact that errors in a single (non-concatenated) LDGM
code occur in almost every block but the number of errors in each block is rather low. As a
consequence, a high-rate outer code is enough to remove an important number of these errors.
Since the performance of LDGM codes is particularly very good for high rates, it is natural to
consider them as outer codes thus resulting in a very homogeneus coding scheme thai we will
denote as Serially-Concatenated LDGM (SCLDGM).

SCLDGM codes share some similarities with Repeat Accumulate (RA) codes. RA codes
are also constructed from a core LDGM code, but reduce the error-floor by appending an
accumulator. In SCLDGM codes the error floor is lowered by concatenating a high-rate LDGM
code. An important advantage of SCLDGM codes is that they randomly spread information
bits along the output codeword. As a consequence, SCLDGM codes are able to correct burst
errors by themselves without resorting to an interleaver prior to transmission. For this reason,
SCLDGM codes are very attractive for the transmission over Rayleigh fading channels and for
the construction of coded modulation systems. This is not the case for RA codes where the
presence of an accumulator introduces correlation in the output codewords and an interleaver
may be necessary to elinninate it [40]. Another difference is that the performance of regular

37



K K +
R, = R 1 R2 =

K + K + + L2 K + + L2 N

38	 CHAPTER 3 SERIALLY-CONCATENATED LOW-DENSITY GENERATOR...

U c l C 2Outer LDGM Inner LDGM
G i = [I Pl] G 2 = [I P2]

K	 L1 N
R= KRK + R = (K	 L1)1N

SCLDGM

R = K/N

Figure 3.1: Block diagram of a Serially-Concatenated LDGM Code

SCLDGM codes is, unlike that of regular RA codes, rather good and makes unnecessary
resorting to irregular degree profiles as in IRA codes.

3.1 Encoding and Decoding of SCLDGM codes

Figure 3.1 shows the block diagram of a SCLDGM code. Let us consider a sequence of K
information bits

U = [Ui, U2,	 UK]

This sequence is first encoded with an outer systematic LDGM code to produce the coded
sequence

21,	 1,1C 1 = uG 1 =	 u2, uK,p	 1)1

where L l is the number of parity bits added by the outer code, GI' = [IK P lKxLi ] is the outer
generator matrix and P IK ,<L, is the outer parity matrix. The rate of the outer code is thus
R l = K I (K + L 1 ). These bits are then encoded with an inner LDGM code to produce the final
codeword, i.e.,

3.	 G	 7,1	 1	 1	 „,,2 7,2C	 [Cl, C2, ...,	 ] = C2 = C 1 	2	 "2

	

= ,U 1, U2, • UK, Pi, P 	 • , PLP P 	 PL2 
I
J

where L2 is the number of parity bits introduced by the inner code, N = K + L l + L2 is the
codeword length, G 2 = L _K±L i 1132(K+L o x L2 ] is the inner generator matrix and P2(K±Lo xL2 iS
the inner parity matrix. The rate of the inner code is R 2 = (K + L,)/(K + L l + L2 ), and the
overall code rate is

As mentioned before, the inner code rate is close to the overall code rate and the outer code
rate is close to one. This is accomplished by choosing L l < L2, since in this case Rl 1 and

R2 R.
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Fig. 3.2 shows the factor graph of a SCLDGM code. When specifying an SCLDGM
code we have to take into account the presence of different types of variable and check nodes:
variable nodes can be ui (systematic bits), pjl (outer parity bits) or p (inner parity bits), while
check nodes can be either fil (outer checks) or f (inner checks). Degrees have now to be
defined for each pair of node types. Let us denote by d‚ = 1, 2, ..., D1, the degrees of

variable nodes of type y with respect to check nodes of type f . Since there is a one-to-one
correspondence between check nodes and their related parity bit nodes, we therefore have only
degrees d, dif:, and df . The number of different degrees is, respectively,	 , D ifi 2 and Df1

P

To complete the specification of the degree profile we will denote the fraction of nodes of type
having degree ei as avf, ,, being y either '11 or 79 1 . The number of edges from variable nodes of

Df f ftype y to check nodes of type f is thus given by cif, = E, dv,j av,z . These edges are assigned
to the corresponding check nodes uniformly, as in simple LDGM codes, so the degree of check
nodes f with respect to variable nodes y is either dvf or dvf + 1. Finally, another code parameter
is p = L 1 /(L 1 + L2 ), i.e., the fraction of outer parity bits with respect to the total number of

1.2

parity bits. We will say that an SCLDGM code is regular when all D ifi l = D ifi 2 = Dpj = 1, and
irregular otherwise. In the sequel we will drop the subindex i whenever the number of degrees
is one.

Decoding of SCLDGM codes is performed by the particularization of Eqs. (2.30) and (2.32)
to the corresponding factor graph. At the end of the iterative process, a decision is made using
the a posteriori L-values of bits u given by equation (2.35).

It is worth mentioning that, given the two generator matrices G l and G 2 , we can obtain an

equivalent generator matrix G = G 1 G 2 . This new generator matrix is also sparse, so we can
consider building a simpler factor graph based on this matrix, with only one layer of variable
nodes and one layer of check nodes. However, using this factor graph to decode the received
sequences leads to a very poor performance [48 ] . In fact, the same high error floor can be
observed as when decoding a single LDGM code.

3.2 Channel model

In this chapter we will assume that the coded bits c are mapped to a complex constellation with
2 mc levels (i.e., M, bits per symbol) and average energy Es for the transmission through the
channel. This is an example of Bit-Interleaved Coded Modulation (BICM) [49, 501, a signalling
scheme in which the channel code and bit-to-symbol mapping are designed independently.
As an alternative, coding and modulation can be jointly designed, as occurs in Trellis-Coded
Modulation (TCM) [51 ] . However, designing long random codes together with the constellation
is a difficult task, and BICM can provide results very close to the capacity limit without the need
of a joint design, as we will see in the following sections.

We will consider two channel models: Additive White Gaussian Noise (AWGN) and
Rayleigh fading.
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Figure 3.2: Factor graph of a SCLDGM code
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3.2.1 AWGN

The complex AWGN channel model assumes that the received observations are obtained as

x[k] = s[k] + n[k], k = 1, 2, .	 ,	 (3.1)

where n[k] are i.i.d. complex samples of AWGN with variance o N0 (i.e., N0 / 2 per real
dimension). Since the number of information bits per symbol is R,M the Eb l No at reception
is given by

Eb	 1 Es

No R,M, No

Let us assume without loss of generality that the coded bits ch , cm, are mapped to the
constallation symbol s, which is received as the observation x (we drop the index k for the sake
of clarity). Since the observations are independent, the LLR values needed by the decoder can
be calculated by the Optimum detector for each bit e1 as

Lch,i = log 
p(x1c3 = 1) 

= log 
p(c3 = 11x) 

log 
p(c3 = 1)

= 1... M,	 (3.3)
P(x 	= 0 )	 p(c3 = x)	 p(c3 = 0),

Elaborating the A Posteriori Probability (APP) of the coded bit, we have

(3.2)

where S is the set of constellation symbols in which the j-th bit is equal to b. Using Eq. (2.29)
and assuming that the bits mapped to a symbol are independent, we can calculate the a priori
symbol probability as

where s i is the i-th bit of s, vi = 2s i — 1 and the values

Li = log 
p(ci = 1)

p(ci = 0)

are the a priori log values of the bits mapped to the constellation symbol s. Since v i can only
take values of —1 and +1, the denominator does not depend on v i , and we can rewrite (3.5) as

M,	 M,

P( S) = H eLi/2 e-2 
H ev,Li/2 exp

i=i	 i=1

(3.6)
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Substituting the previous expressions in Eq. (3.3) results in

X	 2
AT0

sES
Lch, j — log

7 lx—s112
exp 	

sES3°	
No

which can be rewritten as

+ —z
2

1)
log 

p(c3 =z= 1

1„\	 P(ci ----- 0)mc
+ V

i = 1	
2 j	 L,

(3.8)

where S° and S 1 are the set of constellation symbols in which the j-th bit is equal to 0 or 1,
3

respectively.
The fact that the channel LLRs, Lch depend on the a priori L-values of the bits, L„

suggests that the detector can be interpreted as as another component of an iterative receiver,
that uses the extrinsic information from the decoder as a priori information to recalculate the
values L h ,3 . These values are in fact the extrinsic information provided by the detector to the
decoder, since we are not using the a priori L-value of the bit j to calculate the value LCh,3. This
means that we can calculate the EXIT characteristic of the detector to study its performance.
To do that, we must calculate the information ich of the messages computed by the detector

(Lch,j) as a function of the a priori information A of the messages passed by the decoder
(L 2 ). Since, in general, this function does not have a closed form, we need to perform Monte
Carlo simulations to estimate it. The procedure is the following: after fixing the system SNR
and the bit-to-symbol mapping, we generate a random sequence of bits and map them to the
corresponding constellation symbols, which are sent through the channel. At the same time, we
generate a set of L-values with variance u2 = J- 1 (I A ) following the model given by (2.37).
These a priori L-values are passed, together with the channel observations, to the detector, that
calculates the Lch ,3 values using (3.9). Finally, we calculate the mutual information between
these	 values and the generated bit sequence.

Figure 3.3 shows the EXIT curves of the Optimum detector for an AWGN channel when
using Gray mapping and different constellation sizes. We can see that, although as we increase
the number of levels in the modulation the slope also increases, the curves remain almost an
horizontal line. This means that, when using Gray mapping, the a priori information does not
take an important role in the detection process, so we can calculate the LLRs of the coded
bits once and proceed to the decoding without needing further detector iterations. Thus, the
calculation of the Lch,i values for the case of Gray mapping and the channel model given by Eq.
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Figure 3.3: EXIT curves for the optimum detector over an AWGN channel for different SNRs.

(3.1) can be simplified to

The detector EXIT curves have an interesting property: when considering a Binary Erasure
Channel (BEC), the area below the curve equals the System capacity 1421. This area property
can be considered as approximate for the BIAWGN channel assumed for modelling the code
and detector messages and gives us an idea of the maximum code rate that can be employed with
the detector. For example, all the EXIT curves in Figure 3.3 have approximately the same area
below them (slightly abo ye 0.5), so a rate R, = 0.5 optimized code will perform approximately
at the SNRs indicated for each modulation in the figure.

EXIT curves can also be calculated for other mappings, but it can be shown that they are
always steeper than that of Gray mapping 1291. This means that, when not using Gray mapping,
we must perform detector iterations in order to achieve the best results, thus increasing the
detection complexity. Also, SCLDGM codes (and, in general, LDPC-based codes) do not adapt
well to very steep detector EXIT curves, which makes it harder to approach capacity. Therefore,
in the rest of this work we will limit ourselves to Gray-mapped constellations.
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AWGN channel capacity

It can be shown that the distribution of s that maxirnizes the mutual information of the complex
AWGN channel model is the Gaussian distribution, and that the capacity associated to it is given
by

C = log2 (1 + 	
No y	

(3.11)

This capacity expression does not make any assumption on the distribution of the transmitted
symbols, so the maximization of the mutual information is done over all the possible symbol
distributions. This capacity is termed unconstrained capacity. However, in practice, we are
restricted to a certain constellation of possible symbols, determined by the modulation chosen
by the communications system. The constrained capacity can be calculated as the mutual
information between the input and the output of the channel for a given constellation, as derived
in Eq. (2.5)

C = I(S; X) = H(X) — H(X1S)	 (3.12)

Assuming the channel model given by (3.1), we can elaborate both entropies

( 7N1 0 exp
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And substituting them in Eq. (3.12) we obtain
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— log(e)
	

(3.13)
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This expectation does not have a closed form solution, so we must use Monte Carlo simulation
to find the capacity. Figure 3.4 shows the constrained and unconstrained capacities for an
AWGN channel for different constellations. The fact that the uncostrained AWGN capacity
is twice the capacity of Figure 2.2 in the previous chapter is because in this chapter we are
considering a complex valued model, that effectively doubles the capacity of the real-valued
model.
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Figure 3.4: Unconstrained and constrained capacities for different constellations in an AWGN
channel.

3.2.2 Rayleigh fading

In wireless communications the transmitted signals are usually affected by multipath pro-

pagation due to reflections from objects located between the transmitter and the receiver.
This causes the effects of destructive and constructive interferences and phase shifting in the
transmitted signals, which the AWGN model does not take account of. A more appropriate
model for this kind of systems is the Rayleigh fading model, especially when there is no Line
Of Sight (LOS) between the transmitter and the receiver. The Rayleigh fading model assumes
that the received observation at each time instant is the result of the sum of many independent

contributions, each one consisting on the transmitted symbol multiplied by a random complex
coefficient that changes the phase and amplitude of the original symbol. If we assume that
the number of contributions is large, the coefficients can be modelled as a Gaussian random
process, according to the Central Limit Theorem. Thus, considering a nnemoryless channel, the
observations at the receiver can be calculated as

x[k] = h[k]s[k] + o[k], k = 1, 2, . . . ,	 (3.14)

where h[k] are samples of a CA/(0, 1) distribution and n[k] are complex samples of AWGN.
We will consider three different fading models: the quasi-static fading model, where the
channel remains constant during the transmission of a whole codeword (i.e., h[k] = h, k =
1, , N Mc), changing independently between two successive codewords, the block-fading
model, where the channel remains constant for the transmission of B symbols, B < N IM,;
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arid the fast fading model, where the channel fading coefficient h[k] is assumed to change
independently from one use to another. If the code block length is large enough, the channel
random process becomes ergodic, and the fast fading model becomes an ergodic channel.

Assuming that the receiver has perfect Channel State Information (CSI), i.e., that the
receiver knows the values h[kl, the LLR values for the decoder are calculated in a similar
manner as in the AWGN model as

4

As occurs in the AWGN case, when using Gray mapping the EXIT curves for the Optimum

detector are practically an horizontal line (Figure 3.5), so we can drop the a priori information
and calculate the extrinsic LLRs as

Rayleigh fading channel capacity

	The distribution that maximizes the mutual information of the Rayleigh fading channel is also	
AIP

the Gaussian distribution, and the capacity associated to it for a fixed channel coefficient h is
given by

C(h) = log2 1 + —NEso 42 )	 (3.17)

When each codeword is transmitted over M different channel realizations, the capacity is
calculated as the average of all the realization capacities, i.e.,

If the coefficients h[k] are modelled as a random process, this average capacity will be a random
variable, that can be characterized by its Cumulative Distribution Function (CDF). The CDF
of the average capacity depends on the assumed fading model. If the channel is erdogic the
associated capacity will be a fixed value called ergodic capacity, which is given by

E, 2\
C = Eh {C(h)} = Eh { 1og 2 1 + 	 }

	
(3.19)
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Figure 3.5: EXIT curves for the Optimum detector over a Rayleigh fading channel for different

SNRs.

On the other hand, quasi-static channels do not have an associated capacity: since we are using a
code of a fixed rate to transmit over a single channel realization h, there is always the chance that
the channel realization has an associated capacity lower than the information rate, which makes
error-free communication impossible. When this happens, the channel is said to be in outage.
In this case, to get an idea about the channel ability to transmit information, it is necessary
to resort to the concept of outage capacity: the capacity of the channel provided it is not in
outage. This capacity is thus related to the outage probability, i.e., that of the channel being
in outage. The capacity CDF of the block fading model depends on the number of different

channel realizations during the transmission of a codeword. If the number of realizations is
high, the capacity will tend to the ergodic capacity (Figure 3.6).

The constrained capacity of a fixed channel realization ti can be calculated in an analogous
way as in the AWGN channel

and we can define the ergodic constrained capacity as the expected capacity over the random
variable h

{
C = —EhE. log2	

M2

	 e p [ 1
	

— hs 1 — log2 (e)	 (3.21)
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Figure 3.6: Capacity CDF of Rayleigh fading channels for SNR=15

Figure 3.7 shows the constrained and unconstrained capacities of an ergodic Rayleigh fading
channel for different constellations, and Figure 3.8 a comparison between AWGN and Rayleigh
fading capacities.

Diversity

Diversity is an important concept that appears associated with fading channels. Making use
of the diversity provided by the channel consists in improving the reliability of the trasmitted
signals by utilizing several communication channels with different characteristics. This scheme
can be used to avoid errors due to deep fades, since the probability thai all the versions of
the same signal are affected by a deep fade is very low. At reception, the multiple received
versions of the incoming signal can be combined to obtain the original signal. The performance
improvement obtained because of the diversity is called diversity gain.

For example, let us consider an n-repetition code that takes one bit as the input and
constructs the codeword by repeating that bit n times. This trivial code does not provide
any coding gain when used over a BPSK AWGN channel, because the reduction in bit error
probability with respect to uncoded transmission for a given SNR is compensated by the extra
energy wasted in the coded bits. This means that the performance versus the Eb IN0 is exactly
the same as uncoded transmission for any value of n. However, if we employ a repetition code
in a fast fading Rayleigh channel, the performance does improve as we increase the number
of repetitions (Figure 3.9). This gain is due to the increase in diversity, since each information
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Figure 3.7: Unconstrained and constrained capacities for different constellations in a Rayleigh
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Figure 3.8: Capacities for AWGN and Rayleigh fading channels
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Figure 3.9: Performance of n-repetition codes over a fast fading Rayleigh channel

bit is sent over n different channel realizations (i.e., the diversity is equal to n). This class of

diversity is called temporal diversity, because the same information is sent in different time
intervals. It can be shown that the asymptotic slope of the performance curve is equal to the
diversity of the channel [52].

When using large randorn codes such as LDPC or SCLDGM codes, we are already making
use of the diversity provided by the channel. Indeed, if we assume an ergodic channel, each
information bit is sent across many different channel realizations, because each information bit
is used in the computation of many parity bits that are sent in different time intervals.

3.3 Convergence Threshold

Although, unlike RA and LDPC codes, regular SCLDGM codes are able to perform close to the
capacity limit, it is still necessary to find the optimum degrees for the outer and inner codes and
the best distribution of rates between both codes. To find the theoretical convergence threshold
of SCLDGM codes we can use the EXIT functions defined in the previous chapter. Thus,
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particularizing Eqs. (2.51) and (2.52) for the factor graph of a regular SCLDGM code, we have

1-1 1 = i 	— 1)J 1 (I) + d-1,2J-1(/72)	 aC2h)	 (3.22)
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where cf c2h = J-1(Ich)•
For messages from inner checks to outer variable nodes, we have to distinguish between two

types of inner check nodes: those that are connected to outer parity bits, fi a, (for simplicity, we
assume that an inner check may receive at most one edge from the outer parity bits) and those
that are not, fi , b. Thus,

/72 ,a = 1 — 1 (1-1 (1 — ipfi2 )	 df 2 — 2)J -1 (1 — /1 2 )	 J-1 (1 — Ipf22 ))	 (3.29)

/72 ,b = 1 — J ((df2 — 1)J -1 (1— 4f2	 F1 (1 — Ipf22

	

(3.30)

The mutual information of messages f 2 --> u is now given by the sum of Ifu2,a and /fu2,b,
weighted by the fraction of edges carrying each type of messages. Denoting by a = L 1 dpf i2 the
number of inner checks that are connected to outer parity bits, this results in

a(df2 — 1)I7.2,a + (L 2 — a)df2I)2,b

a(df2 — 1) (L 2 — a)df2

Extension of the previous equations to irregular SCLDGM codes is quite straighforward. It is
only necessary to consider that the mutual information associated to a given type of messages
is the mean, weighted by the correspondig fraction of edges, of the mutual information of
messages originating at nodes having a certain degree.

Code convergence is tested by simulating the evolution of messages mutual information
through the iterations of the SPA. For a fixed Eb 11\10 (and thus, a fixed an ) we start with all /'s
equal to zero and, then, we iteratively compute their values. This is exactly what the SPA does
but using representatives of messages (their associated /'s) instead of their actual values. We
say that the code converges when we find a sequence of /'s that finally leads to Iu = 1, where
is the mutual information associated to the a posteriori LLRs of bits u (see Eq. (2.35)). When

is almost, but strictly less than 1, convergence is achieved but with a significant error-floor.

Tu =f2 (3.31)
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Figure 3.10: Mutual information trajectories for the regular SCLDGM code over a BIAWGN
channel when Eb/No = 0.59dB.

Mutual information trajectories clearly illustrate decoding convergence. As an example,
Fig. 3.10 plots these trajectories for a regular SCLDGM code (#1 in Table 3.1) when
Eb /No = 0.59dB. Notice that the SPA is not converging because the mutual information of

messages, indistinguishable from that of u —> f 1 messages, is close to (but still not equal
to) one after 100 iterations. Nevertheless, see how the outer code starts to help from iteration
90: messages from outer checks to outer variables carry mutual information greater than zero.
Fig. 3.11 shows the decoding behaviour for Eb/No = 0.60dB. Now the outer code starts to
help from iteration 65, leading to overall convergence at iteration 75: mutual information of L„
messages is equal to one.

The EXIT functions also explain the need of an outer code in a LDGM code. Figure 3.12
shows the evolution through decoding iterations of mutual information of messages for a single
(non-concatenated) regular LDGM code for different values of the Eb/No. The code rate is
R, = 1/2 and the degree of both variable and check nodes is six. At Eb /No = 0.25dB, mutual
information of variable-to-check messages stays fixed at about 0.65 from iteration 20. Since
0.65 is far less frorn one, the BER will be quite high: the code is in the non-convergence region.
When Eb /No = 0.35dB, mutual information of variable-to-check messages reaches a much
higher value (about 0.95) from iteration 65: BER is low but still significant (0.95 is far from 1).
When we increase the Eb /No to 0.9dB the error-floor effect clearly appears: a higher mutual
information is quickly achieved but it is still not 1, meaning that some errors will still be present,
although the Eb /No is far from the convergence threshold observed at Eb /No = 0.35dB. Only
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Figure 3.11: Mutual information trajectories for the regular SCLDGM code over a BIAWGN
channel when Eb l No = 0.60dB.

when we help a LDGM code with an outer code, the error-floor can be lowered.

3.4 Code Optimization

The previous section suggests a straightforward way to optimize SCLDGM codes. We start
considering an initial channel Eb /No. For this value, we simulate the SPA evolution for all
possible code degree profiles and discard those for which the SPA does not converge. Next,
if we lower the Eb /No value and repeat the same simulation we will find out that some of the
remaining codes still converge (the others that do not converge are now discarded). We proceed
in the same way, lowering the Eb /No value until only one convergent code remains. This code
is the Optimum and the Eb l No value is its convergence threshold.

lt is important to note that the codes optimized for a BIAWGN channel are also optimal
for modulations with more than two levels over AWGN and Rayleigh fading channels. As we
have seen in the previous section, for higher order modulations with Gray mapping, the EXIT
function does not depend on the a priori information, i.e., the EXIT function is almost a straight
line for each particular Eb IN0 value. Since the EXIT function of a BIAWGN channel is also
a straight une, codes optimal for binary modulations are also optimal when using higher order
modulations or Rayleigh fading channels.

For regular SCLDGM codes, we examined SPA convergence varying the code parameters

	

between the following limits 0.001 < p < 0.05, with increments of 0.0025; 3 <	 < 5;
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Figure 3.12: Mutual inforrnation trajectories for a rate 1/2 LDGM code code over a BIAWGN
channel.

Code p difii dr cif'u
f 

d'
2

1
P

Thres. Gap

#1 (non-optimized reg.) 0.033 3 6 1 6 0.60 0.41
#2 (optimized reg.) 0.020 3 6 1 40 0.46 0.27

#3 (optimized irreg.) 0.040 3 4, 6, 35 0.25, 0.7, 0.05 40 0.36 0.17

Table 3.1: Degree profiles of rate 1/2 SCLDGM codes for AWGN channel. Channel capacity
is at Eb /No = 0.19dB.

2 <	 <35; and 2 < dfi2 <40. For irregular SCLDGM codes, we considered a degree profile
P —

with three different degrees for the systematic bits u with respect to the inner check nodes f2,
i.e., we fixed DjÇ 2 = 3. Parameters were varied between the following limits 0.01 < p < 0.15,
with increments of 0.005; 3 <	 < 5; 2 < dfu 2, < 35; 0.05 < auf2, < 1 with increments of

0.05; and 2 < dpf12 <25. We arrived at codes #2 (regular) and #3 (irregular) shown in Table 3.1.

3.5 Simulation Results

Computer simulations were carried out to illustrate the convergence thresholds in practical
implementations of the obtained SCLDGM codes with data blocks of finite length. These

thresholds are slightly higher than those predicted because EXIT function analysis assumes
infinite-length data blocks.
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Figure 3.13: BER vs Eb /No for different R, = 1/2 codes over a BIAWGN channel. Block
length is K = 50000 systematic bits. Channel capacity is at Eb /No = 0.19dB

Figure 3.13 compares the performance over an AWGN channel of the obtained regular and
irregular SCLDGM codes, the optimized IRA code in [40] and a non-optimized SCLDGM code
from [53]. The rate of all codes is R, = 1/2 and the block length K = 50000 systematic bits.
We performed a maximum of 100 iterations over the factor graph and stop if the same decoded
sequence is produced in 3 consecutive iterations. The simulations were carried out until 100
block errors were found or 7000 codewords were transmitted. The non-optimized SCLDGM
code is the code #1 in Table 3.1. Examining Figure 3.13, it can be clearly seen the ability of the
optimized codes to approach the capacity limit, which is at E b /No = 0.19dB. In addition, the
performance of the optimized SCLDGM codes is 0.2dB better than that of the non-optimized
SCLDGM code.

Similar considerations can be made for the case of binary-input uncorrelated Rayleigh
fading channel (Figure 3.14). As in the BIAWGN case, the channel LLRs only depend on
the noise variance, so the codes optimized for the BIAWGN channel also perform very close to
the capacity limit. Nevertheless, the gaps with respect to the capacity limit (Eb /No = 1.8dB)
are slightly higher.

Figure 3.15 shows the performance of the optimized irregular SCLDGM code when
transmitting over AWGN and Rayleigh fading channels using higher order modulations. Since
the EXIT curves are practically flat for all the modulations, the performance of the optimized
code is very good in all cases. However, the increase in the slope for higher order modulations
causes a slight increase in the gap to the capacity limit.



56	 CHAPTER 3 SERIALLY-CONCATENATED LOW-DENSITY GENERATOR...

Non optimized regular SCLDGM
Optimized regular SCLDGM	 x-

Optimized Irregular SCLDGM	 x-
Optimized IRA

s's)ç

	

0.1
	

---

0.01

0.001

le-04

le-05

le-06

	

1e-07 	
2.1	 2.2	 2.3 2.4

Eh/No
2.5	 2.6	 2.7

Figure 3.14: BER vs Eb /No for different R, = 1/2 codes over a binary-input Rayleigh fading
channel. Block length is K = 50000 systematic bits. Channel capacity is at EbIN0 = 1.8dB

Finally, Figure 3.16 presents the performance of the optimized irregular SCLDGM code
for different values of the block length. As expected, increasing the block length improves
performance. Also note thai the resulting convergence threshold approaches the value predicted
by EXIT functions (0.36dB).

3.6 Conclusions

In this chapter we have presented a coding scheme termed Serially-Concatenated Low-Density
Generator Matrix (SCLDGM) thai is based on the concatenation of two LDGM codes. The
basic idea of the scheme is to use the outer high-rate LDGM code as a means to reduce the error
floor resulting from the decoding of the inner LDGM code. Thanks to the sparseness of the
generator matrices, the encoding complexity is similar to thai of a RA code and lower than thai
of an LDPC code. To decode an SCLDGM code, the SPA is employed over the factor graph
resulting from the concatenation of the two factor graphs corresponding to each constituten
LDGM code.

We were interested in finding good SCLDGM codes for both AWGN and Rayleigh fading
channels with different modulations using optimization techniques based on EXIT charts.
Since, except for the case of a BIAWGN channel, there is no closed form solution for the
calculation of the mutual information passed by the detector to the decoder, we have to estimate
the detector EXIT functions using Monte Carlo simulations. We have showed that, when using
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Figure 3.16: BER vs Eb /No for the optimized Rc = 1/2 irregular SCLDGM code over a
BIAWGN channel for different block lengths, K. Channel capacity is at E b /No = 0.19dB and
the convergence threshold is al E b /No = 0.36dB.

Gray mapping, the EXIT curves for all the studied modulations in both channels are practically
horizontal unes, so we can expect a code optimized for a BIAWGN channel (which also has an
horizontal EXIT function) to exhibit a good performance when using higher order modulations.

Since SCLDGM codes are a particular case of LDPC codes, the same EXIT functions can
be applied to them. However, due to the more complex structure of their associated factor
graphs, the curve fitting procedure is not appropriate for SCLDGM codes. Instead, we have
proposed to use the EXIT functions as substitutes for the SPA, which allow us to predict the
convergence threshold of a given code with very little complexity and therefore to perform
exhaustive searches to find good codes. We have seen that an SCLDGM code found using
this procedure is able to surpass the theoretical and practical performance of an optimized IRA
code in AWGN and Rayleigh fading channels with a lower error floor. We have also showed
that the SCLDGM code optimized for the BIAWGN channel performs also very close to the
constrained capacities when using QPSK, 16 QAM and 64 QAM constellations in AWGN and
Rayleigh fading channels.
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Chapter 4

Channel Coding for MIMO systems

Information theory predicts that the capacity of a wireless communication link that utilizes
multiple antennas at both transmission and reception, known as Multiple Input Multiple Output
(MIMO) system, is considerably larger than that of conventional single antenna systems
[54, 55]. This fact has attracted a great deal of attention during the last decade, due to the
increasing data rate requirements of wireless communication applications. In this chapter we
investigate coding, detection and code optimization techniques that can be used with MIMO
systems. In particular, we will discuss a Bit-Interleaved Coded Modulation (BICM) scheme in
which the coded bits are mapped to constellation symbols and then a simple spatial multiplexer
is used to distribute the symbols to the different trasmit antennas [561. In the receiver, a
suboptimum iterative detector will be employed to mitigate the problem of the exponential
complexity in the number of transmit antennas suffered by the Optimum MIMO detector. We
will show that this scheme is able to take advantage of the increased capacity provided by the
MIMO channel with an affordable complexity.

4.1 SCLDGM codes for MIMO channels

Figure 4.1 shows an example of a coded MIMO system. At the transmitter, the source bits are
encoded, mapped to constellation symbols and passed to a spatial multiplexer, which distributes

Figure 4.1: Block diagram of a BICM MIMO System

59
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the modulated symbols to the nT transmit antennas. Each signal, with an average energy Es,

travels to each of the nR receive antennas through different wireless channels, affected by
different fading coefficients. In the receiver, the effect of the nT transmitted signals is added in
each of the receive antennas. If we assume a flat-fading channel, the signal received in the j-th
antenna can be written as

riT 

x[k] =	 h i [k]s i [k] + n [kJ k = 1, 2, ... , L
	

(4.1)

If we consider the n R antennas, we can write the previous model in matrix form as

x[k] = H[k]s[k]+n[k] k = 1, 2, ... , L	 (4.2)

where l x	 [,x i , x2 ,	 , X n R ] T 	 S = [S 1, S2, - •	 •	 SnT } T , n [n i , n2 ,	 , nr,„] T and

h ii
h21

h12

h22

•

•

hin,
h2nT

hnRi hn, 2 - hnRnT _

(4.3)

Each entry	 is modeled as spatially uncorrelated, circularly-symmetric, complex-valued
Gaussian random variables, i.e., hz3 CA/- (0, 1). The components of the noise vector n[k]

are also both spatial and temporally uncon-elated, and distributed as CA/(0, N0). Since each
of the nR receive antennas collects an average energy of RT ES whent transmitting nTMcRc
information bits, we calculate the Eb IN0 al reception as

Eb nRnTE, 1	 nR Es
— = 	 	 (4.4)
No flTRM No Re M, No

As in the SISO case, we can consider three different basic channel models: ergodic, in which the
channel matrix changes indepently with every use; quasi-static, in which it remains constant for
the transmission of a codeword and changes independently between two successive codewords;
and block-fading, where the channel matrix remains constant during B uses, with B < L.

4.1.1 Capacity of MIMO channels

With the previous channel model, and assuming that the channel is known at the receiver, it can
be shown [54 ] that the capacity of a given MIMO channel H is

E
C(H) =	 max	 log2 det In, +	 1-111„I-1H)

Rss Tr{Rss } =n7-	 No

1 We drop the index k for the sake of clarity

(4.5)
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Figure 4.2: Unconstrained capacities of different flat fading Rayleigh MIMO channels.

where R„ is the autocorrelation matrix of the transmitted symbols. When the channel is
unknown at the transmitter, the symbol vector s must be chosen such as R„ = InT , so we
have

(
C(H) = log2 det	 + 

E
s HH H 	(4.6)

No

As in the SISO channel model, if H is a matrix of random variables and the channel is
unkown at the transmitter we can define the ergodic capacity as

C EH {O H» EH {1og2 det	 + —NEòs HH H )	 (4.7)

Figure 4.2 shows the ergodic unconstrained capacities of MIMO channels for different antenna
configurations. We can observe that the capacity grows with the minimum number of transmit
and receive antennas. In the case the minimum is the same, the channel with the largest number
of receive antennas has the greatest capacity.

As in the case of SISO channel model, we can calculate the constrained capacity as

C = /(s; x) = H(x) — H(xls) 	 (4.8)

Substituting the entropies by their expressions

H(x s) = 1og2 (7-Noe) 	 (4.9)



1

No
x—Hs 2exp (4.10)

1	 1C(H) = —Ex {10g2	IsexP
}

— nR log2 (e) (4.11)
-\

x — Hs 2

1

C = —1E H E„ {log ( 	  	  exp2 
2nT
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1	 n 1
x—Hs

No

2
-	

— nR log2 (e)	 (4.12)
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"1  \ 	 1 
H(x) = —1E„ {log,

2
\2 

nT11/4	 (7z-N0)nR

and

we obtain an expression for the capacity that depends on the channel matrix H

and thus we can calculate the ergodic constrained MIMO capacity as

4.1.2 Spatial diversity

In the previous chapter we introduced the concept of diversity and studied the role of temporal
diversity in the performance of channel codes when transmitting over SISO channels. The
MIMO channel introduces another dimension, the space, thai can be exploited to increase the
diversity by sending the same information through all the channel coefficients hu that connect
the transmit and receive antennas. The diversity gain obtained in this way is called spatial

diversity gain [57, 58] and is especially important in quasi-static MIMO channels because we
are limited to a maximum of nTnR different channel realizations during the transmission of a
codeword.

Spatial diversity can be subdivided in receive antenna diversity and transmit antenna
diversity. In the channel model we are considering, receive antenna diversity is always
maximum (i.e., equal to n R ) because the information sent from one transmit antenna travels
through the n R possible channels to the receive antennas. Transmit antenna diversity, however,
is not always maximized, since not all MIMO schemes send the same information from all the
transmit antennas (which is a requisite for sending all the information through all the possible
channels).

There exist several techniques that ensure that the maximum transmit diversity is attained.
A trivial technique, analogous to using a repetition code to exploit the temporal diversity in
the SISO channel, consists in sending the same symbol s from the different transmit antennas
sequentially. This simple code is an example of a Space-Time Code (STC) [57, 59, 60], i.e., a
code that takes into account the spatial dimension, and can be represented in matrix form as

s	 0	 • • -
s •• •	 0

SnT x nT (4.13)

0	 - • •

where each row correspond to a transmit antenna and each column to a time instant. Since we
are sending one symbol over nT time instants, the spatial rate of this repetition code is given
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by Rs = lInT. It can be shown [61] that a Space-Time Coding scheme achieves maximum
transmit diversity if the difference between any two different coded matrices has a rank equal
to nT . In this case the code clearly achieves maximum diversity, since the difference matrix
between any two codewords

DnT x nT

_S —S I

O

O

O

s — s'	 -

O

O

s — s'

(4.14)

has a rank equal to nT for any s' different from s. Note that the rate Rs = 1 repetition code
consisting in transmitting the same symbol through all the transmit antennas at the same time
does not provide any transmit diversity gain even though the same information is sent through
all the channel realizations, because the difference matrix between two codewords is

-
S —

s —
DnT x 1 —
	 (4.15)

s —

which has a rank equal to one.
A spatial multiplexer can also be viewed as a trivial STC of maximum rate (R, = nT ) that

simply distributes nT input symbols to the transmit antennas without adding redundancy, which
results in the coding matrix

Si

(4.16)SnT x 1
82

SnT

In this case the minimum rank of the difference matrices between codewords is only one, so
a spatial multiplexer does not provide any diversity gain. However, if we consider the whole
BICM scheme formed by the channel encoder, the modulator and the spatial multiplexer (Figure
4.1), it is possible to achieve maximum diversity. This is because a coded matrix of the whole
BICM scheme (which can also be seen as a Space-Time Code) corresponds to the mapped and
multiplexed version of a codeword of length N, i.e., a matrix with dimensions N (McnT ) x nT
If the difference between any pair of those matrices has a rank equal to n R, the BICM scheme
achieves maximum diversity. The problem is that, due to the random nature of the codes we
are considering and the large number of columns in the resulting coded matrices, it is difficult
to calculate the diversity achieved by a given code without performing computer simulations
[62 ]. This can lead to a bad performance of optimized codes in quasi-static channels, where the
maximum achieved transmit diversity is of great importance in high SNRs. In the next chapter
we will address this problem by considering the use of Space-Time Codes specifically designed
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to obtain the maximum diversity in the MIMO channel. In this chapter we will focus on the
BICM scheme over fast-fading channels, where the temporal diversity is sufficiently high so as
to overshadow the small spatial diversity gains.

4.2 MIMO detection

4.2.1 Optimum MIMO detection

Optimum MIMO detection can be carried out in a similar way as Optimum SISO detection, but
we must take into account the entire received vector in which the bit we are interested in was

transmitted. Thus, the LLRs for the decoder are calculated as

	

= log 
P(x l ck = 1 ) 	 P( ck = 1 1 x ) 	

log
 p(ck = 1) 

	

p (x Ck = 0)	
log 

p(ck = r,)x)	 p(ck = ())
Lch, k

SE SL

exp
N0

=	 log

seS2

exp
1

No

ng-Mc

X — HS 
Li

i=1

nyM

— Hs11 2 + >2.d Vi
L.)

2
i=1

Lk	 (4.17)

where S represents the set of all the possible transmitted symbol vectors s where bit ck = b
and v, = 2c, — 1.

Although the expressions for the Optimum MIMO and SISO detectors are very similar, the
effect of the a priori information in the extrinsic information is more important in the MIMO
detector, especially when the number of transmit antennas is greater than the number of receive
antennas. Figure 4.3 shows the EXIT curves of Optimum MIMO detectors for different antenna
configurations when using a QPSK constellation and Gray mapping. The SNRs con-espond to

a constrained capacity limit of 4 bits per channel use. As we can see, an increment in the a
priori information provides an important increase in the extrinsic information, which forces us
to iterate also in the detector to achieve the best performance.

The main problem of the APP detection in a MIMO system is that the complexity grows
exponentially not only with the number of bits per modulation symbol, but also with the
number of transmitting antennas, being infeasible in many cases of practical interest. Several
suboptimum detectors have been proposed to overcome this limitation, following mainly two
ideas: reducing the number of vectors used in the summations in the previous equation, or
filtering the interferences from the other antennas to isolate each transmitter stream, thus
reducing the dimensionality of the problem. We will study two algorithms that follow each
of these approaches: the SIC-MMSE detector and the sphere detector.
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Figure 4.3: EXIT curves for Optimum detectors in 4x1, 4x2 and 4x4 MIMO channels.

4.2.2 SIC-MMSE Detector

The SIC-MMSE (Soft Interference Cancellation-Minimum Mean Square Error) detector
[63, 641 is a linear detector with 0(4) complexity, similar to the Successive Interference
Cancellation with MMSE filtering detector employed in the original Bell Labs Layered Space-
Time (BLAST) architecture [55].

The SIC-MMSE detector starts by calculating a soft estimation of each of the transmitted
symbols using the extrinsic L-values of the coded bits provided by the decoder

=	 p(si = s)s =

ses

M,

SHn [1 + exp (-VjiLji)] 1	 = 1 ,	 nT

ses i=1

(4.18)

where S is the set of constellation symbols, v3 , is the i-th bit (+1) of the symbol si and Lx,

the L-value corresponding to that bit. Then, the interferences are subtracted from the received
vector for each transnfit antenna

nT

Xk = X —	 4 Sihj,	 1, • • • ,nT	 (4.19)
i=1,J � k

where 113 denotes the j-th column of the channel matrix H. After this soft cancellation, an
MMSE filter is applied to each vector xk to obtain the final estimation of the transmitted symbol

WXk	 (4.20)
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In Appendix B we show that the filter that minimizes the mean square error a e2 = Et 1 S k	 12}

can be calculated as

where

being

-1
N	 °w k = (HA	 + I	 hk
Es nR

E8	 1

- 2	 o-
2
	o-

2 	a
2

Ak = diag —asi	 sk-1	 sk+i 
, 1,

E,	 • E,	 E• • • • E

seS

It can be shown that the resulting estimations k are distributed as [63]

p(šksk) 	(iikSk11712c)
	

(4.24)

where

2

17k = 1-1,k

The extrinsic LLRs of the coded bits can then be calculated as

(4.26)

where S is the set of constellation symbols in which the k-th bit is equal to b.

It is interesting to note that the filters w k depend on the knowledge of the different
transmitted symbols, expressed as their variance. Thus, if a u close to 0, meaning that
the soft estimate šj of the symbol transmitted from the antenna j is accurate, the corresponding
transmit antenna will not be filtered, since the interference has been completely eliminated
in the interference cancellation step. Conversely, if the variance is close to E„, the interference

corresponding to that antenna must be filtered, since the symbol estimation is not accurate. This
way the SIC-MMSE algorithm evolves from a pure MMSE filter in the first iteration, when there
is no knowledge of the symbols coming from the decoder, to a pure interference cancellation
algorithm when the decoder provides the detector with perfect symbol estimations.

Figure 4.4 shows the EXIT characteristic of a SIC-MMSE detector in a 4 x 4 QPSK MIMO
channel. We can obtain the EXIT curves for the different MIMO detectors following the
procedure described in Section 3.2. We can see that when the a priori information is accurate
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(4.28)
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Figure 4.4: EXIT characteristic of the SIC-MMSE detector for a 4 x 4 QPSK MIMO channel
and Es /No = 2.0dB.

(i.e., = 1), the performance equals that of the Optimum detector, thanks to the perfect
cancellations. With values for the a priori inforrnation lower than one, however, the curve
is clearly below the Optimum curve, which indicates that the performance will be significantly
worse.

4.2.3 ML List Sphere Detector

The idea of List Sphere Detection (LSD) is to approximately calculate Eq. (4.17), whose terms
in the summations are in fact, except for an additive constant a, the logarithm of the APP of a
transmitted vector s

using a list of just Ncand candidate vectors s.
The Maximum Likelihood List Sphere Detector (ML LSD) [65] constructs the list using the

Ncand most likely (ML) vectors. That is, those that maximize just the first term in Eq. (4.28)

logp(xls) = No	 — Hs 2 +	 (4.29)
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The list is constructed using a modified version of the Sphere Detector (SD) [66, 67 1 , which
efficiently finds the constellation points inside a hypersphere centered on the unconstrained ML
estimate of the transmitted vector.

First note that the squared Euclidean distance between vectors x and Hs can be expressed
as

x — Hs1 2 = (S — §) 11 1-1 11 H(S — S) XH(I — 11(H il H) -1 H H)X 	 (4.30)

where S = (HHEn-i.) Wix is the unconstrained ML estimate of the transmitted vector and
H H has been used for denoting matrix Hermitian (conjugate transpose). Thus, finding
the points with highest likelihood is equivalent to finding the points with smallest value of

(s — §) H H H H(s — "S).
To avoid an exhaustive search through all the possible transmited vector symbols, the SD

finds the vectors that fall inside a sphere of a given radius r

(s — S) H H H H(s — š) < r2 . (4.3 1 )

which can be efficiently done through triangularization of matrix H H H. For instance, Cholesky
decomposition (H H H = U HU, with U upper triangular) is used in [65], although QR
decomposition of matrix H (i.e. H = QR, with Q unitary (Q H Q = I) and R upper triangular)
is more efficient [68]. Triangularization allows to rewrite Eq. (4.31) as

nT	 nT
	 2

which enables us to find the points with highest likelihood by creating a tree of depth nT

Starting with the n T -th antenna, we have

1 SnT 	nT1
	

UnTnT

	 (4.33)

Let us assume a 2 mc -PSK constellation, although the algorithm can be easily extended to

other constellations such as QAM. We can rewrite s n, = rce'enT , where rc is the radius of the
PSK constellation and

OflT E {0, 27r12mc ,	 , 27r(2mc — 1)/2mc} (4.34)

is the phase. We also rewrite	 = rC,flTe	 T • As a consequence, (4.33) becomes
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If /7n, > 1, there are no allowable points for this antenna. If ïìflT < —1, all the points of the
constellation are candidate solutions. For —1 < 77„ < 1 we have

10n, — önT 1 < COS-1 rinT ,	 (4.37)

so the range of allowable points is

r2Mc

2 7v	

-1(0 n	 COS 71nT 1
2mc

< 	  <
— 2 

0
7r n'

2 M c -
2 7v
	 (On + COS 1 T1nT) (4.38)

For each symbol s n, in antenna nT obeying condition (4.33) we will have several conditions
to be fulfilled by candidates for antenna nT — 1, i.e.

1,nT 
S nT -1 — nT -1 ± 

UflT_	 f	
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LinTnT
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c	
U2
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and the process continues until we reach the first antenna. This way we build a tree with the
vectors whose distance to the unconstrained ML estimate is smaller than r. (Figure 4.6). Then
we have to choose the Ncand with highest likelihood by exhaustive search among these vectors
and use their likelihoods for computing Eq. (4.17). If the number of vectors in the tree is
smaller than the desired number N„nd, we must increase the radius and the search process must
be started again. On the other hand, if r is chosen too large, building of the tree and searching
for the best Ncand vectors will take longer. Therefore, the choice of r clearly determines the
efficiency of the algorithm. As stated in [65], a possible choice for the radius is

r2 = 2NoKnR —	 (I — H(H H I-1) -1 HH )x,	 (4.42)

where K > 1 is chosen so that we are reasonably sure to find at least Ncand candidate points
in the first search. As we will see in Section 4.4, the performance of the decoding process
depends on the size of the candidate list (Ncand ). When Ncand is high we will have to compute
more likelihoods; more processing will be needed in the detector but the performance will be
better. This can also be clearly seen in the EXIT curve of the detector (Figure 4.5), that gets
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Figure 4.5: EXIT characteristic of SIC-MMSE and ML-LSD for a 4 x 4 QPSK MIMO channel
and Es /No = 2.0dB.

closer to the Optimum curve as we increase the number of candidates. When using low values
of Ncand the performance degrades due to the smaller amount of information processed by the
algorithm. Therefore, there is a tradeoff between efficiency and performance in the choice of

Ncand Keeping the number of candidates of the sphere detector constant while increasing the
number of antennas leads to a linear increase in complexity.

Notice that a candidate in the list is a vector of symbols and no consideration is made about
the value of each bit in the candidate, as required in Eq. (4.17). Considering only one candidate
list results in the chance of having no candidates for computing one of the sums in Eq. (4.17).
As suggested in [65], this can be solved by assigning a minimum value (instead of zero) to the
sum and by applying a threshold lower than that used in the SPA decoder to the obtained LLRs,
which leads to additional inforrnation loss.

4.2.4 MAP List Sphere Detector

An alternative approach to the ML bist sphere detector consists in building the bist of the Ncand

vectors with highest APP, according to Eq. (4.28). This approach, proposed by Vikalo et
al. [69], is termed MAP LSD. With the MAP LSD algorithm we are actually finding the most
significant terms for the summations involved in the computation of the channel LLR. However,
when used in an iterative receiver this method has to perform the complete tree search each time
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Figure 4.6: Search tree of a sphere detector with a 8-PSK constellation.
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new a priori bit probabilities are available from other receiver stages. The complexity of ML
LSD is smaller, since in this case the search for the most likely vectors is performed only once
and the corresponding likelihoods stored for their use in successive iterations.

If we keep fixed the number of operations when comparing both methods, ML LSD allows
to employ a larger candidate list, but also note that the size of the candidate list in MAP LSD
can be reduced with the number of detection iterations. Rigorous comparison of both methods
under the constraint of equal number of operations is difficult [69] but in our simulations we
have seen that MAP LSD allows to attain a better performance at a reasonable complexity.

Besides the problem of the possibility of having no candidates in either the numerator or
the denominator, building only one candidate list gives rise to another problem in the MAP
LSD detector: positive feedback. Although the a priori LLR of the bit being processed, L k,

is substracted in Eq. (4.17) to obtain the extrinsic channel LLR, it is implicitly considered in
the construction of the candidate list. Note that a high a priori LLR of the bit being considered
leads to the inclusion in the list of those candidates for which that bit has the value suggested by
the a priori bit LLR. This effect is more pronounced as the size of the candidate list gets smaller
and, clearly, is not compensated by just substracting the a priori LLR. This positive feedback
is clearly shown by the fact that the mutual information of the output LLRs produced by the
MAP LSD (see Fig. 4.7) is higher than that of the Optimum APP detector, which indicates
that additional information is contained in these output LLRs. Indeed, this mutual information
does not constitute a true EXIT chart because it does not only measure extrinsic information
but also a priori information. Since decoding convergence is determined by just the extrinsic
information transfer, it would be necessary to cancel the contribution of the a priori information

from the output LLRs to compute the actual detector EXIT chart. However, this cannot be done
because a priori information is implicitely introduced by the particular way the candidate list is
built.

To overcome this limitation, we consider what we call Extrinsic LSD, which consists in
rewriting Eq. (4.17) as

Then, separate lists for each bit in a symbol vector are constructed, by searching for the vectors
that maximize the expressions in the numerator and the denominator in this equation. This
means 2nT M, candidate lists for computing the bit channel LLRs in a symbol vector, instead
of only one as in MAP LSD. The complexity of this approach is 2nT IV1, times higher than that
of MAP LSD, but its expected performance is better, especially when the number of candidates
is low. In addition, since it does not suffer from positive feedback, due to the fact that we are
not using the a priori probability of a given bit in the construction of the candidate lists for that
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Figure 4.7: EXIT characteristic of MAP-LSD for a 4 x 4 QPSK MIMO channel and En/ No =
2.0dB.

bit, its true EXIT function can be computed, enabling code design (Figure 4.8). However, note
that if MAP LSD is used with a high number of candidates, the effect of the a priori LLR of the
bit under consideration in the obtained list is less severe. This motivates us to use MAP LSD in
the final implementation shown in Section 4.4, even though code design is performed using the
EXIT function of the Extrinsic LSD.

4.3 Optimization of SCLDGM codes for MIMO channels

In Section 3.4 we described the optimization of SCLDGM codes for SISO channels using EXIT
functions. The application of that method to MIMO channels and suboptimum detectors is
straightforward: we simply need to substitute the EXIT function of the Optimum SISO detector
with that of the MIMO detector for which we are optimizing the code. However, in this case it is
important to perform several detector iterations during the decoding process. The reason behind
this is that in MIMO detectors, the increase in the a priori information provides a significant
increment of the extrinsic information that can be used by the decoder. This can be clearly seen
in the slope of the EXIT curves in Figures 4.4-4.8. Since the complexity of the calculation of

the channel LLRs is much higher than that of the calculation of the messages between variable

and check nodes, we will perform one detector iteration for every ten decoder iterations.
Figure 4.9 shows the evolution of the extrinsic information of different messages in the
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graph of a SCLDGM code in a 4x4 MIMO channel. The figure also shows the evolution of the
extrinsic information passed by the detector to the decoder. The "jumps" observed every ten
decoder iterations are due to the increase in the information that comes from the detector.

We applied the optimization procedure for the design of good rate 1/2 regular SCLDGM
codes for different antenna configurations, modulation formats and detectors. We carried out an

exhaustive search, varying the code parameters between the following limits: 0.01 < p < 0.05,
with increments of 0.005- 3 <df' < 5- 2 < d 2 < 30- and 2 < df2 < 40 fi •	 1 th_	 , fixing a so e— 
maximum value of df2 to 10. The obtained codes are presented in Table 4.1, together with their
convergence threshold predicted by EXIT analysis. Note the extraordinary performance of the
resulting codes, since the gap to the constrained-input ergodic capacity limit is less than ldB
in many cases. It can also be observed that the distance to the capacity of symmetric antenna
configurations is lower than that of systems with more transmit anntenas than receive antennas.
This suggests that the SCLDGM scheme is better suited for systems (channels, bit-to-symbol
mappings and detectors) whose EXIT curves are not very steep. Similar results can be observed
in other graph-based codes [41, 40 1 .
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Figure 4.9: Mutual information trajectories for a 4 x 4 QPSK optimized SCLDGM code.

Eb /No = 1.75 (top) and Eb /No = 1.80dB (bottom).
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Antennas Modul. Detector p(%) 4, 1 d 2U df2,p Thresh (dB) UCL CCL

1 X 1 QPSK Optimum 2% 3 6 6 2.3 1.05 1.8
2 x 1 QPSK Optimum 4.5% 3 4 20 3.89 2.55 3.3
2 x 2 QPSK Optimum 3% 3 5 28 1.97 1.2 1.55
4 x 1 QPSK Optimum 4.6% 3 2 18 8.5 6.25 6.7
4 x 2 QPSK Optimum 2% 3 4 20 3.8 2.65 3.0
4 x 4 QPSK Optimum 2% 3 5 15 1.8 1.2 1.5
2 x 2 16QAM Optimum 4.5% 3 4 20 4.8 3.7 4.1

ML 128/64 4.5% 3 4 20 4.8/4.9
EXT 32/16 4.5% 3 4 20 4.8/4.9

MMSE 2% 4 5 40 5.5
2 x 2 64QAM ML 512/256 2% 4 5 23 7.6/7.6 6.1 6.65

ML 128 2.5% 3 5 20 7.8
EXT 128/64/32 4% 3 4 22 7.6/7.6/7.7

MMSE 1.5% 4 5 37 8.5
4 x 4 16QAM ML 512/256/128 2.5% 3 5 20 5.1/5.1/5.3 3.8 4.1

EXT 128/64/32 3.5% 3 4 16 4.8/4.9/5.0
MMSE 2.5% 3 4 36 5.7

4 x 4 64QAM ML 256/128/64 2.5% 3 5 20 8.9/9.2/9.7 6.3 -
EXT 128/64/32 2.5% 3 4 24 7.8/7.9/8.1

MMSE 1.5% 5 5 40 10.3

Table 4.1: Degree profiles of rate 1/2 optimized SCLDGM codes for different MIMO channels
and detectors. "Thresh" stands for the EXIT analysis convergence threshold. "UCL" and "CCL"
are, respectively, the Unconstrained-input and Constrained-input Ergodic Capacity Limits.
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4.4 Simulation Results

Computer simulations were carried out to evaluate the performance of the obtained SCLDGM
codes in practical cases where blocks of finite length are transmitted. We assumed that the
MIMO channel changes randomly and independently from one symbol vector to another (fast

fading ergodic channel) and is known at the receiver.
Fig. 4.10 compares the performance of regular and irregular SCLDGM codes for 4 x 4,

QPSK and Optimum detection. The optimized irregular SCLDGM code is given by

p	 3% d l	 3 d2	
{4, 5, 21} aC = {0.5, 0.4, 0.1} dpf,2 = 10	 (4.44)

whereas the regular code is that of Table 4.1. Their theoretical thresholds are 1.75dB and
1.80dB, respectively. Two block sizes are considered: N = 20000 and N = 100000 coded
bits. As explained in the previous chapter, practical convergence thresholds are higher than
those predicted by EXIT function analysis, because EXIT analysis assumes infinite-length data
blocks. Indeed, notice that the higher the block length is, the closer the convergence threshold
is to the theoretical value calculated with the EXIT functions. The figure also shows that the
difference in performance between regular and irregular codes is very small (around 0.05dB).
For this reason only regular SCLDGM codes are considered in the rest of this section, since this
greatly reduces the search space and the code regularity usually allows easier implementations.

Code performance for asymmetric antenna configurations (4 x 1 and 4 x 2 QPSK) and
N = 100000 coded bits is shown in Fig. 4.11. In this case the detector EXIT function has a
positive slope, and it is very different from that of a SISO channel (which is an almost horizontal
straight line). This means that code design is important to properly match the detector EXIT
function. Indeed, notice the difference in performance between an SCLDGM code optimized
for the SISO case (see Table 4.1) but applied over the MIMO channel and an SCLDGM code
specifically designed for the antenna configuration and modulation format under consideration.
For instance, for 4 x 2 QPSK and a BER---- 10 -4 , the performance difference is around 1.3dB.
This gap is much larger (around 5dB) for the 4 x 1 system. This is explained by the fact that,
for the same number of transmitting antennas, using less receiving antennas makes the detector
EXIT function steeper and, therefore, it is critical that the code matches it (and not the horizontal
like characteristic of SISO channels). Notice that the convergence thresholds obtained through
simulation practically overlap with the theoretical ones presented in Table 4.1, and they are very
close to the constrained capacities (gap of 0.8dB and 1.8dB for the 4 x 2 and 4 x 1 systems,
respectively).

We next focus on comparing the performance of the SIC-MMSE and list sphere detectors
with respect to that of Optimum MAP detection when the optimized codes for each respective
detector are utilized. Fig. 4.12 shows the performance curves for 2 x 2 antennas using 16-
QAM and a block length of N = 20000 coded bits (which will be the length used in the
sequel). Optimum detection needs to process 2nTmc = 2 8 = 256 possible symbol vectors. See

how using ML LSD with half of the total number of candidates (128) renders near Optimum

performance, while decreasing the number of candidates to one quarter of the total (64) results
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Figure 4.10: Performance of rate 1/2 regular and irregular SCLDGM codes optimized for a
4 x 4 QPSK MIMO channel and Optimum detection.

in little performance degradation. We can also see that MAP LSD needs only 1/8 of the total
number of candidates (32) to provide near Optimum performance (instead of the 128 candidates
required by ML LSD). The convergence threshold obtained through simulations is very close
to the theoretical one in Table I, and only 1.0dB away from the constrained capacity. The SIC-
MMSE detector performs at approximately 0.8dB away from the optimum detector, as predicted
by the EXIT analysis.

Optimum MAP detection is not feasible when considering 2 x 2 64-QAM, since the
total number of possible symbol vectors is 2 nTme = 212 4096. However, very good
performance is obtained with suboptimum LSD, as shown in Fig. 4.13. For a target BER
of 10 -5 , the best performance is achieved by MAP LSD with 128 candidates, which requires an

Eb /No = 7.9dB, only 0.3dB away from the theoretical threshold of Table I and 1.25dB away
from the constrained-input ergodic capacity. Halving the number of candidates (32) results in
0.4dB degradation. Note how eight times the number of candidates (256) is needed to obtain
similar performance if ML LSD is used. Again, the SIC-MMSE detector performs the furthest
away from the capacity limits.

Fig. 4.14 shows the perfromance of a 4 x 4 16-QAM MIMO system. The total number
of candidates in this case is 65536. The best performance is obtained by MAP LSD with
256 candidates (1/256 of the total), requiring an Eb /No = 5.15dB for a target BER of 10-5,
which is 0.35dB away from the theoretical threshold in Table 1 and only 1.05dB away from the
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Figure 4.11: Performance comparison between SISO-optimized and MIMO-optimized rate 1/2
regular SCLDGM codes for 4 x 2 and 4 x 1 QPSK MIMO channels and Optimum detection.

constrained-input ergodic capacity. Very little performance degradation (0.1dB) results from
considering half (128) of such number of candidates. However, further reducing the size of
the candidate list to 64 increases the required E6 / N0 up to 5.7dB. See how 512 candidates are
needed when using ML LSD to obtain a performance similar to that of MAP LSD with 64
candidates. Using ML LSD with less candidates results in more performance degradation.

We can also see that for small numbers of candidates (with respect to the total number
of possible vectors), the gaps between the theoretical thresholds and those observed in the
simulations increase. This can be clearly seen in the performance of the ML LSD with 128
candidates, that is worse than that of the SIC-MMSE detector even though the predicted
threshold is lower. This can be explained by realizing that the pdf of the output LLRs of
ML/MAP LSD is different from the Gaussian assumption in our optimization procedure. Using
a low number of candidates results in many LLRs taking extreme values because the list contains
much more candidates for the numerator than for the denominator (or vice versa). LLR values
greater than 8 (less than —8) are truncated to +8 (-8), producing a pdf with peaks in these
two extreme values. Since this "clipping" is not needed in the SIC-MMSE detector, its actual
threshold remains very close to the predicted one.

Similar conclusions can be drawn from an scenario with a higher number of possible symbol
vectors, such as 4 x 4 64-QAM, where the number of possible candidates is greater than 16
million. Fig. 4.15 shows that in this case differences in performance are larger but maintain
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Figure 4.12: Performance of rate 1/2 regular SCLDGM codes optimized for a 2 x 2 16-QAM
MIMO channel with different types of detectors and number of candidates. The constrained and
unconstrained input capacity limits are at E b /No = 4.1dB and Eb /No = 3.7dB, respectively.

the same relationships observed for 4 x 4 16-QAM. Again, the predicted thresholds for the ML
and MAP LSDs get less accurate as we decrease the number of candidates, due to the non-
Gaussianity of the detector LLRs. In the case of the MAP LSD, this divergence is also caused
by the fact that the lower the number of candidates in MAP LSD is, the more different this
detector is from the Extrinsic LSD which is used in the code optimization. Nevertheless, the
performance of the SCLDGM scheme with the MAP LSD is extremely good.

Finally, let us stress the importance of optimizing the code for the specific LSD that we will
be using. Fig. 4.16 shows the effect of code and detector mismatch for a 4 x 4 16-QAM system.
First, notice the performance difference between a code optimized for the used detector and a
code optirnized for a different detector: for a target BER of 10 -4 , employing MAP LSD with 32
candidates and its optimized code requires an E b /No = 5.9dB, while using the same detector
but with a code optimized for ML LSD with 128 candidates needs an Eb /No = 6.45dB. If ML
LSD with 128 candidates is considered, using its optimized code requires an E b /No = 6.25dB,
while using a code optimized for MAP LSD with 32 candidates needs an E b /No = 6.5dB. In
this latter case, the effect of code and detector mismatch is less severe than in the former.
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Figure 4.13: Performance of rate 1/2 regular SCLDGM codes optimized for 2 x 2 64-QAM
MIMO channel with different types of detectors and number of candidates. The constrained and
unconstrained input capacity limits are at Eb /No = 6.65dB and Eb /No = 6.1dB respectively.

4.5 Conclusions

In this chapter we have studied the optimization and performance of SCLDGM codes over
Multiple-Input Multiple-Output (MIMO) channels, characterized by the use of several antennas
for transmission and reception. We started by establishing the channel model and studied its
capacity and spatial diversity characteristics. We showed that the capacity of a MIMO channel
grows proportionally with the minimum between the number of transmit and receive antennas,
which allows us to achive tranmission rates much higher than with Single-Input Single-Output
(SISO) systems.

We analyzed different detection algorithms for the MIMO channel. Since Optimum
detection complexity is prohibitive when the number of transmit antennas and bits per
modulation symbol is large, suboptimum techniques must be employed to calculate the LLR of
the coded bits. We have studied two different approaches: the Soft Interference Cancellation-
Minimum Mean Square Error (SIC-MMSE) detector, an iterative detector that performs an
interference cancellation using the extrinsic information passed by the decoder followed by an
MMSE filtering to transform the MIMO to a SISO problem; and three versions of the List
Sphere Detector (LSD), that reduce the number of possible transmitted vectors by considering
only the most relevant. Specifically, we have studied the Maximum Likelihood LSD (ML LSD),
that costructs the list of vectors by choosing those with a higher likelihood; the Maximum A
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Figure 4.14: Performance of rate 1/2 regular SCLDGM codes optimized for a 4 x 4 16-QAM
MIMO channel with different types of detectors and number of candidates. The constrained and
unconstrained input capacity limits are at Eb /No = 4.1dB and Eb /No = 3.7dB respectively.

Posteriori LSD (MAP LSD), that chooses those with a higher a posteriori probability (i.e.,
taking into account the bit probabilities from the decoder); and Extrinsic LSD (Ext LSD), that
finds the symbol vectors with a higher extrinsic probability (considering the bit probabilities
from the decoder except that of the bit for which the detector is calculating the LLR).

To perform the optimization of the SCLDGM codes for the Optimum and different
suboptimum detectors we have employed EXIT charts. We have showed that the MAP LSD

cannot be analyzed using EXIT charts due to a problem of positive feedback, so we have found
codes for the Ext LSD instead and used them with the MAP LSD to reduce the complexity,
assuming that their performances would be similar. Indeed, we have shown that the combination
of SCLDGM codes and MAP LSD is able to approximate the MIMO capacity limits with an

affordable complexity, clearly surpassing the performance of the ML LSD and SIC-MMSE-
based systems.
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Figure 4.16: Performance degradation due to mismatch between the SCLDGM code and the
detector. SCLDGM codes are rate 1/2 and optimized for a 4 x 4 16-QAM MIMO channel.
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Chapter 5

Concatenation with STBC codes

In the previous chapter we focused on MIMO signaling schemes in which the coded bits are
mapped to constellation symbols and multiplexed to the different transmit antennas. Although
this scheme has the benefits of a simple design and the ability to approach capacity, there
are cases in which the use of a more complex method for the distribution of the symbols
to the transmit antennas is advantageous. In this chapter we will consider the concatenation
of SCLDGM codes with Space-Time Block Codes (STBC) [59, 60 1 and compare it with the
previous BICM scheme. In particular, we will consider three different STBCs, each of them
designed to achive a different goal: allow an easy decoupling of the transmitted streams in the
receiver, allow the use of a suboptimum MIMO detector when the number of transmit antenas
is higher than that of receive antennas, and increase the overall channel capacity.

5.1 Space-Time Block Codes

Figure 5.1 shows the concatenated scheme we will study in this chapter. As in the previous
chapter, the source bits are encoded by an outer code and mapped to a complex constellation.
However, instead of simply being multiplexed to the different transmit antennas, the modulated
symbols are encoded by an inner Space-Time Block Code (STBC). A STBC is a block code
designed specifically to exploit the advantages of MIMO systems by taking into account both

Figure 5.1: Block diagram of a STBC MIMO transmitter
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the temporal and the spatial dimensions. Although STBC codes do not provide much coding
gain [60], they provide other advantages that can be useful in some MIMO configurations.
There exists other kind of Space-Time Codes, named Space Time Trellis Codes (STTC) [57],
that provide some coding gain, but they are much more complex to decode. Moreover, since we
will be using a capacity approaching code in concatenation with the Space-Time Block Code,
the coding gain will already be provided by the outer channel code.

STBCs are defined by a coding matrix

Sll	 S12	 SlT

3 21	 S22	 S2T

SnT 1 SnT 2 • SnTT

whose entries s represent the complex-valued symbols transmitted from antenna i at time
instant j. The symbols are sent using T time intervals.

When an STBC is concatenated after an outer channel code, the sequence of mapped
symbols [si,...,SL] is partitioned into blocks of Q symbols. Each block is then encoded into
the nT x T symbol matrix S[k], which is transmitted expending T channel uses, resulting in a
spatial rate R, = QIT. From this point of view, and as explained in the previous chapter, the
serial-to-parallel converter can be stated as a STBC with Q = nT and T = 1, with a coding
matrix

•

S = (5.1)

SnT -
After transmission through the MIMO channel, assuming that the channel remains constant

for T time intervals, the matrix of received observations X[k], is

X[k] = H[k]S[k] + N[k], k = 1, 2, ..., L/ RS ,	 (5.3)

where H[k] is the nR X nT MIMO channel matrix and N[k] = [n i n2 - nT], where each
column n, contains independent AWGN samples with variance No. We assume a spatially
uncorrelated Rayleigh fading MIMO channel where the elements in H[k] are distributed as
CA/(0, 1). Under the ergodic assumption, the channel matrix changes each time a new matrix
of symbols is transmitted, whereas under the quasi-static assumption, it remains constant during
the transmission of a whole codeword. We assume in both cases that the channel changes in an
independent fashion from one realization to the next. To calculate the EbIN0 at reception we
must take into account the rate of the inner STBC. If we assume that the average transmitted
energy of the coded symbols is Et s,3 1 2 1 = E,, we have

Eb	 nTnR E,
(5.4)	 •

No R, R,111, No
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The mapping performed by an STBC greatly affects the features of the MIMO System: it
may change its associated capacity, the attained diversity, and the complexity of the detection
process, as well as the applicable detection methods. We will consider three relevant STBCs:
the Alamouti scheme [59], which is an Orthogonal STBC for nT 2 transmitting antennas; the
Golden code 1701, a 2 x 2 non-orthogonal STBC that provides a capacity increase; and Linear
Dispersion (LD) codes [71], which transform the observation model when nT > n R to enable
the use of suboptimum methods (e.g., LSD and SIC-MMSE) under the constraint of incurring
in minimum capacity loss.

5.1.1 Orthogonal Space-Time Block Codes

Orthogonal Space-Time Block Codes (OSTBC) [72, 59, 60] are codes designed to attain two
objectives: obtain full diversity gain without CSI at the transmitter and allow an Optimum
detection with linear complexity in the number of transmit antennas. The first objective is
accomplished by ensuring that the matrix D = S — S', resulting from the differece between
two coded matrices, has full rank for every pair of coded matrices [60]. The second can be
accomplished by making the rows of the coding matrix orthogonal, so the detector can easily
decouple the different transmit streams.

The OSTBC for the case of two transmit antennas is the Alamouti code [59]. Given two
input complex symbols, s 1 and 32 , the transmitted symbol matrix for the Alamouti code is

[ S1
S =

S2

According to the channel model defined by Eq. (5.3), if we have only a single receive antenna,
the received symbols are

S*1
	 (5.5)

si
S2

HT1 X21 = [hi h2] n2 1	 (5.6)

This can be rewritten as

where the equivalent channel matrix 7-( is a scaled unitary matrix, i.e.,

where 1 • 11F represents the Frobenius norm of a matrix. This property allows us to decouple
the transmitted streams by simply multipliying the hermitian of the equivalent matrix by the
received vector. Thus, if we denote x [x1, X 2* } T [si, 52] T and n [ni, we can
rewrite (5.7) as

x =	 + n	 (5.9)



and we can obtain the vector of scaled estimations š = L-s i ,, s 2 fr as

= 7-(x = 7-( H (7is + n) = 1-111 2F I2 s + 7i H n	 (5.10)

For the case of two receive antennas, the matrix of received observations is

[
Xii	 x12

X21	 X22

h11	 h12

h21	 h22 1
si

S2	 ± [ n11nl2n21	 n22
(5.11)

which can be rewritten as

XII	 h 11	 h12 nu

X*12	 12 12	 h*11 S1 (5.12)
X21

x‘t,
"-

h21	 h22

h;2

S2 n2i
n*22

h1
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7-(

and, as in Equation (5.10), we can decouple the transmit streams by multiplying the received
vector by the hermitian of the equivalent matrix

The covariance matrix of the resulting noise 7-( H n is

E{7-ennH7I} = 7-i HE{nni/ }7-( = 7-( H N0 12 7i = 11-111 2F N0I2 	 (5.13)

so, for both one or two receive antennas, Optimum computation of the channel LLRs in each
stream <" can be realized as

( US — HI 2F SII 2 ± M„ v L,E exp
P(," ck = 1)	 sES'k	 \	

11-1112F ATO	2=11	 2

Lch,k — log ,	 = log 	  Lk	 (5.14)
P(sIck = 0)	 ,	 Í 1 ,' — 11-112Fs112 + me	 Li›....a exp	 v —2

1 H 2F,No

	

ses	 \,o,	 2=1

where 7), = 2c, — 1 and S7, and ,51), represent the set of all transmitted symbols s where bit ck = 1
and ck = 0, respectively.

We can easily calculate the unconstrained capacity of the equivalent channels 7-i using Eq.
(4.6) and taking into account that we are using two time intervals (and thus we have to divide
the resulting capacity by two). For the case of 2 x 1 we have

1
C	 —

2
IE {log2 det 7/2 +

o

—1 E {log2 det 7/2 + —'--sE (
2	 No

{
1
IE log2 7 1 +	 Chi

2	 No

E {log2 (1 Es ( h i 2 ±

2
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which is the capacity of a 2 x 1 MIMO channel. This means that by using the Alamouti code,
we are not sacrificing unconstrained capacity with respect to a scheme in which we use a simple
serial-to-parallel converter as a space-time code. However, for the 2 x 2 case

C = —1 IE {log2 det (12 + Es	 7-(7-(*)
2	 No

1 Tr7

-	 log 2 uet / 2 + 	-1	
r	 E

s W411 2 + II	 I	 I	 I	 I ),h12. 2 + ,h21, 2 + ,h22.2,2

E {l0g2 (1 + s (lh, 11
9
1- +	 + h21 2 ± ih2212)

1	 E	 ,	
\ 

2}

	

E,	 2
	E {log2 (1 +No

	 +lh1212 h2112 + h2212)\
I f

which can be shown to be lower or equal than the capacity of a 2 x 2 MIMO channel [71].
Similar OSTBCs can be defined for more than two transmit antennas. However, unlike the

Alamouti code, they cannot reach a rate equal to 1 [73, 60 1 . Also, except for the case of the
2 x 1 Alamouti code, all OSTBCs incur in an unconstrained capacity loss with respect to the
BICM scheme with the same number of transmit and receive antennas [74, 71].

5.1.2 Linear Dispersion Codes

When the number of transmitting antennas is higher than that of the receiving antennas,
employing suboptimum methods (i.e., LSD or SIC-MMSE) is more difficult, because the
underlying system of equations is underdetermined. Linear Dispersion (LD) codes [71] are
linear STBCs that transform the observation model to avoid undetermination, but without
sacrificing capacity.

A LD code matrix is defined as

S::::	 Cq + sq* Dq )	 (5.15)
q=1

where {Cq , Dq , q = 1.	 } are the complex matrices that determine the code. Equivalently

S = >(aq Aq + j ßq Bq )	 (5.16)
q=1

where sq — Clq j,(3q , Aq — Cq + Dq and Bq — Cq Dq.

By defining the matrix code S as a function of the Aq and Bq matrices, a stacked real-valued
equivalent observation model can then be easily formulated. First, we calculate the received
values as

XR	 = >  (HR ± jr11)[aq(AR,q jAI	 q(B	 B I ,q)1 N R JNj (5.17)
q=1
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we have the equivalent model

=

XR,nR

Xl,nR _

where
Bih t • •	 AQ 11 1 	 13Qhi

=

-4 1 h. n R BlhmflR	 • ' AQhn R BQ hnR _

hn =Bq —
[ A ,q	 211 ,q, 1

-/A-4	 —Ai ,q AR,q
BR,q

—BR,q —BI,q
(5.18)

(5.19)

(5.20)
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s.

where the subindexes R and I denote the real and imaginary parts, respectively. By separating
the real and imaginary parts of the received values, we can write

XR
	

[( H R AR,q HI Al,q)aq (—HRBI,q H I BR,q)0q1 N R
q=1

Xr	 [( HR A I,q + HI Agq )aq + ( H R BR,q — HIBI ,q )0q1 N

q=1

If we denote the transposed row n of the matrices XR, XI, H, N R, N / as xR,n , X i ,n, hn , HR„,
ni, , and

is the 2nRT x 2Q equivalent channel matrix.
Such an equivalent observation model is not underdetermined provided that n RT > Q or,

equivalently, n R > R3 . Optimum LLR computation for LD-coded MIMO systems can be
carried out in a completely analogous way to Eq. (4.17) or (5.14), depending on whether the
STBC is orthogonal or not, just by considering their resulting equivalent channel model.

As in the case of the Alamouti code, we can calculate the capacity of the resulting equivalent
channel model as

1
C = 2 E {log det I2NnR	

E
s

2N
7-0--(*)	 (5.21)

o

where the 1/2T factor is dueto the use of T time intervals and a real-valued equivalent channel
model

Linear Dispersion codes are designed by finding the set of matrices Aq and Bq that maximize
the capacity of the equivalent channel, i.e.

1
arg	 max	 	 E {log det I2N n 	 E	 7-CH * )}	 (5.22)	 «6

Aq,Bq,q=1...Q 2T	 R	 2N 0
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for the SNR of interest, subject to one of the following constraints

1. E (tr ( AAq ) tr(B;Bq )) = 271nT
q=1

Tn
2. tr(A.11q ) = tr(B;13q ) =  Q  , q = 1 . . . Q

3. A*qAq = B;Bq = 	q = 1 . . . Q

where tr(•) denotes the trace of a matrix. Each constraint is stronger than the previous one, so
the attainable capacity decreases with them. However, the last constraint usually provides the
best coding or diversity gains at the cost of a very small decrease in unconstrained capacity [71].

5.1.3 Golden Code

The Golden code is a STBC designed for a 2 x 2 MIMO channel [701. The matrix corresponding
to the Golden code is

[

s i 082	83 + 084 1
( 83 + 084) 8 1 + 0s2

where 0 = (1 + lj')/2 is the golden number and 0 = 1 —
The main advantage of the Golden code is that it provides a capacity increase at a reasonable

complexity cost. This capacity improvement comes from the fact that the resulting constellation
at the output of the Golden encoder resembles a Gaussian distribution better than the input
constellation (see Fig. 5.2). This effect is usually termed as shaping or constellation expansion
175 1 . Although the size of the resulting constellation is larger, the Golden code does not
introduce any redundancy because it expends two channel uses for transmitting four input
symbols. Regarding capacity, the use of the Golden code with 2 mc -QAM (e.g., 4-QAM) at
its input is in between using BICM with a rate R, outer code plus 2 mc -QAM (e.g., 4-QAM) and
using BICM with a rate R,I2 outer code plus 22mc -QAM (e.g., 16-QAM).

Optimum decoding of the Golden code can be carried out by considering it as a particular
case of a LD code, since the Golden code matrix can be expressed as in Eq. (5.16) and, thus,
the same equivalent observation model as the one in Eq. (5.19) applies.

5.2 BICM vs concatenation with STBCs

Let us first emphasize that STBCs provide little (or no) coding gain. Thus, if channel capacity
(either ergodic or outage for the quasi-static case) is to be approached, any STBC has to be used
in concatenation with a temporal outer code. Although Trellis-Coded Modulation (TCM) [51]
schemes may be considered, when considering Rayleigh fading the usual Option is to employ
a BICM scheme as an outer code for the STBC. Thus the question is to determine whether or

S = (5.23)
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Figure 5.2: Constellation at the output of the 2 x 2 Golden code when using a 4-QAM
constellation at its input.

not concatenating an STBC after a BICM scheme provides any advantage over just spatially
multiplexing the output of the BICM scheme. In addition, the spatial rate, Rs , consumed by an
STBC establishes a ceiling on the information rate.

We will first focus on the case of ergodic channels and start analyzing the use of STBCs
for the case of two transmit antennas. When used as an inner code, the Alamouti code is very
attractive because it allows to spatially decouple the ML detection, notably simplifying the
overall decoding procedure. The price to be paid is the spatial rate consumed by the Alamouti
code, R, = 1, which forces the use of a higher order modulation to compensate for the rate loss
with respect to a pure BICM scheme. Moreover, the signal structure that it imposes penalizes
the capacity of the equivalent MIMO system. As shown before, the capacity of a 2 x nR MIMO
system with Alamouti coding is less or equal than that of the unconstrained MIMO channel.
The equality holds only for the case nR = 1. From this, it is clear that for 2 x 1 MIMO
systems the best choice is Alamouti coding, since it transforms the MIMO system into two
parallel, independent SISO systems while maintaining the same overall capacity and ensuring
maximum transmit diversity.

Let us now focus on 2 x 2 MIMO systems. In this case, using the Alamouti code enables
low complexity detection, but the system performance is severely affected by the capacity loss
when n R > 1. Instead, we can use BICM, since complexity of optimal ML detection for
nT = 2 is affordable. Moreover, suboptimal detection schemes such as LSD or SIC-MMSE
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may be directly used if needed, since the observation model is fully determined (nT = nR = 2).
An appealing alternative is the use of a Golden-coded system, since it provides a capacity
improvement at a little increase in complexity.

BICM without concatenation with STBCs is the best Option in the general case nT x nR
with nT ,nR > 2. However, the complexity of optimum MAP detection in BICM (Eq. 4.17),
exponential in both nT and Mc, constitutes an important limitation for a high number of
transmitting antennas. At a first glance, OSTBCs may seem an appealing alternative in these
cases, because their orthogonality allows to spatially decouple the detection of the transmitted
streams. However, they incur in a great capacity loss (except for the 2 x 1 case) and force
the use of much higher order constellations to achieve the same information rate as BICM
without STBCs. Thus, a more effective solution is to employ suboptimum detection methods
(such as LSD or SIC-MMSE) in BICM. However, these methods pose the additional constraint
of requiring the observation to be fully determined (nT < E R ). This is an important limitation
because nT > n R occurs frequently in practice (for example, in the downlink of cellular wireless
systems).

For the case of nT > n R, the use of LD codes allows the application of the aforementioned
suboptimum detection methods without much capacity penalty. Thus, concatenation of BICM
with LD codes constitute a good choice when nT > nR , nT > 2, and Optimum detection is not
feasible. Notice also that, similarly to the Golden code, constellation expansion takes place at
the output of an LD encoder, but it is controlled because symbols are produced according only
to specific sequences.

For quasi-static MIMO channels, STBCs constitute a simple way of extracting full diversity
without knowing the MIMO channel al the transmitter, but they do not provide coding gain.
If outage capacity is to be approached, STBCs have to be used in concatenation with an outer
channel code. Since capacity-achieving codes (e.g. Turbo and LDPC) produce randoni-like
codewords, in practice they usually fulfill the rank criterion 1571 that guarantees full diversity.
Thus, in these cases, the concatenation with STBCs is not useful, except for the cases when
they provide some additional advantage, such as those commented for the 2 x 1 Alamouti, 2 x 2
Golden and LD codes.

5.3 SCLDGM Code Optimization for MIMO-STBC systems

Similarly to previous schemes, we can predict the convergence of the concatenated coding
scheme by tracking the mutual information between the densities of the different types of
messages involved in the SPA and the a priori bit density.

For Binary-Input AWGN (BIAWGN) channels, the detector EXIT function does not depend
on the a priori information, 'A, because each bit is transmitted in an independent channel use.
Furthermore, as we have seen in Chapter 3, for Single-Input Single-Output (SISO) channels
with perfect CSI at reception and the usual constellations (i.e., PSK and QAM), Gray mapping
results in an overall effect of modulation, channel and demodulation with an associated EXIT
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Code nT X nR Modul. STBC R, p cl l clif,2 dpf Thresh Gap

#1 2 x 1 4-QAM None 1/2 0.0150 3 5 38 3.87dB 0.57dB
#2 2 x 1 I6-QAM None 1/4 0.0200 3 8 15 3.57dB 0.77dB
#3 2 x nR Any Alamouti 1/4 0.0400 3 9 24 -
#4 2 x n R Any Alamouti 1/2 0.0200 3 6 6 -
#5 2 x 2 16-QAM None 1/4 0.0275 3 9 12 1.90dB 0.60dB
#6 2 x 2 4-QAM None 1/2 0.0300 3 5 32 2.02dB 0.46dB
#7 2 x 2 4-QAM Golden 1/2 0.0250 3 5 38 1.87dB 0.45dB
#8 3 x 1 4-QAM None 1/6 0.0350 3 10 24 1.20dB 0.80dB
#9 3 x 1 4-QAM LD 1/2 0.0200 3 6 48 1.38dB 0.48dB

Table 5.1: Optimized SCLDGM codes for MIMO channels. "Thresh" stands for the
convergence threshold and "Gap" is the gap to the constrained-input capacity limit.

function equivalent to a BIAWGN channel, that is, only dependent on Eb l No (i.e., it is almost an

horizontal une for each Eb /No value). Thus, Optimum codes for BIAWGN are also Optimum for
SISO channels and for any modulation format, provided Gray-mapping is used. As a corollary
of this result, Optimum codes for OSTBC-coded systems (in particular, Alamouti-coded) with
Gray mapping are the same as those optimized for BIAWGN channels.

For the case of LD codes (for which, in terms of detection, the Golden code is a particular

instance) the detector produces channel LLRs according to an extended channel model. In this
case, the detector EXIT function is different from the one corresponding to BICM over the same
channel model. Consequently, Optimum codes for LD-coded systems differ from those obtained
for BICM systems. Fig. 5.3 plots the EXIT characteristic for 2 x 2 and 3 x 1 MIMO systems
for either BICM or LD coding. They correspond to values of the SNR at each receive antenna
(equal to nT I No assuming each antenna radiates unit energy symbols) close to the convergence
threshold of the best code found in each case. Let us first recall that the area property of an EXIT
function states that the area below the curve is approximately equal to the BIAWGN channel
capacity assumed for modelling the input and output messages of the MIMO detector. For a
2 x 2 system operating at SNR= 2.0dB, it is apparent that the EXIT function corresponding to

a Golden-coded System has a larger area below it than that corresponding to a BICM System,

which is coherent with the capacity increase associated to the Golden code. Note also that the
slope of the two functions is different, which leads to different Optimum codes (cf. Table Si).

For the 3 x 1 case, the EXIT function corresponding to BICM is located far below the one
corresponding to the LD-coded system, because the outer code rates are different (R, = 1/6
and 1/2, respectively) for the same overall information rate (1/6). Besides, their slopes are

different. Both reasons justify that the optimum codes for these two schemes are very different

from each other.
Table 5.1 summarizes the best regular SCLDGM codes obtained through EXIT evolution

for different MIMO systems. The table also shows the convergence thresholds predicted by this

analysis, as well as the Constrained-input Capacity Limit (CCL) corresponding to each MIMO
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2x2 Golden' Rc=1/2 SNR=20 dB

2x2 BICM Rc=1/2 SNR=2.0 dB

3x1 LD Rc=1/2 SNR=6.5 dB
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Figure 5.3: EXIT characteristics corresponding to the considered MIMO schemes for a 4-QAM
constellation.

system. We have considered the antenna configurations where concatenation with STBCs is
more beneficial: 2 x 1 for the Alamouti code, 2 x 2 for the Golden code, and 3 x 1 for the
LD code. In particular, the lauer case presents the characteristics of being a clearly asymmetric
antenna configuration (nT > n R ) as well as having a complexity low enough to appreciate
the losses in i) capacity with respect to BICM arid ii) performance of suboptimum methods
with respect to Optimum detection in the LD-coded system. We have chosen these antenna
configurations as our testbench to see the gains provided by STBC-concatenated systems. For
each antenna configuration, we optimize the outer code to maintain the overall information rate
fixed, so we can make a fair comparison between BICM and the concatenated schemes.

As we will see in Section 5.4, SCLDGM codes optimized for Single-Input Single-Output
(SISO) channels also exhibit good performance when used in concatenation with the Alamouti
code in 2 x nR MIMO channels. This is not a surprising result since the Alamouti code actually
converts a 2 x nR MIMO channel into two parallel and independent SISO channels. Recall that
the detector EXIT function of Gray-mapped SISO systems with all the standard constellations
is an horizontal bine (i.e. it is constant for any value of Ia ), resulting in the same Optimum code
for any constellation. This explains why we do not include a threshold value for the Alamouti
case, since this threshold is different depending on the employed modulation and the channel
model.

Although the code design procedure assumes an ergodic channel and an infinite block
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length, we will show in Section 5.4 thai the obtained codes perform adequately when used
in quasi-staue channels and with finite block lengths. Indeed, the behaviour of the obtained
codes over quasi-staue channels is completely analogous to thai over ergodic channels.

5.4 Simulation results

Computer simulations were carried out to illustrate the actual performance of the optimized
regular SCLDGM codes with data blocks of finite length. We assumed in all the schemes thai
the transmitter has no CSI and the receiver has perfect CSI. We have considered ergodic and
quasi-staue channels. For ergodic channels, the observed thresholds are slightly worse than
those predicted, since EXIT function analysis assumes infinite-length data blocks. Note thai the
lower the code rate, Re , is, i) the higher the gap to the CCL for the best code found, and ii) the
higher the gap between the theoretical threshold predicted by EXIT analysis and the threshold
observed in simulations. Similar conclusions hold for quasi-static channels when comparing
the actual performance with respect to the outage probability limit.

The performance of several systems with a spectral efficiency of two bits per channel use
over a 2 x 1 ergodic MIMO channel is shown in Fig. 5.4. The block length is K = 10000
systematic bits (we will also use this block length throughout all the simulations in ergodic
channels). The best performance is obtained when using BICM with 16-QAM and code rate

R, = 1/4 (code #2). For a BER= 10 -4 (which we will use as the target BER in the sequel) the
required Eb /No is 4.0dB, which is 1.2dB away from the constrained-input capacity limit. Fig.
5.4 also plots the performance obtained when using an Alamouti scheme with 16-QAM and
code rate R, = 1/2, with the code optimized for the SISO channel (code #3). The SCLDGM
rate was raised up to R, = 1/2 in order to maintain the spectral efficiency equal to two bits per
channel use. Not surprisingly, the performance of these two schemes is very similar, because
the capacity limit of a 2 x 1 system is the same irrespectively of whether Alamouti is used or
not. Regarding receiver complexity, however, it is apparent that decoding in the concatenated
scheme is simpler.

The spectral efficiency of two bits per channel use can also be obtained using BICM with
4-QAM and code rate R, = 1/2. Code #1 has been specifically optimized for this particular
situation and its performance is also shown in Fig. 5.4. Lowering the number of bits per
symbol in the modulator, M e , is interesting because it yields to a considerable reduction of

the detector complexity. Au the target BER, the required Eb /No is 4.55dB (1.25dB away from
the CCL for 4-QAM). Thus, ibis case maintains the same gap to the CCL as the 16-QAM
case, but it exhibits a 0.5dB performance degradation due to the capacity loss resulting from
changing the modulation format (see Table 5.1). Figure 5.4 also illustrates the importance of

designing SCLDGM codes for each specific MIMO configuration in BICM. Indeed, observe
the serious degradation in performance when the SISO-optimized codes #3 and #4 are used
instead of the MIMO-optimized ones. In these cases, the required Eb /No is 5.25 and 8.0dB,
respectively. The loss in performance with respect to the MIMO-optimized codes is 0.7 and
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Figure 5.4: Performance of i) SCLDGM + Golden code, and ii) SCLDGM + BICM for a 2 x 1
MIMO System with a spectral efficiency of 2 information bits per channel use. Ergodic Rayleigh
fading.

4.0dB, respectively. From these results, we can conclude that code optimization is more critical
when the constellation size increases.

The performance of i) SCLDGM + Golden code, and ii) BICM for a 2 x 2 MIMO System
with a spectral efficiency of two bits per channel use is shown in Fig. 5.5 for an ergodic
channel model. Although the R, = 1/4 16-QAM BICM System has the highest capacity (its
corresponding CCL is at Eb /No = 1.30dB), the best performance is attained by the Golden-
coded System (for which its corresponding CCL is at Eb /No = 1.43dB). This is explained
because the best R, = 1/4 code found for the 16-QAM BICM System has a threshold at
Eb /No = 1.90dB (theoretically) and at Eb /No = 2.20dB (in practice), which is worse than
that of the best R, = 1/2 code found for the Golden-coded System (at Eb/No = 1.87dB
theoretically and at Eb /No = 2.15dB in practice). The R, = 1/2 4-QAM BICM System shows
worse performance, requiring Eb /No = 2.30dB at the target BER, which is consistent with
its lower System capacity (CCL at Eb /No = 1.56dB). We have also included the performance
obtained for these systems when the code is the Optimum for a SISO model. The gaps in
performance with the respect to the MIMO-optimized codes are significant, especially for 16-
QAM (0.3 for 4-QAM and 1.10dB for 16-QAM). Finally, observe the poor performance of the
Alamouti-coded system (1.25dB worse than the MIMO-optimized code) even when using its
Optimum code, which is a consequence of its System capacity loss.

Fig. 5.6 shows the results for i) SCLDGM + LD code and ii) BICM for a 3x 1 ergodic MIMO
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Figure 5.5: Performance of i) SCLDGM + Golden code, and ii) SCLDGM + BICM for a 2 x 2
MIMO System with a spectral efficiency of 2 information bits per channel use. Ergodic Rayleigh
fading.

channel when using 4-QAM with a spectral efficiency of one information bit per channel use.
The best performance is exhibited by the BICM system employing an R, = 1/6 SCLDGM
code (which requires an Eb /No of 1.25dB for the target BER). Using the LD code given by
Eq. (36) in 1711 enables the application of suboptimum schemes such as LSD or SIC-MMSE al
the cost of sacrificing capacity and, thus, performance. The degradation in actual performance
(under Optimum detection) with respect to BICM is not severe (0.45dB at the target BER) and is
of the same order as the loss in capacity (the CCL for BICM is at Eb /No = 0.40dB whereas that
corresponding to using the LD code is at E b /No = 0.90dB). This comes from the fact that the
lower the rate is, the larger is the gap between the code threshold and the capacity limit. Since
not using LD coding requires a lower code rate (R, = 1/6 instead of R, = 1/2), the gap with
respect to the CCL for the Optimum code is larger (0.80dB instead of 0.48dB). We can also think
of an R = 1/6 overall coding rate being realized through one code (for the BICM system) with
a threshold 0.80dB away from the CCL, or by the concatenation of two codes (for the BICM
+ LD system) with a threshold 1.38 — 0.40 = 0.98dB away from the CCL, motivated by two
losses: one due to gap between the threshold of the SCLDGM code and the CCL corresponding
to using LD coding (0.48dB) and other due to the capacity loss due to employing LD coding.
Noting that the CCL corresponding to using LD coding is al 1.38 — 0.48 = 0.90dB, then the
capacity loss of using LD coding is (0.90 — 0.40 = 0.50dB). In addition, when the LD code
is used, the gap of either MAP LSD or SIC-MMSE with respect to Optimum detection is fairly
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Figure 5.6: Performance of i) SCLDGM + Rs = 1/3 STBC (LD code), and ii) SCLDGM +
BICM for a 4-QAM 3 x 1 MIMO System with a spectral efficiency of 1 information bit per
channel use. Ergodic Rayleigh fading.

small (around 0.1dB). This corroborates the convenience of employing LD coding as a means
of enabling suboptimum detection methods when receiver complexity is a constraint.

We have also studied the performance of these schemes when transmitting over quasi-static
channels. Figure 5.7 shows the performance of a SCLDGM BICM scheme, a SCLDGM +
Golden code scheme and a SCLDGM + Alamouti scheme over a 2 x 2 MIMO channel. The
channel block length is B = 500 symbol vectors. As occurs in the ergodic channel, the best

performance is achieved by the SCLDGM + Golden code, although the difference with the
BICM schemes is minimal. The figure also shows that all the schemes achieve maximum
diversity, since the slope of all the curves is the same as the slope of the outage capacity. This
demonstrates that the BICM scheme is also suitable for quasi-static channels, without having to

resort to schemes that explicitly maximize the spatial diversity.
Similar results can be observed in Figure 5.8 for a quasi-static 3 x 1 MIMO channel. Again,

the BICM scheme is able to achieve the same diversity as the LD scheme, and both have a very
similar performance.

5.5 Conclusions

We have studied MIMO transmission schemes using either BICM by itself or in concatenation
with a Space-Time Block Code (STBC). Our study has been supported by the ability of regular
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SCLDGM + Alamouti for a 2 x 2 MIMO System with a spectral efficiency of 2 information
bits per channel use. Quasi-static Rayleigh fading.
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Figure 5.8: Performance of i) SCLDGM + Rs = 1/3 STBC (LD code), and ii) SCLDGM +
BICM for a 4-QAM 3 x 1 MIMO system with a spectral efficiency of 1 information bit per
channel use. Quasi-static Rayleigh fading.
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SCLDGM codes specifically designed for each System to perform close to the theoretical limits.
For both ergodic and quasi-static channels, we conclude that BICM without concatenation
with STBCs is in general the best option, because it retains maximum System capacity, while
practical Turbo-like codes (e.g. SCLDGM codes) can be designed to achieve the provided
capacity. Although the complexity of Optimum MAP detection might be an issue in BICM
systems with a high number of transmitting antennas, near-optimum performance methods with
low complexity (e.g. LSD and SIC-MMSE) can be employed.

Exceptions to this rule are i) 2 x 1 MIMO systems, for which concatenation with the
Alamouti code incurs in no capacity loss with respect to BICM without concatenation,
presenting the additional advantage of spatially decoupling the Optimum detection process,
ii) 2 x 2 MIMO systems, because concatenating with the Golden code provides a capacity
increase at little additional detection complexity, and iii) asymmetrical MIMO systems with
more transmitting than receiving antennas (nT > n R) for which optimum MAP detection of
BICM without concatenation is computationally unfeasible, while concatenation with Linear
Dispersion (LD) codes enables the utilization of suboptimum detection methods (e.g. LSD and
SIC-MMSE) at reception that otherwise would be difficult to apply due to the undetermination
of the observation model.
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Chapter 6

Channel estimation

Up to now, we have assumed thai the receiver has perfect Channel State Information (CSI)
and uses the known channel matrix to detect the transmitted symbols. However, in practical
situations, the channel is unknown al the receiver, and has to be estimated prior to the detection
stage. In this chapter we will study the performance of SCLDGM codes in combination with
the space time coding schemes studied in the previous chapter when the channel is estimated
al the receiver. We will employ two different methods, Least Squares (LS) [76] and Maximum
Likelihood with Expectation-Maximization (ML-EM) [77 ] , to find the estimate of the channel
matrix, and compare the results with the case of perfect CSI.

6.1 MIMO systems with pilot symbol assisted modulation

Let us assume a quasi-static MIMO system given by the model

x[k] = Hs[k] + n[k] k= 1, 2, ... , B	 (6.1)

where the channel matrix H is unknown al both the transmitter and the receiver and B is the
number of symbol vectors transmitted through that channel matrix. Our objective is to find a
channel estimation fl in the receiver using the observations x[k] and some knowledge about the
trasmitted symbols s[k]. Channel estimation methods can be divided in two groups: those that
use a sequence of P < B pilot symbols thai are known al the receiver, which is known as Pilot
Symbol Assisted Modulation (PSAM), and those that rely only in the statistical properties of the
unknown transmitted signals [78, 79 1 . Although the latter methods, termed as blind estimation
methods, have the advantage of not needing to spend time transmitting signals that do not carry
any information, they have a higher complexity or exhibit worse performance. Also, as we
will see in the following sections, the methods that we will consider need only a small number
of pilot symbols to perform close to the case of perfect CSI, so we will concentrate in PSAM
estimation methods. In particular, we will study the performance of SCLDGM codes when
using two different channel estimation methods: Least Squares and Maximum Likelihood.

103
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6.1.1 Least Squares

Least Squares (LS) 1761 is an estimation method that finds the parameter of a model that
minimizes the sum of squared residuals between a set of noisy observations and the expected
values of the model. For example, when applied to the channel model given by (6.1), and
assuming that the first P transmitted symbols are known at the receiver, LS calculates the
channel estimation 111 as

= arg min

	

	
[k] — Hs[iç] 12	 (6.2)

k= 1

To solve this minimization problem, let us first rewrite the sum of residuals as

J(H) =	 [k] — Hs[k111 2 =	 tr(( [k] — Hs[k])(x-k] — Hs[k])H)

	

k= 1	 k= 1

tr(x[klx[C H ) —	 tr(x[k]s[k]HHH)

	

k= 1	 k= 1

tr(Hs[k]x[k] H ) +	 tr(Hs[k]s[k] H H H )	 (6.3)

	

k=1	 k=1

Taking the derivative of J (H) with respect to H H and setting it equal to zero results in

	

J (H)	
—	 (x[k]s[C H ) T	(HS[k]S[k]H ) T = 0 	 (6.4)

01-11/

If we denote R, [k] = x[k]sH [k] and R„ [k] = s[k]sH [k] we can rewrite (6.4) as

-	R„[k] + H>  R„[k] = 0	 (6.5)
k= 1 	k= 1

which yields
P	

--1

111 =	 Rxs[k])	 Rss[k]	 (6.6)
\k=1	 \k=-1

The receiver uses the known pilot symbols and the observations to calculate the channel
estimation H. This estimated channel matrix is employed by the detector to calculate the LLR
values that will be passed to the decoder in the same way as the known channel matrix was

employed in previous chapters.

6.1.2 Maximum Likelihood with Expectation-Maximization

An alternative to the LS solution to the estimation problem is the Maximum Likelihood (ML)
estimate of the channel, given by

fi = arg max p(i-c H),	 (6.7)

k= 1 	k= 1
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where p(5-c H) is the pdf of all the received values X = [x[0] x[1] • x[B]] given the
channel matrix H. This problem does not have a closed form solution, but the Expectation-
Maximization (EM) [77] algorithm is able to find the exact solution in an iterative way. The
EM algorithm can be employed when the estimated parameter depends on some unobserved
(or hidden) data that would make the problem easier to resolve if it was known. In the channel
estimation case, the hidden data is formed by the sent symbols š = [s[O] s[1 • • s [4]. Together
with the observable data X they form what is known as the complete data. The EM algorithm
uses an initial estimate of the parameter to calculate an improved estimation by maximizing the
expectation, with respect to the hidden data given the previous estimation and the observable
values, of the log-likelihood of the complete data, i.e.

fli+1
	 arg mir 1E- 15-0-1, {log (p(3-c, š11-1))1	 (6.8)

arg max	 p(š 5-c; H z ) log (p(X.
H

Elaborating (6.8) we have

arg mir E- 15-0T/ flog(p(Xš, H)p( g)} = arg mir IE- 130,i, flog(p(i

arg milnIE- 3-cfl,	x[k] — Hs[k]
{B 

arg min
	

lx_k] — Hs[k]r}
k=1

arg max	 s[kflx[k],121, lx[k] — Hs[k] 2 }	 (6.9)
k=1

Since the expectation Operator is linear, we can perform the same derivation as in (6.6) to obtain
a similar solution

H))

Hfl}

k=1

( B
s[k]lx[k]	 {R„ [k]}	 X s[k]k[k];111,	 [k]

\k=1

p(s[k]

-1\\ 
	 B 	

x[k];Iii i )R,[k]	 x	 p(s [k]

s

x[k]; Iiii )R„ [14) (6.10)

The a posteriori probabilities p(s[k]x[k];11'1 2 ) are calculated by the detector using the a priori
information passed by the decoder as

p(s[k] x[lc]; H z )	 p(x[k] Is[k]; fiz)p(s[k])

/ 1
cx exp	 	  lx[k] — fts[k]

No 2)
 nT

fi [1+ exp(—vi Lz)] -1 (6.11)
i=1
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This equation shows the need of an initial estimate of the channel. To obtain it, we must
send some pilot symbols known by the receiver. Thus, if we consider that the first P transmitted
symbols correspond to the pilot sequence, the channel estimator simplifies to

14 2+ =	 >2a R18 [k] +	 s[k]lx[k],ü {R13 [k]})
P 

	

\k=1	 k=P+1

(P 
R„ [k] + s[k]lx[41:1, Rs [kl \ —1 (6.12)

	

k=1	 k=P+1 

and the initial estimate of the channel can be calculated as

P 	
(P	 -1

1110 =	 R„[k])	 1R„[k]	 (6.13)
\k=1	 k=1	 1

which corresponds to the LS solution to the estimation problem. It is interesting to note that
(6.12) can be viewed as a generalized LS channel estimator where for the unknown symbols the
correlations R, [k] and R„ [k] are obtained by averaging with respect to the a posteriori pdf
of those symbols. The lower the variance associated to this pdf, the more information we have
about the unknown symbols and, thus, the much more they look like pilot symbols regarding
estimation. In this way, the length of the pilot sequence, P, can be reduced with respect to pure

LS channel estimation.
The main problem when estimating the channel via the EM algorithm is similar to that

in the Optimum APP MIMO detector: complexity of the expectation calculation in (6.12) is
exponential in the number of antennas and constellation size. The use of a list sphere detector,
however, can alleviate this problem: by combining the sphere detection and the EM algorithms,
the average in (6.12) is not calculated over all possible transmitted vectors, but only over the
candidate list obtained by the LSD, i.e.,

Es[k]lx[k], ii {R[k]} = 12, p(s[kilx[k],121,)R3 [k]	 p(s[k x[k],liii)Rs[k]	 (6.14)
s[kleS	 s[k]er

where S is the set of all possible transmitted symbol vectors, with S = 2nTM, whereas
= {s i , s 2, s ivc,} denotes the candidate list obtained by the LSD. The same approximation

can be made for computing Es[k]lx[k],111,Ris [k] • Moreover, the MAP LSD already computes the
APPs p(s k] x[k]) needed for the expectation.

EM algorithm with LD codes

When transmitting using an LD code, the a posteriori probabilities p(s[k]lx[k]; needed
by the EM algorithm cannot be calculated by the detector, since the sent symbols are space-
time encoded and the detector uses the equivalent channel model. On the other hand,
we can easily calculate the a posteriori probabilities p(S[k]lX[k];14,). Thus, if we denote



C2Mc

2	 [ 1 + exp(—vi Li )] -1	(6.15)
i-1

p(s' [k] Ix'[k]; 7-0 a exp
(	 1 

3C ,
No

k] —	 s'[k]l
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[k] = 01, Q )3Q] T the uncoded version of S [k], xlic] = [xTR,i xT, • • • xTR,,,,,RxL,R]T
the unfolded version of X[k], and N z the equivalent channel matrix constructed using the rows
of a and Eq. (5.20), we can calculate

Since there is a one-to-one equivalency between S [k] and s'[k], and between X[k] and x' [k], we
have

p(S[k] 1X[k]; ii i ) = p(s' [k] x' [k]; 7-(,)	 (6.16)

This way we can reformulate the EM estimation given by Eq. (6.12) as

P 

\k=1

P

R,[k] +
B1Q

k:=P+1

B/Q

S[k]lX[k],ii, {Rx s[k]}

\ —1

X	 Ifi R„[k] + E S[k] [k] {Rs s[k }
	

(6.17)
\k=1	 k=P+1

being Rx s[k] = X[k]S H [k] and Rss[M = S[k]S H [k].

6.2 Code optimization

Considering the pilot symbols as additional redundancy, we define the information rate loss due
to pilot insertion as Rp = P/ B. The overall information rate is thus given by R = R,R,RpM,.
Accordingly, the Eb /No at reception is calculated as

Eb	nTnR

No R,R, R,M, No

Traditionally, the code rate R, is assumed as fixed when assessing the performance of a
given channel estimation method and, thus, the number of transmitted pilots affects the overall
information rate. This is so even when the rate loss due to pilot insertion, Rp , is taken into
account in the calculation of the Eb /No, as we do in Eq. (6.18). The performance comparison is
biased since it benefits the utilization of more pilot symbols, because they allow to obtain better
channel estimations at the cost of only an additional price in Eb /No, and not in information rate.
This way of compari son is not fair and it is completely analogous to compare different coding
schemes without taking into account the code rate: the scheme with lowest rate always has the
chance of obtaining the best performance, since its corresponding capacity limit is at the lowest
Eb IN0 value.

Contrarily, we are interested in finding the Optimum number of pilot symbols for a given
information rate, i.e., the optimal combination of code rate, R,, and pilot insertion rate, R.

(6.18)
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Keeping constant the inforrnation rate when varying the number of inserted pilots is only
possible if the rate of the used codes can be changed with high resolution, as occurs with
SCLDGM codes. To obtain a fair comparison, we optimize the SCLDGM code for each of
the considered code rates.

Table 6.1 shows, for each considered MIMO scheme, the best codes corresponding to the
three different numbers of inserted pilots in PSAM transmission (in this case, data frames with
length B = 500 vectors of symbols are assumed). Notice that since in the optimization we
are assuming perfect CSI, using more pilots results in a worse threshold, because the code rate
is increased (so the code is less powerful). This forces us to assess in Section 6.3, via Monte
Carlo simulations and for realistic conditions (i.e. finite block lengths and imperfect channel
estimates), the actual performance of the different numbers of pilots and considered codes.

Code n T x n R Modul. STBC P R, R, p d1 d2 d pf 12 Thresh Gap

41 2 x 1 4-QAM None 0 1 1/2 0.0150 3 5 38 3.87dB 0.57dB
#2 2 x 1 16-QAM None 0 1 1/4 0.0200 3 8 15 3.57dB 0.77dB

None 10 0.98 0.25510 0.0200 3 8 20 3.60dB 0.80dB
None 20 0.96 0.26042 0.0250 3 7 18 3.62dB 0.82dB
None 40 0.92 0.27174 0.0225 3 7 16 3.65dB 0.85dB

43 2 x nR Any Alamouti 0 1 1/4 0.0400 3 9 24
#4 2 x n R Any Alamouti 0 1 1/2 0.0200 3 6 6
#5 2 x 2 16-QAM None 0 1 1/4 0.0275 3 9 12 1.90dB 0.60dB
#6 2 x 2 4-QAM None 0 1 1/2 0.0300 3 5 32 2.02dB 0.46dB
47 10 0.98 0.51020 0.0200 3 5 46 2.10dB 0.45dB
48 20 0.96 0.52083 0.0200 3 5 46 2.21dB 0.47dB
49 40 0.92 0.54348 0.0150 3 5 42 2.38dB 0.47dB

#10 2 x 2 4-QAM Golden 0 1 1/2 0.0250 3 5 38 1.87dB 0.45dB
411 10 0.98 0.51020 0.0300 3 5 32 1.95dB 0.46dB
412 20 0.96 0.52083 0.0250 3 5 38 2.05dB 0.49dB
413 40 0.92 0.54348 0.0200 3 5 38 2.26dB 0.54dB
#14 3 x 1 4-QAM None 0 I 1/6 0.0350 3 10 24 1.20dB 0.80dB
415 12 0.976 0.17077 0.0350 3 10 24 1.26dB 0.81dB
416 24 0.952 0.17507 0.0300 3 10 32 1.30dB 0.80dB
# 17 36 0.928 0.17960 0.0300 3 10 32 1.36dB 0.81dB
418 3 x 1 4-QAM LD 0 1 1/2 0.0200 3 6 48 1.38dB 0.48dB
419 12 0.976 0.51229 0.0400 3 5 24 1.45dB 0.47dB
#20 24 0.952 0.52521 0.0350 3 5 26 1.53dB 0.47dB
421 36 0.928 0.53879 0.0300 3 5 32 1.60dB 0.46dB

Table 6.1: Optimized SCLDGM codes for MIMO channels. "Thresh" stands for the
convergence threshold and "Gap" is the gap to the constrained-input capacity limit. P and
Rp values correspond to a block length of B = 500 vectors of symbols.

6.3 Simulation results

We first carried out a simulation experiment to illustrate the performance when the channel is
estimated according to the procedure explained in Section 6.1.2, without adjusting the rates of
the codes to the number of pilot symbols. We considered a sequence of N = 20000 coded bits
transmitted over a 4 x 4 MIMO channel using 16-QAM. This corresponds to the transmission of
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Figure 6.1: Performance of the rate 1/2 regular SCLDGM code optimized for a 4 x 4 16-QAM
MIMO System and a MAP LSD with 64 candidates when the channel is imperfectly estimated.

L = 1250 vectors of symbols. The transmitted bits are splitted into 10 blocks of B — P = 125
information vector symbols, and then P pilot vector symbols are appended to each block. Block
fading is assumed: the channel remains constant during the transmission of each block of B
symbols and randomly changes from one block to another. In the training period we transmit
the 16-QAM symbols with highest energy using only one antenna at each time slot, switching
the selected transmit antenna between consecutive time slots to guarantee orthogonality of the
training sequence. In Fig. 6.1, the Eb /No has been properly normalized to account for the
energy "wasted" in pilot symbols. We have also assumed that only one iteration in the EM
algorithm is performed for each detection iteration. Fig. 6.1 shows the BER curves for P = 4,
8 and 12. It can be seen that with a small number of pilot symbols such as 8 (6.01% of the frame
size) and 12 (8.75%) and with the MAP LSD with 64 candidates, the performance degradation
due to imperfect channel estimation is less than ldB. Larger degradation is obtained if a lower
number of pilot symbols are used and/or ML LSD (even with 256 candidates) is employed.
Notice from Fig. 6.1 that when the channel is perfectly known, there is a diffrerence in
performance with respect to the pure ergodic case of about ldB. This is because in this computer
experiment the channel is not purely ergodic but block fading. Obviously, the performance tends
to the case of fast fading if the codeword length is increased and B is kept fixed.

As explained in Section 6.2, although this comparison method takes into account the energy
lost in the pilot symbols, that is not the case with the information rate lost, thus benefiting the
utilization of a larger number of pilot symbols. In the following we will test the codes optimized
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Figure 6.2: Performance of SCLDGM + BICM for a 2 x 2 MIMO System with a spectral
efficiency of 2 information bits per channel use.

in Table 6.1, adjusting the rates to the employed pilot symbols. We will consider quasi-static
Rayleigh fading with a block lenght of B = 500 vectors of symbols. The obtained results can be
used to determine the best pilot configuration, i.e., the optimal values of R, and Rp for a given
inforrnation rate, R. Let us pick the 2 x 2 BICM system to illustrate how to carry out the search
for the best pilot configuration for two different channel estimation methods, LS and ML-EM,
at a target Frame-Error Rate (FER) of 10- 3 . Fig. 6.2 plots the performance of a 2 x 2 4-QAM
BICM MIMO System with rate R = 2 information bits per channel use. The outage probability
limit is also plotted for reference purposes. When perfect CSI is assumed at reception and, thus,
no pilots are inserted (Rp = 1), the code rate is R, = 1/2. For the target FER, the required
Eb /No = 12.5dB, which is 1.9dB away from the outage probability limit.

Let us first analyze the resulting performance when classical LS channel estimation is
performed at reception. The worst behaviour (at Eb /No = 15.1dB, 2.6dB away from that
of perfect CSI) is obtained when only P = 10 (vectors of symbols) pilots are employed.
This corresponds to Rp = 0.98 and R, = 0.51020. Increasing the number of pilots to
P = 20 (Rp = 0.96 and R, = 0.52083) provides a gain of 1.1dB, resulting in a required
Eb /No = 14.0dB, 1.5dB away from that of perfect CSI. Using a higher number of pilots
(P = 40), results in some performance loss (the required Ebl No = 14.5dB, 0.5dB worse
than for P = 20). Therefore, the optimal number of pilots for the considered block length
(B = 500 vectors of symbols) is around P = 20. Obviously, obtaining the exact optimal
number of pilots would require an exhaustive search over all the values of P, or a dichotomy-
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based search provided the function to be maximized fulfills some conditions. However, notice
that we can obtain a significant performance gain by observing the performance curves for just

three different numbers of pilots.

Note that, in contrast with the theoretical thresholds (obtained assuming perfect CSI), using
more pilots does not necessarily result in worse performance, because it leads to better channel
estimates. Indeed, there is a tradeoff regarding how the redundancy is distributed over pilot
symbols and parity bits: increasing the number of pilots improves the quality of channel
estimation, but decreases the power of the code. So, the number of pilots has to be increased just

up to a point where it is enough to obtain an accurate (although not perfect) channel estimation,
but still allows the code rate to be as low as possible.

When channel estimation is performed using the EM algorithm, better performance is
obtained. Again, we will try three different numbers of pilot symbols and choose the one
resulting in best performance. Using only P = 10 pilots results in a required Eb /No = 13.6dB,
1.5dB better than that of LS channel estimation with the same number of pilots. Slight
performance gain (0.3dB) is observed when P = 20, being the required Eb /No = 13.3dB,
only 1.0dB away from the perfect CSI case. However, increasing the number of pilots to
P = 40 results in a significant loss in performance (the required Eb /No = 13.8dB, 1.5dB
away that of perfect CSI), even when compared to using only P = 10 pilots. This means
that for P = 10 or 20, channel estimation is accurate enough, so that increasing the number
of pilots does not produce a significant gain in channel estimation accuracy, while it increases
the code rate and, thus, reduces its error correction capability. Also observe how the ML-EM
channel estimator is more robust than the LS with respect to the number of transmitted pilots:
the difference in performance among P = 10, 20, 40 is only 0.5dB, while for LS is 1.1dB.
With these observations in mind, the optimal number of pilots for the considered blocklength
(B = 500) is around P = 20.

Next, we analyze the performance results for three different antenna configurations (2 x 1,
2 x 2 and 3 x 1), assuming throughout all the figures the best number of pilots obtained in
the same way as we have just explained. Fig. 6.3 shows the performance of i) SCLDGM +
Alamouti code, and ii) BICM for a 4-QAM 2 x 1 MIMO system with a spectral efficiency of
2 information bits per channel use. For the target FER= 10 -3 , the outage probability limit
is at Eb /No = 18.2dB. When perfect CSI is available at reception, the best performance is
achieved by the Alamouti-coded scherne, with a required E b /No = 19.2dB, just 1.0dB away
from the theoretical limit. The performance of the BICM scheme is quite similar (the required
Eb /No = 19.5dB, 0.3dB worse). When no CSI is available at reception and LS channel
estimation is performed, the Alamouti-coded scheme requires a E b /No = 20.0dB (only 0.7dB
more than for perfect CSI) when using P = 20 pilots. If ML-EM channel estimation with
P = 10 pilots is used, the required Eb /No = 19.5dB, just 0.3dB more than for perfect CSI.
Notice that this performance is even better than that of the BICM scheme with perfect CSI.
For the BICM scheme, if no CSI is available at the receiver, using LS channel estimation with
P = 20 pilots requires an Eb /No = 20.8dB, 1.3dB more than for perfect CSI. If ML-EM
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Figure 6.3: Performance of i) SCLDGM + Alamouti code, and ii) SCLDGM + BICM for a
4-QAM 2 x 1 MIMO System with a spectral efficiency of 2 information bits per channel use.
Perfect CSI.

channel estimation is used, the required Eb /No = 20.2dB, 0.7dB more than for perfect CSI.

Fig. 6.4 compares the performance of i) SCLDGM + Golden code, and ii) BICM for a
4-QAM 2 x 2 MIMO system with a spectral efficiency of 2 information bits per channel use.
For the target FER= 10 -3 , the outage probability limit is at Eb /No = 10.6dB. For perfect
CSI at reception, the Golden-coded system exhibits the best performance, with a required
Eb /No = 11.8dB, which is 1.2dB away from the theoretical limit. The BICM scheme
requires Eb/No = 12.3dB, 0.5dB more. The 16-QAM Alamouti-coded scheme requires
Eb IN0 = 13.3dB, ldB more than the 4-QAM BICM system. This clearly shows the penalty
in performance due to the capacity loss associated to Alamouti coding when n R > 1. On
the other hand, the better performance of the Golden-coded system also comes from its higher
capacity. For unknown CSI at reception, using LS channel estimation with P = 20 pilots
requires Eb /No = 13.0dB for the Golden-coded scheme whereas E b /No = 14.0dB for the
BICM scheme, which are 1.2dB and 1.7dB away from the perfect CSI case. On the other hand,
using the ML-EM channel estimator with also P = 20 pilots requires E b /No = 12.4dB and
13.2dB for the Golden-coded and BICM schemes, respectively. The gaps with respect to perfect
CSI are 0.6 and 0.9dB, respectively.

Finally, Fig. 6.5 plots the performance of a i) 4-QAM 3 x 1 LD-coded system, and ii) 4-
QAM 3 x 1 MIMO BICM system, both with an information rate R = 1 information bit per
channel use, and Optimum detection. The outage probability limit is at E b /No = 12.0dB for the
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Figure 6.4: Performance of SCLDGM + BICM Vs SCLDGM + Golden code for a 4-QAM 2 x 2
MIMO System with an average spectral efficiency of 2 information bits per channel use.

target FER= 10 -3 . Both systems exhibit nearly the same performance for the perfect CSI case.
The required Eb /No = 12.8dB, just 0.8dB away from the outage value. This shows that the
capacity loss incurred by LD-coding results in very little performance penalty, while presenting
the advantage of enabling the use of suboptimum detection methods. When there is no CSI at
the receiver, both schernes have the same performance when LS channel estimation with P = 36
pilots is performed, with a required EbIN0 = 14.1dB, 1.3dB away that of perfect CSI. On the
other hand, ML-EM estimation with P = 24 pilots requires E5/N0 = 13.5 and 13.7dB, for the
LD-coded and BICM systems, respectively. This probably does not mean that the LD-coded
scheme exhibits better performance regarding ML-EM estimation, but that the optimal number
of pilot symbols is different for these two systems, and the chosen value P = 20 benefits the
LD-coded scheme.

Notice also that for the BICM schemes the slope of the different performance curves is
nearly the same as that of the outage probability, meaning that these schemes provide full
diversity gain without imposing any particular structure on the code (and without trying to
force the design to achieve this goal).
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Figure 6.5: Performance of SCLDGM + BICM Vs SCLDGM + LD code for a 4-QAM 3 x 1
MIMO System with a spectral efficiency of 1 information bit per channel use.

6.4 Conclusions

In this chapter we have considered the more realistic case of an unknown channel at the receiver.
We studied two different channel estimation methods, Least Squares (LS) and Maximum
Likelihood with Expectation Maximization (ML-EM). Both are examples of Pilot-Assisted
Coded Modulation (PSAM) schemes that rely on a training sequence of symbols that is known
at the receiver in order to obtain an estimation of the channel. We showed that the ML-EM
algorithm can be seen as a generalized LS in which the unknown symbols are estimated by
using the probabilities from the decoder and, therefore, its performance and complexity are
greater than those of LS. Also, ML-EM suffers from the same problem as the Optimum MIMO
detectors of an exponential complexity in the number of transmit antennas, so we proposed the
combination of ML-EM with the LSD to reduce the complexity. The simulation results show
that this combination performs very close to the case of perfect CSI at the receiver.

We have also addressed the problem of choosing the rate of the channel code and the
number of pilots while keeping constant the overall information rate. SCLDGM codes enable
us to specify the code rate with high resolution, something that is necessary to maintain fixed
the overall information rate when varying the number of used pilots. We have a proposed a
method to find the best number of pilots under this constraint, illustrating it in the case of only
considering three different possible number of pilots. From this, we have been able to show that
the number of pilots always remains within a quite small range of values, for both the LS and
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ML-EM channel estimators and for all the considered transmission schemes.
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Chapter 7

Layered LDGM (LLDGM) codes

The turbo-like codes studied in previous chapters are able to perform near the capacity
limits for several types of channels models, but only for medium to high rates (i.e., aboye
1/4). The design of low rate coding schemes remains an open research field, in spite of

existing many potential application scenarios, such as multilevel coding for Single-Input Single-

Output (SISO), Multiple-Input Multiple-Output (MIMO) and multiuser systems. Only few
contributions on the design of low rate capacity approaching codes have appeared in the
literature (see 1 80, 81, 82, 83, 841). Most of them are based on including Hadamard codes as the
constraints of a Turbo-like code. The utilization of Hadamard constraints enables to approach
the Shannon limits in the low rate regime at a reasonable encoding and decoding complexities,
but at the expense of making less flexible the overall coding structure.

As explained in [821, the problem of designing good low rate LDPC codes is that the
decoding tunnel through the EXIT chart associated to the code remains very narrow even for
Eb /No values far greater than the code theoretical threshold. This theoretical threshold assu mes
an infinite block length, a cycle free factor graph and an infinite number of decoding iterations.
However, the decoding tunnel for actual decoding in practical situations is always narrower
than the theoretical one. Thus, if the theoretical tunnel opens very slowly when increasing the
Eb /No, the actual decoding tunnel needs a significant increase in Eb /No to get opened. This
means that the actual performance of a given code will be far away from its predicted threshold.
In addition, it can be seen that the lower the rate is, the higher the variable node degrees of

optimized LDPC codes are. As a consequence, complexity is increased and it is more difficult
to find good codes with a threshold near the capacity limit.

The Generalized LDPC (GLDPC) approach in [82 ] uses Hadamard constraints to open
the decoding tunnel from the constraint node side. Differently, in this work we focus on a
coding technique suitable for a wide range of rates that keeps the simplicity and flexibility of

LDPC codes, because it only uses single-parity check (SPC) constraints. The decoding tunnel
is opened by imposing a layered structure. Our approach is inspired by the intuitive idea that in
a concatenated structure the rates of the individual codes remain high enough to provide good
performance, and that the required maximum node degrees in a layered structure are lower.
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Figure 7.1: Factor graph of a systematic regular Three-layer LDGM code

The proposed structure, that we term Layered LDGM (LLDGM), consists of the serial
concatenation of several systematic Low-Density Generator Matrix (LDGM) codes. LLDGM
codes resemble Raptor codes [85, 86 1, but with the fundamental difference that LLDGM codes
are finite rate. On the contrary, Raptor codes were conceived under the digital fountain paradigm
[87] and are, thus, rateless codes. This difference means that the target channel models in
LLDGM codes and, therefore, the optimization criteria are the same as for LDPC codes.

7.1 Layered LDGM codes

SCLDGM codes suffer a degradation in performance similar to that of general LDPC codes for
rates below 1/4. For both general LDPC and SCLDGM codes, there have been proposals aimed
at low rates, all of them based on substituting single parity check (SPC) node constraints by
Hadamard ones. Although the obtained results approach the capacity limits, using Hadamard
codes instead of SPC codes rests flexibility and simplicity to the coding structure. We try to
avoid such impairments by restricting ourselves to SPC constraints and resorting to layered
structures for achieving near-capacity performance in the low-rate regime.

LLDGM codes extend the basic premise of SCLDGM codes: they are the result of serially
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concatenating several systematic LDGM component codes. Fig. 7.1 shows the factor graph
corresponding to a Three-layer LDGM code, where thick unes represent groups of severa!
edges. There is a random connection between variable nodes and check nodes within each
!ayer, which is represented as an edge interleaver, ir, i = 1, 2, 3. We use the notation
j = 1, 2, 3, i — 1 < j, to denote the degree of variable nodes in layer i with respect to check

nodes in layer j, and (g, j = 1, 2, 3, to denote the degree of check nodes in layer j. We will also
denote as Rj , j = 1, 2, 3 the rate of the LDGM code associated to layer j. This factor graph
representation can be easily extended to LLDGM codes with more layers. Note also thai in this
context, Two-layer LDGM codes are equivalent to SCLDGM codes.

Notice also that a Three-layer LDGM code can be viewed as an SCLDGM followed by
another systematic regular LDGM code. Under this point of view, we may think of substituting
the SCLDGM code corresponding to the first two layers by another practica! LDPC code, such
as an IRA code. We will term this structure as IRA-LDGM.

Our subsequent study tries to give a precise answer to the general statement that single
LDGM codes are suitable for very high rates (R > 0.9), Two-layer LDGM codes (i.e.
SCLDGM codes) for medium rates (0.25 < R < 0.9), and Three-layer LDGM codes for
rates lower than 0.25.

7.2 Code optimization and performance results

Optimization of LLDGM codes using EXIT function analysis parallels the procedure explained
in previous chapters. However, there are some differences with respect to the EXIT functions
explained for the SCLDGM scheme, due to the utilization of edge interleavers between each
layer. Now, all the mutual informations passed to the check nodes from all the groups of variable
nodes in the previous layers are "joined" in one mutual information by averaging by the number
of edges carrying each amount of information (as in the case of irregular degree profiles). For
example, the information received by the second layer of checks in a LLDGM code from the
two first layers of variable nodes should be calculated as

«lu_f2 +
44 _, f2 = 	 	 (7.1)5 

cMK + diLi

where cl(2) K and cliL i are the nunnber of edges carrying the informations / u_f2 and /1,1_12,
respectively. As a consequence, we do not make distinctions in the information passed from the
check nodes to the different previous layers of variable nodes. For example, the information
passed from the second layer of check nodes to both the systematic and outer parity bits would
be

If2up1 =1— J ((c1,2 —1)J-1 (1— 41,1_12) + J -1 (1— Ip2 f2)) (7.2)

Also, no restriction is imposed on the number of edges thai a layer of checks can receive
from a previous layer of variable nodes. This restriction allowed an easy computation of the
information passed from the check nodes to the previous layers of variable nodes in the codes
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designed in the previous chapters when no edge interleaver was used (see Section 3.3) but the
use of average information makes this restriction unnecessary.

Another difference with the previous optimization is the use of a search algorithm called
Differential Evolution (DE) [88] to find the best codes. Although an exhaustive search is still

feasible, the increase in the number of parameters for three-layer LDGM codes makes the search
with DE much faster. DE is an optimization method for multidimensional functions that finds
the global minimum of the desired function with a high probability, even if the function has
several local minima. The way DE works is the following: first, it generates a set of random trial
parameter vectors. Then it takes two parameter vectors and combines them, using a weighted
difference between them, to generate a new parameter vector. If this new vector is better (as
defined by the function we are trying to minimize) than any of the vectors in the set, it is added
to the set, replacing the worst vector. This is done iteratively until one of the vectors reaches the
desired minimum or a maximum number of iterations is done. In our case the parameters are
all the degrees of the LLDGM code, as well as the rates of each of the LDGM codes forming
it. The function we are trying to minimize is one minus the mutual information reached by the
LLDGM code defined by the parameters after 100 iterations.

Tables 7.1 - 7.4 show the best obtained codes for a Binary-Input AWGN (BIAWGN)
channel, their corresponding theoretical thresholds, as well as the Constrained-input Capacity
Limit (CCL) corresponding to each rate. The code parameters shown in the tables fully
determine each code (i.e., the remaining code parameters can be obtained from these ones).
Note that the rate R, = 0.5 two-layer LDGM code is very similar to the SCLDGM code
optimized in Chapter 3. As explained previously, the main difference is that no restriction
is imposed in the edges received by the inner layer of checks.

R, d, Thresh CCL Gap

0.95 4 4.56 4.20 0.36
0.90 5 3.69 3.20 0.49
0.85 6 3.24 2.55 0.69

Table 7.1: Systematic regular LDGM codes

We also assessed the actual performance of the best codes found for BIAWGN channels via

Monte Carlo simulations. The results are plotted in Figs. 7.2 - 7.4. In all cases, a maximum
of 100 iterations of SPA decoding is performed. Also, the block length is always K = 10000
information bits (except for Fig. 7.4). Each simulated point contains 100 bit errors or, when
this was not computationally affordable, 20000 transmitted blocks.

In the sequel we analyze the performance of the optimized LLDGM codes focusing on the
relationship between the rate regime at wich capacity is approached and the number of code
layers

Let us start considering the difference between the high and medium rate regimes. Table 7.1
shows the optimized single LDGM codes for high rates, while Table 7.2 shows the optimized
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Thr. CCL Gap
0.5 3 924 0.668496 0.195654 0.135850 0.41 0.18 0.23
0.2 4 22 146 0.678028 0.270974 0.050998 -0.60 -0.96 0.36
0.1 5 28 92 0.699420 0.205095 0.095486 -0.52 -1.27 0.75
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R, R1	 R2 d,i, cm di Thresh CCL Gap

0.95 0.985585	 0.963895 2 3 2 4.66 4.20 0.46
0.90 0.971539	 0.926365 222 3.72 3.20 0.52
0.85 0.944523	 0.899925 2 2 2 3.03 2.55 0.48
0.5 0.979427	 0.510503 3 6 45 0.43 0.18 0.26
0.2 0.893763	 0.223773 3 12 21 -0.65 -0.96 0.31
0.1 0.835640	 0.119669 3 20 44 -0.95 -1.27 0.32

0.05 0.793659	 0.062999 4 37 68 -1.03 -1.43 0.40

Table 7.2: Optimized systematic regular Two-layer LDGM codes

Table 7.3: Optimized systematic IRA codes

Two-layer LDGM codes. For R = 0.95, it is possible to find a single systematic regular LDGM
code with a theoretical convergence threshold near the CCL (only 0.36dB away). In this case,
it is not worth to employ a Two-layer LDGM code and, indeed, the best code found with such
structure has a theoretical threshold further away from the CCL (0.46dB away). The actual
performance of these codes (see Fig. 7.2) also shows that the single systematic regular LDGM
code has a better threshold than the Two-layer LDGM code. For a target BER=10- 4 (that we
will use always as a benchmark in the sequel) the threshold of the former is 0.42dB away from
the CCL while that of the latter is 0.55dB away from the CCL. Note, however, that the Two-layer
LDGM code presents a lower error floor.

When considering the lower rate R = 0.9, the best single LDGM code still shows a better
theoretical threshold than the best Two-layer LDGM code, but the difference between them is
much slighter (0.49dB and 0.52dB away from the CCL, respectively). The actual performance
of these two codes draws similar conclusions: their actual thresholds are 0.77dB and 0.80dB

R R1 R2 R3 d cm dg di d;_ 4 Thresh CCL Gap

0.5 0.978533 0.978583 0.522152 2 2 6 7 50 50 0.5 0.18 0.32
0.2 0.937629 0.809723 0.263428 3 2 11 45 40 2 -0.68 -0.96 0.28
0.1 0.867084 0.622162 0.185368 3 2 19 10 17 2 -1.03 -1.27 0.24

0.05 0.869119 0.458355 0.125513 3 3 43 27 13 2 -1.31 -1.43 0.12
0.02 0.866780 0.206208 0.111896 3 14 95 63 57 2 -1.35 -1.53 0.18

Table 7.4: Optimized systematic regular Three-layer LDGM codes
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R R1 R2 {C110} {a} cM cli Thresh CCL Gap

0.5 0.850285 0.588038 23 0.937937 0.062063 3 21 0.39 0.18 0.21
0.2 0.845496 0.236547 346 0.987581 0.012419, 13 4 -0.69 -0.96 0.27
0.1 0.799873 0.125019 313 0.982002 0.017998 22 5 -1.08 -1.27 0.19

0.05 0.723015 0.069154 326 0.971430 0.028570 43 20 -1.33 -1.43 0.10
0.02 0.530587 0.037694 3716 0.890847 0.073981 0.035172 96 27 -1.22 -1.53 0.31

Table 7.5: Optimized systematic IRA-LDGM codes
1s

away from the CCL. Again, the Two-layer LDGM code exhibits a worse threshold but a better
error floor. When the rate is decreased down to R = 0.85, the situation reverses: now the
threshold of the best single LDGM code is 0.69dB away from the capacity limit, while the best
Two-layer LDGM code is only at 0.48dB. The actual performance curves corroborate the better
threshold of the Two-layer LDGM code (0.57dB away from the CCL whereas that of the single
LDGM code is 0.76dB away) showing that it also has a lower error floor.

We now focus on the rate R = 0.5. The best Two-layer LDGM code has a better theoretical
threshold (0.26dB away from the CCL whereas that of the Three-layer LDGM code is 0.32dB
away). Fig. 7.3 also shows that the Two-layer LDGM code presents a better threshold (0.55dB
away from the CCL) than that of the Three-layer LDGM code (0.67dB away from the CCL).

For the rate R = 0.2, the best codes for these two structures exhibit a very similar behaviour.
Their theoretical thresholds are quite similar (0.28 and 0.31dB away from the CCL for the
Three-layer LDGM code and the Two-layer LDGM code, respectively) and also are their actual
ones (roughly 0.7dB away from the CCL in both cases). However, if we decrease the rate down
to R = 0.1, Three-layer LDGM codes perform better: the best code found has a theoretical
threshold only 0.24dB away from the capacity limit, while that of the best Two-layer LDGM
code is 0.32dB away. Note that the capacity limit for this rate is at Eb /No = -1.32dB.
only 0.27dB away from the ultimate Shannon limit (i.e. the limit when R -› 0). The actual
thresholds of both the Two-layer LDGM and the Three-layer LDGM codes (0.72 and 0.52dB
away from the CCL, respectively) are in agreement with their theoretical ones, and both codes
have a comparable error floor.

By further decreasing the rate we reach a point when Two-layer LDGM codes are
insufticient to perform near the capacity limits, making necessary to resort to Three-layer
LDGM codes. For a rate R = 0.05, Two-layer LDGM codes exhibit a severe performance
degradation, being completely unable to approach the theoretical limits. The theoretical
threshold of the best Two-layer LDGM code found for this rate is 0.40dB away from the CCL
(while for the previous rates the gap to the CCL was around 0.3dB). In addition, its actual
threshold is far away not only from the CCL, but also from its theoretical threshold (0.78dB,
while for the previous rates this gap was at most 0.4dB). Also, the slope of the actual threshold
is much smoother than that observed for higher rates. However, Three-layer LDGM codes are
perfectly able to perform near the capacity limits: the threshold of the best code found is at
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Figure 7.2: LDGM Vs Two-layer LDGM codes for high rates.

Eb /No = —1.31dB, only 0.12dB away from the CCL. The actual performance of this code for
finite block lengths shows little degradation with respect to the predicted theoretical threshold:
for a target BER=10 -4 the required Eb /No is —0.95dB. Finally, we study the behaviour of
Three-layer LDGM codes for R = 0.02, where the performance of the best Two-layer LDGM
codes are very far away from the capacity limits. The theoretical threshold of the best Three-
layer LDGM code is at E b /No = —1.35dB, only at 0.24dB from the ultimate Shannon limit. Its
actual performance curve shows a required E b /No = —0.97dB for a target BER=10-4.

Fig. 7.4 plots the actual performance of the best Three-layer LDGM code for R = 0.05
when varying the block length. Note the gap of less than 0.2dB at BER=10- 4 between the
curves corresponding to block lengths of K = 10000 and K = 80000 systematic bits. The
latter curve is only 0.18dB away from the code theoretical threshold. Although the performance
penalty of using only K = 10000 information bits is noticeable, we have used this block length
in all the other simulations for complexity reasons: when R = 0.05 the codeword length for
K = 10000 bits is 200000 bits, while for K = 80000 bits is 1600000 bits.

Similar conclusions can be extracted about the behaviour of IRA and IRA-LDGM codes.
While for rate R = 0.5 IRA codes are preferable to IRA-LDGM codes, the situation starts to
reverse when the rate is decreased down to R = 0.2. In this case, the theoretical threshold
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Figure 7.3: Two-layer LDGM codes Vs Three-Layer LDGM codes for low rates.

of the best IRA code (see Table 7.3) is at E b /No = —0.60dB, while that corresponding to the
best IRA-LDGM code (see Table 7.5) is at E b /No = —0.69dB. The CCL for this rate is at
Eb /No = —0.96dB. In addition, the actual performance curves (see Fig. 7.5) show that the gap
between the actual thresholds is even greater than that observed between the theoretical ones
(0.3dB instead of 0.09dB).

For a rate R = 0.1dB, IRA codes are unable to perforrn near the CCL, as shown by the
fact that the threshold of the best IRA code is far away (0.75dB) the CCL. On the other hand,
IRA-LDGM codes are able to perform near the CCL: the threshold of the best code is only
0.19dB away from the CCL, and its actual performance curve shows a small degradation in
threshold (it requires Eb /No = —0.75dB for a BER= 10 -4 ) while showing a quite low error
floor. Even more impressive results are observed for a rate R = 0.05: the threshold of the best
IRA-LDGM code found is only 0.10dB away from the CCL (and only 0.2dB away from the
ultimate Shannon limit). Its actual threshold for finite block lengths (measured at BER= 10 4 ) is
located at Eb /No = —0.95dB. Finally, for a rate R = 0.02, it can also be seen that IRA-LDGM
codes are still able to perform near the CCL.

Fin ally, we compare the behaviour of Three-layer LDGM codes versus that of IRA-LDGM
codes. Tables 7.4 and 7.5 show that the theoretical threholds are very similar. Fig. 7.6 plots
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Figure 7.4: Performance of R = 0.05 Three-layer LDGM code for different block lengths.

the actual performance curves of these two types of codes for the different considered rates. In
general, we can conclude that the performance achieved by the IRA-LDGM and the SCLDGM
schemes are approximately the same.

7.3 A practical application: multiuser IDMA system

All the systems that we have studied in previous chapters are single user systems, i.e., there is
only one source of information that is encoded and sent through the channel to one destination.
In multiuser systems, there are several sources of information that are encoded independently
and share the same communications channel. In the receiver, the detector and decoder must be
able to separate and obtain the original information of the different users independently.

There exist different channel access methods that allow the Separation of the different
sources at the receiver [89], such as Time Division Multiple Access (TDMA), that allows the
transmitters to use all the bandwith by allocating different time slots for every user; Frequency
Division Multiple Access (FDMA), in which all the transmitters use the channel at the same
time, but in different bandwith segments; or Code Division Multiple Access (CDMA) [90], a
spread spectrum technique that employs orthogonal codes to allow an easy decoupling in the
receiver. However, all these systems perform far from the achivable capacity limits.

As an alternative, the separation of the sources at the receiver could rely on the channel
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Figure 7.5: IRA Vs IRA-LDGM codes for low rates.

codes themselves. This technique is called IDMA (Interleave Division Multiple Access) [91],
since each user employs a different interleaver to avoid the problem of ambiguity. However, for
this to work, it is necessary that the rate of the code employed by each user be low, since the
SINR (Signal to Interference-plus-Noise Ratio) decreases with the number of users. This is an

interesting application for LLDGM codes, since they are able to perform close to the capacity
limits with very low rates and with a low complexity.

7.3.1 Detection in multiple access channels

Let us consider a fading Multiple Access Channel (MAC), in which the signal at reception at
each time interval can be expressed as

x =	 • + n,	 (7.3)
j=1

where T is the number of transmitting users, sj E S the symbol transmitted by user j, hj

its channel coefficient and n is the white Gaussian noise with variance u 2 (equal to N0/2
per dimension). The AWGN MAC can be seen as a particular case of this model, when all

the channel coefficients are equal to the unity. Notice that in this case destructive sum of

transmitted symbols may occur, posing a difficulty in reliably recovering the transmitted streams
at reception.
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Figure 7.6: Three-layer LDGM Vs IRA-LDGM codes for low rates.

Prior to the decoding of each user channel code, we need to extract from the channel
observations the information relevant to each user, that is, the channel bit LLRs. This task
is accomplished by a MAC detector. Optimum MAP LLR computation presents a complexity
exponential in the number of transmitting users, T, and bits per modulation symbol, log 2 IS ,
so it becomes infeasible for almost any multiuser scenario of practical interest. Since we are
considering a single-antenna receiver, the matrix formed by the channel coefficients is rank-
defficient and, thus, makes it more difficult to use the suboptimum detection methods studied in
Chapter 4, LSD and SIC-MMSE. We can still, however, perform Soft Interference Cancellation
(SIC) but without any MMSE filtering.

The SIC detector perforrns an iterative soft cancellation of the symbols transmitted by
the different users, based on the extrinsic information provided by the corresponding channel
decoders. According to this, the following observation is obtained at the k-th iteration

X k = X —
	 k = 1, . . . , T,	 (7.4)
j=1,j � k

where š is the expected symbol for user j, which is estimated as

si =
	

p(s3 = s)s	 (7.5)

seS

where p(s3 = s) is computed from the extrinsic information provided by the channel decoder.
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The new observation .r k is assumed to contain only the symbol transmitted by the k-th user
corrupted by AWGN. However, this AWGN results from the original noise plus the remaining
interference after soft cancellation, so we have

X k	 (hksk, 0- 2 +	 z � k
	 h z 2 ) 	 k = 1, . . . , T,	 (7.6)

where a is the variance of the estimated symbol š, calculated as in (4.23). Clearly, the
complexity of this detector grows linearly with the number of transmitting users.

We are interested in the characterization of the SIC detector in terms useful to perform code
design and to predict its performance. Such characterization is provided by the EXIT function.
For low SNRs and a moderately large number of users, the SIC detector loses no capacity with
respect to the Optimum detector. We will illustrate this fact in the cases where the Optimum

detector is feasible to implement. We will see that this is also true for higher number of users
and modulation orders since, for the studied examples, the behaviour of the SIC detector gets
closer to that of the Optimum detector when increasing the number of transmitting users and/or
the modulation order. We will also support our claim on the fact that the gap with respect to the
unconstrained-input channel capacity of codes designed to match the EXIT function of the SIC
detector remains small.

Figure 7.7 plots the EXIT function of the optimum and SIC detectors for four users in an

AWGN MAC. It is clear that lowering the SNR makes the EXIT function of the SIC detector
closer to that of the optimum detector. Since the target SNRs of our LLDGM IDMA scheme
are very low, using SIC detection results in no losses with respect to optimum MAP detection.
In addition, it is unnecessary to consider layered detection, i.e. to apply optimum detection for
groups of, say 4, users and then SIC among those groups, for a higher number of users, because
the effective SNR seen by each layer is very low, and in such situation the SIC detector has the
same behaviour as the optimum detector. Similar results can be observed in the Rayleigh fading
MAC (see Figure 7.7).

Let us now comment on the EXIT function of the SIC detector for different number of users
and modulation formats. Figure 7.8 plots the EXIT function of the SIC detector for 4 to 10
users with BPSK (top) and QPSK with Gray mapping (bottom) in an AWGN MAC. The curves
are plotted for the SNR values corresponding to the theoretical thresholds of the best Three-
layer LDGM codes found (see Table 7.6). It is clearly seen that the EXIT functions for BPSK
and QPSK are practically identical, except for a displacement in the SNR value. Moreover,
since the EXIT curve for single-user / single-antenna systems with Gray mapping is an almost
straight horizontal line, this means that code design to match the EXIT function of the SIC
detector will be very important if channel capacity is to be approached. Also, note that the
EXIT curves get steeper as the number of users increases. As we will see in the simulation
results, the performance of codes optimized for the single-user AWGN channel but used over a
MAC will suffer important degradation, getting more severe as the number of users increases.

Figure 7.9 plots the same EXIT functions in a Rayleigh fading channel. In this case the
curves for BPSK and QPSK are different: the QPSK curves are steeper. This means that the
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Figure 7.7: EXIT characteristics of the Optimum and SIC detectors for an AWGN (top) and
Rayleigh fading (bottom) MAC with T = 4 users using QPSK.
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Users d	 clg) UCL BPSK Thr. (gap) QPSK Thr. (gap)Ri	 R2

4
6

0.943197
0.964436

0.381348
0.469823

0.13901
0.11035

3
3

12 35 6 100 2
12 41 9 66 2

-0.98
-0.63

-0.81 (0.17)
-0.43 (0.20)

-0.80 (0.18)
-0.39 (0.24)

8 0.965925 0.579352 0.089348 3 743 18 29 3 -0.33 0.03 (0.36) 0.07 (0.40)
10 0.965685 0.680349 0.076103 3 4 44 11 2 5 0.0 0.41 (0.41) 0.44 (0.44)
20 0.954910 0.572709 0.091427 3 2 32 85 89 2 1.76 2.39 (0.63) 2.45 (0.69)
30 0.948744 0.698884 0.075408 5 2 6 90 75 79 3.68 5.35 (1.67)

Table 7.6: Optimized systematic regular Three-layer LDGM codes with rate R = 0.05 per user
for AWGN MAC

Users
	

R1
	

R2
	 R3
	

4 d ) crol d7 4 4 Thresh UCL Gap

4 0.963746 0.548778 0.094539 3744 1585 -1.22 -0.81 0.41
6 0.963613 0.630698 0.082271 3 5 42 5 538 -1.06 -0.71 0.35
8 0.965849 0.495411 0.10449 3 944 15 233 -0.9 0.55 0.45
10 0.955075 0.466206 0.11229 4 11 42 11 20 2 -0.75 -0.32 0.43

Table 7.7: Optimized systematic regular Three-layer LDGM codes with rate R = 0.05 per user
for BPSK ergodic Rayleigh fading MAC.

codes for BPSK and QPSK must be optimized independently. This also means that, since it is
easier to optimize codes for flauer curves, we will be able to reach a higher number of users in
BPSK than in QPSK for the same code rate, as we will see in the next section.

Using the SIC detector EXIT functions, we optimized Three-layer LDGM codes for various
AWGN and Rayleigh fading MACs, assuming that the total MAC capacity is equally partitioned
among the users (i.e. each user has the same available data rate, R = 0.05). Tables 7.6, 7.7 and
7.8 list the resulting codes, indicating the corresponding gap between the predicted threshold
and the unconstrained-input (i.e. Gaussian input) capacity limit, UCL. Notice that, since the
detector EXIT function changes with the number of users, so it does the Optimum code: there
is a different optimum code for each number of users.

7.3.2 Simulation results

In this Section, we present extensive simulation results showing the performance of the
proposed MAC scheme in various situations. In the case of AWGN MAC, each user utilizes a
different random bit interleaver at the output of the channel encoder, to avoid the ambiguity. In
Rayleigh fading channels this is not necessary since the fact that each user transmits through
different channel realizations avoids ambiguity. The codes employed in all the simulations are
Three-layer LDGM codes with an information block length of 4096 bits.

Let us first consider the case of codes optimized for a single-user AWGN channel when
applied in a MAC environment. Figure 7.10 shows the performance, for different numbers
of users, when the code rate is R = 0.05 and BPSK is used. The performance is relatively
good for T = 4 users, with a gap to the unconstrained capacity limit of approximately 0.9dB
at a BER of 10 -4 . However, the performance quickly gets very far away from the capacity
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Figure 7.8: EXIT characteristics of the SIC detector for an AWGN MAC with several numbers
of users. BPSK (top) and QPSK (bottom).
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Figure 7.9: EXIT characteristics of the SIC detector for a Rayleigh fading MAC with several
numbers of users. BPSK (top) and QPSK (bottom).
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Users
	

R1
	

R2	 U) 4 4 4 4 Thresh UCL Gap
4 0.965172 0.434980 0.10449 3 14 42 12 64 2 -0.85 -0.65 0.20
6 0.966853 0.460545 0.11229 3 12 44 21 12 2 -0.54 -0.32 0.22
8 0.958066 0.475353 0.10979 3 843 233 2 -0.21 0.23 0.38
10 0.970263 0.670106 0.076902 3 545 1364 0.11 0.57 0.47

Table 7.8: Optimized systematic regular Three-layer LDGM codes with rate R = 0.05 per user
for QPSK ergodic Rayleigh fading MAC

Eb/No

Figure 7.10: Performance of a Three-Layer LDGM code with rate R = 0.05 per user optimized
for single-user AWGN channels when used in an AWGN MAC for several number of users.
BPSK.

limit when we increase the number of users (the gap for 10 users is 3dB). This is in agreement
with our previous discussion about the EXIT function of the detector: since it gets steeper
when increasing the number of users, a code optimized for a flat EXIT function (corresponding
to a single-user AWGN channel) also experiments increasing degradation. To overcome this
issue, the codes must be optimized for the particular code rate considered and for the EXIT
function of the SIC detector corresponding to the actual number of users. Figure 7.11 shows the
performance of the MAC system for BPSK and QPSK using the optinnized codes. The gaps to
the unconstrained-input capacity limit are lower than ldB in all cases, showing the prediction
accuracy of the EXIT evolution method.

Similar results can be observed in Rayleigh fading channels (Figure 7.12). In this case,
however, since the curves for BPSK are less steep than those of QPSK, the AWGN optimized
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Figure 7.11: Performance of optimized Three-Layer LDGM codes on an AWGN MAC for
several number of users. BPSK and QPSK. Code rate per user is R = 0.05.

codes perform better in BPSK than in QPSK. In any case, they are far from the curves of the
codes optimized for Rayleigh fading MAC in both cases, and get further away as we increase
the number of users.

Constell. Rate
	

R1
	

R2
	

R3
	 4 d,?„ di d;
	

Thresh. UCL Gap

BPSK 0.05 0.944773 0.598414 0.088438 3 2 31 17 91 5 2.18 0.91 1.27
QPSK 0.05 0.965412 0.691712 0.074874 3 2 6 99 94 78 7.0 3.75 3.25
QPSK 0.02 0.954019 0.313275 0.066919 3 11 100 54 14 2 0.98 0.38 0.60

Table 7.9: Optimized systematic regular Three-layer LDGM codes for 30 users Rayleigh fading
MAC

We have also studied the performance of Three-layer LDGM codes with a high number of
users. Specifically, we have searched for optimized codes for 20, 30 and 40 users using BPSK
constellations. In the case of 20 users, it is possible to find a rate R = 0.05 code that leads
to a performance approximately 0.63dB away from the capacity limit. For a higher number of
users, however, the distance to the capacity limit for this per-user code rate increases to more
than 1.5dB. This is due to the very high slope of the EXIT chart at the SNR corresponding to
the capacity limit for 30 users (1.5 bits per channel use). To be able to approach capacity with
thai number of users, it is necessary to lower the rate of the channel codes. Therefore, we have
searched for codes with rate R=0.02, which allows us to operate at a lower SNR, thus reducing



Users
	

R1	 R2
	

R3	 ‚11 d2
o elg cli
	

UCL BPSK Thresh. (gap)
30 0.959132 0.306582 0.068015 4 14 100 36 9 2 0.34 0.86 (0.52)
40 0.954019 0.619832 0.033822 45 97 2254 1.04 1.73 (0.69)
50 0.960670 0.682137 0.030520 4295 31 3 2 1.76 2.97 (1.21)
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Table 7.10: Optimized systematic regular Three-layer LDGM codes with rate R = 0.02 per
user for AWGN MAC

the slope of the corresponding EXIT function (lower SNR implies lower slope, see Figure 7.9).
Table 7.10 show the optimized codes and Figure 7.13 the performance for 20, 30 and 40 users.

7.4 Conclusions

In this chapter we have studied Layered Low-Density Generator Matrix (LLDGM) codes, a
LDPC coding structure that consists of the serial concatenation of several systematic LDGM
codes. We have shown that a properly optimized LDGM code with only three layers suffices
to approach the theoretical limits for rates down to 1/50. Our study has been carried out both
theoretically (i.e. under the cycle free and in finite blocklength assumptions) and practically (for
finite block lengths, via Monte Carlo simulations). We have also studied an analogous code
structure, termed as IRA-LDGM, consisting on the serial concatenation of an IRA code and
a single LDGM code. Again, when properly optimized, IRA-LDGM codes are also able to
perform near the theoretical limits in the low rate regime.

In order to test the performance of these low rate codes in a practical system, we have
proposed the use of Three-layer LDGM codes in multiple access channels based on Interleave-
Division Multiple Access (IDMA). The idea behind IDMA is to use low rate channel codes and
a soft interference cancellation detector to separate each transmitted stream. We have designed
codes for AWGN and Rayleigh fading Multiple Access Channels (MACs) whose performance
is better than previous IDMA schemes based on Turbo-Hadamard codes, and very close to the
theoretical capacity limits in several cases of interest.
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Figure 7.12: Performance of optimized vs non-optimized Three-layer LDGM codes on a
Rayleigh fading MAC for BPSK (top) and QPSK (bottom).
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Figure 7.13: Performance of LLDGM codes with a high number of users on an BPSK AWGN
(top) and Rayleigh fading (bottom) MAC.
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Chapter 8

Conclusions and future work

8.1 Conclusions

The main objective of this work is to investigate the feasibility of Serially-Concatenated Low
Density Generator Matrix (SCLDGM) codes as capacity approaching codes in a large number
of wireless applications. This class of codes, based on the idea of using an outer high rate
systematic LDGM code to correct the error floor of an inner LDGM code, had proven to perform
well in SISO systems with a low encoding and decoding complexity, but the lack of adequate
optimization put it far from the performance of the best LDPC and IRA codes.

We started by reviewing LDGM, Low Density Parity Check (LDPC), and Repeat-
Accumulate (RA) codes in Chapter 2, as well as the algorithm that is usually employed to
decode them: the Sum-Product Algorithm (SPA). To understand the iterative behavior of these
codes we employed EXtrinsic Information Transfer (EXIT) charts that track the exchange of
information between each of the decoder components and showed that LDPC and IRA codes
are able to approach the BIAWGN channel capacity. LDGM codes, on the other hand, cannot
approach capacity except for very high rates, due to their graph structure. We assesed the
accuracy of the EXIT chart analysis for these three classes of codes via computer simulations.

We continued by presenting the SCLDGM signalling scheme in Chapter 3, studying their
optimization and analyzing their performance when used in a Bit-Interleaved Coded Modulation
(BICM) scheme over Soft-Input Soft-Output (SISO) channels. Since SCLDGM codes are based
on LDPC codes, the same decoding algorithm (Sum-Product) and optimization techniques
(EXIT charts) can be applied to them. However, due to their more complex structure, we used
the EXIT functions in a different way than usual: instead of reducing the optimization procedure
to a curve fitting problem, we perform an exhaustive search for the code that converges al the
lowest Eb /No, using the EXIT functions as a substitute for the real SPA. This simple method
allows us to find SCLDGM codes that are able to outperform optimized IRA codes in terms of
both threshold and error floor, with a similar encoding and decoding complexity.

In Chapter 4 we extended the study to MIMO systems, characterized by the use of several
antennas at both transmission and reception. In these systems, the capacity increase with the

139
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SNR is proportional to the minimum number of transmit and receive antennas, which makes
them suitable for applications with high throughput requirements. However, this increased
capacity comes at the cost of an exponential complexity in the number of transmit antennas
for Optimum detection. For this reson, we studied the behavior of SCLDGM codes when
combined with different suboptimum detectors. Specifically, we investigated the SIC-MMSE
detector, a linear detector based on filtering and soft interference cancellation, and two List
Sphere Detectors, ML LSD and MAP LSD, that perform a tree search to reduce the number
of possible symbols considered when computing the bit likelihoods. To obtain good SCLDGM
codes for each of the detectors, their EXIT function must be calculated first. The MAP LSD

detector has the advantage of a better performance than the ML LSD, but due to a problem of

positive feedback when considering a low number of candidates, the SCLDGM codes cannot be
optimized for it. Instead, we proposed the Extrinsic LSD detector, that avoids using the a-priori
information corresponding to the bit for which we are calculating its extrinsic information. We
obtained optimized codes for all of them and proved the ability of SCLDGM codes to approach
capacity in these systems.

We also considered in Chapter 5 the concatenation of SCLDGM codes with Space Time
Block Codes (STBCs). STBCs are short block codes designed to exploit the properties of the
MIMO channel. The main objective of these codes is to achieve maximum transmit diversity,
while at the same time providing with some other advantages such as increased capacity or a
simple Optimum detection. The considered STBCs were the Alamouti code, that allows the
detector to decouple the transmitted streams in 2 x 1 MIMO systems without incurring in a
capacity loss; the Linear Dispersion codes, thai enable us to use general suboptimum detection
methods when the number of transmit antennas is lower than the number of receive antennas;
and the Golden code, that increases the available capacity. With all of them, the optimized
SCLDGM codes are able to approach capacity, in both ergodic and quasi-static channels.

For both the BICM arid STBC schemes, we studied the problem of channel estimation
in Chapter 6. We considered two different algorithms, Least Squares (LS) and Maximum-

Likelihood with Expectation-Maximization (ML-EM). LS is a clasical optimization technique
that finds the solution that minimizes the squared sum of residuals of a model, whereas EM

finds the maximum-likelihood solution in an iterative manner and can actually be interpreted as
a generalized LS. The main problem of ML-EM when applied to the estimation of the MIMO
channel is the sarne as optimum detection: exponential complexity in the number of trasmit
anntenas. To overcome this issue we proposed a reduced complexity ML-EM algorithm thai,
combined with a sphere detector, estimates the channel using the list of candidates calculated
by the LSD. Since both the LS and ML-EM techniques rely on a small list of transmitted
symbols known at the receiver (i.e., a pilot sequence) to obtain an initial estimation of the
channel, we were interested in finding the Optimum length of this sequence. To do this, we
optinnized SCLDGM codes by adapting their rate so that the number of information bits per
block remained the same, and performed computer simulations to find out which of the chosen
pilot sequence lengths yields the best result.
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Finally, we devoted Chapter 7 to the problem of low-rate encoding. Although SCLDGM
codes perform better than IRA codes for relatively low rates, below a certain point their
performance is severely degraded. We proposed a new scheme, termed Layered LDGM
(LLDGM) codes, that can be seen as a generalization of SCLDGM codes for more than two
concatenated codes. We showed that a three layer LDGM code is able to perform very close
to the capacity limit with a rate of 0.02. We applied this scheme to a multiuser system with
Interleave-Division Multiple Access, and proved that it is able to perform at less than 1 dB
from the multiuser capacity limit in AWGN and Rayleigh fading channels using a very simple
detection scheme, surpassing the performance of IDMA systems based on Turbo Hadamard
codes.

8.2 Future work

8.2.1 Correlated sources in multiple access channels

As a particular case of multiuser systems, we can consider systems in which the different
information sources are correlated. For example, we can assume that we have two users with a
probability of sending the same information bit at a given time instant being greater than 0.5.
In these kind of systems, when each user transmits through a different channel, it can be shown
that the capacity is maximized by separating the source and channel coding stages [92, 93 1. This
means that the best performance is achieved when the transmitters compress the sources first
and then encode them using a capacity approaching code. The receiver decodes the observations
from the channel and then decode the source bits according to the encoding scheme employed
at transmission. However, in multiple access AWGN channels, decorrelating the sources before
encoding them leads to a performance loss due to an increase in the number of destructive
interferences. When transmitting over these channels it is interesting to keep the correlation
between the senders as high as possible, since this leads to an increase in the effective received
SINR. In this sense, systematic LDGM codes seem the ideal channel encoding solution because,
unlike LDPC and IRA codes, they keep a high correlation in the parity bits. It has been shown
[48, 94] that SCLDGM codes can indeed surpass the separation limit (the limit with separate
source and channel coding) but the codes employed until now have been optimized by hand. By
optimizing the codes using EXIT techniques it is reasonable to expect a significant mercase in
performance.

8.2.2 Code Puncturing

All the codes that we have studied along this work transmit all the bits constituting the codeword
through the channel. However, it is possible not to transmit part of the codeword (thus increasing
the resulting rate) and still be able to decode it. This is known as code puncturing and allows
the obtention of a code that is closer to the capacity limit than the codes of the same rate without
puncturing.
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Table 8.1: Degree profile of a rate 1/2 punctured regular SCLDGM code for the AWGN
channel. Channel capacity is at E b /No = 0.19dB.

The most immediate example of this is the puncturing of the outer coded bits in a 2-layer
LDGM code (or a SCLDGM code). The main function of the outer parity bits is to eliminate the
error floor of the inner LDGM code. This effect can be observed in the EXIT trajectories of the
messages passed from the outer check nodes to the systematic variable nodes u,. However,
we can also observe that until a certain number of iterations has been performed, the information
passed from the outer checks to the systematic nodes is zero. This means that the information
passed from the outer parity variable nodes p zi to the outer check nodes is not important
until the inforrnation passed from the inner checks f,2 to the outer parity variable nodes /3 1, is
greater than a certain value, approximately 0.5. If we look at the equation that calculates the
information passed to outer checks from the outer parity bits

I ll =(dpf J -1 (P;21	 (40)

	
(8.1)

it is apparent that the information that comes from the channel is negligible, since dfi2 is usually

quite large for average and high rates, and J- 1 (11;21 ),---- J- 1 (Ich ) when the information Ipf,1 is
significant.

As a consequence, if we do not transmit the outer parity bits, the equations that calculate the
extrinsic information from the outer parity variable nodes simplify to

Ifl	 J (dpfi2 J-1 (P.; 12 ))pi

112	 J ((dpf12 — 1)J -1 (11; 12 ) + J-1(11;11))
pl

This allows us to add some inner parity bits to keep the rate fixed, i.e., R, = R. If we optimize
this new punctured scheme, we obtain a systematic regular SCLDGM code that converges at
0.34dB, i.e., 0.1dB lower than the unpunctured one, with the parameters indicated in Table 8.1.

This idea can be extended to systematic and inner parity bits by considering the percentage
of punctured bits as another optimization parameter, probably increasing the coding gain with
respect to unpunctured codes.

8.2.3 Rate-compatible SCLDGM codes

An interesting application for code puncturing is the construction of rate-compatible codes.
Rate-compatible codes are low or middle rate codes that are able to perform close to the capacity
limits when they are punctured to reach higher rates. This allows a single implementation of
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Figure 8.1: Performance of optimized and non-optimized codes for different block lengths.

a code to be used in a System with different rate requirements. The idea was introduced in
[95] for BCH codes and further extended to convolutional codes in [96] and to LDPC codes in
[97, 98 ]. A family of rate-compatible SCLDGM codes that are able to perform close to the best
rate-compatible LDPCs have been recently presented [99], but the codes were not optimized. lt
is expected that the performance of this scheme can be improved by employing the optimization
techniques presented in this work.

8.2.4 Optimization of short block length SCLDGM codes

The optimization techniques considered along this work, DE and EXIT charts, assume an
infinite block length for their calculations. When the block length is short, their predicted
threshold is very inaccurate, and the performance of non-optimized codes can even surpass that
of optimized codes when reducing the block length (Figure 8.1). There are some procedures,
like the elimination of short cycles or avoiding the use of degree-2 nodes [45], that are able to
improve the behaviour of IRA and LDPC codes. However, these techniques do not have a great
impact on the performance of SCLDGM codes due to the larger minimum degrees of these
codes. We have empirically found codes that perform better than optimized codes when using
very short block lengths, but the lack of an appropriate optimization method makes this task
difficult.
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8.2.5 Structured SCLDGM codes

Practical LDPC codes use structured (non-random) graphs to allow a simpler hardware
implementation, decrease the encoding complexity and/or achieve lower error floors by
avoiding certain short-length cycles [100, 101, 102]. All the SCLDGM codes that we have
considered in this work use randomly generated matrices. It would be interesting to design
structured SCLDGM codes and compare their performance with those of structured IRA and
LDPC codes existing in the literature.

8.2.6 Precoding

Precoding for MIMO channels has been a topic of increasing interest in recent years [103, 104,
105]. Precoding is technique that consists in making use of the knowledge of the channel at the
transmitter (that can provided by the receiver via a feedback channel) to maximize the resulting
capacity, as well as to provide a method for a simple decoupling of the different transmit streams
at reception. This allows for simpler receivers, since one of the main sources of complexity
(detection) is moved to the precoder at the transmitter.

There exist several precoding algorithms that show a compromise between complexity
and performance and that deal with different problems associated to the feedback channel.
However, to the length of our knowledge, no codes have been optimized for most of them.

The combination of optimized SCLDGM codes with precoding could result in a scheme that is
able to achieve a higher performance with lower complexity than schemes without precoding.

8.2.7 Other types of MIMO channels

In this work we have considered the two most simple MIMO channel models, namely the
uncorrelated ergodic fast-fading channel and the quasistatic channel. More realistic MIMO
channels include slow time-varying MIMO channels, spatially-correlated MIMO channels or
channels with Inter-Symbol Interference (ISI). The optimization techniques presented in this
work must take into account the channel properties in order to achieve capacity, and therefore
the codes must be properly designed for each of the channels.



Appendix A

Low Complexity implementations of the
Sum-Product Algorithm

Since the output messages calculated by the variable nodes in the SPA are simply a sum of the
input messages, it seems obvious that the greatest complexity is in the calculation of the check
messages

L
L, = 2 tanh -1 	tanh  v

2— j	
(Al).

\v/ �v

To avoid the computation of the hyperbolic tangents, several suboptimum methods have been
proposed. First, let us start by defining the function used to compute the check messages
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we can rewrite the function C as

C(x i , x2 ,	 ,x) = —sgn(x i , x2 ,	 , x)
\ 2=1 

0(4)	 (A.4)

where sgn(x i , x2 , ... xn ) is equal to -1 if there is an odd number of negative arguments and +1
in the other case. Now the main complexity is in 0(x), represented in Figure A.1. This function
can be approximated by splitting the curve in several fragments and approximating each of them
by a linear function. However, since the function is not bounded, the performance of the SPA
when using this method will be degraded.

(A.2)

(A.3)
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1	 2	 3	 4	 5	 6	 7	 8

Figure A.1: Function 0(x) = log e1x1+1 

To solve this issue, we must employ another approximation. It can be shown that the
function C can be recursively calculated as

xri ) = C(xi,C(x2,C(• • • , 	 xn) ••• )))
	

(A.5)

Elaborating the function C for two variables we have
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being
A(a, b)	 log (1 + e -(a+b) ) — log (1 +	 = A(a + 5) — A(la — b

where
A(x) '2 log(1 + e-x)

With this the main source of complexity resides in the function A(x), represented in Figure
A.2. This time the function is bounded, and the performance of the SPA using the linear
approximation is practically the same as the Optimum.

It is important to note that we need to compute the function C for every edge connected
to the check node, so we must be careful to avoid repeating calculations. With the first
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Figure A.2: Function A(x) = log(1 +

approximation this is easy to accomplish, since we can first calculate the sum of the O function
of all the input messages

e =	 0(L,„_,)
	

(A.9)

and then compute each output message as

Lc_vi = 0 (e — O(L))	 (A.10)

However, with the second approximation we must use a forward-backward algorithm, due to
the recursive computation of the messages. Thus, in the forward pass we compute the values

a, =	 C(Lv2—c, C(. . . C(Lvi _ 2 —c, Lvi_„) • • ))), i = 1 	dc — 1	 (A.11)

and in the backward pass the values

,3, = c(Lvi+ ,„,	 C(. , C ( L„,-,, L„,-,) • • • ))), i = 2 ...
	 (A.12)

in both cases using the linear approxiniation of the A function. The output messages can then
be calculated as

C --+	 C (cki , ,(3,)
	

(A.13)

The computation of the output L-values can be further simplified by taking into account that
the function C is severely determined by the minimum of its arguments, which allows us to
approximate the output messages as

Le_vi	 min(L)
	

(A.14)
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for all the edges except for that which carnes the minimum input L-value. For this edge we can

use the second approximation to calculate the output value. This version of the SPA is known
as Amin* [106], and performs approximately 0.1dB worse than the Optimum.
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Appendix B

MMSE filter

Given a MIMO channel model

	x = Hs + n	 (B.1)

our objective is to find the linear filter for the k-th transmit antenna w k that minimizes the mean
square error between the symbol sent from that antenna and the estimated symbol k . given by

	

= WkI/X
	

(B.2)

Let us first define the error e as

A
e Sk —

The mean square error o-j is then given by

(B.3)

(B.4)

(B.5)

E{le 2 } = Eas k — wx 2 } = E{(s k — wkH x)(s*k — xHwk)}

E{Is k 2 } —E{w11,1xsk*} — E{s k x 11 wk } + lE{wkHxxHwk}
= E,— wkilr E{s*k x} — EtskxH lwk + wkilE{xxil}wk

If we denote p E{s k*x} and Rxx EtxxH I we can rewrite (B.4) as

o_ e2 Es _ wkH p _ pHwk wkHRx.wk

To find the filter that minimizes a we take the derivative of (B.5) with respect to wikl while
treating w k as a constant, and equal to zero

00_,2

awv. — 13 + Rxxwk = 0 Rxxwk = p wk _ Rx-xip

Let us denote the k-th column of H as hk . This way we can rewrite the channel model as

x = Hs + n = s k hk +	 s z h, + n	 (B.7)
z � k

(B.6)
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and thus, assuming that the transmitted symbols are uncorrelated, the vector p can be calculated
as

p = E{s*kx} = Ets,s k Ihk +	 + E{s*k ri} = Etssk Ihk = E8 -1k
	

(B.8)

i � k

The autocon-elation matrix Rxx is equal to

RXX = E{xxn = E{(Hs + n)(s H H H + nH)}

= 1E{Hss H H H } + E{Hsn H } + IE{ns H H} + E{nnH}

	

HR,s H H Rnn	 (B.9)

Since the symbols are uncorrelated, the matrix Rss is equal to

	R ss = diag	
s2 " SnT1

	
(B.10)

and, assuming that the noise is spatially uncorrelated and has the same variance in all the receive
antennas,

Rnn —

Substituting these expressions in (B.6) we

wk = (HR,s H H 	 NoInR )

where

Ak = diag

an2 In , — NoIn,

obtain

1 Es h i,	 (HA k H

,
si	 s2

2	 ,T2	 o-
2
sn T

1- Es R
'

(B.11)

(B.12)

(B.13)
E,	 E,	 • • •	 E,

1

The MMSE filter can be applied after a soft cancellation step that subtracts from the received
vector x the interferences caused by some of the transmit antennas. When this happens, the
variances u s2, corresponding to the cancelled streams must be estimated using the a priori

probabilities that were employed in the cancellation step. The variances corresponding to the
non-cancelled streams are equal to Es.



Appendix C

List of acronyms

AWGN Additive White Gaussian Noise

APP A Posteriori Probability

BCJR Bahl, Cocke, Jelinek and Raviv

BER Bit Error Rate

BIAWGN Binary Input Additive White Gaussian Noise

BICM Bit-Interleaved Coded Modulation

BSC Binary Simmetric Channel

BEC Binary Erasure Channel

BPSK Binary Phase Shift Keying

CCL Constrained Capacity Limit

CNAD Check Node and Accumulator Decoder

CND Check Node Decoder

DE Differential Evolution, Density Evolution

EM Expectation Maximization

EXIT EXtrinsic Information Transfer

FER Frame Error Rate

IDMA Interleave-Division Multiple Access

IRA Irregular Repeat-Accumulate
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LD Linear Dispersion

LDGM Low Density Generator Matrix

LDPC Low Density Parity Check

LLDGM Layered Low Density Generator Matrix

LLR Log-Likelihood Ratio

LS Least Squares

LSD List Sphere Detector

MAC Multiple Access Channel

MAP Maximum A Posteriori

MIMO Multiple-Input Multiple-Output

MMSE Minimum Mean Square Error

ML Maximum Likelihood

OSTBC Orthogonal Space-Time Block Coding

PSAM Pilot Symbol Assisted Modulation

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

SIC Soft Interference Cancellation

SNR Signal-to-Noise Ratio

SPA Sum-Product Algorithm

STBC Space-Time Block Coding

STC Space-Time Coding

RA Repeat-Accumulate

SCLDGM Serially-Concatenated Low Density Generator Matrix

SISO Single-Input Single-Output

UCL Unconstrained Capacity Limit

VND Variable Node Decoder



References

[1] C. E. Shannon, "A mathematical theory of communication (part I)," Bell System Technical Journal,
vol. 27, pp. 379-423,1948.

[2] R. W. Hamming, "Error detecting and error correcting codes," Bell System Technical J., vol. 29,
p. 147, Apr. 1950.

[3] M. J. E. Golay, "Notes on digital coding," Proc. 1. R. E., vol. 37, p. 657,1949.

[4] D. E. Muller, "Application of boolean algebra to switching circuit design and to error detection,"
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois,
Tech. Rep. 138,1954.

[5] I. Reed, "A class of multiple-error-correcting codes and the decoding scheme," Information
Theory, Transactions of the IRE Professional Group on, vol. 4, no. 4, pp. 38-49, September 1954.

161 R. Silverman and M. Baiser, "Coding for constant-data-rate systems," Information Theory,
Transactions of the IRE Professional Group on, vol. 4, no. 4, pp. 50-63, September 1954.

[7] P. Elias, "Coding for noisy channels," in IRE Conv. Rec., ser. pt . 4,1955, pp. 37--46.

[8] A. Viterbi, "Error bounds for convolutional codes and an asymptotically optimal decoding
algorithm," IEEE Trans. Information Theory, vol. IT-13, pp. 260-269, Apr. 1967.

[9] L. R. Bah!, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing
symbol error rate," IEEE Transactions on Information Theory, vol. 20, no. 2, pp. 284-287, Mar.
1974.

[10] G. D. Forney, Jr., Concatenated Codes. Cambridge, MA, USA: M.I.T. Press, 1966.

[11] R. McEliece and L. Swanson, Reed-Solomon Codes and their Applications. S. Wicker and V.
Bhargava, editors, IEEE Press, New York, 1994.

[12] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near shannon limit error-correcting coding and
decoding: Turbo-codes," in Proc. ICC 93, May 1993, pp. 1064-1070.

[13] D. J. C. MacKay and R. M. Neal, "Good codes based on very sparse matrices," C. Boyd
Cryptography and Coding: 5th ¡AM Conference. Lecture Notes in Computer Science, no. 1025,
pp. 100-111,1995.

[14] R. G. Gallager, Low Density Parity Check Codes.	 Research Monograph 21. MIT Press,
Cambridge, Mass., 1963.

153



154	 REFERENCES

[15] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[16] HT PHY Specification, Enhanced Wireless Consortium Std. 802.11n, Dec. 2005. [Online].
Available: www.enhancedwirelessconsortium.org

[17] E. Perahia, "IEEE 802.11n development: History, process, and technology," Communications
Magazine, IEEE, vol. 46, no. 7, pp. 48-55, July 2008.

[18] IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air Interface for Fixed
and Mobile Broadband Wireless Access Systems. Amendment 2 and Corrigendum 1, IEEE Std.
802.16e, Feb. 2006.

[19] A. Morello and V. Mignone, "DVB-S2: The second generation standard for satellite broadband
services," Proc. IEEE, vol. 94, no. 1, pp. 210-227, Jan. 2006.

[20] F. Kienle, T. Brack, and N. Wehn, "A synthesizable IP core for DVB-S2 LDPC code decoding,"
Oct. 2007.

[21] D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," IEEE Trans.

Inform. Theory, vol. 45, no. 2, pp. 399-431, 1999.

[22] J. Garcia-Frias and W. Zhong, "Approaching Shannon performance by iterative decoding of linear
codes with Low-Density Generator Matrix," IEEE Commun. Lett., vol. 7, no. 6, pp. 266-268, June
2003.

[23] Verdu, "Fifty years of shannon theory," IEEE Transactions on Information Theory, vol. 44, 1998.

[24] G. D. Forney and D. J. Costello, "Channel coding: The road to channel capacity," Proceedings of

the IEEE, vol. 95, no. 6, pp. 1150-1177, June 2007.

[25] H. Jin, A. Khandekar, and R. J. McEliece, "Irregular repeat-accumulate codes," in Proc. 2nd Int.

Symp. Turbo Codes & Related Topics, Brest, France, Sept. 2000, pp. 1-8.

[26] T. J. Richardson and R. L. Urbanke, "The capacity of Low-Density Parity-Check codes under
message-passing decoding," IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 599-618, 2001.

[27] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, "Design of capacity-approaching Irregular
Low-Density parity-check codes," IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 619-637, 2001.

[28] S. Y. Chung, T. J. Richardson, and R. Urbanke, "Analysis of sum-product decoding of Low-
Density Parity-Check codes using a Gaussian approximation," IEEE Trans. Inform. Theory,
vol. 47, no. 2, pp. 657-670, Feb. 2001.

[29] S. ten Brink, "Convergence of iterative decoding," IEE Electronics Letters, vol. 35, no. 13, pp.
1117-1 118, June 1999.

[30] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "A soft-input soft-output APP module for
iterative decoding of concatenated codes," IEEE Commun. Lett., vol. 1, no. 1, pp. 22-24, Jan.
1997.



REFERENCES	 1 55

[31] C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, "Iterative correction
of intersymbol interference: Turbo equalization," European Transactions on Telecommunications
and Related Technologies, vol. 6, no. 5, pp. 507-511, Sept. - Oct. 1995.

[32] A. Picart, P. Didier, and A. Glavieux, "Turbo-detection: A new approach to combat channel
frequency selectivity," in ICC (3), 1997, pp. 1498-1502.

[331 T. J. Richardson and R. L. Urbanke, "Efficient encoding of Low-Density Parity-Check codes,"
IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638-656,2001.

[34] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, "Factor graphs and the sum-product algorithm,"
IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 498-519,2001.

[35] N. Wiberg, H.-A. Loeliger, and R. Kötter, "Codes and iterative decoding on general graphs,"
European Transactions on Telecommunications and Related Technologies, vol. 6, no. 5, pp. 513-
525, Sept. - Oct. 1995.

[36] R. M. Tanner, "A recursive approach to low complexity codes," IEEE Transactions on Information
Theory, vol. 27, no. 5, pp. 533-547,1981.

[37] J. Pearl, "Reverend Bayes on inference engines: A distributed hierarchical approach," in AAAI,
1982, pp. 133-136.

[38] S. ten Brink, "Code doping for triggering iterative decoding convergence," Information Theory,
2001. Proceedings. 2001 IEEE International Symposium on, pp. 235-, 2001.

[39] D. Divsalar, H. Jin, and R. J. McEliece, "Coding theorems for `turbo-like' codes," in Proc. of 36th
Allerton Conf. on Communication, Control, and Computing, Allerton, Illinois, Sept. 1998, pp.

201-210.

[40] S. ten Brink and G. Kramer, "Design of Repeat-Accumulate codes for iterative detection and
decoding," IEEE Trans. Signal Processing, vol. 51, no. 11, pp. 2764-2772, Nov. 2003.

[41] S. ten Brink, G. Kramer, and A. Ashikhmin, "Design of Low-Density Parity-Check codes for
modulation and detection," IEEE Trans. Commun., vol. 52, no. 4, pp. 670-678, Apr. 2004.

[42] S. ten Brink, "Convergence behavior of iteratively decoded parallel concatenated codes," IEEE
Trans. Commun., vol. 49, no. 10, pp. 1727-1737, Oct. 2001.

[43] A. E. Ashikhmin, G. Kramer, and S. ten Brink, "Extrinsic information transfer functions: model
and erasure channel properties," IEEE Transactions on Information Theory, vol. 50, no. 11, pp.

2657-2673,2004.

[44] J. F. Cheng and R. J. McEliece, "Some high-rate near capacity codees for the Gaussian channel,"
in Proc. 34th Allerton Conf on Communications, Control and Computing, Oct. 1996.

[45] W.-Y. Weng, A. Ramamoorthy, and R. D. Wesel, "Lowering the error Iloors of irregular high-rate
ldpc codes by graph conditioning," Vehicular Technology Conference, 2004. VTC2004-Fall. 2004
IEEE 60th, vol. 4, pp. 2549-2553 Vol. 4, Sept. 2004.



156	 REFERENCES

[46] J. Garcia-Frias and W. Zhong, "Approaching Shannon performance by iterative decoding of linear
codes with low-density generator matrix," IEEE Commun. Lett., vol. 7, no. 6, pp. 266-268, June
2003.

[47] H. Zhong and T. Zhang, "Block-LDPC: a practica! LDPC coding system design approach," IEEE

Trans. Circuits Syst. I, vol. 52, no. 4, pp. 766-775, Apr. 2005.

[48] W. Zhong, H. Lou, and J. Garcia-Frias, "LDGM codes for joint source-channel coding of
correlated sources," in ICIP (1), 2003, pp. 593-596.

[49] E. Zehavi, "8-PSK trellis codes for a Rayleigh channel," IEEE Trans. Commun., vol. 40, pp. 873-
884, May 1992.

[50] G. Caire, G. Taricco, and E. Biglieri, "Bit-interleaved coded modulation," in ICC (3), 1997, pp.
1463-1467.

[51] G. Ungerboeck, -Channel coding with multilevel/phase signals," IEEE Trans. Inform. Theory, vol.
IT-28, pp. 56-67, Jan. 1982.

[52] D. Tse and P. Viswanath, Fundamentals of wireless communication. New York, NY, USA:
Cambridge University Press, 2005.

[53] M. González-López, L. Castedo, and J. Garcia-Frias, "Bit-interleaved coded modulation using
Low-Density Generator-Matrix codes," in Proc. of Sixth Baiona Workshop on Signal Processing

in Communications, Baiona, Pontevedra, Spain, Sept. 2003.

[54] 1. E. Telatar, "Capacity of multi-antenna Gaussian channels," Bell Labs, Lucent Technologies,
Tech. Rep., Oct. 1995, published in European Transactions on Telecommunications, Vol. 10, No.
6, pp. 585-595, Nov/Dec 1999.

[55] G. J. Foschini, "Layered space-time arquitechture for wireless communications in a fading
environment when using multi-element antennas," Bell Labs Technical Journal, vol. 1, no. 2,

Pp. 41-59, Autumn 1996.

[56] A. M. Tonello, "Space-Time Bit-Interleaved Coded Modulation with an iterative decoding
strategy," in Proc. IEEE VTC Fall 2000, Boston, Sept. 2000.

[57] V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless
communication: performance criterion and code construction," IEEE Trans. Inform. Theory,

vol. 44, no. 2, pp. 744-765, Mar. 1998.

[58] J. Grimm and M. P. Fitz, "Further results on space-time coding for rayleigh fading," Oct. 18 1998.

[59] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J.

Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.

[60] V. Tarokh, H. Jafarkani, and A. R. Calderbank, "Space-time block codes from orthogonal designs,"
IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, July 1999.

[61] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from orthogonal
designs," IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456-1467,1999.



REFERENCES	 157

[62] H. Chen, A. Haimovich, and J. Garcia-Frias, "Applications of a linear precoder to multilevel turbo
space-time coding," Signal Processing Advances in Wireless Communications, 2005 IEEE 6th

Workshop on, pp. 991-995, June 2005.

[63] X. Wang and H. V. Poor, "Iterative (turbo) soft interference cancellation and decoding for coded
CDMA," IEEE Trans. Commun., vol. 47, no. 7, pp. 1046-1061, July 1999.

[64] B. Lu, G. Yue, and X. Wang, "Performance analysis and design optimization of LDPC-coded
MIMO OFDM systems," IEEE Trans. Signal Processing, vol. 52, no. 2, pp. 348-361, Feb. 2004.

[65] B. M. Hochwald and S. ten Brink, "Achieving near-capacity on a multiple-antenna channel," IEEE
Trans. Commun., vol. 51, no. 3, pp. 389-399, Mar. 2003.

[66] U. Fincke and M. Post, "Improved methods for calculating vectors of short length in a lattice,
including a complexity analysis," Math. Comp., vol. 44, pp. 463-471, Apr. 1985.

[67] W. H. Wow, "Universal lattice decoding: principie and recent advances," Wirel. Commun. and
Mob. Comput., vol. 3, pp. 553-559, Aug. 2003.

[68] M. O. Damen, H. E. Gamal, S. Member, and S. Member, "On maximum-likelihood detection and
the search for the closest lattice point," IEEE Trans. Inform. Theory, vol. 49, pp. 2389-2402,2003.

[69] H. Vikalo, B. Hassibi, and T. Kailath, "Iterative decoding for MIMO channels via modified sphere
decoding," IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2299-2311, Nov. 2004.

[70] J.-C. Belfiore, G. Reyaka, and E. Viterbo, "The Golden code: A 2 x 2 full-rate space-time code
with nonvanishing determinants," IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1432-1436, Apr.
2005

[711 B. Hassibi and B. M. Hochwald, "High-rate codes that are linear in space and time," IEEE Trans.
Inform. Theory, vol. 48, no. 7, pp. 1804-1824, July 2002.

[72] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications. Cambridge
University Press, 2003.

[73] X.-B. Liang, "Orthogonal designs with maximal rates," IEEE Transactions on Information
Theory, vol. 49, no. 10, pp. 2468-2503,2003.

[74] S. Sandhu and A. Paulraj, "Space-time block codes: A capacity perspective," IEEE Commun.
Lett., vol. 4, no. 12, pp. 384-386, Dec. 2000.

175 1 J. G. D. Forney and L. F. Wei, "Multidimensional constellations - Part I: Introduction, figures of
merit, and generalized cross constellations," IEEE J. Select. Areas Commun., vol. 7, no. 6, pp.
877-892, Aug. 1989.

[76] 0. Bretscher, Linear Algebra with Applications (3rd Edition). Prentice Hall, July 2004.

[77] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via
the EM algorithm," J. Roy. Stat. Soc., no. 39, pp. 1-38,1977.

[78] Z. Ding and Y. Li, "On channel identification based on second-order cyclic spectra," Signal
Proces.s'ing, IEEE Transactions on, vol. 42, no. 5, pp. 1260-1264, May 1994.



158	 REFERENCES

[79] G. B. Giannakis, "Filterbanks for blind channel identification and equalization," Jan. 22 1997.

[80] L. Ping, W. K. Leung, and K. Y. Wu, "Low-rate turbo-hadamard codes," IEEE Transactions on
Information Theory, vol. 49, no. 12, pp. 3213-3224,2003.

[811 Leung, Yue, Ping, and Wang, "Concatenated zigzag hadamard codes," IEEE Transactions on
Information Theory, vol. 52,2006.

[82] G. Yue, L. Ping, and X. Wang, "Generalized Low-Density Parity-Check codes based on Hadamard
constraints," IEEE Trans. Inform. Theory, vol. 53, no. 3, pp. 1058-1079, Mar. 2007.

[83] N. Souto, J. C. Silva, E Cercas, A. Correia, and A. Rodrigues, "Low rate convolutional and turbo
codes based on non-linear cyclic codes," Wireless Communications and Mobile Computing, vol. 7,
no. 1, pp. 23-34,2007.

[84] K. Li, G. Yue, X. Wang, and L. Ping, "Low-rate repeat-zigzag-hadamard codes," IEEE

Transactions on Information Theor-y, vol. 54, no. 2, pp. 531-543,2008.

[85] A. Shokrollahi, "Raptor codes," IEEE Transactions on Information Theory, vol. 52, no. 6, pp.
2551-2567,2006.

[86] R. Palanki, R. Palanki, J. S. Yedidia, and J. S. Yedidia, "Rateless codes on noisy channels," in in
Proc. Int. Symp. Inform. Theory, 2004, p. 37.

[87] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, "Digital fountain approach to reliable
distribution of bulk data," International Computer Science Institute, Berkeley, CA, Tech. Rep.
TR-98-005, Feb. 1998.

[88] K. Price and R. Storn, "Differential evolution — a simple and efficient heuristic for global
optimization over continuous spaces," J. Global Optimiz., vol. 11, pp. 341-359,1997.

[89] T. S. Rappaport, Wireless Communications Principies and Practice. Prentice Hall, 1996.

[90] A. J. Viterbi, CDMA: Principies of Spread Spectrum Communication. Addison-Wesley, 1995.

[91] K. Y. W. Li Ping, Lihai Liu and W. K. Leung, "Interleave division multiple access (IDMA)
communication systems," in Proc. 3rd International Symposium on Turbo Codes & Related
Topics, Brest, France, 2003, pp. 173-180.

[92] J. Barros and S. D. Servetto, "On the capacity of the reachback channel in wireless sensor
networks," in IEEE Workshop on Multimedia Signal Processing. IEEE Signal Processing Society,
2002, pp. 408-411.

[931 	  "Network information flow with correlated sources," IEEE Trans. Inform. Theory, vol. 52,
pp. 155-170,2006.

[94] F. Erkip, J. Garcia-Frias, and Z. Xiong, "Signal processing for multiterminal communication
systems [from the guest editor]," Signal Processing Magazine, IEEE, vol. 24, no. 5, pp. 12-14,
Sept. 2007.



REFERENCES	 1 59

[95] S. Lin and P. Yu, "A hybrid ARQ scheme with parity retransmission for error control of satellite
channels," Communications, IEEE Transactions on flegacy, pre - 19881, vol. 30, no. 7, pp. 1701—
1719, Jul 1982.

[96] J. Hagenauer, "Rate-compatible punctured convolutional codes (RCPC codes) and their
applications," Communications, IEEE Transactions on, vol. 36, no. 4, pp. 389-400, Apr 1988.

[97] J. Li and K. R. Narayanan, "Rate-Compatible Low Density Parity Check codes for capacity-
approaching ARQ schemes in packet data communications," in IASTED International Conference
on Communications, Internet, and Information Technology, M. H. Hamza, Ed. IASTED/ACTA
Press, 2002, pp. 201-206.

[98] J. Ha, J. Kim, and S. W. McLaughlin, "Rate-Compatible puncturing of Low-Density Parity-Check
codes," IEEE Transactions on Information Theory, vol. 50, no. 11, pp. 2824-2836,2004.

[99] H. Lou and J. Garcia-Frias, "Rate-compatible Low-Density Generator Matrix codes," IEEE
Transactions on Communications, vol. 56, no. 3, pp. 321-324, March 2008.

[100] R. Michael, T. D. Sridhara, and T. Fuja, "A class of group-structured LDPC codes," June 16 2001.

[101] M. P. C. Fossorier, "Quasi-Cyclic Low-Density Parity-Check codes from circulant permutation
matrices," IEEE Transactions on Information Theory, vol. 50, no. 8, pp. 1788-1793,2004.

1102] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. C. Jr, "LDPC block and
convolutional codes based on circulant matrices," IEEE Transactions on Information Theory,
vol. 50, no. 12, pp. 2966-2984,2004.

1103] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, "A vector-perturbation technique for near-
capacity multiantenna multiuser communication-part I: channel inversion and regularization,"
IEEE Transactions on Communications, vol. 53, no. 1, pp. 195-202,2005.

[104] R. D. Wesel and J. M. Cioffi, "Achievable rates for tomlinson-harashima precoding," IEEE
Transactions on Information Theory, vol. 44, no. 2, pp. 824-831,1998.

[105] A. P. Liavas, "Tomlinson-harashima precoding with partial channel knowledge," IEEE
Transactions on Communications, vol. 53, no. 1, pp. 5-9,2005.

[106] C. Jones, E. Vallés, M. Smith, and J. Villasenor, "Approximate-Min* constraint node updating for
LDPC code decoding," in Proc. of IEEE Military Communications Conference, Oct. 2003, pp.
157-162.





UN(VERS/DADE DA CORUÑAServco de Bibliotecas


	VazquezAraujo_Francisco_TD_2008_01de2
	VazquezAraujo_Francisco_TD_2008_p2de2

