44,311 research outputs found

    A survey of qualitative spatial representations

    Get PDF
    Representation and reasoning with qualitative spatial relations is an important problem in artificial intelligence and has wide applications in the fields of geographic information system, computer vision, autonomous robot navigation, natural language understanding, spatial databases and so on. The reasons for this interest in using qualitative spatial relations include cognitive comprehensibility, efficiency and computational facility. This paper summarizes progress in qualitative spatial representation by describing key calculi representing different types of spatial relationships. The paper concludes with a discussion of current research and glimpse of future work

    A stochastic flow rule for granular materials

    Full text link
    There have been many attempts to derive continuum models for dense granular flow, but a general theory is still lacking. Here, we start with Mohr-Coulomb plasticity for quasi-2D granular materials to calculate (average) stresses and slip planes, but we propose a "stochastic flow rule" (SFR) to replace the principle of coaxiality in classical plasticity. The SFR takes into account two crucial features of granular materials - discreteness and randomness - via diffusing "spots" of local fluidization, which act as carriers of plasticity. We postulate that spots perform random walks biased along slip-lines with a drift direction determined by the stress imbalance upon a local switch from static to dynamic friction. In the continuum limit (based on a Fokker-Planck equation for the spot concentration), this simple model is able to predict a variety of granular flow profiles in flat-bottom silos, annular Couette cells, flowing heaps, and plate-dragging experiments -- with essentially no fitting parameters -- although it is only expected to function where material is at incipient failure and slip-lines are inadmissible. For special cases of admissible slip-lines, such as plate dragging under a heavy load or flow down an inclined plane, we postulate a transition to rate-dependent Bagnold rheology, where flow occurs by sliding shear planes. With different yield criteria, the SFR provides a general framework for multiscale modeling of plasticity in amorphous materials, cycling between continuum limit-state stress calculations, meso-scale spot random walks, and microscopic particle relaxation

    Imbibition in Disordered Media

    Full text link
    The physics of liquids in porous media gives rise to many interesting phenomena, including imbibition where a viscous fluid displaces a less viscous one. Here we discuss the theoretical and experimental progress made in recent years in this field. The emphasis is on an interfacial description, akin to the focus of a statistical physics approach. Coarse-grained equations of motion have been recently presented in the literature. These contain terms that take into account the pertinent features of imbibition: non-locality and the quenched noise that arises from the random environment, fluctuations of the fluid flow and capillary forces. The theoretical progress has highlighted the presence of intrinsic length-scales that invalidate scale invariance often assumed to be present in kinetic roughening processes such as that of a two-phase boundary in liquid penetration. Another important fact is that the macroscopic fluid flow, the kinetic roughening properties, and the effective noise in the problem are all coupled. Many possible deviations from simple scaling behaviour exist, and we outline the experimental evidence. Finally, prospects for further work, both theoretical and experimental, are discussed.Comment: Review article, to appear in Advances in Physics, 53 pages LaTe

    Spaceborne radar observations: A guide for Magellan radar-image analysis

    Get PDF
    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described

    Toward Regional Characterizations of the Oceanic Internal Wavefield

    Get PDF
    Many major oceanographic internal wave observational programs of the last 4 decades are reanalyzed in order to characterize variability of the deep ocean internal wavefield. The observations are discussed in the context of the universal spectral model proposed by Garrett and Munk. The Garrett and Munk model is a good description of wintertime conditions at Site-D on the continental rise north of the Gulf Stream. Elsewhere and at other times, significant deviations in terms of amplitude, separability of the 2-D vertical wavenumber - frequency spectrum, and departure from the model's functional form are noted. Subtle geographic patterns are apparent in deviations from the high frequency and high vertical wavenumber power laws of the Garrett and Munk spectrum. Moreover, such deviations tend to co-vary: whiter frequency spectra are partnered with redder vertical wavenumber spectra. Attempts are made to interpret the variability in terms of the interplay between generation, propagation and nonlinearity using a statistical radiative balance equation. This process frames major questions for future research with the insight that such integrative studies could constrain both observationally and theoretically based interpretations

    Partially fluidized shear granular flows: Continuum theory and MD simulations

    Full text link
    The continuum theory of partially fluidized shear granular flows is tested and calibrated using two dimensional soft particle molecular dynamics simulations. The theory is based on the relaxational dynamics of the order parameter that describes the transition between static and flowing regimes of granular material. We define the order parameter as a fraction of static contacts among all contacts between particles. We also propose and verify by direct simulations the constitutive relation based on the splitting of the shear stress tensor into a``fluid part'' proportional to the strain rate tensor, and a remaining ``solid part''. The ratio of these two parts is a function of the order parameter. The rheology of the fluid component agrees well with the kinetic theory of granular fluids even in the dense regime. Based on the hysteretic bifurcation diagram for a thin shear granular layer obtained in simulations, we construct the ``free energy'' for the order parameter. The theory calibrated using numerical experiments with the thin granular layer is applied to the surface-driven stationary two dimensional granular flows in a thick granular layer under gravity.Comment: 20 pages, 19 figures, submitted to Phys. Rev.

    Reasoning with Mixed Qualitative-Quantitative Representations of Spatial Knowledge

    Get PDF
    Drastic transformations in human settlements are caused by extreme events. As a consequence, descriptions of an environment struck by an extreme event, based on spatial data collected before the event, become suddenly unreliable. On the other hand, time critical actions taken for responding to extreme events require up-to-date spatial information. Traditional methods for spatial data collection are not able to provide updated information rapidly enough, calling for the development of new data collection methods. Reports provided by actors involved in the response operations can be considered as an alternative source of spatial information. Indeed, reports often convey spatial descriptions of the environment. The extraction of spatial descriptions from such reports can serve a fundamental role to update existing information which is usually maintained within, and by means of, Geographic Information Systems. However, spatial information conveyed by human reports has qualitative characteristics, that strongly differ from the quantitative nature of spatial information stored in Geographic Information Systems. Methodologies for integrating qualitative and quantitative spatial information are required in order to exploit human reports for updating existing descriptions of spatial knowledge. Although a significant amount of research has been carried on how to represent and reason on qualitative data and qualitative information, relatively little work exists on developing techniques to combine the different methodologies. The work presented in this thesis extends previous works by introducing a hybrid reasoning system--able to deal with mixed qualitative-quantitative representations of spatial knowledge--combining techniques developed separately for qualitative spatial reasoning and quantitative data analysis. The system produces descriptions of the spatial extent of those entities that have been modified by the event (such as collapsed buildings), or that were not existing before the event (such as fire or ash clouds). Furthermore, qualitative descriptions are produced for all entities in the environment. The former descriptions allow for overlaying on a map the information interpreted from human reports, while the latter triggers warning messages to people involved in decision making operations. Three main system functionalities are investigated in this work: The first allows for translating qualitative information into quantitative descriptions. The second aims at translating quantitative information into qualitative relations. Finally, the third allows for performing inference operations with information given partly qualitatively and partly quantitatively for boosting the spatial knowledge the system is able to produce

    The Globular Cluster Systems around NGC 3311 and NGC 3309

    Full text link
    We present extensive new photometry in (g',i') of the large globular cluster (GC) system around NGC 3311, the central cD galaxy in the Hydra cluster. Our GMOS data cover a 5.5' field of view and reach a limiting magnitude i' = 26, about 0.5 magnitude fainter than the turnover point of the GC luminosity function. We find that NGC 3311 has a huge population of ~16, 000 GCs, closely similar to the prototypical high specific frequency Virgo giant M87. The color-magnitude distribution shows that the metal-poor blue GC sequence and the metal-richer red sequence are both present, with nearly equal numbers of clusters. Bimodal fits to the color distributions confirm that the blue sequence shows the same trend of progressively increasing metallicity with GC mass that has previously been found in many other large galaxies; the correlation we find corresponds to a scaling of GC metallicity with mass of Z ~ M^0.6 . By contrast, the red sequence shows no change of mean metallicity with mass, but it shows an upward extension to much higher than normal luminosity into the UCD-like range, strengthening the potential connections between massive GCs and UCDs. The GC luminosity function, which we measure down to the turnover point at M_I = -8.4, also has a normal form like those in other giant ellipticals. Within the Hydra field, another giant elliptical NGC 3309 is sitting just 100" from the cD NGC 3311. We use our data to solve simultaneously for the spatial structure and total GC populations of both galaxies at once. Their specific frequencies are S_N (NGC 3311) = 12.5 +/- 1.5 and S_N (NGC 3309) = 0.6 +/-0.4. NGC 3311 is completely dominant and entirely comparable with other cD-type systems such as M87 in Virgo.Comment: 15 pages, 15 figures. Accepted to the Astrophysical Journal. Version with higher resolution figures is available at http://www.thewehners.net/astro/papers/wehner_n3311_highres.pd
    corecore