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Abstract

Capacity-Based Parameter Optimization of Bandwidth Constrained CPM

by

Rohit Iyer Seshadri
Doctor of Philosophy in Electrical Engineering

West Virginia University

Matthew C. Valenti, Ph.D., Chair

Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth lim-
ited systems due to its small side lobes, fast spectral decay and the ability to be noncoher-
ently detected. Furthermore, the constant envelope property of CPM permits highly power
efficient amplification. The design of bit-interleaved coded continuous phase modulation is
characterized by the code rate, modulation order, modulation index, and pulse shape. This
dissertation outlines a methodology for determining the optimal values of these parameters
under bandwidth and receiver complexity constraints. The cost function used to drive the
optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral
density found by evaluating the constrained channel capacity. The capacity can be reliably
estimated using Monte Carlo integration. A search for optimal parameters is conducted
over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are
presented for a system employing a trellis-based coherent detector. To constrain complexity
and allow any modulation index to be considered, a soft output differential phase detector
has also been developed.

Building upon the capacity results, extrinsic information transfer (EXIT) charts are
used to analyze a system that iterates between demodulation and decoding. Convergence
thresholds are determined for the iterative system for different outer convolutional codes,
alphabet sizes, modulation indices and constellation mappings. These are used to identify
the code and modulation parameters with the best energy efficiency at different spectral
efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate
the capacity and EXIT chart designs.
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Notation

We use the following notation and symbols throughout this dissertation.

(·)H : Complex conjugate transpose
(·)∗ : Complex conjugate
E[·] : Expectation operator
p(X) : Probability density function (pdf) of a random variable X
‖ · ‖ : Euclidian norm
<{·} : Real part of the argument
={·} : Imaginary part of the argument
| · | : Cardinality of a set

Bold upper case letters denote matrices and bold lower case letters denote vectors.
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Chapter 1

Introduction, Problem Statement and

Methodology

1.1 Introduction

Over the last few decades, digital communication systems have become ubiquitous. Un-

like analog systems, which have infinite variations on the information carrying signal, in

digital systems the number of possible signals is finite. This has many advantages, the most

obvious being that digital signals are easier to reconstruct since the receiver simply has to

select from a finite number of hypothesis. Furthermore, signal processing techniques (error

correction, interleaving, spreading, equalization, etc.) make it possible to signal at extremely

low error rates even in harsh environments.

1.1.1 Building Blocks in a Digital Communication System

An elementary block diagram of a digital communication system is shown in Fig. 1.1.

The source (either analog or discrete) generates information-bearing messages which have to

recovered with some reliability at the sink. If the source message is analog, the source encoder

digitizes it by first sampling and then quantizing using the minimum number of bits required

to meet a distortion measure. Digital messages may be compressed by the source encoder

using a compression algorithm such as Huffman coding or the Lempel-Ziv algorithm. The

channel encoder adds controlled redundancy to the source encoder’s output. The modulator
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Figure 1.1: Simplified block diagram of a digital communication system.

maps the coded symbols onto analog waveforms taken from a finite set which meet certain

requirements imposed by the channel. The modulated waveform is transmitted through the

channel which distorts the signal. The demodulator generates estimates of the modulated

symbols, which are then fed to the channel decoder. The redundancy introduced by the

channel code is exploited by the decoder to generate estimates of message bits that minimize

the error rate. The source decoder reconstructs the message, which is then delivered to the

sink. It must be mentioned that the above description is very simplistic. Modern digital

communication systems are in fact extremely sophisticated and it is common practice to have

the demodulator and channel decoder, source and channel decoder work jointly to recover

the message (a process which involves an iterative exchange of the probabilistic estimates of

the transmitted message).

1.1.2 Channel Capacity

In his ground breaking work [1], Shannon derived the theoretical limits on reliable com-

munication. He introduced the concept of channel capacity, which is the maximum rate at

which information can be transmitted reliably through a noisy channel.

Let X, Y be random variables denoting the input and output of a channel with bandwidth

W . The input is assumed to be corrupted by zero mean, additive white Gaussian noise

(AWGN) with variance N0

2
. The channel capacity is as derived by Shannon is given by

C = W log

(
1 +

P

WN0

)
, (1.1)
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Figure 1.2: The Shannon capacity in bps/Hz as a function of the average SNR.

where P is the average signal power. Shannon postulated that as long as the data rate (i.e

the rate at which the source generates information bits) rb < C, there exist channel codes

that allow signaling with arbitrarily low bit error rates. When the logarithm has base 2,

the capacity (1.1) has units of bits per second (bps) and when the logarithm has base e, the

capacity is in nats per second.

Fig. 1.2 shows the the normalized capacity C/W as a function of the average signal-

to-noise ratio (SNR). This shows that for a fixed bandwidth and noise power, the capacity

increases monotonically with increasing signal power. Fig. 1.3 shows the channel capacity

at a fixed SNR as a function of the bandwidth (W ). As W approaches infinity, the channel

capacity approaches its asymptotic value of SNR
log(2)

. Detailed derivations leading up to (1.1)

are given in Chapter 5.

1.1.3 Error Correction Codes

The signal at the output of the channel is distorted due to the presence of noise, fading,

and interference. This signal degradation adversely affects the error rate. Error correction
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Figure 1.3: The Shannon capacity in bps as a function of the bandwidth.

codes are introduced to combat this degradation by adding controlled redundancy to the

information bits. The decoder exploits this redundancy in order to improve the error rate.

Error correction codes can be broadly classified as block codes or convolutional codes.

Block Codes

A (n, k) block code is formed by grouping blocks of k (q-ary) data symbols to produce

a codeword of size n. A block code is linear if the modulo-q addition of any two codewords

produces a valid codeword. Pioneering work on block codes was done by Richard Hamming

with the introduction of a class of single error correcting, binary linear block codes, popularly

known as Hamming codes [2]. Linear block codes (LBCs) are characterized by a k × n

generator matrix G. A codeword c is formed by multiplying groups of k data symbols (u)

by G.

c = uG. (1.2)
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The parity check matrix of a LBC is a matrix H such that if c is a valid codeword, then

cHT = 0, where HT is the transpose of H. The rate of the code is defined as Rc = k/n.

The distance between two codewords is characterized by the Hamming distance (for binary

LBCs, this is simply the number of bits by which two codewords differ). The minimum

distance dmin of a code is the smallest Hamming distance between two distinct codewords. If

the code is linear, then the minimum distance is the minimum weight amongst all non-zero

codewords. For a code to perform well, the codewords must be as distinct from each other

as possible. It is hence desirable for codes to have a large dmin. Hamming codes, Golay

codes [3], Reed-Solomon codes [4], Reed-Muller codes [5], BCH codes [6] and low-density

parity-check codes [7] are examples of widely used block codes.

Convolutional Codes

In block codes, the codeword at a particular time instance depends only on the current

input and not on past inputs, i.e. block codes are memoryless. In contrast, convolutional

codes [8] are codes with memory. A codeword for a (n, k, m) convolutional code is formed

by the linear combination of k current input bits and m past bits which are stored in a

shift register. The constraint length Kc of the code is given by Kc = m + 1, where m

is the code memory. The rate of the code is simply the ratio of the k inputs during one

coding interval to the n outputs generated during the same interval i.e. r = k/n. Since

convolutional codes can be defined by a finite state machine, the encoding and decoding

can be represented using a trellis. A direct consequence of the trellis representation is that

it facilitates maximum likelihood sequence estimation (MLSE) and maximum a posteriori

probability (MAP) estimation. MLSE is performed using the Viterbi algorithm [9] which

finds the most likely transmitted sequence corresponding to a received noisy sequence of

data. The BCJR algorithm [10] on the other hand, is used to estimate the symbol a posteriori

probabilities at each symbol interval, for the given noisy sequence of data.
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1.1.4 The Coding Paradox and Capacity Approaching Codes

In his noisy channel coding theorem, Shannon demonstrated the existence of codes that

make it possible to achieve arbitrarily low bit error rates provided rb < C and n → ∞. He

showed that under the above constraints, a codeword selected randomly from an ensemble

of codes would, with high probability, yield performance approaching capacity. Completely

random codes having large block lengths are impractical to decode. Computational feasibility

demands that some structure be introduced to the code, which can be exploited to simplify

the encoding/ decoding. However, since the code is no longer random, it cannot come

close the performance limits predicted by Shannon. This is the coding paradox, which was

summarized by Wolfowitz as follows:

Almost all codes are good, except those we can think of.

As a consequence, the search for codes that perform close to the Shannon limit led to the

development of codes with higher and higher complexity.

Turbo codes (parallel concatenated convolutional codes) [11] turned previously existing

code design principles on their head. Instead of designing very complex codes, with elaborate

decoding algorithms, turbo codes concatenate two relatively simple, recursive convolutional

codes using a nonuniform interleaver. Since ML decoding is not feasible, the turbo decoder

uses iterative decoding, which under certain assumptions can closely approximate optimum

ML decoding. Well designed turbo codes allow signaling within mere fractions of a dB from

the Shannon limit.

Long before the arrival of turbo codes, Gallager [7] in 1960 invented a class of linear block

codes with sparse parity check matrices known as low-density parity-check (LDPC) codes.

Increasing the dimensions of the sparse H matrix results in a code with a large dmin, which

in turn improves the error rate performance of the code. These codes were largely ignored

due to the lack of sufficient computing power required for their operation. The arrival of

turbo codes and advances in computing resulted in a revival of LDPC codes in the 1990’s

led primarily by MacKay [12]. Like turbo codes, LDPC codes can be decoded iteratively.

However, instead of on a trellis, the decoding proceeds on a Tanner graph using the sum-

product algorithm. Well designed LDPC codes have been known to perform within 0.0045
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dB of the Shannon capacity [13]. LDPC codes and their decoding algorithms are described

in more detail in Chapter 2.

1.1.5 Modulation

The modulator groups log2 M bits from the channel encoder’s output into one of M

possible waveforms. M is known as the modulation order or the alphabet size. The purpose

of the modulator is to first shape the power spectrum of the baseband signal and then to

translate the center frequency to match the channel. For instance, if the channel is wireless,

the transmission of radio waves is accomplished using antennas. The size of the antenna is

proportional to the wavelength λ and since λ = 3×108/f , a low frequency (baseband) signal

would require a prohibitively large antenna. It is therefore necessary to frequency translate

the baseband signal using a high frequency carrier before transmission.

Modulators can be broadly classified as linear or nonlinear depending upon whether

the superposition theorem applies to the baseband waveforms or not. Phase shift keying

(PSK), pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM) are all

examples of linear modulations [14], whereas continuous phase modulation (CPM) [15] is a

popular example of nonlinear modulation.

Over the last few years, there has been a surge in the popularity of wireless standards

such as Bluetooth [16] and Global System for Mobile communications (GSM). For instance,

the number of GSM users have more than doubled from one billion in 2004 to over 2.3 billion,

with GSM handset sales exceeding over 980 million units in a single year (2006) 1. However,

the ever increasing number of users, combined with the insatiable need for high data rates

places considerable strains on the quality-of-service (QOS) and the available (limited) radio

spectrum. Limited bandwidth resources make modern (terrestrial) communication systems

susceptible to adjacent channel interference [17]. This occurs due to the energy of a signal

“leaking” into to neighboring frequency bands and can hence be mitigated if the modulated

signal has a power spectrum which exhibits small side-lobes and a fast-roll offs. Continuous

phase modulation (CPM) [15] is ideally suited for radio environments suffering from spectral

1http://www.gsmworld.com/about/history.ahtml
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congestion. In CPM, the signal phase transitions are continuous from one symbol epoch to

another. This phase continuity yields the much desired compact power spectrum, with small

side-lobes and fast spectral roll-off.

Extended battery life is a key requirement in mobile communication devices (especially

in military communication systems). The battery life in turn depends on the efficiency of the

power amplifier. The amplifier efficiency increases with increasing input drive levels, which

increases the amplifier nonlinearities. There is hence a tradeoff between the battery life and

signal distortions caused by the amplifier nonlinearities [18]. Constant envelope modulations

such as CPM are not affected by amplifier nonlinearities, thereby permitting more efficient

power amplification relative to modulations such as QAM and APSK.

The optimum detector (in terms of energy efficiency) for CPM is coherent [15] which ac-

curately tracks the signal phase and has perfect channel state information (CSI). However,

coherent detection is often not feasible due to increased complexity or not possible due to

rapidly varying channel conditions [19]. Differential phase detectors [20] and Noncoherent de-

tectors [21] provide a more pragmatic alternative due to the absence of carrier phase recovery,

albeit at the expense of energy efficiency. The combination of a compact power spectrum,

constant envelope and the existence of low-complexity receivers makes CPM well suited for

Bluetooth, GSM, spread spectrum communications and mobile satellite communications.

The performance of a CPM system can be improved by better detector design, in par-

ticular by designing a receiver to exploit the memory inherent in the modulation. The

energy efficiency of CPM can also be improved by combining channel coding with CPM,

for instance by using a binary convolutional code to increase the memory of the modulation

[15, 22, 23]. Additional gains in energy efficiency can be made by using nonbinary (ring)

convolutional codes [24]. Ungerboeck’s trellis coded modulation (TCM) [25] paradigm was

applied to trellis coded, continuous phase frequency shift keying (CPFSK, Chapter 3) with

coherent reception in [26] and later to partial response CPM (TCCPM) with noncoherent

reception in [27]. The widespread interest generated by turbo codes (capacity-approaching

codes in general) have resulted in application of the “turbo principle” to CPM [28, 29, 30],

by passing soft-information between the demodulator and the decoder. CPM has also been

concatenated with turbo codes [31, 32], LDPC codes [33] and recently with irregular repeat
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accumulate (IRA) codes [34] in [35].

1.2 Problem Statement

A communication system with coding and modulation is typically designed based on the

following factors [36]

1. Error rate: which measures how reliable the information transmission is.

2. Energy efficiency: which is typically expressed in terms of the average signal-to-noise

ratio per data bit Eb/N0 .

3. Bandwidth efficiency: which is measured as bits per second/Hz (bps /Hz).

4. System complexity and hence the cost.

However, as seen in Section 1.1.2 these requirements are often conflicting. As an example,

in order to increase the number bits transmitted per second for a fixed bandwidth, the

Eb/N0 has to be increased to keep the error rate arbitrarily low (Fig. 1.2). Similarly, if

the SNR is fixed, then the bandwidth must be increased in order to increase the data rate

(Fig. 1.3). For a given SNR and bandwidth, the error rate can also be reduced by using

sophisticated signal processing, which increases the system complexity and hence the cost.

Hence designing a system with coding and modulation is based on tradeoffs between energy

efficiency, bandwidth efficiency and complexity.

Our goal in this dissertation is to address the above tradeoffs while designing a coded

CPM system. At first glance, it is tempting to dismiss the above problem as trivial. However,

a system designer must contend with the following issues in order to arrive at a satisfactory

solution:

1. There are two popular approaches to designing a system with channel coding. The

first is known as coded modulation (CM), in which the channel code and modulator

are defined over the same alphabet and are concatenated using a symbol-interleaver.

Alternatively, we could concatenate a binary encoder and the M -ary modulator using
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a bit-interleaver, and exchange bit-wise soft-information between the demodulator and

the decoder. Such as design is known as bit-interleaved coded modulation [37].

2. In coded CPM systems, the energy and bandwidth efficiency are determined by the

alphabet size M , the type and width of the pulse shape, modulation index h, code

rate r and also on the choice of the CPM detector. There exists an inherent tradeoff

between code rate and CPM parameters. For instance, if a lower rate code is used, then

to maintain a specified bandwidth efficiency, the modulation must either have a smaller

modulation index, use longer pulses, or use a smaller signal set. For any particular

scenario, it is not clear if the coding gain due to using the lower rate code will offset

the performance loss due to using modulation that is further from being orthogonal

or due to the additional inter-symbol interference (ISI) induced by the longer pulses.

The code and modulation parameters must hence be selected with some care.

To expound on the above statements, we consider the following simple example. Let

us suppose our goal is to design a CPM system with a spectral efficiency of η = 0.84

bps/Hz. This can be achieved using uncoded minimum shift keying (MSK), which is

a popular class of CPM with M = 2, h = 1/2 and rectangular pulse shape extending

up to one symbol interval 2. For ease of exposition, we assume coherent reception

(Chapter 4) and an AWGN channel. Under these assumptions, uncoded MSK requires

an Eb/N0 = 9.6 dB to signal at a bit error rate (BER) of 10−5. For the coded system,

we could arbitrarily select a set of modulation parameters and code rate that meet our

bandwidth requirement, in conjunction with a powerful channel code, for instance by

concatenating a rate 1/2 CDMA 2000 turbo code with binary CPFSK with h = 1/8.

Fig. 1.4 shows BER for a coded system with the above mentioned parameters using

the CDMA 2000 turbo code [38], with interleaver size 12282 (data) bits. Observe that

the gain of the code is not enough to overcome the loss due to using nonorthogonal

tones.

Hence in order to obtain the optimum combination of code and CPM parameters, a

2The class of CPM signals using rectangular pulse shape extending up to one symbol interval is known
as continuous phase frequency shift keying (CPFSK)
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Figure 1.4: BER comparison of uncoded MSK with coded CPFSK with parameters M =2
and h =1/8. The coded system uses an outer rate 1/2 CDMA 2000 turbo code. Coherent
CPM detection and AWGN channel are assumed.

rigorous search must be performed over all (allowable) code and modulation parame-

ters, using some performance metric which quantifies the suitability of a particular set

of parameters. It is also noted that parameters such as M , h, r and pulse width can

assume a wide range of values, due to which we have an infinitely large search space.

3. The next issue is the choice of the channel code. Here, we are presented with several

choices such as convolutional codes, turbo codes etc. A good code allows us to meet our

energy efficiency requirements without a significant increase in the system complexity.

Additionally, we have the option of iteratively exchanging soft-information between

the detector and decoder.

4. Designing detectors for CPM that are energy efficient and have low complexity is also

a non-trivial task. Also, the detector complexity is linked to the choice of the CPM

parameters and it is possible that the complexity can be greatly reduced by accepting

design solutions that are less than ideal.
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5. The final and perhaps the most critical issue is the choice of the performance met-

ric. The search for coded CPM parameters with the best energy efficiency at different

bandwidth efficiencies spans a very large search space. Hence, any performance metric

or cost function that we use to perform this search must be feasible to compute for the

different modulation parameters, code rates, channel conditions, and receiver formula-

tions considered. Additionally, such a cost function should also be a realistic indicator

of the system performance.

1.3 Methodology

In this dissertation, we focus on coded-CPM systems which employ bit-interleaved coded

modulation [37]. The BICM approach to coded-system design offers several advantages.

In BICM, the code alphabet and the modulation alphabet need not match. This simpli-

fies system design when different modulation orders are employed. BICM also improves the

temporal diversity of the system [39]. Additionally, capacity-approaching codes are predomi-

nantly binary, hence once the optimum design parameters are determined, an “off-the-shelf”

capacity-approaching code (DVB-S2 LDPC code, UMTS turbo code, CDMA 2000 turbo

code etc..) can be incorporated to get very good performance. Due to these advantages, the

BICM paradigm finds widespread application in modern communication systems.

Because finding the most energy efficient combination of code rate and CPM parameters

for a given bandwidth efficiency and receiver complexity is an optimization problem, the

first step is to identify an appropriate cost function. Optimization of coherently detected,

convolutional coded-CPM under bandwidth constraints has been previously investigated in

[22] and more recently in [40] and [41]. The cost function used in these papers is based

on the distance spectrum of the serially concatenated system. The resulting performance

bounds predict the performance of system employing an ML receiver. Since practical systems

only approximate ML decoding by turbo-style processing, the performance bounds are hence

indicative of system performance primarily at high SNR. However, it is often of practical in-

terest to optimize with respect to the minimum SNR required to signal at some infinitesimally

low error rate. Furthermore, as mentioned in [29], such bounds are nontrivial to compute
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for more sophisticated coded CPM systems (such as those employing capacity-approaching

codes with noncoherent/ differential detectors).

In this dissertation, we turn to information theory and propose using a cost function that

is derived from the constrained capacity of the system. More specifically, the cost function

is the information-theoretic minimum Eb/N0 required for reliable signaling under the con-

straints of a class of modulation, equally likely input signals, a desired bandwidth efficiency,

and a particular receiver design. There are several benefits of performing a capacity-based

optimization. The most obvious advantage is that capacity specifies the performance limits

for a coded system and inherently takes into account the tradeoff between code rate and

energy efficiency. This tradeoff can be easily extended in our case to account for the tradeoff

between code rate and modulation parameters. It is a very practical predictor of system per-

formance since either capacity approaching codes or powerful codes tailored to the specific

modulation parameters [33], [35], [42] can be used to get close to the constrained capacity.

While closed form solutions for constrained capacity are at times non-trivial to compute,

due to the availability of cheap and fast processing, it is now feasible to accurately estimate

the constrained capacity by using Monte Carlo integration with a very large number of trials

[37], [43]. Our capacity calculations also take into account the design of the detector. Due to

these significant advantages, capacity-driven optimizations have been previously performed

for noncoherently detected orthogonal FSK [44] and coded APSK [45]. We are however the

first (to the best of our knowledge) to consider consider such an optimization for coded-CPM,

and also the first to consider an optimization for a CPM system employing differential phase

detection.

One could argue that the threshold on Eb/N0 could instead be found by simulating the

BER performance of the system, which includes the particular channel code, CPM modula-

tor, desired channel, detector and decoder using Mote-Carlo trials. However BER simulations

for coded systems (especially those incorporating capacity-approaching codes) are very time

consuming. We show in Chapter 5 that capacity calculations by Monte-Carlo trials are

several hundred times faster than BER simulations with capacity-approaching codes. This

computational efficiency is a very significant advantage provided by the constrained-capacity

cost function, simply because the optimization search space is typically very large. Another
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limitation of a BER simulation based optimization is that the SNR threshold is tied to the

choice of the channel code and the optimization performed with respect to a particular chan-

nel code ceases to be valid when a different code is employed. In contrast, the capacity-based

threshold is independent of the choice of the channel code since any well designed code will

almost certainly approach capacity.

The rest of the dissertation is organized as follows. Chapter 2 discusses some channel

coding techniques often employed in modern communication systems. Chapter 3 describes

the CPM signal and it’s spectral characteristics. Coherent and differential detectors for CPM

are described in detail in Chapter 4, as is a description of the novel, soft-output differential

detector for CPM signals using what we term the soft-output, soft-decision differential phase

detector (SO-SDDPD). Chapter 5 describes the methodology for finding the capacity under

modulation constraints. The optimization undertaken and subsequent results are described

in Chapter 6. Chapter 7 concludes the dissertation.
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Chapter 2

Channel Coding for Modern

Communication Systems

The signal at the output of the communication channel is distorted due to the presence

of noise, fading, and interference. The signal degradation adversely affects the fidelity of the

received information. Error correction codes are used to combat the effects of the channel

by adding controlled redundancy to the transmitted information bits. The decoder exploits

this redundancy in order to improve the signal fidelity.

In this chapter, we review some error correction (channel) codes that find widespread

use in modern communication system. We begin with a review of the popular convolutional

codes [8]. Pertinent topics such as their structure, encoding and trellis representation are

discussed. The Viterbi algorithm [9] and BCJR algorithm [10], two algorithms widely used

in decoding convolutional codes are described in detail.

Next, we describe a class of codes known as capacity-approaching codes. Capacity ap-

proaching codes can be described as codes that perform within 1 dB or less of the Shannon

capacity (Chapter 5). The first reported capacity approaching code was the original turbo

code by Berrou et. al. [11] which was 0.7 dB from the unconstrained capacity. Since then

turbo codes have found extensive use in applications such as mobile telephony (UMTS [46],

CDMA2000 [38]) second generation digital video broadcasting (DVB-RCS) [47] , deep space

communications (CCSDS) and broadband wireless access (WiMAX) [48] to name a few.

Low-density parity-check (LDPC) codes are another class of capacity approaching codes.
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Although invented by Gallager [7] in 1960, they did not generate sufficient interest due to

the high complexity involved in their encoding and decoding. The arrival of turbo codes

and advances in computing led to their resurgence in the mid 90’s, triggered primarily by

MacKay’s paper [12]. We present an overview of capacity approaching codes with emphasis

on LDPC codes. We review linear block codes of which LDPC codes are a special sub-class.

Next, the decoding algorithms are described in detail following which, code construction

and encoding are discussed. Select performance curves for the LDPC codes used in the sec-

ond generation digital video broadcasting standard (DVB-S2) and mobile WiMAX (IEEE

802.16e) are given. The operation of turbo codes is reviewed before concluding the chapter.

2.1 Convolutional Codes

Convolutional codes [8] are codes with memory and are encoded using a shift register.

The memory (m) of the code is the number of delay elements in the shift register. The

constraint length Kc of the code is defined to be Kc = m + 1.

2.1.1 Encoding Convolutional Codes

A codeword for a (n, k, m) convolutional code is formed by the linear combination of k

current input bits and m past bits which are stored in a shift register. The rate of the code

is simply the ratio of the k inputs during one coding interval to the n outputs generated

during the same interval i.e. r = k/n.

Fig. 2.1 shows the encoder for a rate 1/2 and Kc = 3 convolutional code. Observe that

the shift register is feedforward. Convolutional codes in which there is no feedback from the

output are known as nonrecursive convolutional (NRC) codes. Likewise, convolutional codes

in which there is a feedback from one of the outputs are known as recursive convolutional

codes Fig. 2.2. The encoder can be represented in terms of generator vectors, which denote

the connections between the shift register elements and the adders [49]. The feedforward

generator vectors for the NRC code shown in Fig. 2.1 are

g0 =
[

1 0 1
]
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Figure 2.1: A rate 1/2, constraint length 3 nonrecursive convolutional encoder with octal
generators [7, 5].

g1 =
[

1 1 1
]

(2.1)

The feedback gr and feedforward gf generator vectors for the recursive code shown in Fig.

2.2 are

gr =
[

1 1 1
]

gf =
[

0 1 1
]

(2.2)

The recursive code is also systematic, since the first parity bit is simply the input bit

and is hence known as a recursive systematic convolutional (RSC) code. As is common in

the literature, the generator vectors are expressed in octal representation to give a compact

notation for the convolutional codes. The code in Fig. 2.1 can be denoted as NRC [7, 5] and

the code in Fig. 2.2 as RSC [7, 3].

Convolutional codes can continuously encode a stream (an infinitely long sequence) of

data. In practice however, the convolutional code encodes non-overlapping blocks of data,

resulting in finite length code sequences. In such scenarios, it is desirable to reset the encoder
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Figure 2.2: A rate 1/2, constraint length 3 recursive convolutional encoder with feedback,
feedforward octal generators [7, 3] respectively.

to the all zeros state prior the next block of data. This process is known as trellis termination.

In NRC codes, this is accomplished by feeding m zeros into the encoder at the end of each

data block. In RSC codes, termination is accomplished by my setting the input to the output

of the feedback register that is fed back to the input. This resets the encoder to zero after

m shift intervals. The m additional bits at the end of each code sequence are called the

tail-bits.

2.1.2 State Diagram and Trellis

A binary convolutional code is a finite state machine with 2m states. A state diagram

shows how the encoder states are related by specifying the inputs required to move from one

state to another and the corresponding outputs that are produced for any given set of state

transitions.

Fig. 2.3 shows the state diagram for NRC [7, 5] code. Each node in the diagram denotes

a possible encoder state. There are two branches entering and leaving each node. The

branches are labelled (u / p1 p2 ), u is an input bit and p1, p2 are the encoded parity bits.

A trellis is an expansion of the state diagram which explicitly shows how the state transi-

tions evolve over time for different possible input sequences. Each distinct sequence of input

bits corresponds to a unique path through the trellis. Fig. 2.4 shows the trellis diagram for

the NRC [7,5] code.
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Figure 2.3: State diagram for a rate 1/2, constraint length 3 nonrecursive convolutional code
with generators [7, 5].
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Figure 2.4: Trellis diagram for a rate 1/2, constraint length 3 nonrecursive convolutional
code with generators [7, 5] respectively. Dashed arrows denote branches corresponding to
an input symbol 0.
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2.1.3 Decoding Convolutional Codes

Convolutional codes are most conveniently decoded on a trellis. Two popular approaches

to trellis-based decoding are maximum likelihood (ML) decoding using the Viterbi algorithm

[9] and maximum a posteriori (MAP) decoding using the BCJR [10] algorithm. Before going

into the details of the above mentioned algorithms, we define the following notation:

• u = {u0, u1, ..., uNu−1} denotes a length Nu bit sequence.

• b denotes the encoder generated codeword corresponding to u. Its length is Nb.

• x denotes the BPSK modulated symbol sequence generated as follows

x = 2b− 1. (2.3)

Maximum Likelihood Decoding: The Viterbi Algorithm

A maximum likelihood decoder selects the most probable path through the trellis. This

is done by comparing the received sequence against all possible paths through the trellis

and selecting the path “closest” to the received sequence. A naive approach would be to

implement ML decoding using a table look-up. However, since the size of this table would be

2Nb , such a table look-up is computationally prohibitive for even moderate sequence lengths.

The Viterbi algorithm [9] provides a computationally feasible method for performing ML

decoding by exploiting the underlying structure of the convolutional code (it is the same

structure that allows the code to be represented as a trellis).

An important component of the Viterbi algorithm is the assignment of a “weight” to

each branch in the trellis, which indicates how different the received code bits are from the

postulated transmitted bits associated with that branch. The Viterbi algorithm finds the

lowest weight path through the trellis.

The BPSK modulated codeword x is transmitted through an AWGN channel having

noise variance σ2 = N0/2. The signal at the output of the channel is

r = x + nw. (2.4)

The following notation need to be defined before the algorithm can be described
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• {Sk = s′} for s′ = 0, 1, ..., 2m − 1 denotes the trellis state at time instant k.

• {Sk = s′} → {Sk+1 = s} denotes a state transition corresponding to an input uk.

• γk+1(s
′, s) is the branch metric i.e. the weight associated with a branch whose starting

and terminal states are {Sk = s′} and {Sk+1 = s} respectively.

• Γs′,k is the path metric stored in trellis state {Sk = s′}.

The goal of the Viterbi algorithm is to minimize the probability of making a codeword error.

Under the assumption that the encoder begins and ends in the all zeros state, the Viterbi

algorithm is as follows:

1. At k = 0, initialize

Γs′,0 =

{
0 s′ = 0

∞ otherwise
(2.5)

2. Compute γk+1(s
′, s) for every branch in the trellis

γk+1(s
′, s) =

n−1∑
i=0

||rkn+i − bkn+i(s
′ → s)||2, (2.6)

where bkn+i(s
′ → s) for i = 0, 1, ...n − 1 are the code bits associated with the state

transition {Sk = s′} → {Sk+1 = s}.

3. Each state s has two branches entering into it. Pick the branch for which the sum

Γs′,k + γk+1(s
′, s) is the smallest. This branch corresponding to the state transition

{Sk = s′} → {Sk+1 = s} is known as the surviving branch and the path metric is now

Γs,k+1 = Γs′,k + γk+1(s
′, s). (2.7)

The branch with the larger metric is deleted. In addition to storing the surviving

path’s metric, the algorithm needs to keep a track of the surviving state sequence, i.e.

the sequence of trellis states from which the surviving branches emanate.
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4. Increment time

k = k + 1. (2.8)

Repeat from step 2 until the end of the trellis is reached.

5. The maximum likelihood path leads into the state SNu = 0. Using the stored surviving

state sequence, the Viterbi algorithm traces the ML path by sweeping right to left

across the trellis. The ML estimate of data bits are the input bits associated with each

branch (state transition) of the ML path.

Maximum A Posteriori Decoding: The BCJR Algorithm

The goal of the BCJR algorithm is to minimize the bit error probability. Towards this

end, the algorithm produces the log-likelihood ratio

zk = log
P [uk = 1|r]
P [uk = 0|r] . (2.9)

.

The following notation need to be defined before the algorithm can be described:

• S(1) denote the set of state transitions {Sk = s′} → {Sk+1 = s} corresponding to

uk = 1, S(0) is defined similarly for uk = 0.

• P [{Sk = s′} → {Sk+1 = s}|r] denotes the probability that the encoder made the

transition from Sk = s′ to Sk+1 = s, given the entire received codeword.

• αk(s
′, s) is defined as

αk(s
′) = P [Sk = s′, rk−1

0 ]. (2.10)

• βk+1(s) is defined as

βk+1(s) = P [rNu−1
k+1 |Sk+1 = s]. (2.11)

• γk+1(s
′, s) is defined as

γk+1(s
′, s) = P [Sk+1 = s, rk|Sk = s′]. (2.12)
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It is easy to infer that

P [uk = 1|r] =
∑

S(1)

P [Sk = s′, Sk+1 = s|r]

=
∑

S(1)

P [Sk = s′, Sk+1 = s, r]/P [r]. (2.13)

Now

P [Sk = s′, Sk+1 = s, r] = P [rk−1
0 , rk, r

Nu−1
k+1 , Sk = s′, Sk+1 = s]

= P [rk−1
0 , rk, Sk = s′, Sk+1 = s]P [rNu−1

k+1 |rk, r
k−1
0 Sk = s′, Sk+1 = s]

= P [Sk = s′, rk−1
0 ]P [Sk+1 = s, rk|Sk = s′, rk−1

0 ]·

Since the finite state machine describing the convolutional encoder is a Markov process,

P [Sk = s′, Sk+1 = s, r] = P [Sk = s′, rk−1
0 ]P [Sk+1 = s, rk|Sk = s′]P [rNu−1

k+1 |Sk+1 = s]. (2.14)

(2.13) can now be written as

P [uk = 1|r] =
∑

S(1)

αk(s
′)γk+1(s

′, s)βk+1(s)]/P [r]. (2.15)

P [uk = 0|r] is similarly expressed by summing over S0. From (2.9), (2.13) and (2.15) the

LLR is

zk = log

∑
S(1) αk(s

′)γk+1(s
′, s)βk+1(s)∑

S(0) αk(s′)γk+1(s′, s)βk+1(s)
, (2.16)

αk(s) for k = 1, ..., Nu + 1 is calculated using the following forward recursion

αk(s) =
2m−1∑

s′=0

αk−1(s
′)γk(s

′, s), (2.17)

using the initialization

α0(s) =

{
1 s = 0

0 otherwise
(2.18)

βk(s) for k = Nu − 1, Nu − 2, ..., 1 is calculated using the following backward recursion

βk(s) =
2m−1∑

s′=0

βk+1(s
′)γk+1(s

′, s), (2.19)
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using the initialization

βNu(s) =

{
1 s = 0

0 otherwise
(2.20)

The BCJR algorithm is summarized as follows

1. In the forward sweep through the trellis, calculate γk(s
′, s) (4.27) for each branch in

the trellis and αk(s) 2.10 using (2.17), for s = 0, 1, ..., 2m − 1.

2. In the backward sweep through the trellis, compute βk(s) (2.11) using (2.19) for s =

0, 1, ..., 2m − 1 and the LLR of the message bit at the kth trellis section zk (2.16).

3. zk is compared to a zero threshold to obtain hard estimates of the data bits ûk

ûk =

{
1 zk ≥ 0

0 otherwise
(2.21)

Due to the forward and backward sweep through the trellis, the BCJR algorithm is often

called the “forward-backward” algorithm.

Note that γk+1(s
′, s) can also be written as

γk+1(s
′, s) = P [Sk+1 = s|Sk = s′] P [rk|(Sk → Sk+1) = (s′ → s)] , (2.22)

When the MAP decoder doesn’t receive a priori information v on the data bits, the decoder

assumes that all bits are equally likely due to which P [Sk+1 = s|Sk = s′] is a constant that can

be dropped from (2.22) without affecting the overall LLR (2.16). If a priori information were

delivered to the decoder, then v could be used to update the value of P [Sk+1 = s|Sk = s′].

Extrinsic information z̄ is obtained by subtracting the a priori information from the LLR

z̄ = z− v. (2.23)

2.1.4 Code Puncturing

The convolutional codes mentioned thus far are rate 1/2 codes, or more generally, rate 1/n

codes. When higher code rates are required, one could use rate k/n codes where k > 1 [14].

Decoding these codes is computationally intensive since the decoder complexity increases
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exponentially with k. A more pragmatic approach to obtaining higher rate codes is by

puncturing rate 1/n codes. Puncturing involves periodically deleting specific code bits from

the encoder’s output. Since the mother code is still 1/n, the number of states/ branches in

the trellis remains unchanged. Puncturing is described in terms of a puncturing matrix P

[14]

P =




p11 p12 ... p1p

p21 p22 ... p2p

. . .

. . .

. . .

pn1 pn2 ... pnp




. (2.24)

Each column of P corresponds to the n parity check bits from the encoder and p is the

puncturing period. The elements of P are set to 1 or 0, where 0 indicates that corresponding

parity check bit is deleted. The punctured rate is p/np, where np is the number of ones in

P . Puncturing matrices cannot be selected arbitrarily since a bad puncturing pattern could

result in high error floors. Puncturing matrices for high rate NRC codes resulting in good

free distances have been found in [50].

2.2 Low-Density Parity-Check Codes

2.2.1 Review of Linear Block Codes

Let Vn be an n-dimensional vector space over {0, 1}. A (n, k) binary linear block code is a

k-dimensional vector sub-space (Cn) of Vn, such that the modulo-2 sum of any two codewords

is another valid codeword. The code is characterized by its k×n generator matrix G which

consists of the basis vectors for Cn. A codeword b is hence simply generated by the linear

combination of the basis vectors. If u is a length k message vector, the codeword b is given

by

b = uG. (2.25)
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The dual-space C̄n of Cn is a n− k dimensional sub-space of Vn such that for all b ∈ Cn and

v ∈ C̄n

bvT = 0. (2.26)

The parity-check matrix H contains the basis vectors for C̄n. Each row in H specifies a parity

check equation. The code bits in positions where the row entry is 1 must sum to 0. Hence

if b a valid codeword, then

bHT = 0. (2.27)

The Hamming distance between two codewords is the number of bits by which they differ.

The minimum distance dmin of a code is the smallest Hamming distance between two distinct

codewords and is equal to the smallest number of linearly dependent columns in H.

Low-density parity-check codes are a class of linear block codes characterized by very

sparse H matrices, i.e. the number of 1’s is very small compared to the number of 0’s. When

n is very large, the sparseness of H results in large dmin, which results in very low bit error

rates for the code. Also having a sparse H matrix, reduces the decoder complexity. Since

LDPC codes are best understood in terms of their decoding, we first describe their decoding

and then discuss their construction and encoding.

2.2.2 Decoding LDPC Codes

LDPC codes are decoded on a Tanner graph [51]. A Tanner graph is a bipartite graph

describing the parity check matrix for a code . It has two classes of nodes, called the check

nodes and variable nodes, connected by edges. The variable nodes (v-nodes) correspond

to the bits in the codeword or equivalently, the columns of H. The check nodes (c-nodes)

correspond the parity check equations or equivalently, the rows of H. This implies there are

n v-nodes and at least n − k c-nodes. The ith check node is connected to the jth variable

node if and only if the (i, j)th element of the parity check matrix is one, i.e. if hij = 1. Fig.
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Figure 2.5: The Tanner graph of a (7, 4) Hamming code.
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Figure 2.6: A length four cycle in the Tanner graph of a (7, 4) Hamming code. The edges
correspond to the italicized entries in (2.28).

2.5 shows a Tanner graph for (7, 4) Hamming code with H matrix

H =




1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1


 . (2.28)

A cycle of length l in a Tanner graph is a path of l distinct edges which closes on itself.

The girth of a Tanner graph is the minimum cycle length of the graph. The shortest possible

cycle in a Tanner graph has length 4. Length four cycles manifest as four 1’s in the corners

of a sub-matrix in H. The italicized entries in (2.28) indicate the length 4 cycle shown in

Fig. 2.6.

LDPC codes are decoded iteratively using a Tanner graph in which messages are ex-
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changed between the v and c-nodes with the edges acting as information pathways. Soft-

decision decoding on LDPC codes is accomplished using the sum-product algorithm also

known as the message passing/ belief propagation algorithm [52], [53] and is described be-

low.

Let b be the codeword. The BPSK modulated x codeword is generated as follows

xi = (−1)bi . (2.29)

x is transmitted through an AWGN channel having noise variance σ2 = N0/2. The signal

at the output of the channel is hence

r = x + nw. (2.30)

The following notation needs to be defined before the algorithm can be described

• Q0 = P (bi = 0|Si), Qi = P (bi = 1|Si). Si is the event that the bits in b satisfy the

check equations involving ci.

• q̄ij(d) is the extrinsic information to be passed from v-node i to c-node j and is the

probability that bi = d given extrinsic information from check nodes and channel

sample ri.

• r̄ji(b) is the extrinsic information to be passed from c-node j to v-node i and is the

probability of the jth check equation being satisfied give that bi = d.

• Ci = {j : hji = 1}. This is the set of row location of the 1’s in the ith column.

• Ci\j = {j′ : hj′i = 1, j′ 6= j}. The set of row locations of the 1’s in the ith column,

excluding location j.

• Rj = {i : hji = 1}. This is the set of column location of the 1’s in the jth row.

• Rj\i= {i′ : hji′ = 1, i 6= i}. The set of column locations of the 1’s in the jth row,

excluding location i.

The sum-product algorithm is as follows
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1. Initialize

q̄ij(0) = 1− pi =
1

(1 + exp(−2ri/σ2))
,

q̄ij(1) = pi =
1

(1 + exp(2ri/σ2))
. (2.31)

2. At each c-node, update r message

r̄ji(0) =
1

2
+

1

2

∏

i′∈Rj′\i

(1− 2q̄j′i(1)) ,

r̄ji(1) = 1− r̄ji(0). (2.32)

3. Update q̄ij(0) and q̄ij(1)

q̄ij(0) = kij(1− pi)
∏

j′∈Ci\j

(r̄j′i(0)),

q̄ij(1) = kij(pi)
∏

j′∈Ci\j

(r̄j′i(1)). (2.33)

4. Calculate the APPs

Qi(0) = kij(1− pi)
∏
j∈Ci

r̄ji(0),

Qi(1) = kij(pi)
∏
j∈Ci

r̄ji(1). (2.34)

5. Make hard-decisions

b̂i =

{
1 if Qi(1) ≥ 0

0 otherwise.

(2.35)
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6. Repeat from step 2 until either ĉHT = 0 or maximum number of iterations have been

reached.

Since bHT = 0 for a valid codeword, error detection comes for free in LDPC codes. If

the Tanner graph contains no cycles, then Qi converges to the true APP as the number of

iterations reaches infinity.

2.2.3 Constructing LDPC Codes

LDPC codes can be broadly classified as either regular or irregular. An LDPC code

is regular if the rows and columns of H have uniform weight, i.e. all rows have the same

number of ones and all columns have the same number of ones. An LDPC code is irregular if

the rows or columns have non-uniform weight. The degree of a node is the number of edges

emanating from that node. The degree distribution pair (λ, ρ) for a LDPC code is defined

as

λ(x) =
dv∑
i=1

λix
i,

ρ(x) =
dc∑

i=1

ρix
i. (2.36)

λi (ρi) represent the fraction of edges emanating from variable (check) nodes of degree i. dc

is simply the row weight for regular codes and the maximum row weight for irregular codes.

Similarly, dv is the column weight for regular codes and the maximum column weight for

irregular codes.

The original LDPC codes by Gallager and MacKay were regular codes. MacKay and

Neal [12] described methods for constructing (almost) regular sparse H matrices. The idea

is to randomly generate a M × N matrix H with weight dv columns and weight dc rows,

subject to some constraints. In their construction 1A, the overlap (i.e. an entry of 1 at same

row location) between any two columns is no greater than 1, which ensures that there are

no length 4 cycles. In construction 2A, M/2 columns have dv = 2, with no overlap between

any pair of columns. Remaining columns have dv = 3. As with 1A, the overlap between any

two columns is no greater than 1. Construction 1B and 2B are obtained by deleting select
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columns from 1A and 2A. The resulting H matrix might have a reduced rank which results

in a higher rate code. Although regular codes perform well, they are still about 1 dB from

capacity. Performance improvements are possible using irregular LDPC codes.

Variable and check nodes have conflicting requirements. Variable nodes benefit from

having a large degree. High degree variable nodes converge to the correct value quickly.

This increases the quality of information passed to the check nodes, which in turn helps

the lower degree variable nodes to converge. Conversely, LDPC codes perform better with

check nodes having low degrees. This is because check nodes form their messages based on

information from the v-nodes, which in turn depends upon the noisy channel output. Hence

as the number of v-nodes connected to a c-node increases, the reliability of the message it

produces could decrease. However due to the bipartite nature of the graph, whenever the

v-node degree increases, the c-node degree also increases. Irregular LDPC codes introduced

by Luby et.al. [54] help balance these conflicting requirements. In [54], the check node

degree is kept as uniform as possible while the variable node degree is non-uniform. As an

example, [54] defines an irregular code known as Code 14 which has dc = 14 and variable

nodes with degrees 5, 6, 21 and 23.

Designing a good LDPC code requires the following questions to be answered

• Given an irregular Tanner graph with a maximum dv and dc, what is the best degree

distribution?

• How many of the v-nodes should be degree dv, dv−1, dv−2, ... nodes?

• How many of the c-nodes should be degree dc, dc−1, ... nodes

These questions are answered using density evolution [55], which is the process of tracking the

evolution of the message distribution during belief propagation. For any LDPC code, there

is a worst case channel parameter called the threshold such that the message distribution

during belief propagation evolves in such a way that the probability of error converges to

zero as the number of iterations tends to infinity. Density evolution is used to find the degree

distribution pair (λ, ρ) that maximizes this threshold. Using density evolution, Richardson

et. al. have identified a rate 1/2 code with which is 0.06 dB away from Shannon capacity.
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Density evolution has been used to design a rate 1/2 code which is 0.0045 dB away from

capacity in [13].

2.2.4 Encoding LDPC Codes

A linear block code is encoded by multiplying the message vector with the generator

matrix G. A common method for finding G from H is to make the code systematic by

adding rows and exchanging columns to get the H matrix in the form H = [PT I] which

gives G = [I P]. However, the result of the row reduction is a non-sparse P matrix. The

multiplication c = [u uP] is therefore very complex. This is especially problematic since we

are interested in large code lengths (> 105).

Richardson et. al. [56] show that even for large n, the encoding complexity can be a

(almost) linear function of n. Using only row and column permutations, H is converted to an

approximately lower triangular matrix. Since only permutations are used, H is still sparse.

The resulting encoding complexity is almost linear as a function of n.

A more elegant code construction termed extended-irregular repeat accumulate code (Ex-

IRA) was proposed by Yang et.al. in [57]. The parity check matrix is given by

H = [H1 H2]. (2.37)

H1 is sparse and H2 is given by

H2 =




1

1 1

1 1

1 ... 1

1 1




. (2.38)

H−T
2 =




1 1 1 ... 1

1 1 ... 1

1 ... 1

... 1

... 1




. (2.39)
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Figure 2.7: Encoder for the Ex-IRA type code.

Note that H2 has M − 1 degree 2 variable nodes. This stems from the fact that the optimal

v-node degree distribution (for r > 1/2) usually implies that the number of degree 2 variable

nodes be greater than M − 1. The generator matrix for a systematic code is given by

G = [I HT
1 H−T

2 ]. (2.40)

H−T
2 can be implemented with a differential encoder. The encoder structure hence simply

involves multiplication by a sparse matrix followed by differential encoding as shown in Fig.

2.7.

Due to the relative ease with which these codes can be encoded, they find application

is popular standards like DVB-S2 and WiMAX. The DVB-S2 standard specifies two block-

lengths for the LDPC code: normal (n =64800) and short (n =16200). 11 different code

rates are specified with the normal blocklengths and 10 code rates are specified for the short

blocklengths. The WiMAX LDPC code uses blocklengths ranging from 576 bits to 2304 bits,

in increments of 96 bits. The code rates are 1/2, 2/3 (A and B), 3/4 (A and B) and 5/6. We

present select error rate curves for the LDPC codes used in the these standards. Interested

readers are referred to [58] and [48] for details on the DVB-S2 and WiMAX LDPC codes.

2.3 Turbo Codes

Turbo codes (parallel concatenated convolutional codes) were introduced by Berrou et.

al in [11]. The discovery of turbo codes was remarkable for several reasons: 1) Turbo codes

turned previous existing code design principles on their head. Instead of designing very

complex codes, with elaborate decoding algorithms, turbo codes obtain performances close to
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Figure 2.8: Frame error rate performance of the n = 64800 (normal frame) DVB-S2 LDPC
code. The decoder used 100 iterations of the sum-product algorithm in the log-domain.

the Shannon limit using relatively simply constituent codes. For instance, the original turbo

code is a rate 1/2 code, obtained by concatenating two constraint length 5 RSC codes using

an interleaver of length 65536 bits and performs within 0.7 dB of the Shannon limit. 2) Turbo

codes introduced a very effective, sub-optimal approach to decoding i.e. the turbo principle,

a process which involves iterative exchange of extrinsic information between different receiver

modules. The turbo principle has now become a standard feature in modern communication

systems. 3) Turbo codes triggered a renewed interest in the field of error correcting codes,

thereby resulting in significant advances in code design which allow signaling close to the

information theoretic limits, at reduced complexity.

2.3.1 Encoding Turbo Codes

The turbo encoder consists of two constituent recursive systematic convolutional (RSC)

codes connected using an interleaver and is shown in Fig. 2.12. The information bits are

fed to the first RSC encoder, which generates the corresponding check bits. The interleaver
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Figure 2.10: Bit error rate performance of the n = 2304 WiMAX LDPC code. The decoder
used 100 iterations of the sum-product algorithm in the log-domain.
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Figure 2.11: Frame error rate performance of the n = 2304 WiMAX LDPC code. The
decoder used 100 iterations of the sum-product algorithm in the log-domain.

scrambles the ordering of bits at the input of the second encoder. The encoder output

typically consists of the systematic and check bits from the first encoder and the check bits

from the second encoder.

2.3.2 Decoding Turbo Codes

The turbo decoder is shown in Fig. 2.13. The decoding starts with the upper MAP

decoder producing estimates of the data bits, based on channel observations. These estimates

are passed to the lower MAP decoder, which produces its own estimates. The lower MAP

decoder then passes extrinsic information to the upper decoder. This process is repeated

until a certain number of iterations are completed.

2.3.3 Turbo codes as a type of LDPC codes

Due to the popularity of both turbo and LDPC codes, attempts have been made to

understand the relationship between the two. MacKay [59] postulated that turbo codes

were in fact a class of LDPC codes. The main benefit from this undertaking is that the
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signal processing and hardware design advances made for turbo codes can now be utilized

for LDPC codes and vice versa, i.e. turbo codes can be decoded with a LDPC decoder, which

is highly parallel. The first step in understanding turbo codes as instances of LDPC codes

would be to identify their generator and parity check matrices. Recently Jiang et. al have

come up with a generalized description of serially concatenated turbo codes using generator

and parity check matrices [60]. More recently Nimbalker et. al. [61] have developed a “turbo-

like” decoding algorithm for LDPC codes whose H matrices display partial dual-diagonal

structures similar to (2.38).

2.4 Chapter Summary

The field of error correction coding has seen significant advances in the last decade. The

goal of this chapter was to review some binary codes that are widely used in commercial

communication systems.

The relative ease with which convolutional codes can be encoded and the availability

of computationally feasible, optimal decoding algorithms have led to the widespread use of

convolutional codes in various communication systems. For instance, the Voyager 2 mission

employed a (2, 1, 6) Odenwalder convolutional code [62] with generators [133, 171]. The

Galileo mission used a (4, 1, 14) convolutional code with generators [255, 233] [49]. GSM

uses a (2, 1, 5) NRC code with generators [31, 33]. IEEE 802.16 uplink specifies mandatory

coding using (2, 1, 6) convolutional code with generators [171, 133].

While convolutional codes are relatively simple to encoder and decode, stand alone con-

volutional codes do not perform close to the Shannon limit. In practice, convolutional codes

are often concatenated with an outer code such as the Reed Solomon code to get performance

close to the Shannon limit. Well designed turbo and LDPC codes allow one to signal still

closer to the capacity limits.

High data rate and low cost requirements make it necessary to design codes with low

complexity encoding/ decoding, without incurring a significant loss in performance. As seen

earlier, the encoding in LDPC codes can be simplified using Ex-IRA type codes. Simplifi-

cations are also possible in the sum-product algorithm [63] for LDPC codes or the BCJR
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algorithm for turbo codes [64], [65]. Recently, a class of codes known as irregular repeat ac-

cumulate [34] codes have generated considerable interest due to their linear time encoding/

decoding complexity. IRA codes have been shown to have impressive performance for MIMO

systems [66], noncoherent orthogonal FSK [67] and continuous phase modulation [35].
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Chapter 3

Modulation for Bandwidth Limited

Systems

The ever increasing demand for bandwidth spawned by a wide variety of next generation

wireless services places considerable strains on the available radio spectrum. Problems arising

from spectral congestion (eg. adjacent channel interference) can be alleviated by using

bandwidth efficient modulation techniques such as continuous phase modulation (CPM) [15].

With CPM, the signal phase is constrained to vary continuously from one symbol interval

to the next. This phase continuity results in some very desirable spectral properties such as

small side lobes, which in turn helps reduce the out-of-band interference. Another benefit

of CPM is its constant signal envelope which makes it suitable for systems requiring power

efficient amplifiers. The above mentioned advantages and the fact that CPM signals can be

demodulated quite reliably using low-complexity detectors have resulted in the modulation’s

widespread use, as evidenced by the existence of 2 billion GSM phones 1 and 1 billion

Bluetooth devices 2.

The goal of this chapter is to provide an overview of CPM. The chapter begins with a

review of BPSK and QPSK. Next, a variation of QPSK with less abrupt phase variations,

known as offset QPSK (OQPSK) is described. This is followed by a description of the

popular minimum shift keying (MSK) which is both a variant of OQPSK and a specific type

1http://news.soft32.com/two-billion-gsm-customers-are-around-the-world 1605.html
2http://www.therawfeed.com/2006/11/big-number-one-billion-bluetooth.html
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Figure 3.1: Binary phase shift keying (BPSK) modulation. x(t) is the BPSK waveform
obtained by modulating the carrier cos(2πfct) with the symbol sequence a.

of CPM. Rimoldi’s well known and widely used tilted phase representation of CPM [68] is

reviewed. The chapter concludes with a discussion on the spectral characteristics of CPM

signals.

3.1 Binary and Quadrature Phase Shift Keying

Consider a binary source that generates a sequence of symbols a ∈ {±1} every Tb seconds.

The bandpass BPSK signal in the interval kTb ≤ t ≤ (k + 1)Tb for k = 0, 1, 2, ... can be

represented as

x(t) =
√

2Px cos (2πfct + ϕ(t)) , (3.1)

where ϕ(t) = 0 or 180 (degrees) corresponding to an input symbol of +1 or −1 respectively,

Px is the symbol power and fc is the carrier frequency. Fig. 3.1 shows the carrier cos(2πfct)

by the modulated by an input sequence a and the resulting BPSK waveform x(t). The signal

phase undergoes 180 degree shifts each time the input symbol changes.
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While BPSK is a simple and reliable modulation format, its main drawback is that it is not

especially bandwidth efficient. The poor bandwidth efficiency of BPSK led to the search for

modulation schemes that exhibit better spectral efficiency, without incurring a degradation

in BER. These goals can be achieved using quadrature phase shift keying (QPSK). In QPSK,

a pair of antipodal (i.e. BPSK) signals are transmitted using two orthogonal carriers. Due

to their orthogonality, the bits modulating the two carriers can be recovered separately at

the receiver. The BER is hence the same as in BPSK, but the spectral efficiency is now 2

bps/Hz instead of 1 bps/Hz for BPSK.

In QPSK, the input binary sequence consisting of symbols ak ∈ {±1} for k = 0, 1, ... with

bit rate 1/Tb is separated into two streams aI and aQ, corresponding to the even and odd

numbered bits in the input bit sequence respectively. aI and aQ modulate the in-phase and

quadrature components of the carrier such that the QPSK signal during kT ≤ t ≤ (k + 1)T

can be represented as [69]

x(t) =
1√
2
aI(t) cos

(
2πfct +

π

4

)
+

1√
2
aQ(t) sin

(
2πfct +

π

4

)
. (3.2)

where T = 2Tb is the symbol period. Fig. 3.2 shows the QPSK signal x(t) generated by

modulating the I and Q carriers with aI and aQ respectively. Because the timing in the

in-phase and quadrature bit streams are aligned, a phase change can occur at intervals of

2Tb. This phase shift can be 0 if both aI and aQ remain unchanged, ±90 if only one of them

changes and 180 if both aI and aQ change. It is also possible to rewrite (3.2) as

x(t) =
√

2Px cos (2πfct + ϕ(t)) , (3.3)

where ϕ(t) = 0,±90 or 180.

A variation of QPSK known as offset QPSK (OQPSK) can be obtained by a shift or

offset in the relative alignment of the in-phase and quadrature bit streams by a factor of Tb.

Due to the offset, aI and aQ cannot change simultaneously. In non-offset QPSK a symbol

transition across the QPSK constellation (shown in Fig. 3.3 using dotted arrows) is possible

every T seconds and can be from any constellation point to any other constellation point

(including the point itself). On the other hand, with OQPSK, a transition is possible every

Tb seconds and must be from each point to either a nearest neighbor or itself (shown in Fig.



R. Iyer Seshadri Chapter 3. Modulation for Bandwidth Limited Systems 43

0
 1
 2
 3
 4
 5
 6
 7
 8

-1

0

1


t/T
b


a


0
 1
 2
 3
 4
 5
 6
 7
 8

-1

0

1


t/T
b


a
 I


0
 1
 2
 3
 4
 5
 6
 7
 8

-1

0

1


t/T
b


a
 Q



0
 1
 2
 3
 4
 5
 6
 7
 8


-1


0


1


t/T
b


x
(

t
)


Figure 3.2: Quadrature phase shift keying (QPSK) modulation. x(t) is the QPSK waveform
obtained by modulating cos

(
2πfct + π

4

)
and sin

(
2πfct + π

4

)
with aI and aQ respectively. aI

and aQ are time-aligned.

3.3 using a dashed arrow). This eliminates any 180o phase shifts in the OQPSK waveform

as seen in Fig. 3.4.

3.2 Minimum Shift Keying

The MSK signal during kT ≤ t ≤ (k + 1)T can be written as [69]

x(t) = aI(t) cos

(
πt

2Tb

)
cos (2πfct) + aQ(t) sin

(
πt

2Tb

)
sin (2πfct) . (3.4)

aI and aQ are the even and odd bit streams which have a relative offset of Tb. MSK can hence

be viewed as OQPSK with sinusoidal pulse shaping. Fig. 3.5 shows the MSK waveform from

(3.4). In OQPSK and QPSK, aI and aQ directly multiply the carriers which results in abrupt

phase changes. However, in MSK the even and odd bit streams undergo pulse shaping due

to which there are no abrupt changes in the signal phase and amplitude. The MSK signal



R. Iyer Seshadri Chapter 3. Modulation for Bandwidth Limited Systems 44

I


Q


(1, -1)


(1 ,1)


(-1 -1)


(-1 ,1)
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transitions from (1, 1) for non-offset QPSK which can occur every T seconds. Dashed arrow
denotes possible transition from (1, 1) for OQPSK which can occur every Tb seconds.
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Figure 3.4: OQPSK modulation. x(t) is the QPSK waveform obtained by modulating
cos

(
2πfct + π

4

)
and sin

(
2πfct + π

4

)
with aI and aQ respectively. aI and aQ have an off-

set of Tb.
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can also be written as [69]

x(t) =
√

2Px cos

(
2πfct + bk(t)

πt

2Tb

+ δk

)
, (3.5)

where bk = −aIaQ and δk = 0 or π for aI = 1 or −1 respectively. It is quite clear from (3.5)

that the MSK signal is also a binary frequency shift keying (FSK) signal with tones

f1 = fc +
1

4Tb

,

f2 = fc − 1

4Tb

. (3.6)

The separation between the two frequencies if ∆f = 1
2Tb

, which is also the minimum frequency

spacing required for two signals to be coherently orthogonal. The continuous phase FSK

(CPFSK) signal from (3.5) is hence known as minimum shift keying. MSK can be coherently

detected using quadrature matched filters which base their bit decisions after observing the

signal over 2Tb seconds. For such receivers, the bit error rate of MSK is the same as BPSK,

QPSK and OQPSK. Alternatively, MSK can also be demodulated as a coherent orthogonal

FSK signal with bit decisions made every Tb seconds, in which case the bit error rate is 3

dB worse than BPSK.

Alternatively, the MSK signal can also be represented as [70]

x(t) =
√

2Px cos

(
2πfct +

πak

2Tb

t + δk

)
, (3.7)

where δk is a variable that is required for phase continuity at the bit transitions and in given

by

δk = δk−1 + (ak−1 − ak)
πk

2
. (3.8)

The baseband MSK phase is hence

ϕ(t, a) = δk +
πak

2Tb

t, (3.9)

The time varying MSK phase ϕ(t, a) for all possible input symbols plotted as a function of

time is the phase trajectory and is shown in Fig. 3.6. The MSK phase increases or decreases

linearly by a factor of 90 degrees every bit interval depending upon the input bit ak during
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Figure 3.5: Minimum shift keying modulation. The MSK waveform x(t) is generated by mod-
ulating the I and Q carriers with the pulse shaped even and odd data streams respectively.
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Figure 3.7: Time variant phase trellis for MSK.

that interval. The phase trajectory expressed as modulo 2π gives the MSK trellis shown in

Fig. 3.7.

Fig. 3.8 shows the power spectral densities for BPSK, QPSK and MSK. MSK exhibits

significantly smaller side-lobes relative to QPSK and BPSK. The small side lobes are a

direct consequence of avoiding abrupt phase transitions. MSK is simply a particular example

of a wider class of modulation which exhibit phase continuity known as continuous phase

modulation (CPM).

3.3 Continuous Phase Modulation

The MSK phase trajectory in Fig. 3.6 can also be obtained by expressing the signal

phase over the interval kT ≤ t ≤ (k + 1)T as [14]

ϕ(t, a) =
π

2

k−1∑
i=0

ai + πak

(
t− kTb

Tb

)
. (3.10)
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Figure 3.8: Power spectral densities in dB of BPSK, QPSK and MSK.

This can also be written as

ϕ(t, a) =
π

2

k−1∑
i=0

ai + πakq(t− kTb)

=
π

2

k−1∑
i=0

ai + πak

∫ t

0

g(τ − kTb)dτ

= π

k−1∑
i=0

ai

∫ t

0

g(τ − iTb)dτ + πak

∫ t

0

g(τ − kTb)dτ, (3.11)

where

q(t) =

∫ t

0

g(τ)dτ. (3.12)

g(t) and q(t) are shown in Fig. 3.9. The CPFSK phase from (3.11) can also be written as

ϕ(t, a) = 2πh

k∑
i=0

aiq(t− iTb), (3.13)

where h is the modulation index. When expressed as (3.13), the MSK signal becomes a

special case of continuous phase modulation (CPM), i.e. MSK is binary CPM with h = 1/2

and rectangular pulse shaping (Fig. 3.9).
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Figure 3.9: Rectangular pulse shape g(t) and its integral q(t).

In general, the bandpass M -ary CPM signal during kT ≤ t ≤ (k +1)T can be written as

x(t, a) =
√

2Es/T cos (2πfct + ϕ(t, a)) , (3.14)

where T is the symbol period, Es is the symbol energy and a is the symbol sequence. De-

pending upon the choice of M , h and the pulse shape g, a large variety of CPM signals can be

generated. Besides the rectangular (REC) pulse shape shown in Fig. 3.9, the raised cosine

(RC) Fig. 3.10 and Gaussian (GFSK) pulse shapes Fig. 3.11 are also widely used. If g(t) = 0

for t > T , the CPM signal is called full response CPM. If g(t) 6= 0 for t > T , the CPM signal

is called partial response CPM. These pulse shapes are often denoted using a prefix L, eg.

LREC, LRC, where L denotes the number of symbol intervals over which the pulse shape

g(t) is non zero. Hence, L = 1 for full response CPM and L > 1 for partial response CPM.

The phase continuity constraint results in the CPM signal having memory. Partial response

signaling introduces additional memory (ISI), which in turn results in smoother phase tran-

sitions from one symbol interval to another. As shown in [15], partial response signaling

results in a more compact power spectrum. The phase from (3.13) can be generalized to

partial response CPM by as follows [14]

ϕ(t, a) = 2πh

∞∑
i=0

aiq(t− iT ). (3.15)

While the symbol vector a has indices that range from 0 to Na − 1, the limits in the

summation of (3.15) are infinite to capture the effect of possible preceding and subsequent
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Figure 3.10: Raised cosine pulse shape g(t) and its integral q(t).

-2
 -1.5
 -1
 -0.5
 0
 0.5
 1
 1.5
 2


t/T


g(
t)




-2
 -1.5
 -1
 -0.5
 0
 0.5
 1
 1.5
 2

0


0.05


0.1


0.15


0.2


0.25


0.3


0.35


0.4


0.45


0.5


t/T


q(
t)




Figure 3.11: Gaussian pulse shape g(t) and its integral q(t).

coded frames. If there is a sufficient guard time between subsequent frames, as in a packet

radio system, then the limits of this summation can be narrowed to 0 ≤ i ≤ Na − 1. The

time varying CPM signal phase can now be written as

ϕ(t, a) = πh

k−L∑
i=0

ai + 2πh

k∑

i=k−L+1

aiq(t− iT )

= θk + 2πh

k∑

i=k−L+1

ai. (3.16)

As with MSK, CPM signals can be represented using a trellis. The trellis representation

assumes that the modulation index in a rational number of the form h = mh/ph, where mh

and ph are relatively prime integers. The trellis for full response CPM has the following ph

states [14]

Θ =

{
0,

πmh

ph

, ...,
(ph − 1)πmh

ph

}
, (3.17)
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when mh is even and the following 2ph states

Θ =

{
0,

πmh

ph

, ...,
(2ph − 1)πmh

ph

}
, (3.18)

when mh is odd. Since the partial response CPM introduces additional memory, the number

of states in the trellis would also be higher to account for this ISI. The number of states for

partial response CPM is [14]

Ns =

{
phM

L−1 even mh

2phM
L−1 odd mh.

(3.19)

3.4 Tilted Phase Representation of CPM

Observe that the MSK phase trellis in Fig. 3.7 is time variant, since the trellis states for

the even symbol intervals are different from those for the odd symbol intervals. In general,

the CPM phase represented by (3.16) yields a time variant trellis. However, if one measures

the phase relative to the lowest phase in the trajectory (Fig. 3.6), then the resulting MSK

phase trellis is time invariant as shown in Fig. 3.12. The time invariant MSK trellis was

introduced in [71]. Rimoldi generalized the time invariant representation for arbitrary CPM

signals in [68] and described the resulting phase trellis (trajectory) as a tilted phase trellis

(trajectory).

The CPM tilted phase is given by [68]

ψ(t, a) = ϕ(t, a) + πh(M − 1)t/T. (3.20)

From [68], the tilted phase (taken modulo 2π) can be written as

ψ(t, a) = [2πhφk + 4πh

L−1∑
i=0

αk−iq(t− (k − i)T ) + W (t− kT )] mod 2π, (3.21)

where

W (t− kT ) =
πh(M − 1)(t− kT )

T
− 2πh(M − 1)

L−1∑
i=0

q(t− (k − i)T )

+(L− 1)(M − 1)πh, (3.22)
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Figure 3.12: Time invariant (tilted) phase trellis for MSK.

and a ∈ {0, 1, ..., M − 1}. The accumulated phase is

φk =
k−L∑
i=0

ai mod ph. (3.23)

An important consequence of the CPM tilted phase is that the modulation can be decom-

posed into a continuous phase encoder (CPE) followed by a memoryless modulator (MM).

The MM generates the consequently the CPM signal waveform. From (3.21), MM output

can be completely described be specifying [ak, ..., ak−L+1, φk] which is in fact the MM input.

The CPE’s task is to update the MM input at every interval such that

φk+1 = [φk + ak−L+1] mod ph. (3.24)

CPM decomposed into a CPE followed by a MM is shown in Fig. 3.13. Observe that the

CPE is a linear (over modulo ph) recursive convolutional encoder.
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Figure 3.13: CPM as a continuous phase encoder (CPE) followed by a memoryless modulator
(MM).

3.5 Bandwidth of CPM Signals

The power spectral density (PSD) Φx(f) of the CPM signal is given in [14]. Using the

PSD, the 99% power bandwidth B99 is found as

∫ B99/2

−B99/2

Φx(f)df = 0.99

∫ ∞

−∞
Φx(f)df. (3.25)

The 99% power bandwidth is a function of M , h, pulse shape and the symbol rate Rs = 1/T .

The bandwidth efficiency is often quantified by the two-sided normalized bandwidth, defined

to be B = B99Tb Hz/bps, where Tb = T/ log2 M . Fig. 3.14 shows the fractional out-of-band

power i.e. the fraction of the signal power lying outside a certain frequency, for MSK, QPSK

and BPSK. For MSK, B = 1.18 as against B = 8.2 for QPSK and B = 17 for BPSK, which

makes MSK more suitable for bandwidth constrained applications. Fig. 3.15 shows the

fractional out-of-band power for binary full response CPM with rectangular pulse shaping

(CPFSK) at different values of h. Observe that B decreases with decreasing h. Fig. 3.16

shows the CPFSK 99% power bandwidth as a function of h, at different M . Observe that

for a particular h, the bandwidth increases with the alphabet size M

The bandwidth efficiency of CPM can be further improved by partial response signaling,

i.e. increasing the width of the pulse shape. Fig. 3.17 shows the fractional out-of-band

power for quaternary CPM with LRC pulse shaping, where L = 1, 2 and 4. As L increases,

B decreases, thus making the system more spectrally efficient.
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Figure 3.14: Fractional out-of-band powers in dB for BPSK, QPSK and MSK versus nor-
malized frequency fTb.
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Figure 3.15: Fractional out-of-band power for binary CPFSK at different values of h.



R. Iyer Seshadri Chapter 3. Modulation for Bandwidth Limited Systems 55

0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

0


0.5


1


1.5


2


2.5


3


3.5


4


4.5


modulation index h


99
 %

 P
ow

er
 b

an
dw

id
th

 B
 (

H
z/

bp
s)


 M =16 


M =8 


M =4 


M =2 


Figure 3.16: Normalized 99% power bandwidth as a function of h, for different CPFSK
alphabet sizes.
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Figure 3.17: Fractional out-of-band power for quaternary CPM with RC pulse shaping at
different values of L.
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Figure 3.18: Fractional out-of-band power for uncoded MSK and coded MSK with r = 1/2.

3.6 Bandwidth of Coded CPM Signals

As is well known, channel coding often increases the energy efficiency at the expense of

bandwidth efficiency. As an example, an MSK signal with a rate 1/2 code i.e r = 1/2 has a

B = 2.36 as against B = 1.18 for the uncoded signal. This is shown in Fig. 3.18.

In bandwidth limited systems, coding must be done without bandwidth expansion i.e.

B must remain unchanged. However, with a rate r code, Bcoded = B/r. Suppose we require

B = 1.18 while using a rate 1/2 code. Hence relative to uncoded MSK, we can either lower

h or increase L or both (M as well as the pulse shape can also be varied, but for ease of

exposition we assume M = 2 and REC pulses). This is illustrated in Fig. 3.19, which

shows the fractional out-of-band power for uncoded MSK, rate 1/2 coded CPM with M = 2,

h = 0.125, 1REC and rate 1/2 coded CPM with M = 2, h = 0.5 and 5REC. Lowering h

results in the signal begin nonorthogonal, while increasing L increases the ISI.



R. Iyer Seshadri Chapter 3. Modulation for Bandwidth Limited Systems 57

0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5


-35


-30


-25


-20


-15


-10


-5


0


Normalized frequency


F

r
a


c
t

i
o


n
a

l
 
o


u
t

-
o


f
-
b

a
n


d
 

p
o


w

e
r


 
(
d

B


)


Uncoded MSK


M =2, h =1/8,1 REC, r =1/2


M =2, h =1/2, 5 REC, r =1/2


Figure 3.19: Fractional out-of-band power for uncoded MSK, coded CPM with r = 1/2. The
uncoded and coded signals have the same 99% bandwidth.

3.7 Chapter Summary

In this chapter, a class of non-linear, constant envelope modulation known as continuous

phase modulation was discussed. The memory in the CPM signal causes phase continu-

ity, which in turn yields a well behaved power spectrum. Due the memory, CPM can be

represented as a finite state machine. Hence the optimum detector for CPM is one that in

addition to having perfect estimates of the channel state information, including the reference

signal phase, performs a sequence based detection on the trellis representing the CPM signal.

The optimal detector requires that the modulation index be rational, and its value greatly

impacts the complexity. Sequence detection can be performed using either the Viterbi al-

gorithm or the BCJR algorithm. Rimoldi’s tilted phase representation of CPM allows for a

time invariant trellis, which considerably simplifies sequential detection. Detection of CPM

signals is discussed in detail in Chapter 4.

The spectral characteristics of the CPM signal were also investigated. It is seen that to

keep the spectral efficiency unchanged for a coded system, the modulation parameters need
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to be scaled (by decreasing the spacing between the tones, increasing the signal memory or

changing the alphabet size). The nonlinear nature of CPM makes it difficult to gauge the

effects of this scaling on the coded system performance. Optimizing the code and modulation

parameters for CPM under spectral efficiency constraints is a challenging problem and is

discussed in detail in Chapter 6.
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Chapter 4

Detector Designs For CPM

When a CPM waveform (Chapter 3) is transmitted through a channel, it encounters noise,

fading, interference and a random phase shift in the transmitted carrier [14]. The detector

on receiving this degraded signal produces estimates of the transmitted symbols after some

signal processing. Depending on how the detector copes with the carrier phase shift, detectors

for CPM can be broadly categorized as 1) Coherent, 2) Differential , or 3) Noncoherent. The

detector’s output can either be hard or soft estimates of the transmitted symbols. Detector

design for CPM is an extensively investigated topic and there exists a considerably body of

work devoted to the subject [15, 20, 72, 73, 74, 21, 27, 75, 76, 77, 78, 30, 29, 79, 80].

The goal in this chapter is to describe the structure and investigate the performance

of the detectors most relevant to our work. The chapter begins by introducing our system

model. Next, the popular sequence based coherent detector [15] is described. In particu-

lar, we focus on a soft-output version of this detector (SO-Coherent) [29]. The error rate

performance of an uncoded system using coherent detection is studied for select modulation

parameters. This is followed by a description of the differential phase detector (DPD) [20].

Building upon the DPD and Fonseka’s soft-decision differential phase detector with Viterbi

decoding (SDDPD-VD) [81], we introduce a novel soft-output differential detector for CPM

which we term the soft-output, soft-decision differential phase detector (SO-SDDPD). Our

predilection for soft-output detectors is in part because it is a necessary requirement in

modern communication systems employing powerful channel codes and sophisticated signal

processing. Another important reason is that our capacity calculations require soft-outputs
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Figure 4.1: Transmitter block diagram.

in the form of log-likelihood ratios (LLRs) from the detector (Chapter 5). We compare the

error rate performance of SO-SDDPD with the soft-output coherent detector and conclude

the chapter with a discussion on detector complexity.

4.1 System Model

4.1.1 Transmitter

The transmitter model is shown in Fig. 4.1. A vector u = [u0, u1, ..., uNu−1] ∈ {0, 1}Nu

of information bits is passed through a linear binary encoder to produce the codeword b′ ∈
{0, 1}Nb . The code rate is r = Nu/Nb. The row vector b′ is then interleaved by multiplying

by a permutation matrix Π to produce the bit-interleaved codeword b = b′Π. The vector

b is arranged in a log2 M ×Na matrix B with (i, k) element Bi,k = bk log2 M+i. The number

of M -ary symbols to be transmitted is Na = dNb/ log2 Me. Each column of B is mapped to

one of M symbols to produce the vector a = [a0, a1, ..., aNa−1] which represents the sequence

of coded symbols to be transmitted. The symbol sequence is used to create the signal phase

ϕ(t, a) 1(details in Chapter 3). The transmitter generates the bandpass signal

x(t, a) =
√

2Px cos (2πfct + ϕ(t, a)) , (4.1)

which is then transmitted over the radio frequency (RF) channel with power Px and center

frequency fc.

4.1.2 Channel

The modulated signal x(t, a) is transmitted through a frequency nonselective, Rician

fading channel. The effects of the channel are most conveniently described in terms of the

1For a tilted phase representation, the CPM phase is ψ(t,a) instead of ϕ(t,a) .
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complex envelope of the signal. The complex envelope of the transmitted signal is

x̃(t, a) =
√

2Px exp (jϕ(t, a)) . (4.2)

This signal is multiplied by a complex flat-fading process c̃(t) and added to white Gaussian

noise ñw(t), producing the complex envelope of the signal at the input to the receiver

r̃(t, a) = c̃(t)x̃(t, a) + ñw(t), (4.3)

where ñw(t) is a complex white Gaussian process with power spectral density N0. The fading

process c̃(t) can be written as

c̃(t) =
√

Ps +
√

Pdξ(t), (4.4)

where Pd is the power gain of the diffused component, Ps is the power gain of the specular

component, and ξ(t) is a circularly symmetric unit power complex Gaussian process. Ps and

Pd are normalized such that Ps + Pd = 1. The Rician K-factor is given by K = Ps/Pd.

When K = 0, the channel is said to be Rayleigh and when K = ∞, the channel is said to

be AWGN. The process ξ(t) is usually characterized by an autocorrelation function, which,

as an example could be [82]

Rξ(τ) = J0(2πfdτ), (4.5)

where J0 is the zero-order Bessel function of the first kind and fd is the maximum Doppler

frequency shift.

4.1.3 Receiver

The receiver block diagram is shown in Fig. 4.2. The detector consists of two basic blocks

1) a front-end, which translates the bandpass signal to baseband and generates sufficient

statistics for the transmitted symbols, 2) a back-end which forms decisions on the transmitted

code bits, using the statistics provided by the front-end. The structure of the front-end

depends on the choice of the detector (e.g. coherent, noncoherent or differential). The

decisions produced by the back-end can either be hard (hard-decision detector) or soft (soft-

decision detector), which after deinterleaving are passed to the channel decoder. The decoder

produces estimates of the data bits.
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4.2 Coherent Detection of CPM

A coherent detector (Fig. 4.3) has accurate estimates of the carrier phase, which is ob-

tained using carrier recovery circuitry [14] at the detector front-end. The optimum coherent

detector performs sequence detection on a trellis describing the CPM modulation and its per-

formance (especially with ML sequence detection) is very well documented in the literature

[15].

4.2.1 Coherent Front-End

The coherent front-end consists of the carrier recovery circuit and a bank of complex

correlators.
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4.2.2 Soft-Output Coherent Detector

Trellis detection requires that the underlying modulation be represented as a finite state

machine. Using Rimioldi’s decomposition approach to CPM (Chapter 3), the state at time

instant t = kT is given by Sk = (ak−L+1, ..., ak−1, φk), where L is the width of the CPM pulse

shape g(t) and

φk =
k−L∑
i=0

ai mod ph, (4.6)

where h = mh/ph. Note that at any given time interval, there are phM
L−1 possible states,

with M branches emerging out of each state. Since the CPM signal is completely specified

by the continuous phase encoder’s output, the signal corresponding to the state transition

{Sk = s′} → {Sk+1 = s} is xs′→s(t, [ak−L+1, ..., ak−1, φk, ak]). The sufficient statistics required

by the soft-output coherent detector are provided by a bank of phM
L correlators (one for

each branch in the trellis), such that the output of the correlator corresponding to {Sk =

s′} → {Sk+1 = s} is

ρs′→s =

∫ (k+1)T

kT

r(t, a)x∗s′→s(t, [ak−L+1, ..., ak−1, φk, ak])dt. (4.7)

Soft-output coherent detection is performed by executing the BCJR algorithm on the

trellis and was first employed in a BICM-ID framework in [29, 83] (the authors use the term

serially concatenated CPM (SCCPM) with iterative decoding instead of BICM-ID). The

LLR can be decomposed using the BCJR algorithm as

zk = log
P [bk = 1|r(t, a)]

P [bk = 0|r(t, a)]

= log

∑
S(1) αk(s

′)γk+1(s
′, s)βk+1(s)∑

S(0) αk(s′)γk+1(s′, s)βk+1(s)
, (4.8)

Zi,k = log
P [Bi,k = 1|r(t, a)]

P [Bi,k = 0|r(t, a)]

= log

∑
S(1) αk(s

′)γk+1(s
′, s)βk+1(s)∑

S(0) αk(s′)γk+1(s′, s)βk+1(s)
, (4.9)

where S(1) is the set of state transitions {Sk = s′} → {Sk+1 = s} corresponding to Bi,k = +1,

S(0) is defined similarly for Bi,k = 0, and α, β and γ are the metrics in the BCJR algorithm.
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Because Chapter 2 already fully describes how to recursively calculate α and β, all that

remains to completely describe the demodulator is the calculation of γ. From [10], γk+1(s
′, s)

can be written as

γk+1(s
′, s) = P [Sk+1 = s|Sk = s′] P [r(t, a)|(Sk → Sk+1) = (s′ → s)] . (4.10)

For BICM, there is no feedback from the decoder and P [Sk+1 = s|Sk = s′] cancels out from

(4.9) under the assumption of equally likely symbols. The likelihood evaluates to

P [r(t, a)|(Sk → Sk+1) = (s′ → s)] = exp (<{ρs′→s}/N0) . (4.11)

The demodulator executes the BCJR algorithm producing LLR Zi,k for each bit i of

each symbol k. The LLRs are then placed into a row vector z such that zk log2 M+i = Zi,k.

The vector is then deinterleaved and the resulting sequence z′ fed to the channel decoder for

soft-decision decoding. The channel decoder uses z′ to form estimates of the data bits (û).

4.2.3 Bit Error Rates for Uncoded Systems with Coherent Detec-

tion

We present select simulation results to illustrate the performance of the SO-Coherent

detector. Fig. 4.4 shows BER curves for uncoded binary CPFSK at different values of h in

AWGN. Binary CPFSK with h = 1/2 is the popular MSK modulation. The error rate can

be lowered by increasing h, as seen in Fig. 4.4 2

We have seen in Chapter 3 that partial response signaling yields a more compact power

spectrum relative to full response signaling. This implies that for a particular 99% power

bandwidth B, partial response signaling would allow one to use a larger value of h, which,

in turn could yield a lower BER. This is illustrated in Fig. 4.5. Binary 3 RC with h = 4/5

has a 99% power bandwidth B ≈ 1.18 (which is the 99% power bandwidth for MSK) and

provides approximately a 2 dB improvement in energy efficiency over MSK. However, the

detector for partial response signaling is more computationally intensive since it requires a

2Strictly speaking, the relationship between the BER and h is not truly monotonic, for instance the
optimum modulation index for uncoded binary CPFSK is h = 0.715 [15]. But since the complexity of the
coherent detector is proportional to ph where h = mh/ph, this modulation index is unlikely to be used in
practical systems.
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Figure 4.4: BER for uncoded 2-CPFSK with different h and coherent detection in AWGN.

phM
L−1 = 20 state trellis instead of a 2 state trellis for MSK. 20 frame errors were logged

at every Eb/N0 to generate the BER curves shown in Fig. 4.4 and Fig. 4.5.

4.3 Differential Phase Detection of CPM

Since a coherent receiver requires accurate estimates of the carrier phase, it is sensitive to

phase estimation errors caused by phase-locked loops (PLL) used for carrier phase recovery.

Additionally, such carrier recovery circuits add to the complexity of the receiver.

A pragmatic alternative is to circumvent the above two problems by using differentially

coherent detectors. Differential detectors base their decisions on the phase differences calcu-

lated over multiple symbol intervals. The underlying assumption is that the random phase

rotation introduced by the channel remains constant during the interval over which the phase

difference is calculated. It therefore cancels out of the decision metric.

The principle of differential phase detection was applied to Gaussian Minimum Shift

Keying (GMSK) in [20]. GMSK is a class of CPM using Gaussian pulse shapes and h = 0.5.

Differential phase detection with decision feedback for GMSK was investigated in [72]. Korn
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Figure 4.5: BER for comparison between MSK and 3 RC CPM with h = 1/2 and coherent
detection in AWGN.

derives expressions for the error probability of GMSK using differential phase detection, with

and without decision feedback in [73]. The detectors without feedback do not account for

the inter-symbol interference (ISI) caused by partial response signaling. Instead of cancelling

the ISI using decision feedback, it can be exploited for performance gains using trellis-based

detection. Differential phase detection with ML sequence detection was investigated in [74],

[75].

In this section, we investigate different differential phase detectors. Papers on differential

phase detectors typically focus on GMSK. We have developed our system model in a more

general fashion that is agnostic to the choice of the pulse shaping function. First, the low-

complexity differential phase detector (DPD) from [73] is described. Next, ML sequence

detection using Fonseka’s soft-decision differential phase detection (SDDPD) [81] and our

proposed innovation the soft-output SDDPD (SO-SDDPD) are described. Bit error rate

simulations are used to compare the DPD and the SO-SDDPD. The SO-SDDPD is applied

to Bluetooth [16] detection and results are presented demonstrating significant improvements

in the error rate and throughput over conventional Bluetooth receivers.
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Figure 4.6: Receiver with hard-decision differential phase detection.

4.3.1 Differential Front-End

As shown in Fig. 4.6, the received signal r(t, a), whose complex envelope is given by (4.3),

is passed through a bandpass receive filter that removes the out-of-band noise. It is assumed

that the equivalent noise bandwidth of the filter, Bn, is greater than the signal’s 99% power

bandwidth, and that the passband of the filter is relatively flat. Thus, the information-

bearing portion of the signal is essentially undistorted by the filter. Under this assumption,

the signal y(t, a) at the output of the bandpass filter has complex envelope

ỹ(t, a) = c̃(t)x̃(t, a) + ñc(t)

=
√

2Py(t) exp (jφ(t, a)) , (4.12)

where ñc(t) is complex lowpass noise with power Pn = N0Bn, Py(t) is the power of the

received signal, and φ(t, a) is the phase of the received signal. Due to fading and noise, Py(t)

is time-varying, even though the transmitted signal power Px is constant.

The received phase may be expressed as

φ(t, a) = ϕ(t, a) + υ(t), (4.13)

where υ(t) is the phase noise as derived in [73]

υ(t) = arctan
µ′Q(t, a)

µ′I(t, a) +
√

2ρ
, (4.14)
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where

ρ =
Ps

Pd + Pn

,

µ′I(t, a) = <{µ′(t, a)} ,

µ′Q(t, a) = ={µ′(t, a)} ,

µ′(t, a) =
1

Pd + Pn

µ(t, a) exp (−jϕ(t, a)) ,

µ(t, a) =
√

Pdξ(t) exp (jϕ(t, a)) + ñc(t), (4.15)

where <{z} and ={z} are the real and imaginary parts of z, respectively.

As is shown in Fig. 4.6, the output of the bandpass filter y(t, a), whose complex envelope

is given by (4.12), is multiplied by a delayed and phase shifted version of itself. The resulting

bandpass signal is

d(t, a) = −2
√

Py(t)Py(t− T ) cos (2πfct + φ(t, a)) sin (2πfc(t− T ) + φ(t− T, a)) . (4.16)

Using the well known trigonometric identity cos α sin β = 1
2
sin(α + β) − 1

2
sin(α − β), and

dropping the double frequency term, d(t, a) after low pass filtering becomes

db(t, a) =
√

Py(t)Py(t− T )× sin (φ(t, a)− φ(t− T, a) + 2πfcT ) . (4.17)

The signal is then sampled at time t = (k + 1)T , resulting in

db((k + 1)T, a) =
√

Py(kT + T )Py(kT )× sin (φ(kT + T, a)− φ(kT, a) + 2πfcT ) . (4.18)

As is common in the literature [72], we assume that the design parameter fcT is selected to

be an integer 3, in which case the received phase differences can be found by computing

∆φk = ∠db((k + 1)T, a)

= φ(kT + T, a)− φ(kT, a), (4.19)

where ∠κ sin z = z for any arbitrary constant κ.

3Actually, all that is required is that the design parameter fcT be known, in which case the term 2πfcT
can be subtracted from ∠db((k + 1)T,a)
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4.3.2 Hard-Decision Differential Phase Detector

In traditional differential phase detectors (DPD) such as those described in [20], [72] and

[73] hard symbol decisions are made by comparing ∆φk as given in (4.19) to some threshold.

While this detector is adequate for full-response signaling, it is unable to adequately com-

pensate for the ISI induced by the partial response CPM signaling. Additionally, the DPD

phase produces hard estimates of the modulated symbols.

4.3.3 Soft-Output, Soft-Decision, Differential Phase Detector

The memory in the modulation can be exploited in a manner analogous to the optimal

coherent CPM demodulator. As the memory in the modulation can be accurately modelled

as a finite-state machine, the Viterbi algorithm can be used to perform maximum-likelihood

demodulation even when driven by phase differences. Maximum-likelihood detection using

soft phase differences (4.19) and the Viterbi algorithm was proposed by Fonseka in [81],

where it is termed soft-decision, differential phase detector with Viterbi decoding (SDDPD-

VD). The underlying structure is that of a DPD, but instead of making symbol-by-symbol

hard decisions, the SDDPD-VD exploits the CPM induced ISI to produce the ML estimate

of the transmitted symbol sequence. However, as with symbol-by-symbol DPD, the bit

decisions made with SDDPD-VD are hard.

By replacing the Viterbi algorithm in the SDDPD-VD algorithm with the BCJR (or

MAP) algorithm of [10], the demodulator will output the log-likelihood ratios of the code

bits

Zi,k = log
P [Bi,k = 1|∆φ]

P [Bi,k = 0|∆φ]
, (4.20)

where ∆φ = {∆φk, 0 ≤ k ≤ Na − 1} is the received sequence of phase differences. In this

paper, we use the term soft-output, soft-decision, differential phase detector (SO-SDDPD)

(Fig. 4.7) to describe our formulation of the soft-differential detector based on the BCJR

algorithm, which is the subject of the present subsection and was previously proposed in

[84].

Both the Viterbi and BCJR algorithms require that the underlying modulation be de-

scribed in terms of a finite-state machine. For differential detection, the finite states manifest
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Figure 4.7: Receiver with soft-output, soft-decision differential phase detection.

themselves as a finite set of transmitted phase differences

∆ϕk(a) = ϕ(kT + T, a)− ϕ(kT, a)

= 2πh

∞∑
i=−∞

ak−ipi, (4.21)

and

pi =

∫ iT+T

iT

g(t)dt. (4.22)

When the pulse g(t) is not time limited, the number of distinct phase differences will

generally be (countably) infinite. However, for pulses of interest the CPM induced ISI terms

are generally limited to only extend from Zp past symbols to Zf future symbols. In this

case, (4.21) can be written as

∆ϕk(a) = 2πh

Zp∑
i=−Zf

ak−ipi, (4.23)

and ∆ϕk(a) will assume one of only MZp+Zf+1 values. If the Gaussian pulse shape g(t) with

3 dB bandwidth Bg

g(t) =
1

2T
[Q (−cBgt)−Q (−cBg(t− T ))] , (4.24)

where c =7.546 and Q(x) = 1√
2π

∫∞
x

exp(−y2/2)dy, or the RC pulse shape

g(t) =





1
2LT

[
1− cos

(
2π (t+((L−1)/2)T )

LT

)]
− (L−1)T

2
≤ t ≤ (L+1)T

2

0 otherwise,
(4.25)
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Table 4.1: θi in degrees at different BgT for GFSK with h = 0.5.

BgT θ−3 θ−2 θ−1 θ0 θ1 θ2 θ3

0.2 0 1.6687 20.3893 45.8415 20.3893 1.6687 0
0.25 0 0.5443 17.9411 53.0273 17.9411 0.5443 0
0.5 0 0 9.5153 70.9684 9.5153 0 0
∞ 0 0 0 90 0 0 0

Table 4.2: θi in degrees at different L for RC pulse shape with h = 0.5.

L θ−3 θ−2 θ−1 θ0 θ1 θ2 θ3

5 0 4.3771 23.2035 58.6027 23.2035 4.3771 0
3 0 0 17.5951 54.8098 17.5951 0 0
1 0 0 0 90 0 0 0

are used, then the ISI will be centered such that Zf = Zp = Z. Table 4.1 and Table 4.2 list

the values of θi = πhpi for GFSK and RC pulse shapes respectively with h = 0.5. As an

example, for GFSK with BgT = 0.5, Z = Zf = Zp = 1.

Soft output demodulation is performed by running the BCJR algorithm on a M2Z state

trellis. The state at time instant t = kT is given by Sk = (ak−2Z , ak−2Z+1, ..., ak−1), with M

branches emerging out of each state. Once the trellis is so defined, the LLR given by (4.20)

can be decomposed using the BCJR algorithm as

Zi,k = log

∑
S(1) αk(s

′)γk+1(s
′, s)βk+1(s)∑

S(0) αk(s′)γk+1(s′, s)βk+1(s)
, (4.26)

where S(1) is the set of state transitions {Sk = s′} → {Sk+1 = s} corresponding to Bi,k = +1,

S(0) is defined similarly for Bi,k = 0, and α, β and γ are the metrics in the BCJR algorithm

(Chapter 2).

As in [10], the metric γk+1(s
′, s) is defined as

γk+1(s
′, s) = P [Sk+1 = s, ∆φk|Sk = s′]

= P [Sk+1 = s|Sk = s′] P [∆φk|(Sk → Sk+1) = (s′ → s)] , (4.27)

where ∆φk is the received phase difference given in (4.19). Because the interleaved code

bits are equally likely, so are the steady-state branch transition probabilities, and thus

P [Sk+1 = s|Sk = s′] is a constant that can be dropped from (4.27) without affecting the

overall LLR (4.26). Note that if a priori information were delivered from the decoder back
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to the demodulator, then the a priori information could be used to update the value of

P [Sk+1 = s|Sk = s′]. Such an operation is contemplated in [84].

Let ∆ϕk(s
′ → s) be the transmitted phase difference associated with a transition from

state s′ to s, calculated by substituting the symbols associated with the two states into

(4.23). Because of this one-to-one correspondence between state transitions and transmitted

phase differences, (4.27) may be rewritten as

γk+1(s
′, s) = P [∆φk|∆ϕk(s

′ → s)] , (4.28)

which is the conditional probability that phase difference ∆φk was received given that phase

difference ∆ϕk(s
′ → s) was transmitted. Because the received phase difference ∆φk is a

continuous random variable, the probability given in (4.28) is actually zero. It is more

appropriate to instead evaluate the probability that ∆φk is within a small region (%−, %+)

γk+1(s
′, s) = P

[
%− ≤ ∆φk < %+|∆ϕk(s

′ → s)
]
. (4.29)

and then let ε = %+ − %− → 0. As ε gets small, the above probability becomes

γk+1(s
′, s) = εp∆φ (∆φk|∆ϕk(s

′ → s)) , (4.30)

where p∆φ (·|∆ϕk(s
′ → s)) is the conditional pdf of the received phase difference given a

transmitted phase difference of ∆ϕk(s
′ → s). Because ε cancels in the overall LLR (4.26),

it can be dropped and the branch metric γk+1(s
′, s) can be determined by substituting the

received phase difference ∆φk into the conditional pdf.

In a practical receiver, one would not want to directly evaluate the true conditional pdf

because it is not easily expressed in closed form. Alternatively, one could precalculate and

store the pdf in a lookup table with a finite number of entries and read out the entry closest to

the received phase difference. This would be accomplished by partitioning the phase region

between 0 and 2π into R phase subregions Di = (%−i , %+
i ), 0 ≤ i ≤ R − 1, where adjacent

regions share a common boundary, %+
i = %−i+1. The table is read by first determining in

which phase region the received phase difference lies, and then outputting the value stored

in the table.

While the above described technique accurately approximates the true conditional pdf

as the size of the phase regions gets small, it is suboptimal when a coarser table is used with
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fewer entries. This is because for wide regions, the conditional pdf within the region is no

longer a constant and therefore the probability that the received phase difference lies in this

region can no longer be approximated by the area of a rectangle, as given by (4.30). Instead,

the probability given by (4.28) should be calculated by integrating the pdf over the region,

P
[
%−i ≤ ∆φ < %+

i |∆ϕk(s
′ → s)

]
=

∫ %+
i

%−i

p∆φ (λ|∆ϕk(s
′ → s)) dλ. (4.31)

The solution to the above integral is given in [73] to be

P
[
%−i ≤ ∆φ < %+

i |∆ϕk(s
′ → s)

]
= 1 + F (%−i |∆ϕk(s

′ → s))− F (%−i |∆ϕk(s
′ → s))

(4.32)

when %−i ≤ ∆ϕk(s
′ → s)) < %+

i and

P
[
%−i ≤ ∆φ < %+

i |∆ϕk(s
′ → s)

]
= F (%−i |∆ϕk(s

′ → s))− F (%−i |∆ϕk(s
′ → s)) (4.33)

otherwise. The function F is described by the following set of equations [73]

F (ψ|ν) = (2π)−1

∫ π/2

0

[exp(−E(ν − ψ, δ))I ′(ν − ψ, δ)]
log2 M sin(ν − ψ)

1− cos(ν − ψ) cos(δ)
dδ,(4.34)

E(α, δ) = ρE1(α, δ)/E2(α, δ), (4.35)

E1(α, δ) = 1− cos(α) cos(δ), (4.36)

E2(α, δ) = 1− |γ| cos(α) cos(δ), (4.37)

I ′(α, δ) =
1− |γ|

1− |γ| cos(α) cos(δ)
, (4.38)

|γ| = Γ

1 + K + Γ
Rξ(T ), (4.39)

Γ =
Px

Pn

=
Es

N0BnT
=
Ebr log2 M

N0BnT
, (4.40)
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where Es = PxT is the energy per modulated symbol, Eb is the energy per data bit, and the

local variables α and γ used above are not to be confused with the BCJR branch metrics.

Because the function F depends on the Rician K factor and the ratio Es/N0, it is assumed

that these quantities are known to the receiver or that that receiver can estimate them. The

SDDPD does not, however, require estimates of the fading amplitudes.

The SDDPD works by first pre-calculating P
[
%−i ≤ ∆φ < %+

i |∆ϕk(s
′ → s)

]
for each state

transition (s′ → s) and each phase region Di using (4.32) and (4.33). The results are then

stored in a table with R columns (one for each phase region) and M2Z+1 rows, one for each

state transition. The table only needs to be generated once for a particular SNR and Rician

K-factor, but needs to be recreated as these quantities change. For each received phase

difference ∆φk, the receiver determines the index of the phase region Di in which it lies,

i.e. the value of i for which %−i ≤ ∆φk < %+
i . This index is then used to read out the ith

column from the table, whose elements are used as the branch metrics γk+1(s
′, s) for the

corresponding state transitions (s′ → s). Once the metrics are determined for every branch

in the trellis, the demodulator executes the BCJR algorithm using (4.26), producing the

LLR Zi,k for each bit i of each symbol k. The LLRs are then placed into a row vector z such

that zk log2 M+i = Zi,k. The vector is then deinterleaved and the resulting sequence z′ fed to

the channel decoder for soft decision decoding.

4.3.4 Bit Error Rates for Uncoded Systems with Differential De-

tection

The expression for the error probability of an uncoded CPM system using DPD was

derived in [73] and is briefly described here. The differential phase angles (transmitted phase

differences)∆ϕ and the corresponding permutation of input symbols for MSK (BgT = ∞,

h = 0.5) and binary GFSK with BgT = 0.5 and h = 0.5 are listed in Table 4.3. Observe

that when the current transmitted symbol is +1, ∆ϕk lies between 0 and π and between π

and 2π the transmitted symbol is ak = −1. On computing ∆φk the detector makes a symbol
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Table 4.3: Differential phase angles in radians for binary CPFSK at different h.

h ak ∆ϕk

0.1 -1 5.9690
1 0.3142

0.5 -1 4.7124
1 1.5708

0.75 -1 3.9270
1 2.3561

Table 4.4: Differential phase angles in radians for binary GFSK with BgT = 0.5, h = 0.5.

ak−1 ak ak+1 ∆ϕk

-1 -1 -1 4.712
-1 -1 1 5.044
-1 1 -1 0.9065
-1 1 1 1.2386
1 -1 -1 5.044
1 -1 1 5.376
1 1 -1 1.2386
1 1 1 1.5708

decision

âk =

{
+1, for ∆φk ≥ 0

−1, otherwise.

(4.41)

The error probability is hence [73]

P [e] = [P [e|a = 1] + P [e|a = −1]] /2. (4.42)

Due to the pulse shape, there are 2Zf+Zp = 22Z symbol permutations with a = ±1 (the time

indices have been dropped without loss in generality). The conditional error probabilities

are hence

P [e|a = ±1] =
1

22Z

22Z∑
i=1

P [e|a = ±1, i], (4.43)

where (a = ±1, i) is the ith combination of input symbols with a = ±1. From (4.41)

P [e|a = 1, i] = 1− P [0 ≤ ∆φ ≤ π|∆ϕi(1)], (4.44)
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Figure 4.8: Minimum separation between differential phase angles for symbols ±1 (Dmin) in
degrees for binary CPFSK as a function of h.

for i = 1, 2, ..., 22Z where ∆ϕi(1) is the differential phase angle corresponding to (a = 1, i).

Similarly,

P [e|a = −1, i] = 1− P [π ≤ ∆φ ≤ 2π|∆ϕi(−1)]. (4.45)

which can be evaluated using (4.33). By evaluating (4.43) using (4.44) and (4.45), one can

find the probability of error for a symbol-by-symbol, hard decision DPD from (4.42).

Fig. 4.9 shows the BER in AWGN of binary CPFSK with DPD at different values of h

found using (4.42). Observe that increasing h beyond 0.5 degrades the BER performance.

This is because the performance of the detector is influenced by the (minimum) separation

between the differential phase angles Dmin for symbols ±1. Fig. 4.8 shows Dmin as a

function of h for binary CPFSK. This reveals Dmins is maximized for MSK with Dmin =

∆ϕ(1) − ∆ϕ(−1) = π. Decreasing or increasing h beyond 0.5 reduces Dmin, which results

in a higher BER. For a particular Dmin (except at Dmin = π) one has two choices for the

value of h, i.e. a value which is less than 0.5 or a value which is greater than 0.5. Our results

indicate that it is better to pick h which is less than 0.5. We conjecture that this is because

a larger value of h requires a front-end filter with a larger noise bandwidth Bn. Fig. 4.10
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Figure 4.9: BER curves for uncoded binary CPFSK with hard decision, symbol-by-symbol
DPD in AWGN at select values of h.

shows the BER for binary GFSK with BgT = 0.5 at different values of h. For this scenario

increasing h beyond 0.6 degrades the performance.

Increasing the pulse width introduces ISI which goes unmitigated when using the DPD.

The performance can of partial response CPM can be improved using a sequence based

differential detector such as the SO-SDDPD. Fig. 4.11 shows the BER for 2-GFSK at

different values of h and BgT = 0.5 using DPD and SO-SDDPD. The SO-SDDPD uses

R = 40 uniformly spaced phase regions. The channel is AWGN. Sequence detection using the

SO-SDDPD results in significant performance improvements which become more pronounced

as the amount of modulation induced ISI is increased. This is illustrated in Fig. 4.12. Curves

for the SO-SDDPD were generated using computer simulations with 25 frame errors recorded

per Eb/N0.

4.3.5 Applying SO-SDDPD to Bluetooth

Gaussian frequency shift keying (GFSK) is used in the Bluetooth [16] physical layer. The

optimal ML coherent receiver [15], as well as low complexity coherent receivers ([77], [85],
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Figure 4.10: BER curves for uncoded binary GFSK (BgT = 0.5) with hard decision, symbol-
by-symbol DPD in AWGN at select values of h.
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Figure 4.11: BER comparison between the DPD and SO-SDDPD for uncoded 2-GFSK with
BgT = 0.5 at different h. The SDDPD uses R = 40 uniform phase regions. The channel is
AWGN.
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Figure 4.12: BER comparison between the DPD and SO-SDDPD for uncoded 2-GFSK with
h = 0.5 and BgT = 0.25. The SO-SDDPD uses R = 26 uniform phase regions. Three
different K-factors are considered K = −∞ dB (Rayleigh), K = 6 dB and K = ∞ dB
(AWGN). The maximum Doppler frequency is assumed to be fd = 0.

[86]) are susceptible to phase estimation errors. Noncoherent or differential receivers are

hence preferred for Bluetooth systems. The noncoherent detector often used for Bluetooth

is the limiter discriminator integrator (LDI) detector [87], [88]. Since the data medium

(DM)-rate packet type in Bluetooth is protected by a (15, 10) shortened Hamming channel

(SHC) code [16], typically, LDI detection is followed by hard decision decoding (HDD) of the

code bits (LDI-HDD). While low in complexity, these receivers have poor energy efficiency,

especially in harsh mobile environments. It is hence desirable to investigate power efficient

receiver designs while maintaining feasible complexity.

In this section we demonstrate that significant gains in the error rate and throughput are

possible by using our proposed SO-SDDPD for Bluetooth systems. For comparison purposes,

six different systems are considered: 1) LDI detection followed by hard decision decoding

(HDD) of the code bits (LDI-HDD) 2) LDI-HDD with bit-interleaving 3) SDDPD followed

by HDD of the SHC (SDDPD-HDD) 4)SDDPD-HDD with bit-interleaving 5) SO-SDDPD

with soft-decision decoding of the SHC (because it is cyclic, the SHC code is treated as

a recursive systematic convolutional (RSC) code). (SO-SDDPD-SDD) 6)SO-SDDPD-SDD
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Figure 4.13: Dotted curve is the BICM capacity in Rician channel with K = 2 dB, using
SISO-SDDPD. Six simulated points are shown for DM1 packets, representing minimum Eb/N0

(dB) to achieve BER = 10−4, from top to bottom: (1) LDI-HDD (2) LDI-HDD with bit-
interleaving (3) SDDPD-HDD (4) SDDPD-HDD with bit-interleaving (5) SO-SDDPD-SDD
(6) BICM receiver. All SDDPD systems use R = 24 uniform phase regions. Modulation
index h = 0.315 is assumed.

with BICM.

Bit Error Rate Comparisons

Fig. 4.13 shows the simulated minimum Eb/No for DM1 packet types (Na = 240) at BER

= 10−4 and select receivers (BER is measured at the channel decoder’s output). The bottom

most curve in Fig. 4.13 is the information theoretical minimum Eb/N0 (Chapter ??) required

to achieve arbitrarily low bit error rate (BER) for a BICM receiver using SO-SDDPD with

R = 24 uniform phase sub-regions (i.e. width of each sub-region is 2π/R). The channel is

Rician with K = 2 dB and a modulation index of h = 0.315 is assumed.

A The BICM receiver performs closest to capacity. A BER gain of 8 dB and 4.35 dB

over LDI-HDD, and SDDPD-HDD respectively and 0.8 dB over the SO-SDDPD-SDD is

observed. BICM with iterative decoding (BICM-ID) [89] was also investigated. However,
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iterating between the demodulator and decoder gave no significant gain over BICM (hence

not shown in Fig. 4.13). A possible reason could be that BgT = 0.5 causes only a little adja-

cent symbol interference. Hence during BICM-ID, extrinsic information for each modulated

bit is provided by only two other bits, which appears to be insufficient to give noticeable im-

provement over BICM. Simulations (not shown here) reveal increasing gain using BICM-ID

with decreasing values of BgT . There is however a 9 dB gap between BICM capacity and

the proposed receiver. This is primarily due to the short packet sizes and weak channel code

used in the Bluetooth standard. This gap could be reduced by using capacity approaching

channel codes, such as turbo or LDPC codes instead. It is observed from the capacity curve

that the minimum Eb/N0 does not necessarily improve with decreasing code rate. This is

partly due to the noncoherent combining penalty [90].

Packet Error Rate Comparisons

Fig. 4.14 shows the packet error rate (PER) of the DM1 packet type using different

receivers. The SO-SDDPD-SDD receiver gives an Eb/N0 gain of about 8 dB over the LDI-

HDD (the SHC code is treated as a single error correcting code). Bit-interleaving is seen to

offer no improvement in the PER for LDI-HDD. A 3.1 dB reduction in Eb/No is observed

compared to SDDPD-HDD. Note that for the SDDPD-HDD, bit-interleaving improves the

PER, especially at higher Eb/N0. BICM gives a 0.82 dB gain over SO-SDDPD-SDD, this gain

was close to 1 dB for the DM3 packet type and 1.5 dB for the DM5 packet type. BICM-ID

was performed with 4 iterations carried out between the SO-SDDPD and the decoder. No

significant improvement was observed over a BICM receiver. Similar gains between receivers

were observed for the DM3 and DM5 packet types.

Throughput Comparison

The throughput (maximum achievable one-way data rate) for the six ACL packets using

ARQ (DM1, DM3, DM5, DH1, DH3, DH5) was calculated in [91]. However, [91] assumes

nonorthogonal, full response FSK which does not account for GFSK induced ISI. Here, we

extend analysis in [91] to find throughput as a function of Eb/N0 for GFSK with Bluetooth

specifications, taking into account both ISI and receiver implementation. We consider those
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Figure 4.14: PER for DM1 packet types in Rician channel with K = 2 dB. All SDDPD sys-
tems use R = 24 uniform phase regions. Dotted curves indicate systems with bit-interleaving.
Modulation index h = 0.315 is assumed.

ACL packets that use the SHC code (DM1, DM3, DM5). Let Nt be the (average) total

number of times a given packet must be transmitted until it is successfully decoded. The

data rate (throughput) is a function of Nt given by [91]

Dr =
Kp

(NsNt)(625× 10−6)
(4.46)

where Ns is the number of slots occupied per round trip including one return slot, Kp is the

number of data bits in the packet type. Assuming no upper limit of retransmissions,

Nt =
1

1− P̄ e

where P̄ e is the average PER.

Fig. 4.15 shows throughput performance for the different receivers for the DM1 packet

type. Since relative performance between receivers for the DM3 and DM5 packet type follows

a similar trend, only the best (BICM and SO-SDDPD-SDD) and worst case (LDI-HDD)

throughput is shown. At high SNR, the throughput converges to the maximum possible
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Figure 4.15: Throughput for DM1, DM3 and DM5 packet types in Rician channel with
K = 2 dB. SDDPD systems use R = 24 uniform phase regions. Dotted curves indicate
systems with bit-interleaving. Modulation index h = 0.315 is assumed.

value for each packet type i.e. 108.8 kbps for DM1, 387.2 kbps for DM3 and 477.9 kbps for

DM5. The increase in data rate and energy efficiency due to SO-SDDPD-SDD is evident

from Fig. 4.15. As an example, at Eb/N0 = 20 dB, our proposed receiver gives a 30 kbps

improvement in throughput over LDI-HDD for DM1 packet types. The gain in throughput is

even more significant (450 kbps) at Eb/N0 = 20 dB, if DM5 packet types (with SO-SDDPD-

SDD/ BICM) were used instead of DM1. Hence, it could be inferred that to achieve maximal

throughput, the packet type should be adaptively selected to match the SNR as suggested in

[92]. BICM is seen to offer a 5 kbps increase in throughput over SO-SDDPD-SDD at lower

Eb/N0 for the DM1 packet type, and increasing gains are seen with DM3 and DM5 packet

types.

At this point some important qualifications on our system’s complexity must be made.

Our noncoherent sequence detector performs MAP decoding on a M2-state trellis. Prior to

MAP decoding, the branch metrics are calculated and stored in an M3 × R look-up table.

The metric calculations involve nonlinear functions and need to be updated once at each
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Eb/N0 making our system more complex than LDI and DPD. However, it has been pointed

out in [77] that branch metrics calculated at BER = 10−4 seem optimum for all Eb/N0. The

size of the look-up table could be reduced further by careful selection of the phase sub-

regions. For simplicity, R uniformly spaced regions are used, but as mentioned in [77], the

same performance could be obtained using a smaller number of non-uniform phase regions.

However, the non-uniform regions may have to be recalculated each time the modulation

parameters change.

4.4 Coherent Detection versus Differential Detection

Since differential detectors base their decisions by comparing the received noisy signal

with its delayed version, their performance is expected to be worse than coherent detectors.

Fig. 4.16 shows the BER for uncoded binary CPFSK using the SO-Coherent detector and

the DPD, in AWGN. For MSK, using the DPD results in a 2.5 dB degradation in Eb/N0.

However, the difference between the two detectors becomes less pronounced at smaller values

of h, with the gap in Eb/N0 reducing to 0.7 dB at h = 1/4. Similar conclusions can also be

drawn for partial response signaling (Fig. 4.17).

Regarding complexity, differential detectors benefit from a lower complexity front-end

and back-end, relative to the optimum coherent detector. Since carrier phase recovery is not

required, differential detectors could provide a more robust signal reception in harsh mobile

environments.

The SO-Coherent detector employs a phM
L−1 state trellis, due to which its complexity

increases exponentially with increasing M and L and linearly with increasing ph. Addi-

tionally, with coherent detection h is constrained to be a rational number. In contrast, the

complexity of the SO-SDDPD is entirely independent of the choice of h and we could set h

to any value we like. While the SO-SDDPD operates on a ML−1 state trellis, its complexity

could be reduced by constraining the detector to account only adjacent symbol interference

(ISI) without incurring a significant loss in performance. In this case, the SO-SDDPD only

requires a M2 state trellis.
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Figure 4.16: BER comparison between the DPD and the sequence based coherent detector
for uncoded binary-CPFSK at different h in AWGN.

0
 5
 10
 15
 20
 25

10


-5


10

-4


10

-3


10

-2


10

-1


10

0


E
b
/N
0
 in dB


B
E

R



SO-SDDPD, R =40

Coherent


h =0.1 


h =0.2 


h =0.4 


M =2, 3 RC 


Figure 4.17: BER comparison between the SO-SDDPD and the sequence based coherent
detector for uncoded binary 3-RC CPM in AWGN. The SDDPD used R = 40 uniform phase
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4.5 Chapter Summary

Differential detection is a pragmatic alternative to coherent detection when low-complexity

receivers are desired. Additionally, since coherent detectors are susceptible to phase estima-

tion errors, differential detectors are a more robust option as well. Since most modern

communication systems use receivers with soft-decision decoding and because our capacity

calculations require bit-wise LLRs from the detector, we have developed a novel soft-output,

soft-decision differential phase detector (SO-SDDPD). The SO-SDDPD is shown to provide

significant gains over DPD for partial response CPM.

The main complaint about differential detectors is their poor energy efficiency [78]. This

however is true only at h ≥ 0.5. We have demonstrated (for an uncoded system in this

chapter and for coded systems in Chapter 6) that the differential detector can approach the

performance of the optimum coherent detector. This is especially true for the low values h

that are required under tight bandwidth constraints. The SO-SDDPD also requires fewer

states per trellis section than the coherent detector. The number of trellis states in the

coherent detector increases as h is lowered, with h constrained to be a rational number. This

could result in a receiver with unreasonable complexity at very high spectral efficiencies. We

conjecture that the best differential design may in fact outperform the best coherent design

on reasonable complexity simply because the differential detector does not need to round h

to a rational number.

Another alternative to coherent detection is to use noncoherent detectors in which symbol

decisions are made in the presence of the channel induced random phase rotation. A detailed

treatment of noncoherent detectors for CPM is outside the scope of this dissertation, instead

we refer interested readers to [21, 27, 78, 30, 79, 93] for details.
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Chapter 5

Mutual Information as a Performance

Measure

As discussed in Chapter 1, the main drawback in using the bit error rate (BER) as a

cost function in designing sophisticated communication systems is that BER simulations

are extremely time consuming for systems that use capacity-approaching coding. A mutual

information based cost function is a more pragmatic and less time consuming alternative.

In this chapter we delve into the details of the applications of mutual information most

relevant to our work. These include 1) the Shannon capacity, 2) the modulation constrained

capacity and 3) extrinsic information transfer charts. A computationally feasible method for

computing the above metrics is also presented.

As a starting point, we begin with the definition of mutual information. Let X be a

1-dimensional input signal with average power P . The signal at the output of an additive

Gaussian channel is hence

Y = X + Z, (5.1)

where z is Gaussian noise with zero mean and variance N . The mutual information between

X and Y is defined as [94]

I(X; Y ) =

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy. (5.2)
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It is noted that (5.2) can be expressed in terms of the expectation

I(X; Y ) = E[i(X; Y )]

=

∫ ∫
p(x, y)i(x; y)dxdy, (5.3)

where the mutual information random variable is defined as

i(x; y) = log
p(x, y)

p(x)p(y)
. (5.4)

The remainder of this chapter is organized as follows. We begin with a detailed exposition

of the unconstrained Shannon capacity. Next, we derive the capacity under modulation

constraints for two widely used paradigms in coded system design, namely coded modulation

(CM) and bit-interleaved coded modulation (BICM) [37]. A computationally feasible method

for computing the constrained capacities is described, following which we present select CM

and BICM capacity results. Finally, extrinsic information transfer charts [95] (EXIT) and

their application to iteratively decoded systems are discussed.

5.1 The Unconstrained Shannon Capacity

The channel capacity as defined by Shannon [1] is simply the mutual information between

the channel input and output, maximized over all input distributions p(x) i.e.

C = max
p(x)

I(X; Y ). (5.5)

From [94]

I(X; Y ) = H(Y )−H(X + Z|X)

= H(Y )−H(Z). (5.6)

Since Z is Gaussian, H(Z) can be written as

H(Z) =
1

2
log2 2πeN. (5.7)

Since the entropy of any random variable is upper bounded by the entropy of a Gaussian

random variable with the same variance [94]

H(Y ) ≤ 1

2
log2 2πe(P + N). (5.8)
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Hence (5.6) can be written as

I(X; Y ) ≤ 1

2
log2 2πe(P + N)− 1

2
log2 2πeN, (5.9)

where the equality is achieved when x is a zero mean Gaussian random variable. The channel

capacity in units of bits per transmission is hence

C =
1

2
log2

(
1 +

P

N

)
, (5.10)

From Nyquist’s sampling theorem, a bandlimited, continuous time signal can be accu-

rately represented by discrete samples spaced 1/2W seconds apart. Hence the interval [0, T ]

consists of 2WT samples. A continuous time signal during [0, T ] can hence be represented

using a n = 2WT dimensional vector. The signal power per sample is hence P/2W and

the noise power per sample is N0/2. The channel capacity in bits per sample (dimension) is

hence,

C =
1

2
log2

(
1 +

P/2W

N0/2

)

=
1

2
log2

(
1 +

P

N0W

)
.

(5.11)

In terms of bits per transmission (channel use), this becomes

C = WT log2

(
1 +

P

N0W

)
. (5.12)

The capacity in bits per second is hence

C = W log2

(
1 +

P

N0W

)
. (5.13)

It is often more informative to express the capacity in terms of Es/N0 or Eb/N0. Now,

P = Esrs

= Ebr log2 Mrs

= Ebr log2 M
rb

r log2 M

= Ebrb. (5.14)

(5.15)
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where rs is the symbol rate, rb is the data rate and r is the code rate. The capacity in bits

per second is hence

C = W log2

(
1 +

Ebrb

N0W

)
. (5.16)

The maximum data rate is equal to the channel capacity rb = C, hence

C = W log2

(
1 +

EbC

N0W

)
. (5.17)

The minimum Eb/N0 required to achieve an arbitrarily low BER can be written as

Eb

N0

=
2C/W − 1

C/W
. (5.18)

For a one dimensional, binary signal set, the Eb/N0 as a function of r is hence (assuming

W = rs/2)

Eb

N0

=
22r − 1

2r
. (5.19)

The above equation can be generalized for an N dimensional, M -ary signal set as

Eb

N0

=
2

2r log2 M
N − 1

2r log2 M
N

. (5.20)

5.2 Modulation Constrained Capacity

The mutual information in (5.5) is maximized when the input distribution is Gaussian.

Practical communication systems however use modulation schemes (eg. BPSK, QAM, CPM,

etc..) in which the transmitted input symbols are drawn from a finite set. In such scenarios,

the unconstrained Shannon capacity is hence an overly optimistic indicator of the system

performance. The capacity under constraints of a practical modulation scheme must be

computed using the pdf of the underlying modulation.

5.2.1 Capacity of Coded Modulation

Following the introduction of trellis-coded modulation (TCM) by Ungerboeck [25], a pop-

ular approach to designing coded systems is to treat coding and modulation as a single entity.
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Figure 5.1: Block diagram of system with coded modulation.

This process is known as coded modulation (CM) and is shown in Fig. 5.1. A CM scheme [37]

consists of an encoder for a code defined over alphabet A and a N -dimensional modulator

over a signal set χ ⊆ CN separated by a symbol interleaver. Also, |χ| = |A| = M . There is

a one-to-one mapping between the generated code symbol and the modulated symbol.

To determine the CM capacity, we first evaluate the symbol log-likelihood ratio (LLR)

log p(x|y) by noting that

log p(x|y) = log
p(x|y)∑

xkεχ p(xk|y)
. (5.21)

Applying Bayes rule, we have

log p(x|y) = log
p(y|x)∑

xkεχ p(y|xk)
, (5.22)

where,

p(y|x) =
1

(πN0)N/2
exp(−‖y − x‖2 /N0)

=
1

(πN0)N/2
exp(f(y|x)), (5.23)

where

f(y|x) = −‖y − x‖2 /N0. (5.24)

Equation (5.21) can now be written as

log p(x|y) = f(y|x)−max ∗
xkεχ

f(y|xk), (5.25)
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where the max ∗ operator is defined as [64]

max ∗
i
{xi} = log

∑
i

exp(xi). (5.26)

From (5.3), (5.25) and assuming that the modulated symbols are equally likely 1 the CM

capacity in nats per channel use is

C = log M + E[f(y|x)−max ∗
xkεχ

f(y|xk)]. (5.27)

To convert to bits per channel use, the above equation is divided by log 2.

5.2.2 Capacity of Bit-Interleaved Coded Modulation

An alternative system design can be obtained by concatenating a binary encoder with

a N -dimensional modulator defined over a signal set χ ⊆ CN such that |χ| = M , through

a bit-interleaver. Such a scheme is called bit-interleaved coded modulation (BICM) [37]

and is shown in Fig. 5.2). The codeword b′ is bit-interleaved to produce the sequence b.

µ = log2 M bits of b are mapped to produce the N -dimensional modulated symbol xk. BICM

simplifies system design, since, the code alphabet and the modulation alphabet need not

match. Moreover, most off-the-shelf capacity approaching codes tend to be binary and can

hence be easily incorporated in a BICM framework. Assuming ideal interleaving, µ = log2 M

bits from the channel encoder’s output are transmitted using independent symbols. This is

not possible in CM due to symbol-level interleaving. This implies BICM can offer better

diversity than CM in fading channels [37], [39]. In essence, BICM maximizes the Hamming

distance whereas CM maximizes the Euclidian distance. While maximizing the Euclidian

distance is good for AWGN, it is better to maximize the Hamming distance in fading. This

is because in a fully interleaved fading channel, the diversity order is the Hamming distance.

Similar conclusions are drawn for CPM systems in [30]. The disadvantage of BICM is that

its capacity is smaller than the CM capacity due to the data processing inequality.

1Although assuming equally likely symbols maximizes the mutual information for modulations such as M -
PSK , it is not necessarily the best distribution for modulation schemes such a M - QAM. In such scenarios,
the mutual information computed under the assumption of equally likely symbols is more appropriately
termed as the symmetric information rate.
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Figure 5.2: Block diagram of system with bit-interleaved coded modulation.

As noted in [37], BICM transforms the channel into log2 M parallel channels such that

the capacity of the ith channel in nats is

Ci = I(bi; zi)

= E[i(bi; zi)]. (5.28)

zi is now a bit-wise log-likelihood ratio

zi = log
P [bi = 1|y]

P [bi = 0|y]

= log

∑
xkεS(1) p(y|xk)p(xk)∑
xkεS(0) p(y|xk)p(xk)

, (5.29)

where, S(1) represents the set of symbols whose ith bit is 1 and S(0) is similarly defined for

bit 0. In BICM, xk are assumed equally-likely. The two events {z} and {y} are said to be

equivalent in the sense that conditioning on detector output z is equivalent to conditioning

on detector input y. Using the fact that b is discrete, we get

i(b; z) = log
1

P [b]
+ log P [b|z], (5.30)

assuming that b is equally likely to be a one or zero

i(b; z) = log 2 + log P [b|z]. (5.31)
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We now focus on the term log P [b|z]. Since P [b = 0|z] + P [b = 1|z] = 1

log P [b|z] = log
P [b|z]

P [b = 0|z] + P [b = 1|z]

= − log

(
P [b = 0|z]

P [b|z]
+

P [b = 1|z]

P [b|z]

)
. (5.32)

The evaluation of the above expression depends on whether the transmitted bit was a zero

or a one. For the case that b = 0,

log P [b = 0|z] = − log

(
1 +

P [b = 1|z]

P [b = 0|z]

)
. (5.33)

Note that

P [b = 1|z]

P [b = 0|z]
= ez (5.34)

and thus

log P [b = 0|z] = − log
(
e0 + ez

)

= −max ∗(0, z). (5.35)

A similar derivation when b = 1 yields

log P [b = 1|z] = −max ∗(0,−z). (5.36)

Equations (5.35) and (5.36) can be compactly represented by the single expression

log P [b|z] = −max ∗(0, z(−1)b). (5.37)

Since the capacities of parallel channels add, the BICM capacity is simply

C =

log2 M∑
i=1

Ci

=

log2 M∑
i=1

log(2)− E
[
max ∗{0, zi(−1)bi}] . (5.38)

The BICM capacity when converted to bits per channel use is

C = log2 M − 1

log(2)

log2 M∑
i=1

E
[
max ∗{0, zi(−1)bi}] . (5.39)
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5.2.3 A Computationally Feasible Method for Evaluating Capac-

ity

The capacity in (5.27) can be written as

C = log M +
M∑
i=1

∫
p(xi, y)[f(y|x)−max ∗

xkεχ
f(y|xk)]dy

= log M +
1

M

M∑
i=1

∫
p(y|xi)[f(y|x)−max ∗

xkεχ
f(y|xk)]dy, (5.40)

where the above integral is evaluated over N dimensions. For low-dimensionality linear

modulation such as BPSK, PSK, or QAM, numerical integration could be used to evaluate

the expectation. For more complicated systems, such as the ones that we study in this work,

the expectations in (5.27), (6.1) are most readily found by using Monte Carlo integration. We

note that we are not the first to propose using Monte Carlo integration to evaluate capacity.

Indeed, it has become a common practice in the literature [37], [43], [44]. For CM, the basic

idea is to randomly generate symbols x and transmit them through a simulated channel.

The receiver can be viewed as a metric calculator that computes the symbol-wise LLRs.

The CM capacity can be found using (5.27) by averaging the outcomes of a large number

of trials. The BICM capacity is calculated by using a detector that generates bit-wise LLRs

along with equation (6.1).

Just as with conventional BER simulations, the accuracy of the capacity when evaluated

through Monte Carlo methods depends on the number of trials. This is illustrated in Fig.

5.3, which shows the effect of the number of trials (in terms of the number of symbols per

SNR) on the constrained CM capacity. The modulation is BPSK and channel is AWGN.

It is well known that the minimum Eb/N0 required by BPSK for C = 0.5 is 0.2 dB. As

expected, when the number of trials is very small, the capacity values obtained by Mote

Carlo integration deviate considerably from the actual value. However, as the number of

trials increases, this deviation becomes smaller and as the number of trials tends to infinity,

the capacity converges to the “true” value. It is obvious that there exists a tradeoff between

the accuracy of the capacity calculations (i.e. the number of trials) and the simulation time.

Fig. 5.4 shows the simulation time (in seconds) as a function of the number of trials. From
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Figure 5.3: BPSK capacity as a function of the number of simulated symbols per SNR.

Figs. 5.3 and 5.4, we can infer that Monte Carlo integration using a million symbols per SNR

provides a good tradeoff between accuracy and simulation time. The MATLAB modules for

computing the CM capacity using Monte-Carlo integration are given in Appendix B.

5.2.4 Capacity Results

Fig. 5.5 shows the modulation unconstrained capacity in bits per channel use for a 2

dimensional signal set. Also shown are the CM capacities for PSK and QAM at different

alphabet sizes M . Unlike the unconstrained Shannon capacity, the CM capacity allows for

a more meaningful comparison between various modulation schemes. For instance, we can

infer from Fig. 5.5 that for communication systems in which power is more of a premium than

bandwidth, BPSK modulation used in conjunction with a low rate powerful channel code

such as the one in [13] is a very attractive option. When higher spectral efficiency is required,

one could select non-binary PSK or QAM. Our capacity results (Fig. 5.5) reveal that given a

choice between M -PSK and M -QAM, M -QAM provides a better tradeoff between spectral

efficiency and energy efficiency. However, PSK does have the advantage of being a constant



R. Iyer Seshadri Chapter 5. Mutual Information as a Performance Measure 97

10

0


10

2


10

4


10

6


10

8


0


20


40


60


80


100


120


140


160


Number of symbols per Es/N0


tim
e 

in
 s

ec
on

ds



Figure 5.4: Simulation time as a function of the number of simulated symbols per SNR for
computing the BPSK capacity.

envelope modulation.

Using (6.1), the capacity under BICM can be evaluated for different modulation schemes

using Monte-Carlo integration. Unlike the CM capacity, the BICM capacity is influenced

by the bit-to-symbol mapping. Fig. 5.6 shows the BICM capacity (as bits per channel

use) versus Es/N0 for 16-PSK with gray and natural bit-to-symbol labelling. Also shown is

the corresponding CM capacity. BICM being sub-optimum, its capacity will be either less

than or equal to the CM capacity. It is observed that BICM with gray labelling performs

closest to the CM capacity. This is also evident in Fig. 5.7 for 16-QAM (SP denotes the

set-partitioning labelling from [37]).

It is interesting to compare the simulation time taken to generate capacity curves by

Monte-Carlo integration against the simulation time required to generate error rate curves

by Monte-Carlo trials. Such a comparison is illustrated in Fig. 5.8. The modulation is

BPSK, in an AWGN channel. The figure shows the average simulation time per SNR point

in seconds required to generate capacity and bit error rate results by Monte-Carlo trials

using 5 million modulated symbols generated per SNR point. To generate the BER curves,
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Figure 5.6: The BICM capacity of 16-PSK with natural and gray labelling in AWGN. Also
shown is the CM capacity. Monte-Carlo integration with 2 million symbols generated per
Es/N0 was used to compute the capacity.
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Figure 5.7: The BICM capacity of 16-QAM with set partitioning and gray labelling in
AWGN. Also shown is the CM capacity. Monte-Carlo integration with 2 million symbols
generated per Es/N0 was used to compute the capacity.

two different channel codes were considered: a rate 1/2, constraint length 3 (generator

polynomials [7, 5] octal) convolutional code and a rate 1/2 DVB-S2 LDPC code [58] (with

100 decoder iterations). The frame size is 64800 coded bits. The simulations were run on an

Intel pentiumr 4 machine with a 3.4 GHz processor. The capacity simulations were written

in MATLAB. The channel encoding and decoding functions were written in C and called

from MATLAB using C-MEX. Observe that the capacity simulations are significantly faster

since the channel code need not be incorporated in the simulations. For instance, simulating

the error rate performance of BPSK with the DVB-S2 LDPC code requires about 13 minutes

(on an average) per SNR point. In contrast, calculating the capacity under BPSK requires

only about 0.15 minutes per SNR point for the same number of simulated symbols.

5.3 Extrinsic Information Transfer Charts

While BICM simplifies design and provides higher diversity in fading channels, its capac-

ity is lower than coded-modulation due to the data-processing inequality, as shown in Fig.
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Figure 5.8: Average time required per SNR in seconds to compute the capacity and bit error
rate by Monte Carlo trials. Simulations were performed using 5 million modulated symbols
per SNR point.

5.6 and Fig. 5.7. One method to mitigate the performance loss due to BICM and approach

the CM capacity is by iteratively exchanging bit-wise extrinsic information between the de-

tector and the decoder. Such a process is often called bit-interleaved coded modulation with

iterative decoding (BICM-ID), a term coined by Li and Ritcey in [89]. The block diagram

of a system with BICM-ID is shown in Fig. 5.9. To begin the iterations, the detector upon

receiving the noisy signal generates bit LLRs, which after interleaving are fed as a priori

information to the decoder. The decoder uses this information to generate LLRs for the

code bits. Extrinsic information for the detector is obtained by subtracting the a priori

information to the decoder from the LLRs. The extrinsic information after deinterleaving

becomes a priori information for the detector.

As has been reported widely in the literature, the bit-error rate curves for systems with

BICM-ID can be divided into three regions: 1) the bottleneck region, in which the error rate

is unacceptably high even after a large number of iterations, 2) the waterfall region which is

characterized by a steep drop in the error rate with increasing iterations, 3) the error floor
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Figure 5.9: Block diagram of system with bit-interleaved coded modulation with iterative
decoding.

region in which a low error rate is achieved after relatively fewer number of iterations and

in which increasing the SNR brings little or no further reduction in the error rate. These

regions are illustrated in Fig. 5.10. The iterative decoding is said to converge at the onset of

the waterfall region, which causes the error rate to drop to some arbitrarily low value. The

minimum Eb/N0 required to trigger the transition from the bottleneck region to the waterfall

region is known as the convergence threshold.

A most remarkable tool for visualizing the process of iterative decoding and predicting

the convergence threshold was developed by ten Brink in [95] known as Extrinsic Informa-

tion Transfer (EXIT) charts. Since their inception, EXIT charts have been widely used

in diverse applications such as analyzing the performance of turbo codes [96], designing

turbo coded noncoherent-orthogonal FSK [44], [67], reducing error floors in iteratively de-

coded QAM systems [97], designing capacity approaching for multiple antennae systems [66],

turbo equalization [98], turbo multiuser detection [99], analyzing coded CPM with iterative

decoding [100] and code design for CPM ([33], [35]).

An EXIT chart consists of two curves 1) detector mutual information transfer character-

istic 2) decoder mutual information transfer characteristic. The mutual information transfer

characteristic is a plot of the mutual information of the extrinsic information at the output
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Figure 5.10: BER after 20 BICM-ID iteration for 4-CPFSK with h = 1/3 and rate 1/2 NRC
code with octal generators [7, 5]. Two different bit-to-symbol mappings are considered.
4-CPFSK is coherently detected. The channel is AWGN and interleaver size is 100000 bits.

of the decoder/ detector as a function of the mutual information of the a priori input. A

key assumption is generating the transfer characteristics is that the a priori information (as

an LLR) is Gaussian distributed with a variance (σ2) equal to twice the mean. There is

a one-to-one correspondence between the variance σ2 and the mutual information of the a

priori information given by [96]

J (σ) = 1− 1√
2πσ

∫ ∞

−∞
exp

(
−(x− σ2/2)2

2σ2

)
log2 (1 + exp(−x)) dx. (5.41)

Fig. 5.11 shows J (σ) as a function of the variance σ2.

5.3.1 Detector Transfer Characteristics

To plot the detector transfer characteristic, a long sequence of bits (b) are generated

and mapped to symbols. The symbol sequence is modulated and transmitted through the

desired channel with a certain Es/N0 . Next, Gaussian distributed a priori LLRs i.e v̄ ∼
N ((2b − 1)σ2/2, σ2) with mutual information Iv are generated using (5.41). The extrinsic
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Figure 5.11: Mutual information of Gaussian distributed a priori information as a function
of the variance.

information z̄ is obtained by subtracting v̄ from the LLRs z (5.29)

z̄ = z− v̄. (5.42)

From (6.1), the mutual information at the output of the detector is

Iz = 1− 1

log(2) log2 M

log2 M∑
i=1

E
[
max ∗(0, z̄i(−1)bi)

]
. (5.43)

The mutual information at the output of the detector is a function of the Iv and Es/N0. As

with the constrained capacity, Iz is found using Monte-Carlo integration. Fig. 5.12 shows

detector transfer characteristics for 16-QAM with different bit-to-symbol mapping in AWGN

at different Es/N0. The value of Iz when Iv = 0 is the BICM capacity.

5.3.2 Decoder Transfer Characteristics

The mutual information at the output of the channel decoder Iv is a function of the

mutual information of the APP input z̄ to the decoder i.e Iz. To plot the decoder transfer

characteristic, a long sequence of code bits (b) are generated. The a priori input to the
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Figure 5.12: Detector mutual information transfer characteristics for 16-QAM modulation
in an AWGN channel, at different Es/N0 and bit-to-symbol mapping.

decoder is Gaussian distributed such that z̄ ∼ N ((2b − 1)σ2/2, σ2). The decoder produces

extrinsic information v̄ from which Iv can be calculated using (5.43). Fig. 5.13 shows the

decoder transfer characteristics for rate-1/2 nonrecursive convolutional (NRC) codes with

constraint lengths K = 2, 3 and 5. Fig. 5.14 shows the decoder transfer characteristics for

NRC codes with generators [7, 5], [7, 4] and RSC code with feedback/ feedforward generators

[7, 3]. As long as the a prioris generated by the detector are Gaussian, the decoder transfer

characteristic does not depend on the channel.

An EXIT chart is obtained by plotting the detector and decoder transfer characteristics

on the same plot (since the extrinsic information from the detector/decoder becomes the APP

input to the decoder/detector after deinterleaving/interleaving). The convergence threshold

is the minimum Eb/N0 required to raise the detector curve high enough to open a tunnel

between the detector and decoder trajectories. Fig. 5.10 shows EXIT curves for coherently

detected 4-CPFSK and rate 1/2 [7, 5] NRC code in an AWGN channel.

The MATLAB modules for generating detector transfer characteristics are given in Ap-

pendix C.
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Figure 5.13: Decoder mutual information transfer characteristics for rate 1/2, non-recursive
convolutional codes with constraint lengths K = 2, 3 and 5.
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Figure 5.14: Decoder mutual information transfer characteristics for rate 1/2, NRC and RSC
codes.
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Figure 5.15: Extrinsic information transfer chart for 4-CPFSK a rate 1/2 NRC code with
octal generators [7, 5].

5.4 Chapter Summary

In this chapter, the role of mutual information as a fundamental performance metric in

coded communication systems was considered. Since the Shannon capacity assumes Gaussian

distributed channel inputs, it is neither the most accurate indicator of system performance,

nor does it allow for a meaningful comparison between different modulations. A more ap-

propriate performance measure is hence the modulation constrained capacity. Two popular

approaches to coded system design, CM and BICM are considered and a detailed exposition

of their capacities is given. Our assumption throughout this chapter (and most of the dis-

sertation) is that the channel is ergodic. For non-ergodic (slow or block fading) channels, a

Shannon type channel capacity does not exist; instead the performance under non-ergodic

channels is characterized in terms of the information outage probability [101], [102] which

serves as a lower bound of the frame error rate.

The complexity involved in the constrained capacity calculations precludes a closed form

solution for the same under sophisticated modulations. We hence resort to computing the

capacity using Monte-Carlo integration. This is a singular feature of the optimization prob-
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lems considered in this dissertation wherein the cost function (i.e. capacity) is not known

in closed form and its accuracy hence depends on the number of Monte-Carlo trials. This

however is not a critical impairment since the capacity obtained using Monte-Carlo integra-

tion attain “steady state” (i.e. converge to their true values) when the number of trials is

sufficiently large eg. 1 million symbols per SNR point. Additionally, the capacity calcu-

lations require a significantly shorter run time than error rate simulations, especially when

simulating sophisticated modulation schemes such as CPM with capacity approaching codes.

EXIT charts and their use in predicting the convergence of systems with BICM-ID have

been discussed. It is noted that since EXIT charts essentially measure the mutual infor-

mation, they compliment a capacity-based optimization rather well should the system be

extended to iterate between the detector and the decoder. As will be shown in Chapter 6,

both the constrained capacity and EXIT charts are very practical indicators of the coded

system performance. This, coupled with their computational feasibility makes them a very

effective performance measure and design tool for modern communication systems.
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Chapter 6

Optimization Results for

Bit-Interleaved Coded CPM

The goal of this chapter is to use the information-theoretic framework derived in Chapter

5 to determine the minimum value of Eb/N0 required to achieve reliable signaling for a

particular choice of modulation and receiver implementation. Using Monte Carlo integration,

the BICM capacity C in bits per channel use can be found using

C = log2 M − 1

log(2)

log2 M∑
i=1

E
[
max ∗{0, zi(−1)bi}] . (6.1)

Since the capacity is found by measuring the mutual information between the modulator

input and the soft-detector output, it takes into account the constraints of not only the

(simulated) modulation and channel, but also the constraints imposed by the receiver for-

mulation. This allows receiver design issues, such as the choice of phase regions for the

soft-output, soft-decision differential phase detector (SO-SDDPD, Chapter 4), to be studied

in terms of the impact on the constrained capacity. In fact, any receiver design (e.g. coher-

ent, noncoherent, differential) can be characterized in terms of the constrained capacity. All

that is required is for the detector to produce a LLR.

The capacity in (6.1), normalized by log2 M evaluated at a particular value of Es/N0 is

the minimum code rate r of the binary code required to achieve reliable signaling for Es/N0

equal to or greater than that point (since capacity is a monotonically increasing function of

Es/N0). This functional relationship could be inverted to give the minimum Eb/N0 required
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for a particular code rate r. The corresponding minimum Eb/N0 can then be found by using

the relationship

Eb =
Es

r log2 M
. (6.2)

Fig. 6.1 shows the constrained capacity in bits per symbol C as a function of Es/N0 for

M -ary, bit-interleaved coded continuous phase frequency shift keying (BICCPFSK)1 with

different of h and coherent reception in AWGN. These curves were generated using Monte-

Carlo simulations with 2 million symbols generated at every Es/N0. Fig. 6.2 shows Eb/N0 as

a function of r for binary-CPFSK with different h and coherent reception, in AWGN. It is

interesting to note that going to a lower r does not necessarily improve the energy efficiency.

We conjecture that at low code rates, the value of Es/N0 is very small. Since the energy

per bit is spread out over multiple trellis sections and the energy of the received signal, per

trellis section is very small, there is a high probability that the detector would stray from

the correct path in the trellis. One can see that for each choice of h, there is a particular

value of r that minimizes the Eb/N0.

From the above discussion, it is apparent that given any choice of modulation parameters

(h, M , and pulse shape g(t)), receiver design, channel model, and code rate r, the minimum

value of Eb/N0 can be found under these constraints. As the constraints change, so does

the minimum value of Eb/N0 and what we seek is to determine its global minimum for all

possible values of h, M , g(t), and r for the particular channel and receiver. On one hand, we

could allow the set (h, M , and g(t)) to assume any value. However, the resulting solution

could have a high bandwidth (for instance, a low r or high h) or it could result in a high

complexity receiver (for instance a g(t) with a large width L). To constrain the search space

to reasonable solutions, we first impose a bandwidth constraint. The bandwidth constraint

requires that (h, M , g(t) and code rate) be related in a manner discussed below.

In Chapter 3, we had defined the normalized double sided 99% power bandwidth as

B = 2B99Tb Hz/bps (Tb is the bit-period), which depends on the parameters (h, M and

1CPFSK is full-response CPM with rectangular (REC) pulse shaping
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Figure 6.1: Capacity in bits per channel use for M -ary BICCPFSK with h = 3/4, 1/2, 1/5,
and 1/10 and coherent detection, in AWGN.
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Figure 6.2: Information-theoretic Eb/N0 versus code rate for binary CPFSK with h = 3/4,
1/2, 1/5, and 1/10 with coherent detection, in AWGN.
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g(t)). The spectral efficiency η of the coded system is defined to be

η = rb/2B99

= rsr log2 M/2B99

= r/B, (6.3)

in units of bits-per-second-per-Hz (bps/Hz). As is common in the literature, the bandwidth

efficiency of coded CPM systems can also be quantified in terms of the normalized double

sided 99% coded power bandwidth Bcoded such that

Bcoded = 1/η, (6.4)

in Hz/bps. If we constrain our BICCPM system to have a spectral efficiency of exactly η

bps/Hz, then, the minimum allowable code rate for our system is given by

r′ = ηB. (6.5)

The Eb/N0 required for an arbitrarily low bit error rate at η can be found using (6.2) with

r = r′. When the spectral efficiency is constrained to be at least η, the range of allowable

code rates for our system becomes r ∈ [r′, 1]. Rates r < r′ cannot be considered since the

resulting spectral efficiency will be lower than η. Due to the non-monotonous nature of the

Eb/N0 versus code rate curves, the value of the code rate which minimizes the required Eb/N0

could be higher than r′ i.e. the optimum code rate could be greater than the minimum code

rate.

The next constraint is on the type of detector used for CPM. We first constrain the

receiver to use the optimum coherent detector described in Chapter 4. Our motivation for

using the coherent detector is that since it is widely studied in the literature, our results could

serve as a design benchmark for interested researchers. However, the coherent receiver has

high complexity and imposes restrictions on the search space. For instance, its complexity

increases exponentially with L. Additionally, with coherent detection h must have rational

form h = mh/ph and the complexity increases with ph. The rationality constraint greatly

reduces the number of values of h that can be considered in the search space. Therefore,

in addition to the bandwidth constraint, we also impose a complexity constraint on the
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receiver. The complexity constraint requires that the detector be differential (soft-output,

soft decision differential phase detector) and contain no more than M2 states.

The remainder of this chapter is organized as follows. We begin this chapter by apply-

ing our capacity-based optimization to coherently detected BICCPFSK and select partial

response BICCPM formats. Next, we identify the combination of modulation parameters

and code rates which have the best energy efficiency at different spectral efficiencies, under

constraints of differential detection using the SO-SDDPD. Bit error rate (BER) curves using

some off-the-shelf binary turbo codes are presented to corroborate our capacity results. Fi-

nally, BICCPM with iterative detector and decoding is investigated as a means of mitigating

performance performance loss due to bit-interleaved coded modulation.

6.1 Capacity-Based Parameter Optimization of BIC-

CPM with Coherent Detection

6.1.1 Design of CPFSK under Bandwidth Constraints

We now present optimization results for coherently detected CPFSK across a reasonable

representative search space. We consider the alphabet sizes M ∈ {2, 4, 8, 16} and modulation

indices 0.1 ≤ h ≤ 1. For non-binary modulation, natural and gray constellation labelling is

considered. The channel is assumed to AWGN.

Observe from Fig. 6.1 that the energy efficiency improves with increasing h. The capac-

ity can be increased by increasing the alphabet size M . Increasing the alphabet size also

improves the energy efficiency, especially at smaller values of h. However, increasing M also

increases the signal bandwidth (Chapter 3).

For a particular spectral efficiency η, the minimum allowable code rate r′ for the pair

(M , h) was determined from (6.5). As an example, Fig. 6.3 shows r′ as a function of h

at different M , when η = 3/4 bps/Hz. As expected, increasing h necessitates an increase

in r′ (and consequently a possible decrease in the energy efficiency). For a particular h, a

larger alphabet size (M > 4) also requires a larger r′. M = 4 is an interesting scenario.

Recall from Chapter 3 (Fig. ) that M = 4 is more bandwidth efficient than M = 2 (for
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Figure 6.3: Minimum allowable code rate as a function of h at η = 3/4 bps/Hz for M -ary
CPFSK .

most values of h) and M > 4 for all h. This allows us to use a lower code rate for the same

spectral efficiency, relative to the other alphabet sizes. Once the minimum code rate for a

(M , h) pair is determined, the optimum code rate r ∈ [r′, 1] and the corresponding minimum

Eb/N0 can be found using the constrained capacity. Fig. 6.4, Fig. 6.5, 6.6, 6.7 show the

information-theoretic minimum Eb/N0 as a function of h for M = 2, 4, 8 and 16 respectively.

For a particular η there is an optimal choice of h that minimizes the required Eb/N0. For

instance, the minimum Eb/N0 for binary CPFSK at η = 1/2 is 2.39 dB, obtained using the

pair (h = 3/5, r = 0.64). It is interesting to note that the popular MSK (binary CPFSK

with h = 1/2) is not the optimum choice at any spectral efficiency. Fig. 6.8 shows the effect

of the bit-to-symbol labelling on the performance of 4-CPFSK at different η. Gray labelling

is seen to be better than natural labelling at higher spectral efficiencies. This trend is also

observed for M > 4.

By finding the minimum value of Eb/N0 at different M , h and bit-to-symbol mappings

over a wide range of η, one can determine the capacity of coherently detected BICCPFSK.

This is simply the minimum Eb/N0 required for reliable signaling at different η and is shown in
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Figure 6.4: Minimum Eb/N0 for reliable signaling required by binary BICCPFSK with co-
herent detection as a function of h, at different η, in AWGN.
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Figure 6.5: Minimum Eb/N0 for reliable signaling required by M = 4 BICCPFSK with
coherent detection as a function of h, at different η, in AWGN.
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Figure 6.6: Minimum Eb/N0 for reliable signaling required by M = 8 BICCPFSK with
coherent detection as a function of h, at different η, in AWGN.
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Figure 6.7: Minimum Eb/N0 for reliable signaling required by M = 16 BICCPFSK with
coherent detection as a function of h, at different η, in AWGN.
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Figure 6.8: Effect of bit-to-symbol mapping on the energy efficiency of M = 4 BICCPFSK
with coherent detection.

Fig. 6.9. The corresponding optimum modulation indices as a function of η is shown in Fig.

6.10, and the optimum code rates are shown in Fig. 6.11. The most significant improvement

in energy efficiency occurs by increasing M from 2 to 4. While there is a benefit to increasing

M at very low η, these benefits diminish as η is increased. It is observed that gray labelling

is more energy efficient at h < 1/2, whereas natural labelling is better at larger values of h.

6.1.2 Design of Partial Response CPM under Bandwidth Con-

straints

Partial response CPM (PR-CPM) yields a more compact power spectrum than CPFSK.

This implies that for a particular spectral efficiency, one could use a larger h (or smaller r)

relative to CPFSK due to which the capacity of PR-CPM could be greater. Fig. 6.12 reveals

that binary PR-CPM with 3-REC and 3-RC pulse shapes provides significant improvements

in energy efficiency, especially at high spectral efficiencies. Also, observe that raised cosine

pulse-shaping performs better than rectangular pulse shaping. The price to pay for this
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Figure 6.9: Minimum Eb/N0 required for reliable signaling at different spectral efficiencies
for coherently detected BICCPFSK, in AWGN.
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Figure 6.10: Optimum code rate at different spectral efficiencies for coherently detected
BICCPFSK, in AWGN.
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Figure 6.11: Optimum h at different spectral efficiencies for coherently detected BICCPFSK,
in AWGN.

improvement is a more complex detector. Recall from Chapter 3 that for a particular M

and h, PR-CPM increases the number of detector trellis states by a factor of ML−1 over

CPFSK.

6.2 Capacity-Based Parameter Optimization of BIC-

CPM with Differential Detection

Our optimization results in the previous section reveal that energy efficient signaling at

spectral efficiencies η > 1 bps/Hz necessitates the use of a combination of partial response

CPM, non-binary alphabets and small h. This results in a significant increase in the com-

plexity of the coherent receiver. In comparison, the complexity of the differential detector

can be significantly lower. Recall that the formulation of the SO-SDDPD is independent of

the choice of h and it is constrained to contain no more than M2 states. This makes differen-

tial detection an attractive alternative to coherent detection, when high spectral efficiency,

low-complexity applications.
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Figure 6.12: Minimum Eb/N0 required at different spectral efficiencies for coherently detected
BICCPM, in AWGN. Binary partial response signaling using 3 RC and 3 REC pulse shapes
give significant improvement in the energy efficiency over binary CPFSK.

6.2.1 Information Rate Loss Relative to Coherent Detector

The main concern regarding differential detection is its poor energy efficiency relative to

coherent detection. We show now that at high spectral efficiencies, the information rates

achievable with differential detection can approach coherent detection while enjoying a much

lower complexity.

Fig. 6.13 shows the minimum Eb/N0 required at different spectral efficiencies with coher-

ent as well as differential reception. Observe that the performance gap between the coherent

receiver and differential receiver becomes less pronounced as the spectral efficiency is in-

creased. Given how close differential and coherent receivers perform, we anticipate that

the best differential design may in fact outperform the best coherent design of reasonable

complexity at high spectral efficiencies.
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Figure 6.13: Information-theoretic minimum Eb/N0 as a function of h at different spectral
efficiencies with coherent and differential detection. The channel is AWGN. The modulation
is binary CPFSK.

6.2.2 Design of Partial Response CPM under Bandwidth Con-

straints

We now perform a capacity-based parameter optimization of BICCPM with differential

phase detection, using the SO-SDDPD. As with coherent detection, we limit the search

space to the following sensible alternatives. The pulse shapes may be either GFSK with

parameters BgT = 0.5, 0.25 and 0.2 or RC with L = 3 or 5. We consider the code rates

r = {6/7, 5/6, 3/4, 2/3, 1/2, 1/3, 1/4, 1/5}. We limit the modulation order M to be either

2 or 4 (natural bit-to-symbol mapping). The receiver is restricted to use SO-SDDPD with

uniformly space phase regions with R = 40 for M = 2 and R = 26 for M = 4. Finally, the

normalized bandwidth is constrained to Bcoded = {0.4, 0.6, 0.8, 0.9, 1.0, 1.2}. The value of h

is determined by the choice of the other parameters along with the bandwidth constraint.

The optimization is run for a Rayleigh channel (K = 0) and a Rician channel with K = 6

dB.

Because the search space includes 5 pulse shapes, 8 code rates, and 2 modulation orders,
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there are 80 design points to consider for each of the 6 bandwidth efficiencies and 2 channel

types. For each design point, bandwidth constraint, and channel, a capacity curve was

generated using Monte Carlo integration, and from the curve the minimum Eb/N0 was found

by reading off the value of Es/N0 for which C = r log2 M and then converting to Eb/N0 =

Es/N0/C. Then for a particular channel and bandwidth constraint, the design point with

the smallest minimum Eb/N0 was selected and declared the best design for that channel and

bandwidth constraint.

Because a total of 960 capacity curves were generated, a full account of the results cannot

be given in this paper. Figs. 6.14 and 6.15 show representative intermediate results. In Fig.

6.14, results are shown in Rician fading (K = 6 dB) for the subset of design points that

contain r = 2/3 and GFSK pulse shapes. For each of the six design points, a curve is

given showing the theoretic required Eb/N0 as a function of the bandwidth constraint. Also

listed is the value of h for the curve with smallest required Eb/N0. For all but the largest

bandwidth, the design point M = 4, BgT = 0.5 has the lowest required Eb/N0. In Fig. 6.15,

the bandwidth is held fixed at Bcoded = 0.8 in a Rayleigh fading channel, and the minimum

Eb/N0 for each code rate is shown (with the design that achieves this minimum so indicated

in the figure legend). From the curve, it is apparent that r = 3/4 is the best code rate

for this bandwidth constraint, and that the other design parameters are M = 4, h = 0.25,

and GFSK pulse shaping with BgT = 0.5. Fig. 6.15 also illustrates the tradeoff between

between code rate and CPM parameters at a fixed bandwidth. As an example, for GFSK,

when Rc is lowered from 6/7 to 3/4, an improvement in the energy efficiency is seen due to

increased coding gain. However, when r is lowered below 3/4, the scaling of CPM parameters

(primarily h) not only offsets any potential coding gain, but in fact worsens the performance

as indicated by the increasing required Eb/N0.

The results of the search are tabulated in Table 6.1 for Rayleigh fading and Table 6.2 for

Rician fading (K = 6). The tables indicate the design parameters that minimize Eb/N0 for

each bandwidth constraint, and the corresponding value of the minimum Eb/N0. In the case

of GFSK pulse shaping, the value of BgT is given, while in the case of RC pulse shaping, L

is given. As can be seen from the tables, GFSK outperforms RC-CPM except at the most

relaxed bandwidth constraint. Further insight into the performance of the SO-SDDPD with
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Figure 6.14: Minimum required Eb/N0 as a function of normalized bandwidth Bcoded for
BICCPM in Rician fading (K = 6 dB). The code rate is r = 2/3, GFSK modulation used
with M ∈ {2, 4}, and SO-SDDPD. The numbers denote modulation indices corresponding
to GFSK parameters with the lowest information-theoretic limit on Eb/N0 at different Bcoded.

different pulse shapes can be obtained from Table 4.1 and Table 4.2 in Chapter 4. BgT = ∞
and L = 1 indicate full response CPM (Zf = Zp = 0). As BgT is lowered or L is increased,

the amount of ISI increases. It is interesting to note that for a given pulse width, the amount

of ISI in the RC pulse shape is greater than GFSK. As a consequence, for the same M , h

and pulse width, RC-CPM would have a more compact power spectrum than GFSK. This

also implies that at a fixed Bcoded, r, M and pulse width, RC-CPM allows us to have a

higher value of h. Typically (but not necessarily), larger values of h result in lower values

of Eb/N0, however since the induced ISI is also greater, the RC-CPM may not always have

better energy efficiency.
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Figure 6.15: Minimum required Eb/N0 as a function of code rate for BICCPM with GFSK
signaling in Rayleigh fading with SO-SDDPD and under bandwidth constraint Bcoded = 0.8.
The legend specifies the GFSK parameters (M,h, BgT ) that achieve this minimum. Under
the given constraints, the design {r = 3/4,M = 4, h = 0.25, BgT = 0.5} has the best energy
efficiency.

Table 6.1: Combination of code rates and CPM parameters with lowest information theoretic
minimum Eb/N0 under the constraint of using SO-SDDPD in Rayleigh fading at different
Bcoded.

Bcoded Rate M Pulse shape {L,BgT} h Eb/N0 dB
0.4 5/6 4 GFSK 0.25 0.14 20.24 dB
0.6 5/6 4 GFSK 0.25 0.26 14.92 dB
0.8 3/4 4 GFSK 0.5 0.25 12.38 dB
0.9 2/3 4 GFSK 0.5 0.24 11.99 dB
1.0 2/3 4 GFSK 0.5 0.3 11.44 dB
1.2 6/7 2 RC 3 0.73 10.97 dB
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Table 6.2: Combination of code rates and CPM parameters having lowest information the-
oretic minimum Eb/N0 under the constraint of using SO-SDDPD in Rician fading (K = 6
dB) at different Bcoded.

Bcoded Rate M Pulse shape {L, BgT} h Eb/N0 dB
0.4 6/7 4 GFSK 0.5 0.097 16.52 dB
0.6 5/6 4 GFSK 0.5 0.18 11.67 dB
0.8 5/6 4 GFSK 0.5 0.29 9.09 dB
0.9 3/4 4 GFSK 0.5 0.285 8.87 dB
1.0 2/3 4 GFSK 0.5 0.3 8.83 dB
1.2 6/7 2 RC 3 0.73 8.32 dB

6.3 Validating Design Parameters using BER Simula-

tions

To confirm that the constrained capacity is indeed a good indicator of the performance

of an actual coded system, bit error rate (BER) simulations were performed for the proposed

BICCPM system using off-the-shelf binary capacity-approaching codes. Fig. 6.16 shows the

bit error rate (BER) of bit-interleaved coded 2-CPFSK at modulation indices {1/10, 1/7, 1/2}
using a rate 1/2 CDMA-2000 turbo code [38], after 10 decoder iterations with an interleaver

length of 24576 bits in AWGN. The vertical lines denote the information theoretic thresholds

to achieve an arbitrarily low BER for the particular modulation index at r = 1/2.

BER curves were also generated using the UMTS turbo code [46] and SO-SDDPD detec-

tion. The codeword length used was Nb = 6720 bits, and the decoder performed 16 decoder

iterations. While the mother code rate is r = 1/3, rate matching was performed to obtain

higher code rates. Enough trials were run at each Eb/N0 to record 30 frame errors.

Simulations were performed for both Rayleigh fading and Rician fading with K = 6 dB.

In each case, the optimal parameters were chosen from Tables 6.1 and 6.2 for the bandwidth

constraint Bcoded = 0.9. The BER in Rayleigh fading for 4-GFSK with parameters h = 0.24,

BgT = 0.5, and r = 2/3 is shown in Fig. 6.17. From this curve, it is seen that the Eb/N0

required to achieve a BER of 10−5 is 12.93 dB. This is not far from the minimum theoretical

Eb/N0 of 11.99 predicted by Table 6.1. The BER in Rician fading (K = 6 dB) for 4-GFSK

with parameters h = 0.285, BgT = 0.5, and r = 3/4 is shown in Fig. 6.2. In this case,

the Eb/N0 required to achieve a BER of 10−5 is 9.52 dB, which is close to the theoretical
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Figure 6.16: Bit error rate in AWGN for bit-interleaved coded, 2-CPFSK with h = 1/10, 1/7
and 1/2 using a rate 1/2 CDMA 2000 code after 10 turbo decoder iterations. The vertical
lines denote the information theoretic Eb/N0 in dB to achieve an arbitrarily low BER for the
respective h and r = 1/2. The interleaver size is 24576 bits.

minimum of 8.87 dB (from Table 6.2). These results confirm that constrained capacity is a

practical measure of BICCPM performance, since it is possible to signal within 1 dB of the

capacity by using off-the-shelf binary, capacity approaching codes.

It is also informative to compare the performance of the coded system against that of

an uncoded system with the same spectral efficiency. Additional simulations of uncoded

CPM using SDDPD detection and binary GFSK with h = 0.5 and BgT = 0.3 are shown in

Fig. 6.2 and 6.17 for the Rayleigh and Rician channels, respectively. These parameters were

chosen because they are what is used in the GSM standard and because they also result in

Bcoded = 0.9. From these figures, it can be seen that the coding gain at BER = 10−5 is 16

dB in Rayleigh fading and 14 dB in Rician fading.
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Figure 6.17: BER of coded (solid line) and uncoded (dotted line) GFSK in Rayleigh fading
under bandwidth constraint Bcoded = 0.9 using SO-SDDPD. The coded (BICCPM) system
system uses a rate r = 2/3, length Nb = 6720 turbo code, 16 decoder iterations, R = 26
phase regions, and GFSK parameters M = 4, h = 0.24, and BgT = 0.5. The uncoded system
uses R = 40 phase regions and GFSK parameters M = 2, h = 0.5 and BgT = 0.3.

6.4 Design of Coded CPM with Iterative Detection

and Decoding

While bit-interleaved coded modulation (BICM) is convenient to design and implement

and provides higher diversity in fading channels, its capacity is lower than coded modulation

(CM) due to the data processing inequality [103] (Appendix A). One method to mitigate

the performance due to BICM and approach the CM capacity is by iteratively exchanging

bit-wise extrinsic information between the detector and the decoder. Such a process is

often called bit-interleaved coded modulation with iterative decoding (BICM-ID) [89] and

here we refer to its extension to CPM as BICCPM-ID. Our goal in this section to extend our
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Figure 6.18: BER of coded (solid line) and uncoded (dotted line) GFSK in Rician fad-
ing (K = 6 dB) under bandwidth constraint Bcoded = 0.9 using SO-SDDPD. The coded
(BICCPM) system system uses a rate r = 3/4, length Nb = 6720 turbo code, 16 decoder
iterations, R = 26 phase regions, and GFSK parameters M = 4, h = 0.285, and BgT = 0.5.
The uncoded system uses R = 40 phase regions and GFSK parameters M = 2, h = 0.5 and
BgT = 0.3.

optimization to BICCPM-ID under bandwidth constraints. Since iterative decoding does

not change the spectral efficiency, the minimum code rate r required at a specific η for a

particular (M , h, g(t)) is unchanged relative to BICM. The problem now boils down to

identifying the set of M , h, g(t), constellation labelling and outer code which has the lowest

Eb/N0 required for reliable signaling at some η. A similar optimization is attempted for

partial response CPM with convolutional codes in [41] using a union bound analysis based

on evaluating the distance spectrum of the coded system. However, such analysis assumes

ML decoding and is hence not the most appropriate tool for predicting the performance of

an iterative decoding system. The authors of [41] make the same observation later in [100].

We instead use extrinsic information transfer (EXIT) charts (Chapter 5) [95] which have

been widely used to analyze system performance with iterative decoding [104], [44], [97].
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Figure 6.19: Minimum Eb/N0 in dB required for reliable signaling as a function of h for
coherently detected CPFSK at η = 1/2 bps/Hz. The channel is AWGN. The dotted curves
denote BICCPFSK convergence thresholds found from the constrained capacity. The dashed
curves denote BICCPFSK-ID convergence thresholds with a NRC [7, 5] convolutional code,
predicted by EXIT chart analysis. The alphabet sizes are M ∈ {2, 4, 16} with natural
bit-to-symbol labelling.

Since EXIT charts work by measuring the mutual information at the detector and decoder’s

output, it compliments our BICM capacity analysis, such that modulation parameters with

a higher BICM capacity typically need a lower Eb/N0 to converge (i.e. attain an arbitrarily

low error rate).

It is noted that EXIT chart analysis has been previously considered for coherently de-

tected CPM with rate 1/2 outer convolutional codes in [100]. EXIT charts and density

evolution [55] are used to design rate 1/2 convolutional codes and LDPC codes respec-

tively for coherently detected MSK in [33]. More recently, irregular repeat-accumulate codes

(IRA) [35] and ring convolutional codes [42] have also been applied in an iterative (coherent)

detection-decoding framework for CPM.
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6.4.1 Design of BICCPFSK-ID with Coherent Detection

Rather than begin our optimization from scratch, we use our BICM optimization results

as a starting point, since intuitively, the pair of M and h with the lowest Eb/N0 for BICM

would also lift the detection characteristic proportionally, which might result in a lower

convergence threshold. This is illustrated in Fig. 6.19.

For the outer code, we consider constraint length 2 and 3 non-recursive convolutional

(NRC) codes and a constraint length 3 recursive convolutional (RSC) code (see Chapter ??

for details). The constraint length 2 NRC codes use generators polynomials (octal) [2, 3]. The

two constraint length 3 NRC codes use the polynomials [7, 5] and [7, 4] respectively. The RSC

code employs the feedback/ feedforward polynomials [7, 3]. Table 6.4 lists the modulation

parameters and outer codes which have the lowest Eb/N0 at η ∈ {1, 3/4, 1/2}. It is observed

that the minimum code rate r′ and hence h tends to be lower than the corresponding BICM

parameters. As an example, the pair of h and r′ for 4-CPFSK and η = 1 with the lowest

Eb/N0 for BICM is (3/10, 0.92) with gray labelling, and (1/4, 0.8) with gray labelling for

BICM-ID.

We have observed that for a particular (M, h, r’), the optimum bit-to-symbol mappings

tend to be different for BICCPFSK and BICCPFSK-ID. As reported in [29], the combination

of certain values of M , h and mapping leads to an early error floor. Hence, while h = 1/2

with natural mapping is the optimum choice for M = 8 at η = 1/2 (Table 6.3), it is not a

good choice for BICM-ID as it would lead to an early error floor.

It was reported in [100] and [33] that lowering the code constraint length lowers the

convergence threshold. While this is true for the rate 1/2 codes considered in the papers,

we have found that lowering the constraint length does not guarantee a lower convergence

threshold at all code rates. The [2, 3] performs better in the bottleneck region of the curve.

However, since its transfer characteristic is steeper, it could potentially perform worse than

than the [7, 5] code at higher code rates. This is seen in Fig. 6.20. At Es/N0 = 2.2 dB, the

transfer characteristics for the [2, 3] NRC code and the [7, 4] code fail to exit the bottleneck

region, while the [7, 5] code manages to emerge out of the bottleneck region. Our results

also indicate that the performance of the RSC [7, 3] code is very similar to the [7, 4] NRC
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Figure 6.20: EXIT curves for 4-CPFSK with h = 1/2, gray labelling and various outer
convolutional codes. The code rate is r = 0.64. The channel is AWGN. The figure indicates
that for the particular r, the NRC [7, 5] code yields the lowest convergence threshold.

code at higher code rates.

Finally, select bit error rate curves (BER) were generated to corroborate the EXIT chart

analysis. Fig. 6.21 shows BER curves for 4-CPFSK with h = 3/7 and natural labelling

using NRC [2, 3] and NRC [7, 5] convolutional codes. With a code rate of r = 0.6, the

spectral efficiency for the system is η = 1/2 bps/Hz. The interleaver size is 100000 bits. The

curves show BER after 25 iterations. The vertical lines indicate the convergence thresholds,

predicted using EXIT charts. Note that the system with the [2, 3] code shows an error floor

due to the poor free distance of the punctured code. 20 frame errors were recorded per Eb/N0

(fewer errors were logged at the highest SNR).

6.4.2 Design of BICCPM-ID with Differential Detection

Fig. 6.22 shows the mutual information transfer characteristics for binary GFSK with

(h = 0.315 BgT = 0.5 ) and soft-output, soft-decision differential phase detection. The

channel is Rician, with K = 2 dB. Observe that these are essentially straight lines, with
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Figure 6.21: BER after 25 iterations for 4-CPFSK with h = 3/7, natural labelling and two
outer convolutional codes. The code rate is r = 0.6. The channel is AWGN. The vertical
lines indicate convergence thresholds, predicted using EXIT charts.

Table 6.3: Information theoretic minimum Eb/N0 in dB for non-iterative BICM in AWGN
at different η.

η M h Mapping r′ Eb/N0 dB
1 2 1/4 Natural 0.9 7.91

4 3/10 Gray 0.92 4.32
8 1/5 Gray 0.75 4.24
16 1/7 Gray 0.76 5.03

3/4 2 3/7 Natural 0.847 3.69
4 3/7 Gray 0.846 2.62
8 3/10 Gray 0.77 2.79
16 1/5 Gray 0.74 3.09

1/2 2 3/5 Natural 0.64 2.39
4 4/7 Natural 0.72 2.06
8 1/2 Natural 0.77 1.87
16 1/3 Gray 0.75 1.93
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Table 6.4: Minimum Eb/N0 in dB for BICM-ID in AWGN with outer convolutional codes at
different η.

η M h Mapping r′ Code Eb/N0 dB
1 2 1/4 Natural 0.9 [7, 5] 6.86

4 1/4 Gray 0.8 [7, 5] 2.958
8 1/5 Natural 0.75 [2, 3] 2.38
16 1/10 Natural 0.6 [2, 3] 2.99

3/4 2 3/7 Natural 0.847 [7, 5] 2.46
4 2/5 Natural 0.81 [2, 3] 1.204
8 1/4 Natural 0.67 [7, 4] 1.177
16 1/5 Natural 0.74 [2, 3] 1.428

1/2 2 4/7 Natural 0.62 [7, 4] 0.476
4 3/7 Natural 0.6 [2, 3] 0.508
8 1/3 Natural 0.56 [2, 3] 0.346
16 1/5 Gray 0.5 [2, 3] 0.389

two points of interest 1) When Iv = 0 (no a priori information at the SO-SDDPD), hence

Iz is the BICM capacity, 2) Iz = 1, i.e. perfect a priori knowledge on all bits except ak,

which implies that if the slope of the line is steep, BICM-ID would give significant gains over

BICM. In our case, the line is almost horizontal hence implying little/ no benefit over BICM.

A possible reason could be that BgT = 0.5 causes only a little adjacent symbol interference.

Hence during BICM-ID, extrinsic information for each modulated bit is provided by only

two other bits, which appears to be insufficient to give noticeable improvement over BICM.

The transfer characteristics for the cyclic code used in the Bluetooth standard is also

shown in Fig. 6.22. Note that the curve passes through the point (0.5, R′) where R′ = 10/15

is the code rate. The EXIT chart is obtained by plotting the SO-SDDPD and decoder

characteristics together. The threshold is simply the minimum Eb/N0 at which both curves

progress all the way to the right without intersecting. Fig. 6.22 reveals that the threshold

for our receiver is at Eb/N0 = 21 dB.

6.5 Chapter Summary

We have investigated the problem of designing bit-interleaved coded CPM systems under

bandwidth constraints. Our goal was to identify the combination of CPM and channel code

parameters that have the best energy efficiency at some required bandwidth efficiency. We
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Figure 6.22: EXIT chart for the proposed BICM receiver for Bluetooth specifications (h =
0.315, BgT = 0.5). SO-SDDPD EXIT curves assume Rician channel with K = 2 dB,
R = 24 uniform phase regions. Note that the decoder’s EXIT curve intersects (0.5, R′),
where R′ = 10/15.

treat this as an optimization problem, with the modulation constrained capacity as the

cost function driving our optimization. Since the entire modulation and code search space

has infinite parameters, we instead perform optimization over a smaller search space which

includes some popular modulation formats such as CPFSK, partial response GFSK and

raised cosine CPM. Interested researchers can just as easily apply our methodology to their

choice of CPM parameters.

We have extended the energy-bandwidth analysis to bit-interleaved CPM systems em-

ploying iterative extrinsic information exchange between the detector and the decoder. EXIT

charts are used to identify the combination of modulation parameters and outer convolu-

tional codes with the best energy efficiency at different spectral efficiencies. We have shown

that by a careful selection of modulation parameters and code puncturing pattern, close to

2 dB gains in energy efficiency is possible over BICM by using low-complexity convolutional

codes. Though not considered in this work, a more elaborate system design could be consid-

ered using LDPC codes [33] or IRA codes [35], in which the degree distribution of the code
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is optimized with respect to the modulation parameters.
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Chapter 7

Conclusion

7.1 Summary

Continuous phase modulation has long been known to be an excellent modulation choice

for bandwidth constrained systems. Its use has also been advocated for systems desiring high

amplifier power efficiency (e.g. satellite systems). In this dissertation, we have investigated

the problem of designing coded CPM systems under bandwidth constraints. This problem

has several points of interest. First, the code rate cannot be arbitrarily lowered in order

to improve the energy efficiency, since it is possible that doing so will require a change in

modulation parameters that can result in a coding loss. Second, the search for coded CPM

parameters with the best energy efficiency at different bandwidth efficiencies spans a very

large search space. Hence, any performance metric or cost function that we use to perform

this search must be feasible to compute for the different modulation parameters, code rates,

channel conditions, and receiver formulations considered. Additionally, such a cost function

should also be a realistic indicator of the system performance.

Previous attempts at addressing the above problem have focused on coherently detected

systems, using a cost function which is based on the distance spectrum of the concatenated

system. The resulting bounds predict the performance of the coded-system at high SNR

(typically the error floor region), under the assumption of ML reception. However, it is often

of practical interest to optimize with respect to the SNR required to trigger the waterfall

region of the error rate curve. While this operating point can be determined by running error



R. Iyer Seshadri Chapter 7. Conclusion 136

rate simulations, such a process is extremely time consuming, especially for sophisticated

systems.

In this dissertation, we have outlined a methodology for solving the above problem using

the constrained capacity and more generally the mutual information, as the cost function.

The benefits of a cost function based on the capacity have been discussed in detail in pre-

vious chapters. Briefly, capacity sets the fundamental limits on the performance of a coded

system, i.e. it determines the information theoretic limit on the SNR for reliable signaling.

As we have demonstrated, it is a very practical indicator of system performance due to

advances in code design resulting in the availability of “off-the-shelf” capacity-approaching

codes. The capacity also best quantifies the tradeoff between CPM parameters and the code

rate. Since most CPM systems and their associated demodulators are too complex to admit

closed-form solution, a method for determining the constrained capacity using Monte Carlo

integration has been presented. Monte Carlo integration with a large number of trials offer

a computationally feasible method for determining the capacity for a wide range of coded

CPM parameters, which is significantly faster than running error rate simulations. The

constrained capacity also takes into account the detector design.

We have focused our attention on systems employing bit-interleaved coded modulation

(BICM) since it has become a standard feature in satellite, wireless and cellular systems. This

is because, not only does BICM simplify system design, but it also increases the temporal

diversity of the system. Our proposed methodology has been used to perform optimization

over a trial search space, for coherently detected CPM.

The complexity of the coherent detector renders it unfeasible for high spectral efficiency

applications. Furthermore, it is also suspectable to phase estimation errors. It is hence of

practical interest to investigate low complexity alternatives such as noncoherent and differ-

ential phase detectors. In this work, we have developed a low complexity, high performance

CPM detector, which we call the soft-output, soft-decision differential phase detector (SO-

SDDPD). Our detector overcomes the two main drawbacks associated with differential phase

detectors, namely unmitigated ISI and hard-symbol decisions. We have shown that the low

complexity and excellent performance, make the SO-SDDPD a very attractive alternative to

coherent detection, especially at high spectral efficiency. The optimization of coded-CPM
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systems using the SO-SDDPD has also been undertaken.

The sub-optimality of BICM can be overcome by iteratively exchanging extrinsic infor-

mation between the detector and the decoder, a process called BICM with iterative decoding

(BICM-ID). In fact, BICM-ID is often used as a pragmatic alternative to true ML reception.

We have also considered the optimization of convolutionally coded CPM with BICM-ID.

EXIT charts have been used to identify CPM parameters and outer convolutional codes

with the best energy efficiency at different spectral efficiencies. Since EXIT charts essen-

tially measure the mutual information, the BICM capacity results provide a good starting

point for the design since intuitively, the CPM parameters with the lowest Eb/N0 for BICM,

could yield a lower BICM-ID convergence threshold.

7.2 Ideas for Future Research

7.2.1 Optimization in Non-Ergodic Channels

The block fading channel model, is often used to characterize wireless systems. For

such non-ergodic channels, a Shannon-sense capacity does not exist and a more appropriate

performance measure is the information outage probability [105]. The outage probability

under linear modulation constraints was found in [101] and [102].

In block fading, the codeword b is broken into F blocks each of which is transmitted

over an independent channel such that c(t) = c remains constant for the entire duration of

the block. The instantaneous SNR of the bth block is now, λb = |c|2Es/N0. Assuming code

combining is used at the receiver, the instantaneous capacity for the entire codeword is

C(λ1, λ2, ..., λF ) =
1

F

F∑

b=1

C(λb). (7.1)

An information outage is said to occur when the instantaneous capacity C(λ1, λ2, ..., λF ) <

r log2 M . The outage probability is hence [105]

po[F ] = P [C(λ1, λ2, ..., λF ) < r log2 M ]. (7.2)

The constrained capacities in (7.1) are evaluated as described in Chapter 5. Fig. 7.1 shows

the information outage probability using code combining in block fading (F = 1 and F =
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Figure 7.1: Information outage probability with code combining in block fading at F = 1
and F = 100 for BICCPM using SO-SDDPD. The combination of code rates and GFSK
parameters are selected such that B = 0.9.

100) with SO-SDDPD based BICCPM at B = 0.9. When F = 1, r = 3/4 with M = 4,

h = 0.285 and BgT = 0.5 has the lowest outage probability as well as the lowest Eb/N0 in

AWGN (from Fig. 7.2). Similarly, when F = 100, r = 2/3 with M = 4, h = 0.24 and

BgT = 0.5 gives not only the lowest outage probability in block fading, but also yields the

lowest Eb/N0 in ergodic Rayleigh fading. Additionally, the trends exhibited by the outage

probability curves at different r and modulation parameters when F = 1 are identical to the

trends exhibited by the ergodic capacity in AWGN and in Rayleigh fading at large F .

These initial results demonstrate that our capacity-based approach in selecting the most

energy efficient combination of CPM parameters and code rates in ergodic fading also helps

in identifying the coded parameters with the lowest outage probability in block fading, at

a desired spectral efficiency. A more extensive search over different spectral efficiencies and

detector designs remains a topic for future work.
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Figure 7.2: GFSK parameters with the lowest information theoretic minimum Eb/N0 (dB)
for various code rates at B = 0.9 in AWGN and Rayleigh channels for BICCPM with SO-
SDDPD.

7.2.2 Effect of Finite Codeword Lengths on Capacity

Fig. 7.3 shows BER curves for coherently detected MSK using a rate 1/2 CDMA 2000

turbo code at different (data) interleaver lengths , in AWGN. Also shown is the information

theoretic limit on Eb/N0 obtained by computing the BICCPM capacity of coherent MSK

(Chapter 5). Observe that as the codeword length decreases, the BICCPM threshold becomes

an increasingly optimistic performance predictor. This is because signaling at the Shannon

capacity-limit requires an infinitely long codeword. However, latency requirements in many

applications restrict the size of the codewords, for instance, the WiMAX LDPC code uses

blocklengths ranging from 576 bits to 2304 bits. It is therefore of practical interest to

investigate performance bounds that take into account the effect of the codeword length on

the performance.

The effect of codeword length on the performance was quantified using the sphere packing

bound in [106]. Given, a certain codeword error probability Pe, capacity C (bits per channel

use) and the codelength Nb, the sphere packing bound can be used to determine the minimum
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Figure 7.3: BER curves for coherently detected MSK using a CDMA 2000 turbo code, in
AWGN.

value of Eb/N0 required to signal at Pe. It is more convenient to instead use a sphere packing

bound approximation (SPBA) [107], such that the minimum Eb/N0 required to attain an

error probability of Pe, using a code of length Nb bits is given by [107]

(Eb/N0)SPBA = (Eb/N0)C + ∆, (7.3)

where

∆ =

√
20C(2C − 1)10 log10[1− Pe]

N loge 10(2C − 1)
, (7.4)

and Eb/N0 is the information theoretic limit on the SNR required to signal reliably at C

bits per channel use with infinitely large codewords. Fig. 7.4 shows the Eb/N0 required for

Pe = 10−4 at blocklengths Nb = 1024 and Nb = 16384, found using (7.3), for 16-QAM in

AWGN. Also shown is the CM capacity for 16-QAM. The extension of the sphere packing

bound to CPM remains a topic for future work.
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Figure 7.4: Minimum Eb/N0 required for Pe = 10−4 at blocklengths Nb = 1024 and 16384
for 16-QAM in AWGN. Also shown is the CM capacity of 16-QAM.

7.2.3 Optimization in the Face of Uncertainty

A singular feature of our capacity-based optimization is that the cost function is evaluated

using Monte Carlo simulations due to unavailability of a closed-form expression. The capacity

Ci is a function of the SNR E i
s/N0 and can be written as

Ci = f(E i
s/N0). (7.5)

However, since the function in (7.5) cannot be evaluated in closed form, Ci is not directly

observable. The uncertainty associated with the Mote Carlo trials implies that Ci is instead

observed over a noisy channel. For any particular Es/N0, a set of N observations is collected

such that

c = f(Es/N0) + n, (7.6)

where n is a vector of independent and identically distributed Gaussian random variables

with zero mean and variance σ2.
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The unbiased estimator for Ci is obtained by finding the sample mean

Ĉi =
1

N

N∑

k=1

ck

= f(Es/N0) +
1

N

N∑

k=1

nk

= f(Es/N0) + v, (7.7)

where v is zero-mean Gaussian, with variance σ2/N . Thus as the observation size increases,

the variance of the estimate decreases. The accuracy of the capacity-based cost function

hence depends on the observation size. Instead of running a large number of trials over

a wide range of SNRs, a more computationally efficient approach would be pick an initial

set of SNRs, SNR0 ∈ {E1
s /N0, E2

s /N0, ..., EM
s /N0} and run a few number of initial trials

N0 ∈ {N1, N2, ..., NM}. We can then “zoom-in” on the range of SNRs interest and run further

Monte Carlo trials. Alternatively, we could apply simulated annealing [108] by treating the

constrained capacity as the internal energy and defining the state as the combination of code

rate and CPM parameters.
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A Review of Relevant Information Theoretic Concepts

A.1 Entropy of Random Variables

The entropy of a continuous random variable (RV) X with pdf p(X) is

H(X) = −
∫

log p(x)p(x)dx. (A-8)

If X is a discrete RV with pmf p(X) and |X| = M ,

H(X) = −
∑

x

log p(x)p(x). (A-9)

If the logarithm has base e, the entropy has units of nats. Alternatively, if the logarithm has

base 2, H(X) has units of bits. The entropy can also be expressed as an expectation

H(X) = −E[log p(X)]. (A-10)

The conditional entropy between RVs Xi and Xj is

H(Xi|Xj) = −E[log p(Xi|Xj)]

= −
∫

xi,xj

log p(xi|xj)p(xi, xj)dxi, dxj. (A-11)

If Xi and Xj are independent

H(Xi|Xj) = H(Xi). (A-12)

The joint entropy of a collection of RVs X1, X2, ..., Xn is

H(X1, X2, ..., Xn) = −E[log p(X1, X2, ..., Xn)]

= −
∫

x1,x2,...,xn

log p(x1, x2, ..., xn)p(x1, x2, ..., xn)dx1, dx2, ..., dxn

= −
∫

x1,x2,...,xn

[log p(x1) + ... + log p(xn|xn−1, ..., x1)] p(x1, x2, ..., xn)dx1, ..., dxn

=
n∑

i=1

H(Xi|Xi−1, ..., X1) (A-13)

If X1, X2, ..., Xn are independent

H(X1, X2, ..., Xn) =
n∑

i=1

H(Xi). (A-14)
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A.2 Mutual Information

The mutual information between RVs X and Y is

I(X; Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= I(Y ; X). (A-15)

If X and Y are independent

I(X; Y ) = 0. (A-16)

The conditional mutual information I(X; Y |Z) is

I(X; Y |Z) = H(X|Z)−H(X|Y, Z). (A-17)

The chain rule for mutual information is

I(X1, X2, ..., Xn; Y ) = H(X1, X2, ..., Xn)−H(X1, X2, ..., Xn|Y )

=
n∑

i=1

H(Xi|Xn−1, ..., X1)−H(Xi|Xn−1, ..., X1, Y )

=
n∑

i=1

I(Xi; Y |Xn−1, ..., X1). (A-18)

A.3 Data Processing Inequality

The random variables X, Y , Z form a Markov chain (X → Y → Z ) if X and Z are

conditionally independent, i.e.

p(x, z|y) = p(x|y)p(z|y). (A-19)

Using the chain rule for mutual information (A-18) we have

I(X; Y, Z) = I(X; Z) + I(X; Y |Z)

= I(X; Y ) + I(X; Z|Y ). (A-20)

From (A-19)

I(X; Z|Y ) = 0. (A-21)
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From (A-20)

I(X; Z) + I(X; Y |Z) = I(X; Y ), (A-22)

which implies

I(X; Y ) ≥ I(X; Z) (A-23)

(A-23) is known as the data processing inequality. In particular, if Z is a function of Y i.e.

Z = g(Y ), then

I(X; g(Y )) ≤ I(X; Y ). (A-24)

A.4 Capacity of Independent Parallel Channels

Let (X1, X2,..., Xn) and (Y1, Y2, ..., Yn) be the inputs and outputs, respectively, of n

independent parallel channels. The mutual information between the parallel channel input

and output is

I(X1, X2, ..., Xn; Y1, Y2, ..., Yn) = H(X1, X2, ..., Xn)−
H(X1, X2, ..., Xn|Y1, Y2, ..., Yn). (A-25)

Since the n channels are independent, from (A-14)

I(X1, X2, ..., Xn; Y1, Y2, ..., Yn) =
n∑

i=1

H(Xi)−
n∑

i=1

H(Xi|Yi)

=
n∑

i=1

I(Xi; Yi). (A-26)

This implies that the capacity of n independent parallel channels is the sum of the capacities

of the individual channels.

B MATLAB Module for Computing CM Capacity us-

ing Monte Carlo Integration

The MATLAB code for computing the CM capacity of 16-QAM using Monte Carlo inte-

gration is shown below. The same code can be easily generalized for other linear modulation
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formats, by changing the alphabet size and the variable symbols.

M=16; % Alphabet size

Ns=10000; % Number of symbols

s(1,1:4)=[(-3:2:3)+sqrt(-1)*3];

s(1,5:8)=[(-3:2:3)+sqrt(-1)*1];

s(1,9:12)=[(-3:2:3)-sqrt(-1)*1];

s(1,13:16)=[(-3:2:3)-sqrt(-1)*3];

symbols=s/sqrt(mean( abs(s).^2 ) );

EsNodB = [-10:1:20]; % Range of SNR

EsNo=10.^(EsNodB/10);

vari=1./(2*EsNo);% Noise variance

[a,datapoints]=size(EsNodB);

maxtrials = 1000*ones(1,length(EsNodB));% Number of Monte Carlo trials

trials = zeros( size( EsNodB ) );

capacity = zeros( size( EsNodB ));

capacity_sum=zeros(size( EsNodB ));

randn( ’state’, cputime);

for snrpoint = 1:length(EsNodB);

while trials(snrpoint) < max_trials(snrpoint)

trials(snrpoint) = trials(snrpoint) + 1;

for i=1:M

data=symbols(i)*ones(1, Ns);

noise=sqrt(vari(snrpoint))*(randn(1,Ns)+sqrt(-1)*randn(1,Ns));

r=data+noise;

f=-(abs(r-data).^2)/(2*vari(snrpoint));

max_str=-100000000;

for k=1:M

data1= symbols(k)*ones(1, Ns);

f1=-(abs(r-data1).^2)/(2*vari(snrpoint));

maxstar=log(exp(f1)+exp(max_str));
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max_str=maxstar;

end

metric=f-maxstar;

capacity_sum(snrpoint)=capacity_sum(snrpoint)+sum(metric);

end

end

capacity(snrpoint)=log2(M)+capacity_sum(snrpoint)/(M*trials(snrpoint)*Ns*log(2));

end

EbNodB = EsNodB - 10*log10(capacity);

plot(EbNodB, capacity);

C MATLAB Modules for Generating Detector Trans-

fer Characteristics

The MATLAB code for computing the detector transfer characteristic is given below.

16-QAM is used as an example, but the code can be easily generalized for other linear

modulations. The same module can also be used to determine the BICM capacity. Other

detector designs can also be incorporated, so long as they produce bit-wise LLRs.

M=16; bps=log2(M);

Ns=10000;

Nb=bps*Ns;

EsNodB = [6.8];

EsNo=10.^(EsNodB/10);

nvari=1./(2*EsNo);

s(1,1:4)=[(-3:2:3)+sqrt(-1)*3];

s(1,5:8)=[(-3:2:3)+sqrt(-1)*1];

s(1,9:12)=[(-3:2:3)-sqrt(-1)*1];

s(1,13:16)=[(-3:2:3)-sqrt(-1)*3];
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symbols=s/sqrt(mean( abs(s).^2 ) );

if (map ==0)%SP labelling

mapper =[ 1 0 0 1;...

1 1 0 0 ;...

1 1 0 1;...

1 0 0 0;...

1 1 1 0;...

1 0 1 1;...

1 0 1 0;...

1 1 1 1;...

0 1 0 1;...

0 0 0 0;...

0 0 0 1;...

0 1 0 0;...

0 0 1 0;...

0 1 1 1;...

0 1 1 0;...

0 0 1 1];

elseif (map ==1)% Gray labelling

mapper =[ 1 1 1 0;...

1 0 1 0;...

0 0 1 0;...

0 1 1 0;...

1 1 1 1;...

1 0 1 1;...

0 0 1 1;...

0 1 1 1;...

1 1 0 1;...

1 0 0 1;...

0 0 0 1;...
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0 1 0 1;...

1 1 0 0;...

1 0 0 0;...

0 0 0 0;...

0 1 0 0];

end

MI_i=[0:0.01:0.99];

[a,points]=size(MI_i);

load(’Jtable’);

vari(1)=0;

vari(2:points)=interp1(mutual_info,sigma_square_vector,MI_i(2:points),’spline’);

for k=1:bps

[a1(:,k)]=find(mapper(:,k)==1);

[a0(:,k)]=find(mapper(:,k)==0);

end

for snr=1:length(EsNodB)

max_trials =[1000*ones(1,points)]; randn( ’state’, cputime);

test = zeros(2,Nb);

capacity_sum = zeros( size( vari ) );

trials = zeros( size( vari ) );

MI_output = zeros( size( vari ) );

for point = 1:length(MI_input)

while trials(point) < max_trials(point)

trials(point) = trials(point) + 1;

cin=round(rand(1, Nb));

data=bit_to_sym_mapper(cin, symbols, mapper, bps);

noise= sqrt(nvari(snr))*(randn(1, Ns)+sqrt(-1)*randn(1, Ns));

r=data+noise;

for k=1:M

data1= symbols(k)*ones(1, Ns);
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f(k,:)=-(abs(r-data1).^2)/(2*nvari(snr));

end

APP =zeros(1,Nb);

APP =sqrt(vari(point))*randn(1,Nb)+(2.*cin-1).*(vari(point)/2);

bit_extrinsic=zeros(1,Nb);

p(1,:)=1./(1+exp(APP));

p(2,:)=1-p(1,:);

cnt=1;

cnt2=1;

sym_prob=zeros(M,1);

for i=1:Ns

for j=1:M

tmp=1;

for k=1:bps

tmp =tmp*p(mapper(j,k)+1,cnt2+k-1);

end

sym_prob(j)=tmp;

end

for k=1:bps

num=f(a1(:,k),i);

den=f(a0(:,k),i);

x1=sym_prob(a1(:,k));

x0=sym_prob(a0(:,k));

maxstar1=log(sum(exp(num).*x1));

maxstar0=log(sum(exp(den).*x0));

LLR(1,cnt)=maxstar1-maxstar0;

cnt=cnt+1;

end

cnt2=cnt2+bps;

end
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bit_extrinsic=LLR-APP;

test(2,:)= (1-2*cin).*bit_extrinsic;

maxstar=log(exp(test(1,:))+exp(test(2,:)));

capacity_sum(point) = capacity_sum(point) +sum(maxstar);

end

MI_output(point) = 1 - capacity_sum(point)/trials(point)/(Ns)/log(2)/log2(M);

end

end

plot(MI_i, MI_output);

function data = bit_to_sym_mapper(cin, symbols, mapper, bps) )

[rows, cols]=size(mapper);

k=1;

for i=1:bps:length(cin)

ind(1,1:bps)=cin(1,i:i+bps-1);

for j=1:rows

if ((ind(1,1:bps)==mapper(j,1:bps)))

sym=j;

break;

end

end

data(k)=symbols(sym);

k=k+1;

end
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