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Abstract

Drastic transformations in human settlements are caused by extreme events.

As a consequence, descriptions of an environment struck by an extreme

event, based on spatial data collected before the event, become suddenly

unreliable. On the other hand, time critical actions taken for responding to

extreme events require up-to-date spatial information. Traditional meth-

ods for spatial data collection are not able to provide updated information

rapidly enough, calling for the development of new data collection methods.

Reports provided by actors involved in the response operations can be con-

sidered as an alternative source of spatial information. Indeed, reports often

convey spatial descriptions of the environment. The extraction of spatial

descriptions from such reports can serve a fundamental role to update ex-

isting information which is usually maintained within, and by means of,

Geographic Information Systems. However, spatial information conveyed

by human reports has qualitative characteristics, that strongly differ from

the quantitative nature of spatial information stored in Geographic Infor-

mation Systems. Methodologies for integrating qualitative and quantitative

spatial information are required in order to exploit human reports for up-

dating existing descriptions of spatial knowledge.

Although a significant amount of research has been carried on how to repre-

sent and reason on qualitative data and qualitative information, relatively

little work exists on developing techniques to combine the different method-

ologies. The work presented in this thesis extends previous works by intro-

ducing a hybrid reasoning system—able to deal with mixed qualitative-

quantitative representations of spatial knowledge—combining techniques

developed separately for qualitative spatial reasoning and quantitative data

analysis.

The system produces descriptions of the spatial extent of those entities that

have been modified by the event (such as collapsed buildings), or that were

not existing before the event (such as fire or ash clouds). Furthermore, qual-

itative descriptions are produced for all entities in the environment. The for-

mer descriptions allow for overlaying on a map the information interpreted



from human reports, while the latter triggers warning messages to people

involved in decision making operations. Three main system functionalities

are investigated in this work: The first allows for translating qualitative

information into quantitative descriptions. The second aims at translat-

ing quantitative information into qualitative relations. Finally, the third

allows for performing inference operations with information given partly

qualitatively and partly quantitatively for boosting the spatial knowledge

the system is able to produce.
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Von Fröhligkeit. I apologize if I forgot to mention somebody that surely

deserves my sincere gratitude: I dedicate Daniel Pennac’s novel “Merci” to

them all.



iv



Contents

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Geographic Information Systems . . . . . . . . . . . . . . . . . . 4

1.2.2 Geographic Information After Extreme Events . . . . . . . . . . 5

1.2.3 Information Integration After Extreme Events . . . . . . . . . . 6

1.3 Thesis and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Geographic Information Manipulation 11

2.1 Quantitative Representations and Computational Geometry . . . . . . . 11

2.1.1 Quantitative Representations . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Computational Geometry Algorithms . . . . . . . . . . . . . . . 15

2.1.3 Data Collection Methods . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Qualitative Spatial Representation and Reasoning . . . . . . . . . . . . 20

2.2.1 Qualitative Spatial Calculi . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Representation of Spatial Configurations . . . . . . . . . . . . . . 27

2.2.3 Topology, Cardinal Directions, and Visibility Calculi . . . . . . . 29

2.2.4 On the Combination of Qualitative Calculi . . . . . . . . . . . . 38

2.2.5 Spatial Information Translation . . . . . . . . . . . . . . . . . . . 40

2.3 Uncertain Spatial Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Modeling Uncertain Spatial Knowledge . . . . . . . . . . . . . . 42

2.3.2 Uncertain Spatial Knowledge in GIS . . . . . . . . . . . . . . . . 43

2.3.3 Qualitative Relations Between Uncertain Regions . . . . . . . . . 44



vi CONTENTS

3 Spatial Information Integration for EM Response 45

3.1 Geographic Data Collection for Emergency Response . . . . . . . . . . . 45

3.1.1 Emergency Management . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Example: Information Availability after the Haiti Earthquake . . 48

3.1.3 Information Lack in the EM Response Phase . . . . . . . . . . . 51

3.1.4 VGI for Emergency Management . . . . . . . . . . . . . . . . . . 51

3.2 A Geographic Information Integration System . . . . . . . . . . . . . . . 52

3.2.1 Spatial Information Extraction and

Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Spatial Information Integration . . . . . . . . . . . . . . . . . . . 54

3.2.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Qualitative and Quantitative Spatial Information Integration . . . . . . 57

3.3.1 Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Spatial Regions with Infinite Extent . . . . . . . . . . . . . . . . 59

3.3.3 Imprecise Description of Spatial Regions . . . . . . . . . . . . . . 60

3.3.4 Quantification with Imprecise Reference Objects . . . . . . . . . 64

3.3.5 Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.6 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Quantification of Qualitative Spatial Information 69

4.1 A System for Spatial Information Translation . . . . . . . . . . . . . . . 70

4.2 Quantification Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Representation of Regions with Infinite Extent . . . . . . . . . . . . . . 73

4.4 Spatial-Region Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 The Quantification Component . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Quantification Algorithm . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Quantification of Qualitative Spatial Relations . . . . . . . . . . . . . . 76

4.6.1 QuantifyC for Cardinal Direction Relations . . . . . . . . . . . . 76

4.6.2 QuantifyC for Visibility Relations . . . . . . . . . . . . . . . . . 85

4.6.3 QuantifyC for Topological Relations . . . . . . . . . . . . . . . . 94

4.7 Computational Complexity of Quantification . . . . . . . . . . . . . . . 97

4.7.1 Cardinal Direction Quantification . . . . . . . . . . . . . . . . . . 98

4.7.2 Visibility Quantification . . . . . . . . . . . . . . . . . . . . . . . 99

4.7.3 Topology Quantification . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



CONTENTS vii

5 Qualification of Quantitative Spatial Information 103

5.1 The Qualification Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Qualification of Topological Relations . . . . . . . . . . . . . . . . . . . 104

5.3 Qualification of Visibility Relations . . . . . . . . . . . . . . . . . . . . . 110

5.4 Qualification of Cardinal Direction Relations . . . . . . . . . . . . . . . 114

5.4.1 Precise Reference Object . . . . . . . . . . . . . . . . . . . . . . 116

5.4.2 Imprecise Reference Object . . . . . . . . . . . . . . . . . . . . . 117

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Computational Complexity of Qualification . . . . . . . . . . . . . . . . 125

5.5.1 Topology Qualification . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5.2 Visibility Qualification . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5.3 Cardinal Direction Qualification . . . . . . . . . . . . . . . . . . 127

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 A Hybrid Spatial Reasoning System 129

6.1 A Hybrid Qualitative-Quantitative Reasoning System . . . . . . . . . . 129

6.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Multi-calculus Constraint Network . . . . . . . . . . . . . . . . . . . . . 131

6.3 The Geometric Reasoning Component . . . . . . . . . . . . . . . . . . . 133

6.3.1 Computational Complexity of Geometric Reasoning . . . . . . . 134

6.4 The Qualification Component . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4.1 Computational Complexity of the Qualification Component . . . 135

6.5 The Qualitative Reasoning Component . . . . . . . . . . . . . . . . . . . 135

6.5.1 Generalization of Ternary Relations’ Composition . . . . . . . . 139

6.6 The Hybrid Spatial Reasoning Algorithm . . . . . . . . . . . . . . . . . 140

6.6.1 A Hybrid Spatial Reasoning Example . . . . . . . . . . . . . . . 141

6.6.2 Heuristics for Reducing the Computation Time . . . . . . . . . . 143

6.6.3 Combination of Qualitative Calculi . . . . . . . . . . . . . . . . . 145

6.7 Thematic Based Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Experimental Evaluation 149

7.1 Prototype Geographic Information Integration System . . . . . . . . . . 149

7.1.1 Spatial Data Input, Visualization, and Querying . . . . . . . . . 149

7.1.2 Storage Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.3 Geographic Information Integration Layer . . . . . . . . . . . . . 151

7.2 Evaluation of the Geographic Information Integration Layer . . . . . . . 152

7.2.1 The Quantification Component . . . . . . . . . . . . . . . . . . . 154

7.2.2 The Qualification Component . . . . . . . . . . . . . . . . . . . . 162

7.2.3 The Hybrid Spatial Reasoning System . . . . . . . . . . . . . . . 167



viii CONTENTS

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8 Summary and Outlook 175

8.1 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.1.1 The Quantification Operation . . . . . . . . . . . . . . . . . . . . 176

8.1.2 The Qualification Operation . . . . . . . . . . . . . . . . . . . . . 177

8.1.3 Reasoning with Mixed Representations of Spatial Knowledge . . 178

8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A Infinite-Region Objects: Representation and Algorithms 181

A.1 Infinite-Region Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.2 Algorithms for Infinite-Region Objects . . . . . . . . . . . . . . . . . . . 183

A.2.1 Infinite-Region Object Cropping . . . . . . . . . . . . . . . . . . 183

A.2.2 Infinite-Region Objects Intersection . . . . . . . . . . . . . . . . 184

A.2.3 Infinite-Region Objects Union and Difference . . . . . . . . . . . 186

A.2.4 MBR, Convex Hull, and Tangents of Infinite-Region Objects . . 187

B Testbed – Complementary Information 189

References 191



List of Figures

1.1 Best routes for the ambulances to get to the hospital. . . . . . . . . . . 2

1.2 Hazardous areas reported by rescuers and distress calls. . . . . . . . . . 3

2.1 Regions in R
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Geometric representation of a single multi-region object. . . . . . . . . . 14

2.3 Half-plane representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Minimum Bounding Rectangle, Convex Hull, and Buffer of the object O. 15

2.5 Intersection, union, and difference of the objects O1 and O2. . . . . . . . 17

2.6 Common tangents between convex objects. . . . . . . . . . . . . . . . . 18

2.7 Cardinal directions example. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Constraint networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Base relations of the Region Connection Calculus. . . . . . . . . . . . . 29

2.10 Frame of reference of the Cardinal Direction Calculus. . . . . . . . . . . 32

2.11 Projective ternary calculi. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.12 Frame of reference of the Visibility Calculus. . . . . . . . . . . . . . . . 37

3.1 PEOPLES resilience framework and the information gap after an ex-

treme event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Haiti earthquake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Extreme event: Lack of information in the response phase. . . . . . . . . 51

3.4 Inference of a quantitative approximation for the Hazardous Area (HA). 55

3.5 Architecture of the geographic information integration system. . . . . . 56

3.6 Quantification of the qualitative relation NE(O∗HA, OAI). . . . . . . . . 57

3.7 Drawbacks in the definition of areas of interest. . . . . . . . . . . . . . . 59

3.8 Egg-yolk object O∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Precision and accuracy in the representation of a spatial region. . . . . 61

3.10 Multi-region imprecise objects. . . . . . . . . . . . . . . . . . . . . . . . 62

3.11 Qualification of relations between imprecise objects. . . . . . . . . . . . 66

3.12 Reasoning with qualitative and geometric information. . . . . . . . . . . 67



x LIST OF FIGURES

4.1 A system to translate geographic information. . . . . . . . . . . . . . . . 70

4.2 Quantification of CDC relations. . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Quantification A+
N if the reference object is precise or imprecise. . . . . 72

4.4 Infinite acceptance areas and the corresponding infinite-region objects. . 74

4.5 A−R(O2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 IR definition of the CDC quantification over a precise reference object. . 78

4.7 Line segment rays and quantifications over a line segment. . . . . . . . . 79

4.8 Quantification of cardinal direction relations – Case A+
R(O

+
2 ). . . . . . . 82

4.9 Quantification of cardinal direction relations – Case A+
R(O

∗
2). . . . . . . 84

4.10 A−V (O2, O3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11 Quantification of the visibility relations using infinite-region objects. . . 87

4.12 A+
RST
V is

(O2, O
+
3 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.13 A+
RST
V is

(O2, O
∗
3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.14 A+
RST
V is

(O+
2 , O3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.15 A+
RST
V is

(O+
2 , O

+
3 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.16 A+
RST
V is

(O+
2 , O

∗
3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.17 A+
RST
V is

(O∗2, O3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.18 A+
RST
V is

(O∗2, O
+
3 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.19 A+
RST
V is

(O∗2, O∗3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.20 Quantification of RCC-8 relations. . . . . . . . . . . . . . . . . . . . . . 96

5.1 Consistency checking of R(O1, O
◦
2). . . . . . . . . . . . . . . . . . . . . . 106

5.2 Qualification of visibility relations between imprecise objects. . . . . . . 112

5.3 RV is(O
∗
i , O4, O

∗
5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Qualification of CDC relations between imprecise objects. . . . . . . . . 115

5.5 Cardinal direction crisp relations between imprecise objects. . . . . . . . 119

5.6 Objects configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 Architecture of the hybrid qualitative-quantitative reasoning system. . . 130

6.2 Multi-calculus constraint network. . . . . . . . . . . . . . . . . . . . . . 132

6.3 MNC derived from the multi-calculus constraint network in Fig. 6.2. . . 132

6.4 Algebraic closure algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Actual object configuration and known objects. . . . . . . . . . . . . . . 142

6.6 First approximations of O∗4, O∗5, O∗6, and O∗9. . . . . . . . . . . . . . . . 143

6.7 Final approximations of O∗4 and O∗9. . . . . . . . . . . . . . . . . . . . . 144

6.8 Hybrid spatial reasoning system with the thematic reduction component. 147

7.1 QGIS Phyton plugin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Storage layer – Logical schema. . . . . . . . . . . . . . . . . . . . . . . . 151



LIST OF FIGURES xi

7.3 Geographic information integration layer – Class diagram. . . . . . . . . 152

7.4 OpenStreetMap dataset – Bremen. . . . . . . . . . . . . . . . . . . . . . 154

7.5 Quantification testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.6 Quantification of RCC relations. . . . . . . . . . . . . . . . . . . . . . . 157

7.7 CDC quantification: precise reference object. . . . . . . . . . . . . . . . 158

7.8 CDC quantification: imprecise reference object with empty yolk. . . . . 158

7.9 CDC quantification: imprecise reference object with non-empty yolk. . . 158

7.10 Quantification of Visibility relations: precise reference objects. . . . . . 160

7.11 Quantification of Visibility relations: imprecise reference objects. . . . . 160

7.12 Qualification testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.13 Qualification of RCC-8 relations. . . . . . . . . . . . . . . . . . . . . . . 164

7.14 Qualification of CDC relations. . . . . . . . . . . . . . . . . . . . . . . . 165

7.15 Qualification of Visibility relations. . . . . . . . . . . . . . . . . . . . . . 166

7.16 Hybrid spatial reasoning testbed extracted from OSM Bremen. . . . . . 168

7.17 Hybrid reasoning system – Heuristics. . . . . . . . . . . . . . . . . . . . 169

7.18 Hybrid reasoning system – Computation time. . . . . . . . . . . . . . . 170

7.19 Hybrid reasoning system – Reasoning iterations. . . . . . . . . . . . . . 173

8.1 Overlaying of quantifications over existing maps. . . . . . . . . . . . . . 177

A.1 Complex infinite-region objects. . . . . . . . . . . . . . . . . . . . . . . . 182

A.2 Cropping of an infinite-region object. . . . . . . . . . . . . . . . . . . . . 183

A.3 Intersection of two infinite-region objects. . . . . . . . . . . . . . . . . . 185

A.4 MBR and convex hull of infinite-region objects. . . . . . . . . . . . . . . 187

B.1 Qualification testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.2 Hybrid spatial reasoning testbed. . . . . . . . . . . . . . . . . . . . . . . 190



xii LIST OF FIGURES



List of Tables

2.1 Inverse table for the RCC-8 calculus. . . . . . . . . . . . . . . . . . . . 30

2.2 Composition table for the RCC-8 calculus. . . . . . . . . . . . . . . . . 30

2.3 The composition of CDC single-tile relations. . . . . . . . . . . . . . . . 34

2.4 Allen’s Interval Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Correlation among CDC rectangular relations and RA relations. . . . . 35

2.6 The inverse of CDC single-tile relations. . . . . . . . . . . . . . . . . . . 36

2.7 Permutation and rotation of Visibility relations. . . . . . . . . . . . . . 38

2.8 Composition of two single-tile visibility relations . . . . . . . . . . . . . 38

3.1 Haiti Earthquake: raster data availability. . . . . . . . . . . . . . . . . 49

3.2 Haiti Earthquake: vector data availability. . . . . . . . . . . . . . . . . 49

4.1 Quantification of Visibility relations with imprecise reference objects. . . 89

4.2 Quantification of RCC-8 relations with imprecise reference objects. . . . 97

5.1 Qualification of RCC-8 relations – RRCC(O
∗
1, O

∗
2). . . . . . . . . . . . . . 106

5.2 Qualification of RCC-8 relations . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Side
(
RST

)
operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Qualification of CDC relations between spatial-region objects. . . . . . . 123

7.1 Output relations – Variable number of unknown entities. . . . . . . . . . 171

7.2 Output relations – Variable number of input relations. . . . . . . . . . . 171

7.3 Quantification reduction with variable number of unknown entities. . . . 172

7.4 Quantification reduction with variable number of input relations. . . . . 172



xiv LIST OF TABLES



Chapter 1

Introduction

1.1 Motivation

The development of computational approaches for the integration of spatial informa-

tion is crucial for supporting rescue operations after extreme events. When a natural

disaster, such as an earthquake, a flood, or a tornado, hits a city, several operations

start in order to rescue injured people and, in general, give first aid to all people affected

by the event. For instance, fire brigades rescue trapped people from collapsed build-

ings and clear the main connection roads obstructed by rubble, while red cross aims

at transporting injured people to the hospitals and setting up first gathering points

for delivering relief goods to the population. These operations rely on spatial knowl-

edge about the region hit by the disaster, such as maps reporting the infrastructure’s

functionality after the event. Nevertheless, information that describes the environment

before the event is not reliable anymore for grounding any decision since the event can

cause several changes in the region: for example, after an earthquake, buildings can

collapse and roads can be obstructed by rubble. Hence, first responders (such as fire

brigades and ambulance staff) communicate with each other in order to report about

the problems they encounter while accomplishing a particular task and to inform the

others about critical situations. Also, distress calls received from people affected by

the event may be used to know about critical situations that follow the natural event.

For instance, imagine that the city depicted in Fig. 1.1 has been struck by an

earthquake and that the following messages are received by different emergency lines:

Fire brigades. A big fire broke out north west of the Airport. As far as I see it

extends to the River.

Red Cross. The road north of the Stadium is totally obstructed by rubble: it is not

possible to drive there anymore.
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Distress call to police. I live in the University College. There is a big fire in

the direction of the Airport but it did not clear the college yet.

e

UF

9

B

C
1

Y
1

Y
2

e

F

U

9

B

C
1

C
2

Y
1

Y
2

Hazardous Material Storage

Stadium

University College

Airport

Hospital

Ambulance 1

Ambulance 2

Fire Station 1

Fire Station 2

C
2

Figure 1.1: Best routes for the ambulances to get to the hospital.

Ambulances need to take wounded people to the hospital as fast as possible. In order

to reach their destination, they follow the route instructions displayed on a navigation

system, especially if they are not familiar with the environment1. In the case the above

communications are broadcasted to the first responders, and hence to the ambulance

drivers, they would be able to realize that the routes cross particularly dangerous areas

and subsequently they would search for alternative routes. For instance, the driver of

Ambulance 1 may notice that his route could be blocked by the fire since the route

suggested by the system goes across the area north west of the airport, and a fire has

been reported in that area by the fire brigades. To avoid additional risks, he could

search beforehand for an alternative way to get to the hospital. However, it is not

guaranteed that all rescuers receive the communications: for example the driver of

Ambulance 2 may not receive the reports about the fire and he would then follow the

route instructions suggested by his system. Since that route crosses the area of the fire,

it would be blocked by the flames and the driver would be forced to go back in order to

1This situation arises when people from different areas and regions get to the zone hit by the
catastrophe in order to help in the rescue operations.
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avoid the fire area; only afterwards he can search an alternative route to the hospital.

As main consequence, the driver needs more time to take the wounded to the hospital

and this could tragically result in the loss of lives.

Furthermore, even if the communications do not mention it directly, the Hazardous

Material Storage site could go up in flames. In such a case, due to the kind of material

stored, the extreme event may have even more catastrophic consequences. Hence, fire

brigades with proper equipment should be sent to shield the site from the fire; however,

this choice depends on whether or not the receiver of the reports notices the danger

on time. Similar problems are faced by all other people involved in the disaster rescue

operations. To overcome these problems, the communications concerning damages and

risks, such as the fire as well as the obstructed road near the stadium, should be

interpreted, reported on the map and then shared with all actors involved in the rescue

phases.
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Figure 1.2: Hazardous areas reported by rescuers and distress calls.

At first instance, the interpretation of the communication can be performed by

human operators. Humans are able to almost instantaneously interpret spatial infor-

mation contained in verbal reports as the ones described above. However, considering

the amount of information exchanged after an extreme event, it is impossible for only

one person, or even for a group of persons, to analyze and interpret the big flow of com-

munication coming from all rescuers or people affected by the disaster. Therefore, in
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order to integrate the information and spread it to the first responders, a system needs

to be developed that automatically: (i) collects all the communications, (ii) interprets

them, (iii) integrates the information with previous knowledge, (iv) draws the results

on a map and, finally, (v) shares the new information with other people involved in the

rescue operations.

An example of the information that such a system yields is depicted in Fig. 1.2. The

descriptions of both the fire and the obstructed road near the stadium are interpreted

and depicted on the map as Hazardous Areas. These interpretations can be automat-

ically spread to first responders. Hence, the drivers of the ambulances would directly

see that the routes suggested by the navigation systems cross the Hazardous Areas : in

the case they evaluate that passing through these areas presents too many risks, they

could ask the system to search for an alternative route to get to the hospital. However,

they could decide to ignore the alert in case they believe the risk is not so high, for

instance if the route crosses the dangerous area only in a short stretch. Equivalently,

the system can be set to automatically suggest an alternative path if risky conditions

are met by the shortest path. Furthermore, considering that the Hazardous Material

Storage site is exactly in the area in which the fire is burning, an automatic alert can

be sent to the fire stations in order to dispatch the closest fire brigades to shield that

area from the fire and avoid additional risks. In the example of Fig. 1.2, Fire Station

2 is alerted since it is the closest fire station to the site.

The integration of spatial information aims at combining information collected from

different sources and having differing conceptual representations, and at providing an

unified view of the information1. In order to perform the integration, the system has to

take into account the heterogeneous characteristics of spatial information as described

in a map and as reported in human communications. The integration process calls for

meeting the challenges posed by the different forms of spatial information. In particular,

challenges that arise by considering the imprecise2 traits of spatial descriptions are faced

in this work.

1.2 Problem Characterization

1.2.1 Geographic Information Systems

Geographic Information Systems (GIS) are used for storing and managing geographic

data collected by national or local administrations, enterprises, and companies. The

characteristics of the information depend on the specific business: information on roads

and other infrastructure is gathered to draw maps or develop car navigation systems;

1Information integration is also called information fusion in the literature.
2The distinction among concepts such as precision, accuracy, and resolution of spatial descriptions

will be discussed in Section 2.3.
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land use information is collected for cadastral or ecological applications; hazard maps

are created to provide the population of a certain region with information on possible

risks of disasters.

GIS are not designed to only store information, but they also implement algorithms

to retrieve particular information that is necessary to solve a specific task. A local

administration that wants to build a new road would be interested in knowing who are

the owners of the parcels of land eventually crossed by the new road. A car navigation

system employs such algorithms to identify the best route to get to a chosen destination

(e.g., the hospital).

In general, high precision is required in the data stored into a GIS; the actual level

of precision depends on the purpose of the information. For example, if a road is not

precisely measured and is reported within a range of 50 meters around its real position,

a car navigation system could not be able to locate its actual position or could produce

misleading results while computing the best route. For the same reason, with a low

level of precision in the data, the administration could get a wrong list of land owners.

Geographic information changes are often slow processes and the changes affect

only a small part of the information stored in a GIS. For instance, the construction of

a new road or building requires a long time to be completed, and it affects only the

neighbor of the new entity. In this case, the information in the GIS can be updated by

making accurate measurements of the new entity and entering them into the system.

Additional data is collected using the same approach in order to update information

related to neighboring objects that are affected by the change.

1.2.2 Geographic Information After Extreme Events

The scenario drastically changes when an unexpected natural event, like an earthquake

or a tornado, modifies the typical static environment within a few seconds. Information

changes are not slow processes anymore and can concern a big share of the whole

information stored in a GIS. Nevertheless, most of the rescuing decisions following the

extreme event rely on the spatial knowledge of the environment: in order to take better

decisions, the information should be up-to-date. If a crucial decision is grounded on

outdated information, several drawbacks can arise: for instance, as described in Section

1.1, the driver of Ambulance 2, that did not receive the communications that report the

fire, needs more time than necessary to get to the hospital, since the route suggested

by his navigation system is obstructed by the fire.

Hence, GIS information needs to be updated as soon as possible in order to provide

all actors involved in the rescuing with reliable knowledge about the environment. Even

though several methods have been developed to collect geographic data, such as the

GPS technology, they require more than one day before the data is available, as shown

after the disaster that hit the city of Port-Au-Prince (Haiti) in January 2010. For this
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reason, information available in the first hours after the event, and so in the phase in

which reliable information can make the difference between a successful or unsuccessful

rescue, was not up-to-date and hence it was not reliable.

However, nontraditional sources of geographic information can be taken into con-

sideration as an alternative to the common collecting methods1. In particular, distress

call and communications among rescue squads provide descriptions about changes that

affected the environment. This information is usually only interpreted by the receiver

and it is eventually forwarded to other rescuers: the information is hence only partially

exploited. In order to provide the rescuers with up-to-date knowledge, such information

should be automatically interpreted and shared with the first responders, for instance

by means of maps.

The interpretation does not yield a precise description of the real extent of the en-

tity reported in the communications (e.g., the fire) due to the lack of specificity in some

of the spatial descriptions, rather an approximation of it can be computed. However,

the approximate description is adequate for reducing the hazard in the decisions that

are taken after an extreme event. For instance, even if the area of the fire is only

approximate and is not precisely described (some zones within that area are not actu-

ally affected by the fire), the fire brigades can be automatically alerted to shield the

Hazardous Material Storage Site from the fire. The approximate information is used to

reduce the hazard in any decision, hence improving the response to the extreme event.

1.2.3 Information Integration After Extreme Events

After an extreme event, first responders ground their decisions on geographic knowledge

commonly stored and managed by Geographic Information Systems. These decisions

can be supported by the use of automatic instruments to retrieve specific information

necessary to solve a particular task (e.g., best route computation). As discussed above,

geographic information collected before the disaster is not reliable anymore. However,

as shown in Section 1.1, while communicating with each other, first responders report

and describe the changes in the environment caused by the extreme event. This in-

formation must be exploited to update and to enrich the rescuers’ knowledge of the

environment.

In order to provide rescuers, and in general all people involved in the first aid phases,

with maps of the region hit by the disaster that also report the damages that it caused

(like in Fig. 1.2), methods to integrate geographic information described by humans

with the information stored into GIS must be developed. The characteristics of and

the differences among the various information sources must be analyzed to perform the

integration.

1These approaches will be detailed in Section 3.1.
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Entities managed by Geographic Information Systems are represented employing

quantitative information: the hospital, for instance, has a unique and precise location

that can be represented through its coordinates within a well-defined geographic refer-

ence system (e.g., longitude and latitude coordinates). On the other hand, humans do

not describe geographic information as it is done in GIS: saying that the obstructed

road is north of the stadium is different from giving the road’s latitude and longitude

coordinates. Qualitative information, that abstracts from the quantitative detail, is

employed by humans to describe particular spatial relationships (e.g., north of ) hold-

ing between specific entities (like the stadium and the road). Such information can be

easily interpreted by other people, even if it does not precisely express the position of

the referenced entity.

In addition, it is possible to perform reasoning operations over the information in

order to infer knowledge that is not explicitly represented. Computational geometry

algorithms have been developed to analyze and perform inference operations over quan-

titative information, whilst methods to reason with purely qualitative information have

been developed in the research field of Qualitative Spatial Representation and Reasoning

(QSR). These reasoning operations strengthen the capabilities of the different repre-

sentation approaches: if somebody communicates that there are people to be rescued

in the Hazardous Material Storage site, it is not necessary to also explicitly state that

the people are in the area of the fire since such information can be inferred by properly

connecting the available data.

The challenge of this work is to develop a computational method for the integra-

tion of qualitative information with quantitative information through the development

of a reasoning system that combines inference techniques developed separately for the

different kinds of information. As the separate reasoning approaches empower the spe-

cific representation methods for which they have been designed, a combined reasoning

approach allows to extract implicit information from heterogeneous spatial informa-

tion: quantitative and qualitative. In turn, the information inferred by the combined

approach is either qualitative or quantitative.

1.3 Thesis and Contribution

The thesis of this work is that:

The development of an inference strategy to reason with heterogeneous

quantitative and qualitative representations of spatial knowledge improves

the integration process of geographic information collected from heteroge-

neous sources such as sensors and humans.
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In particular, the combined inference strategy:

• is able to deal with entities only partially or imprecisely described;

• performs inference operations from information given either or both quantitatively

and/or qualitatively.

The main contributions of this dissertation are:

• This work provides translation methodologies to convert quantitative information

into qualitative information, and vice-versa. An extension of the representation

methods used in GIS is proposed and adopted in order to cope with quantitative

information generated by the interpretation of qualitative information. Likewise,

approaches to deal with qualitative information are extended to cope with entities

that are only approximately described.

• A geographic information integration approach is discussed that employs and

extends inference techniques developed in the field of Qualitative Spatial Rep-

resentation and Reasoning and algorithms developed for managing quantitative

information in GIS. It is shown that the proposed method is able to enforce the

spatial knowledge base, both in qualitative and in quantitative terms.

• The proposed strategies for spatial information translation and integration are

empirically evaluated in order to analyze the system’s outcomes.

1.4 Outline

The remainder of this text is structured as follows: Diverse approaches to represent

spatial knowledge and manipulate quantitative and qualitative information are intro-

duced in Chapter 2 along with basic notations. The chapter also describes existing

works for representing imprecise spatial information.

In Chapter 3 the information availability after an extreme event is analyzed by

considering as an example the earthquake that struck the city of Port-au-Prince (Haiti)

in January, 2010. A system for the integration of qualitative and quantitative spatial

information is proposed as a solution for providing up-to-date spatial knowledge after

extreme events. Hence, the challenges in spatial information integration are identified,

which provide the motivation for the work presented in the next chapters.

Chapter 4 and Chapter 5 are concerned with problem of transforming spatial infor-

mation from a representation approach to the other. The former discusses the problem

of translation from qualitative information to quantitative one, while the latter focuses
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on extracting qualitative spatial knowledge from the quantitative description of spa-

tial entities. Imprecision in spatial information is considered in the transformation

approaches, and different aspects of the space are considered.

Chapter 6 is dedicated to the development of the reasoning system that deals with

mixed quantitative-qualitative representations of spatial knowledge. It enforces rea-

soning techniques developed separately to deal with either qualitative or quantitative

information.

The experimental evaluation of the proposed integration approach is described in

Chapter 7. The system’s outcomes are evaluated by considering real input datasets.

Finally, Chapter 8 summarizes the outcomes of this work and provides an overview

on open questions and further research following this work.
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Chapter 2

Geographic Information

Manipulation

In this chapter, key concepts with regard to geographic knowledge representation and

reasoning approaches will be briefly summarized, and the notations used in the remain-

der of this text are introduced. Section 2.1 is an introduction to the quantitative repre-

sentation approaches commonly used in existing Geographic Information Systems, and

some algorithms to manipulate quantitative information are discussed. Furthermore,

different methods to collect geospatial information are analyzed. Yet, in Section 2.2 the

background concepts in the area of qualitative spatial reasoning are summarized, with

a particular focus on those concepts necessary for the scope of this thesis. Finally, in

Section 2.3 different approaches developed to take into account imprecision in spatial

information are analyzed.

This chapter provides only the basic concepts with regard to spatial representation

and reasoning. Challenges in the integration of different kinds of spatial information

for emergency management will be then discussed in Chapter 3.

2.1 Quantitative Representations and Computational

Geometry

Geographic Information Systems (GIS) have been successfully employed to solve geo-

graphic problems in several domains, such as route planning, cadastral applications,

and emergency management (see Longley et al. (2005) for a complete introduction to

Geographic Information Systems and Science). There does not exist in the literature a

shared definition of what a GIS is, and several attempts to define what a GIS should

and should not include have been done since the 1980s (e.g., Cowen, 1988). The acrony-

mous GIS usually refers to a system of hardware and software elements that allows for
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collecting, storing, managing, and transforming geographic data; GIS provides func-

tions for the interaction with end users also (e.g., Nyerges & Jankowski (2010); Rigaux

et al. (2002)). In particular, the focus of this work will be on the so-called spatial

databases (Rigaux et al., 2002), that are a specific kind of databases designed to store

spatial information (Goodchild, 1989). In this text, the term GIS is used to refer both

to the geographic analysis tools and to the spatial databases beneath.

GIS make use of quantitive approaches to represent and manipulate spatial entities.

An entity is represented in a GIS by its coordinates within a specific geographic reference

system. The analysis of the different reference systems is not in the scope of this work,

an overview can be found in Iliffe & Lott (2008).

In the remainder of this text, the notation spatial entities will be used to denote

items or phenomena existing in the reality that occupy spatial regions; in contrast,

spatial objects stand for the representation of spatial regions1.

2.1.1 Quantitative Representations

Models for representing spatial entities can be classified into two different categories:

continuous fields and discrete objects2 (Longley et al., 2005). The former is concerned

with entities whose properties to represent vary continuously in the space (such as

soil composition) and are commonly represented in GIS using raster approaches3. In

contrast, the latter is concerned with entities whose properties to represent do not vary

within the entity’s boundary (such as buildings); these kinds of entities are usually

represented using vector methods. A different mode for the representation of discrete

objects is the half-plane representation, even though this approach is not implemented

in most of the existing GIS tools. Since the entities considered in this work belong to the

category of discrete objects, in the remainder of this text only the vector representation

and the half-plane representation will be considered.

2.1.1.1 Vector Representation

In compliance with the OpenGIS specifications (Herring, 2001), vector representations

employ parameterized primitive objects such as points, lines, and polygons to represent

the extension of spatial entities in different dimensions. In this work, exclusively 2D

geometric objects embedded in the Euclidean space R2 are employed. Most of the prim-

itives and operations used are supported by standard geographic information systems.

1Whenever the spatial nature of the entity is clear from the context, the terms entity, region, and
object will be used in place of respectively spatial entity, spatial region, and spatial object.

2Continuous fields and discrete objects are also called respectively field-based models and entity-
based models in the literature (e.g., Rigaux et al., 2002; Worboys & Duckham, 2004).

3The raster representation is based on a partition of the space into regular cells, e.g., squares.



2.1 Quantitative Representations and Computational Geometry 13

In the following the notations used for the primitive geometric objects occurring in the

text are introduced.

Points in the plane are denoted with a single small letter and are identified by their

Cartesian coordinates, e.g., p = (xp, yp). Lines are represented by two points p1 and

p2 and are denoted with a small Greek letter, e.g., λ = (p1, p2). Line segments consist

of all points that lie between p1 and p2 on the line λ = (p1, p2) (including p1 and p2
themselves) and are written as λ = [p1, p2], while

−→
λ = [p1, p2) is used for rays, which

are oriented line segments with start point p1 and end point p2 but extending beyond

p2 into infinity. Polylines are finite sequences of connected line segments and denoted

by capital Greek letters. They are specified either as lists of line segments or as point

lists, e.g., Λ = 〈λ1, λ2, . . . λn〉 or Λ = 〈p1, p2, . . . pn+1〉.

O1 O2 O3

Figure 2.1: Regions in R
2.

Regions in R
2 can be grouped into two different categories: the first class contains

all regions that are closed, connected, and have closed boundaries, while the second

class contains also the regions that are disconnected or that contain holes. Adopting

the formalism of Skiadopoulos & Koubarakis (2004), the former class will be denoted

as REG and the latter as REG∗. The concave object O1 and the convex object O2

depicted in Fig. 2.1 represent regions that belong to both REG and REG∗, while the

disconnected object composed by the union of O1 and O2, and the object with holes

O3 represent regions belonging only to REG∗.
Simple-region objects (also called polygons) are used to represent regions in REG

adopting the conceptualization of a region as a point-set. The representing polygons are

defined as closed polylines and denoted by a capital letter, e.g., O = 〈p1, p2, . . . pn, p1〉.
In order to distinguish a polygon O from its boundary, a function Δ(O) is used to denote

the polygon boundary, that is hence a polyline. To be able to deal with general spatial

regions that may have several disconnected components and holes (regions in REG∗),
multi-region objects (also called multi-polygons) are employed, as defined in the OGC

standard (Herring, 2001). A complex polygonal object with holes is specified by a list of

simple polygons of which the first polygon represents the outer boundary of the region,

while the other polygons describe the non-overlapping holes, e.g., C = 〈P,Q1, . . . Qn〉.
A multi-region object composed of n disconnected parts is then written as a list of
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polygonal objects (potentially with holes), e.g., M = 〈C1, C2, . . . Cn〉. An example of a

multi-region object is depicted in Fig. 2.2.
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Figure 2.2: Geometric representation of a single multi-region object.

The symbols O1, . . . , On will be employed in this text to refer to general spatial

objects that can be either simple-region or multi-region objects.

2.1.1.2 Half-plane Representation

The half-plane representation makes use of a single geometrical primitive: the half-plane

(Rigaux & Scholl, 1995; Rigaux et al., 2002). Formally, a half-plane is defined as the set

of points p = (xp, yp) in R
2 that satisfy the inequality axp + byp + c ≤ 0. For instance,

let λ = (p1, p2) be the directed line from p1 to p2—mathematically represented by the

equation axλ+byλ+c = 0—the half-plane that it represents, denoted as HP = �p1, p2�,
is the shaded region in Fig. 2.3(a).

HP

p1 p2

(a) Half-Plane

O

p1

p2

p3

(b) Convex Region

HP1

HP2

HP3

p1

p2

p3

(c) Representation

O1 O2

O3

O4

(d) Concave Region

Figure 2.3: Half-plane representation.
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A convex region can be represented as the intersection of a finite number of half-

planes. As an example, the region depicted in Fig. 2.3(b) is represented using half-

planes as O = 〈HP1, HP2, HP3〉 = 〈�p1, p2�, �p2, p3�, �p3, p1�〉 (Fig. 2.3(c)). In con-

trast, a non-convex region can not be represented directly as the intersection of a finite

number of half-planes. Rather, the region is firstly decomposed into a set of convex

adjacent components and then represented as the union of the different components.

For instance, the region in Fig. 2.3(d) can be decomposed into the convex regions rep-

resented by O1, O2, O3 and O4, then the four components are represented using the

half-planes and, finally, O = O1 ∪ O2 ∪ O3 ∪ O4. The decomposition into convex com-

ponents is not unique, and it is performed in O(n) time in the worst case, where n is

the number of points that define the spatial object O.

2.1.2 Computational Geometry Algorithms

Computational geometry techniques are employed to generate new information and per-

form analyses by manipulating geometric objects that convey quantitative information

about the spatial extension of spatial entities, for instance by way of computing inter-

sections, unions, and convex hulls (see de Berg et al. (2008); O’Rourke (1998) for an

overview on computational geometry algorithms).

The main geometric operations used in this text are the union, intersection, and set

difference of spatial objects as well as operations that compute the minimum bounding

rectangle, the convex hull, and the buffer of a given object, and the common tangents

between two objects.

(a) O (b) MBR(O) (c) CH (O) (d) BUF (O,α)

Figure 2.4: Minimum Bounding Rectangle, Convex Hull, and Buffer of the object O.

2.1.2.1 Minimum Bounding Rectangle

Given a spatial object O defined by n points, the Minimum Bounding Rectangle—

denoted asMBR(O)—is the axis-aligned minimal rectangle that containsO (Fig. 2.4(b)).

The rectangle is computed by identifying the minimum and maximum coordinate val-

ues of the points that define the spatial object. Hence, it can be trivially proven that
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the computation of the MBR requires O(n) time. Furthermore, X(O) is used to denote

the x-axis maximum value of O, X(O) the x-axis minimum value, Y (O) the y-axis max-

imum value, and Y (O) denotes the y-axis minimum value; they are formally defined

as:

X(O) = max(xi), ∀(xi, yi) ∈ O X(O) = min(xi), ∀(xi, yi) ∈ O

Y (O) = max(yi), ∀(xi, yi) ∈ O Y (O) = min(yi), ∀(xi, yi) ∈ O

2.1.2.2 Convex Hull

The Convex Hull of a set of n points S, denoted as CH (S), is the minimal convex set

containing S. Hence, given a region represented by a spatial object O, the convex hull

CH (O) is the convex hull of the set of points that defines O. One of the most used

algorithms that computes the convex hull in O(n) time has been presented in Melkman

(1987). Fig. 2.4(c) shows the convex hull of a concave object O. The convex hull of a

region in REG or REG∗ is always a simple region in REG.

2.1.2.3 Buffering

Given a spatial object O—convex or concave and eventually containing holes—defined

by n points, and a real value α, the buffering operation1—denoted as BUF (O,α)—

computes the object whose boundaries are at a distance equals to α from the boundary

of O, resulting thus in an inflation/deflation of the original object. Fig. 2.4(d) shows

the buffering of O with a positive value α. The buffering operation can be based either

on the Minkowski sum (Wein, 2007), resulting in a spatial object containing arcs, or

on the straight skeleton2 that result in an object defined only by straight lines. In this

work, only the second approach is considered. An algorithm to compute the buffering

based on the straight skeleton has been presented in Felkel & Obdrzalek (1998) and it

runs in O(n2) time in the worst case.

2.1.2.4 Intersection, Union, and Difference

Traditional intersection, union, and set difference symbols ∩, ∪, \ are used to denote

the respective homonymous operations between spatial objects as described in Herring

(2001). When applying the operation to two objects of a particular type, it is assumed

that the resulting point set is always returned as an object of the same type, i.e.,

given two multi-region objects O1, O2, the operation O1 ∩ O2 yields a new multi-region

object. As an example, Fig. 2.5 depicts the objects resulting from the application of

1This operation is also called polygon offset in the literature.
2The approach based on the straight skeleton is also called Miter offset.
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O1 O2

(a) Objects O1 and O2 (b) O1 ∩O2

(c) O1 ∪O2 (d) O1 \O2

Figure 2.5: Intersection, union, and difference of the objects O1 and O2.

the different operators on two simple objects O1 and O2. Let O1 be defined by n points

and O2 be defined by m points, intersection, union, and difference algorithms (Margalit

& Knott, 1989; Shan-xin & Rui-lian, 2010) perform in O(nm)1 time in the worst case.

2.1.2.5 Common Tangents

As shown in Clementini & Billen (2006), given two convex spatial objects O1 (n points)

and O2 (m points), it is possible to uniquely identify two pairs of common tangents

between them: the internal common tangents, that intersect inside CH (O1 ∪ O2),

and the external common tangents that intersect outside CH (O1 ∪O2). The common

tangents between two convex objects are depicted in Fig. 2.6. The external tangents

(dotted lines) are differentiated as External Tangent Right (ER)—that is the tangent

for which the half-plane defined by its points of tangent on O1 and O2 contains both

O1 and O2—and External Tangent Left (EL)—the half-plane defined by its points of

tangent on O1 and O2 does not contain the objects. Similarly, the two internal tangents

(solid lines) are distinguished as Internal Tangent Right (IR)—that is the tangent for

which the half-plane defined by its points of tangent on O1 and O2 contains only O2—

and Internal Tangent Left (IL)—the half-plane defined by its points of tangent on O1

and O2 contains only O1. An algorithm that computes the tangents between convex

1The computational complexity in (Margalit & Knott, 1989; Shan-xin & Rui-lian, 2010) is O(n +
m + k), with k being the number of intersections of the edges of the two objects. It can be trivially
proofed that in the worst case k is equal to nm. Hence, the algorithm performs in O(nm) time in the
worst case.
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spatial objects in O(log(n +m)) time in the worst case is described in Kirkpatrick &

Snoeyink (1995).

O1
O2

ER

EL

IL

IR

Figure 2.6: Common tangents between convex objects.

2.1.3 Data Collection Methods

In this section, traditional methods commonly used to collect geographic data are

introduced. These methods reflect the state of the art with regard to the source of data

for GIS. Subsequently, some innovative collection methods are presented.

2.1.3.1 Traditional Collection Methods

According to Longley et al. (2005), the methods to collect geographic data for GIS can

be classified in two main categories:

Primary methods. Data is collected either directly from field measurements or from

aerial and satellite pictures. Data is captured specifically for use in GIS by directly

measuring the physical properties of spatial entities.

Secondary methods. Data is collected from existing sources, such as topographic

map, photographs, and other hard-copy documents. Hence, data is captured from

earlier collections or it is obtained from other systems.

In particular, methods belonging to the primary class are:

Survey measurements. They are based on ground measurements that determine

angles and distances of an entity with respect to other known points on the earth

surface. Electro-optical devices replaced the traditional theodolites, that were used

by surveyors to measure angles, and tapes and chains, to measure distances. Ground

survey is an expensive and time-consuming activity, but it is still the way to obtain

the most accurate point locations.
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GPS measurements. Global Positioning System (GPS) consists of 24 satellites,

each orbiting the Earth every 12 hours on distinct orbits, and transmitting radio

pulses at very precise time intervals. A receiver determines its position by making

precise calculations from the received signals, the known position of the satellites,

and the signal velocity. Positioning in three dimensions requires at least four satel-

lites above the horizon. The accuracy of the measurement depends on the number of

visible satellites and their position. Differential GPS (DGPS) improves the accuracy

combining GPS signals from satellites with correction signals received via radio or

telephone from base stations. However, the accuracy of the measurement degrades

in cities with tall buildings, or under trees, and GPS signals are totally lost under

bridges or in indoor environments.

Satellite remote sensing images and aerial photographs. Remote sensors

derive information about physical properties of spatial entities without physical

contact; they measure the amount of electromagnetic radiation reflected, emitted,

or scattered from physical entities. Usually, those sensors are fixed on Earth-orbiting

satellites or aircrafts. Although both of them are grounded on the same technology,

satellite images are more suitable for large scale data collection, with a correspondent

loss in spatial resolution; aerial photographs are used for small scale projects in which

a better resolution is required (e.g., LIDAR). Different pictures can be interpolated

in order to create 3D coordinates, contours, and Digital Elevation Models (DEM) of

entities. Aerial and satellite images are often geo-referenced using points gathered

from ground surveys.

In comparison, the secondary methods class contains:

Data capture using scanners. Hard-copy media, such as building plans, CAD

drawings, or photographs, are transformed into digital images through a process

of scanning. Digitization improves the access to the data through the usage of

integrated database storage and geographic indexing. Furthermore, useful informa-

tion can be extracted from the digitized media, such as building footprints or road

networks.

Manual and heads-up vectorization. Vector objects are digitized from maps or

other geographic data sources. This operation can be performed manually, using

specific devices—called digitizers—to capture specific points on a map, or can be

partially automated by instructing the digitizer to collect points automatically based

on some spatial constraints. Heads-up vectorization is performed using a computer

to collect points instead of a digitizer. Software to perform automated vectoriza-

tion can speed up the process of point collection; however, vectorization software

introduces errors that need to be manually edited.
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Photogrammetry. It has been defined by Longley et al. (2005) as the “science and

technology of making measurements from pictures, aerial photographs, and images”.

Photographs are geo-referenced using control points defined by ground survey or

collected using GPS. Usually, 3-D properties of entities are extracted with these

methods, such as digital elevation models.

2.1.3.2 Volunteered Geographic Information

The aforementioned methods for geographic data collection require specific devices to

collect data (usually affordable only by enterprises due to their high costs) and exper-

tise knowledge in the geographic field. However, as a result of the diffusion of cheap

technologies—such as GPS devices—people are now allowed to collect and to share geo-

graphic data without the necessity of expensive devices and expertise knowledge in the

geography field. This led to the development of the so-called Volunteered Geographic

Information (VGI) applications (Goodchild et al., 2007), such as OpenStreetMap1 and

WikiMapia2, in which data is collected and shared through the internet by volun-

teers instead of by specialized companies. Moreover, studies in the crowdsourcing field

(Howe, 2008) have shown how information obtained from many observers can be, in

some cases, more reliable than information collected from only one source.

Even though existing VGI systems already represent strong platforms for volunteers

to provide and query spatial information, the systems still demand for structured and

quite precise data. However, sensors do not always provide precise data (e.g., noisy

measures), and frequently sensor networks are not able to gather data that describes

all spatial aspects of the measured entities (e.g., satellite imagery does not provide

information about the height of the buildings). Besides, the way humans communicate

about space rarely carries structured data, such as numerical and geometric descriptions

of spatial entities. Hence, techniques to represent and deal with unstructured and

imprecise spatial descriptions have to be developed in order to improve the capabilities

of VGI.

2.2 Qualitative Spatial Representation and Reasoning

Quantitative descriptions of spatial knowledge (e.g., maps) only represent some aspects

of the geographic space (Berendt et al., 1998). Accordingly, geographic data collection

is shifting from traditional methods, commonly based on quantitative descriptions, to-

wards new user-centered methods, that hence should reflect the way humans describe

the space. Considering for instance the example introduced in Section 1.1, the actors

1OpenStreetMap: http://www.openstreetmap.org/
2WikiMapia: http://wikimapia.org/
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involved in the rescue phases after a disaster describe the space using qualitative rela-

tions between spatial entities (e.g., north of) instead of giving precise measurements

and locations for the entities they are reporting. These qualitative descriptions abstract

from the numerical description adopted into GIS.

In order to develop strategies to exploit qualitative descriptions of spatial knowledge,

the Qualitative Spatial Representation and Reasoning (QSR) field has developed as a

subfield of Artificial Intelligence. QSR outcomes have been applied during the years to

solve several problems related to GIS, robot navigation, computer vision, and natural

language interpretation (Cohn & Hazarika, 2001). For some overviews on the QSR field

outcomes, see Cohn (1997); Cohn & Hazarika (2001); Cohn & Renz (2008).

QSR aims at capturing human-level concepts of space by using finite sets of relations

to model particular spatial aspects such as topology, orientation, distance. Qualitative

relations abstract from the quantitative details but preserve the information relevant

for spatial decision processes and reasoning (Freksa et al., 2000). QSR techniques

allow to reason with spatial knowledge even in those cases in which exact quantitative

description is not available (Cohn, 1997).

Several qualitative spatial calculi—each composed by a set of relations and some

operations over them—have been developed to model specific aspects of the space. The

calculi can be firstly classified considering the different aspects of the space they focus

on, like topology (Cohn et al., 1997; Egenhofer & Franzosa, 1991; Papadias et al., 1995;

Randell et al., 1992), relative orientation (Billen & Clementini, 2004, 2006; Freksa, 1992;

Guesgen, 1989; Ligozat, 1993; Moratz et al., 2000, 2005; Renz & Mitra, 2004; Schlieder,

1995), cardinal directions (Balbiani et al., 1998; Frank, 1991; Goyal & Egenhofer, in

press), distance (Hernández et al., 1995), visibility (Fogliaroni et al., 2009; Tarquini

et al., 2007; Tassoni et al., 2011), shape (Billen et al., 2002; Clementini & Di Felice,

1997b; Galton & Meathrel, 1999), and size (Gerevini & Renz, 2002; Raiman, 1991;

Zimmermann, 1995).

Besides the modeled aspects, a fundamental difference to consider among the cal-

culi is the spatial ontology they are grounded on: points in 2D space (Frank, 1991;

Freksa, 1992; Ligozat, 1993; Moratz et al., 2005; Renz & Mitra, 2004), lines in 2D

space (Moratz et al., 2000; Schlieder, 1995), 2D rectangles (Balbiani et al., 1998; Gues-

gen, 1989), regions in 2D space (Clementini & Billen, 2006; Fogliaroni et al., 2009;

Goyal & Egenhofer, in press; Randell et al., 1992; Tarquini et al., 2007), 3D regions

(Billen & Clementini, 2006; Tassoni et al., 2011), and regions in n-dimensional space

(Egenhofer, 1991).

Directional calculi are traditionally further classified by considering their frame of

reference (FoR). According to the classification provided by Levinson (1996), the FoR

can be:
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Intrinsic. The properties of the objects (such as oriented lines) are used to define

the direction relations (Moratz et al., 2000; Schlieder, 1995).

Relative. The direction relations are defined through a third object as anchoring

point for the frame of reference (Billen & Clementini, 2004; Freksa, 1992; Ligozat,

1993; Moratz et al., 2005).

Absolute. The direction is defined by an external point of reference, such as the

earth north pole (Frank, 1991; Goyal & Egenhofer, in press; Renz & Mitra, 2004).

In the remainder of this section, the characteristics of qualitative calculi will be

formally defined and algorithms developed to reason with qualitative descriptions of

spatial knowledge will be introduced. Furthermore, three qualitative calculi that model

three different aspects of the space—namely topology, cardinal direction, and visibil-

ity properties—will be described. Since any qualitative calculus models only a single

aspect of the space, approaches to merge qualitative calculi when different aspects

are considered will be discussed. The section will be concluded with a description of

existing methods to translate spatial information from quantitative to qualitative de-

scriptions (and vice-versa), and the state of the art in qualitative modeling and GIS

will be analyzed.

2.2.1 Qualitative Spatial Calculi

A qualitative spatial calculus is defined by a set of relations between spatial objects1

and a set of operations defined on these relations. In this section, only the concepts

necessary in the scope of this work will be introduced, while more detailed explana-

tions and discussions can be found in Ligozat & Renz (2004); Renz & Ligozat (2005);

Renz & Nebel (2007). A formal definition of qualitative relations, operations over

qualitative relations and qualitative spatial calculi will be given in Section 2.2.1.1 and

Section 2.2.1.2; a toy qualitative spatial calculus will be discussed in Section 2.2.1.3 to

provide examples for the formally defined concepts.

2.2.1.1 Qualitative Relations

Let D = (O1, . . . , Om) be a potentially infinite domain, a qualitative relation is:2

Definition 1 (n-ary Qualitative Relation).

An n-ary qualitative relation R over a domain D is as subset of the n-ary Cartesian

product of the domain: R ⊆ D× . . .×D = Dn.

1The mapping between spatial regions and spatial objects is a homomorphism (see for instance
Robinson & Frank, 1985). Thus, a qualitative relation between spatial objects corresponds to the
qualitative relation between the corresponding spatial regions in the reality.

2In this text, the notation R(O1, O2, . . . , On) and the expressions O1, . . . , On satisfy or verify the
relation R, are used equivalently to denote (O1, . . . , On) ∈ R.
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When the domain D is finite, it is possible to extensionally define any relation by

listing all n-tuples that belong to the relation. The spatial case is more complex since

the domain contains all points, lines and regions in the 2D space, and hence it is infinite;

in such a case, the relations need to be intensionally defined by listing the properties

that the n-tuples have to satisfy in order to belong to a certain relation.

For the purpose of this work, it is important to distinguish between the reference

objects, that define the frame of reference, and the primary object of the relation.

Definition 2 (Primary and reference objects of a qualitative relation).

Given O1, . . . , On ∈ D, with (O1, . . . , On) ∈ R, O1 is named the primary object of the

n-tuple O1, . . . , On in the relation R and O2, . . . , On are the reference objects of the

n-tuple O1, . . . , On in R.

Let B be a set of n-ary qualitative relations, the concept of JEPD set of relations

is introduced to denote the case in which every n-tuple of objects that belongs to the

domain D satisfies one and only one relation in the set B.

Definition 3 (JEPD set of n-ary qualitative relations).

A set of n-ary qualitative relations B over a domain D is called Jointly Exhaustive and

Pairwise Disjoint (JEPD) if the following conditions are satisfied:

(i)
⋃
R∈B

R = Dn (ii) ∀R1, R2 ∈ B, R1 ∩R2 = ∅ with R1 �= R2

The relations belonging to a JEPD set of relations B are named base relations.

The complete set of relations RB, named general relations, can be generated from

the set of JEPD base relations B. The resulting set of all possible unions of base

relations is called the set of general relations of the qualitative calculus. In this text,

the notation {R1, R2, . . . , Rm} is used to denote the general relation that is the union of

the base relations R1, R2, . . . , Rm. Furthermore, ∅ denotes the empty relation, while U

refers to the general relation formed by all base relations in B, and is called universal

relation. A relation in the form {R1, . . . , Rm}—called disjunctive relations—, with

m ≥ 2, represents incomplete qualitative knowledge because it is not exactly known

which is the base relation holding between the primary and the reference objects.

2.2.1.2 Operations on Qualitative Relations

Classical set operations of complement (◦), union (∪), and intersection (∩) can be

applied to the set of general relations RB.
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Definition 4 (Complement, union, and intersection).

Given R,R1, R2 ∈ RB, complement, union and intersection operations are defined as:

R◦ = {x | x ∈ U ∧ x /∈ R} (Complement)

R1 ∪R2 = {x | x ∈ R1 ∨ x ∈ R2} (Union)

R1 ∩R2 = {x | x ∈ R1 ∧ x ∈ R2} (Intersection)

Other operations can be defined over a set of general n-ary relations RB: unary per-

mutation operations—that given an n-ary relation yield the relations satisfied by partic-

ular permutations of any n-tuple in the relation—and binary composition operations—

that given two n-ary relations satisfied by two overlapping sets of objects, infer which

relations are satisfied by any n-ary composition of the sets of objects. In the binary

case, only one permutation operation exists. Given a general binary relation between

the objects O1 and O2, the unary inverse operation (∼) yields the relation between O2

and O1.

Definition 5 (Inverse of a binary relation).

Given a binary relation R ∈ RB over a domain D, the unary inverse (∼) operation is

defined as: R∼ =
{
(O1, O2) ∈ D2 | (O2, O1) ∈ R

}

In the ternary case, six different permutation operations can be defined, as discussed

in Freksa & Zimmermann (1993).

Definition 6 (Permutations of a ternary relation).

Given a ternary relation R ∈ RB over a domain D, the six unary permutation opera-

tions are defined as follows:

ID(R) =
{
(O1, O2, O3) ∈ D3 | (O1, O2, O3) ∈ R

}
(Identity)

INV (R) =
{
(O2, O1, O3) ∈ D3 | (O1, O2, O3) ∈ R

}
(Inverse)

SC(R) =
{
(O1, O3, O2) ∈ D3 | (O1, O2, O3) ∈ R

}
(Shortcut)

SCI(R) =
{
(O3, O1, O2) ∈ D3 | (O1, O3, O2) ∈ R

}
(Shortcut inverse)

HM(R) =
{
(O2, O3, O1) ∈ D3 | (O1, O3, O2) ∈ R

}
(Homing)

HMI(R) =
{
(O3, O2, O1) ∈ D3 | (O1, O3, O2) ∈ R

}
(Homing inverse)

Besides, the binary composition operation (◦) is an operation that yields the relation

between O1 and O3, given the relations holding respectively between O1 and O2 and

between O2 and O3.
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Definition 7 (Composition of binary relations).

Given two binary relations R1, R2 ∈ RB, their binary composition is defined as:

R1 ◦R2 =
{
(O1, O3) ∈ D2 | ∃O2 ∈ D : (O1, O2) ∈ R1 ∧ (O2, O3) ∈ R2

}
In this text, the composition of binary relations will be also denoted as R(O1, O3) =

R1(O1, O2) ◦ R2(O2, O3). The results of the composition operation are not always

relations in RB; in order to perform symbolic operations, meaning operations that only

operate over the symbols that represent the relations, and do not consider the elements

of the relations, the concept of composition has been relaxed into the weak composition

operation.

Definition 8 (Binary weak composition).

Given two binary relations R1, R2 ∈ RB, their binary weak composition is defined as:

R1 �R2 = {R ∈ B|R ∩ (R1 ◦R2) �= ∅}

Composition and weak composition operation of ternary relations can be similarly

defined. However, as shown in Freksa (1992), there exist different ways to combine

the relations in the ternary case. Nevertheless, all compositions can be expressed by a

permutation of composing two permutations of relations Scivos & Nebel (2001). Since

there exist different possibilities to compose ternary relations, in the remainder of this

text the operations will be explicitly defined when required. The same notation as the

composition of binary relations will be used.

Permutation and composition operations can be defined also for n-ary qualitative

relations (Condotta et al., 2006); however, such operations are not necessary in the

scope of this paper, since the focus will be only on binary and ternary relations. The

operations are generally defined by means of tables, that get the name of reasoning

tables. Permutation are expressed by tables of dimension 1 × n—being n the number

of base relations—, while composition operations are tables with dimension n × n.

The result of the composition of two general relations is given by the union of the

composition of the single base relations that compose them, for instance {R1, R2} ◦
{R3, R4} = (R1 ◦R2) ∪ (R1 ◦R3) ∪ (R2 ◦R3) ∪ (R2 ◦R4).

Finally, a qualitative spatial calculus is defined by a set B of base relations over a

domain D of spatial objects, and a set of operations (complement, union, intersection,

permutation, and composition) on those relations, that enable elementary reasoning

operations and form the basis for more complex reasoning procedures.

2.2.1.3 Qualitative Spatial Calculus: a Toy Example

An exemplary domain D = {O1, O2, O3}, composed by three spatial objects is con-

sidered. The configuration of the three spatial objects is depicted in Fig. 2.7(a).

Cardinal direction relations between those objects can be extensionally defined as
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N = {(O1, O2)}, S = {(O2, O1)}, W = {(O2, O3)}, E = {(O3, O2)}, NW = {(O1, O3)},
SE = {(O3, O1)} and B = {(O1, O1), (O2, O2), (O3, O3)}. The same relations can be

intensionally defined by imposing some constraints on the coordinates of the objects1.

The relations can be equivalently expressed as N(O1, O2), S(O2, O1), etc. Furthermore,

if the objects of Fig. 2.7(b) are considered in place of the domain D, the cardinal di-

rection relations do not undergo any change, even if the objects have different shapes

with respect to the ones in Fig. 2.7(a).

O2

O1

O3

N

(a) Rectangular objects

O2

O1

O3

N

(b) Objects with different shapes

Figure 2.7: Cardinal directions example.

It can be trivially demonstrated that the set of relationsBCD = {N,S,W,E,NW,SE,B}
is JEPD. Some examples of general relations belonging to RCD, that can be generated

from BCD, are: {N,E} = {(O1, O2), (O3, O2)}, {N,S} = {(O1, O2), (O2, O1)}. Fur-

thermore, UCD = {N,S,W,E,NW,SE,B} = {(O1, O1), (O1, O2), (O1, O3), (O2, O1),

(O2, O2), (O2, O3), (O3, O1), (O3, O2), (O3, O3)} = D2.

The complement, union, and intersection operations, for some of the defined relations,

yield the following results:

B◦ = {(O1, O2), (O1, O3), (O2, O1), (O2, O3), (O3, O1), (O3, O2)}
B ∪N = {(O1, O1), (O1, O2), (O2, O2), (O3, O3)}
B ∩N = {} = ∅

Moreover, the inverse operation yields: N∼ = {(O2, O1)} = S, S∼ = {(O1, O2)} =
N , W∼ = {(O3, O2)} = E, E∼ = {(O2, O3)} = W , NW∼ = {(O3, O1)} = SE,

SE∼ = {(O1, O3)} = NW and B∼ = {(O1, O1), (O2, O2), (O3, O3)} = B. Furthermore,

the composition operation returns the following results: N ◦ W = {(O1, O3)}, N ◦
B = {(O1, O2)}, N ◦ S = {(O1, O1)}, etc. In the first two cases, the result of the

composition is a relation in RCD—N ◦W = NW , N ◦B = N—while in the third case

the composition’s result is not a relation. In contrast, adopting the weak composition,

the results are: N �W = NW , N �B = N , and N � S = B.

1Formal and complete definitions of the cardinal direction relations will be introduced in Sec-
tion 2.2.3.2.
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Finally, the qualitative binary spatial calculus CD is defined as: D = (O1, O2, O3),

BCD = {N,S,W,E,NW,SE,B}, and the operations ◦,∪,∩ defined as in Definition 4,

∼ as in Definition 5, and ◦ as in Definition 7.

2.2.2 Representation of Spatial Configurations

As shown in Section 2.2.1.3, the spatial configuration of a set of objects can be qual-

itatively represented using the relations—defined into one ore more calculi—holding

between them. Even though the qualitative representations do not uniquely identify a

specific set of spatial objects1, they can rather be interpreted as constraints restricting

the possible geometries the related objects can adopt. Spatial configurations can be

represented qualitatively by means of the so-called constraint networks.

2.2.2.1 Constraint Networks

Given a qualitative spatial calculus, a qualitative spatial representation is a set of

constraints expressed in a quantifier-free constraint language based on the set RB of

general relations. It can be seen as a constraint network N = (V,D, R) with variables

V = {O1, O2, . . . , On} over the domain D whose valuations are constrained by relations

given in the constraint matrix R (ROiOj gives the qualitative relation—constraint—

between Oi and Oj). The constraint network derived from the spatial configuration of

Section 2.2.1.3 is depicted in Fig. 2.8(a).

O2

O1

O3

B

BB

N

S NW

SE

E

W

(a) Complete constraint network

N

O2
’

O1
’

O3
’

{E,NE}

(b) Incomplete constraint network

Figure 2.8: Constraint networks.

The network of Fig. 2.8(a) is complete, in the sense that any node of the network is

connected to any other node (and they are even self-connected) and any label has only

one base relation of the exemplary calculus CD. This is verified because all objects

in the domain have a well-defined geometric description, and hence it is possible to

1The relations defined in Section 2.2.1.3, for instance, are valid for the objects in both Fig. 2.7(a)
and Fig.2.7(b).
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compute the actual relation between any pair of them. However, this is not always the

case: indeed, as introduced in Section 2.1.3.2, spatial data can be gathered through

human descriptions—that carry imprecise and incomplete knowledge—, or through

sensors that can be either noisy or do not measure all aspects of a certain spatial

entity. However, human descriptions and sensors’ information can be interpreted in

qualitative terms without the necessity to know the exact quantitative descriptions of

the spatial entities. Some objects can hence be under-specified or uncertain. By taking

unions of relations as constraints, one can express uncertainty. For instance, considering

a spatial domain consisting of three objects O∗1, O∗2, and O∗3, for which the geometries

are not known (hence the domain of the objects is defined by all regions in R
2) but for

which it is known that O∗1 is somewhere north of O∗2 and that O∗2 is somewhere east

or north-east of O∗3, the configuration of those objects can be represented through a

constraint network adopting the relations defined for the exemplary calculus CD, as

Fig. 2.8(b) shows. If no edge connects two nodes, no information is known to relate

the objects and it can be modeled with the universal relation UCD. The two given

examples show constraint networks for binary calculi, however all concepts described

in this section can be directly transferred to ternary calculi, and, more in general, to

n-ary calculi.

2.2.2.2 Reasoning Problems

A spatial constraint network has a solution if one can assign objects from the domain to

the variables such that all constraints are satisfied. One important reasoning problem

is to decide whether a spatial constraint network is consistent which means it has a

solution. This problem is an instance of the constraint satisfaction problem. In the case

of typical qualitative spatial calculi, the domain is infinite and, hence, techniques for

solving finite constraint satisfaction problems are not directly applicable.

The consistency can be checked based on a procedure called algebraic closure or path

consistency algorithm, firstly introduced in Montanari (1974) for binary calculi and then

refined by Mackworth (1977), that uses the composition and converse operations to

enforce consistency of all triples of variables Vi, Vj , Vk by performing Rik = Rik ∩ (Rij ◦
Rjk) until a fixpoint is reached or a resulting relation becomes empty which indicates

inconsistency. Dylla & Moratz (2004) discussed an algorithm, based on Mackworth

(1977), to check consistency for ternary calculi. The algorithm employs the composition

of ternary relations defined as R(O1, O2, O4) = R1(O1, O2, O3) ◦R2(O2, O3, O4).

The algebraic closure algorithm for binary calculi defined by Mackworth (1977)

performs in O(n3) time in the worst case, being n the number of variables in the

constraint network. The worst case computational complexity becomes O(n4) time if

ternary calculi are considered.
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2.2.3 Topology, Cardinal Directions, and Visibility Calculi

In the remainder of this work, three qualitative spatial calculi dealing with different

aspects of space will be considered. The three calculi deal with regions in R
2 which

makes them particularly useful for GIS applications. The three calculi have been cho-

sen to model topology, cardinal direction, and visibility spatial aspects of the space.1

In particular, topological and cardinal direction relations are binary relations, while

visibility relations are ternary ones.

2.2.3.1 Region Connection Calculus

A DC B

A TPP B

A EQ BA PO BA EC B

A TPPI BA NTPP B A NTPPI B

tangential

proper part

non-tangential

proper part

tangential proper 

part inverse

non-tangential 

proper part inverse

disconnected
externally 

connected

partially 

overlapping
equal

Figure 2.9: Base relations of the Region Connection Calculus RCC-8.

Different binary calculi suitable to represent topological relations between extended

regions in 2D have been proposed, among which the most popular were firstly intro-

duced by Egenhofer & Franzosa (1991); Randell et al. (1992).

Randell et al. (1992) introduce the RCC-8 2 theory, that is based on the concept

of connectedness between spatial entities. Several ways in which connectedness can be

defined are discussed by Cohn & Varzi (1999). Eight base relations are logically de-

rived from this concept in order to represent topological relation: DC (disconnected),

EC (externally connected), PO (partially overlapping), EQ (equal), TPP (tangen-

tial proper part), NTPP (non-tangential proper part), TPPI (tangential proper part

inverse) and NTPPI (non-tangential proper part inverse). The set of base JEPD

topological relation is BRCC = {DC,EC, PO,EQ, TPP,NTPP, TPPI,NTPPI}. As
a result of its definition, the RCC-8 calculus is not only suited for spatial entities,

1The choice of those three calculi follows the analysis of the Emergency Management scenario that
will be discussed in Chapter 3.

2For the sake of readability, in the remainder of this text RCC-8 calculus will be also denoted as
RCC.
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Table 2.1: Inverse table for the RCC-8 calculus.

R DC EC PO EQ TPP NTPP TPPI NTPPI

R∼ DC EC PO EQ TPPI NTPPI TPP NTPP

but also for all those entities (either physical or conceptual) for which the concept of

connectedness can be defined. Fig. 2.9 illustrates the RCC-8 relations for 2D spatial

objects. A reduced version of the RCC-8 calculus has been proposed by Cohn et al.

(1997), which considers only five topological relation and gets the name of RCC-5. Dif-

ferently from the RCC-8, the RCC-5 groups the TPP and NTPP relations into the

PP (proper part) relation and TPPI and NTPPI ones into the PPI (proper part

inverse) relation. The rotation operation for the RCC-8 calculus can be easily defined

from the semantics of the relations, as shown in Table. 2.1. Yet, the composition table

has been described by Cui et al. (1993) and it is shown in Table. 2.2. Furthermore, it

has been proofed by Düntsch et al. (2001) that the composition of RCC-8 relations is

a weak form of composition.

Table 2.2: Composition table for the RCC-8 calculus.

R1

R2
DC EC PO EQ TPP NTPP TPPI NTPPI

DC BRCC

DC, EC,
PO,
TPP,

NTPP

DC, EC,
PO,
TPP,
NTPP

DC

DC, EC,
PO,
TPP,
NTPP

DC, EC,
PO,
TPP,
NTPP

DC DC

EC

DC, EC,
PO,

TPPI,
NTPPI

DC, EC,
PO, EQ,
TPP,
TPPI

DC, EC,
PO,
TPP,
NTPP

EC
EC, PO,
TPP,
NTPP

PO,
TPP,
NTPP

DC, EC DC

PO

DC, EC,
PO,

TPPI,
NTPPI

DC, EC,
PO,

TPPI,
NTPPI

BRCC PO
PO,
TPP,
NTPP

PO,
TPP,
NTPP

DC, EC,
PO,

TPPI,
NTPPI

DC, EC,
PO,

TPPI,
NTPPI

EQ DC EC PO EQ TPP NTPP TPPI NTPPI

TPP DC DC, EC

DC, EC,
PO,
TPP,
NTPP

TPP
TPP,
NTPP

NTPP

DC, EC,
PO,
TPP,
TPPI,
NTPPI

DC, EC,
PO,

TPPI,
NTPPI

NTPP DC DC

DC, EC,
PO,
TPP,
NTPP

NTPP NTPP NTPP

DC, EC,
PO,
TPP,

NTPP

BRCC

TPPI

DC, EC,
PO,

TPPI,
NTPPI

EC, PO,
TPPI,
NTPPI

PO,
TPPI,
NTPPI

TPPI

PO,
TPP,
TPPI,
NTPPI

PO,
TPP,
NTPP

TPPI,
NTPPI

NTPPI

NTPPI

DC, EC,
PO,

TPPI,
NTPPI

PO,
TPPI,
NTPPI

PO,
TPPI,
NTPPI

NTPPI
PO,

TPPI,
NTPPI

PO, EQ,
TPP,
NTPP,
TPPI,
NTPPI

NTPPI NTPPI

In contrast, the calculus proposed by Egenhofer (1989); Egenhofer & Franzosa

(1991) is based on the intersection of the interiors (O◦), the boundaries (δO) and
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the exteriors (O−1) of two given n-dimensional objects in an n-dimensional space. The

intersections yield to the Boolean nine intersection matrix of Equation 2.1—the model

is hence called Nine Intersection Model (9I-M).

9I-M(O1, O2) =

⎡
⎣δO1 ∩ δO2 δO1 ∩O◦2 δO1 ∩O−12

O◦1 ∩ δO2 O◦1 ∩O◦2 O◦1 ∩O−12

O−11 ∩ δO2 O−11 ∩O◦2 O−11 ∩O−12

⎤
⎦ (2.1)

The matrix gives theoretically rise to 29 (512) different possible configurations; how-

ever, considering connected regions in 2D space, only eight configurations are physically

realizable. Those configurations are equivalent to the relations defined by the RCC-8

calculus. The model has been further investigated by considering regions with holes

(Egenhofer et al., 1994). Finally, Egenhofer (1991) describes an algorithm that com-

putes the composition of two base 9I-M topological relations.

2.2.3.2 Cardinal Direction Calculus

The concept North of has been defined by Fisher (2000) as: “one object lies somewhere

vaguely to the north of another as opposed to south, east or west of it”. Hence, the

concept can be vaguely1 interpreted; for this reason, a precise semantics has to be

assigned to each cardinal direction in order to avoid possible misinterpretation of the

information. Different binary qualitative calculi have been proposed to model and to

deal with cardinal directions (Balbiani et al., 1998; Frank, 1991; Goyal & Egenhofer, in

press; Guesgen, 1989).

Frank (1991) introduces a point-based model for cardinal directions. In contrast,

Balbiani et al. (1998); Goyal & Egenhofer (in press); Guesgen (1989) are grounded on 2D

spatial regions. However, in Balbiani et al. (1998); Guesgen (1989) the spatial objects

are approximated with their Minimum Bounding Rectangle2. The model of Goyal &

Egenhofer (in press)—called Cardinal Direction Calculus (CDC)—does not introduce

any approximation of the spatial objects, and can be used also to represent relations

between points and lines (Goyal & Egenhofer, 2000). It is hence more convenient for

representing cardinal direction relations between spatial objects and, for this reason,

only the CDC will be discussed in this text.

Given two spatial regions in REG3 represented by the spatial objects O1 and O2, the

CDC defines an absolute frame of reference for the cardinal direction relations as a parti-

tion of the plane into nine regions (called acceptance areas or tiles) grounded on the Min-

imum Bounding Rectangle of the reference object O2. The CDC frame of reference is

1A definition of vagueness is given in Section 2.3.
2The Minimum Bounding Rectangle has been defined in Section 2.1.2.1.
3The model presented here is valid also for regions with holes, that belong to REG∗. An extension

for the model that includes all regions in REG∗ is discussed in Skiadopoulos & Koubarakis (2004).
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Figure 2.10: Frame of reference of the Cardi-
nal Direction Calculus.

shown in Fig. 2.10. Being the frame of

reference based on projective properties

of the objects (Frank, 1996), the CDC

relations will be referred to as projec-

tive relations as well. The cardinal re-

lation holding between the two objects,

denoted by RCDC(O1, O2) can be rep-

resented as a Boolean matrix report-

ing the intersection of the primary ob-

ject with the different acceptance areas

(Equation 2.2).

RCDC(O1, O2) =

⎡
⎣O1 ∩NW (O2) O1 ∩N(O2) O1 ∩NE(O2)

O1 ∩W (O2) O1 ∩B(O2) O1 ∩ E(O2)
O1 ∩ SW (O2) O1 ∩ S(O2) O1 ∩ SE(O2)

⎤
⎦ (2.2)

The matrix yields 29 (512) different possible configurations; however, only 218 possi-

ble relations are physically realizable when connected regions are taken into account

(Cicerone & Di Felice, 2004). Hence, the set of JEPD cardinal direction base rela-

tions (BCDC) is composed by 218 different relations. Among them, the nine specific

relations for which the correspondent direction matrix has only one true value—hence

the primary object intersects only one acceptance area—are called Single-Tile (ST)

relations, and they are denoted respectively with the symbols corresponding to the in-

tersected tile: N,NE,E, SE, S, SW,W,NW,B. The other relations are instead called

Multi-Tile (MT) relations, to highlight that the primary object overlaps more than one

acceptance area. Multi-tile relations will be denoted as the sequence of the tiles over-

lapped by the primary object, with a colon as separator (R = T1:. . .:Tk, with k ≤ 9).

For instance, the relation N:NE:NW (O1, O2) means that the object O1 overlaps the

acceptance areas—based on MBR(O2)—N,NE and NW . In the remainder of this

text, RST will be used to denote a single-tile relation, while RMT denotes a multi-tile

relation; if it is not specified whether a relation is single or multi-tile, the generic symbol

R will be used. Furthermore, the set of all CDC single-tile relations will be denoted as

RST
CDC = {N,NE,E, SE, S, SW,W,NW,B}, and Γ(RMT ) is a function to retrieve the

tiles that compose a multi-tile relation.
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The CDC base single-tile relations have been intensionally defined in Skiadopoulos
& Koubarakis (2004) as:

B(O1, O2) iff X(O2) ≤ X(O1) ∧ X(O1) ≤ X(O2) ∧ Y (O2) ≤ Y (O1) ∧ Y (O1) ≤ Y (O2)

(2.3)

N(O1, O2) iff Y (O2) ≤ Y (O1) ∧ X(O2) ≤ X(O1) ∧ X(O1) ≤ X(O2) (2.4)

NE(O1, O2) iff X(O2) ≤ X(O1) ∧ Y (O2) ≤ Y (O1) (2.5)

E(O1, O2) iff X(O2) ≤ X(O1) ∧ Y (O2) ≤ Y (O1) ∧ Y (O1) ≤ Y (O2) (2.6)

SE(O1, O2) iff X(O2) ≤ X(O1) ∧ Y (O1) ≤ Y (O2) (2.7)

S(O1, O2) iff Y (O1) ≤ Y (O2) ∧ X(O2) ≤ X(O1) ∧ X(O1) ≤ X(O2) (2.8)

SW (O1, O2) iff X(O1) ≤ X(O2) ∧ Y (O1) ≤ Y (O2) (2.9)

W (O1, O2) iff X(O1) ≤ X(O2) ∧ Y (O2) ≤ Y (O1) ∧ Y (O1) ≤ Y (O2) (2.10)

NW (O1, O2) iff X(O1) ≤ X(O2) ∧ Y (O2) ≤ Y (O1) (2.11)

Binary composition of CDC relations

The binary composition of two base cardinal direction relations (Definition 7) can be

computed by performing the algorithm proposed by Skiadopoulos & Koubarakis (2004).

At first, the composition of any two single-tile relations RST
1 and RST

2 is presented by

means of a composition table (see Tab. 2.3). The function δ(T1, . . . , Tk) returns the

disjunctive relation composed by all the single and multi-tile relations that can be

obtained combining the single tiles T1, . . . , Tk. As an example, δ(NE,E, SE) returns

the disjunctive relation {NE, E, SE,NE:E, E:SE, NE:E:SE}; note that NE:SE is not

a realizable CDC relation for connected regions and hence is not a member of the

resulting relation. In order to combine a single-tile relation with a multi-tile relation,

the concept of rectangular relation is required: a base relation R is rectangular if there

exist two rectangles a and b such that R(a, b) holds. The nine single-tile relations are

rectangular, and there exist 27 multi-tile rectangular relations. The composition of

a single-tile relation RST with a multi-tile rectangular relation RRec = T21:. . .:T2k is

computed as:

RST ◦ (T21 : . . . : T2k) = δ(RST ◦ T21, . . . , R
ST ◦ T2k) (2.12)

Let R1 = T11:. . .:T1j and R2 = T21:. . .:T2k be two base relations, R1 includes R2 iff

{T11, . . . , T1j} ⊆ {T21, . . . , T2k}. A function Br(R) is introduced to define the smallest

rectangular relation that includes a base relation R. Furthermore, let RST be a single-

tile relation and let RRec be a rectangular relation, a function Most(RST , RRec) is

defined that returns the rectangular relation formed by the RST -most tiles of RRec.

For instance, Most(N, N:NE:E:B) yields the rectangular relation N:NE. The defined

functions are used to compute the composition between a single-tile relation RST and
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Table 2.3: The composition of CDC single-tile relations.

R1

R2
N NE E SE S

N N NE δ(NE,E) δ(NE,E,SE) δ(N,S,B)

NE δ(N,NE) NE δ(NE,E) δ(NE,E,SE) δ(N,NE,E,SE,S,B)

E δ(N,NE) NE E SE δ(SE,S)

SE δ(N,NE,E,SE,S,B) δ(NE,E,SE) δ(E,SE) SE δ(SE,S)

S δ(N,S,B) δ(NE,E,SE) δ(E,SE) SE S

SW δ(N,S,SW,W,NW,B) UCDC δ(E,SE,S,SW,W,B) δ(SE,S,SW) δ(S,SW)

W δ(N,NW) δ(N,NE,NW) δ(E,W,B) δ(SE,S,SW) δ(S,SW)

NW δ(N,NW) δ(N,NE,NW) δ(N,NE,E,W,NW,B) UCDC δ(N,S,SW,W,NW,B)

B N NE E SE S

R1

R2
SW W NW B

N δ(SW,W,NW) δ(W,NW) NW δ(N,B)

NE UCDC δ(N,NE,E,W,NW,B) δ(N,NE,NW) δ(N,NE,E,B)

E δ(SE,S,SW) δ(E,W,B) δ(N,NE,NW) δ(E,B)

SE δ(SE,S,SW) δ(E,SE,S,SW,W,B) UCDC δ(E,SE,S,B)

S SW δ(SW,W) δ(SW,W,NW) δ(S,B)

SW SW δ(SW,W) δ(SW,W,NW) δ(S,SW,W,B)

W SW W NW δ(W,B)

NW δ(SW,W,NW) δ(W,NW) NW δ(N,W,NW,B)

B SW W NW B

a multi-tile relation RMT (see Skiadopoulos & Koubarakis (2004) for a proof of the

equation):

RST ◦RMT = RST ◦Most(RST , Br(RMT )) (2.13)

As last step, the composition between a multi-tile relation with a basic relation has

to be computed. To do so, the additional concept tile-union(R1, . . . , Rn) needs to be

defined as the base relation consisting of all tiles in R1, . . . , Rn. The algorithm to

compose a multi-tile relation RMT = T1:. . .:Tk with a base relation RB is described in

Algorithm 1.

Algorithm 1 CDC-Compose(RMT , RB)

Rc = ∅
for Ti ∈ RMT do Si = Ti ◦RB end for
for (s1, . . . , sk) ∈ S1 × . . .× Sk do

R← tile-union(s1, . . . sk)
if R ∈ BCDC then Rc ← Rc ∪R end if

end for
return Rc
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Inverse of CDC relations

A procedure to compute the inverse of CDC base relations has been firstly described in

Skiadopoulos & Koubarakis (2005). However, the proposed procedure relies on the algo-

rithm to check the consistency of CDC constraints: given a base relationR1(O1, O2), the

inverse relation R∼1 can be identified by checking the consistency between R1(O1, O2)

and R2(O2, O1), for each R2 ∈ BCDC . In contrast, Cicerone & Di Felice (2004) propose

an algorithm that computes the inverse by solving the so-called pairwise-consistency

problem. However, as shown in (Chen et al., 2010), this method is not able to give

always the correct answer. Recently, Chen et al. (2010); Wang & Hao (2010) introduce

two similar procedures to directly compute the inverse of CDC relations exploiting

the correlation between the rectangular relations of the CDC calculus with the Allen

Interval Algebra (IA) (Allen, 1983), that has been developed for one-dimensional tem-

poral intervals, and the corresponding Rectangle Algebra (RA) (Balbiani et al., 1998;

Guesgen, 1989), for 2D spatial regions.

Table 2.4: Allen’s Interval Algebra.

Name before meets overlaps starts during finishes equal

R(I1, I2) < m o s d f =

R−1(I2, I1) > mi oi si di fi =

Example
I1

I2

I1

I2

I1

I2

I1

I2

I1

I2

I1

I2

I1

I2

Allen (1983) describes 13 binary base relations between temporal intervals, by an-

alyzing the ordering among their end points (Tab. 2.4). Balbiani et al. (1998) uses IA

relations to describe the configuration of two rectangles in the space: a RA relation

is a pair of IA relations (Rx, Ry) with Rx, Ry ∈ RIA, with Rx being the IA relation

holding between the projection of the rectangles on the x-axis, and Ry the relation on

the y-axis projection. Being R,S ∈ RIA, the inverse of (R × S) can be computed as

(R × S)∼ = R∼ × S∼. Tab. 2.5 shows the correlation among the 36 CDC rectangular

relations and the RA relations.

Table 2.5: Correlation among CDC rectangular relations and RA relations.

Ry

Rx
{<, m} {o, fi} {di} {=, s, d, f} {si, oi} {>, mi}

{<, m} SW S:SW SE:S:SW S SE:S SE

{o, fi} W:SW S:SW:W:B E:SE:S:SW:W:B S:B E:SE:S:B E:SE

{di} SW:W:NW N:S:SW:W:NW:B UCDC N:B:S N:NE:E:SE:S:B NE:E:SE

{=, s, d, f} W W:B E:W:B B E:B E

{si, oi} W:NW N:W:NW:B N:NE:E:W:NW:B N:B N:NE:E:B NE:E

{>, mi} NW N:NW N:NE:NW N N:NE NE
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Table 2.6: The inverse of CDC single-tile relations.

R N NE E SE S SW W NW

R∼
S

SE:S
S:SW

S:SE:SW

SW

W
NW:W
W:SW

NW:W:SW

NW

N
N:NE
N:NW

N:NE:NW

NE

E
NE:E
E:SE

NE:E:SE

SE

The algorithm to retrieve the inverse of a CDC base relation is shown in Algorithm 2.

The functions RA(R) and CDC(s, t) used in the algorithm return respectively the

RA relation that corresponds to a rectangular CDC relation, and the CDC relation

corresponding to a RA one. Furthermore, Org(R∗) is a function that returns all CDC

base relations for which Br(R) = R∗. As an example, the resulting inverse of the CDC

single-tile relations are shown in Tab. 2.6; the inverse of {B} is not reported in the

table since it produces a disjunction of 198 base relations.

Algorithm 2 CDC-Inv(r)

Inv ← ∅; R← Br(r); (Rx, Ry)← RA(R); S × T ← (Rx, Ry)
∼

for s ∈ S do
for t ∈ T do R∗ ← CDC(s, t); Inv ← Inv ∪Org(R∗) end for

end for
return Inv

2.2.3.3 Visibility Calculus

The ternary Visibility Calculus (VC) (Fogliaroni et al., 2009; Tarquini et al., 2007),

defined for connected regions in REG with non-overlapping convex hulls, has been

built on the same primitives—namely the external and internal tangents1 between two

spatial objects—that have been already exploited to create the projective 5-intersection

model (5IM)2 (Billen & Clementini, 2004) for relative directions (Fig. 2.11(a)). Let

O1, O2 and O3 be spatial objects that represent regions in REG, the visibility calculus

defines ternary projective relations—RV is(O1, O2, O3)—that describe whether and how

the observer object O3 perceives the observed object O1 if the object O2 is acting as

an obstacle.

Tarquini et al. (2007) introduce a partition of the space into three acceptance areas

(tiles), as depicted in Fig. 2.11(b), corresponding to the concepts of Visible (V ), Par-

tially Visible (PV ), and Occluded (Oc). The acceptance areas are constructed based on

1The internal and external mutual tangents between spatial object have been defined in Section
2.1.2.5.

2The 5-intersection model defines five single-tile relations corresponding to the directional concepts
of After (Af), Before (Bf), Left side (Ls), Right side (Rs), and Between (Bw). A discussion about the
5IM is not in the scope of this text.
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Bw

Ls

Rs

AfBf O2 O3

Ls = Left Side Af = AfterRs = Right SideBf = Before Bw = Between

(a) 5-Intersection model

V

V

V

VOcPV

PV

PV

O2 O3

PV = Partially VisibleOc = OccludedV = Visible

(b) Visibility base model

Figure 2.11: Projective ternary calculi. The 5-Intersection model (Billen & Clementini,
2004) defines five projective relations to model relative directions: Before, After, Between,
Left Side, and Right Side. The base visibility model (Tarquini et al., 2007) defines the
projective relations of Visible, Occluded, and Partially Visible.

the external and internal mutual tangents between the reference objects. Given three

spatial objects O1, O2, and O3, the intersection of O1 with the frame of reference built

over the reference objects O2 and O3 yields the visibility relation between the three ob-

jects. Hence, the Boolean matrix approach used for the CDC calculus can be adopted

to represent the visibility relations. Three single-tile relations can hold, corresponding

to the symbols V, PV and Oc. Tarquini et al. (2007) also describes two permutation

operations (namely shortcut and shortcut inverse) and a composition table—defined as

R(O1, O3, O4) = R1(O1, O2, O3) ◦ R2(O2, O3, O4)—for the base single-tile relations of

the calculus.

V

V

V

VOcPVJ

PVR

PVL

O2 O3

PVL = Partially Visible Left PVJ = Partially Visible Joint
PVR = Partially Visible Right

V = Visible
Oc = Occluded

(a) Case with PVJ

V

V

V

VOc

PV
R

PV
L

O2 O3

PVL = Partially Visible Left 
PVR = Partially Visible Right

V = Visible
Oc = Occluded

(b) Case without PVJ

Figure 2.12: Frame of reference of the Visibility Calculus. The Visibility Calculus (Foglia-
roni et al., 2009) extends the visibility model by refining the partially visible relation into:
Partially Visible Left (PVL), Partially Visible Right (PVR), and Partially Visible Joint
(PVJ). The acceptance area of PVJ can be either non-empty (a) or empty (b) based on
the properties of the reference objects.
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Table 2.7: Permutation and rotation of Visibility relations.

R V PVL PVJ PVR Oc

SC(R) UV is V V V V

SCI(R) UV is V V V V

Table 2.8: Composition of two single-tile visibility relations as in De Felice et al. (2010).

R1

R2 V PVL PVJ PVR Oc

V UV is V, PVL, Oc V, PVL, PVR, Oc V, PVR, Oc V

PVL UV is PVL, Oc PVL, Oc PVL PVL

PVJ V, PVL, PVJ , PVR PVR, PVJ PVL, PVJ , PVR, Oc PVL, PVJ PVJ

PVR UV is PVR PVR, Oc PVR, Oc PVR

Oc UV is Oc Oc Oc Oc

Fogliaroni et al. (2009) refined the Partially Visible relation introducing three new

relations that correspond to the concepts of Partially Visible Left (PVL), Partially

Visible Right (PVR), and Partially Visible Joint (PVJ). The relation PVL(O1, O2, O3),

for example, means that the object O1 is partly seen from O3 on the left of O2. The

acceptance areas of the extended visibility calculus are depicted in Fig. 2.12. As a con-

sequence of its definition, for certain configurations of reference objects, the acceptance

area PVJ might not be build; for instance Fig. 2.12(a) shows a configuration of objects

for which PVJ exists, while Fig. 2.12(b) depicts a case for which the area does not

exist. The set of base single-tile visibility relations is RST
V is = {V, PVL, PVR, PVJ , Oc}.

Moreover, the set of JEPD visibility relations BV is contains 2
5 relations; however, only

22 multi-tile relations are geometrically realizable. For instance, a primary object can

not intersect at the same time the areas Oc and PVJ , without crossing also either PVL

or PVR.

The permutation—shortcut and shortcut inverse—and the composition —defined

as R(O2, O3, O4) = R1(O1, O2, O3)◦R2(O1, O3, O4) —operations described in De Felice

et al. (2010) are shown respectively in Table 2.7 and Table 2.8. However, those tables

consider only single-tile base relations.

2.2.4 On the Combination of Qualitative Calculi

The research on QSR has mainly focused on the definition of calculi that represent

and reason only on one single aspect of space. However, for real applications, such

as the emergency management scenario discussed in Chapter 1, multiple aspects of

space interplay among each other. For instance, considering the calculi described in

Section 2.2.3, if it is known PVJ(O1, O2, O3), it also holds true that DC(O1, O2) and

DC(O1, O3). The general focus on investigating only a single and isolated aspect of
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space at a time is one of the main reasons for the lack of real applications that make

use of QSR (Renz & Nebel, 2007).

There exist some works in the QSR field that investigate how the combination of

different qualitative spatial aspects of space can be performed. Basically, three different

approaches for the combination can be identified in the literature:

Combined Reasoning. Definition of a reasoning system—namely through the def-

inition of composition algorithms or tables—that combines the relations of two dif-

ferent calculi. As an example, Clementini et al. (1997) define some algorithms to

compose distance and orientation information, that allow to reason about positional

information. In contrast, Sharma (1996) defines the reasoning tables to compose

topological (Egenhofer, 1991), directional (Frank, 1992), and distance information.

In particular, with the concept of Heterogeneous Spatial Reasoning he refers to the

composition of two relations from two different calculi that returns a relation in

one of the two calculi. For instance, a topological relation is composed with a direc-

tional relation in order to compute another topological relation. Conversely, with the

Mixed Spatial Reasoning, two relations of the same calculus are composed in order

to compute a relation in a different calculus. For example two topological relations

can be composed to compute a directional relation. Finally, the Integrated Spatial

Reasoning refers to particular composition operations in which any pair of objects

is described by more than one qualitative relation. Similarly to the mixed spatial

reasoning approach, Guo & Du (2009) discuss how to derive topological relations

from two given direction relations.

Combined models. Creation of a new qualitative calculus that is grounded on the

calculi that model the considered aspects of the space. For instance, Frank (1992)

defines a calculus for modeling positional information by combining orientation and

distance. Differently, Brageul & Guesgen (2007) create a new model that consid-

ers topology, distance and orientation aspects combining the approach—discussed

above—of Clementini et al. (1997) with a combination of orientation and topology

previously introduced in Hernández (1994). Yet, Li (2006) combines the RCC-5

calculus with the DIR9 algebra, that is a coarser version of the RA algebra (Bal-

biani et al., 1998). Finally, Billen & Kurata (2008) define a new calculus to refine

the eight topological relations of the 9I-M considering projective properties of the

objects, namely adopting the Dimensional Model (Billen et al., 2002).

Joint Satisfaction Problem. Investigation of the reasoning properties in the case

that more aspects of the space are taken into account. In particular, an extension

of the CSP problem is defined, namely the Joint Satisfaction Problem. The JSP

grounding idea is that, given a set of objects, two qualitative calculi, and for each

calculus a constraint network, even if any single constraint network is consistent,
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the joint network can be inconsistent due to the interdependencies of the relations

in the calculi. Hence, the studies on JSP focus on the consistency checking of joint

networks. Gerevini & Renz (2002) study the consistency problem for topological

relations—using a subset of relations in the RCC-8 calculus that does not include the

PO relation—and a newly defined calculus to model qualitative size, called QS. The

work has been used as grounding for Li (2007); Li & Cohn (2009) that investigate

on the JSP problem considering topological, size, and also directional (Guesgen,

1989) information. Yet, Liu et al. (2009) consider only topological (RCC-8) and

directional information, but they focus on the comparison of the JSP problem’s

properties when two different directional calculi are considered: the RA algebra and

the CDC calculus.

2.2.5 Spatial Information Translation

In this text, the term translation of spatial information will be used to highlight those

operations that perform a transformation of spatial information from one representation

approach—namely quantitative or qualitative—to the other. In particular, the opera-

tions that transform from a quantitative representation to a qualitative representation

are called qualification operations, while the operations that perform a translation from

qualitative to quantitative are called quantification operations. While there exist some

works in the literature that address the qualification problem, quantification operations

still represent a challenge (Wolter & Wallgrün, 2012).

Despite the intensional definition of qualitative spatial relations—based on geomet-

ric constraints that the objects have to satisfy in order to belong to a certain relation—

already gives a mean for the quantification operations, research has focused on the

reduction of the computational time complexity of such operations. The operations

for the computation of topological relations, and in particular the relations defined in

the 9I-M (Egenhofer & Franzosa, 1991), are the only operations to compute qualitative

relations between spatial objects that are included in the OpenGIS specifications (Her-

ring, 2001). An algorithm to compute the topological relations between spatial objects

has been presented by Schneider (2002). Given two objects O1 and O2, described re-

spectively by n and m vertices, the algorithm performs in O
(
(n+m) log(n+m)

)
time

in the worst case.

Skiadopoulos et al. (2004, 2005) present an algorithm that computes the cardinal

direction relations (Goyal & Egenhofer, in press) between two spatial objects O1 and

O2 that represent spatial regions in REG∗. Being n1 and n2 the number of edges of

respectively O1 and O2, the proposed algorithm performs in O(n1 + n2) time in the

worst case.

Finally, Clementini & Billen (2006) describe an algorithm to compute the relations

for the 5-intersection model (Billen & Clementini, 2004) through the computation of
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the internal and external mutual tangents between the reference spatial objects. Given

three spatial objects O1, O2 and O3, having respectively n1, n2, and n3 vertices, the

algorithm performs in O(n log n) time in the worst case, where n � n1 + n2 + n3.

2.3 Uncertain Spatial Knowledge

Representation of spatial knowledge has traditionally been concerned with the assump-

tions that spatial regions have well-defined boundaries and that they can be adequately

observed and represented as sharp spatial objects (Pauly & Schneider, 2008): vector

and half-plane representations (Section 2.1.1) as well as qualitative models (Section

2.2.3) are suited for such kinds of entities. However, the assumptions turn out to be in-

appropriate since certain knowledge is only available in abstract domains, while in real

domain knowledge is subject to uncertainty due to limitations in knowledge acquisition

and representation (Freksa, 1994). In the remainder of this text, the term uncertain

region will be used to denote a spatial region which description is uncertain.

Two classes of uncertainty in spatial knowledge are defined by Robinson & Frank

(1985): The first is related to the inability of exactly observe and represent character-

istics of spatial entities where the characteristics are inherently exact, while the second

kind of uncertainty derives from intrinsic ambiguity in the concept to represent.

In the first case, uncertainty is mainly inherited from data collection and from

the limitations of the used representation approaches. It is grounded on the fact that

knowledge about reality is collected by means of observations; any observation and rep-

resentation is uncertain since it is not capable to correctly reflect all aspects of reality

(Duckham et al., 2001). In order to avoid ambiguities in the terminology, the differ-

ent kinds of uncertainty are defined here consistently with the Metrology definitions

given in BIPM et al. (2008). Precision refers to information expressed as a range of

possible values (Altman, 1994). Precision is often numerically represented by measures

of imprecision, like the coefficient of variation. As an example, considering a spatial

region whose maximum length is 10m (true value), the measure 10m± 0.01m is more

precise than the measure 10m± 0.10m. In contrast, accuracy is the degree of closeness

of an observation or representation of a quantity to that quantity’s actual true value

(e.g., Worboys, 1998a). For example, considering again a spatial region having maxi-

mum length equals to 10m (true value), the measures 10m±0.01m and 10.1m±0.01m

have the same precision, but the former is more accurate than the latter. Besides, the

smallest change in the true value that causes a perceptible change in the observation

or representation is called resolution or granularity1. For instance, the values 10m and

1Since resolution and granularity affect precision, the terms are often used in the literature as
synonyms for the same concept (e.g., Duckham et al., 2001; Worboys, 1998b). However, in this thesis
the concepts are distinguished in order to highlight the different kinds of uncertainty.
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10.00m represent the same true value at different resolutions. Finally, incompleteness

is related to lack of relevant information to describe a spatial entity (Worboys, 1998b).

The second class of uncertainty defined by Robinson & Frank (1985) deals with those

spatial regions which boundaries can not be exactly defined; this aspect of uncertainty is

usually called vagueness. Two different theories of vagueness are discussed in the litera-

ture that distinguish between linguistic and ontological nature of vagueness (see Varzi,

2006). In the first theory, called de dicto view, vagueness is a property of names and

predicates that describe an entity, and it is not a property of the entity itself (e.g., Bit-

tner & Smith, 2003; Varzi, 2001; Zadeh, 1979, 1995). For instance, Zadeh (1979, 1995)

distinguish among fuzzy proposition—that is a proposition containing fuzzy terms—,

and vague proposition—that is (i) a fuzzy proposition and (ii) insufficiently specific for

a specified purpose. The second theory of vagueness, also called de re view, considers

vague spatial entities as entities having truly fuzzy boundaries (e.g., Duckham et al.,

2001; Erwig & Schneider, 1997; Fisher, 2000; Tye, 1990). Fisher (2000) proposes the

philosophical Sorites paradox (Cargile, 1969) to test whether a geographic concept is

vague.

2.3.1 Modeling Uncertain Spatial Knowledge

Different approaches have been proposed to model uncertain spatial knowledge. Those

approaches can be classified into four main categories:

Fuzzy sets. Firstly introduced by Zadeh (1965), they are based on an extension of

the set concept: given a set S with the elements in a domain D, any elements of D

can either belong or not belong to S. Differently, in fuzzy sets a real number, varying

between 0 and 1, is assigned to any member of the domain D: this value indicates

the degree of membership of the element to the set. Research in the application of

fuzzy sets for describing uncertain regions have been described by Altman (1994);

Dilo et al. (2007); Guesgen & Albrecht (2000); Liu & Shi (2006); Schneider (1999);

Zhan (1998). However, one of the main drawbacks related to fuzzy sets consists

in the assignment of the membership values to any element of the domain (Keefe,

2000). A simplified version of fuzzy sets, that does not require the explicit definition

of the membership values, has been used in Freksa (1980, 1982); Freksa & López de

Mántaras (1982).

Three-valued logics. They have a similar approach to fuzzy sets, but they ad-

mit only three distinct degrees of membership: Yes, No, and Maybe. Approaches

to model uncertain regions using three-valued logic have been proposed in Cohn

& Gotts (1996); Lehmann & Cohn (1994)—egg-yolk approach—, Clementini &

Di Felice (1996, 1997a, 2001)—broad boundary approach—, and Erwig & Schnei-

der (1997); Pauly & Schneider (2004, 2008)—vague regions approach. In general,
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three-valued logic models define two regions (one containing the other) to model

uncertain spatial knowledge: The internal region—called yolk in the egg-yolk ap-

proach, inner region in the broad boundary approach, and kernel in the vague

regions approach—clusters the points that surely belong to the uncertain region.

Conversely, the points that are in the external region—respectively called egg, outer

region, and boundary—but are not in the internal one, constitute the set of points

that may belong to the uncertain region. All other points surely do not belong to

it.

Rough sets. Initially described by Pawlak (1982), they are similar to the three-

valued logics approaches, but they rather make use of discrete partitions of the

space. Two approximations are identified: the lower approximation composed by

those elements of the partitions that surely belong to the uncertain region, and the

upper approximation composed by the elements that belong or may belong to the

uncertain region. Approaches to model uncertain spatial knowledge using the rough

set theory have been proposed in Beaubouef et al. (2007); Bittner & Stell (2001);

Worboys (1998b).

Probabilistic methods. They use statistical and probabilistic functions to define

the probability of a certain entity to be located in a specific position. Such methods

have been used in Li et al. (2007); Mark & Csillag (1989); Tøssebro & Nyg̊ard (2008).

2.3.2 Uncertain Spatial Knowledge in GIS

Different approaches have been proposed to represent uncertain quantitative spatial

knowledge in Geographic Information Systems, exploiting either raster or vector rep-

resentation methods already implemented in existing GIS.

Fonte & Lodwick (2005) introduce a representation method based on space tessel-

lation (raster). They define the so-called fuzzy geographical entity, that represents an

uncertain region by assigning a grade of membership to the region for each element of

the tessellation, using the fuzzy set approach. Fuzzy sets have been used also in Er-

wig & Schneider (1997); Schneider (1999). However, differently from Fonte & Lodwick

(2005), they extend the vector representation approach to represent fuzzy points, lines,

and polygons.

A three-valued logic representation has been discussed by Clementini & Di Felice

(2001). They propose an extension of the vector representation to integrate regions

with a broad boundary in the datatype definition given by the OpenGIS specifications

for SQL. Single-region and multi-region objects with a broad boundary are defined

as counterpart for the single-region and multi-region objects with a sharp boundary.

Furthermore, beyond the investigation on topological relations, Clementini & Di Felice

(1997a) define spatial operators for regions with a broad boundary, such as Buffer zones,

MBR, and Convex Hull. Similarly, Pauly & Schneider (2004) define basic datatypes
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for uncertain points, lines, and regions as well as set operators by adopting the vague

region approach.

Vector representation extensions that use probabilistic models have been proposed

by Dutton (1992); Tøssebro & Nyg̊ard (2008). While Dutton (1992) only defines points

and lines, Tøssebro & Nyg̊ard (2008) introduce all vector datatypes, defining uncertain

lines, points, and regions using the probabilistic value for each point in the plane to

be part of the uncertain region. Also simple operators for such datatypes are defined,

such as the intersection operation.

2.3.3 Qualitative Relations Between Uncertain Regions

Besides the definition of what an uncertain region is, and how it is possible to model

uncertainty, different research investigated how to model qualitative relations holding

between uncertain regions. Those relations are usually called fuzzy relations or ap-

proximate relations (e.g., Clementini & Di Felice, 1997a; Du & Guo, 2010; Schockaert

et al., 2006; Zhu et al., 2010), to highlight the contrast with the crisp relations between

certain regions.

Most of the existing literature focuses only on the topological aspects of uncertain

regions. In particular, RCC-8 relations have been discussed by Cohn & Gotts (1996);

Roy & Stell (2001)—using the egg-yolk approach—, by Li & Li (2004); Schockaert

et al. (2006)—that uses the fuzzy set approach—, and by Bittner & Stell (2001)—

considering rough sets. Yet, the 9I-M has been investigated by Clementini & Di Felice

(1996, 1997a, 2001) using the broad boundary approach and by Zhan (1998) with the

fuzzy set approach. Beaubouef et al. (2007) use the rough set model to define topology

both as RCC-8 relations and as 9-IM relations. Finally, other approaches make use

of ad-hoc definitions of topological relations using either fuzzy set approaches (Dilo

et al., 2007; Liu & Shi, 2006; Schneider, 1999) or three-valued logic approaches (Erwig

& Schneider, 1997; Pauly & Schneider, 2004, 2008).

Few works investigate how qualitative aspects of the space—different from the topo-

logical one—can be modeled when the regions are uncertain. In particular, Cicerone &

Di Felice (2000); Du & Guo (2010) investigate how the CDC calculus can be extended to

consider regions with a broad boundary as primitive for the model. Furthermore, Zhu

et al. (2010) investigate an algorithm to compose approximate cardinal direction rela-

tions, extending the composition algorithm proposed by Skiadopoulos & Koubarakis

(2004).



Chapter 3

Spatial Information Integration

for Emergency Response

The state of the art with respect to spatial information collection, representation, and

manipulation has been analyzed in the previous chapter. The present chapter discusses

how the described techniques relate to the emergency management scenario introduced

in Chapter 1. Section 3.1 analyzes the requirements of spatial information after extreme

events. Limits in the methods for collecting spatial data after extreme events will be

discussed considering as an example the earthquake that struck the Haiti’s capital city

of Port-au-Prince in January 12, 2010. An alternative approach for spatial data col-

lections is proposed that exploits communications exchanged among the extreme event

responders. However, communications convey spatial information that is qualitative

in nature, while GIS requires quantitative spatial information. The integration of ex-

isting information with information extracted from the communication is crucial for

providing responders with updated descriptions of the environment. Thus, a system

for the integration of qualitative and quantitative spatial information is proposed in

Section 3.2. Challenges addressed in this thesis that are related to the integration of

mixed descriptions of spatial knowledge will be detailed in Section 3.3.

3.1 Geographic Data Collection for Emergency Response

Typically, Geographic Information Systems (GIS) store and manage detailed spatial

information collected by national or local administrations, industries, military forces,

etc. Each of them stores in a GIS all the required information for their particular goals:

a local administration needs the descriptions of roads, buildings, and infrastructures;

an industry enterprise collects information useful for its kind of business; military forces
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store and manage information related to strategic points or risk zones within an urban

environment.

Spatial information changes are often slow processes and the changes affect only a

minimal part of the whole information stored in a GIS. As an example, the process

of construction of a new road or building requires a long time to be completed, and

it affects only the neighbor of the new entity. In this case, the operations required to

update the GIS can be straightforwardly defined: accurate measures, using for instance

ground surveying or GPS methods, of the new entity are needed, and the new infor-

mation has to be added into the system. Information related to neighboring entities

affected by the change can be updated using the same approach.

This scenario drastically changes when an unexpected natural event, like an earth-

quake or a tornado, modifies the typical static environment in few seconds (cf. Section

1.2.2). This kind of event usually causes a lot of changes in the environment: build-

ings and bridges can collapse, landslides can occlude roads, etc. Conversely from the

situation described before, information changes are not slow processes anymore and

they can affect a big part of the whole information managed by GIS. Obviously these

kind of changes make the environment description stored in a GIS unreliable; if the

information is out of date, all the advantages of using GIS are lost. At the same time,

after a natural catastrophe, GIS information is particularly important as it is needed

to coordinate the different aid operations.

In this section, the limits in data collection after a natural disaster will be discussed.

3.1.1 Emergency Management

Emergency Management (EM) has been defined as the “discipline and profession of

applying science, technology, planning and management to deal with extreme events

that can injure or kill large numbers of people, do extensive damage to property, and

disrupt community life” (Drabek & Hoetmer, 1991). The EM field has been deeply in-

vestigated by different communities, such as Computer Science, Environmental Science,

Engineering, and Business. Extreme events are classified as Natural (e.g., earthquakes,

tsunami, eruptions of volcanoes, etc.) or Human Driven (e.g., nuclear emergencies,

terrorism, etc.). Four different phases are defined for emergency management, based

on the Comprehensive emergency management model firstly introduced in National

Governors’ Association (1978):

Mitigation. Preventing future emergencies or minimizing their effects. It includes

any activity that prevents an emergency, reduce the chance of an emergency happen-

ing, or reduce the damaging effects of unavoidable emergencies. Mitigation activities

take place before and after extreme events.
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Preparedness. Preparing to handle an emergency. It includes plans or preparations

to save lives and to help response and rescue operations. Preparedness activities take

place before an extreme event occurs.

Response. Responding safely to an emergency. It includes actions taken to save

lives and prevent further property damages in an emergency situation. Response is

putting preparedness plans into action.

Recovery. Recovering from an emergency. It includes actions taken to return to a

normal or an even safer situation following an emergency. Recovery activities take

place after an extreme event.

The capability of a community to respond to and to recover from an extreme

event is called resilience. Renschler et al. (2010) identify seven different dimensions

of resilience (PEOPLE resilience framework—Fig. 3.1(a)) that consider both physi-

cal/environmental and socio-economical aspects of a community. The resilience of a

community is strongly influenced from the actions taken during all four EM phases

as well as from the availability of information (spatial as well as non-spatial) related

to any dimension of the framework. The work presented in this thesis focuses on the

Physical infrastructure dimension of the PEOPLES framework.

Image Source:  Renschler, C.S. et al. (2010). Developing the ‘PEOPLES’ 
       resilience framework for defining and measuring 
       disaster resilience at the community scale. 
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Figure 3.1: PEOPLES resilience framework (Renschler et al., 2010) and the information
gap after an extreme event(MacFarlane, 2005).

Being any environment dynamic in nature, imagery and geographic data always

represent the environment only at one point in time. However, during the mitigation,

preparedness, and recovery phases there is, in general, a low chance that information

required to reach the phase’s goals is outdated (i.e., in the physical infrastructure di-

mension the description of a road or building stays unvaried for a considerably long
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time). Furthermore, the collection of any kind of spatial data required to reach the

goal is not a time critical operation. The same consideration does not hold true for

the response phase. Indeed, during an extreme event there exists a high chance that

there is a drastic change in geographic information at any of the seven resilience dimen-

sions, and continuous data and imagery collection becomes crucial. Nevertheless, the

time critical goals to achieve during this phase makes the collection of updated spatial

information a big challenge. This problem has been discussed in MacFarlane (2005),

that shows how the demand of information after an extreme event increases faster than

that of supply, leading to the demand-provision gap shown in Figure 3.1(b). The gap

needs to be fulfilled by collecting updated information; for a successful response it is

also crucial to share the updated information with all actors involved in the response

phase’s tasks.

3.1.2 Example: Information Availability after the Haiti Earthquake

Traditional methods for collecting geographic data have been introduced in Section 2.1.3.

However, those methods fail in providing updated information rapidly enough to sup-

port the response phase operations. Indeed, most of these operations (such as rescue

of victims and settlement of gathering points) are performed in the first few hours fol-

lowing the extreme event, while traditional methods for data collection require more

time to gather and provide updated information.

In this work, the magnitude 7.0 earthquake that struck the Haiti’s capital city

of Port-au-Prince in January 12, 20101 is considered as a reference for analyzing the

information availability after an extreme event. The MCEER Earthquake Engineering

to Extreme Events center2 at the University at Buffalo - The State University of New

York (SUNY) provides an overview of the data collected after the earthquake through

its Global Disaster Database3. The database documents the different geographic data

providers that collected data after the extreme event struck the city. The supplied

data can be clustered according to the primary and secondary methods classification

introduced in Section 2.1.3.

Data collected after the earthquake through primary collection methods4 is sum-

marized in Table 3.1. As the table shows, low resolution satellite imagery have been

available starting from the day after the catastrophe, while high resolution data required

more days to be collected. While satellite systems only need a different configuration of

their parameters to point on a specific zone of the earth surface, the other primary col-

lection methods require the settlement of complex devices on the ground. Thus, aerial

1USGS Report: http://earthquake.usgs.gov/earthquakes/recenteqsww/Quakes/us2010rja6.php
2MCEER, Earthquake Engineering to Extreme Events: http://mceer.buffalo.edu/
3MCEER Global Disaster Database: http://mceer.buffalo.edu/infoservice/databases.asp
4Survey and GPS measurements, satellite images and aerial photographs (cf. Section 2.1.3.1).
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Table 3.1: Haiti Earthquake: raster data availability.

Data Availability Source Collection method

13-Jan-2010 DigitalGlobea Satellite imagery

13-Jan-2010 GeoEyeb Satellite imagery (Low resolution)

15-Jan-2010 UNOSATc Satellite imagery

17-Jan-2010 GeoEyeb Satellite imagery (High resolution)

27-Jan-2010 IPLERd Aerial LIDAR DEM, SEM, point clouds

27-Jan-2010 IPLERd Aerial 3D imagery

05-Feb-2010 AIDGe Ground data

a http://www.digitalglobe.com/content/haiti/haiti viewer.html
b http://www.geoeye.com/
c http://www.unitar.org/unosat/maps/49
d http://ipler.cis.rit.edu/projects/haiti
e http://www.aidg.org/

Table 3.2: Haiti Earthquake: vector data availability.

Data Availability Data Source Source Subject

14-Jan-2010 Satellite SERTITa Damage assessment map

14-Jan-2010 HIUb Landslide hazards

15-Jan-2010 Satellite SERTITa Spontaneous gathering areas

15-Jan-2010 Satellite SERTITa Visibly damaged buildings

15-Jan-2010 UNOSAT UNITARc IDP concentrations, road
and bridge obstacles

16-Jan-2010 Satellite SERTITa Location of visible
water surfaces

16-Jan-2010 UNOSAT UNITARc Damage assessment for
major buildings/infrastructures

18-Jan-2010 UNOSAT UNITARc Density of bridge
and road obstacles

4-Feb-2010 UNOSAT UNITARc Comprehensive building
damage assessment

a http://sertit.u-strasbg.fr/SITE RMS/2010/01 rms haiti 2010/01 rms haiti 2010.html
b https://hiu.state.gov/
c http://www.unitar.org/unosat/maps/49
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pictures and ground data collection needed more time than satellites imagery (almost

two weeks from the disaster). However, satellite as well as aerial pictures only provide

information in a raster format (a certain value of the measured parameter correspond

to any pixel of the image). Thus, this data only gives a visual overview of the damaged

areas, but does not provide exact and structured information as needed in the response

phase (e.g., a list of the collapsed building where there is a high probability to find

victims or a list of the blocked roads).

The imagery are analyzed using secondary methods1 of data collection, that allow

for the extraction of vector data from the pictures. The interpretation of the imagery

requires the execution of computationally expensive algorithms of image analysis. A

synthesis of spatial information available in vector format after the Haiti event is re-

ported in Table 3.2. The table shows that a damage assessment map has been available

two days after the event, followed by other kind of information in the days after.

The summary of the data collected after the Haiti earthquake (both primary and

secondary methods) is depicted in Figure 3.2. The figure clearly shows the information

provision lack (discussed in the previous section) following the event. The first updated

information was available the day after the event, and its format is not suitable for most

of the response tasks, that rather need information in vector format. For instance, the

knowledge about the functionality of infrastructures can improve path planning and

navigation of the emergency vehicles involved in the rescue operations, while knowledge

about the damaged areas, cross-checked with the population density of each area, can

improve the planning of aid operations. Both examples show critical operations that

are performed as soon as the event struck.
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Figure 3.2: Haiti earthquake.

The consequence of the lack of information is that all the operation performed by

search and rescue missions after the event have been based on out-of-date descriptions of

the environment. Due to their time-critical characteristics, updated spatial information

1Scanners, manual and head-up vectorization, photogrammetry (cf. Section 2.1.3.1). Scanner and
manual or head-up vectorization are not suitable to collect data after extreme events since they are
grounded on already existing maps. Hence, only photogrammetry is a suitable technology to extract
vector data from photographs and imagery.
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can make the difference between a successful or unsuccessful accomplishment of the

response phase operations.

3.1.3 Information Lack in the EM Response Phase

The lack of information shown in the case of the Haiti earthquake can be generalized

for all natural extreme events that strike a populated region. As Figure 3.3 shows,

the spatial information is up-to-date until the event happens. After a certain time

from the extreme event, information is again up-to-date since new data is collected

using traditional methods, either primary or secondary. The amount of time strongly

depends on the kind of information required to solve a particular task: a preliminary

evaluation of the criticism can be done with the low resolution data gathered from

satellites, while a detailed analysis of the infrastructures requires more precise vector

data. However, independently of the kind of information, there always exists a lack of

updated information going from when the extreme event struck to when the updated

information is available. As shown for the Haiti earthquake, traditional methods of

data collection fail in providing useful information during such interval and alternative

kind of information sources need to be taken into consideration.

tExtreme event

Spatial Information
up-to-date

Updated information from
satellite images, sensor data, ...

Lack of updated
information

Figure 3.3: Extreme event: Lack of information in the response phase.

3.1.4 VGI for Emergency Management

The necessity to exploit the Internet and GIS technology to collect and share data

to support the response operations after an extreme event has been firstly discussed

by Goodchild (2003). Afterwards, in Goodchild & Glennon (2010) VGI technologies—

closely related to crowdsourcing1—have been proposed as means of collecting data from

volunteers, focusing especially on issues related to data quality and trustability. This

led, in recent years, to the development of social networks for supporting data collection

in emergency management (Li & Goodchild, 2010).

1According to Goodchild & Glennon (2010), the term crowdsourcing (Howe, 2008) has mainly two
meanings: (1) “it can refer to the proposition that a group can solve a problem more effectively than an
expert, despite the group’s lack of relevant expertise”, and (2) “information obtained from a crowd of
many observers is likely to be closer to the truth than information obtained from one observer”.
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According to this idea, diverse social network-based systems for collecting geo-

graphic data have been employed after the earthquake in Haiti, among which Crisis-

Camp Haiti1, OpenStreetMap, USHAHIDI2, and GeoCommons3 (Zook et al., 2010).

The first two services provided volunteers with web-based platforms for on-line map-

ping to create updated descriptions of the infrastructures (e.g., buildings and roads);

those services relied on satellite imagery furnished by GeoEye, and hence available only

one day after the catastrophe (cf. Table 3.1). Differently, USHAHIDI (Okolloh, 2008)

allows users to submit reports either by using the most diffused social networks (e.g.,

Twitter), or by sending SMS or MMS. Those reports are geo-tagged—meaning that a

position is associated in a map to any text report—and then they are made available for

decision makers. Finally, GeoCommons provides different web tools to integrate and

query maps and imagery shared by different authorities; also this service is dependent

on data collected using traditional methods.

Even though the described services have successfully provided volunteers with plat-

forms to collect geographic data for supporting the emergency management response

phase, still the proposed approaches do not compensate the information lack discussed

in Section 3.1.3. Indeed, the social network-based collecting methods require the users

to expressly connect to the offered web service. Such a requirement represents a strong

limiting factor for people affected by the event and for rescuers involved in the response

operation in sharing their knowledge through the system. The former have as main

priority to reach a gathering point to receive assistance, and, even though they would

have the chance to share information, they can not rely on existing communication

infrastructures that are often heavily damaged by extreme events. The latter can usu-

ally make use of ad-hoc communication infrastructures, yet their priority is to save and

rescue people affected by the event; this duty takes them away from the intended users

of the social network systems.

In this work, an innovative system is described that exploits the interpretation of

the communications among the actors involved in the response phase—both people

affected by the event and rescuers—for updating the existing geographic knowledge.

As shown in the example of Chapter 1, such communications convey a large amount of

spatial information that is not yet exploited in existing VGI systems.

3.2 A Geographic Information Integration System

Reports and communication exchanged among disaster responders, as well as calls to

the emergency lines, can be exploited to update the geographic knowledge of a pop-

1http://crisiscommons.org/
2http://haiti.ushahidi.com/
3http://geocommons.com/
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ulated environment. Existing limits in the VGI applications developed for emergency

management can be removed by wiretapping the communication exchanged among the

different actors involved in the disaster, and opportunely interpreting, storing, and

sharing them.

3.2.1 Spatial Information Extraction and Representation

Communications among rescuers as well as distress calls received by the emergency

lines have to be interpreted in order to extract the spatial information they convey. At

first, the described spatial entities are extracted out of them. Two kind of entities are

identified:

Known entities. They refer to elements in the environment that were existing also

before the event and did not undergo any change. These entities will be repre-

sented by known objects (denoted as O1, O2, . . .) since their quantitative description

is known and precise.

Unknown entities. They refer to the spatial entities that have been created as

a consequence of the extreme event (such as a fire) as well as elements that did

undergo a change after the event (for which the eventually available quantitative

description is out-of-date). They are represented by unknown objects (denoted as

O∗1, O∗2, . . .) since their extension and position is not precisely known but can only

be approximately identified by interpreting other available information.

In addition to known and unknown entities, information that relates them are ex-

tracted from the communication. Indeed, as shown in Section 2.2, humans use qualita-

tive expression to manage spatial information, rather than quantitative approaches that

convey numerical information as done by GIS systems. Hence, the interpretation of the

reports yields a set of qualitative information that relates known and unknown entities.

For the purpose of this work, only three spatial aspects will be taken into account:

topology, that well describes containment relations (e.g., the storage site is inside the

hazardous area), cardinal directions (e.g., the fire is north-west of the airport), and

information reporting the possibility to see a certain entity from a given position (e.g.,

I can see the fire from the college). However, the procedures that will be explained

in this thesis can be straightforwardly applied to other aspects of the space. The con-

sidered calculi to model qualitative information are hence the RCC-8 (Section 2.2.3.1),

the CDC (Section 2.2.3.2), and the Visibility calculus (Section 2.2.3.3).

A strategy to integrate qualitative and quantitative spatial information is developed,

that provides methods to approximate the spatial extension of unknown entities—

resulting in the possibility of drawing them on a map—and to derive new qualitative

information useful for querying purposes (e.g., to retrieve the dangerous entities inside
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a hazardous area). It is not in the scope of this thesis to argue whether qualitative in-

formation is more suited than quantitative information in emergency situations; rather

the target is to show how it is possible to integrate both approaches in order to exploit

any kind of information available after an extreme event1.

3.2.1.1 Assumptions

Issues related to the communication collection and information extraction are not an-

alyzed in this work. At first, it is assumed that a system to collect and store all the

communications in a shared repository, and to efficiently retrieve them, exists. Indeed,

a reliable communication infrastructure has to be established that allows the rescuers

to communicate their reports. Existing infrastructures, such as the ones used for mobile

communication, are not reliable anymore since they are usually heavily damaged by

extreme events. Rather, an ad-hoc infrastructure, like the ones used by military forces

and fire brigades, furnishes a more reliable basis for the communications.

In addition, it is not in the objective of this work to investigate how natural lan-

guage can be interpreted, rather the focus is on how the extracted information can

be transformed to perform updates in the existing geographic knowledge. Hence, it

is supposed that known and unknown entities are automatically extracted and inter-

preted from the communications. Furthermore, same entities that are reported in two

or more reports are automatically associated with the same symbol. For instance, if

a fire is reported and associated in one interpretation with the symbol O∗F , the same

symbol will be used to refer to the fire if it also appears in other reports. Moreover, it

is assumed that all the extracted information is consistent.

Finally, even though the events that follow a natural disaster usually have a dynamic

evolution, only a static environment is considered in this work. Hence, if an entity has

been reported in a certain area, it is assumed that it does not change its position at

a later time. Similarly, issues related to information persistence (i.e., for how long a

certain information is considered to be valid) are not addressed in this work.

3.2.2 Spatial Information Integration

A simple example2, that shows how qualitative and quantitative information pieces are

integrated with each other, is depicted in Fig. 3.4. The coordinates of the river (ORI),

the airport (OAI), the university college (OUC), the hazardous material storage site

(OHM ), and the actual position of the ambulance (OAM ) are known. Hence, those

objects quantitatively describe the set of known entities. Conversely, the fire area

1For a discussion about the level of abstraction required for specific applications, see (Freksa, 1991).
2The example shown here is a schematization of the example described in Chapter 1 (Fig. 1.2, p. 3).
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(depicted as the Hazardous Area HA and represented by the imprecise object O∗HA) is

the only element that composes the set of unknown entities.

HA North-East of AI
HA West/North West of  UC

e B

C

9

HA Touches RIAM

AI
UC

HM

RI

(a) Known entities configuration

e B

C

9HA

AM

AI
UC

HM

RI

(b) Quantitative description for HA

Figure 3.4: Inference of a quantitative approximation for the Hazardous Area (HA).

As shown in Chapter 1, it is supposed that the fire is described in the commu-

nications received by different emergency lines1. Qualitative spatial relations are ex-

tracted from the reports as shown in Fig. 3.4(a). For instance, NE(O∗HA, OAI) and

{W,NW}(O∗HA, OUC) are qualitative information pieces that are extracted from the

communications and that relate the entities in Fig. 3.4.

Even though the available information is represented in a formal way (either qualita-

tively or quantitatively), its expressiveness is not fully exploited yet. To do so, the first

step is to quantitatively interpret the qualitative descriptions of O∗HA in order to identify

which area is potentially affected by the fire. The area can be reduced by opportunely

combining the interpretations of different qualitative information pieces (Fig. 3.4(b)).

Obviously, the inferred description is only an approximation of the real spatial extent

of the hazardous area, since it comes from the interpretation of information that only

partially describes it. However, even if its description is imprecise, the hazardous area

can be shown on a map, providing the EM’s decision makers with a visual overview

of the dangerous areas. Furthermore, the extracted quantitative description is in-

tegrated with information previously available in order to discover new qualitative

information, that can eventually trigger rapid warning messages to the decision mak-

ers. For instance, OHM turns to be into the hazardous area—NTPP (OHM , O∗HA)—,

triggering a warning message for the fire brigades. Finally, a different integration is

performed at a purely qualitative level. Indeed, the position of the fire with respect

to the airport—NE(O∗HA, OAI)—is combined with the position of the airport with re-

spect to the ambulance—NW (OAI , OAM ). This results in the information that the

fire is somewhere north of the ambulance—{N,NE,NW}(O∗HA, OAM ). Thus, the new

1
Fire brigades: [...] a fire broke out north west of the airport [...]; Distress call: [...] There is

a big fire in the direction of the Airport but it did not clear the college yet [...] (cf. Section 1.1).
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knowledge can be conveyed to an ambulance driver that might decide to search for an

alternative path to reach his destination.

3.2.3 System Description

A system for the integration of geographic information is depicted in Fig. 3.5. The

system gets as input spatial knowledge already represented either in qualitative or

geometric form. The stored information is composed by a set of known entities (quan-

titatively described by known objects), a set of unknown entities (described by unknown

objects), and a list of information that relates entities belonging to the two sets. Infor-

mation stored in the system can be retrieved to solve different tasks such as querying

operations that require qualitative information (e.g., searching for all the infrastruc-

tures that are in a hazardous area), or visualization operations that mostly require

geometric information (e.g., visualizing a map that depicts the hazardous areas).

Storage Layer

Spatial Data Input

(qualitative and quantitative)

Geographic Information

Integration Layer
Output

via

Querying

Output

via

Visualization

Qualitative 

Information

Quantitative

Information

Figure 3.5: Architecture of the geographic information integration system1 – The Storage
Layer permanently stores both qualitative and quantitative descriptions of spatial knowl-
edge and opportunely links the information pieces that describe the same spatial entity.
It also provides interfaces for information input (qualitative and quantitative) and output
(through querying and visualization operations). In contrast, the Geographic Information
Integration Layer aims at updating the spatial knowledge stored in the storage layer by
integrating quantitative and qualitative spatial information.

Two layers establish the core of the system: a Storage Layer and a Geographic

Information Integration Layer. The former simply aims at the permanent storage

of qualitative and geometric information, linking every qualitative relation with the

corresponding spatial objects it relates. For instance, if the relation PVL(O1, O2, O3)

is given, such relation is represented in the qualitative information storage block, but

at the same time the geometric information block stores the geometric information

of O1, O2, and O3. The storage layer also provides interfaces for spatial information

1The red lines represent the flow of qualitative information while the cyan lines represent the stream

of quantitative information.
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input and output. Such layer can be easily seen as a spatial database. Instead, the

information integration layer performs the operations necessary for the integration of

qualitative and quantitative information. The development of such layer is the focus

of this thesis; the arising challenges in the information integration are analyzed in the

remainder of this chapter.

3.3 Qualitative and Quantitative Spatial Information

Integration

To better understand the challenges related to the integration of spatial information

for emergency management, in Section 3.2.2 the example discussed in Chapter 1 has

been formalized with respect to the representation methods and the models described

in Chapter 2. Subsequently, the architecture of a system to integrate qualitative and

quantitative information has been presented in Section 3.2.3. Different aspects and

problems to consider when integrating qualitative and quantitative spatial information

will be discussed in this section.

3.3.1 Quantification

BeAI

C

9

(a)

BeAI

C
(b)

Figure 3.6: Quantification of the relation NE (O∗
HA, OAI). Three exemplary quantitative

descriptions of the relation are shown in (a). The shaded area in (b) is instead the spatial
region where HA can lie in order to satisfy the relation with AI.

At first, the operation of quantification of qualitative information is considered,

that is the translation operation for transforming a qualitative information piece into

a quantitative one. Given a qualitative relation R(O∗1, O2, . . . , On), which primary

object O∗1 represents an unknown entity, the quantification of R consists of computing

a description of the spatial region that the entity represented by O∗1 can occupy in order

to satisfy the given relation with respect to the known reference entities. This means,
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it is not sufficient to compute an exemplary description for O∗1 such that it satisfies

the relation (e.g., Fig. 3.6(a)), rather it is necessary to identify how the extension of a

spatial region that satisfies the relation is quantitatively constrained. For instance, any

spatial region that satisfies the relation NE (O∗HA, OAI) is contained in the shaded area

depicted in Fig. 3.6(b) (corresponding to acceptance area defined in the CDC calculus

for the relation NE—cf. Section 2.2.3.2). Thus the extension of the spatial entity can

not be bigger than the shaded area. Similarly, any spatial region that satisfies the

relation TPPI (O∗HA, OAI) contains the spatial region represented by OAI . Thus, the

quantification of a qualitative spatial relation is defined by two regions: one represents

the upper limit for the extension of O∗, while the other defines its lower limit.

Formally, the operation of quantification of a relation R(O∗1, O2, . . . , On) consists of

identifying the union of all the regions in R
2 that, standing in for O∗1, satisfy R—defining

a spatial object that describes the spatial region containing all the spatial regions that

satisfy the relation—, and of the intersection of all the regions in R
2 that, stand-

ing in for O∗1, satisfy R—that identifies an object that describes the region contained

in all the spatial regions that satisfy the relation (Definition 9). The former object

will be denoted as A+
R(O2, . . . , On), while the latter as A−R(O2, . . . , On). The object

A+
R(O2, . . . , On) (called maximal quantification) represents by definition the maximal

extension that the unknown entity represented by O∗1 can have in order to satisfy the

relation R(O∗1, O2, . . . , On). Similarly, A−R(O2, . . . , On) (called minimal quantification)

constraints the minimal extension of the spatial entity represented by O∗1. For the

sake of simplicity, in this text A+
R(O2, . . . , On) (respectively A−R(O2, . . . , On)) will be

denoted only with A+
R (respectively A−R) when the set of reference objects is clear from

the context.

Definition 9 (Quantification of a qualitative relation).

Given a qualitative relation R(O∗1, O2, . . . , On) defined in an n-ary calculus C, let O∗1
be an unknown object, and let O2, . . . , On be known objects, the quantification of R is

composed of a pair of objects defined as:

A+
R(O2, . . . , On) �

⋃
O⊆R2

R(O,O2,...,On)

O A−R(O2, . . . , On) �
⋂

O⊆R2

R(O,O2,...,On)

O

Of course, a relation R(O∗1, O2, . . . , On) can be quantified if and only if all the refer-

ence objects have an associated geometry in the system, otherwise it is not possible to

build the frame of reference for the relation. Furthermore, based on its definition, the

quantification of a relation is totally independent of the primary object; considering for

instance two unknown objects O∗A and O∗B for which two cardinal direction relations

N(O∗A, O2) and N(O∗B, O2) exist in the system, the quantification of the two relations
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produces exactly the same result. Note that the object A+
R resulting from the quantifi-

cation of a single-tile base projective relation (CDC and VC) corresponds exactly with

the representation of the acceptance area defined for the relation.

3.3.2 Spatial Regions with Infinite Extent

The quantification operation often is required to compute objects that represent spatial

regions with infinite extent. For instance, considering again the relation NE (O∗HA, OAI),

the quantification of the relation yields the shaded area in Fig. 3.6(b); the area has a

well-defined boundary at its bottom and left sides, while it extends into infinity on its

top and right sides. A regions with infinite extent has, in general, a well-defined sharp

boundary and one or more infinite boundaries that extend into infinity.

The vector representation method is not able to represent this kind of regions,

since it requires the exact definition of the boundaries of any spatial region. The

representation of the only finite boundary would in fact be indistinguishable from the

definition of a simple line string. A straightforward solution to this problem consists in

the definition of an area of interest1 for a specific application. Thus, the quantification

result is limited by the defined area of interest and it is always a region with finite

extent. For instance, in the discussed earthquake scenario, the area of interest might

be defined as the administrative boundaries of the city struck by the extreme event

(e.g., the black box in Fig. 3.6(b)).

e B

9

Area of Interest C
(a) HA outside the area of interest

e B

9

RED CROSS 

Area of Interest

FIRE BRIGADES 

Area of Interest

B

9

(b) Different quantitative descriptions for HA

Figure 3.7: Drawbacks in the definition of areas of interest: (a) the quantification of
a qualitative relation might be outside the area of interest, and (b) the quantification
operation should return a different quantitative description for any defined area of interests.

The definition of an area of interest involves however two drawbacks, shown in

Fig 3.7. The first shows up if an unknown entity is physically located outside the

defined area of interest. In this case, also the quantification of the relations that

1The Open Geospatial Consortium (http://www.opengeospatial.org) defines the expression area of
interest as “A user defined area (represented by a bounding box, circle or polygon)”.
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describe the unknown entity could result to be outside the area of interest, and the

quantification would yield an empty object. As an example, if the area of interest

for the ambulance driver is defined as the green box in Fig 3.7(a), the quantification

of the relation NE (O∗HA, OAI) (constrained by the red line in the figure) intersected

with the area of interest yields an empty object; thus, the quantitative description of

the hazardous area HA is lost. The second disadvantage arises by considering that

the spatial knowledge is shared with different actors, any of which has a different area

of interest. Fire brigades could define a certain area of interest for their operations,

while the red cross can set up a different area of interest (respectively the green and

the black boxes in Fig. 3.7(b)). Thus, the quantification operation has to compute one

quantitative description of the hazardous area for every defined area of interest (yellow

area for the red cross and cyan area for the fire brigades). To summarize, allowing for

the definition of areas of interest that constraint the result of the quantification would

produce the counter-effect that the quantification output is not uniquely defined. A

representation method for regions with infinite extent, that does not ask for a-priori

definition of the areas of interest and that exploits functionalities already provided by

GIS, is required instead.

3.3.3 Imprecise Description of Spatial Regions

Given an unknown entity represented by O∗1 and qualitatively described by an n-ary

relation R(O∗1, O2, . . . , On), the maximal quantification A+
R(O2, . . . , On) results in the

Euclidean region in which O∗1 has to be contained; conversely, A−R(O2, . . . , On) has to

contain O∗1. Hence, the objects resulting from the quantification of the relation can be

used for defining the representation O∗1.
The vector method is not suited for representing entities whose description is un-

certain, as it is for the result of the quantification. However, considering that A−R
represents the spatial region that surely is occupied by the real spatial entity, while

the region contained between A−R and A+
R may contain the real entity, a three-valued

logic approach is adopted to represent the quantification outcomes in the system. Fur-

thermore, the condition A−R(O2, . . . , On) ⊆ A+
R(O2, . . . , On) is always satisfied, hence

these spatial regions can be represented by the egg-yolk approach (Cohn & Gotts, 1996;

Lehmann & Cohn, 1994).

The representation is based on a pair of spatial objects—that can be described

as vector objects—that represent the minimal extension (the yolk) and the maximal

extension (the egg) for an entity described with some kind of uncertainty. The object

that represents the egg has to contain the object that describes the yolk. The boundary

of the real entity has then to lie somewhere between the yolk and the egg: the entity

boundary never overlaps the yolk and never overlaps the exterior of the egg. An egg-

yolk object O∗ is defined as a pair of vector objects (O+, O−), with O+ representing
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the maximal extension of O∗ and O− representing its minimal extension. An example

of an egg-yolk object is depicted in Fig. 3.8.

(a) O∗ (b) O+ (c) O− (d) O◦

Figure 3.8: Egg-yolk object O∗. The objects O+ and O− represent respectively the
maximal and minimal extension of the egg-yolk object. O◦ is a precise instance of O∗.

If the description of the boundary of a spatial entity is acquired through traditional

data collection methods, the description is assumed to be devoid of uncertainty. For

instance, the description of the spatial region in Fig. 3.9(a) results in this case as the

object depicted in Fig. 3.9(b); the description is equal to the true value. Representations

such as the object in Fig. 3.9(c) are not admitted as representations of known entities.

The resolution of the description depends from internal characteristics of the system

(e.g., the number of digits after the decimal point that the system is able to represent).

Thus, the known objects are precise and accurate descriptions of the spatial extent of

known entities.

(a) Spatial re-
gion

(b) Precise
and accurate
description

(c) Precise
and inaccurate
description

(d) Imprecise
and accurate
description

(e) Imprecise
and inaccurate
description

Figure 3.9: Precision and accuracy in the representation of a spatial region.

In contrast, an egg-yolk object provides only a range of possible values where the

unknown entity can be located. However, the entity boundary is always contained

within the egg and the yolk of the egg-yolk object (i.e., the representation in Fig. 3.9(d)

obeys this constraint while the representation in Fig. 3.9(e) does not). Thus, the

description is still accurate, but it is imprecise. As for the representation of known

entities, the resolution depends on the internal characteristics of the system.

Being the precision the kind of uncertainty that differentiates the descriptions of

known and unknown entities, egg-yolk objects are called imprecise objects in the re-
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mainder of this thesis. As opposite, the spatial objects that describe known entities are

called precise objects.

In principle, both O+ andO− can be multi-region objects; however, in the remainder

of this text, for the most part objects whose egg and yolk consist of a single component

without any holes will be used. It is further assumed that spatial entities in the reality

always occupy a single region. This assumption does not imply a loss of generality

since an entity that occupies more than one region in the space (multi-region) can be

represented using distinct single-region objects. For instance, a fire that splits into

two separate shares can be represented using an unknown object for each single share.

Given an imprecise object O∗, for which O+ and O− are multi-region objects, from this

assumption it directly follows that: (1) all the components of O− are contained in only

one component of O+, and (2) the description can be simplified considering as egg only

the component that contains the yolks; hence the following axiom holds:

Axiom 3.3.1. Given an imprecise object O∗, being O+ a multi region object with

components O+
1 , . . . , O

+
n , and O− a multi region object with components O−1 , . . . , O

−
m,

it exists k such that:

(1) ∀ i ∀ j : 1 ≤ i ≤ n, 1 ≤ j ≤ m ⇒
⎧⎨
⎩
O−j ⊆ O+

i iff i = k

O−j ∩O+
i = ∅ iff i �= k

(2) O∗ = (O+, O−) ≡ (O+
k , O

−)

Examples of multi-region imprecise objects are depicted in Fig. 3.10. The imprecise

object O∗1 (Fig. 3.10(a)) satisfies the first condition in Axiom 3.3.1 and can hence

be simplified as in Fig. 3.10(b). The multi-region imprecise object O∗2 (Fig. 3.10(c)),

instead, is not an admitted object in this work since it does not satisfy the first condition

of the axiom.

O1

O2

O1

O2
+

+

-

-

(a) O∗
1 =

(〈O+
1 , O

+
2 〉, 〈O−

1 , O−
2 〉)

O1

O2

O1

O2
+

+

-

-

(b) O∗
1 ≡ (

O+
1 , 〈O−

1 , O−
2 〉)

O1

O2

O1 O2
++

-

-

(c) O∗
2 =

(〈O+
1 , O

+
2 〉, 〈O−

1 , O−
2 〉)

Figure 3.10: Multi-region imprecise objects.

If there is no knowledge about the maximal extension of an entity, a special repre-

sentation for the complete plane R2 is used. Similarly, no knowledge about the minimal
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extension is represented by a special representation for the empty set ∅. This allows for
relaxing the constraint introduced by the egg-yolk representation that, generally, does

not allow for empty yolk (Roy & Stell, 2001, p. 207). Furthermore, the case O+ = O−

(the egg and the yolk are coincident) corresponds to the egg-yolk definition of a precise

region. In the remainder of this text, the following symbols will be used to differenti-

ate the different cases: O∗ is used to denote an imprecise object with non-empty yolk

(O∗ = (O+, O−)); O+ denotes an imprecise object with empty yolk (O+ ≡ (O+, ∅)),
and O defines a precise object (O is equivalent to the imprecise object defined by the

pair (O,O)).

Finally, the simple regions that are contained in O+, and that

contain O−, are called precise instances (denoted by O◦) of O∗ (Fig. 3.8(d)).

Definition 10 (Precise instance of an imprecise object).

Given an imprecise object O∗, a precise object O◦ is called precise instance of O∗ iff

O− ⊆ O◦ ⊆ O+.

While O− can be considered as the reliable part of an imprecise object, and can

be interpreted as a precise object, the imprecision is expressed by the object O+. In

order to refer to such an object, but interpreted as a precise object, the symbol O• will
be used in this text; O• is called precise interpretation of O+. O+ and O• have the

same definition in geometric terms, but the former is interpreted as imprecise while the

latter as precise. From Definition 10, the following lemma holds:

Lemma 3.3.1. Let O∗ be an imprecise object, and let O• be the precise interpretation

of O+, the following conditions are satisfied for any precise instance O◦ of O∗:

∀ O−2 ⊆ O◦2 ⊆ O+
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X(O−2 ) ≤ X(O◦2) ≤ X(O•2)
Y (O−2 ) ≤ Y (O◦2) ≤ Y (O•2)
X(O−2 ) ≥ X(O◦2) ≥ X(O•2)
Y (O−2 ) ≥ Y (O◦2) ≥ Y (O•2)

(3.1)

Proof. The Lemma directly follows from the definitions of X(O2), X(O2), Y (O2) and Y (O2) (cf. Sec-

tion 2.1.2.1).

The quantification of a qualitative relation R(O,O1, . . . , On) can be hence redefined

as being an imprecise object A∗R(O1, . . . , On), with its egg A+
R(O1, . . . , On) and its yolk

A−R(O1, . . . , On) defined as in Definition 9.
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3.3.4 Quantification with Imprecise Reference Objects

The definition of the quantification based on clear geometric criteria provides a well-

defined semantics to any relation. For instance, the maximal extension A+
N (O2) for the

relation N(O∗1, O2) can be, in the case of precise object, defined as in Equation 3.2.

A+
N (O2) =

⋃
O⊆R

2

N(O,O2)

O

=

{
(px, py) ∈ R

2
∣∣∣ (∀(ox, oy) ∈ O2 : py > oy

)
∧
(
∃(ox, oy) ∈ O2 : px = ox

)} (3.2)

Yet, if the reference object of the relation is imprecise, the definition can no longer

be applied. Indeed, given for instance the relation N(O∗1, O∗2) the definition of the

quantification operation has to take into account the imprecision of the reference object

by considering that the maximal quantification A+
N (O∗2) is the union of the maximal

quantifications A+
N (O◦2) over all the precise instances of O∗2 (Equation 3.3). This result

can be directly generalized for any n-ary relation R, as shown in Equation 3.4. Similarly,

the minimal quantification of a relation having imprecise reference objects is defined as

in Equation 3.5.

A+
N (O∗

2) �
⋃

O−2 ⊆O◦2⊆O+
2

A+
N (O◦

2) (3.3)

A+
R(O

∗
2 , . . . , O

∗
n) �

⋃
O−2 ⊆O◦2⊆O+

2
...

O−n ⊆O◦n⊆O+
n

A+
R(O

◦
2 , . . . , O

◦
n) (3.4)

A−
R(O

∗
2 , . . . , O

∗
n) �

⋂
O−2 ⊆O◦2⊆O+

2
...

O−n ⊆O◦n⊆O+
n

A−
R(O

◦
2 , . . . , O

◦
n) (3.5)

However, the definitions are based on an infinite number of precise objects and,

hence, they do not yield constructive procedures to build the quantification for the

relation. What is required, instead, is to compute the quantification—or at least a

very good approximation of it—by combining quantifications from precise cases in a

suitable way, e.g., by interpreting the egg and yolk of the reference objects as precise

objects. Furthermore, intermediate cases—in which, for instance, the yolk object is

empty—need to be investigated as well.
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3.3.5 Qualification

Opposite to the quantification operation, the qualification is the translation operation

that transform quantitative information pieces into qualitative ones.

Definition 11 (Qualification between precise objects).

Given an n-ary calculus C, and a set of precise objects O1, . . . , On, the qualification

operation yields the relation, denoted as RC(O1, . . . , On), that holds between O1, . . . , On.

If the reference objects are precise, the qualification operation simply consists of

verifying the constraint defined for every relation in the calculus. As an example, in

order to qualify the CDC relation holding between two precise objects O1 and O2, the

definitions of the relations given in Equations 2.3-2.11 can be adopted. Nevertheless,

those definitions fail when the relation holding between two imprecise objects has to

be qualified. Most of the existing research focuses on the definition of fuzzy relations

between imprecise objects (cf. Section 2.3.3), in other words new calculi are developed

that define sets of relation holding between entities imprecisely described. For instance,

Cohn & Gotts (1996) define a generalized topological calculus for egg-yolk objects—

based on RCC-8—consisting of 46 base relations. Differently, Cicerone & Di Felice

(2000) define a cardinal direction calculus, based on the CDC, for vague regions rep-

resented as broad boundary regions. By considering fuzzy relations between imprecise

objects, the definition of the qualification operation given in Definition 11 does not

undergo any change.

However, the entities considered in this work have well-defined boundaries in the

reality, even though they can be imprecisely represented in the system as imprecise ob-

jects. Hence, the objective of the qualification is not the computation of fuzzy relations

between imprecise objects, but rather the computation of the disjunctive crisp relation1

that contains the relations holding between all the precise instances of the imprecise

objects. For instance, considering the two imprecise objects in Fig. 3.11(a), there exist

two precise instances O◦1 and O◦2, with O−1 ⊆ O◦1 ⊆ O+
1 and O−2 ⊆ O◦2 ⊆ O+

2 , such

that either DC(O◦1, O◦2) (Fig. 3.11(b)), or EC(O◦1, O◦2) (Fig. 3.11(c)), or PO(O◦1, O◦2)
(Fig. 3.11(d)) hold. The qualification operation has to yield the disjunctive relation

RRCC(O
∗
1, O

∗
2) = {DC,EC, PO}. This result can be generalized for any n-ary qualita-

tive calculus C, as in Definition 12.

Definition 12 (Qualification of the crisp relation between imprecise objects).

Given an n-ary calculus C, and a set of imprecise objects O∗1, . . . , O∗n, the qualification

operation yields the disjunctive relation:

RC(O
∗
1, . . . , O

∗
n) �

{
R ∈ UC

∣∣ ∀i = 1 . . . n ∃ O◦i : O−i ⊆ O◦i ⊆ O+
i ∧R(O◦1, . . . , O

◦
n)
}

1The term crisp is used here in the sense of crisp set as defined by Freksa (1994).
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O*
1

O*
2

(a) RRCC(O
∗
1 , O

∗
2) (b) DC(O◦

1 , O
◦
2) (c) EC(O◦

1 , O
◦
2) (d) PO(O◦

1 , O
◦
2)

Figure 3.11: Qualification of relations between imprecise objects.

However, as for the quantification operation (cf. Sec. 3.3.4), this definition is based

on an infinite number of precise objects and does not provide a computational procedure

to retrieve the crisp disjunctive qualitative relation. The challenge is hence to derive

the disjunctive relation from the relations holding between the eggs and the yolks of

the different imprecise objects, interpreted as precise objects.

3.3.6 Reasoning

Given as input to the system a set of spatial objects O∗1, . . . , O∗n1 and a set of quali-

tative relations describing how the different objects relate to each other, the reasoning

capabilities, discussed in Section 2.2.2, can be exploited to boost the spatial knowledge

available for the system.

As an example, the input sets depicted in Fig. 3.12(a) are considered. At the

geometrical level, the input contains two precise objects (O1, O2) and two unknown ob-

jects (O∗3, O∗4) that can be initially described as imprecise objects having eggs set to R
2

and yolks to ∅. Furthermore, three qualitative relations—W (O∗3, O2), N(O∗3, O∗4), and
E(O∗4, O1)—are given that relate O1, O2, O

∗
3, and O∗4. By assuming that a geometric

description of O∗3 is required, a straightforward solution is to compute the quantifica-

tion for the relations where O∗3 appears as primary object, that results in the region

depicted in Fig. 3.12(b). In order to compute a quantitative representation for this

region, algorithms to compute intersection and union operations of imprecise objects

that potentially represent regions with infinite extent have to be developed. Those

algorithms will be called geometric reasoning algorithms since they employ computa-

tional geometry techniques to refine the quantitative spatial knowledge of the system.

However, this result only partially exploits the potential of the information available for

1Note that any object can be either precise or imprecise. Even though the objects are all denoted
as imprecise objects, a precise object can represented by an imprecise object with coincident egg and
yolk, as shown in Section 3.3.3.
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the system. In fact, opportunely combining qualitative information (e.g., by adopting

composition operations), new qualitative relations can be inferred or refined and the

approximation of the object O∗3 can be refined as shown in Fig. 3.12(c).

O1

O2

E(O4,O1)

W(O3,O2)
N(O3,O4)

*

* *

*

(a) Input information

O1

O2O3
*

(b) Quantification

O1

O2O3
*

N(O3,O4)* *

E(O4,O1)*

NE(O3,O1)* *

°

(c) Reasoning and quantifica-
tion

Figure 3.12: Reasoning with qualitative and geometric information.

Even though in this work the information is assumed to be consistent, consistency

checking algorithms, such as Algebraic Closure (cf. Sec. 2.2.2.2), can be adopted to

perform qualitative constraint propagation. Algebraic closure is suitable to reason

with both binary (Mackworth, 1977) and ternary (Dylla & Moratz, 2004) calculi. How-

ever, those algorithms require a well-defined composition operation (e.g., in the ternary

case the algebraic closure uses the composition R(O1, O2, O4) = R1(O1, O2, O3) ◦
R2(O2, O3, O4)). Such a composition is not always defined for all the calculi, i.e.,

the Visibility calculus defines a different composition operation, and, in principle, any

calculus can define more than a composition operation. Hence, a generalized version of

the algebraic closure algorithm is required that can deal with both binary and ternary

calculi, each of which has different kinds of composition operations defined.

Furthermore, since more spatial aspects, and therefore different spatial calculi, are

considered in this work, dependencies among different aspects should be taken into ac-

count in order to refine the system’s knowledge. For instance, the relation W (O∗3, O2)

in Fig. 3.12(a) means also that {DC,EC}(O∗3, O2). This qualitative relation can be

combined with other topological information to propagate the acquired knowledge. In

Section 2.2.4 it has been shown that different approaches exist to combine different

qualitative spatial aspects, in particular combining the reasoning table or developing

new calculi that take into account different characteristics. Those approaches, however,

require a case-by-case investigation of the properties of the different aspects/calculi.

Rather, geometrical properties of the calculi allow to automatically account for inter-

dependencies among different spatial aspects into the system.
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3.4 Summary

In this chapter, limits in the existing methods for acquiring updated geographical in-

formation after an extreme event have been highlighted in Section 3.1. However, recent

studies in the field of VGI have shown how new instruments can be provided to volun-

teers in order to collect spatial data. These instruments are still subject to the main

drawbacks in traditional collection methods, but they open the door to innovative ways

for geographic data collection.

In this work, a framework to extract and interpret spatial information conveyed by

reports from people in the field—such as the first responders to the extreme event—is

proposed as a replacement for the traditional collecting methods that are not able to

provide updated spatial information during the first hours—or even days—after the

event. In particular, qualitative spatial calculi developed in the Qualitative Spatial

Representation and Reasoning research field are proposed as means to interpret infor-

mation contained in human communications.

The core problem analyzed in this work is the one related to the integration of

qualitative spatial information with quantitative information stored in a geometric way

into existing Geographic Information Systems. Challenges related to this task can

be broadly grouped into three main operations: quantification, qualification, and rea-

soning. The quantification operation allows for transforming qualitative information

into quantitative information by eventually dealing with either or both regions having

infinite extent and imprecise descriptions; quantification will be presented in Chap-

ter 4. Instead, Chapter 5 will present the operation of qualification, that computes the

disjunctive qualitative spatial relation holding between a given set of precise and/or

imprecise objects. Finally, in Chapter 6 a hybrid qualitative-quantitative reasoning

system will be shown that boosts the system’s spatial knowledge by combining quali-

tative spatial reasoning capabilities with computational geometry algorithms.



Chapter 4

Quantification of Qualitative

Spatial Information

In the previous chapter a system for the integration of geographic information has been

proposed. The focus of this work is on the development of the geographic information

integration layer of the system. Given a set of known and unknown spatial entities and

a set of information that partially describes the entities in qualitative and quantitative

terms, the layer’s purpose is the integration of the mixed spatial information.

A first design of the layer is done in Section 4.1 by considering problems of spatial

information translation1. Afterwards, the focus of this chapter is shifted to the quantifi-

cation component development: Section 4.2 analyzes the quantification problem and

describes which are the challenges in the development of computational procedures

for the quantification of qualitative relations. Section 4.3 describes the representation

approach adopted in this work to model spatial regions having infinite extent. The

properties of the spatial regions that the integration system is able to represent will

be then summarized in Section 4.4. The Spatial-region object is defined to represent

a spatial region whose extent is either finite or infinite, that may have several discon-

nected components and holes, and whose description is either precise or imprecise. A

general algorithm for the quantification of a single qualitative relation is proposed in

Section 4.5, while Section 4.6 focuses on the specific approaches to quantify topological,

cardinal direction and visibility relations. Finally, Section 4.7 analyzes the computa-

tional complexity of the proposed algorithms.

1As defined in Section 2.2.5, the term translation is used in this text to denote those operations
that perform a transformation of spatial information from one representation approach—qualitative or
quantitative—to the other.
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4.1 A System for Spatial Information Translation

A system for the integration of geographic information has been proposed in Sec-

tion 3.2.3 that is composed of a Storage Layer for the permanent storage of spatial

information, and a Geographic Information Integration Layer for the integration of

qualitative and quantitative information. The extensions of both known and unknown

entities (the spatial entities are either precisely or imprecisely represented) are described

within the storage layer by means of imprecise objects (cf. Section 3.3.3).

Storage Layer

Spatial Data Input

(qualitative and quantitative)

Qualitative 

Information

Quantitative

Information

Geographic Information

Integration Layer
Output

via

Querying

Output

via

Visualization
Qualification Quantification

Figure 4.1: A system to translate geographic information1.

At first, the geographic information integration layer is designed as a layer that per-

forms translation operations among qualitative and quantitative spatial information2.

Two distinct components build the layer: the quantification component and the quali-

fication component, as Fig. 4.1 shows. The input to the former component is composed

of an n-ary qualitative spatial relation, and a set of n − 1 spatial objects that are the

reference objects of the given relation; the component produces as output a geometric

description of the relation as an imprecise object (cf. Definition 9 p. 58). The qualifi-

cation component, instead, gets as input an n-ary calculus C defined over a domain of

connected regions in R
2, and a set of n spatial objects; it yields the n-ary qualitative

spatial relation defined in C that holds between the set of objects (cf. Definition 12

p. 65)3.

1The red lines in the figure represent the flow of qualitative information: solid lines show the stream

of information between the different system’s layers, while dotted ones depict how the information flows

within any single layer. In the same way, the cyan lines represent the stream of quantitative information.

The roles of the different layers have been described in Fig. 3.5.
2The system proposed in this chapter will be extended in Chapter 6.
3The qualification component will be discussed in Chapter 5.
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For both translation procedures, approaches for dealing with precise objects need

to be extended in order to adequately deal with imprecise objects.

4.2 Quantification Challenges

The quantification operation has been defined by Wolter & Wallgrün (2012) as the pro-

cess of computing one exemplary quantitative scene description for a given qualitative

scene description. For instance, given the qualitative relations E(O∗5, O∗1), E(O∗4, O2),

N(O∗4, O3) and N(O∗5, O∗4) holding between the two unknown entities O∗4, O∗5 and the

three known entities O1, O2 and O3, the quantification aims at finding exemplary pre-

cise descriptions for O∗4 and O∗5 that satisfy all given relations. Both scenes in Fig. 4.2(a)

and Fig. 4.2(b) show possible results of the quantification process1. A similar approach

has been used by Steinhauer (2008) that partitions the space into regular cells and as-

sumes that the entities have fixed dimension equals to the grid cells; hence, any entity

can be located into exactly one grid cell.

O1

O*
4

O2

O3

O*
5

(a)

O1

O*
4O2

O3

O*
5

(b)

O1

O*
4O2

O3

O*
5

(c)

Figure 4.2: Quantification of CDC relations: Exemplary quantitative scene descriptions
(a)-(b) and maximal quantification (c).

In contrast to Steinhauer (2008); Wolter & Wallgrün (2012), the target of the quan-

tification in this work is not the computation of one exemplary precise quantitative scene

description. Rather, it is required to compute two objects to describe any unknown en-

tity: one representing the region in R
2 where the entity has to be contained in order to

satisfy all relations in the set, and one representing the region that has to be contained

into the spatial region occupied by the unknown entity. The result of the quantifica-

tion for the relations above is depicted in Fig. 4.2(c). In particular, this chapter focuses

on the quantification of a single qualitative spatial relation, while the quantification

1The quantitative interpretation is based on the semantics of the relations as defined in the CDC
calculus (cf. Section 2.2.3.2).
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of a qualitative scene description is analyzed in Chapter 6. In the remainder of this

section, the quantification of a single qualitative relation is formally defined and the

challenges in the development of computational procedures for the quantification of a

single qualitative relation will be shown.

Let O∗2, . . . , O∗n be a set of spatial objects each of which can be either precise or

imprecise, and let R be a qualitative relation defined in an n-ary calculus C defined

over a domain of connected regions in R
2, the quantification operation consists of

identifying two regions in R
2:

Maximal Quantification. It is the region in R
2 that contains all the precise ob-

jects Oi ⊆ R
2 that satisfy R(Oi, O

∗
2, . . . , O

∗
n). It is denoted as A+

R(O
∗
2, . . . , O

∗
n).

Minimal Quantification. It is the region in R
2 that is contained in all the precise

objects Oi ⊆ R
2 that satisfy R(Oi, O

∗
2, . . . , O

∗
n). It is denoted as A−R(O

∗
2, . . . , O

∗
n).

To give an example, Fig. 4.3(a) depicts some exemplary precise objects that satisfy

the CDC relation N with respect to the precise object O2. In this case, the maximal

quantification is equivalent to the acceptance area defined for the relation N in the

CDC calculus, corresponding to the shaded area in Fig. 4.3(b).

O2

(a) N(O,O2)

O2

(b) A+
N (O2)

O2
+

(c) N(O,O◦
2)

O2
+

(d) N(O,O◦
2) (e) A+

N (O+
2 )

Figure 4.3: Quantification A+
N if the reference object is precise or imprecise.

In contrast, if the reference object is imprecise, all its precise instances have to be

considered while computing the quantification. Indeed, an imprecise object represents

an entity for which a precise description is not known; hence, any precise instance

potentially represents the real extent of the spatial entity. Thus, the maximal quan-

tification of a relation having an imprecise reference object O∗2 has been defined in

Section 3.3.4 as the union of the maximal quantifications computed over all the pre-

cise instances of O∗2. Similarly, the minimal quantification is computed by means of

intersection operations.

Fig. 4.3(c) and Fig. 4.3(d) show exemplary precise objects that satisfy the relation

N with respect to two different precise instances of the imprecise object O+
2 . The
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maximal quantification A+
N (O+

2 ) is hence the shaded region shown in Fig. 4.3(e) that

considers all possible precise instances of O+
2 . However, the quantification definition is

based on an infinite number of precise instances, thus it does not yield a constructive

procedure for building A+
N (O+

2 ) and A−N (O+
2 ). The trivial approach of adopting multiple

sorting for computing the quantification, as proposed by Wolter & Wallgrün (2012),

would yield an object that includes also the region corresponding to MBR(O+
2 ). Hence,

more sophisticated procedures have to be developed for the quantification of qualitative

relations in case the reference objects are imprecise.

In the following sections, quantification procedures are proposed for cardinal direc-

tion, visibility, and topological relations. Beforehand, the definition of a representation

approach for dealing with regions having infinite extent, as the maximal quantifications

shown in Fig. 4.3(b)-(e), is required.

4.3 Representation of Regions with Infinite Extent

The focus of this section is on the definition of the approach adopted in this work for

dealing with regions having infinite extent, whose representations are called Infinite-

Region Objects. Indeed, as shown in the previous section, the quantification operation

often yields regions that extend to infinity. For instance, the relation N(O1, O2) to-

gether with the object O2 depicted in Fig. 4.4(a) implies that O1 has to lie somewhere

in the shaded region which reaches out to infinity. Vector representations as commonly

implemented in GIS (Herring, 2001) do not support the representation and manipula-

tion of such kinds of infinite regions. Such regions can be represented using a half-plane

approach (Rigaux & Scholl, 1995; Rigaux et al., 2002) in which objects are represented

by means of Boolean operations between half-planes in R
2. Frank et al. (1996); Haunold

et al. (1997) propose efficient data structures for the representation of half-planes in

GIS. However, it turns out that it is sufficient to make a small modification to the

vector representation adopting the idea of half-plane representation. The advantage of

this approach is that existing procedures—provided by most of the existing GIS—to

perform geometric procedures with multi-region objects can still be applied.

A simple infinite-region object IR is defined as a triple (Λ,
−→
λ 1,

−→
λ 2), in which

the polyline Λ = 〈p1, ..., pn〉 represents the finite boundary of IR, while the two rays−→
λ 1 = [p1, q) and

−→
λ 2 = [pn, r) define the boundaries of IR that extend to infinity. The

starting point of Λ corresponds with the starting point of
−→
λ 1. In the same way, the

last point in Λ corresponds to the starting point of
−→
λ 2.

An infinite-region object introduces a partition of the space into two infinite regions.

The actually represented region is the intersection of the half-plane right of
−→
λ 1, the

half-plane left of
−→
λ 2 and what can intuitively be seen as the area left of the polyline

Λ. Fig. 4.4(d) shows the infinite-region object representing the acceptance area for
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Figure 4.4: Infinite acceptance areas and the corresponding infinite-region objects.

the visibility relation Occluded as depicted in Fig. 4.4(c). It consists of the three

components Λ = 〈p1, p2, p3, p4, p5〉, −→λ 1 = [p1, q), and
−→
λ 2 = [p5, r).

Algorithms to perform the computation of intersection, union, and difference of two

infinite-region objects as well as of a polygon and an infinite-region object are analyzed

in Appendix A. Let IR1 and IR2 be two infinite-region objects defined respectively

by n and m vertices, the computational time complexity of the algorithms is O(nm),

that is equivalent to the time complexity of the same operations between spatial ob-

jects with finite extent (Margalit & Knott, 1989). Intersection, union, and difference

operations potentially yield regions having more components and holes as for the vec-

tor representation. Hence, Appendix A describes how two represent complex regions

with infinite extent—that may have more components and holes—by means of infinite-

region objects; also, it is shown how regions with finite extent can be represented by

infinite-region objects.

4.4 Spatial-Region Objects

Different properties of spatial regions have so far been introduced and discussed in this

text: single or multi-component, precisely or imprecisely described, having either finite

or infinite extent, and with or without holes. Hence, 16 types of regions can exist,

and different approaches to represent spatial regions with specific properties have been

proposed (i.e., multi-polygons, infinite-region objects, and imprecise objects). However,

a common representation method—called spatial-region object—that carries on all the

necessary properties can be employed. Indeed, a single component spatial region can

be represented as a multi-component one having only one component. Similarly, both

precise and imprecise descriptions of spatial regions can be represented by egg-yolk

objects, while regions with finite extent can be easily represented using infinite-region

objects. Hence, the symbols O∗1, . . . , O∗n are used to denote spatial-region objects1 that

1The symbols O∗
1 , . . . , O

∗
n have been used in the previous chapter to denote unknown/imprecise

objects. However, the usage of the same symbols to refer to spatial-region objects does not introduce
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are imprecise objects, whose eggs and yolks are multi-infinite-region objects eventually

with holes. The conventional notations defined in Section 3.3.3 are still valid. For the

sake of simplicity, from now on—where it is not differently specified—it is assumed that

spatial-region objects are single-finite-region objects without holes.

4.5 The Quantification Component

The quantification component in Fig 4.1 computes a geometric interpretation of a single

n-ary relation tuple R(O∗1, . . . , O∗n) in which O∗1 is the primary object and O∗2, . . . , O∗n
are the reference objects. The computation is based on the geometric semantics of

the relation and has to take into account the imprecise descriptions of the involved

reference regions. The result is a new imprecise object that represents the geometric

information about O∗1 as implied by this particular relation.

4.5.1 Quantification Algorithm

Given an n-ary relation R belonging to a calculus C defined over a domain of connected

regions in R
2 and that holds between O∗1 and the spatial-region objects O∗2, . . . , O∗n,

a function Quantify(R,C,O∗2, ..., O∗n) is defined to compute a geometric description

of O∗1. The semantics of R determines whether the quantification process influences

either or both the maximal and the minimal extensions of O∗1. The topological relation
DC(O∗1, O2), for instance, between an unknown object O∗1 and a precise object O2,

defines a constraint for O+
1 as the unknown entity can be anywhere except where

it would overlap with O2. It does, however, not provide any information about the

minimal extension O−1 . Conversely, for NTPPI(O∗1, O2) the opposite holds. Projective

and metric qualitative relations typically only provide information about the maximal

extension of an unknown entity.

The general procedure to compute Quantify(R,C,O∗2, ..., O∗n) is shown in Algo-

rithm 3. A calculus-dependent function QuantifyC(br, O
∗
2, ..., O

∗
n) is used to retrieve a

geometric description for the quantification of a base relation br contained in R. Since

R can be a disjunction of base relations, the quantified object for R is constructed

combining the quantifications for each base relation br ∈ R.

The imprecision of the reference objects has to be taken into account when a base

relation is quantified by QuantifyC . The QuantifyC functions for topology, cardinal

direction and visibility relations will be described in the next section.

any ambiguity in the discussion. Indeed, only the extent that the eggs and the yolks can have is
redefined with respect to the definition given in Section 3.3.3.
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Algorithm 3 Quantify(R,C,O∗2, ..., O∗n)

O∗
1 ← (∅,R2)

for br ∈ R do
Q∗ ← QuantifyC(br, O

∗
2 , ..., O

∗
n)

O+
1 ← O+

1 ∪Q+

O−
1 ← O−

1 ∩Q−

end for
return O∗

1

4.6 Quantification of Qualitative Spatial Relations

If the reference objects of a given qualitative relation are precise, the QuantifyC function

can be implemented by giving a geometric interpretation of the relation semantics as

defined in the calculus (e.g., Clementini & Billen, 2006; Skiadopoulos & Koubarakis,

2004). For instance the maximal quantification of the relation N(O∗1, O2) corresponds

to the geometric description of the acceptance area of the relation as defined in the

CDC calculus. However, for an imprecise reference object O∗2, this definition has to be

modified to take into account the imprecision by saying that the quantification A+
N (O∗2)

is the union of the quantifications A+
N (O◦2) over all precise instances of O∗2. However, as

has already been shown this definition is based on an infinite number of precise objects

and does not yield a constructive procedure to build the quantification of the relation.

In this section, a solution to compute the quantification by combining quantifications

from precise cases in a suitable way will be presented. The final step of coming up

with a constructive definition so far had to be conducted on a case-by-case analysis

in which the relations’ defining conditions have been compared to the properties that

can be derived for the respective quantifications A+
N (O−2 ), A

+
N (O•2), etc. under the side

condition that O−2 ⊆ O•2. As an intermediate step the quantification A+
N (O+

2 ) has

been defined which assumes that O+
2 describes the maximal extension of the reference

object but also assumes that the yolk is empty. The result is always a formula in which

different quantifications are combined via intersection and union.

4.6.1 QuantifyC for Cardinal Direction Relations

The Cardinal Direction Calculus (Goyal & Egenhofer, in press) defines 218 base rela-

tions (cf. Section 2.2.3.2); among them, nine relations are single-tile while the others

are defined as multi-tile relations. At first, it trivially results that the minimal quan-

tification of a CDC relation is always an empty object:

A−R(O
∗
2) =

⋂
O⊆R2 | R(O,O∗

2)

O = ∅ with R ∈ RCDC
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O2

O1 O1
```

Figure 4.5: A−
R(O2).

This result is directly proven by considering the precise

objects in Fig. 4.5. Both O′1 and O′′1 satisfy the cardinal

direction relation N with respect to O2. Furthermore, O′1 ∩
O′′1 = ∅ from which it directly results A−N (O2) = ∅. The

same result is valid for all the relations in the CDC calculus.

Thus, the quantification of a CDC relation always yields a

spatial-region object having empty yolk.

Moreover, the maximal quantification A+
R of a single-tile

relation over a precise object corresponds to the acceptance

area defined for that relation in the model. For a multi-tile

relation, instead, the maximal quantification is given by the union of the quantifications

of any single-tile relation that composes it. Hence, only the quantifications of the base

relations R ∈ RST
CDC require to be analyzed.

Algorithm 4 QuantifyC(R,O∗2) – Cardinal Direction Calculus

A∗
R ← (∅, ∅)

for RST ∈ Γ(R) do
A+

R ← A+
R ∪A+

RST (O
∗
2)

end for
return A∗

R

The QuantifyC procedure to quantify any base cardinal direction relation is shown

in Algorithm 41. The computation of A+
R(O

∗
2), with R ∈ RST

CDC , under the assumption

that O∗2 is a precise object will be discussed first. Afterwards, the results will be

exploited for the quantification of CDC single-tile relations if O∗2 is an imprecise object

with empty yolk. Finally, the general case in which O∗2 is an imprecise object with

non-empty egg and yolk is discussed.

4.6.1.1 Precise Reference Object

If the reference object of a cardinal direction single-tile relation is precise, the relation’s

maximal quantification can be trivially defined both in formal terms and by means of

infinite-region objects. At first, from Definition 9, the maximal quantification is defined

for CDC single-tile relations as:

A+
R(O2) =

⋃
O⊆R2 | R(O,O2)

O with R ∈ RST
CDC (4.1)

1Let R be a single or multi-tile base relation, the function Γ(R) yields the tiles that compose R (cf.
Section 2.2.3.2).
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The definition is equivalent to the acceptance areas defined in Fig. 2.10 that are

formally defined, from Eq. 4.1 and Eqs. 2.3-2.11, as:

A+
B(O2) =

{
(px, py) ∈ R

2
∣∣ X(O2) ≤ px ≤ X(O2) ∧ Y (O2) ≤ py ≤ Y (O2)

}
(4.2)

A+
N (O2) =

{
(px, py) ∈ R

2
∣∣ X(O2) ≤ px ≤ X(O2) ∧ py ≥ Y (O2)

}
(4.3)

A+
E(O2) =

{
(px, py) ∈ R

2
∣∣ px ≥ X(O2) ∧ Y (O2) ≤ py ≤ Y (O2)

}
(4.4)

A+
S (O2) =

{
(px, py) ∈ R

2
∣∣ X(O2) ≤ px ≤ X(O2) ∧ py ≤ Y (O2)

}
(4.5)

A+
W (O2) =

{
(px, py) ∈ R

2
∣∣ px ≤ X(O2) ∧ Y (O2) ≤ py ≤ Y (O2)

}
(4.6)

A+
NE(O2) =

{
(px, py) ∈ R

2
∣∣ px ≥ X(O2) ∧ py ≥ Y (O2)

}
(4.7)

A+
SE(O2) =

{
(px, py) ∈ R

2
∣∣ px ≥ X(O2) ∧ py ≤ Y (O2)

}
(4.8)

A+
SW (O2) =

{
(px, py) ∈ R

2
∣∣ px ≤ X(O2) ∧ py ≤ Y (O2)

}
(4.9)

A+
NW (O2) =

{
(px, py) ∈ R

2
∣∣ px ≤ X(O2) ∧ py ≥ Y (O2)

}
(4.10)

Alternatively, the quantifications A+
R(O2), for all R ∈ RST

CDC , can be described by

means of infinite-region objects that are defined as in Fig. 4.6 and Eq. 4.11.
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Figure 4.6: IR definition of the
CDC quantification over a precise
reference object.

p1 =
(
X(O2), Y (O2)

)
p2 =

(
X(O2), Y (O2)

)

p3 =
(
X(O2), Y (O2)

)
p4 =

(
X(O2), Y (O2)

)

−→
λ 1 =

[
p1, p1 + (0, α)

) −→
λ 2 =

[
p2, p2 + (0, α)

)
−→
λ 3 =

[
p2, p2 + (a, 0)

) −→
λ 4 =

[
p3, p3 + (a, 0)

)
−→
λ 5 =

[
p3, p3 − (0, α)

) −→
λ 6 =

[
p4, p4 − (0, α)

)
−→
λ 7 =

[
p4, p4 − (a, 0)

) −→
λ 8 =

[
p1, p1 − (a, 0)

)

Λ1 = 〈p1, p2〉 Λ2 = 〈p2, p3〉
Λ3 = 〈p3, p4〉 Λ4 = 〈p4, p1〉

A+
NW (O2) =

(
p1,

−→
λ 8,

−→
λ 1

)
A+

N (O2) =
(
Λ1,

−→
λ 1,

−→
λ 2

)
A+

NE(O2) =
(
p2,

−→
λ 2,

−→
λ 3

)

A+
W (O2) =

(
Λ4,

−→
λ 7,

−→
λ 8

)
A+

B(O2) =
〈
p1, p2, p3, p4, p1

〉
A+

E(O2) =
(
Λ2,

−→
λ 3,

−→
λ 4

)

= MBR(O2)

A+
SW (O2) =

(
p4,

−→
λ 6,

−→
λ 7

)
A+

S (O2) =
(
Λ3,

−→
λ 5,

−→
λ 6

)
A+

SE(O2) =
(
p3,

−→
λ 4,

−→
λ 5

)
(4.11)
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4.6.1.2 Imprecise Reference Object with Empty Yolk

The definitions of the maximal quantification require to be modified in the case if the

reference object is imprecise. In this section it is considered only the intermediate case

in which the imprecise reference object has empty yolk (O−2 = ∅). As shown above, the

quantification of a CDC relation R1 always yields an object with empty yolk; thus, if

the resulting object is the reference of a second relation R2, the quantification of R2

has to deal with an object with empty yolk.

Let R be a CDC single-tile relation for which the reference object O+
2 has empty

yolk, the conditions expressed in Equation 3.4 can be relaxed as:

A+
R(O

+
2 ) =

⋃
O◦

2⊆O+
2

A+
R(O

◦
2) with R ∈ RST

CDC (4.12)

Some auxiliary functions for describing the maximal quantifications of direction re-

lations over a line segment by means of infinite-region objects are defined. Union

operations between the resulting objects are then performed to compute A+
R(O

+
2 ) and

it will be proven that the procedures yield objects equivalent to Equation 4.12.

At first, a function BL(O) is defined that given a precise object O yields the list of

its defining line segments.

Definition 13 (Boundary Line Segments). Let O be a precise object defined by the list

of points 〈p1, . . . , pn, p1〉, the function BL(O) is defined as:

BL(O) =
{
[pi, pi+1] | i = 1 . . . n

}

�1q

�2q

�3q

�4q

q

r

�1r

�2r

�3r

�4r

(a) Line Segment Rays (b) As
R(s)

Figure 4.7: Line segment rays and quantifications over a line segment.
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For any line segment, eight different rays—called Line Segment Rays—are defined

that irradiate from either the segment’s starting point or its ending point, and are

parallel either to the x-axis or to the y-axis; Fig. 4.7(a) shows the line segment rays

defined over an exemplary line segment.

Definition 14 (Line Segment Rays). Let s = [q, r] be a line segment, and let α be an
arbitrary positive value, eight different line segment rays are defined on q and r:

−→
λ 1q =

[
q, q + (0, α)

) −→
λ 2q =

[
q, q + (α, 0)

) −→
λ 3q =

[
q, q + (0,−α)

) −→
λ 4q =

[
q, q + (−α, 0)

)
−→
λ 1r =

[
r, r + (0, α)

) −→
λ 2r =

[
r, r + (α, 0)

) −→
λ 3r =

[
r, r + (0,−α)

) −→
λ 4r =

[
r, r + (−α, 0)

)

A set of functions As
R(s), with R ∈ RST

CDC \ B, are defined that get as input a

line segment s and yield the CDC line segment quantifications over s. The functions

return the objects composed by all the points in R
2 for which the following condition

is satisfied: As
R =

{
p ∈ R

2
∣∣ ∃ q ∈ s : R(p, q)

}
; Fig 4.7(b) shows the line segment

quantifications if the line segment in Fig 4.7(a) is considered as input for the functions.

Lemma 4.6.1. Let s = [p1, p2] be a line segment with p1 �= p2, the functions As
R(s),

with R ∈ {N,E, S,W,NE, SE, SW,NW}, return the objects:

As
N (s) =

(
〈q, r〉,−→λ 1q,

−→
λ 1r

)
with

⎧⎪⎨
⎪⎩

q = p1, r = p2 iff p1x < p2x
q = p1, r = p1 iff p1x = p2x
q = p2, r = p1 otherwise

As
E(s) =

(
〈q, r〉,−→λ 2q,

−→
λ 2r

)
with

⎧⎪⎨
⎪⎩

q = p1, r = p2 iff p1y > p2y
q = p1, r = p1 iff p1y = p2y
q = p2, r = p1 otherwise

As
S(s) =

(
〈q, r〉,−→λ 3q,

−→
λ 3r

)
with

⎧⎪⎨
⎪⎩

q = p1, r = p2 iff p1x > p2x
q = p1, r = p1 iff p1x = p2x
q = p2, r = p1 otherwise

As
W (s) =

(
〈q, r〉,−→λ 4q,

−→
λ 4r

)
with

⎧⎪⎨
⎪⎩

q = p1, r = p2 iff p1y < p2y
q = p1, r = p1 iff p1y = p2y
q = p2, r = p1 otherwise

As
NE(s) =

(
〈q, r〉,−→λ 1q,

−→
λ 2r

)
with

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q = p1, r = p2 iff (p1x < p2x ∧ p1y ≥ p2y)

∨(p1x = p2x ∧ p1y > p2y )

q = p1, r = p1 iff p1x < p2x ∧ p1y < p2y

q = p2, r = p2 iff p1x > p2x ∧ p1y > p2y

q = p2, r = p1 otherwise

As
SE(s) =

(
〈q, r〉,−→λ 2q,

−→
λ 3r

)
with

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q = p1, r = p2 iff (p1x > p2x ∧ p1y ≥ p2y)

∨(p1x = p2x ∧ p1y > p2y )

q = p1, r = p1 iff p1x < p2x ∧ p1y > p2y

q = p2, r = p2 iff p1x > p2x ∧ p1y < p2y

q = p2, r = p1 otherwise
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As
SW (s) =

(
〈q, r〉,−→λ 3q,

−→
λ 4r

)
with

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q = p1, r = p2 iff (p1x > p2x ∧ p1y ≤ p2y)

∨(p1x = p2x ∧ p1y < p2y )

q = p1, r = p1 iff p1x > p2x ∧ p1y > p2y

q = p2, r = p2 iff p1x < p2x ∧ p1y < p2y

q = p2, r = p1 otherwise

As
NW (s) =

(
〈q, r〉,−→λ 4q,

−→
λ 1r

)
with

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q = p1, r = p2 iff (p1x < p2x ∧ p1y ≤ p2y)

∨(p1x = p2x ∧ p1y >< p2y )

q = p1, r = p1 iff p1x > p2x ∧ p1y < p2y

q = p2, r = p2 iff p1x < p2x ∧ p1y > p2y

q = p2, r = p1 otherwise

Finally, it can be trivially proven that a precise object O is always contained in the

union of the line segment quantifications computed over all segments that define O.

Lemma 4.6.2. Let O2 be a precise object, ∀R ∈ RST
CDC \B, O2 ⊂

⋃
s∈BL(O2)

As
R(s).

The boundary line segments definition, the line segment quantifications, and the

result of Lemma 4.6.2 are exploited for defining a procedure to build the maximal

quantifications of CDC single-tile relations over an imprecise reference object with

empty yolk, as Theorem 4.6.3 shows. An example is provided in Fig. 4.8 that depicts

the CDC quantifications that consider as reference the imprecise object in Fig 3.8(b).

Theorem 4.6.3. Let O+
2 be an imprecise object with empty yolk, the maximal quan-

tifications A+
R(O

+), for any R ∈ RST
CDC are:

A+
B(O

+
2 ) = A+

B(O
•
2) (4.13)

A+
N (O+

2 ) =
⋃

s∈BL(O•2 )

As
N (s) (4.14)

A+
E(O

+
2 ) =

⋃
s∈BL(O•2 )

As
E(s) (4.15)

A+
S (O

+
2 ) =

⋃
s∈BL(O•2 )

As
S(s) (4.16)

A+
W (O+

2 ) =
⋃

s∈BL(O•2 )

As
W (s) (4.17)

A+
NE(O

+
2 ) =

⋃
s∈BL(O•2 )

As
NE(s) (4.18)

A+
SE(O

+
2 ) =

⋃
s∈BL(O•2 )

As
SE(s) (4.19)

A+
SW (O+

2 ) =
⋃

s∈BL(O•2 )

A+
SW (s) (4.20)

A+
NW (O+

2 ) =
⋃

s∈BL(O•2 )

A+
NW (s) (4.21)

Proof. (Eq. 4.13) The maximal quantification for the cardinal direction relation B is computed—

from Eq. 4.11 and Eq. 4.12—as A+
B(O

+
2 ) =

⋃
O◦2⊆O+

2
A+

B(O
◦
2) =

⋃
O◦2⊆O+

2
MBR(O◦

2). Furthermore, from

Eq. 3.1, MBR(O◦
2) ⊆ MBR(O•

2), and it is equal if O◦
2 = O•

2 . Hence, MBR(O•
2) =

⋃
O◦2⊆O+

2
MBR(O◦

2) ⇒
A+

B(O
+
2 ) = MBR(O•

2) = A+
B(O

•
2).

(Eq. 4.14) First, it is proven A+
N (O+

2 ) =
⋃

O◦2⊆O•2
A+

N (O◦
2) ⊆

⋃
s∈BL(O•2 ) A

s
N (s). This is equivalent

to demonstrate that for each O◦
2 ⊆ O•

2 there exist s1, . . . sk ∈ BL(O•
2) such that A+

N (O◦
2) ⊆ As

N (s1) ∪
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. . .∪As
N (sk). From Lemma 4.6.2, O•

2 ⊂ ⋃
s∈BL(O•2 ) A

s
N (s) ⇒ O◦

2 ⊂ ⋃
s∈BL(O•2 ) A

s
N (s). This means that

∀(xo, yo) ∈ O◦
2 , ∃s ∈ BL(O•

2) : (xo, yo) ∈ As
N (s). Furthermore, by definition A+

N (O◦
2) = {(x, y) ∈ R

2

| ∃(xo, yo) ∈ O◦
2 : x = xo ∧ y ≥ yo}. Thus, A+

N (O◦
2) ⊆

⋃
s∈BL(O•2 ) A

s
N (s).

In order to prove that the expressions are equal, it is necessary to prove also that
⋃

s∈BL(O•2 ) A
s
N (s) ⊆

A+
N (O+

2 ) =
⋃

O◦2⊆O•2
A+

N (O◦
2). This is trivially done by considering that by definition ∀s ∈ BL(O•

2),

As
N (s) =

⋃
(x,y)∈s A

+
N ({(x, y)}) ⊆ ⋃

O◦2⊆O•2
A+

N (O◦
2).

(Eq. 4.15), (Eq. 4.16), (Eq. 4.17), (Eq. 4.18), (Eq. 4.19), (Eq. 4.20), and (Eq. 4.21) can be proven

adopting the same approach as (Eq. 4.14).

(a) A+
NW (O+

2 ) (b) A+
N (O+

2 ) (c) A+
NE(O

+
2 )

(d) A+
W (O+

2 ) (e) A+
B(O

+
2 ) (f) A+

E(O
+
2 )

(g) A+
SW (O+

2 ) (h) A+
S (O

+
2 ) (i) A+

SE(O
+
2 )

Figure 4.8: Quantification of cardinal direction relations – Case A+
R(O

+
2 ).

4.6.1.3 Imprecise Reference Object

Above, the maximal quantifications of CDC relations have been defined by means of

infinite-region objects for the cases if the reference object is precise or imprecise with

empty yolk. It is now possible to combine the previous outcomes to develop a procedure

that computes the maximal quantification of a CDC base single-tile relation if the

reference object is imprecise with non-empty yolk. From Equation 3.4 the maximal
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quantification for CDC single-tile relations is:

A+
R(O

∗
2) =

⋃
O−

2 ⊆O◦
2⊆O+

2

A+
R(O

◦
2) with R ∈ RST

CDC (4.22)

An algorithm for the computation of A+
R(O

∗
2), that is grounded on a combination

of the maximal quantifications computed by considering the egg and the yolk objects

separately, is shown in Theorem 4.6.4. Furthermore, Fig. 4.9 shows the maximal quan-

tifications for an exemplary imprecise object O∗2.

Theorem 4.6.4. Let O∗2 be an imprecise object, the quantifications of the maximal

quantifications A+
R(O

∗
2) for R ∈ RST

CDC are computed as follows:

A+
B(O

∗
2) = A+

B(O
+
2 ) (4.23)

A+
N (O∗2) = A+

N (O+
2 ) ∩

(
A+

N (O−2 ) ∪A+
NE(O

−
2 ) ∪A+

NW (O−2 )
)

(4.24)

A+
E(O

∗
2) = A+

E(O
+
2 ) ∩

(
A+

E(O
−
2 ) ∪A+

NE(O
−
2 ) ∪A+

SE(O
−
2 )

)
(4.25)

A+
S (O

∗
2) = A+

S (O
+
2 ) ∩

(
A+

S (O
−
2 ) ∪A+

SE(O
−
2 ) ∪A+

SW (O−2 )
)

(4.26)

A+
W (O∗2) = A+

W (O+
2 ) ∩

(
A+

W (O−2 ) ∪A+
NW (O−2 ) ∪A+

SW (O−2 )
)

(4.27)

A+
NE(O

∗
2) = A+

NE(O
−
2 ) (4.28)

A+
SE(O

∗
2) = A+

SE(O
−
2 ) (4.29)

A+
NW (O∗2) = A+

NW (O−2 ) (4.30)

A+
SW (O∗2) = A+

SW (O−2 ) (4.31)

Proof. (Eq. 4.23) From Eq. 3.1, for any O◦
2 precise instance of O∗

2 , MBR(O◦
2) ⊆ MBR(O+

2 ). In

particular, MBR(O◦
2) = MBR(O+

2 ) if O
◦
2 = O+

2 . Hence, from Eq. 4.22, A+
B(O

∗
2) = A+

B(O
+
2 ).

(Eq. 4.24) Any precise instance O◦
2 of O∗

2 has, by definition, to satisfy the following constraints:

(1) O◦
2 ⊆ O+

2 , and (2) O−
2 ⊆ O◦

2 . The condition (1) is equivalent to consider O∗
2 as an imprecise

object with empty yolk, hence Eq. 4.14 holds true and A+
N (O∗

2) ⊆ A+
N (O+

2 ). The constraint (2),

instead, means that Y (O◦
2) ≥ Y (O−

2 ) (cf. Eq. 3.1). Hence, from Eq. 4.3, any precise object o ⊆
R

2 : N(o,O◦
2) ⇒ Y (o) ≥ Y (O◦

2) ≥ Y (O−
2 ). In turn, this means that from Eqs. 4.3-4.7-4.10: o ⊆

(A+
N (O−

2 ) ∪ A+
NE(O

−
2 ) ∪ A+

NW (O−
2 ). Subsequently, A+

N (O◦
2) is contained in the same union and hence

also the union of the quantifications over all the precise instance of O∗ satisfies the same constraint.

Finally, merging (1) and (2), it follows that A+
N (O∗

2) = A+
N (O+

2 )∩
(
A+

N (O−
2 ) ∪A+

NE(O
−
2 ) ∪A+

NW (O−
2 )

)
.

(Eqs. 4.25-4.26-4.27) The proofs are the same as for Eq. 4.24.

(Eq. 4.28) For any O◦
2 precise instance of O∗

2 , the quantification A+
NE(O

◦
2) is defined as in Eq. 4.7.

That means, ∀r ⊆ A+
NE(O

◦
2) ⇒ X(r) ≥ X(O◦

2) ∧ Y (r) ≥ Y (O◦
2). From Eq. 3.1, X(O◦

2) ≥ X(O−
2 ) ∧

Y (O◦
2) ≥ Y (O−

2 ) and hence X(r) ≥ X(O−
2 ) ∧ Y (r) ≥ Y (O−

2 ). Thus, it follows that r ⊆ A+
NE(O

−
2 ) ⇒

A+
NE(O

◦
2) ⊆ A+

NE(O
−
2 ). In particular, for O◦

2 = O−
2 ⇒ A+

NE(O
◦
2) = A+

NE(O
−
2 ). Since A+

NE(O
∗
2) is

the union of all the quantification computed over all the precise instances of O∗
2 (Eq. 4.22), it directly

follows A+
NE(O

∗
2) = A+

NE(O
−
2 ).
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(Eqs. 4.29-4.30-4.31) The proofs are the same as for Eq. 4.28.

(a) A+
NW (O∗

2) (b) A+
N (O∗

2) (c) A+
NE(O

∗
2)

(d) A+
W (O∗

2) (e) A+
B(O

∗
2) (f) A+

E(O
∗
2)

(g) A+
SW (O∗

2) (h) A+
S (O

∗
2) (i) A+

SE(O
∗
2)

Figure 4.9: Quantification of cardinal direction relations – Case A+
R(O

∗
2).

4.6.1.4 Discussion

The procedure to compute the quantification of a CDC base relation has been described

in the above sections. At first, it has been shown that the minimal quantification is

always an empty object. In contrast, the procedures for the quantification of CDC

single-tile relations have been analyzed for three different cases: precise reference ob-

ject (Equation 4.11), imprecise reference object with empty yolk (Theorem 4.6.3), and

imprecise reference object with non-empty yolk (Theorem 4.6.4). It is not necessary to

separately analyze the case in which the reference object’s yolk is non-empty while its

egg is not defined; indeed, such a case can be modeled as an imprecise object having

its egg coincident with R
2; thus, it can be treated as the general case of imprecise

reference object with non-empty yolk. An algorithm for the quantification of a CDC

base relation (both single and multi-tile) has been shown in Algorithm 4.
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The algorithms’ outcomes shown above have been proven by considering as reference

a spatial-region object that represents a spatial region composed by one component and

having finite extent. However, it can be easily shown that the results still hold in the

cases if the reference region has infinite extent or if it is composed by more than one

component. In the former case the definition of the MBR still applies for an infinite-

region object (see Appendix A): one or more of the object’s maximum and minimum

coordinate values are equal to infinite, and the given proofs still hold. The case if

the reference object has multiple components is again analyzed case by case: If the

reference object is precise, it can not be composed by multiple components. Indeed, in

this work it is assumed that the entities in the reality always occupy a single connected

region (cf. Section 3.3.3); hence, multi-component precise objects are not admitted and

Equation 4.11 already consider all the admitted objects. If a multi-component impre-

cise object with empty yolk is taken as reference for the relation, from Equation 4.12

it directly follows that the maximal quantification over the object is equivalent to the

union of the maximal quantifications build over the object’s components separately.

Lastly, considering an imprecise object with non-empty yolk as reference, from Ax-

iom 3.3.1 it follows that an imprecise object with non-empty yolk can not have more

than one egg component. Furthermore, the case if the yolk is multi-component can be

computed considering as yolk the convex-hull of the yolk components.

4.6.2 QuantifyC for Visibility Relations

The visibility calculus (Fogliaroni et al., 2009) defines 27 base relations over a domain of

convex connected regions in R
2, and whose reference objects’ convex hulls do not overlap

(Section 2.2.3.3). Five relations are single-tile relations while the others are defined as

multi-tile ones. As for the CDC, the minimal quantification of every visibility base

relation is always an empty object:

A−R(O
∗
2, O

∗
3) =

⋂
O⊆R2 | R(O,O∗

2 ,O
∗
3)

O = ∅ with R ∈ RV is

The result is directly proven by considering the objects in Fig. 4.10. Both O′1 and

O′′1 satisfy the relation V with respect to O2 and O3. Furthermore, O′1 ∩ O′′1 = ∅ from

which it directly follows that A−V (O2, O3) = ∅. The same result holds for all the visibility

relations. Thus, the quantification of a visibility relation always yields a spatial-region

object with empty yolk.

Moreover, the maximal quantification of a single-tile relation corresponds to the

acceptance area defined in the calculus, while the maximal quantification of a multi-tile

relation is given by the union of the quantifications of the different tiles that compose

it.
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O2 O3

O1
``

O1̀

Figure 4.10: A−
V (O2, O3).

The QuantifyC for the computation of the

quantification of a visibility base relation is shown

in Algorithm 5. In the remainder of this section,

the case if the reference objects are precise will

be analyzed first and a definition of the maximal

quantifications by means of infinite-region objects

is given. Afterwards, the results will be extended

taking into account imprecise reference objects.

Algorithm 5 QuantifyC(R,O∗2, O∗3) – Visibility Calculus

A∗
R ← (∅, ∅)

for RST ∈ Γ(R) do
A+

R ← A+
R ∪A+

RST (O
∗
2 , O

∗
3)

end for
return A∗

R

4.6.2.1 Precise Reference Objects

The maximal quantifications of the visibility single-tile relations if the reference objects

are precise are equivalent to the relations’ acceptance areas. Hence, in order to provide

a procedure for quantifying these relations, a representation of the acceptance areas as

infinite-region objects is required. In the following, a step-by-step procedure is shown

for the definition of the infinite-region object’s rays and finite boundaries.

At first, the four common tangents between the reference objects are to be identified;

this operation requires beforehand the computation of the two objects’ convex hulls.

An example of the infinite-region objects construction over two convex objects is shown

in Fig. 4.11; for the sake of simplicity, the objects shown in the example are already

convex, thus CH(O2) = O2 and CH(O3) = O3. The tangents are described by means

of the eight tangential points over CH(O2) and CH(O3):
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p2ER ← point of tangent between ER and CH(O2)

p2EL ← point of tangent between EL and CH(O2)

p2IR ← point of tangent between IR and CH(O2)

p2IL ← point of tangent between IL and CH(O2)

p3ER ← point of tangent between ER and CH(O3)

p3EL ← point of tangent between EL and CH(O3)

p3IR ← point of tangent between IR and CH(O3)

p3IL ← point of tangent between IL and CH(O3)

O2 O3

�3

�4

�1

�2

pIL

pER

pEL

pIR

pER

pEL

pIR

pIL

�1

�2

�3

�4

3

3

3

3

2

2
2

2

pIR

pER

pEL

pIL

Figure 4.11: Quantification of the visibility relations using infinite-region objects.

The algebraic equations that define the four mutual tangents between CH(O2)

and CH(O3)—denoted as fER(x), fEL(x), fIR(x) and fIL(x)—are obtained from the

equation of a straight line through two points p1 = (x1, y1) and p2 = (x2, y2), by

replacing p1 and p2 with the required tangent points:

y = f(x) = mx+ q with m =
y2 − y1
x2 − x1

, q = y1 − y1 − y2
x1 − x2

x2

The tangent’s equations are used to identify an arbitrary point on every tangent

that is on the directed line that connects the point of tangent on CH(O3) with the

point on CH(O2), and is after the latter point. Those points are denoted respectively

with pER, pEL, pIR and pIL. It is then possible to define the four rays that will be used

for building the infinite-region objects:

−→
λ 1 = [p2IL, pIL)

−→
λ 2 = [p2IR, pIR)

−→
λ 3 = [p2EL, pEL)

−→
λ 4 = [p2ER, pER)

The four tangential points on O2 always appear in the order p2IL, p
2
IR, p

2
EL and

p2ER into the clockwise ordered list of points that define O2. Hence, the polyline
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O2 = 〈p, . . . , p2IL, . . . , p2IR, . . . , p2EL, . . . , p
2
ER, . . . , q〉 can be decomposed into four dis-

tinct polylines:

Λ1 = 〈p2IL, . . . , p2IR〉 Λ2 = 〈p2IR, . . . , p2EL〉 Λ3 = 〈p2EL, . . . , p
2
ER〉 Λ4 = 〈p2ER, . . . , p

2
IL〉

Finally, the infinite-region objects that define the maximal quantifications of the

five visibility single-tile relations are computed as in Equation 4.32. Two auxiliary

objects—namely A+
Le(O2, O3) and A+

Ri(O2, O3)—are used for defining the areas related

to the relations PVL, PVR, and PVJ . The auxiliary objects have been introduced to

build a procedure that computes the different maximal quantifications avoiding to ex-

plicitly check whether A+
PVJ

(O2, O3) exists. Indeed, if the PVJ quantification does not

exists, then A+
PVL

(O2, O3) = A+
Le(O2, O3) and A+

PVR
(O2, O3) = A+

Re(O2, O3). Other-

wise, the quantification of PVJ corresponds to the intersection of A+
Le and A+

Ri, while

the quantification of PVL and PVR are given by the residual regions.

A+
V (O2, O3) =

(
Λ1,

−→
λ 1,

−→
λ 2

)
A+

Oc(O2, O3) =
(
Λ3,

−→
λ 3,

−→
λ 4

)
A+

PVJ
(O2, O3) = A+

Le(O2, O3) ∩A+
Ri(O2, O3)

A+
Le(O2, O3) =

(
Λ2,

−→
λ 2,

−→
λ 3

)
A+

PVL
(O2, O3) = A+

Le(O2, O3) \A+
PVJ

(O2, O3)

A+
Ri(O2, O3) =

(
Λ4,

−→
λ 4,

−→
λ 1

)
A+

PVR
(O2, O3) = A+

Ri(O2, O3) \A+
PVJ

(O2, O3)

(4.32)

4.6.2.2 Imprecise Reference Objects

The procedures for the quantification of visibility base relations developed above are

exploited in this section for computing the quantification in the case if at least one of

the reference objects is imprecise. From Equation 3.4 the maximal quantification of a

visibility ternary relation having imprecise reference objects is formally defined as:

A+
R(O

∗
2 , O

∗
3) =

⋃
O−2 ⊆O◦2⊆O+

2

O−3 ⊆O◦3⊆O+
3

A+
N (O◦

2 , O
◦
3) with R ∈ RST

V is (4.33)

For any relation, the maximal quantification is computed as a combination of the quan-

tifications over the eggs and the yolks (considered as precise objects) of the reference

objects. The combination always yields an object that contains A+
R(O

∗
2, O

∗
3).

Any of the reference objects can be either precise, or imprecise with empty yolk,

or imprecise with non-empty yolk: eight potential distinct combinations have to be

analyzed. The case in which both the objects are precise has been already discussed
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above, while the other combinations are summarized in Table 4.1. The equations

to compute the maximal quantification of the visibility single-tile relations, and the

resulting quantifications for some exemplary reference objects, are shown in Fig. 4.12-

4.191. The equations can be proven by observing how the tangents vary if different

precise instances for the reference objects are considered, and checking which areas

build over the eggs and yolks are crossed by the tangents.

Table 4.1: Quantification of Visibility relations with imprecise reference objects.

Obstacle Viewer Figure

O∗2 = (O2, O2) O∗3 = (O+
3 , ∅) Fig. 4.12

O∗2 = (O2, O2) O∗3 = (O+
3 , O

−
3 ) Fig. 4.13

O∗2 = (O+
2 , ∅) O∗3 = (O3, O3) Fig. 4.14

O∗2 = (O+
2 , ∅) O∗3 = (O+

3 , ∅) Fig. 4.15

O∗2 = (O+
2 , ∅) O∗3 = (O+

3 , O
−
3 ) Fig. 4.16

O∗2 = (O+
2 , O

−
2 ) O∗3 = (O3, O3) Fig. 4.17

O∗2 = (O+
2 , O

−
2 ) O∗3 = (O+

3 , ∅) Fig. 4.18

O∗2 = (O+
2 , O

−
2 ) O∗3 = (O+

3 , O
−
3 ) Fig. 4.19

1Within the images, the common tangents between O∗
2 and a precise object (O3 or O−

3 ) are drawn
in black color, while the common tangents between O∗

2 and O+
3 are drawn in red.
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(a) A+
V (O2, O

+
3 ) (b) A+

PVL
(O2, O

+
3 )

(c) A+
PVJ

(O2, O
+
3 ) (d) A+

Oc(O2, O
+
3 )

Figure 4.12: A+
RST

V is

(O2, O
+
3 ).

A
+
V (O2, O

+
3 ) = R

2 \ A
+
Oc(O2, O

•
3 )

A
+
PVL

(O2, O
+
3 ) = A

+
PVL

(O2, O
•
3 ) ∪ A

+
PVJ

(O2, O
•
3 )

A
+
PVR

(O2, O
+
3 ) = A

+
PVR

(O2, O
•
3 ) ∪ A

+
PVJ

(O2, O
•
3 )

A
+
PVJ

(O2, O
+
3 ) = A

+
PVJ

(O2, O
•
3 )

A
+
Oc(O2, O

+
3 ) = R

2 \ A
+
V (O2, O

•
3 )

A
+
V (O2, O

∗
3 ) = A

+
V (O2, O

−
3 )

A
+
PVL

(O2, O
∗
3 ) =

(
A

+
PVL

(O2, O
•
3 ) ∪ (

A
+
PVJ

(O2, O
•
3 )

\ (
A

+
PVR

(O2, O
−
3 ) ∪ A

+
PVJ

(O2, O
−
3 )

))

\ (
A

+
Oc(O2, O

•
3 ) ∪ A

+
PVR

(O2, O
•
3 )

)

A
+
PVR

(O2, O
∗
3 ) =

(
A

+
PVR

(O2, O
•
3 ) ∪ (

A
+
PVJ

(O2, O
•
3 )

\ (
A

+
PVL

(O2, O
−
3 ) ∪ A

+
PVJ

(O2, O
−
3 )

))

\ (
A

+
Oc(O2, O

•
3 ) ∪ A

+
PVL

(O2, O
•
3 )

)

A
+
PVJ

(O2, O
∗
3 ) = A

+
PVJ

(O2, O
•
3 )

A
+
Oc(O2, O

∗
3 ) = A

+
Oc(O2, O

−
3 )

(a) A+
V (O2, O

∗
3) (b) A+

PVL
(O2, O

∗
3)

(c) A+
PVJ

(O2, O
∗
3) (d) A+

Oc(O2, O
∗
3)

Figure 4.13: A+
RST

V is

(O2, O
∗
3).
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(a) A+
V (O+

2 , O3) (b) A+
PVL

(O+
2 , O3)

(c) A+
PVJ

(O+
2 , O3) (d) A+

Oc(O
+
2 , O3)

Figure 4.14: A+
RST

V is

(O+
2 , O3).

A
+
V (O

+
2 , O3) = R

2 \ A
+
PVJ

(O
•
2 , O3)

A
+
PVL

(O
+
2 , O3) = A

+
PVL

(O
•
2 , O3) ∪ A

+
Oc(O

•
2 , O3)

A
+
PVR

(O
+
2 , O3) = A

+
PVR

(O
•
2 , O3) ∪ A

+
Oc(O

•
2 , O3)

A
+
PVJ

(O
+
2 , O3) = R

2 \ A
+
V (O

•
2 , O3)

A
+
Oc(O

+
2 , O3) = A

+
Oc(O

•
2 , O3)

A
+
V (O

+
2 , O

+
3 ) = R

2

A
+
PVL

(O
+
2 , O

+
3 ) = R

2 \ A
+
V (O

•
2 , O

•
3 )

A
+
PVR

(O
+
2 , O

+
3 ) = R

2 \ A
+
V (O

•
2 , O

•
3 )

A
+
PVJ

(O
+
2 , O

+
3 ) = R

2 \ A
+
V (O

•
2 , O

•
3 )

A
+
Oc(O

+
2 , O

+
3 ) = R

2 \ A
+
V (O

•
2 , O

•
3 )

(a) A+
V (O+

2 , O
+
3 ) (b) A+

PVL
(O+

2 , O
+
3 )

(c) A+
PVJ

(O+
2 , O

+
3 ) (d) A+

Oc(O
+
2 , O

+
3 )

Figure 4.15: A+
RST

V is
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4.6.2.3 Discussion

A quantification procedure for visibility relations has been proposed that is based on the

infinite-region representation of the acceptance areas defined in the visibility calculus.

In particular, an algorithm to compute the representation in the case of precise reference

objects has been given in Eq. 4.32, while Table 4.1 summarizes the different potential

combinations of the reference objects. As for the cardinal direction calculus, it is not

necessary to analyze the case in which one of the reference objects has non-empty

yolk and has not a defined egg: such a case is modeled as an imprecise object having

maximal extension coincident with R
2.

The quantification of a visibility relation can not be computed for any kind of

spatial-region object. Indeed, in the case if at least one of the reference objects repre-

sents a region with infinite extent, it is not possible to compute the convex-hull of the

object, and also the tangents between the reference objects can not be traced (see Ap-

pendix A). Hence, the quantification of a visibility relation having at least one reference

object that represents a region with infinite extent is not computable.

4.6.3 QuantifyC for Topological Relations

The RCC-8 calculus (Randell et al., 1992) defines eight topological base relations over

a domain of connected spatial regions (Section 2.2.3.1). The QuantifyC procedure to

compute the quantification of a topological relation is shown in Algorithm 6. Differently

from cardinal direction and visibility, the minimal quantification of topological relations

is not always empty. Moreover, the RCC-8 calculus is not based on the concept of

acceptance areas, hence the quantification of topological relation can not be linked

to that concept. In the remainder of this section, the quantification procedure if the

reference object is precise will be firstly analyzed; afterwards a procedure to compute

the quantification in the case of imprecise reference object is given.

Algorithm 6 QuantifyC(R,O∗2) – RCC-8 Calculus

A+
R ← A+

R(O
∗
2), A−

R ← A−
R(O

∗
2)

return A+
R, A

−
R

4.6.3.1 Precise Reference Object

The quantification of topological RCC-8 relations having a precise reference object is

defined, from Eq. 3.4 and Eq. 3.5, as:

A+
R(O2) =

⋃
O⊆R

2|R(O,O2)

O with R ∈ BRCC A−
R(O2) =

⋂
O⊆R

2|R(O,O2)

O with R ∈ BRCC
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The properties of the objects that satisfy a RCC-8 relation can be exploited to

develop a procedure for the computation of A+
R and A−R. Considering for instance the

relation TPP(O∗1, O2) (Fig. 4.20(e)), the primary object O∗1 can lie everywhere inside

the reference object, but can not be outside it; hence the maximal quantification of TPP

is constrained by the object O2. Furthermore, the relation does not give any constraint

for the minimal quantification. Conversely, the relation NTPPI (Fig. 4.20(h)) does not

give any constraint for the maximal quantification, but the reference object constraints

the minimal quantification since any object that satisfies the relation has to contain

O2. The quantifications of RCC-8 relations having precise reference object are shown

in Fig. 4.20; graphical examples are provided as proof for the equations1. The results

are either infinite-region objects coincident with R
2 (e.g., A+

PO(O2), A
+
TPPI(O2), and

A+
NTPPI(O2)), or objects equal to R

2 having a finite hole (e.g., A+
DC(O2) and A+

EC(O2)),

or spatial-region objects with finite extent.

4.6.3.2 Imprecise Reference Object

Given an RCC-8 binary relation having an imprecise reference object, the quantification

of the relation—respectively in the cases O∗2 = (O+
2 , ∅) and O∗2 = (O+

2 , O
−
2 )—is defined,

from Eq. 3.4 and Eq. 3.5, as:

A+
R(O

+
2 ) =

⋃
O◦2⊆O+

2

A+
R(O

◦
2) with R ∈ BRCC

A−
R(O

+
2 ) =

⋂
O◦2⊆O+

2

A−
R(O

◦
2) with R ∈ BRCC

A+
R(O

∗
2) =

⋃
O−2 ⊆O◦2⊆O+

2

A+
R(O

◦
2) with R ∈ BRCC

A−
R(O

∗
2) =

⋂
O−2 ⊆O◦2⊆O+

2

A−
R(O

◦
2) with R ∈ BRCC

(4.34)

A procedure to compute the quantification of a topological relation if the reference

object is imprecise is given by Theorem 4.6.5. This procedure is valid for any kind of

spatial-region object.

1Within the figures, O2 is depicted as an object with a black border, while the polygons having
different border colors are examples of objects that satisfy the relation with O2.
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Figure 4.20: Quantification of RCC-8 relations.
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Theorem 4.6.5. Given an imprecise object O∗2, the quantifications A+
R(O

∗
2), A

−
R(O

∗
2),

A+
R(O

+
2 ), and A−R(O

+
2 ) with R ∈ BRCC are computed as in Tab. 4.2.

Table 4.2: Quantification of RCC-8 relations with imprecise reference objects.

R DC EC PO EQ TPP NTPP TPPI NTPPI

A+
R(O

+
2 ) R

2
R

2
R

2 O•
2 O•

2 O•
2 R

2
R

2

A−
R(O

+
2 ) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

A+
R(O

∗
2) R

2\O−
2 R

2\O−
2 R

2 O•
2 O•

2 O•
2 R

2
R

2

A−
R(O

∗
2) ∅ ∅ ∅ O−

2 ∅ ∅ O−
2 O−

2

Proof. At first, the proof of the equations A+
R(O

∗
2) is given. Considering the case R = DC, from

Eq. 4.34, A+
DC(O

∗
2) =

⋃
O◦2

A+
DC(O

◦
2) with O−

2 ⊆ O◦
2 ⊆ O+

2 . Furthermore, from the equation in

Fig. 4.20(a), A+
DC(O

◦
2) = R

2 \ O◦
2 . Since O−

2 ⊆ O◦
2 , it follows that R

2 \ O◦
2 ⊇ R

2 \ O−
2 ⇒ A+

DC(O
◦
2) ⊇

R
2 \ O−

2 . Considering O◦
2 = O−

2 ⇒ A+
DC(O

◦
2) = R

2 \ O−
2 and hence A+

DC(O
∗
2) = R

2 \ O−
2 . The same

proof is valid for A+
EC(O

∗
2). For the case R ∈ {PO, TPPI,NTPPI}, instead, A+

R(O
◦
2) is always equals

to R
2 (Fig. 4.20) end hence the equations in Tab. 4.2 are valid. Finally, considering the case R = EQ,

from the equation in Fig. 4.20(d), A+
EQ(O

◦
2) = O◦

2 , ∀O−
2 ⊆ O◦

2 ⊆ O+
2 . Hence, A+

EQ(O
◦
2) ⊆ O•

2 and it

is equal if O◦
2 = O•

2 . Than, it follows from Eq. 4.34 that A+
EQ(O

∗
2) = O•

2 . The same proof is valid for

R ∈ {TPP,NTPP}.
If R ∈ {DC,EC,PO, TPP,NTPP}, the equations of the quantification A−

R(O
∗
2) given in Tab. 4.2

are verified since A−
R(O

◦
2) = ∅, ∀O−

2 ⊆ O◦
2 ⊆ O+

2 (Fig. 4.20). Conversely, considering the case R = EQ,

the quantification A−
EQ(O

◦
2) = O◦

2 , ∀O−
2 ⊆ O◦

2 ⊆ O+
2 . Hence, A−

EQ(O
◦
2) ⊆ O−

2 and A−
EQ(O

◦
2) = O−

2 ⇔
O◦

2 = O−
2 . Thus, it directly follows from Eq. 4.34 that A−

EQ(O
∗
2) = O−

2 . The same proof is valid for

R ∈ {TPPI,NTPPI}.
The equations A+

R(O
+
2 ), A

−
R(O

+
2 ), in the case O− = ∅, are obtained from the equations of A+

R(O
∗
2),

A−
R(O

∗
2) by imposing an empty yolk object in the results.

4.7 Computational Complexity of Quantification

The Quantify procedure shown in Algorithm 3 requires the quantification of a vari-

able number of base relations, and the computation of the intersection/union of the

results. However, the number of relations to quantify always has an upper bound (8 for

RCC-8, 218 for CDC relations, 27 for Visibility). Thus, the computational time com-

plexity of Algorithm 3 is constrained by the computation time required for building

the quantifications of direction, visibility, and topological relations in the worst cases.

In this section, the complexity of the QuantifyC algorithms developed for the distinct

qualitative calculi will be analyzed.
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4.7.1 Cardinal Direction Quantification

Three different cases have been discussed for the quantification of cardinal direction

relations: precise reference object (Equation 4.11), imprecise reference object with

empty yolk (Theorem 4.6.3), and imprecise reference object with non-empty yolk (The-

orem 4.6.4). The complexity in the three different cases is analyzed separately in order

to define the worst case time complexity.

Precise reference object

Let O2 be a precise object defined by n vertices, the quantification of a CDC single-tile

relation only requires the computation of the reference object’s MBR (Equation 4.11).

All the maximal quantifications are then computed from the points that define the

MBR. Hence, the computation of the quantification A+
R(O2) requires O(n) time in the

worst case (cf. Section 2.1.2.1).

Imprecise reference object with empty yolk

Let n be the number of vertices that define an imprecise object with empty yolk O+
2 .

If R = B , the computational time complexity of A+
B(O

+
2 ) (Eq. 4.13) is O(n) as for the

precise reference object case. Conversely, if the relation R is one of the other single-tile

relations (Theorem 4.6.3), the computation of A+
R(O

+
2 ) requires:

1. The calculation of n−1 line segment quantifications As
R(s). Any single quantification

costs O(1) time (Lemma 4.6.1). Hence, the overall computational time complexity

of this step is O(n) in the worst case.

2. The union of the n − 1 quantifications computed in Step 1. In general, the union

of two objects defined respectively by m1 and m2 vertices yields, in the worst case,

an object having 2(m1 + m2) vertices and the computation costs O(m1m2) time

(Margalit & Knott, 1989). Let m1, . . . ,mn−1 be the number of vertices of the

n− 1 objects As
R(s1), . . . , A

s
R(sn−1), and m = max{m1, . . . ,mn−1}. The i-th union

operation yields an object having O(2im) vertices in the worst case. Thus, the (n−
2)-th union operation gets as input an object having O(2nm) vertices and an object

defined by m vertices and runs in O(2nm2) time. The union operation is repeated

n − 2 times, thus the computation of the union of all the quantifications As
R(s)

requires O(n2nm2) time in the worst case. However, this result can be simplified

considering that m ≤ 4 (Fig. 4.7(b)). The computational time complexity of this

step is hence O(n2n) in the worst case.

Overall, the algorithm proposed for the computation of A+
R(O

+
2 ) has a worst case time

complexity of O(n2n).
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Imprecise reference object

Le n1 be the number of vertices that define the egg and n2 be the number of vertices

that define the yolk of an imprecise object O∗2. The quantification of a cardinal direction

relation having O∗2 as reference object is computed as in Theorem 4.6.4. The worst case

is represented by the quantification of R ∈ {N,E, S,W}. In such cases, a quantification

over an imprecise object is computed—O(n12
n1)—as well as three quantifications over

a precise object—O(n2). Since the individual quantification has always a number of

vertices less then or equal to 4, the union operation between them requires constant

time. Thus, the proposed algorithm for computing the quantification A+
R(O

∗
2) runs in

O(n12
n1 + n2) time in the worst case.

QuantifyC for Cardinal Direction Relations

Let t be the number of tiles that compose the base relation R in Algorithm 4. The

quantification of a CDC relation costs O(t(n12
n1 + n2)) time in the worst case. How-

ever, t is always less than or equal to 9 and it can be considered as a constant; the

computational time complexity in the worst case becomes O(n12
n1 + n2).

4.7.2 Visibility Quantification

The visibility relations are quantified as in Equation 4.32 if both the reference ob-

jects are precise. Differently, if at least one of the reference objects is imprecise, the

quantification is performed as summarized in Table 4.1.

Precise reference object

Let n and m be the number of vertices that define respectively the reference objects O2

and O3. The computation of a visibility relation’s quantification A+
R(O2, O3) (Equa-

tion 4.32) requires the execution of the following steps:

1. Computation of CH(O2) and CH(O3). This operation runs in O(n + m) time

(Melkman, 1987).

2. Identification of the mutual tangent points between CH(O2) and CH(O3). The com-

putational time complexity of this step is O(log(n+m)) (Kirkpatrick & Snoeyink,

1995).

3. Definition of the infinite-region object’s rays. This step is based on a constant

number of algebraic equations and runs in O(1) time.

4. Definition of the infinite-region object’s finite boundary. This step requires an iter-

ation over all the vertices of O2 and costs O(n) time.

Hence, the computation of the rays and finite boundaries requires O(n+m) time in the

worst case. The objects A+
V (O2, O3), A

+
Oc(O2, O3), A

+
Le(O2, O3) and A+

Ri(O2, O3) are

directly computed as in Equation 4.32. Furthermore, any of these objects is defined by

a number of vertices that is less or equal to n (cf. Fig. 4.11). Thus, the computation of
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A+
PVJ

(O2, O3), A
+
PVL

(O2, O3) and A+
PVR

(O2, O3) requires O(n
2) time in the worst case.

While A+
PVL

(O2, O3) and A+
PVR

(O2, O3) are defined by n vertices in the worst case,

A+
PVJ

(O2, O3) is always an object defined by 3 vertices.

Overall, the proposed algorithm for the computation of A+
R(O2, O3) has a worst case

time complexity of O(n2 +m).

Imprecise reference object

Let n1, n2 be the vertices that describe respectively the egg and the yolk of the im-

precise object O∗2, and let m1,m2 be the vertices of the egg and the yolk of O∗3. The

quantification of a visibility relation worst case scenario is given by the computation

of A+
PVL

(O∗2, O∗3)—or equivalently A+
PVR

(O∗2, O∗3) (cf. Fig. 4.19). In such a case, nine

different visibility quantifications over precise objects have to be computed first. The

computational time complexity is O(n2 +m), with n = n1 + n2 and m = m1 +m2..

Afterwards, a constant number of union and difference operations of objects having

either O(n1), or O(n2) or O(n1 + n2) vertices have to be performed. The union and

difference operations require, at all, O(n2) time.

Overall, the described algorithm for computing A+
R(O

∗
2, O

∗
3) has a worst case time

complexity of O(n2 +m).

QuantifyC for Visibility Relations

Let t be the number of tiles that compose the base visibility relation R in Algorithm 5.

The quantification of a visibility relation costs O(t(n2 + m)) time in the worst case.

However, t is always less than or equal to 5; it can hence be considered as a constant

and the worst case computational time complexity is O(n2 +m).

4.7.3 Topology Quantification

The quantification of topological relations are performed by the equations described

in Fig. 4.20 if the reference object is precise, otherwise they are performed by the

equations listed in Table 4.2. The quantifications are always either equal to R
2, or

empty, or equal to the egg or the yolk of the reference object, or equivalent to R
2 with

a hole corresponding to the yolk of the reference object. Hence, the computation time

complexity is always O(1) in the topological case.

4.8 Summary

In this chapter, a system for qualitative and quantitative spatial information transla-

tion has been described that performs quantification operations of qualitative spatial

relations, and qualification operations from the geometries that describe the spatial

entities. The focus has then been moved to the development of the quantification

component.
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As shown by Wolter & Wallgrün (2012), quantification still represents a challenge in

the QSR field. Here, a general algorithm for the computation of the quantification has

been described that is valid for any qualitative spatial calculus. Specialized quantifi-

cation algorithms have been described for topological, cardinal direction and visibility

relations. The algorithms’ outcomes are compatible with the acceptance areas concept

used by the visibility and CDC calculi in the case if the reference objects are precise.

The outcomes have been extended to regions imprecisely described. Furthermore, the

proposed approach works also for calculi that do not define acceptance areas, as the

topological calculus.
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Chapter 5

Qualification of Quantitative

Spatial Information

In the previous chapter a system for the translation of qualitative information to quan-

titative and vice versa has been described. The system is grounded on two main com-

ponents: the quantification component and the qualification component. The former

has been analyzed in the previous chapter, while the latter will be discussed in the

present chapter. A description of the qualification problem will be given in Section 5.1.

A procedure for the qualification of topological relations is described in Section 5.2.

Section 5.3 analyzes a straightforward qualification approach for visibility relations.

Section 5.4 shows how the approach developed for visibility relations can be directly

applied to cardinal direction relations and, in general, to other projective calculi. Sub-

sequently, a strategy that exploits the structure of cardinal direction relations is shown

to reduce the complexity of the qualification process. Finally, the analysis of the com-

putational complexity of the described algorithms is discussed in Section 5.5.

5.1 The Qualification Algorithm

As has been shown in Section 4.1, the qualification operation (i.e., the translation

from quantitative to qualitative spatial information) gets as input an n-ary calculus C

defined over a domain of connected regions in R
2 and a set of n spatial-region objects.

It yields the qualitative relation, defined in the calculus, that holds between the objects.

Thus, a calculus-dependent function QualifyC(O
∗
1, . . . , O

∗
n) is defined that qualifies the

relation in the calculus C between the spatial-region objects O∗1, . . . , O∗n.
If the input objects are precise, the qualification operation basically only requires

to check the constraints that a certain calculus defines for the objects in a specific

relation. For instance, to qualify a topological relation between two precise objects it
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is necessary to check whether the objects are connected, while for cardinal direction

single-tile relations it is sufficient to apply the constraints described by Skiadopoulos

& Koubarakis (2004). However, if the objects are imprecise, the definitions of the

relations are not sufficient anymore. The existing research in this direction focused

on the definition of fuzzy relations between imprecise objects. Namely, a new set of

relations is defined that takes into account the uncertainty of the given objects. For

that reason, the set of new relations is not the same as the set of relations defined to

deal with precise objects. For instance, Cohn & Gotts (1996) defines a set of topological

fuzzy relations based on the RCC calculus, while Cicerone & Di Felice (2000) extend

the direction relation matrix by considering objects with a broad boundary.

However, the entities considered in this work have a well-defined boundary in the

reality, but their description in the system can result to be imprecise. Hence, the focus is

not on qualifying the fuzzy relation, but rather to identify which relations are admitted

for a set of entities that are imprecisely described. In other words, the qualification

operation has to yield the set of relations that are satisfied by at least one precise

instance of any input object. An example has been provided in Fig. 3.11 where the

precise instances of two imprecise objects can satisfy the topological relations DC,EC

and PO.

Let C be an n-ary qualitative spatial calculus defined over a domain of connected

regions in R
2, and let O∗1, . . . , O∗n be spatial-region objects, the disjunctive relation

composed by all base relations in C that hold between precise instances of O∗1, . . . , O∗n
is called crisp relation between imprecise objects and is denoted as RC(O

∗
1, . . . , O

∗
n).

For the example described above, RRCC(O
∗
1, O

∗
2) = {DC,EC, PO}. The qualifica-

tion problem has been discussed by Wolter & Wallgrün (2012) that identify two main

challenges: consistently mapping floating point values to qualitative labels, and devise

efficient algorithms that enumerate all possible base relations that can hold between

objects imprecisely described. This work aims at tackling the latter challenge, hence a

set of functions QualifyC are developed for the efficient computation of RC(O
∗
1, . . . , O

∗
n).

In the remainder of this chapter, the qualification process of the crisp relation

between imprecise objects for the topological, visibility, and cardinal direction calculi

defined in Chapter 2 will be analyzed.

5.2 Qualification of Topological Relations

Given two imprecise spatial-region objects, the qualification of the topological crisp

disjunctive relation between them is defined, from Definition 12, as:

Definition 15 (Topological crisp relation between imprecise objects).

Let O∗1 and O∗2 be two imprecise spatial-region objects, the disjunctive topological relation
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that describes the possible relations holding between any precise instance of O∗1 and any

precise instance of O∗2, called topological crisp relation between imprecise objects, is

defined as:

RRCC(O
∗
1, O

∗
2) �

{
R ∈ BRCC

∣∣ ∃O◦1, ∃O◦2 s.t. R(O◦1, O
◦
2)
}

However, as has been shown in Section 3.3.5, this definition is based on an infinite

number of precise objects and it does not provide a constructive procedure to identify

the topological crisp relation holding between two imprecise objects. Therefore, a

procedure to retrieve the disjunctive relation from the topological relations holding

between the components of the primary object—namely the egg interpreted as a precise

object and the yolk—and the components of the reference object is required.

The set of topological relations that can hold between the precise instances of two

imprecise objects has been adopted in Cohn & Gotts (1996) as a parameter to cluster

the fuzzy relations between imprecise objects. However, Cohn & Gotts (1996) only

consider the relations defined in the RCC-5 calculus and hence the full set of relations

defined by the RCC-8 calculus is not taken into account. Furthermore, they assume

that an imprecise object always has well-defined egg and yolk components. This is in

contrast with the assumptions of this work in which even imprecise objects with empty

yolks are admitted.

In order to develop a procedure to compute the topological crisp relation between

two spatial-region objects, the topological properties of the egg-yolk approach can be

exploited. For instance, given a precise object O1 and an imprecise object with empty

yolk O+
2 , any precise instance of O+

2 has to satisfy the condition O◦2 ⊆ O+
2 ⇔ O◦2 ⊆

O•2, that in topological terms can be expressed as {EQ, TPP,NTPP} (O◦2, O•2). To

check whether a certain topological relation between O1 and a precise instance of O+
2

is allowed, a constraint network that describes the constraints between O◦2 and O•2
and the relation to be checked between O1 and O◦2 can be tested against consistency:

if the network is consistent, the relation is admissible, otherwise it is not. As an

example, Fig. 5.1 shows the constraint networks for two possible relations between

O1 and O◦2 in the case DC(O1, O
•
2). The black edges represent the relations that

have been set to the network, while the red edges are the relations inferred by the

propagation of the constraints using the composition table defined in Section 2.2.3.1. In

Fig. 5.1(a), the relation DC(O1, O
◦
2) is checked; it results that R(O1, O

◦
2) = R(O1, O

•
2)�

R(O•2, O◦2) = DC �{EQ, TPPI,NTPPI} = DC and the network is consistent. Hence,

a precise instance of O+
2 such that DC(O1, O

◦
2) exists and the relation DC is contained

in RRCC(O1, O
+
2 ). In contrast, in Fig. 5.1(b) the relation EC(O1, O

•
2) is checked; in this

case the composition operation results in R(O1, O
•
2) = EC � {EQ, TPPI,NTPPI} =
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DC that creates an inconsistency in the network. Hence, the relation EC is not an

element of the topological crisp relation among imprecise objects RRCC(O1, O
+
2 ).

O1

O2

O2

DC
EQ, TPPI,

NTPPI

DC

DC

°

°

(a) DC(O1, O
◦
2)

O1

O2

O2

DC
EQ, TPPI,

NTPPI

DC

EC

°

°

(b) EC(O1, O
◦
2)

Figure 5.1: Consistency checking of R(O1, O
◦
2).

Therefore, the set of possible relations that can hold between any precise instance

of two imprecise objects O∗1 and O∗2 can be computed by defining a constraint net-

work that describes: (1) the relation between the egg (respectively the yolk) of the

imprecise objects and any precise instance of the object itself, (2) the relations between

the eggs (interpreted as precise) and the yolks of both objects, and (3) the relation

that has to be checked. For an imprecise object O∗, the constraints to impose are

{EQ, TPPI,NTPPI}(O◦, O−) and {EQ, TPP,NTPP}(O◦, O•).
All the relations have been checked performing the algebraic closure algorithm

(Mackworth, 1977) implemented in the qualitative spatial reasoning toolbox SparQ

(Wallgrün et al., 2007). Nine different cases can occur, based on whether the objects

are precise, imprecise with empty yolk or imprecise with non-empty yolk. The case in

which both the objects are precise is the one described by the RCC-8 calculus. Further-

more, some of the cases can be computed as inverse of other relations: RRCC(O
+
1 , O2) =

R∼RCC(O2, O
+
1 ), RRCC(O

∗
1+, O2) = R∼RCC(O2, O

∗
1), andRRCC(O

∗
1, O

+
2 ) = R∼RCC(O

+
2 , O

∗
1).

Hence only the cases RRCC(O1, O
+
2 ), RRCC(O1, O

∗
2), RRCC(O

+
1 , O

+
2 ), RRCC(O

+
1 , O

∗
2),

and RRCC(O
∗
1, O

∗
2) have to be computed.

The results for the case if both objects are imprecise and have non-empty yolk are

shown in Tab. 5.1, while the other cases are shown in Tab. 5.2.

Table 5.1: Qualification of RCC-8 relations – RRCC(O
∗
1 , O

∗
2).

R(O•1 , O•2 ) R(O−1 , O−2 ) R(O•1 , O−2 ) R(O−1 , O•2 ) R(O∗1 , O∗2 )

DC DC DC DC DC

EC DC DC DC DC,EC

EC DC DC EC DC,EC

EC DC EC DC DC,EC

EC DC EC EC DC,EC

EC EC EC EC EC

PO DC DC DC DC,EC,PO

PO DC DC EC DC,EC,PO

PO DC DC PO DC,EC,PO

PO DC DC TPPI DC,EC, PO, TPP

PO DC DC NTPPI DC,EC,NTPP, PO, TPP
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R(O•1 , O•2 ) R(O−1 , O−2 ) R(O•1 , O−2 ) R(O−1 , O•2 ) R(O∗1 , O∗2 )

PO DC EC DC DC,EC, PO

PO DC EC EC DC,EC, PO

PO DC EC PO DC,EC, PO

PO DC EC TPPI DC,EC, PO, TPP

PO DC EC NTPPI DC,EC,NTPP, PO, TPP

PO DC PO DC DC,EC, PO

PO DC PO EC DC,EC, PO

PO DC PO PO DC,EC, PO

PO DC PO TPPI DC,EC, PO, TPP

PO DC PO NTPPI DC,EC,NTPP, PO, TPP

PO DC TPPI DC DC,EC, PO, TPPI

PO DC TPPI EC DC,EC, PO, TPPI

PO DC TPPI PO DC,EC, PO, TPPI

PO DC TPPI TPPI DC,EC,EQ, PO, TPP, TPPI

PO DC TPPI NTPPI BRCC \ {NTPPI}
PO DC NTPPI DC DC,EC,NTPPI, PO, TPPI

PO DC NTPPI EC DC,EC,NTPPI, PO, TPPI

PO DC NTPPI PO DC,EC,NTPPI, PO, TPPI

PO DC NTPPI TPPI BRCC \ {NTPP}
PO DC NTPPI NTPPI BRCC

PO EC EC EC EC, PO

PO EC EC PO EC, PO

PO EC EC TPPI EC, PO, TPP

PO EC EC NTPPI EC,NTPP, PO, TPP

PO EC PO EC EC, PO

PO EC PO PO EC, PO

PO EC PO TPPI EC, PO, TPP

PO EC PO NTPPI EC,NTPP, PO, TPP

PO EC TPPI EC EC, PO, TPPI

PO EC TPPI PO EC, PO, TPPI

PO EC TPPI TPPI EC,EQ, PO, TPP, TPPI

PO EC TPPI NTPPI EC,EQ,NTPP, PO, TPP, TPPI

PO EC NTPPI EC EC,NTPPI, PO, TPPI

PO EC NTPPI PO EC,NTPPI, PO, TPPI

PO EC NTPPI TPPI EC,EQ,NTPPI, PO, TPP, TPPI

PO EC NTPPI NTPPI BRCC \ {DC}
PO PO PO PO PO

PO PO PO TPPI PO, TPP

PO PO PO NTPPI NTPP, PO, TPP

PO PO TPPI PO PO, TPPI

PO PO TPPI TPPI EQ, PO, TPP, TPPI

PO PO TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

PO PO NTPPI PO NTPPI, PO, TPPI

PO PO NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

PO PO NTPPI NTPPI BRCC \ {DC}
PO EQ TPPI TPPI EQ, PO, TPP, TPPI

PO EQ TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

PO EQ NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

PO EQ NTPPI NTPPI BRCC \ {DC}
PO TPP PO TPPI PO, TPP

PO TPP PO NTPPI NTPP, PO, TPP

PO TPP TPPI TPPI EQ, PO, TPP, TPPI

PO TPP TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

PO TPP NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

PO TPP NTPPI NTPPI BRCC \ {DC}
PO NTPP PO NTPPI EC,NTPP, PO, TPP

PO NTPP TPPI NTPPI EC,EQ,NTPP, PO, TPP, TPPI

PO NTPP NTPPI NTPPI BRCC \ {DC}
PO TPPI TPPI PO PO, TPPI

PO TPPI TPPI TPPI EQ, PO, TPP, TPPI

PO TPPI TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

PO TPPI NTPPI PO NTPPI, PO, TPPI

PO TPPI NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

PO TPPI NTPPI NTPPI BRCC \ {DC}
PO NTPPI NTPPI PO EC,NTPPI, PO, TPPI

PO NTPPI NTPPI TPPI EC,EQ,NTPPI, PO, TPP, TPPI

PO NTPPI NTPPI NTPPI BRCC \ {DC}
EQ DC TPPI TPPI DC,EC,EQ, PO, TPP, TPPI

EQ DC TPPI NTPPI BRCC \ {NTPPI}
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R(O•1 , O•2 ) R(O−1 , O−2 ) R(O•1 , O−2 ) R(O−1 , O•2 ) R(O∗1 , O∗2 )

EQ DC NTPPI TPPI BRCC \ {NTPP}
EQ DC NTPPI NTPPI BRCC

EQ EC TPPI TPPI EC,EQ, PO, TPP, TPPI

EQ EC TPPI NTPPI EC,EQ,NTPP, PO, TPP, TPPI

EQ EC NTPPI TPPI EC,EQ,NTPPI, PO, TPP, TPPI

EQ EC NTPPI NTPPI BRCC \ {DC}
EQ PO TPPI TPPI EQ, PO, TPP, TPPI

EQ PO TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

EQ PO NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

EQ PO NTPPI NTPPI BRCC \ {DC}
EQ EQ EQ EQ EQ

EQ EQ TPPI TPPI EQ, PO, TPP, TPPI

EQ EQ NTPPI NTPPI BRCC \ {DC}
EQ TPP EQ TPPI EQ, TPP

EQ TPP TPPI TPPI EQ, PO, TPP, TPPI

EQ TPP TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

EQ TPP NTPPI NTPPI BRCC \ {DC}
EQ NTPP EQ NTPPI EQ,NTPP, TPP

EQ NTPP TPPI NTPPI EC,EQ,NTPP, PO, TPP, TPPI

EQ NTPP NTPPI NTPPI BRCC \ {DC}
EQ TPPI TPPI EQ EQ, TPPI

EQ TPPI TPPI TPPI EQ, PO, TPP, TPPI

EQ TPPI NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

EQ TPPI NTPPI NTPPI BRCC \ {DC}
EQ NTPPI NTPPI EQ EQ,NTPPI, TPPI

EQ NTPPI NTPPI TPPI EC,EQ,NTPPI, PO, TPP, TPPI

EQ NTPPI NTPPI NTPPI BRCC \ {DC}
TPP DC DC TPPI DC,EC, PO, TPP

TPP DC DC NTPPI DC,EC,NTPP, PO, TPP

TPP DC EC TPPI DC,EC, PO, TPP

TPP DC EC NTPPI DC,EC,NTPP, PO, TPP

TPP DC PO TPPI DC,EC, PO, TPP

TPP DC PO NTPPI DC,EC,NTPP, PO, TPP

TPP DC TPPI TPPI DC,EC,EQ, PO, TPP, TPPI

TPP DC TPPI NTPPI BRCC \ {NTPPI}
TPP DC NTPPI TPPI BRCC \ {NTPP}
TPP DC NTPPI NTPPI BRCC

TPP EC EC TPPI EC, PO, TPP

TPP EC EC NTPPI EC,NTPP, PO, TPP

TPP EC PO TPPI EC, PO, TPP

TPP EC PO NTPPI EC,NTPP, PO, TPP

TPP EC TPPI TPPI EC,EQ, PO, TPP, TPPI

TPP EC TPPI NTPPI EC,EQ,NTPP, PO, TPP, TPPI

TPP EC NTPPI TPPI EC,EQ,NTPPI, PO, TPP, TPPI

TPP EC NTPPI NTPPI BRCC \ {DC}
TPP PO PO TPPI PO, TPP

TPP PO PO NTPPI NTPP, PO, TPP

TPP PO TPPI TPPI EQ, PO, TPP, TPPI

TPP PO TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

TPP PO NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

TPP PO NTPPI NTPPI BRCC \ {DC}
TPP EQ EQ TPPI EQ, TPP

TPP EQ TPPI TPPI EQ, PO, TPP, TPPI

TPP EQ TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

TPP EQ NTPPI NTPPI BRCC \ {DC}
TPP TPP PO TPPI PO, TPP

TPP TPP PO NTPPI NTPP, PO, TPP

TPP TPP EQ TPPI EQ, TPP

TPP TPP EQ NTPPI EQ,NTPP, TPP

TPP TPP TPP TPPI TPP

TPP TPP TPP NTPPI NTPP, TPP

TPP TPP TPPI TPPI EQ, PO, TPP, TPPI

TPP TPP TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

TPP TPP NTPPI NTPPI BRCC \ {DC}
TPP NTPP PO NTPPI EC,NTPP, PO, TPP

TPP NTPP EQ NTPPI EQ,NTPP, TPP

TPP NTPP TPP NTPPI NTPP, TPP

TPP NTPP TPPI NTPPI EC,EQ,NTPP, PO, TPP, TPPI

TPP NTPP NTPPI NTPPI BRCC \ {DC}
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R(O•1 , O•2 ) R(O−1 , O−2 ) R(O•1 , O−2 ) R(O−1 , O•2 ) R(O∗1 , O∗2 )

TPP TPPI TPPI TPPI EQ, PO, TPP, TPPI

TPP TPPI TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

TPP TPPI NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

TPP TPPI NTPPI NTPPI BRCC \ {DC}
TPP NTPPI NTPPI TPPI EC,EQ,NTPPI, PO, TPP, TPPI

TPP NTPPI NTPPI NTPPI BRCC \ {DC}
NTPP DC DC NTPPI DC,EC,NTPP, PO, TPP

NTPP DC EC NTPPI DC,EC,NTPP, PO, TPP

NTPP DC PO NTPPI DC,EC,NTPP, PO, TPP

NTPP DC TPPI NTPPI BRCC \ {NTPPI}
NTPP DC NTPPI NTPPI BRCC

NTPP EC EC NTPPI EC,NTPP, PO, TPP

NTPP EC PO NTPPI EC,NTPP, PO, TPP

NTPP EC TPPI NTPPI EC,EQ,NTPP, PO, TPP, TPPI

NTPP EC NTPPI NTPPI BRCC \ {DC}
NTPP PO PO NTPPI NTPP, PO, TPP

NTPP PO TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

NTPP PO NTPPI NTPPI BRCC \ {DC}
NTPP EQ EQ NTPPI EQ,NTPP, TPP

NTPP EQ TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

NTPP EQ NTPPI NTPPI BRCC \ {DC}
NTPP TPP PO NTPPI NTPP, PO, TPP

NTPP TPP EQ NTPPI EQ,NTPP, TPP

NTPP TPP TPP NTPPI NTPP, TPP

NTPP TPP TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

NTPP TPP NTPPI NTPPI BRCC \ {DC}
NTPP NTPP PO NTPPI EC,NTPP, PO, TPP

NTPP NTPP EQ NTPPI EQ,NTPP, TPP

NTPP NTPP TPP NTPPI NTPP, TPP

NTPP NTPP NTPP NTPPI NTPP

NTPP NTPP TPPI NTPPI EC,EQ,NTPP, PO, TPP, TPPI

NTPP NTPP NTPPI NTPPI BRCC \ {DC}
NTPP TPPI TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

NTPP TPPI NTPPI NTPPI BRCC \ {DC}
NTPP NTPPI NTPPI NTPPI BRCC \ {DC}
TPPI DC TPPI DC DC,EC, PO, TPPI

TPPI DC TPPI EC DC,EC, PO, TPPI

TPPI DC TPPI PO DC,EC, PO, TPPI

TPPI DC TPPI TPPI DC,EC,EQ, PO, TPP, TPPI

TPPI DC TPPI NTPPI BRCC \ {NTPPI}
TPPI DC NTPPI DC DC,EC,NTPPI, PO, TPPI

TPPI DC NTPPI EC DC,EC,NTPPI, PO, TPPI

TPPI DC NTPPI PO DC,EC,NTPPI, PO, TPPI

TPPI DC NTPPI TPPI BRCC \ {NTPP}
TPPI DC NTPPI NTPPI BRCC

TPPI EC TPPI EC EC, PO, TPPI

TPPI EC TPPI PO EC, PO, TPPI

TPPI EC TPPI TPPI EC,EQ, PO, TPP, TPPI

TPPI EC TPPI NTPPI EC,EQ,NTPP, PO, TPP, TPPI

TPPI EC NTPPI EC EC,NTPPI, PO, TPPI

TPPI EC NTPPI PO EC,NTPPI, PO, TPPI

TPPI EC NTPPI TPPI EC,EQ,NTPPI, PO, TPP, TPPI

TPPI EC NTPPI NTPPI BRCC \ {DC}
TPPI PO TPPI PO PO, TPPI

TPPI PO TPPI TPPI EQ, PO, TPP, TPPI

TPPI PO TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

TPPI PO NTPPI PO NTPPI, PO, TPPI

TPPI PO NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

TPPI PO NTPPI NTPPI BRCC \ {DC}
TPPI EQ TPPI EQ EQ, TPPI

TPPI EQ TPPI TPPI EQ, PO, TPP, TPPI

TPPI EQ NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

TPPI EQ NTPPI NTPPI BRCC \ {DC}
TPPI TPP TPPI TPPI EQ, PO, TPP, TPPI

TPPI TPP TPPI NTPPI EQ,NTPP, PO, TPP, TPPI

TPPI TPP NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

TPPI TPP NTPPI NTPPI BRCC \ {DC}
TPPI NTPP TPPI NTPPI EC,EQ,NTPP, PO, TPP, TPPI

TPPI NTPP NTPPI NTPPI BRCC \ {DC}
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R(O•1 , O•2 ) R(O−1 , O−2 ) R(O•1 , O−2 ) R(O−1 , O•2 ) R(O∗1 , O∗2 )

TPPI TPPI TPPI PO PO, TPPI

TPPI TPPI TPPI EQ EQ, TPPI

TPPI TPPI TPPI TPP TPPI

TPPI TPPI TPPI TPPI EQ, PO, TPP, TPPI

TPPI TPPI NTPPI PO NTPPI, PO, TPPI

TPPI TPPI NTPPI EQ EQ,NTPPI, TPPI

TPPI TPPI NTPPI TPP NTPPI, TPPI

TPPI TPPI NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

TPPI TPPI NTPPI NTPPI BRCC \ {DC}
TPPI NTPPI NTPPI PO EC,NTPPI, PO, TPPI

TPPI NTPPI NTPPI EQ EQ,NTPPI, TPPI

TPPI NTPPI NTPPI TPP NTPPI, TPPI

TPPI NTPPI NTPPI TPPI EC,EQ,NTPPI, PO, TPP, TPPI

TPPI NTPPI NTPPI NTPPI BRCC \ {DC}
NTPPI DC NTPPI DC DC,EC,NTPPI, PO, TPPI

NTPPI DC NTPPI EC DC,EC,NTPPI, PO, TPPI

NTPPI DC NTPPI PO DC,EC,NTPPI, PO, TPPI

NTPPI DC NTPPI TPPI BRCC \ {NTPP}
NTPPI DC NTPPI NTPPI BRCC

NTPPI EC NTPPI EC EC,NTPPI, PO, TPPI

NTPPI EC NTPPI PO EC,NTPPI, PO, TPPI

NTPPI EC NTPPI TPPI EC,EQ,NTPPI, PO, TPP, TPPI

NTPPI EC NTPPI NTPPI BRCC \ {DC}
NTPPI PO NTPPI PO NTPPI, PO, TPPI

NTPPI PO NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

NTPPI PO NTPPI NTPPI BRCC \ {DC}
NTPPI EQ NTPPI EQ EQ,NTPPI, TPPI

NTPPI EQ NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

NTPPI EQ NTPPI NTPPI BRCC \ {DC}
NTPPI TPP NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

NTPPI TPP NTPPI NTPPI BRCC \ {DC}
NTPPI NTPP NTPPI NTPPI BRCC \ {DC}
NTPPI TPPI NTPPI PO NTPPI, PO, TPPI

NTPPI TPPI NTPPI EQ EQ,NTPPI, TPPI

NTPPI TPPI NTPPI TPP NTPPI, TPPI

NTPPI TPPI NTPPI TPPI EQ,NTPPI, PO, TPP, TPPI

NTPPI TPPI NTPPI NTPPI BRCC \ {DC}
NTPPI NTPPI NTPPI PO EC,NTPPI, PO, TPPI

NTPPI NTPPI NTPPI EQ EQ,NTPPI, TPPI

NTPPI NTPPI NTPPI TPP NTPPI, TPPI

NTPPI NTPPI NTPPI NTPP NTPPI

NTPPI NTPPI NTPPI TPPI EC,EQ,NTPPI, PO, TPP, TPPI

NTPPI NTPPI NTPPI NTPPI BRCC \ {DC}

5.3 Qualification of Visibility Relations

In this section, the qualification of visibility relations will be analyzed. Given three

spatial-region objects, the qualification of the visibility crisp disjunctive relation be-

tween them is defined, from Definition 12, as:

Definition 16 (Visibility crisp relation between imprecise objects). Let O∗1, O∗2 and O∗3
be three imprecise spatial-region objects, the disjunctive visibility relation that describes

the possible relations holding between any precise instance of O∗1, O∗2, and O∗3, called

visibility crisp relation between imprecise objects, is defined as:

RV is(O
∗
1, O

∗
2, O

∗
3) �

{
R ∈ UV is

∣∣ ∃O◦1, ∃O◦2, ∃O◦3 s.t. R(O◦1, O
◦
2, O

◦
3)
}
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Table 5.2: Qualification of RCC-8 relations – RRCC(O1, O
+
2 ), RRCC(O1, O

∗
2),

RRCC(O
+
1 , O

+
2 ), and RRCC(O

+
1 , O

∗
2).

Pri Ref R(O•1 , O•2 ) R(O•1 , O−2 ) R(O∗1 , O∗2 )

O1 O+
2

DC – DC

O1 O+
2

EC – DC,EC

O1 O+
2

PO – DC,EC, PO,NTPPI, TPPI

O1 O+
2

EQ – EQ,NTPPI, TPPI

O1 O+
2

TPP – BRCC \ {NTPP}
O1 O+

2
NTPP – BRCC

O1 O+
2

TPPI – TPPI,NTPPI

O1 O+
2

NTPPI – NTPPI

O1 O∗2 DC BRCC DC

O1 O∗2 EC BRCC DC,EC

O1 O∗2 PO BRCC DC,EC, PO,NTPPI, TPPI

O1 O∗2 EQ BRCC EQ,NTPPI, TPPI

O1 O∗2 TPP BRCC BRCC \ {NTPP}
O1 O∗2 NTPP BRCC BRCC

O1 O∗2 TPPI BRCC TPPI,NTPPI

O1 O∗2 NTPPI BRCC NTPPI

O+
1 O+

2
DC – DC

O+
1 O+

2
EC – DC,EC

O+
1 O+

2
BRCC \ {DC,EC} – BRCC

O+
1 O∗2 DC DC DC

O+
1 O∗2 EC DC DC,EC

O+
1 O∗2 EC EC EC

O+
1 O∗2 PO DC DC,EC, PO

O+
1 O∗2 PO EC EC, PO

O+
1 O∗2 PO PO PO

O+
1 O∗2 PO TPPI PO, TPPI

O+
1 O∗2 PO NTPPI EC, PO, TPPI,NTPPI

O+
1 O∗2 EQ EQ EQ

O+
1 O∗2 EQ TPPI EQ, TPPI

O+
1 O∗2 EQ NTPPI EQ, TPPI,NTPPI

O+
1 O∗2 TPP DC DC,EC, PO, TPP

O+
1 O∗2 TPP EC EC, PO, TPP

O+
1 O∗2 TPP PO PO, TPP

O+
1 O∗2 TPP EQ EQ, TPP

O+
1 O∗2 TPP TPP TPP

O+
1 O∗2 TPP TPPI EQ, PO, TPP, TPPI

O+
1 O∗2 TPP NTPPI EC, PO,EQ, TPP, TPPI,NTPPI

O+
1 O∗2 NTPP DC DC,EC, PO, TPP,NTPP

O+
1 O∗2 NTPP EC EC, PO, TPP,NTPP

O+
1 O∗2 NTPP PO PO, TPP,NTPP

O+
1 O∗2 NTPP EQ EQ, TPP,NTPP

O+
1 O∗2 NTPP TPP TPP,NTPP

O+
1 O∗2 NTPP NTPP NTPP

O+
1 O∗2 NTPP TPPI EQ, PO, TPP,NTPP, TPPI

O+
1 O∗2 NTPP NTPPI BRCC \ {DC}

O+
1 O∗2 TPPI TPPI TPPI

O+
1 O∗2 TPPI NTPPI TPPI,NTPPI

O+
1 O∗2 NTPPI NTPPI NTPPI
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As discussed for topology, a computational procedure to identify RV is(O
∗
1, O

∗
2, O

∗
3)

is required. However, differently from the previous case, it is not possible to exploit

the properties of the egg-yolk approach to derive the visibility crisp relation, since the

egg-yolk approach is grounded on the topological concept of containment and it does

not yield any information at the visibility level. Rather, in this case the properties of

the quantifications analyzed in Chapter 4 can be used as a basis for the computational

procedure. Indeed, from Eq. 4.33, if for a certain R there exist O◦1, O◦2, and O◦3 such

that R(O◦1, O◦2, O◦3), also O◦1 ⊆ A+
R(O

∗
2, O

∗
3) holds true. Hence, it is possible to test

which maximal quantifications are crossed by the the egg and the yolk of O∗1, and from

that the visibility crisp relation between imprecise objects can be computed.

O4

O5
*

O1O2

O3

(a) RV is(Oi, O4, O
∗
5)

O4

O5
*

O1
+

O2
+

O3
+

(b) RV is(O
+
i , O4, O

∗
5)

Figure 5.2: Qualification of visibility relations between imprecise objects.

For instance, Fig. 5.2 shows two examples for which one the reference objects is

imprecise and the other is precise (i.e., the obstacle object is precise and the viewer is

imprecise), and for which the primary object is either precise or imprecise with empty

yolk. In Fig. 5.2(a) three distinct precise primary objects are depicted. The object

O1 crosses two different maximal quantifications: A+
V (O4, O

∗
5) and A+

PVL
(O4, O

∗
5) (cf.

Fig. 4.13). However, the object is fully contained in the former quantification, while it

just intersects the latter. It is possible to identify a precise instance of O∗5 (namely O◦5 =

O−5 ) such that V (O1, O4, O
◦
5) holds, and a different precise instance (O◦5 = O•5) such that

{V:PVL}(O1, O4, O
◦
5) is satisfied. In contrast, there does not exist a precise instance of

O∗5 such that only PVL(O1, O4, O
◦
5) holds. Hence, RV is(O1, O4, O

∗
5) = {V, V:PVL} that

is equivalent to the δ1 of the quantifications crossed by O1, excluding those relations

for which O1 is not fully contained in the maximal quantification. Furthermore, the

other two objects depicted in Fig. 5.2(a) are fully contained in A+
PVL

(O4, O
∗
5) and the

only accepted relation is PVL. The result can be generalized as in Proposition 5.3.1.

1The function δ(R1, . . . , Rn) has been defined in Section 2.2.3.2 (p. 33). Given a set of single-tile
relations, it yields all the single and multi-tile relations that can be obtained by combining the input
set. Even though the function has been defined for CDC relations, it applies also to visibility ones.
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Proposition 5.3.1. Let O1 be a precise object, and let O∗2, O∗3 be two imprecise spatial-

region objects, the visibility crisp relation RV is(O1, O
∗
2, O

∗
3) satisfies the following con-

straints:

(i) RV is(O1, O
∗
2, O

∗
3) ⊆ δ(T ) with T =

{
R

∣∣ R ∈ RST
V is ∧O1 ∩A+

R(O
∗
2, O

∗
3) �= ∅

}

(ii) ∀R : R ∈ RV is(O1, O
∗
2, O

∗
3) → O1 ⊆

( ⋃
T∈Γ(R)

A+
T (O

∗
2, O

∗
3)
)

In Fig. 5.2(b) the case where the primary objects are imprecise with empty yolk

is shown. Differently from the example above, the primary object is not precise, thus

all its precise instances have to be considered. For instance, the object O+
1 crosses

two distinct maximal quantifications—A+
V (O4, O

∗
5) and A+

PVL
(O4, O

∗
5)—and three pre-

cise instance of O+
1 can be identified such that R(O◦1, O4, O

∗
5) = δ(V, PVL). Hence,

RV is(O
+
1 , O4, O

∗
5) = δ(V, PVL). Similar results can be achieved for the objects O+

2

and O+
3 : RV is(O

+
2 , O4, O

∗
5) = δ(V, PVL), RV is(O

+
3 , O4, O

∗
5) = δ(Oc, PVL). A general-

ization of this result is done in Proposition 5.3.2.

Proposition 5.3.2. Let O+
1 be an imprecise object with empty yolk, and let O∗2, O∗3

be two imprecise spatial-region objects, the visibility crisp relation RV is(O
+
1 , O

∗
2, O

∗
3)

between them is:

RV is(O
+
1 , O

∗
2, O

∗
3) = δ(T ) with T =

{
R

∣∣ R ∈ RST
V is ∧O•1 ∩A+

R(O
∗
2, O

∗
3) �= ∅

}

O4

O5
*

O1
*

O2
*

O3
*

Figure 5.3: RV is(O
∗
i , O4, O

∗
5).

Finally, the computation of the disjunc-

tive crisp relation for the case if the primary

object is imprecise with non-empty yolk can

be done by combining the results of Proposi-

tion 5.3.1 and Proposition 5.3.2. In particu-

lar, the quantifications crossed by the egg of

the primary object define the superset of the

accepted relations, while the quantifications

crossed by the yolk are used to refine the set.

Indeed, any precise instance of the primary

object contains the yolk, and the relation

satisfied by the precise instance has to contain the tiles of the relation satisfied by the

yolk. Of course, any possible relation that the yolk can satisfy has to be considered.

As an example, considering the regions in Fig. 5.3, the visibility crisp relations between

imprecise objects are: RV is(O
∗
1, O4, O

∗
5) = {V, V:PVL}, RV is(O

∗
2, O4, O

∗
5) = {V:PVL},

and RV is(O
∗
3, O4, O

∗
5) = {Oc:PVL}. The result is generalized as in Proposition 5.3.3.
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Proposition 5.3.3. Let O∗1, O∗2, O∗3 be three imprecise spatial-region objects, and let RE

and RY be defined respectively as RE � RV is(O
+
1 , O

∗
2, O

∗
3) and RY � RV is(O

−
1 , O

∗
2, O

∗
3),

the visibility crisp relation RV is(O
∗
1, O

∗
2, O

∗
3) satisfies the following constraints:

(i) RV is(O
∗
1, O

∗
2, O

∗
3) ⊆ RE

(ii) ∀R1 ∈ RV is(O
∗
1, O

∗
2, O

∗
3), ∃R2 ∈ RY : Γ(R1) ⊇ Γ(R2)

Hence, Proposition 5.3.1, Proposition 5.3.2, and Proposition 5.3.3 provide a proce-

dure to compute the visibility crisp relation between imprecise objects by considering

the imprecision of the primary spatial-region object.

5.4 Qualification of Cardinal Direction Relations

This section aims at the definition of algorithms for qualifying cardinal direction re-

lations between imprecise objects. At first, the strategy developed in the previous

section for the visibility calculus is directly adapted to deal with CDC relations; the

same approach can be adopted for qualifying relations defined in other projective cal-

culi. However, the structure of the CDC calculus can be exploited in order to reduce

the complexity of the procedures, as it will be discussed from Section 5.4.1.

Given two imprecise spatial-region objects, the qualification of the CDC crisp rela-

tion between them is defined, from Definition 12, as:

Definition 17 (CDC crisp relation between imprecise objects).

Let O∗1, O∗2 be two imprecise spatial-region objects, the disjunctive cardinal direction

relation that describes the possible relations holding between any precise instance of O∗1
and any precise instance of O∗2, called CDC crisp relation between imprecise objects,

is defined as:

RCDC(O
∗
1, O

∗
2) �

{
R ∈ UCDC

∣∣ ∃O◦1, ∃O◦2 s.t. R(O◦1, O
◦
2)
}

At first, the crisp relation can be computed by checking which quantifications the

primary object lies along, as it as been shown for visibility in the previous section.

As an example, considering the spatial-region objects depicted in Fig. 5.4(a), O1

crosses both A+
NE(O

∗
2) and A+

E(O
∗
2), and δ(NE,E) = {NE, E, NE:E}. However, as

the picture shows there exist two precise instances of O∗2 such that E(O1, O
◦
2) and

NE:E (O1, O
◦
2), but it does not exist a precise instance for whichNE(O1, O

◦
2) is satisfied.

Hence, RCDC(O1, O
∗
2) = {E, NE:E} ⊂ δ(NE,E). Instead, considering the two objects

depicted in Fig. 5.4(b), the object O•1 crosses both A+
NE(O2) and A+

E(O2). As the pic-

tures shows, it is possible to identify three precise instance of O+
1 such thatNE(O◦1, O2),
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O2
*

O1

(a) R(O1, O
∗
2)

O2

O1
+

(b) R(O+
1 , O2)

O2

O1
*

(c) R(O∗
1 , O2)

Figure 5.4: Qualification of CDC relations between imprecise objects.

E(O◦1, O2), and NE:E (O◦1, O2); hence, RCDC(O
+
1 , O2) = {NE, E, NE:E} = δ(NE,E),

that corresponds to the δ of the tiles crossed by O•1. Finally, Fig 5.4(c) shows an

example in which the reference object is precise, while the primary object is impre-

cise with non-empty yolk. In this case, the relation satisfied by the yolk of the pri-

mary object constraints the CDC crisp relation between imprecise objects. It results

RCDC(O
∗
1, O2) = {NE,E:NE}. This results can be generalized for a pair of spatial-

region objects in the same way it has been done for the visibility case in the previous

section, as Proposition 5.4.1, Proposition 5.4.2 and Proposition 5.4.3 show.

Proposition 5.4.1. Let O1 be a precise object and let O∗2 be an imprecise spatial-region

object, the CDC crisp relation RCDC(O1, O
∗
2) satisfies the following constraints:

(i) RCDC(O1, O
∗
2) ⊆ δ(T ) with T =

{
R

∣∣ R ∈ RST
CDC ∧O1 ∩A+

R(O
∗
2) �= ∅

}

(ii) ∀R : R ∈ RCDC(O1, O
∗
2) → O1 ⊆

( ⋃
T∈Γ(R)

A+
T (O

∗
2)
)

Proposition 5.4.2. Let O+
1 be an imprecise object with empty yolk, and let O∗2 be an

imprecise spatial-region object, the CDC crisp relation RCDC(O
+
1 , O

∗
2) is:

RCDC(O
+
1 , O

∗
2) = δ(T ) with T =

{
R

∣∣ R ∈ RST
CDC ∧O•1 ∩A+

R(O
∗
2) �= ∅

}

Proposition 5.4.3. Let O∗1 and O∗2 be two imprecise spatial-region objects, and let

RE and RY be two relations defined respectively as RE � RCDC(O
+
1 , O

∗
2) and RY �
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RCDC(O
−
1 , O

∗
2), the CDC crisp relation RCDC(O

∗
1, O

∗
2) satisfies the following constraints:

(i) RCDC(O
∗
1, O

∗
2) ⊆ RE

(ii) ∀R1 ∈ RCDC(O
∗
1, O

∗
2), ∃R2 ∈ RY : Γ(R1) ⊇ Γ(R2)

Even though this procedure already provides a computational approach to retrieve

the CDC crisp relation between imprecise objects, the geometrical properties of the

CDC frame of reference can be exploited in order to reduce the computational time

complexity of the procedure. Indeed, as previously shown in Section 4.7.1, the com-

putation of the quantification of a cardinal direction relation whose reference object is

precise requires linear time, while if the object is imprecise the time required increases

exponentially with the number of its vertices. Thus, a theory to compute the relation

by calculating only the quantifications over precise objects will be developed. At first,

the cases if one of the objects is either precise or imprecise with empty yolk will be

investigated. The results will then be propagated to the general cases of imprecise

spatial-region objects.

5.4.1 Precise Reference Object

If both objects are precise, the qualitative cardinal direction relation holding between

them (RCDC(O1, O2)) is computed by checking the relations’ constraints defined in

Eq. 2.3-2.11 (Skiadopoulos & Koubarakis, 2004). Alternatively, the function QuantifyC
developed in the previous chapter can be exploited, as Equation 5.1 shows.

RCDC(O1, O2) =
{
T1 : . . . : Tn

∣∣∣ ∀i = 1 . . . n, Ti ∈ RST
CDC ∧ O1∩A+

Ti
(O2) �= ∅

}
(5.1)

If the reference object is precise, and the primary one is imprecise either with or

without empty yolk, the CDC crisp disjunctive relation between them can be computed

respectively as in Theorem 5.4.1 and Theorem 5.4.2.

Theorem 5.4.1. Let O+
1 be an imprecise spatial-region object with empty yolk, and let

O2 be a precise object, then:

RCDC(O
+
1 , O2) = δ

(
Γ
(
RCDC(O

•
1, O2)

))
(5.2)

Proof. RCDC(O
•
1 , O2) = {T1 : . . . : Tn} is a single or multi-tile relation, with n ≥ 1. The precise

object O•
1 can be partitioned in n subregions based on the CDC tiles: O•

1 =
⋃

i=1,...,n oi, ∀i �= j →
oi ∩ oj = ∅ ∧ oi ∩ Tj = ∅, and ∀i ≤ n → oi ∩ Ti = oi. In other words, any oi represents the subregion of

O• that is contained in the tile Ti.

For any relation R ∈ δ(Γ(RCDC(O
•
1 , O2))) ⇒ R ∈ δ(T1, . . . , Tn). Furthermore R = {TR1 : . . . :

TRk} with k ≤ n; ∀j ≤ k → TRj ∈ {T1, . . . , Tn}. For any relation R ∈ δ(T1, . . . , Tn), an object O◦
1
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precise instance of O+
1 that satisfies the relation R(O◦

1 , O2) is build as O◦
1 =

⋃
j=R1,...,Rk oj . Hence

Eq. 5.2 holds true.

Theorem 5.4.2. Let O∗1 be an imprecise spatial-region object, and O2 be a precise

object, then:

RCDC(O
∗
1, O2) =

{
R

∣∣∣ R ∈ RCDC(O
+
1 , O2) ∧ Γ(R) ⊇ Γ

(
RCDC(O

−
1 , O2)

)}
(5.3)

Proof. The first condition of the equation directly derives from Theorem 5.4.1 by considering the

constraint O◦
1 ⊆ O+

1 . Furthermore, the second condition is trivially proven by observing that O◦
1 ⊇

O−
1 , hence being RCDC(O

−
1 , O2) = {T1 : . . . : Tn}, O◦

1 ∩ Ti �= ∅, ∀i = 1, . . . , n. Hence, Γ(R) ⊇
Γ
(
RCDC(O

−
1 , O2)

)
.

Considering again the objects depicted in Fig. 5.4(b), the relation RCDC(O
•
1, O2)

is NE:E, and from Theorem 5.4.1 it results that RCDC(O
+
1 , O2) = {E,NE,NE:E}.

This result is equivalent to the one obtained from the constraints in Proposition 5.4.2.

Similarly, the result of Theorem 5.4.2 for the objects in Fig. 5.4(c) is RCDC(O
∗
1, O2) =

{NE, E:NE} that is equivalent to Proposition 5.4.3 (cf. Section 5.4).

5.4.2 Imprecise Reference Object

In the following, a theory to compute the disjunctive crisp cardinal direction relation in

the case the reference object is imprecise is developed. It exploits the relations between

the eggs and the yolks of the two objects interpreted as precise objects. Some operators

required for the definition of the theory will be introduced beforehand.

5.4.2.1 Side, Angular and Wing Operators

At first, a function Side is defined that, given a single-tile relation RST ∈ RST
CDC , returns

the tiles of the RST -most1 rectangular relation of the multi-tile relation formed by all

the CDC tiles.

Definition 18 (Side operator).

Let RST ∈ {N,E, S,W}, the function Side(RST ) yields:

Side(RST ) � Γ
(
Most(RST , {N:NE:E:SE:S:SW:W:NW:B}))

The values returned by the Side operator Side(RST ) are reported in Tab. 5.3. The

conditions to check whether two precise objects O1 and O2 are in a relation belonging

to δ
(
Side

(
RST

))
can be easily derived from Eq. 2.3-2.11, as Lemma 5.4.3 shows.

1The RST -most concept and the function Most(RST , RREC) have been defined in Sec.2.2.3.2.
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Table 5.3: Side
(
RST

)
operator.

RST N E S W

Side(RST ) N,NE,NW NE,E,SE SE,S,SW SW,W,NW

Lemma 5.4.3. Let O1 and O2 be two precise objects, the following conditions hold:

R(O1, O2) ∈ δ
(
Side(N)

)
iff Y (O1) ≥ Y (O2)

R(O1, O2) ∈ δ
(
Side(E)

)
iff X(O1) ≥ X(O2)

R(O1, O2) ∈ δ
(
Side(S)

)
iff Y (O1) ≤ Y (O2)

R(O1, O2) ∈ δ
(
Side(W )

)
iff X(O1) ≤ X(O2)

Besides, two auxiliary functions (i.e., Angular and Wing) that yield specific tiles

of a given CDC multi-tile relation are defined in Definition 19. As an example, given

RMT = {N:NE:NW:B}, it results that: ∠(RMT ) = {NE,NW} and �(RMT ) = {N}.
Definition 19 (Angular and Wing operators).

Let RMT = {T1 : . . . : Tk} be a CDC multi-tile relation, the operator Angular, denoted

as ∠(RMT ), yields the tiles of RMT that belong to the set {NE,SE, SW, NW}, while
the Wing operator, denoted as �(RMT ), yields the tiles that belong to {N,E, S,W}:

∠(RMT ) �
{
Ti | Ti ∈ Γ(RMT ) ∧ Ti ∈ {NE,SE, SW,NW}}

�(RMT ) �
{
Ti | Ti ∈ Γ(RMT ) ∧ Ti ∈ {N,S,W,N}}

Finally, if the primary object is precise and the reference one is imprecise with

empty yolk, from Definition 17 it holds true that:

RCDC(O1, O
+
2 ) = {R ∈ UCDC

∣∣ ∃O◦2 ⊆ O+
2 s.t. R(O1, O

◦
2)}

In turns, Lemma 5.4.4 directly follows from the above definition.

Lemma 5.4.4. Let O1 be a precise object, and let O+
2 be an imprecise object with empty

yolk, it holds true that:

∀O◦2 ⊆ O+
2 , ∃R ∈ RCDC(O1, O

+
2 ) : R(O1, O

◦
2)

5.4.2.2 A Theory for the Computation of CDC Crisp Relations

Different cases can occur depending on whether the objects are precise, imprecise with

empty yolk and imprecise with non-empty yolk. All the possibilities are analyzed
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separately. Some examples of the different combinations of the objects’ properties are

shown in Fig 5.5.

O

O1 O2

O3

O4
+

+ +

+

(a) RCDC(O
+
i , O)

O

O1 O2

O3

O4
*

* *

*

(b) RCDC(O
∗
i , O)

O

O1

+

O2

O3

O4

O5

(c) RCDC(Oi, O
+)

O

O1

+

O2

O3

O4

O5

+

+ +

+

+

(d) RCDC(O
+
i , O

+)

O

O1

+

O2

O3

O4

* *

*

*

(e) RCDC(O
∗
i , O

+)

O

O1

*

O2

O3

O4 O5

O6

(f) RCDC(Oi, O
∗)

O

O1

*

O2

O3

O4
+

+

++

(g) RCDC(O
+
i , O

∗)

O*

O1

O2

O3
*

*

*

(h) RCDC(O
∗
i , O

∗)

Figure 5.5: Cardinal direction crisp relations between imprecise objects.

The first case analyzed is the one in which the primary object is precise, while

the reference one is imprecise with empty yolk. The procedure to identify the rela-

tion between them relies only on the computation of RCDC(O1, O
•
2). If the relation

holding between O1 and O•2 is a single-tile relation, it is directly possible to compute

the CDC crisp relation RCDC(O1, O
+
2 ) as it is shown in Theorem 5.4.5. Instead, if

RCDC(O1, O
•
2) is a multi-tile CDC relation, the CDC crisp relation between imprecise

objects is computed as Theorem 5.4.6 shows.
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Theorem 5.4.5. Let O1 be a precise object and let O+
2 be an imprecise spatial-region

object, if RST = RCDC(O1, O
•
2) is a single-tile relation then the following conditions

hold:

(i) RCDC(O1, O
+
2 ) = RST iff RST ∈ {NE,SE, SW,NW} (5.4)

(ii) RCDC(O1, O
+
2 ) = δ

(
Side(RST )

)
iff RST ∈ {N,S,E,W} (5.5)

(iii) RCDC(O1, O
+
2 ) ⊆ UCDC iff RST = B (5.6)

Proof. (i) At first, the case RST = NE(O1, O
•
2) is considered. From Eq. 2.5 and Eq. 3.1, ∀O◦

2 ⊆ O+
2

it holds:
⎧⎨
⎩
X(O•

2) ≤ X(O1)

Y (O•
2) ≤ Y (O1)

⇒
⎧⎨
⎩
X(O◦

2) ≤ X(O1)

Y (O◦
2) ≤ Y (O1)

⇒ NE(O1, O
◦
2) ⇒ RCDC(O1, O

+
2 ) = NE

The proofs of the cases RST ∈ {SE, SW,NW} follow the same procedure.

(ii) At first, the case RST = N(O1, O
•
2) is considered. From Eq. 2.4 and Eq. 3.1, it follows that:

⎧⎪⎪⎨
⎪⎪⎩

Y (O•
2) ≤ Y (O1)

X(O•
2) ≤ X(O1)

X(O•
2) ≥ X(O1)

⇒

⎧⎪⎪⎨
⎪⎪⎩

Y (O◦
2) ≤ Y (O1)

X(O◦
2) � X(O1)

X(O◦
2) � X(O1)

∀O◦
2 ⊆ O+

2

From Lemma 5.4.3, ∀O◦
2 ⊆ O+

2 , R(O1, O
◦
2) ∈ δ

(
Side(N)

) ⇒ R(O1, O
+
2 ) = δ

(
Side(N)

)
. The proofs of

the cases RST ∈ {E,S,W} follow the same procedure.

(iii) From Eq. 2.3 and Eq. 3.1, it follows that:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X(O•
2) ≤ X(O1)

X(O•
2) ≥ X(O1)

Y (O•
2) ≤ Y (O1)

Y (O•
2) ≥ Y (O1)

⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X(O◦
2) � X(O1)

X(O◦
2) � X(O1)

Y (O◦
2) � Y (O1)

Y (O◦
2) � Y (O1)

∀O◦
2 ⊆ O+

2

Since no constraint can be identified for the bounding box of O◦
2 , it follows that ∀O◦

2 ⊆ O+
2 →

R(O1, O
◦
2) ∈ UCDC and hence R(O1, O

+
2 ) ⊆ UCDC .

Theorem 5.4.6. Let O1 be a precise object, O+
2 be an imprecise spatial-region object

with empty yolk, if RMT (O1, O
•
2) is a CDC multi-tile relation, the following conditions

hold:

(i) RCDC(O1, O
+
2 ) ⊆

⎧⎨
⎩
δ
(⋃

T∈�(RMT ) Side(T )
)

iff B /∈ Γ(RMT )

UCDC iff B ∈ Γ(RMT )

(ii) RCDC(O1, O
+
2 ) ⊆

{
R | Γ(R) ⊇ ∠

(
RMT

)}

(iii) RCDC(O1, O
+
2 ) ⊆

{
R | ∀T ∈ �(RMT ), ∃T ′ ∈ Side(T ) s.t. T ′ ∈ Γ(R)

}
(5.7)

Proof. (i)-(iii) The proof trivially follows from Theorem 5.4.5.
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(ii) From the definition of multi-tile relation, ∀TANG ∈ ∠(RMT ), ∃o1 ⊆ O1 : TANG(o1, O
•
2). In

turns, from Theorem 5.4.5(i), ∀O◦
2 ⊆ O+

2 ⇒ TANG(o1, O
◦
2). Hence, for any O◦

2 ⊆ O+
2 a subregion

o1 ⊆ O1 that is inside the tile TANG always exists and hence TANG ∈ Γ(R).

As an example, the object O1 in Fig 5.5(c) satisfies the relation N(O1, O
•); hence,

RCDC(O1, O
+) is computed as in Theorem 5.4.5 and it results: RCDC(O1, O

+) =

δ(N,NE,NW ). Moreover, O1 crosses the quantifications A+
N (O+), A+

NE(O
+) and

A+
NW (O+), and it is totally contained into all of them; thus from Proposition 5.4.1

it also results that RCDC(O1, O
+) = δ(N,NE,NW ). Hence, in this case Theo-

rem 5.4.5 is equivalent to Proposition 5.4.1. Furthermore, considering that O3 satisfies

{E:SE}(O3, O
•), from Theorem 5.4.6 it results that: (i) RCDC(O3, O

+) is contained

into δ(NE,E, SE) and (ii) any relation of RCDC(O3, O
+) contains the tile SE. The

latter result also satisfies the condition (iii) of the theorem since SE ∈ Side(E). Hence,

RCDC(O3, O
+) = {SE, E:SE, NE:E:SE}. It is easy to proof that O3 is fully contained

only into the quantifications of those three relations, thus also in this case Proposi-

tion 5.4.1 is equivalent to Theorem 5.4.6.

Similarly, the CDC crisp relation between imprecise objects can be computed from

the relations satisfied by their eggs and their yolks in the cases if both objects are

imprecise with empty yolk (Theorem 5.4.7), the primary object is imprecise and the

reference one has empty yolk (Theorem 5.4.8), the reference object is imprecise and the

primary one is precise (Theorem 5.4.9), the reference is imprecise and the primary has

empty yolk (Theorem 5.4.10), and finally if both objects are imprecise with non-empty

yolk (Theorem 5.4.11). The qualifications of the CDC relations between the imprecise

objects depicted in Fig. 5.5 are summarized in Table 5.4.

Theorem 5.4.7. Let O+
1 , O

+
2 be two imprecise spatial-region objects with empty yolk

that satisfy R � RCDC(O
•
1, O

•
2), the following equation is valid:

RCDC(O
+
1 , O

+
2 ) ⊆

⋃
T∈Γ(R)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ(T ∪ Γ(R)) iff T ∈ {NE,SE, SW,NW}
δ(Side(T ) ∪ Γ(R)) iff T ∈ {N,E, S,W}
UCDC iff T = B

(5.8)

Proof. The theorem is trivially proven combining the results of Theorem 5.4.1, Theorem 5.4.5, and

Theorem 5.4.6.

Theorem 5.4.8. Let O∗1 be an imprecise spatial-region object with non-empty yolk and

O+
2 be an imprecise spatial-region object having empty yolk, the crisp CDC disjunctive
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relation between them is computed as:

(i) RCDC(O
∗
1, O

+
2 ) ⊆ RCDC(O

+
1 , O

+
2 )

(ii) ∀RE ∈ RCDC(O
∗
1, O

+
2 ), ∃RY ∈ RCDC(O

−
1 , O

+
2 ) : Γ(RE) ⊇ Γ(RY )

(5.9)

Proof. This theorem directly follows from Theorem 5.4.2 and Theorem 5.4.7.

Theorem 5.4.9. Let O1 be a precise object, O∗2 be an imprecise spatial-region object,

and being RY � RCDC(O1, O
−
2 ), RE• � RCDC(O1, O

•
2), TEY � Γ(RE•) ∩ Γ(RY ), and

RE+ � RCDC(O1, O
+
2 ), the crisp CDC disjunctive relation between O1 and O∗2 is:

RCDC(O1, O
∗
2) = RY iff Γ(RY ) = Γ(RE•) (5.10)

RCDC(O1, O
∗
2) ⊆ δ

(
Γ(RY ) ∪ Γ(R•

E)
)

iff TEY = ∅ (5.11)

RCDC(O1, O
∗
2) ⊆

{
R | R ∈ RE+ ∧ Γ(R) ⊇ TEY

}
iff TEY �= ∅ (5.12)

Proof. The theorem is trivially proven by combining the results of Equation 5.1, Theorem 5.4.5, and

Theorem 5.4.6.

Theorem 5.4.10. Let O+
1 be an imprecise spatial-region object with empty yolk, let

O∗2 be an imprecise spatial-region object, and being RY � RCDC(O
•
1, O

−
2 ), RE• �

RCDC(O1•, O•2), the crisp CDC disjunctive relation between them is:

RCDC(O
+
1 , O

∗
2) = δ

(
Γ(RY ) ∪ Γ(RE•)

)
(5.13)

Proof. This theorem directly follows from Theorem 5.4.7 and Theorem 5.4.9.

Theorem 5.4.11. Being O∗1 and O∗2 two imprecise spatial-region objects, the crisp

CDC relation between them is computed as:

(i) RCDC(O
∗
1, O

∗
2) ⊆ RCDC(O

+
1 , O

∗
2)

(ii) ∀RE ∈ RCDC(O
∗
1, O

∗
2), ∃RY ∈ RCDC(O

−
1 , O

∗
2) : Γ(RE) ⊇ Γ(RY )

(5.14)

Proof. The theorem is trivially proven combining the results of Theorem 5.4.8 and Theorem 5.4.10.

5.4.3 Discussion

Two distinct approaches to model cardinal direction relations between imprecise objects

have been proposed by Cicerone & Di Felice (2000) and Du & Guo (2010), that consider

regions with a broad boundary (Clementini & Di Felice, 1996). Both the egg-yolk and

the broad boundary are three-valued logics approaches to represent regions imprecisely
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Table 5.4: Qualification of CDC relations between spatial-region objects.

Imprecise
Relation

Example
Primary
Object

Solution Result

RCDC(O
+
i , O) Fig. 5.5(a)

O+
1

O+
2

O+
3

O+
4

Eq. 5.2

Eq. 5.2

Eq. 5.2

Eq. 5.2

N

NE, E, NE:E

E, SE, S, E:SE, SE:S, E:SE:S

W, B, W:B

RCDC(O
∗
i , O) Fig. 5.5(b)

O∗
1

O∗
2

O∗
3

O∗
4

Eq. 5.3

Eq. 5.3

Eq. 5.3

Eq. 5.3

N

NE:E

SE:S, E:SE:S

W, W:B

RCDC(Oi, O
+) Fig. 5.5(c)

O1

O2

O3

O4

O5

Eq. 5.5

Eq. 5.4

Eq. 5.7

Eq. 5.7

Eq. 5.7

N, NE, NW, N:NE, N:NW, N:NE:NW

NE

SE, E:SE, NE:E:SE

UCDC \ δ(N,NE,E, SE, S,B)

SE:S:SW

RCDC(O
+
i , O

+) Fig. 5.5(d)

O+
1

O+
2

O+
3

O+
4

O+
5

Eq. 5.8

Eq. 5.8

Eq. 5.8

Eq. 5.8

Eq. 5.8

N, NE, NW, N:NE, N:NW, N:NE:NW

NE

NE, E, SE, NE:E, E:SE, NE:E:SE

UCDC

SE, S, SW, SE:S, S:SW, SE:S:SW

RCDC(O
∗
i , O

+) Fig. 5.5(e)

O∗
1

O∗
2

O∗
3

O∗
4

Eq. 5.9

Eq. 5.9

Eq. 5.9

Eq. 5.9

N, NE, NW, N:NE, N:NW, N:NE:NW

NE

SE, E:SE, NE:E:SE

SW, S:SW, SE:S:SW

RCDC(Oi, O
∗) Fig. 5.5(f)

O1

O2

O3

O4

O5

O6

Eq. 5.10

Eq. 5.10

Eq. 5.12

Eq. 5.12

Eq. 5.10

Eq. 5.12

N

NE

E, E:SE

SW:W, S:SW:W

SE:S

W, NW, W:NW

RCDC(O
+
i , O

∗) Fig. 5.5(g)

O+
1

O+
2

O+
3

O+
4

Eq. 5.13

Eq. 5.13

Eq. 5.13

Eq. 5.13

N

NE

E, SE, E:SE

SE, S, SE:S

RCDC(O
∗
i , O

∗) Fig. 5.5(h)

O∗
1

O∗
2

O∗
3

Eq. 5.14

Eq. 5.14

Eq. 5.14

NE, E, NE:E

E, E:SE

SE, SE:S
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described (Section 2.3.1); thus, it is possible to compare the results of Cicerone &

Di Felice (2000) and Du & Guo (2010) with the method discussed above.

Cicerone & Di Felice (2000) propose an extension of the direction relation matrix (cf.

Section 2.2.3.2). The plane is split into 25 tiles that result from the partitioning around

the inner boundary (corresponding to the yolk) and the one around the outer boundary

(corresponding to the egg). A matrix 5 × 5 is used to represent cardinal direction

relations between regions with a broad boundary. The elements of the matrix can

assume four different values, based on whether the inner region or the broad boundary

fall into a tile. This approach is suited to represent 254 potential fuzzy relations between

imprecise objects and does not yield any information about the crisp relations between

the precise instances of the imprecise objects.

Differently, Du & Guo (2010) model cardinal direction relations between uncer-

tain objects with broad boundary as the combination of four crisp direction relations,

namely R1 is the relation between the inner regions of the two objects, R2 between

the inner region of the reference object and the outer region of the primary one,

R3 is the relation holding between the outer region of the reference with the inner

region of the primary, and finally R4 is the relation holding between the outer re-

gions. The cardinal direction relation between imprecise objects is then represented as

R = 〈R1, R2, R3, R4〉. For instance, the relation between O∗1 and O∗ in Fig. 5.5(h) is

R = 〈{NE}, {NE}, {E}, {NE:E}〉. In the case if one object is precise and the other

is an object with broad a boundary, only two relations are sufficient to describe the

cardinal direction relation. Furthermore, Du & Guo (2010) define the semantics of the

four different relations in describing the relation. In particular, R1 defines the crisp

part of the relation, while R2, R3 and R4 define its uncertain part. The crisp part of

the relation represents those tiles in which the primary object has always to fall, while

the uncertain part is the list of tiles in which it can fall. Therefore, the concept of

possibly north, possibly north-east, etc. is defined to describe the uncertain part of the

relation. Even though the approach proposed by Du & Guo (2010) is similar to the

method described in this text, it does not always yield a correct result. For instance,

considering again the objects O∗1 and O∗ in Fig. 5.5(h), the crisp part of the relation

is {NE}, while its uncertain part results to be {E}. This means that the relation is

north-east and possibly east ; this result is not correct since the relation can be also east

as shown in Table 5.4, and in this case the primary object does not cross the NE tile.

Moreover, the approach of Du & Guo (2010) does not allow for objects having empty

inner region, and it is not hence suitable to model the relations between the objects in

Fig. 5.5(a)-(c)-(d)-(e)-(g).
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O
+

O1
+

O2
+

Figure 5.6: Objects configuration.

However, the proposed theory does not al-

ways yield disjunctive relations as precise as the

propositions defined at the beginning of this sec-

tion do (p. 115). In Fig. 5.6 two objects O+
1

and O+
2 are depicted both crossing A+

B(O
◦) and

A+
W (O◦). Hence, from Theorem 5.4.7 it re-

sults that RCDC(O
+
1 , O

+) = UCDC and also

RCDC(O
+
2 , O

+) = UCDC . In the former case it

is possible, for any relation in UCDC , to identify

a precise instance of O+
1 and a precise instance of

O+ that satisfy the relation. The same does not

always hold true in the latter case: it is not possible, for instance, to find a precise

instance O◦2 of O+
2 such that there exists O◦ precise instance of O+ for which the re-

lation NE(O◦2, O◦) holds. Instead, Proposition 5.4.2 yields a disjunctive crisp relation

between O+
2 and O+ that does not admit NE. Anyway, the propositions discussed at the

beginning of this section require the computation of a high number of quantifications,

while the theorems only require the computation of a smaller set of them1.

5.5 Computational Complexity of Qualification

The theoretical computational time complexity of the algorithms developed above for

the qualification of crisp disjunctive relations between imprecise objects will be analyzed

in this section.

5.5.1 Topology Qualification

The qualification of the crisp topological relation between imprecise objects is performed

as shown in Section 5.2 by computing the topological base relations satisfied by the

eggs and the yolks of the primary and reference spatial-region objects. Let n1 and

n2 be the number of vertices that define respectively O+
1 and O−1 , let m1 and m2

be the number of vertices of O+
2 , O−2 , and let Ni,j � ni + mj with i, j ∈ {1, 2}.

The four topological relations between O∗1 and O∗2 are computed, in the worst case,

in O
(∑

i,j∈{1,2}Ni,j logNi,j

)
time (Schneider, 2002). The crisp topological relation is

then retrieved by a lookup operation on either Table 5.2 or Table 5.1, and requires a

constant time. Thus, the overall computational time complexity for the computation

of a topological crisp relation between imprecise objects is O
(∑

i,j∈{1,2}Ni,j logNi,j

)
in

the worst case.

1The empirical evaluation of the computation time as well as of the number of cases in which the
theorems yield relations not as precise as the propositions do will be shown in Section 7.2.2.2.
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5.5.2 Visibility Qualification

Proposition 5.3.1, Proposition 5.3.2 and Proposition 5.3.3 show how the visibility crisp

relation between imprecise objects can be computed—respectively in the cases if the

primary object is either precise or imprecise with empty yolk, or imprecise with non-

empty yolk—by identifying which quantification of the visibility relations are crossed

by the primary object.

Precise Primary Object

Let O1 be a precise object defined by p vertices, let O∗2 be a spatial-region object whose

egg is defined by n1 vertices and whose yolk by n2 vertices (n = n1 + n2), and let O∗3
be a spatial-region objects for which m1,m2 are the vertices that define respectively its

egg and its yolk (m = m1+m2). The visibility crisp relation between the three objects

is computed by Proposition 5.3.1. The computation requires the following steps:

1. The computation, for any visibility base single-tile relation R ∈ RST
V is, of the quan-

tifications A+
R(O

∗
2, O

∗
3). As shown in Section 4.7.2, this operation runs in O(n2+m)

time in the worst case.

2. The verification, for any R ∈ UV is, of whether O1 crosses A+
R(O

∗
2, O

∗
3). Since any

A+
R is defined by O(n) vertices in the worst case, this operation requires O(pn) time

in the worst case.

Overall, the proposed procedure to qualify RV is(O1, O
∗
2, O

∗
3) runs in O(n2 + m + pn)

time in the worst case.

Imprecise Primary Object with Empty Yolk

Let p be the number of vertices that define an imprecise object with empty yolk O+
1 , let

O∗2 be a spatial-region object whose egg is defined by n1 vertices and whose yolk by n2

vertices (n = n1 + n2), and let O∗3 be a spatial-region objects for which m1,m2 are the

vertices that define respectively its egg and its yolk (m = m1+m2). The visibility crisp

relation is computed, in this case, through the equations shown in Proposition 5.3.2.

The computation requires the same steps as in the precise case, thus RV is(O
+
1 , O

∗
2, O

∗
3)

runs in O(n2 +m+ pn) time in the worst case.

Imprecise Primary Object

Let O∗1 be a spatial-region object whose egg is defined by p1 vertices and whose yolk

has p2 vertices (p = p1 + p2), let O∗2 be a spatial-region object whose egg is defined

by n1 vertices and whose yolk by n2 vertices (n = n1 + n2), and let O∗3 be a spatial-

region object for which m1,m2 are the vertices that define respectively its egg and its

yolk (m = m1 + m2). From Proposition 5.3.3, the qualification of the crisp visibility

disjunctive relation between the three objects requires:



5.5 Computational Complexity of Qualification 127

1. The identification of the relation RE = RV is(O
+
1 , O

∗
2, O

∗
3). As shown above, this

runs in O(n2 +m+ p1n).

2. The computation of RY = RV is(O
−
1 , O

∗
2, O

∗
3). This step requires O(n2 + m + p2n)

time in the worst case.

3. The combination of the achieved results. This operation requires a constant time.

Hence, the overall computational time complexity for computing RV is(O
∗
1, O

∗
2, O

∗
3)

with the discussed algorithms is, in the worst case, in O(n2 +m+ pn).

5.5.3 Cardinal Direction Qualification

The worst case in the qualification of CDC crisp relation between imprecise objects

is when both the objects are imprecise with non-empty yolk. Hence, two spatial-

region objects O∗1, O∗2 are considered: O+
1 is defined by n1 vertices, O−1 by n2 vertices

(n = n1 + n2), and m1,m2 are the number of vertices that define respectively O+
2 and

O−2 (m = m1 +m2).

From the first condition of Theorem 5.14, the relation

RCDC(O
+
1 , O

∗
2) has to be computed; in turns, from Theorem 5.4.10, this requires the

computation of the relations between precise objectsRCDC(O
•
1, O

−
2 ) andRCDC(O

•
1, O

•
2).

The second condition of Theorem 5.14, instead, requires the qualificationRCDC(O
−
1 , O

∗
2),

that from Theorem 5.4.9 can be computed combining the relations between precise ob-

jects RCDC(O
−
1 , O

−
2 ) and RCDC(O

−
1 , O

•
2). Summarizing, to compute RCDC(O

∗
1, O

∗
2),

four relations between precise objects has to be computed (Eq. 5.1), and they are op-

portunely combined in order to derive the crisp relation between imprecise objects.

Hence, the steps to perform are:

1. Computation of the quantifications A+
R(O

−
2 ). As shown in Section 4.7, this operation

runs in O(n2) time in the worst case.

2. Computation of the quantifications A+
R(O

•
2). This operation runs in O(n1) time in

the worst case (cf. Section 4.7).

3. Intersection of O−1 with the results of Step 1. Since the quantification of single-

tile relation over a precise object has, in the worst case, four vertices, this step is

performed in O(m2) time in the worst case.

4. Intersection of O−1 with the results of Step 2. As in Step 3, this operation requires

O(m2) time in the worst case.

5. Intersection of O•1 with the results of Step 1. This operation runs in O(m1).

6. Intersection of O•1 with the results of Step 2. This operation requires O(m1) time in

the worst case.

7. Combination of the results obtained in Steps 3-4-5-6. This operation runs in constant

time.
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Overall, the qualification of a CDC crisp relation between imprecise objects requires

O(n+m) time in the worst case.

5.6 Summary

In this chapter, the qualification of crisp relations between imprecise objects has been

presented for topological, visibility and cardinal direction relations. Different ap-

proaches for the qualification have been adopted for the different calculi, based on

their properties.

At first, the computation of the topological crisp relation has been grounded on the

topological properties of the egg-yolk approach. Indeed, it is known that the yolk is

always contained in the egg. Hence, to check whether a relation is admissible for two

imprecise objects, a constraint network can be defined that describes the relations sat-

isfied by the eggs and the yolks of the two objects. Reasoning algorithms are performed

to check the consistency of the network and thus the admissibility of the relation. This

approach is compatible with the approach of Cohn & Gotts (1996), moreover it allows

for objects with empty yolk.

Visibility relations are qualified by checking which quantifications (cf. Chapter 4)

are crossed by the primary object. This approach gives a generic rule to quantify

relation based on the quantification outcomes, and it can be straightforwardly applied

also to other calculi. Furthermore, at the best of the author’s knowledge it is the first

qualification approach for relations between imprecise objects for a ternary calculus.

Finally, even though the cardinal direction qualification can adopt the same ap-

proach defined for the visibility case, a theory has been defined to compute the crisp

relation based only on the relations between the eggs and the yolks interpreted as pre-

cise objects. This allows for a reduction of the computational time complexity of the

algorithm in the CDC case.



Chapter 6

A Hybrid Spatial Reasoning

System

A system for the integration of spatial information grounded on translation opera-

tions has been analyzed in the previous chapters. This chapter enforces the integration

process by adding reasoning capabilities to the system. An extended geographic infor-

mation integration layer is presented in Section 6.11. Its components are detailed in

Sections 6.2-6.6. Finally, a further extension to the system that takes thematic spatial

information into consideration is introduced in Section 6.7.

6.1 A Hybrid Qualitative-Quantitative Reasoning System

In this section, a hybrid qualitative-quantitative reasoning system is introduced which

exploits the individual strengths of computational geometry based inference, in par-

ticular polygon intersection and union, and relation algebraic qualitative reasoning

methods. The goal is to be able to perform spatial inference in mixed settings. This

means, input entities are partially described geometrically in the form of imprecise ob-

jects, while others are described using qualitative relations from different qualitative

spatial calculi, either with respect to the geometrically defined objects or with respect

to other qualitatively described objects. The central reasoning task is to determine ap-

proximations for the geometries of input objects for which no exact geometry is given

as well as to derive more precise qualitative information.

1Part of the work described in this chapter has been presented in De Felice et al. (2011).
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6.1.1 Architecture

The geographic information integration layer introduced in Section 3.2.3 —whose pre-

liminary design has been shown in Section 4.1—is extended here by the inclusion of

reasoning capabilities into the system. The hybrid reasoning approach that combines

qualitative and geometric reasoning components with qualification and quantification

components is shown in Fig. 6.1.

Storage Layer

Spatial Data Input

(qualitative and quantitative)

Qualitative 

Information

Quantitative

Information

Geographic Information

Integration Layer
Output

via

Querying

Output

via

Visualization

Qualification Quantification

Qualitative

Reasoning

Geometric

Reasoning

External

QS Reasoner

Figure 6.1: Architecture of the hybrid qualitative-quantitative reasoning system1.

The quantification and qualification component perform the mediation between the

quantitative and qualitative representations used in the two reasoning components in

both directions: The quantification procedure computes the quantitative interpretation

of a qualitative relation taking into account the geometries of the reference spatial-

region objects as far as they are known (cf. Chapter 4). It is called from within the

geometric reasoning and qualification components. The qualification procedure derives

qualitative spatial relations from the geometries of the involved spatial-region objects

(cf. Chapter 5). It is called to translate the output of the geometric reasoning and its

1The red lines in the figure represent the flow of qualitative information: solid lines show the stream

of information among the different layers of the system, while dotted ones depict how the information

flows within any single layer. In the same way, the cyan lines represent the stream of quantitative

information. The dashed black lines within the integration show functional dependencies among the

system’s components. Finally, solid black lines are used to represent the reasoning system’s cycle. The

roles of the different layers have been described in Fig. 3.5.
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output then forms the input for the qualitative reasoner. By alternately executing the

geometric and qualitative reasoning components, the overall reasoner is able to deduce

new spatial information about the input objects both on the qualitative side (new or

more specific qualitative relations) as well as on the quantitative side (more precise

minimal and maximal approximations). The overall reasoning cycle terminates when a

fixpoint has been reached where neither more specific geometries nor more specific qual-

itative relations can be deduced. The qualitative reasoning and qualification modules

can also resort to functionalities provided by existing QSR software, such as SparQ

(Wallgrün et al., 2007) and GQR (Gantner et al., 2008) to perform fast constraint

propagation.

In the remainder of this chapter, the combined qualitative-quantitative reasoning

cycle is shown in detail using RCC-8, CDC, and visibility (cf. Section 2.2.3) as ex-

emplary calculi. Section 6.2 shows how qualitative information is represented in a

structured way by extending the concept of constraint network (cf. Section 2.2.2). The

geometric reasoning component is presented in Section 6.3. It approximates the ex-

tension of every unknown entity by combining the quantifications of all relations it is

involved in. An extension of the qualification procedure (see Chapter 5) is discussed in

Section 6.4. It qualifies the relations holding between any permutation of the objects

in the system. Section 6.5 shows the qualitative spatial reasoning component. Finally,

the hybrid reasoning algorithm is described in Section 6.6.

6.2 Multi-calculus Constraint Network

A configuration of objects can be qualitatively represented by a constraint network, as

shown in Section 2.2.2. However, a constraint network is defined for a single calculus

C, while in this work more than one calculus is considered at the same time. Hence,

a multi-calculus constraint network is defined. It is a constraint network whose edges

are labeled by tuples of relations from different calculi.

Definition 20 (Multi-calculus constraint network MN ).

Let C = {C1, . . . , Ca} be a set of qualitative spatial calculi, and RBCi
be the set of general

relations defined in the calculus Ci ∈ C. A multi-calculus constraint network MN is

defined as a triple (V,D,MR) with variables V = {O∗1, . . . , O∗n} over a domain D, whose

valuation is constrained by the multi-dimensional constraint matrix MR. Every element

of MR—denoted as MRO∗
i ,...,O

∗
i+m

= 〈RC1 , . . . , RCa〉, with RCi ∈ RBCi
—describes the

m-ary constraint between O∗i , . . . , O
∗
i+m.

As an example, the configuration of objects drawn in Fig 6.2(a) is represented

by the multi-calculus constraint network described in Fig. 6.2(b), which considers the
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Figure 6.2: Multi-calculus constraint network.

set of calculi C composed by RCC-8, CDC, and visibility calculi. The multi-calculus

constraint network is represented as a hyper-graph, since its edges can connect more

than two nodes. Indeed, the MN in Fig. 6.2(b) has some edges with one input node

and one output node—that represent the binary constraints given by topological and

directional relations—and hyper-edges having two input nodes and one output node—

that describe the ternary visibility constraints. For the sake of simplicity, the MN in

the example only contains one ternary hyper-edge for every pair of input nodes. In

fact, the real network has two ternary hyper-edges for every pair of reference objects

O∗i and O∗j : one for the constraint in which the reference objects are the ordered pair

〈O∗i , O∗j 〉, and one for the constraint having 〈O∗j , O∗i 〉 as reference.
Let MN be a multi-calculus constraint network that describes a configuration of

objects through a set of calculi C. MNC denotes the constraint network that describes

the configuration with respect to the calculus C only. For instance, Fig 6.3 shows

the constraint networks for the calculi RCC, CDC, and visibility extracted from the

multi-calculus network in Fig. 6.2(b).
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(b) MNCDC
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O3

V

V

V

(c) MN V is

Figure 6.3: MNC derived from the multi-calculus constraint network in Fig. 6.2.

The function refineRelation(MNC ,(O
∗
1, . . . , O

∗
n),R) is defined that refines the rela-

tion between the objects O∗1, ..., O∗n in the network MNC by intersecting the previous

relation for calculus C with the relation R. It yields a boolean value that is set to True
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if the constraint is refined. Furthermore, the function QualitativeRelations(O∗i , MN )

is defined that gets as input a spatial-region object O∗i and a multi-calculus constraint

network MN and returns all relations in MN whose primary object is O∗i . The relations
are returned as a list of tuples defined as 〈R,C,O∗2, . . . , O∗n〉, where R is the relation in

the calculus C satisfied between O∗i and the reference objects O∗2, . . . , O∗n.

6.3 The Geometric Reasoning Component

The geometric reasoning component computes quantitative approximations for all im-

precise spatial-region objects that correspond to the unknown entities of the system.

It uses intersection and union procedures for drawing geometric inferences by combin-

ing information stemming from different relations. This results in refined quantitative

approximations.

Algorithm 7 GeometricReasoner(G, MN )

hasChanged ← True
while hasChanged do

hasChanged ← False
for O∗

i ∈ G do
PR∗

i ← O∗
i

QR← QualitativeRelations(O∗
i , MN )

for 〈R,C,O∗
2 , ..., O

∗
n〉 ∈ QR do

O∗ ← Quantify(R,C,O∗
2 , ..., O

∗
n)

O+
i ← O+

i ∩O+; O−
i ← O−

i ∪O−

end for
if PR∗

i �= O∗
i then hasChanged ← True end if

end for
end while
return G

The pseudocode for the geometric reasoning procedure is given in Algorithm 7. It

takes the set G containing the current quantitative approximations for all involved ob-

jects in egg-yolk format and the multi-calculus constraint network MN. It continuously

loops through all spatial-region objects O∗i ∈ G, considers all qualitative relations this

object is involved in as provided by the function QualitativeRelations, and tries to im-

prove the quantitative description O∗i based on these relations. To achieve this, the

Quantify(R,C,O∗2, ..., O∗n) procedure previously defined in Algorithm 3 (see page 76) is

called. The returned imprecise object O∗ is used to update the object O∗i ∈ G. For the

maximal extension O+
i this has to be done by taking the intersection of the previous

value of O+
i and O+. Conversely, for the minimal extension O−i the combination has

to be done with the union operator.
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When the geometric approximation of an object O∗i is refined, this can mean that

now approximations can be refined further for objects O∗j that stand in certain relations

with O∗i . Therefore, the algorithm runs the loop through all objects until no refined

quantitative description can be computed. To keep track of this, the boolean flag

hasChanged is used and the previous quantitative description O∗i is stored in PR∗i and

later compared to the newly computed approximation. The object set G containing

the refined geometries is returned by the reasoning algorithm.

6.3.1 Computational Complexity of Geometric Reasoning

Let n be the number of elements in the set G, the constraint network MN has n nodes

and O(nm) arcs, where m corresponds to the maximal arity of the calculi represented

in the multi-calculus constraint network. It is assumed that q is the time required to

execute the function Quantify1.

For any spatial-region object O∗i inG, there exist O(nm−1) relations inMN for which

O∗i acts as primary object. Thus, the quantification of a single object costs O(nm−1q)
time in the worst case. The time required for the quantification of all objects in G

is O(nmq). Quantification of all spatial-region objects is repeated until the geometric

descriptions of the objects in G do not change anymore. The worst case occurs when

only one object is refined during any iteration, hence the external cycle is repeated

at most n times. Overall, the GeometricReasoner algorithm (Algorithm 7) runs in

O(nm+1q) time in the worst case. For the calculi considered in this work (binary and

ternary) the computational complexity becomes O(n4q) time in the worst case.

6.4 The Qualification Component

Qualification is the procedure that determines the qualitative spatial crisp relations

holding between the spatial-region objects O∗i ∈ G for a set of calculi C. The pseudocode

of the qualifier procedure is given in Algorithm 8. Besides G, the function takes as input

the multi-calculus constraint network MN which it modifies by refining the constraints

based on the newly computed relations. The resulting network is then returned as the

result of the qualification. The algorithm computes the relations holding between any

permutation of spatial-region objects in G; all m-ary permutations are calculated by

an auxiliary function Permutations(G,m). The function refineRelation is called with

the relation returned by the function QualifyC described in Chapter 5.

1As shown in Section 4.7, the computational time complexity of Quantify strictly depends on the
calculi that are considered.
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Algorithm 8 Qualify(G, MN )

for C ∈ C do
Perm ← Permutations(G, arity(C))
for (O∗

1 , . . . , O
∗
n) ∈ Perm do

refineRelation(MNC ,(O
∗
1 , . . . , O

∗
n),QualifyC(O

∗
1 , . . . , O

∗
n))

end for
end for
return MN

6.4.1 Computational Complexity of the Qualification Component

Let n be the number of elements in G. The constraint network MN has n nodes and

O(nm) arcs, where m corresponds to the maximal arity of the relations represented

in the multi-calculus constraint network. It is further assumed that q is the time

required to run the function QuantifyC . The number of m-permutations of the set G

is
(
n
m

)
< nm. Furthermore, the refineRelation function runs in constant time1. Hence,

it directly follows that Algorithm 8 runs in O(|C|qnm) time in the worst case. For the

calculi considered in this work, the computational complexity becomes O(|C|qn3) time

in the worst case.

6.5 The Qualitative Reasoning Component

The qualitative reasoning component of the hybrid reasoning system is founded on

the algebraic closure algorithm (Mackworth, 1977; Montanari, 1974) that applies com-

position and permutation operations defined in a calculus until a fixpoint has been

reached. The function AlgebraicClosure(C,G,MNC) in the QualitativeReasoner algo-

rithm (Algorithm 9) performs algebraic closure for a calculus C on a constraint network

MNC . The AlgebraicClosure procedure picks the right relations from the tuples for

the given calculus C and modifies them. The main algorithm loops through all calculi

C in a given set of calculi C. It returns the potentially modified network MN. Let

G = {O∗1, . . . , O∗n}, the indices i, j, k, l ≤ n will be used in the remainder of this section

to identify elements in G.

Algorithm 9 QualitativeReasoner(G, MN )

for C ∈ C do
MNC ← AlgebraicClosure(C,G,MNC)

end for
return MN

1The multi-dimensional constraint matrix MR of the multi-calculus constraint network can be
accessed by index in constant time.
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The algebraic closure procedure—first introduced by Montanari (1974) and then

improved by Mackworth (1977)—for a binary qualitative calculus is shown in Algo-

rithm 10. A queue s is initialized with all pairs of objects involved in the qualitative

relations defined in the constraint network N . Any constraint in the queue is propa-

gated through permutation and (weak) composition operations. At first, the inverse

operation—R∼O∗
i O

∗
j
⇒ RO∗

jO
∗
i
—is checked; if the result refines the edge in the network

corresponding to RO∗
jO

∗
i
, the edge is updated with the refined relation and (O∗j , O

∗
i ) is

added to the queue of pairs to analyze. Afterwards, for every O∗k ∈ G, the composi-

tions RO∗
i O

∗
j
�RO∗

jO
∗
k
and RO∗

kO
∗
i
�RO∗

i O
∗
j
are computed and their results are eventually

propagated. The propagation process is repeated until it does not introduce any mod-

ification in the constraint network. Being n the number of nodes in the network, the

AlgebraicClosure procedure performs in O(n3) time in the worst case.

Algorithm 10 AlgebraicClosure(C,G,N) – Binary Constraints

Procedure AlgebraicClosure(C,G,N)
s ← {(O∗

i , O
∗
j ) | RO∗i O

∗
j
∈ N}

while s �= ∅ do
s′ ← {}
for (O∗

i , O
∗
j ) ∈ s do

s′, N ← CheckPermutation((O∗
i , O

∗
j ), s

′, N)
for O∗

k ∈ G do s′, N ← CheckComposition((O∗
i , O

∗
j ), O

∗
k, s

′, N) end for
end for
s ← s′

end while
return N

Procedure CheckPermutation((O∗
i , O

∗
j ), s

′, N)
hasChanged ← refineRelation(N, (O∗

j , O
∗
i ), R

∼
O∗i O

∗
j
)

if hasChanged then s′ ← s′ ∪ (O∗
j , O

∗
i ) end if

return s′, N

Procedure CheckComposition((O∗
i , O

∗
j ), O

∗
k, s

′, N)
if O∗

k �= O∗
i ∧O∗

k �= O∗
j then

hasChanged ← refineRelation(N, (O∗
i , O

∗
k), RO∗i O

∗
j
�RO∗jO

∗
k
)

if hasChanged then s′ ← s′ ∪ (O∗
i , O

∗
k) end if

hasChanged ← refineRelation(N, (O∗
k, O

∗
j ), RO∗kO

∗
i
�RO∗i O

∗
j
)

if hasChanged then s′ ← s′ ∪ (O∗
k, O

∗
j ) end if

end if
return s′, N

An example of the algebraic closure procedure is given in Fig. 6.4, where RCC-

8 relations are used as constraints into the constraint network N1. The queue s

1The inverse and composition operations of RCC-8 relations are depicted in the reasoning tables
shown in Chapter 2 (respectively Table 2.1 p. 30 and Table 2.2 p. 30).
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Figure 6.4: Algebraic closure algorithm.

gets all pairs of objects for which there exists a constraint in the network (s ←
{(O1, O2), (O2, O3), . . .}) and any constraint is propagated at a time. At first, the

relation DC(O1, O2) is analyzed: The permutation operation yields DC(O2, O1); the

previous constraint between O2 and O1 is equal to BRCC
1, hence the edge is refined

by the algorithm and added to s′. Afterwards, the algorithm performs a cycle over all

nodes in the network, and the respective constraints are composed. For instance, when

Ok = O3, the constraint DC(O1, O2) is composed with TPPI(O2, O3); the resulting

relation is used to refine the arc between O1 and O3, that becomes DC(O1, O3) and the

constraint is added to s′. Also {DC,EC, PO}(O3, O1) is composed with DC(O1, O2);

however, the resulting relation—BRCC—does not refine the arc between O3 and O2.

Next, the object Ok = O4 is considered. The composition of the constraintsDC(O1, O2)

and PO(O2, O4) yields a refinement of the edge between O1 and O4 (that is added to

s′), while the other composition operation does not produce any refinement for the

constraint network. The reduced network resulting after the propagation of the con-

straint RO1O2 is shown in Fig. 6.4(b). The next constraint in the network (RO1O3) is

then taken into consideration; it yields the network drawn in Fig. 6.4(c) through the

same process. Once all constraints have been propagated, s is replaced with s′ and the

propagation process starts again. This is repeated until no constraint in the network

changes anymore.

The algebraic closure procedure has been adapted to deal with ternary calculi by

Dylla & Moratz (2004); the pseudocode is shown in Algorithm 11. The algorithm

performs all possible permutation operations of ternary relations2. The CheckPermu-

1As shown in Section 2.2.2, a missing arc in the constraint network stands for the universal relation
UC .

2The permutation operations of a ternary relation have been defined in Section 2.2.1.2. To summa-
rize, they are: ID(RO∗i O∗j O∗

k
) → RO∗i O∗j O∗

k
, INV (RO∗i O∗j O∗

k
) → RO∗j O∗i O∗

k
, SC(RO∗i O∗j O∗

k
) → RO∗i O∗

k
O∗j ,

SCI(RO∗i O∗j O
∗
k
) → RO∗

k
O∗i O∗j , HM(RO∗j O∗

k
O∗i ) → RO∗i O∗j O∗

k
, and HMI(RO∗

k
O∗j O∗i ) → RO∗i O∗j O∗

k
.
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tation procedure in the algorithm uses the operator Rp
O∗

i O
∗
jO

∗
k
to indicate the result

given by the permutation operation p. For instance, RINV
O∗

i O
∗
jO

∗
k
yields RO∗

jO
∗
i O

∗
k
; instead,

INV (O∗iO
∗
jO

∗
k) returns the list (O∗j , O

∗
i , O

∗
k). The composition operation used in the

described algorithm is defined as RO1O2O4 = RO1O2O3 � RO2O3O4 . If n is the number

of nodes in the network, the ternary algebraic closure procedure runs in O(n4) time in

the worst case.

However, the described procedure is not suitable for calculi which define a different

composition operation and for weak calculi in which several composition operations

need to be defined (i.e., the visibility calculus1).

Algorithm 11 AlgebraicClosure(C,G,N) – Ternary Constraints

Procedure AlgebraicClosure(C,G,N)
s ← {(O∗

i , O
∗
j , O

∗
k) | RO∗i O

∗
jO
∗
k
∈ N}

while s �= ∅ do
s′ ← {}
for (O∗

i , O
∗
j , O

∗
k) ∈ s do

s′, N ← CheckPermutation((O∗
i , O

∗
j , O

∗
k), s

′, N)
for O∗

l ∈ G do s′, N ← CheckComposition((O∗
i , O

∗
j , O

∗
k), O

∗
l , s

′, N) end for
end for
s← s′

end while
return N

Procedure CheckPermutation((O∗
i , O

∗
j , O

∗
k), s

′, N)
for p ∈ {ID, INV, SC, SCI,HM,HMI} do

hasChanged ← refineRelation(N, p(O∗
i , O

∗
j , O

∗
k), R

p
O∗i O

∗
jO
∗
k
)

if hasChanged then s′ ← s′ ∪ p(O∗
i , O

∗
j , O

∗
k) end if

end for
return s′, N

Procedure CheckComposition((O∗
i , O

∗
j , O

∗
k), O

∗
l , s

′, N)
if O∗

l �= O∗
i ∧O∗

l �= O∗
j ∧O∗

l �= O∗
k then

hasChanged ← refineRelation(N, (O∗
i , O

∗
j , O

∗
l ), RO∗i O

∗
jO
∗
k
�RO∗jO

∗
kO
∗
l
)

if hasChanged then s′ ← s′ ∪ (O∗
i , O

∗
j , O

∗
l ) end if

hasChanged ← refineRelation(N, (O∗
l , O

∗
i , O

∗
k), RO∗l O

∗
i O
∗
j
�RO∗i O

∗
jO
∗
k
)

if hasChanged then s′ ← s′ ∪ (O∗
l , O

∗
i , O

∗
k) end if

end if
return s′, N

1Tarquini et al. (2007) define the composition of visibility relations as R(O1, O3, O4) =
R1(O1, O2, O3) � R2(O2, O3, O4), while a different composition operation—R(O2, O3, O4) =
R1(O1, O2, O3) �R2(O1, O3, O4)—is presented by De Felice et al. (2010).
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6.5.1 Generalization of Ternary Relations’ Composition

In order to allow the algebraic closure procedure to deal with ternary calculi that define

several composition operations, a generalization of composition of ternary relations is

introduced and the CheckComposition procedure is accordingly modified.

Let C be a ternary calculus. A composition rule is defined as an ordered list of three

elements, each of which is in turn a list of three elements in N. The i-th composition

rule in the calculus C is:

CRuleC,i =
[
CRi1

∣∣∣ CRi2

∣∣∣ CRi3

]
=

[
〈cri11, cri12, cri13〉

∣∣∣ 〈cri21, cri22, cri23〉
∣∣∣ 〈cri31, cri32, cri33〉

]

In order to be valid, the composition rule has to satisfy the following constraints:

•
∣∣∣{cri11, cri12, cri13} ∪ {cri21, cri22, cri23}

∣∣∣ = 4

• {cri31, cri32, cri33} ⊂ {cri11, cri12, cri13} ∪ {cri21, cri22, cri23}
• {cri11, cri12, cri13} ∩ {cri31, cri32, cri33} �= ∅
• {cri21, cri22, cri23} ∩ {cri31, cri32, cri33} �= ∅.

The first element of a composition rule parametrically denotes the list of objects

that are in the first input relation, the second represents the objects in the second

input relation, while the third element parametrically gives the ordering of the objects

in the output relation. For instance, the composition rules for the visibility calculus

are defined as:

CRuleV is,1 = [〈1, 2, 3〉 | 〈2, 3, 4〉 | 〈1, 3, 4〉]
CRuleV is,2 = [〈1, 2, 3〉 | 〈1, 3, 4〉 | 〈2, 3, 4〉]
. . .

Let n,m ∈ {1, 2}, n �= m. A function ComposeRel(CRule,CRn,(O
∗
i , O

∗
j , O

∗
k),O

∗
l ,N)

is defined that computes the composition, as defined in the composition rule CRule,

by assigning (O∗i , O
∗
j , O

∗
k) to the elements of CRn and O∗l to the value of CRm that is

not in CRn, and finally performing the composition RCR1 �RCR2 . For instance, Com-

poseRel(CRuleV is,2,CR1,(O1, O2, O3),O4,N) yields RO1,O2,O3 � RO1,O3,O4 . Similarly, a

function ComposeObjects(CRule,CRn,(O
∗
i , O

∗
j , O

∗
k),O

∗
l ) is defined, that yields the tu-

ple of objects resulting from the composition, by performing the same assignments as

ComposeRel. As an example, ComposeObjects(CRuleV is,2,CR1,(O1, O2, O3),O4) yields

(O2, O3, O4).

The procedure CheckComposition is modified in order to deal with a set of compo-

sition rules, as shown in Algorithm 12. The modification does not change the computa-

tional time complexity of AlgebraicClosure, because the number of possible composition

rules for a calculus C is limited.
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Algorithm 12 CheckComposition((O∗i , O
∗
j , O

∗
k), O

∗
l , s

′, N) – Ternary constraints

if O∗
l �= O∗

i ∧O∗
l �= O∗

j ∧O∗
l �= O∗

k then
for CRuleC,i ∈ CRuleC do

R← ComposeRel(CRuleC,i,CR1,(O
∗
i , O

∗
j , O

∗
k),O

∗
l ,N)

(O∗
a, O

∗
b , O

∗
c )← ComposeObjects(CRuleC,i,CR1,(O

∗
i , O

∗
j , O

∗
k),O

∗
l )

hasChanged ← refineRelation(N ,(O∗
a, O

∗
b , O

∗
c ),R)

if hasChanged then s′ ← s′∪ (O∗
a, O

∗
b , O

∗
c ) end if

R← ComposeRel(CRuleC,i,CR2,(O
∗
i , O

∗
j , O

∗
k),O

∗
l ,N)

(O∗
a, O

∗
b , O

∗
c )← ComposeObjects(CRuleC,i,CR2,(O

∗
i , O

∗
j , O

∗
k),O

∗
l )

hasChanged ← refineRelation(N ,(O∗
a, O

∗
b , O

∗
c ),R)

if hasChanged then s′ ← s′∪ (O∗
a, O

∗
b , O

∗
c ) end if

end for
end if
return s′, N

6.6 The Hybrid Spatial Reasoning Algorithm

A basic pseudocode version of the procedure that combines the components described

in the previous sections is given in Algorithm 13. To keep it simple, it does not contain

all possible optimizations for avoiding unnecessary computation1. The reasoner takes

the set G of spatial-region objects for all involved spatial entities and a multi-calculus

constraint network MN representing the input information. It is assumed that the

geometries in G have been initialized in accordance with the input information and

by using imprecise objects representing the plane2 for entities for which no geometric

information is given. The multi-calculus constraint network MN is also assumed to

have been initialized correctly using the specified qualitative relations where possible,

while using the universal relation (disjunction of all base relations) everywhere else.

At first, the qualitative reasoning component is applied to the input network MN,

refining as many qualitative relations as possible. The resulting network is then passed

on to the geometric reasoner that produces new geometric approximations (under the

support of the quantification component). Afterwards, the approximated regions are

analyzed by the qualification procedure to further refine the qualitative constraint net-

work MN. This process is repeated until neither the qualitative nor the geometric

reasoning component are able to refine the available information further.

Given that the input information is consistent, it follows that the hybrid reasoning

is correct in the sense that computed geometric approximations have to indeed contain

the actual object and that the actual geometric configuration described by the input is

a solution of the derived qualitative model: (1) The QualitativeReasoner and Qualify

functions can only lead to a refinement of the constraint network MN ; and (2) the

1Some heuristics to avoid unnecessary computation will be discussed in Section 6.6.2.
2A way to represent the plane by means of infinite-region is detailed in Appendix A.
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Algorithm 13 HybridReasoner(G,MN )

hasChanged ← True
while hasChanged do

previousMN ← MN
MN ← QualitativeReasoner(G,MN )
G ← GeometricReasoner(G, MN )
MN ← Qualify(G,MN )
if MN = previousMN then hasChanged ← False end if

end while
return (G, MN )

GeometricReasoner can only further refine the geometries derived from the qualitative

relations. The overall procedure ends when either the GeometricReasoner cannot refine

any geometry and, hence, Qualify cannot discover new qualitative relations, or when

the QualitativeReasoner does not refine the constraint network, resulting in an absence

of information that would enable the GeometricReasoner to further refine geometries.

Furthermore, the maximal quantification of a relation is based on the regions in which

an entity has to be contained, hence the maximal quantification represents an upper

approximation for the geometry of the entity. Similarly, the minimal quantification

represents a lower approximation for the geometry of the entity.

Considering only binary and ternary calculi, let n be the number of objects in G,

Algorithm 13 performs in O
(
c(n4 + |C|qn3 + n4q)

)
= O

(
cq(|C|n3 + n4)

)
time in the

worst case, with c being the number of iterations performed by the hybrid reasoner

procedure, and q being the time required to run the QualifyC function. Since |C| is
constant, the computational time complexity is in O(cqn4) in the worst case.

6.6.1 A Hybrid Spatial Reasoning Example

An object configuration that is used in the remainder of this section for a step-by-step

running example of the hybrid reasoning procedure described above is displayed in Fig.

6.5(a). In this example, it is supposed that the reasoner is given precise geometric

definitions for regions O1, O2, O3, O7, O8 (see Fig. 6.5(b)); moreover, the reasoner gets

as input the following qualitative descriptions:

PVJ(O
∗
6, O

∗
4, O2) PVJ(O

∗
5, O

∗
4, O2) PVL(O

∗
5, O2, O3) TPP (O7, O

∗
4)

W (O∗6, O8) N(O∗6, O1) S(O∗9, O
∗
4)

Note that some relations refer to spatial entities which geometric description is not

known, for instance in PVJ(O
∗
6, O

∗
4, O2).

In the first step, the qualitative reasoner infers 9 new base relations and 6 refine-

ments of disjunctive relations, e.g., TPPI (O∗4, O7) and {PVL, Oc}(O∗4, O2, O3). Feeding
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O3

O8

O1

O7

O2

O4

O6

O9

O5

(a) Actual object configuration

O3

O7

O8

O1

O2

(b) Known objects

Figure 6.5: Actual object configuration and known objects.

the resulting qualitative relations into the geometric reasoner yields a first approxima-

tion of the objects that describe the unknown entities O∗4, O∗5, O∗6 and O∗9, as depicted
in Fig. 6.6. Note that object O∗4 is the only one having a yolk component O−4 defined by

the inferred relation TPPI (O∗4, O7). The qualification procedure is now able to produce

253 new qualitative relations using both precise and imprecise spatial-region objects.

The current system outcomes, in terms of quantitative descriptions, are used as a ref-

erence for demonstrating that the hybrid reasoning system performs better than the

single reasoning components executed separately. Indeed, it will be shown that by run-

ning the hybrid reasoning cycle more than once the system yields better approximation

for entities whose extensions are not precisely known.

Since new information was discovered during the first iteration, a new hybrid rea-

soning iteration is required. The qualitative reasoner infers new relations, one be-

ing Oc(O∗4, O2, O3) that the GeometricReasoner employs to refine O+
4 as shown in

Fig. 6.7(a). The link S(O∗9, O∗4) propagates the refinement to O∗9 as depicted in Fig.

6.7(b), while the descriptions of other entities remain unchanged. The qualification pro-

cess refines some edges of the constraint network and the whole cycle is run once more.

In the last execution, no new information is discovered and the reasoner terminates.

Comparing the resulting objects (Fig. 6.6(b)-(c) respectively for O∗5 and O∗6, and
Fig 6.7 for O∗4 and O∗9) with the original ones (Fig. 6.5(a)) shows that the reasoner

works as intended since any imprecise object contains the original region it represents.

Furthermore, the refinements of the imprecise objects O∗4 and O∗5 in the second hybrid

reasoning iteration demonstrate that the hybrid reasoner yields (at the quantitative

level) better results than the qualitative and geometric approaches would have been able

to produce individually. The same can be proven at the qualitative level comparing the

relations refined during the reasoner iterations. This results are further confirmed by

the fact that multiple reasoning iterations were needed to compute the final descriptions
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+
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+

(d) Approximation of O∗
9

Figure 6.6: First approximations of O∗
4 , O

∗
5 , O

∗
6 , and O∗

9 .

for unknown entities. Indeed, whenever the reasoner requires more than two iterations

(considering that the last iteration never produce refinements neither at the qualitative

nor at the quantitative level), it means that one single iteration is not enough to refine

the information as much as possible.

6.6.2 Heuristics for Reducing the Computation Time

Several heuristics are defined in order to improve the empirical performance of the

hybrid reasoning system. Even though they do not affect the theoretical computational

time complexity discussed above, they allow for a reduction of the actual amount of

information to analyze and hence the required computation time decreases.

Quantification of a qualitative relation.

Let O∗i be an imprecise object, in the first iteration of the hybrid reasoning procedure

all relations whose primary object is O∗i are quantified. In the next iteration, if the n-

ary relation R(O∗i , O
∗
2, . . . , O

∗
n) has not been refined and the geometric descriptions of
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Figure 6.7: Final approximations of O∗
4 and O∗

9 .

O∗2, . . . , O∗n have not been modified, it is not necessary to quantify the relation again.

Indeed, the relation has been already used to refine the quantitative description

of O∗i and it would not yield any further approximation. As an example, three

spatial-region objects O∗1, O2 and O3 are considered (O2 and O3 are precise objects)

together with the relations {N,NE}(O∗1, O2) and {SE, S, SW, }(O∗1, O3). During

the first iteration all relations are quantified for defining the approximation of O∗1.
It is supposed now that the relation between O∗1 and O2 is refined during the first

hybrid reasoning iteration as N(O∗1, O2), while the other one is not refined. Thus,

in the next iteration only the former relation has to be quantified again.

Quantification of projective disjunctive relations.

Every base relation that composes a disjunctive projective relation (i.e., CDC or

Visibility relation) is quantified at a time. For instance, if {N:NE,NE:E}(O∗1, O2)

has to be quantified, the quantification procedure (Algorithm 3, p. 76) quantifies

at first {N:NE}(O∗1, O2), next {NE:E}(O∗1, O2), and finally performs the union of

the results. However, both the quantifications rely on the computation of A+
NE(O2),

that is hence built twice. The performance of the algorithm improves if the quantifi-

cation procedure quantifies any tile only once. Hence, a modification is made in the

algorithm that first computes the union of the tiles that compose all base relations,

and afterwards computes the quantification of the relation. In the example, this

would result in the quantification of {N:NE:E}(O∗1, O2).

For the same reason, if the relation to quantify is the universal relation, or if the tile

union corresponds to all tiles defined in the projective calculus, the infinite-region

representation of R2 is directly returned by the quantification procedure.

Qualification of relations between precise objects.

The extension of precise objects is never affected by the quantification procedure.
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Indeed, precise objects represent spatial entities for which the quantitative descrip-

tion is already precisely known by the system. Furthermore, the information is

consistent and there do not exist relations in which a precise object is the primary

object and whose quantification would change its description. Hence, the qualifica-

tion procedure can consider n-tuple of precise objects only during the first hybrid

reasoning iteration, and avoid the qualification between them in the other iterations,

resulting in a reduction of the number of permutations to analyze in Agorithm 8.

Qualification of relations between imprecise objects.

For considerations similar to the previous point, the qualification of an n-tuple of

imprecise objects is avoided if their approximations did not undergo any change

during the previous iteration of the hybrid reasoning cycle.

Reduce algebraic closure relations.

For the assumptions defined in Section 3.2.1.1, the system’s input information is

consistent. This means, for every n-ary calculus there exists only one relation sat-

isfied by an n-tuple of spatial entities. Hence, if the known qualitative relation for

a calculus C between an n-tuple is a base relation in the calculus, it is not nec-

essary to propagate other relations on that constraint. Thus, before computing a

permutation or a composition (and the correspondent refineRelation function), it is

checked whether the resulting constraint is a base relation: if it is not, the operation

is performed. For instance, if it is known that DC(O∗1, O∗2), it is not necessary to

compute the composition RO∗
1O

∗
i
�RO∗

i O
∗
2
.

6.6.3 Combination of Qualitative Calculi

Different approaches for the integration of qualitative spatial calculi have been discussed

in Section 2.2.4 (p. 38). The integration is required when it is necessary to deal with

several qualitative aspects of the space at the same time. The approaches are clustered

into joint satisfaction problem, combined models, and combined reasoning. The first

approach (e.g., Gerevini & Renz, 2002; Li, 2007; Liu et al., 2009) is not in the scope of

this work, since it focuses on the consistency of relations defined in different calculi1.

The second approach is grounded on the definition of a new qualitative calculus that

merges together the relations defined in calculi that model the single aspects of space at

hand (e.g., Billen & Kurata, 2008; Brageul & Guesgen, 2007; Frank, 1992). Even though

in this work different aspects of space have been considered, the definition of a new

combined model is not necessary. Indeed, the hybrid reasoning system automatically

exploits the geometrical properties of the relations defined in any single calculus to infer

the relations in other calculi. On the one hand, this approach does not always ensure a

1The multi-calculus constrain network defined in Section 6.2 is compatible with the joint network
defined in the Joint Satisfaction Problem.
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result as precise as the definition of a new model (that expressly excludes the concurrent

existence of some relations). On the other hand, the proposed approach simplifies

the integration of a new calculus into the system, since only the definitions of the

quantification procedures and the reasoning operations have to be done. Furthermore,

a combined calculus can be directly included in the system.

In comparison with combined reasoning approaches (e.g., Clementini et al., 1997;

Guo & Du, 2009; Sharma, 1996)—where rules are defined to perform reasoning al-

gorithms with different calculi at the same time—the hybrid reasoning system does

not require an explicit definition of reasoning rules, rather some of them are auto-

matically exploited through the quantification-qualification process. However, hetero-

geneous, mixed and integrated spatial reasoning rules (Sharma, 1996) can be directly

included into the system.

6.7 Thematic Based Reduction

In order to complete the discussion about the integration of geographic information, in

this section an improvement of the system described in Section 6.3 is briefly introduced

that considers also thematic information. Such information is linked to any spatial-

region object in G in order to describe the represented entity1. The symbol � is used

to assign a label L to a spatial object. For instance, O1 � {Building} means that O1

is a building (e.g., a house or a school), and O2 � {WaterBody} means that O2 is a

water body (e.g., a lake or a river). More than one label can be assigned to any object

(e.g., O1 � {Building, School}).
The semantics of thematic information associated to the set of objects is exploited

to define qualitative rules, that express which qualitative relations are not admissible

between two (or more) objects labeled by certain values. Formally, a qualitative rule

is a list φ = 〈L1, . . . , Ln, Rφ〉, where L1, . . . , Ln are labels and Rφ is an n-ary relation

that can not hold between the objects that are labeled respectively with L1, . . . , Ln.

As an example, suppose that a constraint is given for objects labeled with Building

that can not overlap objects labeled as WaterBody. This concept can be modeled as

the set of qualitative rules (denoted as Φ):

φ1 = 〈Building,WaterBody, PO〉 φ2 = 〈WaterBody,Building, PO〉
φ3 = 〈Building,WaterBody,EQ〉 φ4 = 〈WaterBody,Building,EQ〉
φ5 = 〈Building,WaterBody, TPP 〉 φ6 = 〈WaterBody,Building, TPP 〉

1In the literature, thematic information is also called thematic extent or conceptual space occupied
by the entity (e.g. Duckham et al., 2006)
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The geographic information integration layer is extended by adding a thematic

reduction component, as Fig. 6.8 shows. Since the thematic information does not

undergo any change during the information integration process, it is worthless to include

the thematic reduction into the reasoning cycle, rather it runs once before the cycle

starts, in order to reduce beforehand the information in the constraint network.

Storage Layer

Spatial Data Input

(qualitative and quantitative)

Qualitative 

Information

Quantitative

Information

Geographic Information

Integration Layer
Output

via

Querying

Output

via

Visualization

Qualification

Qualitative

Reasoning

Geometric

Reasoning

Thematic

Information

Thematic

Reduction

Figure 6.8: Hybrid spatial reasoning system with the thematic reduction component1.

The procedure that performs the thematic reduction is shown in Algorithm 14. It

gets as input the set of spatial-region objects G, a multi-calculus constraint network

MN, a list of associations TA between objects and thematic information, and the set

of qualitative rules Φ. The algorithm loops through all edges of the constraint network

and, for each rule, checks whether the labels associated to the objects are the ones

defined in the rule: if so, the relation Rφ is removed from the constraints between the

given set of objects. The modified constraint network is then returned by the algorithm.

If the number of elements in G (hence the number of nodes of MN ) is n, and r is

the number of rules defined in Φ, the algorithm runs in O(rnm) time in the worst case,

where m is the maximal arity of the considered calculi.

1The red lines in the figure represent the flow of qualitative information: solid lines show the stream

of information among the different system’s layers, while dotted ones depict how the information flows

within any single layer. In the same way, the cyan lines represent the stream of quantitative information

and the green lines depict the flow of thematic information. Finally, solid black lines are used to

represent the reasoning system’s cycle.
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Algorithm 14 ThematicReduction (G, MN, TA, Φ)

for RO∗i ...Oi+n−1 ∈MN do
for φ ∈ Φ do

if O∗
i = L1, . . . , O

∗
i+n−1 = Ln then

RO∗i ...O
∗
i+n−1

← RO∗i ...O
∗
i+n−1

\Rφ

end if
end for

end for
return MN

The thematic reduction component can be enforced by defining the qualitative rules

through a formal language—e.g., description logics (Calvanese et al., 2001; Donini et al.,

1996). The grounding idea is that if a qualitative rule is defined for a label L1, and if it

is known that L2 is a L1, then the rule applies also to L2. For instance, if it is defined

that the label House is a Building, and Lake is a WaterBody, then the rules φ1−φ6

apply also to objects assigned with these labels. Formal languages and conceptual

reasoning procedures allow the system to automatically propagate the rules.

6.8 Summary

This chapter described a hybrid spatial reasoning system able to perform spatial infer-

ence in mixed setting, where information is given partially qualitatively and partially

quantitatively. The system exploits the quantification and qualification procedures de-

veloped in the previous chapters, as well as established inference techniques such as the

algebraic closure algorithm for performing qualitative spatial reasoning. It has been

shown that the hybrid reasoning system performs better than the single inference strate-

gies executed separately: indeed, it is able to produce refined information, both at the

qualitative level (i.e., refined qualitative spatial relations) and at the quantitative level

(i.e., better geometric approximations for unknown entities). Furthermore, the system

is compatible with existing approaches to combine qualitative spatial information.

Finally, an extension of the system has been proposed that considers also thematic

information. It is used to refine the qualitative spatial knowledge before the hybrid

reasoning cycle starts. Moreover, it opens the way for integrating existing conceptual

reasoning techniques into the hybrid reasoning system.



Chapter 7

Experimental Evaluation

In this chapter, an empirical evaluation of the algorithms described in the previous

three chapters will be shown. At first, a prototypical implementation of the geographic

information integration system is described in Section 7.1. The prototype is then used

to perform empirical experiments (Section 7.2) conducted for the evaluation of the

quantification algorithms (Chapter 4), the qualification algorithms (Chapter 5), and

the hybrid reasoning system discussed in Chapter 6.

7.1 Prototype Geographic Information Integration

System

The geographic information integration system has been implemented in order to col-

lect experimental results. In this section, the design of the prototype, as defined in

Section 6.1, is described. In particular, a solution for spatial data input/output is pro-

posed in Section 7.1.1, the storage layer design is done in Section 7.1.2, and finally the

design of the geographic information integration layer is shown in Section 7.1.3.

The current prototype supports RCC-8 relations as well as single and multi-tile

relations of CDC and Visibility calculi.

7.1.1 Spatial Data Input, Visualization, and Querying

Quantum GIS (Hugentobler, 2008)—also known as QGIS—is a Free Open Source desk-

top GIS software developed as an easy to use geographic data viewer, later extended

to provide functionalities to manage raster and vector data (Steiniger & Bocher, 2009).

The option to write extensions in Python to add custom functionalities makes QGIS

a good basis for the implementation of the hybrid reasoning system. Fig. 7.1 shows
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(1) 

QGIS Standard Quantitative 

Input Tools

(3)

QGIS Plugin 

Qualitative 

Input Tool

(4)

QGIS Plugin 

Qualitative 

Outptut

(2) 

QGIS Standard 

Quantitative Data Viewer

(5)

QGIS Plugin 

Reasoning

Tools

Figure 7.1: QGIS Phyton plugin for spatial data input/output and for the interaction
with the Geographic Information Integration Layer. Input of quantitative data is per-
formed through the QGIS standard input tools (1) that allow for drawing and editing
polygons. QGIS also provides instruments for data viewing (2); the example shows the
OSM dataset of Bremen. A Python plugin has been embedded in QGIS to provide function-
alities for qualitative data input (3) and output (4). The plugin offers tools for executing
the reasoning components (5).

the QGIS plugin that has been developed to manage the input and output of qualita-

tive spatial relations. The input and visualization of quantitative data are performed

through the QGIS standard user interface.

7.1.2 Storage Layer

As grounding for the storage of quantitative and qualitative spatial information, Post-

greSQL DBMS1, with its PostGIS spatial extension (Ramsey, 2010), has been chosen

due to its capability to store and manage big amounts of both spatial and non-spatial

data.

The logical design of the database structure for the storage of spatial information is

given in Fig. 7.2. Quantitative description of spatial entities are stored in the Geome-

tries table, that maintains two geometries to define the egg and the yolk of imprecise

objects (if the Precise flag is set to False) or one geometry for precise objects (Precise

flag set to True); information for the identification of the objects is stored in the table

as well.

1PosrgreSQL: http://www.postgresql.org/
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BinaryQualRel

ID INTEGER

Relation_ID INTEGER

Primary_OBJ_ID INTEGER

Reference_OBJ_ID INTEGER

Relations

ID INTEGER

RelName TEXT

Calculus_ID INTEGER

Description TEXT

Geometries

ID INTEGER

Name TEXT

Egg_geom POLYGON

Yolk_geom POLYGON

Precise BOOLEAN

ReasoningType

ID INTEGER

Arity INTEGER

NumInputRel INTEGER

X1 INTEGER

Y1 INTEGER

Z1 INTEGER

X2 INTEGER

Y2 INTEGER

Z2 INTEGER

X3 INTEGER

Y3 INTEGER

Z3 INTEGER

Description TEXT

TernaryQualRel

ID INTEGER

Relation_ID INTEGER

Primary_OBJ_ID INTEGER

Reference1_OBJ_ID INTEGER

Reference2_OBJ_ID INTEGER

ReasoningTable

ID INTEGER

Type_ID INTEGER

Relation1_ID INTEGER

Relation2_ID INTEGER

Result_ID INTEGER

Calculus_ID INTEGER

Calculi

ID INTEGER

Name TEXT

Type INTEGER

Description TEXT

Figure 7.2: Storage layer – Logical schema. The tableGeometries maintains the geometric
description of spatial entities; it stores both precise and imprecise objects. The data-
structure composed by the Calculi, ReasoningTable, ReasoningType, and Relations tables
models qualitative relations defined by different calculi as well as reasoning operations. The
link among quantitative and qualitative information is maintained by the TernaryQualRel
and BinaryQualRel tables.

A data-structure composed by Calculi, ReasoningTable, ReasoningType, and Rela-

tions tables has been introduced to model the qualitative relations defined by different

calculi as well as their composition and inverse/rotation operations (as generalized in

Section 6.5.1). The relations satisfied by pairs (or triples) of objects in the Geometries

table are stored in TernaryQualRel and BinaryQualRel that act as connection layer

between quantitative and qualitative information.

7.1.3 Geographic Information Integration Layer

The Phyton plugin developed for the input and output of qualitative spatial relations

(cf. Section 7.1.1) also implements the geographic information integration layer de-

veloped in Chapter 6. A class diagram, representing the core of the system, is drawn

in Fig. 7.3. Auxiliary classes, to manage for instance the communication between the

plugin and the underlying database, are not detailed in the schema for the sake of

readability.

Classes that are depicted with green background model the different kind of spatial

information managed by the system: QualitativeRelation objects relate EggYolkObject1

objects that are in turn composed by InfiniteRegion objects. The class InfiniteRegion

1As shown in Chapter 3.3.3, a precise object is represented as an egg-yolk object having coincident
egg and yolk.
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Quantifier

QuantifyCDC(BaseRelation,RefObject)
QuantifyRCC(BaseRrelation,RefObject)
QuantifyVis(BaseRelation,Ref1Object,Ref2Object)
Quantify(Relation,RefObjectList)

Qualifier

Qualify(ObjectList)
QualifyCDC(PrimObject,RefObject)
QualifyRCC(PriObject,RefObject)
QualifyVis(PriObject,Ref1Object,Ref2Object)

QualitativeReasoner

QSR(RelationList)
ReasoningBinary(RelationList)
ReasoningTernary(RelationList)

GeometricReasoner

Quantify(ObjectList,RelationList)

HybridReasoner

RelationList : QualitativeRelation
UnknownObjectList : EggYolkObject
KnownObjectList : EggYolkObject

HSR()

InfiniteRegion

BoundaryLine : LINE
Ray1 : LINE
Ray2 : LINE

IRCropping(ClippingBox)
IRIntersection(IR2)
IRUnion(IR2)
IRDifference(IR2)

EggYolkObject

EggRegion : InfiniteRegion
YolkRegion : InfiniteRegion

QualitativeRelation

Relation
PrimaryObject : EggYolkObject
Reference1Object : EggYolkObject
Reference2Object : EggYolkObject

Figure 7.3: Geographic information integration layer – Class diagram. Classes depicted
with green background model quantitative and qualitative descriptions of spatial knowl-
edge. The spatial entities are quantitatively described as EggYolkObjects instances, that
are composed by two InfiniteRegion objects: one for the egg description and one for the
yolk description. QualitativeRelation instances model the qualitative relations between
spatial objects. The spatial knowledge is used by the classes with yellow background
that implement the components of the hybrid reasoning system developed in the previous
chapters.

implements the infinite-region object representation (Section 4.3), and the algorithms

for computing union, intersection, and difference of infinite-region objects defined in

Appendix A. Classes depicted with yellow background model the components of the

hybrid spatial reasoning system (Section 6.1) and implement the algorithms developed

in the previous three chapters.

7.2 Evaluation of the Geographic Information Integration

Layer

The theoretical computational time complexity and the correctness of the spatial in-

formation translation procedures as well as the complexity and the correctness of the

hybrid spatial reasoning system have been discussed in the previous chapters. The

prototype software discussed in Section 7.1 has been used for performing empirical

evaluations of the system’s performance: Quantification and qualification components

are evaluated only with respect to computation time requirements. Three different

measures are instead used for evaluating the hybrid reasoning system: computation

time requirements, qualitative output, and quantitative output; moreover, the benefits
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of the heuristics for reducing the computation time are shown, and an analysis of the

number of hybrid reasoning iterations is done. In all the experiments, the computation

time requirements have been measured on a 2.53 GHz Intel Core 2 Duo CPU.

As measure for the goodness of the computation times, two different kinds of in-

teractions with the system are considered within the emergency management context

defined in Chapter 3: background computation operations and single-request opera-

tions. Background computation operations require the system to improve the spatial

knowledge base as much as possible, both in qualitative and quantitative terms. The

integration of qualitative and quantitative spatial knowledge for emergency manage-

ment, as an alternative to traditional collection methods, is a background computation

operation. These operation are performed by the hybrid reasoning system. In order to

fulfill the information-demand provision gap (cf. Section 3.1) and to provide emergency

responders with update information when needed, the time required for executing back-

ground computation operations is acceptable if it does not exceed the time required to

collect data through traditional collection methods (cf. Figure 3.2); the computation

time is hence acceptable if it is in the order of magnitude of few hours. In contrast,

single-request operations are performed when the user directly interacts with the sys-

tem requesting specific information either at the qualitative or at the quantitative level

that needs to be computed at runtime. For instance, a user asks the system to visu-

alize on his map a hazardous area that he knows to be north of his actual position

(quantification of a single relation), or the user requests the position of a specific entity

with respect to his actual position (qualification of a single relation). Single-request

operations are performed by quantification and qualification components only1. These

operations ask for fast human-computer interactions; the system response time is ac-

ceptable if it is in the order of magnitude of few seconds.

The OpenStreetMap2 (OSM) dataset of Bremen (Fig. 7.4(a))—called OSM Bre-

men—is used as reference for the evaluation of outcomes. It contains 17321 polygons

whose number of vertices varies between 3 and 960. Among them, 95% of the objects

are defined by 3 to 25 vertices (Fig. 7.4(b)), while 60% of the objects are defined by 4

vertices. The average number of vertices in the whole dataset is 10.

1Even though the system has been designed for executing background computation operations,
quantification and qualification components can be directly executed to perform single-request opera-
tions as well.

2OpenStreetMap: http://www.openstreetmap.org/
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Figure 7.4: OpenStreetMap dataset – Bremen.

7.2.1 The Quantification Component

The aim of the experiments reported in this section is to analyze whether the time

necessary for computing the quantification of qualitative spatial relations meets the

time constraints for single-request operations. The correctness of the algorithms has

been proven in Chapter 4, and therefore it does not require empirical evaluation.

Data in OSM Bremen has been acquired through traditional collection methods,

thus it precisely represents the extent of entities that exist in the reality (cf. Section

3.3.3). However, the quantification component often deals with objects which represent

spatial regions imprecisely as egg-yolk objects. Indeed, the component is run both

for relations whose reference regions are precisely described and for relations whose

reference regions’ extent has been previously approximated by the component itself (cf.

Section 3.3.4). Thus, OSM Bremen is not appropriate for testing the quantification

outcomes in all cases. Rather, a dataset that contains both precise and imprecise

objects is required.

Performance of quantification depends on the number of vertices (or edges) that

define the reference spatial-region objects of the relation (cf. Section 4.7). Hence, the

evaluation requires to run the quantification of all relations—both single and multi-

tile when applicable—over a set of spatial-region objects while varying the number of

their defining vertices. Furthermore, the quantification performance does not depend

neither on the spatial distribution of the objects in the dataset1 nor on the distribution

of the points that define any single spatial object. According to these observations,

the empirical evaluation of the quantification component can be done over a set of

spatial-region objects randomly generated within a defined workspace. Even though the

1The only constraint is given for the quantification of visibility relations which requires reference
objects having non-overlapping convex hull.
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objects are randomly generated, the relevant properties that influence the quantification

performance are preserved with respect to real datasets (e.g., OSM Bremen for precise

objects).

Figure 7.5: Quantification testbed. The objects have been randomly generated. Blue
regions depict precise objects, green regions represent eggs of imprecise objects, and yellow
regions stand for yolks of imprecise objects. n1 is the number of vertices that define precise
objects or the egg of imprecise objects, while n2 is the number of vertices that define the
yolk of imprecise objects.

The quantification testbed has been randomly generated that contains 160 distinct

spatial-region objects; a tool1, grounded on Zhu et al. (1996), has been used for gener-

ating random simple closed polygon with n vertices in a given workspace. In order to

meet the requirements for the computation of visibility relations’ quantifications, the

workspace has been split into eight non-overlapping cells, each of which contains 20

spatial-region objects of the same type (either precise or imprecise with empty yolk or

imprecise with non-empty yolk). The quantification testbed is composed by:

• 40 precise objects described by single polygons having n1 vertices, with n1 ∈ {5i | i =
1 . . . 20};

• 40 imprecise objects with empty yolk described by single polygons having n1 vertices,

with n1 ∈ {5i | i = 1 . . . 20};
1http://caschi.org/downloads/windows-binaries/genpoly.zip
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• 20 imprecise objects with non-empty yolk each composed by two polygons, repre-

senting respectively the egg and the yolk, having n1 and n2 vertices, with n1 ∈
{5i | i = 1 . . . 20} and n2 = 5;

• 20 imprecise objects with non-empty yolk each composed by two polygons, repre-

senting respectively the egg and the yolk, having n1 and n2 vertices, with n1 ∈
{5i | i = 1 . . . 20} and n2 = 100;

• 20 imprecise objects with non-empty yolk each composed by two polygons, repre-

senting respectively the egg and the yolk, having n1 and n2 vertices, with n1 = 5

and n2 ∈ {5i | i = 1 . . . 20};
• 20 imprecise objects with non-empty yolk each composed by two polygons, repre-

senting respectively the egg and the yolk, having n1 and n2 vertices, with n1 = 100

and n2 ∈ {5i | i = 1 . . . 20}.

The quantification testbed is shown in Fig. 7.5; blue regions depict precise objects,

green regions represent eggs of imprecise objects, and yellow regions stand for yolks of

imprecise objects.

The empirical results obtained for the quantification of RCC-8, CDC, and Visibil-

ity relations over the quantification testbed are summarized in the remainder of this

section.

7.2.1.1 Quantification of Topological Relations

In this experiment, the quantification of every topological relation defined in the RCC-

8 calculus has been computed once for all spatial-region objects in the quantification

testbed. Average (AVG), maximum (Max), and minimum (Min) computation time for

computing RCC-8 quantifications are summarized in Fig. 7.6. The results are plotted

separately for precise and imprecise objects (either with or without empty yolk). For

every value of polygon vertices, the average time is calculated over 16 quantification

runs in the case of either precise objects or imprecise objects with empty yolk, and over

32 quantification runs for imprecise objects with non-empty yolk.

The average computation time slightly increases with the number of vertices in all

cases; however, the time is lower than 3ms. Even though the maximum computation

time can rise up to five times the average time, it rarely exceeds 10ms. The computation

time of RCC-8 quantifications is independent of the number of vertices that define the

reference object of the relation. This results confirm the theoretical time complexity

evaluation done in Section 4.7.3.
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Figure 7.6: Quantification of RCC relations.

7.2.1.2 Quantification of Cardinal Direction Relations

For any spatial-region object in the quantification testbed, the quantifications of the

218 CDC base relations (both single and multi-tile) have been computed. Average

(AVG), maximum (Max) and minimum (Min) computation time for computing the

quantifications are plotted in Fig. 7.7 for precise reference objects, in Fig. 7.8 for im-

precise reference objects with empty yolk, and in Fig. 7.9 for imprecise reference objects

with non-empty yolk. In the first two cases, the results are further distinguished be-

tween single and multi-tile relations. For any value of polygon vertices, the average

time is calculated over 18 quantifications in the case of single-tile relations and over

418 quantifications in the case of multi-tile relations.

Considering the case if the reference object is precise (Fig. 7.7), the time required

for the computation of the quantification of a CDC base relation is practically inde-

pendent of the number of vertices that define the reference object. Even though the

theoretical computation time increases linearly with the number of vertices (cf. Sec-

tion 4.7.1), for the objects considered in the quantification testbed the time difference

is negligible. Indeed, the quantification with a precise reference object only requires a

single scan of the object defining vertices in order to identify the maximum and mini-
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(a) Single-tile CDC relations
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Figure 7.7: CDC quantification: precise reference object.
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Figure 7.8: CDC quantification: imprecise reference object with empty yolk.
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(a) Egg defined by 5 vertices
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Figure 7.9: CDC quantification: imprecise reference object with non-empty yolk.
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mum coordinates values. Furthermore, the average time required for the quantification

of single-tile relations (Fig. 7.7(a)) is around five times1 lower than the average time

required for multi-tile relations (Fig. 7.7(b)). This result is motivated by the fact that

up to nine different objects are computed and combined for quantifying multi-tile re-

lations. Finally, the maximum time required to compute the CDC quantifications over

precise objects rarely exceeds 0.06s.

In the case if the reference object is imprecise with empty yolk (Fig. 7.8), the time

increases significantly with the number of vertices that define the reference spatial-

region object. Indeed, the quantification in this case requires to compute an object for

any edge that defines the reference object, and then to combine all results by union

operations. The theoretical computation time—that increases exponentially with the

number of vertices—and the strong dependency on the number of vertices is confirmed

by the empirical evaluation. As in the previous case, the computation time for the

quantification of multi-tile relations (Fig. 7.8(b)) is, on average, five time bigger than

the single-tile relations case (Fig. 7.8(a)) due to the bigger number of quantifications

to compute and combine.

Finally, if the reference object is imprecise with non-empty yolk (Fig. 7.9), the com-

putation time is independent of the number of vertices that define the yolk, while it

increases with the number of vertices that define the egg. Again, the empirical eval-

uation confirms the theoretical analysis done in Section 4.7.1, where for the imprecise

reference object case the computation time increases linearly with the number of yolk

vertices and exponentially with the number of egg vertices. The higher average com-

putation time required in the case depicted in Fig. 7.9(b) with respect to the case in

Fig. 7.9(a) is caused by the difference between the number of vertices that define the

egg; the time is however consistent with the results in Fig. 7.8(b). Conversly, Fig. 7.9(c)

and Fig. 7.9(d) show the same performance independently of the number of vertices

that define the yolk of the reference object.

7.2.1.3 Quantification of Visibility Relations

Fig. 7.10 and Fig. 7.11 summarize the computation time required for the quantification

of visibility relations over pairs of objects belonging to the quantification testbed. For

any pair of objects in the testbed with non overlapping convex-hull the quantifications

of the 27 visibility base relations (single and multi-tile) have been computed. Fig. 7.10

plots the maximum (Max), minimum (Min), and average (AVG) computation time

if both the reference objects are precise, while Fig. 7.11 depicts the case in which at

least one of the reference spatial-region objects is imprecise. The parameter n denotes

the number of vertices of the first reference object—representing the obstacle in the

1Note that the average number of tiles that compose the multi-tile CDC base relations is 5.12.
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Figure 7.10: Quantification of Visibility relations: precise reference objects.
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Figure 7.11: Quantification of Visibility relations: imprecise reference objects.
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relation—while m denotes the number of vertices of the second object—the viewer1.

In order to better emphasize the dependencies of the computation time on the number

of vertices that define either the obstacle or the viewer, the results have been further

split by keeping fixed the number of vertices of one object while varying the number of

vertices of the other object.

All results, both in the precise and in the imprecise case, show that the time nec-

essary for the computation of visibility quantifications is almost independent of the

number of vertices that define the viewer object, while it slightly increases with the

number of the obstacle defining vertices. The results empirically confirm the theoreti-

cal analysis done in Section 4.7.2, where it has been shown that the computation time

increases linearly with m and quadratically with n in the worst case. The average time

is lower than 0.25s, while the maximum computation time rarely exceeds 0.5s.

7.2.1.4 Discussion

In the experiments described above, the time requirements for computing the quantifi-

cation of a single qualitative relation have been analyzed for relations in the RCC-8,

CDC and visibility calculi. While the times required for computing the quantification

of both RCC-8 and visibility relations show negligible dependency on the number of

reference objects’ vertices—it is acceptable for answering single-request operations (the

maximum is reached by visibility relations that require up to 0.6s)—the same does

not always hold for CDC relations. Indeed, if the reference object of the relation is

imprecise, the quantification strongly depends on the number of defining vertices and

the required time doubles when the number of vertices doubles.

The time required to quantify a single CDC relation in the case the reference object

is imprecise is close to the time required for quantifying RCC-8 and Visibility relations

only if the number of vertices that define the maximal extension of the spatial region

is small. In contrast, for objects with a high number of egg vertices the computation

time sensibly increases compared with the other cases. However, assuming that the

number of vertices that define the egg corresponds to the average number of vertices

in OSM Bremen (10 vertices) the time required for the computation is equals to 0.32s,

while for polygons having 25 vertices2 the time rises to 0.85s that has the same order

of magnitude of the quantification of relations defined in the other calculi.

Thus, the quantification of a single qualitative relation over real spatial descriptions

has acceptable computation time requirements for single-request operations. However,

this result can not be directly propagated to quantifications as used in the qualification

1In the case of imprecise objects, n and m are the sum of the number of vertices that describe the
egg and the yolk.

295% of elements in OSM Bremen have number of vertices ranging between 3 to 25.
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components as well as in the hybrid reasoning system; indeed, in these cases the quan-

tification of more qualitative relations at a time is required. Empirical experiments will

be shown for these cases in the next sections.

7.2.2 The Qualification Component

The experiments described in this section aim at evaluating the empirical computation

time required for qualifying spatial crisp relations holding between tuples of spatial-

region objects (Chapter 5). In particular, it is analyzed whether the computation time

meets the requirements of single-request operations. Computation time of crisp rela-

tions between spatial-region objects generally depends on three parameters: (1) com-

putation of the quantifications of qualitative relations1, (2) distribution of the spatial-

region objects over the workspace2, and (3) properties of spatial-region objects at hand

with respect to precision.

The dependency on the first parameter is excluded from the evaluation since it

produces the same results shown in the previous section. Furthermore, with respect to

the second parameter, entities from OSM Bremen are chosen for testing qualification

in order to analyze the performance considering real instances of quantitative spatial

descriptions. Thus, in this section only the dependency of qualification on the properties

of spatial-region objects (precision) is discussed. In order to meet all the requirements,

the qualification testbed has been build by selecting 90 polygons from OSM Bremen

that describe buildings in the Findorff district. To simulate imprecise descriptions, the

selected geometries have been modified as follows:

• 30 polygons have not been modified and describe precise objects;

• 30 polygons have been expanded through a buffering operation (Felkel & Obdrzalek,

1998) and they describe imprecise objects with empty yolk;

• 30 polygons have been modified in order to describe imprecise objects with non-

empty yolk. The components of any spatial-regions object have been defined as:

yolk equals to the original polygon; egg equals to an inflation of the original polygon

obtained trough a buffering operation.

The qualification testbed is depicted in Fig. 7.12. Blue regions represent precise objects,

green regions represent the eggs of imprecise objects, and yellow regions represent the

yolks of imprecise objects.

In the remainder of this section, the qualification testbed is used as a base for the

empirical evaluation of RCC-8, CDC, and Visibility relations’ qualification. The symbol

1This is valid for projective calculi (i.e., CDC and visibility calculus) but it does not apply for
RCC-8 relations.

2Indeed, the distribution influences the probability that a certain relation holds between a tuple of
spatial-region objects.
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Figure 7.12: Qualification testbed. The objects have been selected from OSM Bre-
men and opportunely modified to simulate imprecise descriptions1. Blue regions represent
precise objects, green regions represent the eggs of imprecise objects, and yellow regions
represent the yolks of imprecise objects.

P is used to denote precise objects, E stands for imprecise objects with empty yolk,

and EY refers to imprecise objects with non-empty yolk.

7.2.2.1 Qualification of Topological Relations

In this experiment, the topological relation holding between any pair of distinct spatial-

region objects in the qualification testbed has been computed. The maximum (Max),

minimum (Min), and average (AVG) computation time are plotted in Fig. 7.13. In order

to highlight dependencies on the properties of the objects, the results are aggregated

with respect to the characteristics of the objects in terms of precision. The average

time for any value in the chart has been calculated over 890 qualification executions.

The average time to qualify topological relations is almost constant for every combi-

nation of object types, and it is lower than 0.005s. Computation time slightly increases

if imprecise objects are considered, due to more computations required for retrieving

the disjunctive relation (cf. Section 5.2). In conclusion, even though in some execu-

tion the maximum computation time is 5 times greater than the average time, the

computation of RCC-8 relations is always acceptable for single-request operations.

1Additional information about the testbed is given in Appendix B.
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Figure 7.13: Qualification of RCC-8 relations. Any bar in the graph shows the result
aggregated based on the object types pair: P denotes precise objects, E stands for imprecise
objects with empty yolk, and EY refers to imprecise objects with non-empty yolk.

7.2.2.2 Qualification of Cardinal Direction Relations

In Section 5.4, two different approaches have been shown to compute the crisp dis-

junctive cardinal direction relation holding between two spatial-region objects (either

precise or imprecise). The first approach is based on the computation of a considerably

high number of quantifications of CDC relations over the reference object. Being the

quantification of CDC relations computationally expensive (cf. Section 4.7.1), a dif-

ferent approach has been proposed that exploits the characteristics of the calculus for

reducing the number of required computations. In order to empirically prove the bene-

fits of adopting the second approach, qualification tests have been performed executing

both the proposed methods.

The CDC relation has been computed twice for any pair of objects in the qualifi-

cation testbed1, and the computation times have been recorded. The minimum (Min),

maximum (Max), and average (AVG) computation time—plotted separately for pre-

cise and imprecise objects—are shown in Fig. 7.14(a). For any combination of spatial-

region object types, the average time has been calculated over 890 qualification runs.

Fig. 7.14(b) plots an highlight of Fig. 7.14(a), where the y-axis scale has been reduced

from 30s to 0.4s. Time Slow denotes the time required for the computation of the

relation with the first approach, whilst Time Fast indicates the time required for the

computation if the second approach is used instead.

In case the first approach is used, the required computation time is noticeably high.

Indeed, in the worst case it is required to compute the quantifications of up to 218

different relations. The average computation time rises up to 30s if both objects are

imprecise, and there exist cases where the computation time rises up to 900s. In case

1For any pair of objects, the relation has been computed both with Propositions 5.4.1-5.4.3 and
with the theory developed in Section 5.4.2.



7.2 Evaluation of the Geographic Information Integration Layer 165

86
7

87
2

11
0

P-P P-E P-EY E-P E-E E-EY EY-P EY-E EY-EY

Spatial-region Objects (O1-O2)* *

Ti
m

e 
(s

)

(a) Qualification time

P-P P-E P-EY E-P E-E E-EY EY-P EY-E EY-EY

Spatial-region Objects (O1-O2)* *

Ti
m

e 
(s

)

(b) Highlight of Fig. 7.14(a)

Figure 7.14: Qualification of CDC relations. Time slow is the computation time for the
qualification approach defined in Section 5.4; Time fast is the computation time related to
the qualification method in Section 5.4.2. Any bar in the graph shows the results aggregated
based on the object types pair: P denotes precise objects, E stands for imprecise objects
with empty yolk, and EY refers to imprecise objects with non-empty yolk.

the primary object is imprecise with empty yolk, CDC qualification requires, in general,

less time than other cases. Indeed, in order to identify the crisp disjunctive relation

it is necessary to compute only the quantifications of the cardinal direction single-tile

relations (see Section 5.4). However, the required amount of time is, in most cases, not

acceptable for single-request operations.

However, the adoption of the second approach drastically reduces the computation

time. The computation of CDC relations requires, on average, around 0.1s, that is

acceptable for single-request operations. The only drawback in the usage of this ap-

proach is that it does not always yield results as precise as the first approach does, as

discussed in Section 5.4.3. This event occurs in 10% of the performed tests.
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In conclusion, the second approach is preferable for computing CDC relations be-

tween spatial-region objects in those cases where less precision in the output is ac-

ceptable if the computation time stays low. In contrast, the first proposed approach

is desirable in those applications where precise output is required and where no time

constraints exist.

7.2.2.3 Qualification of Visibility Relations

In this experiment, the times required for computing qualifications of visibility rela-

tions between triples of spatial-region objects in the qualification testbed have been

recorded. The average (AVG), maximum (Max), and minimum (Min) computation

time are plotted in Fig 7.15, where the results have been aggregated with respect to

the types of spatial-region objects involved in the qualification. For any triple of object

types, the average computation time has been calculated over 12400 qualification runs.
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Figure 7.15: Qualification of Visibility relations. Any bar in the graph shows the re-
sult aggregated based on the object types triple: P denotes precise objects, E stands for
imprecise objects with empty yolk, and EY refers to imprecise objects with non-empty
yolk.

The average computation time strictly depends on the properties of spatial-region

objects: it increases if imprecise objects with non-empty yolks belong to the triple

of spatial-region objects because more computations are required for retrieving the

visibility relation (cf. Section 5.3). However, the average time is lower than 1.5s. The

maximum time, conversely, rises up to nine times the average computation time: this

happens in the worst case where all 27 visibility base relations have to be quantified.

In case the primary object is imprecise with empty yolk, even the maximum time is

considerably lower than in other cases, because only the quantifications of the five

single-tile visibility relations have to be computed to qualify the disjunctive visibility
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relation. To conclude, the experiment shows that the time required for qualifying

visibility relations between a triple of spatial-region objects is acceptable for single-

request operations.

7.2.2.4 Discussion

The experiments shown above aim at empirically analyzing the time requirements of the

algorithms developed for qualifying qualitative spatial relations between spatial-region

objects. RCC-8, CDC, and visibility calculi have been considered.

Qualification of RCC-8 relations exploits the topological properties of the egg-yolk

approach for dealing with imprecise descriptions; few computations are required for

qualifying the topological relation. Conversely, the qualification of visibility and CDC

relations exploits the properties of the quantification in order to compute the crisp

relation between a tuple of spatial-region objects; this method can be directly applied

to other projective calculi. However, while the qualification of visibility relations is

efficient for single-request operations, CDC qualification required the development of a

more efficient approach that exploits the calculus structure. This means, even though

the approach developed for qualifying visibility relations—and then adopted for CDC

relations—is general enough to be directly adapted to other calculi, the requirements

with respect to computation time are not always acceptable for single-request opera-

tions.

In conclusion, all results show that the developed procedures require acceptable

computation time in terms of single-request operations for qualifying the relation be-

tween a single tuple of spatial-region objects. However, those applications where re-

lations between more than one tuple of objects need to be qualified require a specific

analysis of the amount of qualifications to compute, as it will be shown for the Hybrid

Spatial Reasoning System experiments described in the remainder of this chapter.

7.2.3 The Hybrid Spatial Reasoning System

The capabilities of the hybrid spatial reasoning system developed in Chapter 6 have

been evaluated running the system over problem instances generated from the configu-

ration of objects, extracted from OSM Bremen (all belonging to the Findorff district),

depicted in Fig. 7.16. It was decided to keep the set of objects small in order to prevent

the set of qualitative spatial relations from excessively increasing in size1, and hence to

limit the computation time required by the system. Indeed, as shown in the previous

sections, the time requirements for computing a single relation quantification as well as

1It has to be considered that, for instance, a dataset of 6 geometries yields up to 288 qualitative
relations (62 RCC-8 relations, 62 CDC relations, and 63 visibility relations), a dataset of 10 elements
yields 1200 relations, and a dataset of 20 elements yields up to 8800 relations.
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the qualification of the qualitative relation between a single tuple of spatial-region ob-

jects is acceptable for single-request operations; a different evaluation is necessary when

more qualifications and quantifications have to be computed, as for the hybrid spatial

reasoning system (background computation operation). Hence, it has been decided to

limit the computation time and to focus rather on evaluating the dependencies of the

system outcome on the number of unknown entities (that has been varied between 1

and 5) and on the number of qualitative input relations (that has been varied between

0 and 15).

Figure 7.16: Hybrid spatial reasoning testbed extracted from OSM Bremen1.

1100 random input sets—denoted as HSR input sets in the remainder of this chapter—

were generated by randomly selecting known entities that would be given geometrically

and unknown entities only described using qualitative relations. The provided relations

involving the unknown entities as either primary or reference entity were also randomly

chosen. Computation times, inferred qualitative relations, and geometric descriptions

produced for all unknown entities have been recorded for the hybrid reasoning system

execution with each of the HSR input sets.

At first, the benefits on the hybrid reasoning performance deriving from the heuris-

tics described in Chapter 6 are empirically analyzed (Section 7.2.3.1). Afterwards,

three different measures are used for the analysis of the hybrid reasoning system’s

characteristics: (1) computation time (Section 7.2.3.2), (2) number of inferred base

and disjunctive (non-universal) relations (Section 7.2.3.3), and (3) quantification of the

unknown input entities (Section 7.2.3.4). Finally, an analysis on the number of itera-

tions performed by the reasoning system (Section 7.2.3.5) is done. The outcomes of the

hybrid reasoning system (that will be denoted as HR in the remainder of this section)

are compared with the result obtained by applying the geometric reasoning directly

to the input relations (denoted as GR), and with the results obtained by executing

qualitative spatial reasoning on the input relation set and then performing geometric

reasoning (denoted as QSR-GR); this is used as a reference for evaluating the benefits

1Additional information about the testbed is given in Appendix B.
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of using the hybrid reasoning system rather than running the single approaches for

qualitative and geometric reasoning separately1.

7.2.3.1 Heuristics

At first, the benefits deriving from the heuristic described in Section 6.6.2 are em-

pirically proven. The heuristics have been introduced in order to reduce the actual

computation time, while the theoretical time stays unvaried. HR has been run 35

times with random HSR input sets, both without heuristics (Heuristics OFF ) and

with heuristics (Heuristics ON ). The time required for the execution of any single HR

component during each iteration has been recorded.

The average computation time is reported in Fig 7.17; results are plotted separately

for the first reasoning iteration and the other iterations. Indeed, most of the heuristics

are active only starting from the second reasoning iteration.
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Figure 7.17: Hybrid reasoning system – Heuristics. The graph shows the reduction of
the computation time in the case the system implements heuristics for the reduction of the
empirical time. Starting from the second reasoning iteration, the system performs several
orders of magnitude better than the system without heuristics.

During the first reasoning iteration, only the geometric reasoning component per-

forms better in the case the heuristics are active, since other HR components do not

implement heuristics that affect this iteration. Differently, during other HR’s iterations

all components show a high computation time reduction: The qualitative reasoning

component requires 42,5% of the time required by the system executed without heuris-

tics; Geometric reasoning with heuristics requires only 0.7% of the time without heuris-

tics; The qualification component, in the case heuristics are active, employs 5% of the

1The same reference has been used in Section 6.6.1 for showing the HR benefits with respect to an
exemplary input set of spatial-region objects and qualitative relations.
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time required in the case heuristics are not active. Overall, the defined heuristics allow

for getting the same response from the system in terms of qualitative and quantitative

output, reducing the time requirements to 25% of the time required by the system

without heuristics.

In conclusion, the proposed heuristics sensibly improve the hybrid reasoning system

performance in terms of computation time. The experiments reported in the remainder

of this chapter are related to the case heuristics are active in the system.

7.2.3.2 Computation Time

Fig. 7.18 shows how the computation time is affected by the number of unknown en-

tities (Fig. 7.18(a)) and by the number of input relations (Fig. 7.18(b)). Computation

times for GR and QSR-GR are not affected by the variation of unknown entities. In-

deed, the two components only perform operations over the input relations, hence their

computation times only depend on the number of input relations. Computation time

for HR does not show dependencies on the number of input relations. In contrast,

the computation time of HR sensibly increases with the number of unknown entities.

The dependency is caused by the qualification component. As an example, consider

the two cases where the number of unknown entities is respectively 1 and 5: The first

HR iteration computes 288 qualitative relations in both cases. Differently, during the

other iterations 48 qualifications are computed at maximum in the former case, while

the latter case requires up to 285 qualifications. The growth is caused by the fact that

relations between precise objects are qualified only once: hence, the number of relations

to qualify increases with the number of regions imprecisely described.
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Figure 7.18: Hybrid reasoning system – Computation time.

Finally, Fig. 7.18 shows that HR requires up to 37 times the time necessary for

the computation of only QSR-GR. The computation time overload is acceptable for

background computation operations only if the hybrid reasoner yields better results

than the other components, as the next sections will show.
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7.2.3.3 Inferred Qualitative Relations

The experiment outcomes with respect to the number of inferred qualitative spatial

relations are summarized in Table 7.1 (dependency on the number of unknown entities)

and in Table 7.2 (dependency on the number of input relations). Note that GR does

not yield results on the qualitative level, thus it is not reported in the table.

Table 7.1: Output relations – Variable number of unknown entities.

Unknown Entities
QSR-GR HR

Base
Relations

Disjunctive
Relations

Base
Relations

Disjunctive
Relations

1 10 3 211 14
2 11 2 159 14
3 11 2 119 12
4 11 2 94 8
5 11 2 83 4

Table 7.2: Output relations – Variable number of input relations.

Input Relations
QSR-GR HR

Base Disjunctive Base Disjunctive

0 0 0 106 0
1 1 0 110 1
2 3 0 114 3
3 4 0 119 4
4 5 0 122 6
5 7 0 125 7
6 8 1 128 8
7 10 2 131 11
8 11 2 136 11
9 13 2 138 11
10 14 2 140 13
11 15 3 141 13
12 17 4 145 16
13 18 4 147 16
14 20 5 148 16
15 23 5 155 14

The number of relations inferred by QSR-GR only depends on the number of input

relations, due to the fact that the qualitative spatial reasoner component is able to

infer more relations if the input set is bigger. Conversely, HR shows a high dependency

both on the number of unknown entities and on the number of input relations. The

number of inferred qualitative spatial relations is inversely proportional to the number

of unknown entities. Indeed, by keeping the total number of objects managed by

the system fixed while increasing the number of unknown entities, the qualification

components yields a bigger amount of disjunctive (uncertain) relations; thus the number

of base (certain) relations it is able to compute decreases. In turn, the uncertainty

propagates to the qualitative reasoning stage, and the overall amount of refined relations

decreases. Conversely, the set of refined qualitative relations increases proportionally

with the number of input relations: in this case, the qualitative reasoning component

refines beforehand the qualitative knowledge, hence the geometric reasoning can better

approximate the extensions for all unknown entities and, in turn, the qualification

produces more refined disjunctive relations.
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Finally, in the performed tests QSR-GR yields, on average, 9% of the relations

inferred by HR; thus, HR performs better than QSR-GR in terms of qualitative output

information.

7.2.3.4 Quantification of Unknown Entities

The last measure used to evaluate the outcomes is the quantification of unknown en-

tities. The number of tests for which respectively QSR-GR and HR produced better

approximations for unknown entities with respect to GR directly applied to the input

relations has been measured. In the cases in which they produced better approxima-

tions, the percentage of area reduction has been recorded. Since the spatial-region

objects can have infinite extent, a workspace with an area 300 times bigger than the

area of the MBR that bounds all objects in the HSR input sets has been set in order to

limit the objects maximal extension, and evaluate the system in terms of quantification

areas.

Table 7.3: Quantification reduction with variable number of unknown entities.

Unknown Entities
Quantifications Reduced (%) Quantification Reduction (%)

QSR-GR HR QSR-GR HR

1 68 84 53 43
2 78 96 43 35
3 74 88 31 27
4 68 80 21 18
5 53 55 14 14

Table 7.4: Quantification reduction with variable number of input relations.

Input Relations
Quantifications Reduced (%) Quantification Reduction (%)

QSR-GR HR QSR-GR HR

1 13 73 1 1
2 33 67 27 14
3 38 66 31 18
4 45 68 29 19
5 59 77 26 20
6 66 73 30 27
7 73 80 30 28
8 76 84 34 31
9 73 84 35 30
10 81 89 37 34
11 84 88 33 32
12 84 92 43 39
13 90 90 39 39
14 80 87 48 45
15 100 100 45 45

Table 7.3 and Table 7.4 summarize the quantitative outcomes by considering respec-

tively a variable number of unknown entities and a variable number of input relations.

Quantifications Reduced refers to the percentage of performed tests in which the quan-

tifications of the unknown entities are better approximated by respectively QSR-GR

and HR with respect to GR, while Quantification Reduction reports the average per-

centage of area reduction.
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For both QSR-GR and HR the number of cases in which better approximation can

be produced with respect to GR slightly decreases with the number of unknown entities,

while it increases with the number of input relations. This result strongly depends on

the number of qualitative output relations described above. Indeed, the more refined

relations can be inferred by the system, the more it is able to better approximate the

extensions of unknown entities. Furthermore, HR produces better approximations in

more cases compared with QSR-GR. This result demonstrates that the hybrid reasoning

approach performs better than the single approaches executed separately in terms of

quantitative output.

However, the percentage of area reduction decreases for HR with respect to QSR-

GR. That means, in those cases in which HR yields better approximations than QSR-

GR, the percentage of area reduction is lower than in the other cases.

7.2.3.5 Hybrid Reasoning Iterations

The last analysis has been done on the average number of iterations of HR before the

algorithm terminated. Fig. 7.19 reports the results grouped by number of unknown

entities and number of input relations. Both graphs show that the number of iterations

does not depend on these parameters.
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Figure 7.19: Hybrid reasoning system – Reasoning iterations.

Nevertheless, the fact that the number of reasoning iterations is almost constant

between three and four further demonstrates that interlinking the two reasoning com-

ponents (qualitative and geometric reasoning) yields better results than using the ap-

proaches individually; otherwise the computation would stop after two iterations.

7.2.3.6 Discussion

The experiments described above aimed at evaluating the hybrid reasoning system

capabilities adopting three different measures: computation time, qualitative output,

and quantitative output. In particular, the target of the experiments was to empirically

prove the claim that the hybrid system yields more precise output with respect to the
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single reasoning approaches executed separately, both at the qualitative level (refined

qualitative spatial relations) and at the quantitative level (better approximation of

unknown entities extension). The empirical results demonstrate the claim. Indeed,

at the qualitative level the number of refined qualitative relations that HR yields is

up to 10 times bigger than the relations computed by QSR-GR. Furthermore, HR is

able to produce better approximations than QSR-GR for the extensions of unknown

entities, even if the difference is not always significant. As drawback, in the actual

implementation QSR-GR performs many orders of magnitude better than HR in terms

of required computation time. The computation time required by HR—background

computing operations—grows very rapidly with the number of total entities managed

by the system.

7.3 Summary

In this chapter, a prototypical implementation of the geographic information integration

system developed in the previous chapters has been shown. In particular, the actual

implementation of the system is integrated onto an existing open source GIS. It adds

instruments for managing qualitative spatial information as well as for reasoning in a

mixed spatial information setting (the spatial information is given partly quantitatively

and partly qualitatively).

The prototypical implementation has been adopted for empirically testing the char-

acteristics of the algorithms developed in Chapters 4-6. The computation time require-

ments for quantifying a single qualitative relation has been shown to be acceptable for

single-request operations. The same has been shown for time requirements of the quali-

fication procedures, that compute the qualitative spatial relation between the elements

of a single spatial-region objects tuple.

Moreover, it has been shown that the developed hybrid reasoning system performs

better compared to the inference techniques developed separately for dealing with either

qualitative or quantitative information. The output benefits have been shown both at

the qualitative and at the quantitative levels.



Chapter 8

Summary and Outlook

This chapter summarizes and discusses the results achieved in this thesis. An overview

of future research based on the described results is given.

8.1 Summary of the Results

Actions taken for responding to natural or human-driven extreme events ask for the

support of up-to-date spatial information. However, spatial information collected be-

fore the event can no longer be considered reliable: indeed, the extreme event itself

causes transformations in the spatial environment. Traditional methods for geospatial

data collection are not able to fulfill the information demand-provision gap that fol-

lows extreme events rapidly enough (MacFarlane, 2005). New data collection methods

need to be developed instead. In recent years, social networks as well as VGI applica-

tions have been proposed as alternative for gathering spatial information after extreme

events. However, the suggested approaches are strictly linked to traditional collection

methods (e.g., GPS). Thus, the information provision gap fulfillment still represents a

challenge.

As alternative source of spatial information, communications interchanged among

all actors involved in the response operations can be taken into account. Indeed, ver-

bal reports often convey spatial descriptions of the environment struck by the extreme

event. Such communications can be potentially interpreted to extract spatial descrip-

tions, that can be used for updating existing information (stored in Geographic In-

formation Systems). However, spatial information conveyed by human reports (verbal

or written) has qualitative characteristics, that strongly differ from the quantitative

nature of spatial information stored in GIS. Hence, methodologies for integrating qual-

itative and quantitative spatial information are required in order to exploit human
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communications for updating existing spatial knowledge. In particular, two main tar-

gets have been detected: identification of quantitative description for entities that are

only qualitatively described, and retrieval of qualitative information that relates entities

quantitatively described. The former allows for overlaying on a map the information

interpreted from verbal communications, while the latter can trigger warning messages

to people involved in decision making operations.

A system for the integration of qualitative and quantitative spatial information has

been proposed in this work. Two layers constitute the system: The Storage Layer stores

spatial information composed by a set of known entities, whose precise quantitative

descriptions are known, a set of unknown entities, whose quantitative descriptions are

not known, and a set of qualitative spatial relations that relates entities belonging to

the two previous sets. The Geographic Information Integration Layer, instead, performs

all operation necessary for the integration of qualitative and quantitative information.

The system produces imprecise descriptions for the spatial extent of unknown entities

as output, as well as qualitative descriptions that relate the full set of spatial entities.

The focus of this work was on the development of the geographic information in-

tegration layer. Three main functionalities that the layer has to provide have been

discussed: translation of qualitative information into quantitative descriptions, trans-

lation of quantitative information into qualitative relations, and performing inference

operations with information given partly qualitatively and partly quantitatively for

boosting the spatial knowledge the system is able to produce. All tasks have to take

into account the imprecision of spatial descriptions.

8.1.1 The Quantification Operation

The quantification process allows for transforming qualitative information into quanti-

tative descriptions. Given a set of spatial entities and a set of qualitative information

that relates them, the quantification yields geometric descriptions for all those entities

whose precise spatial extent is not known. This process allows for visualizing entities

only qualitatively described, for instance overlaying the interpretation over a map (e.g.,

Fig 8.1). The transformation yields description of entities whose specification is not as

precise as if it would be measured in the reality.

The existing literature related to quantification focuses on finding an exemplary

quantitative description for a spatial scene described in qualitative terms. However,

this approach does not fit with the aim of this work: the target is instead to provide

emergency responders and decision makers with descriptions that bound the area where

unknown entities can be located. Hence, the quantification of qualitative relations aims

at providing minimal and maximal bounds for the extension of unknown entities.

At first, the quantification of a single relation has been analyzed in Chapter 4, where

three different qualitative aspects of space have been considered: topological, directional
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(a) (b)

Figure 8.1: Overlaying of quantifications over existing maps. The images show a simu-
lation performed to illustrate the benefits of the quantification process in an application
of path planning after extreme events. Yellow regions represent the maximal extension
of Hazardous Areas, while red regions represent their minimal extension. The imprecise
description of the Hazardous Areas has been overlaid over 2D and 3D Google Earth1 maps
of Downtown Buffalo (New York). Yellow lines describe the paths planned without infor-
mation about the Hazardous Areas; blue lines are instead the paths chosen in the case
imprecise descriptions of the Hazardous Areas were given. Even if the descriptions are
imprecise, quantified information about the Hazardous Areas leads to plan safer paths.

and visibility properties. Given a qualitative relation that relates an unknown entity

with a set of entities which spatial extent is known (even if such knowledge can be

imprecise), the operation always yields an imprecise description for the maximal and

minimal extension of the unknown entity, as constrained by the semantics of the specific

relation at hand. Later, in Chapter 6, the quantification of a spatial scene qualitatively

described has been discussed, that opportunely combines the results returned by the

quantification of single relations.

8.1.2 The Qualification Operation

The operation to translate quantitative information into qualitative information gets

the name of qualification. The qualification of relations between entities precisely de-

scribed only requires to test the quantitative descriptions against the constraints de-

fined for the relations in a certain qualitative calculus. The same approach can not be

adopted if spatial entities are imprecisely described. One approach traditionally used in

the literature consists on defining new sets of relations that can hold between imprecise

entities; those relations usually takes the name of fuzzy relations. However, the entities

considered in this work are not fuzzy or vague, rather their description is imprecise.

1Google Earth: http://earth.google.com/
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Hence, it is necessary to compute the set containing all crisp qualitative relations that

can hold between two entities imprecisely described. Such set of relation gets the name

of crisp relation between imprecise objects.

In Chapter 5, different approaches for qualifying relations between imprecisely de-

scribed entities have been discussed. Topological, cardinal direction, and visibility

relations have been considered. At first, the topological properties of the method used

for representing unknown entities has been exploited to compute the topological crisp

relation, adopting standard qualitative spatial reasoning algorithms. For other qualita-

tive aspects (visibility and cardinal direction) the properties of the quantification have

been exploited to develop a general approach for qualifying projective relations that

can be directly adjusted to other qualitative calculi. However, this approach is not

always efficient in practical terms, as has been shown for the qualification of cardinal

direction relations. A different theory for qualification has instead been developed for

this case, that exploits the structure of the cardinal direction calculus.

8.1.3 Reasoning with Mixed Representations of Spatial Knowledge

In the literature, reasoning techniques exist to perform inference operations with qual-

itative spatial information. Similarly, computational geometry algorithms have been

developed to deal with quantitative spatial information. As these techniques strengthen

the capabilities of the respective representation approaches, the development of infer-

ence techniques able to perform inference operations with mixed representations of

spatial knowledge allows for refining the spatial knowledge in a mixed setting.

Thus, a hybrid reasoning system (HR) has been discussed in Chapter 6 that op-

portunely connects quantification and qualification with qualitative spatial reasoning

and computational geometry algorithms. Empirical evaluations described in Chapter 7

demonstrate that the hybrid reasoning system actually yields more specific informa-

tion (both on the qualitative and the quantitative side) than the single approaches

(QSR-GR) are able to produce individually.

8.2 Outlook

An outlook on promising research directions that follow the approaches proposed in

this text is given in the remainder of this chapter.

Quantification.

The definition of constructive procedures to compute quantifications of qualitative

relations so far had to be conducted on a case-by-case analysis. In general, to be

able to quickly integrate new qualitative spatial calculi in the system, an automatic
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approach to perform this analysis to construct quantification in the case spatial en-

tities are imprecisely described is desirable.

Hybrid reasoning system.

The hybrid reasoning system developed in this work has been shown to produce,

in general, more specific information than the qualitative and geometric reasoning

components individually. However, HR’s requirements in terms of time are orders

of magnitude bigger than in the other approaches. Furthermore, there exist cases

where HR yields the same results (in terms of quantitative output) as QSR-GR.

The overall performance could be improved if an analysis is done in order to iden-

tify which characteristics of the input set drive more specific output form HR. Thus,

HR can be run only when certain conditions are met by the input set.

Thematic information exploitation.

Chapter 6 has been concluded by showing the thematic reduction component that

allows for reducing the amount of qualitative information pieces before the hybrid

reasoning system performs inference operations in mixed setting. The design of the

component can be enforced by defining qualitative rules through a formal language.

Formal languages allows the system for using standard conceptual reasoning proce-

dures to automatically propagate the rules.

Inconsistent Spatial Information.

This work assumes that the system’s input information is consistent. This means,

there are no pieces of information that contradict each other. However, this is not

always the case in real applications. For instance, the communications among res-

cuers after an extreme event could convey contradicting information due to either

wrong evaluations of the entities’ properties or to misinterpretation of the received

communications. Thus, the system would gain if techniques for checking and even-

tually resolving inconsistency would be applied to the input information set.

The Temporal Domain.

In this work, it has been assumed that the spatial entities described in the commu-

nications between the responders have a static nature. That means, they do not

change their spatial extent with time. However this is a strong assumption if enti-

ties such as fire are considered, that show dynamic evolution. Hence, a challenging

research direction is the extension of the developed approaches by considering also

the temporal domain.
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Emergency Management.

The proposed system so far has been evaluated considering geographic information

describing an environment non-affected by extreme events. Even though this pro-

vides already good measures of the system capabilities, the development of a real

application for supporting emergency management passes through the analysis of

information available after real events. This knowledge would allow for focusing the

system development only on those spatial aspects actually required by responders

and decision makers after extreme events.



Appendix A

Infinite-Region Objects:

Representation and Algorithms

In Chapter 3 and Chapter 4, the necessity to describe and manage spatial regions with

infinite extent arose as a requirement for the development of the quantification compo-

nent. This appendix discusses the properties of the infinite-region objects, and sketches

the algorithms for computing intersection, union, and difference of infinite-region ob-

jects as well as between a finite polygon and an infinite-region object. Furthermore,

the definitions of the minimum bounding rectangle, convex hull, and mutual tangents

between infinite-region objects will be discussed.

A.1 Infinite-Region Objects

In Section 4.3 the infinite-region objects have been defined as a way to describe regions

having infinite extent. The representation is equivalent to the half-plane representation

(Rigaux & Scholl, 1995; Rigaux et al., 2002), even though it does not expressly store

the parameters of the half-plane equations as proposed by Frank et al. (1996); Haunold

et al. (1997).

A simple infinite-region object IR has been defined as a triple (Λ,
−→
λ 1,

−→
λ 2), in

which the polyline Λ = 〈p1, ..., pn〉 represents the finite boundary of IR, while the two

rays
−→
λ 1 = [p1, q) and

−→
λ 2 = [pn, r) define the boundaries of IR that extend to infinity.

The starting point of Λ corresponds with the starting point of
−→
λ 1. In the same way,

the last point in Λ corresponds to the starting point of
−→
λ 2. An infinite-region object

introduces a partition of the space into two infinite regions. The actually represented

region is the intersection of the half-plane right of
−→
λ 1, the half-plane left of

−→
λ 2 and

what can intuitively be seen as the area left of the polyline Λ.
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The infinite-region representation approach also is suitable to represent polygons

with finite extent (Fig. A.1(a)): if the rays
−→
λ 1 and

−→
λ 2 are not divergent or parallel, they

intersect with each other in the point pINT . Thus, an infinite-region object whose rays

intersect in pINT is equivalent to the polygon—represented with the vector approach—

P = 〈p1, ..., pn, pINT , p1〉. Moreover, two special representation are introduced to model

the spatial regions corresponding to R
2 and ∅ (Fig. A.1(b)). It is assumed that R

2 is

represented as an infinite-region object, having an empty finite boundary and empty

rays. ∅ is represented as an infinite-region object having an arbitrary point p as its finite

boundary, and for which both rays irradiate in an arbitrary and coincident direction

from p.

IR

(a) IR Representation of a Fi-
nite Polygon

IR(�,�,�)

(b) R
2 = IR(∅, ∅, ∅)

IR
1

IR
2

(c) Multi-Infinite Region

IR
1

IR
2

(d) IR with an Infinite Hole

IR O

(e) IR with a Finite Hole

IR
1

IR
2

(f) R
2 with two Holes

Figure A.1: Complex infinite-region objects: polygons, multi-regions, and regions with
holes.

As for the multi-polygon representation, disconnected components of an infinite-

region object can be represented by a list of infinite-region objects, e.g., MIR =

〈IR1, . . . , IRn〉 represents an infinite region for which the infinite-region components

are described by IR1, . . . , IRn. Similarly, infinite-region objects admit holes, that in

turn can be infinite or finite. Some examples are depicted in Fig. A.1. In particular,

Fig. A.1(c) shows a multi-infinite-region object; Fig. A.1(d) and Fig. A.1(e) depict two

infinite-region objects with holes (respectively infinite and finite); finally, the shaded

area depicted in Fig. A.1(f), resulting for instance from the quantification of the rela-
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tion N:B:S (O1, O2), can be represented using the infinite region formalism as R2 with

two infinite holes corresponding to IR1 and IR2; hence, IR = 〈R2, IR1, IR2〉.

A.2 Algorithms for Infinite-Region Objects

In this section, computational geometry algorithms are analyzed for computing inter-

section, union, and difference of infinite-region objects. These operation, however, make

use of an auxiliary function for cropping an infinite-region object, hence this operation

will be introduced first. Finally, the possibility to define the MBR, convex-hull, and

mutual tangents between infinite-region objects will be discussed.

A.2.1 Infinite-Region Object Cropping

Computations necessary to determine the intersection, union, or difference of two

infinite-region objects rely on the definition of the cropping operation, that is a function

to compute a polygon that represents the intersection of an infinite-region object with

a given clipping box.

Given an infinite-region object IR, the intersection of IR and a rectangular clipping

box CB can be trivially computed by firstly identifying the points i1 and i2 where

respectively
−→
λ 1 and

−→
λ 2 crossed the boundary of CB ; the intersection is a finite polygon,

which boundary is defined by Λ plus the intersection points of the rays
−→
λ 1 and

−→
λ 2

with the boundary of CB. An example is depicted in Fig. A.2. The computational

time complexity of the cropping operation is O(1), since it only requires to identify the

intersection points of a constant number of rays with a constant number of polygon

edges.
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p
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(c) Cropped Polygon

Figure A.2: Cropping of an infinite-region object.
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A.2.2 Infinite-Region Objects Intersection

The intersection of two infinite-region objects is realized by first transforming the

two objects into simple polygons, performing then the standard intersection of poly-

gons, and finally, if necessary, transforming the result back to an infinite-region ob-

ject. The intersection yields either a new infinite-region object or a finite polygon

defined by one ore more components. Let IR1 = (ΛIR1 ,
−→
λ IR1,1,

−→
λ IR1,2) and IR2 =

(ΛIR2 ,
−→
λ IR2,1,

−→
λ IR2,2) be two infinite-region objects, and let α be an arbitrary posi-

tive and finite value, the algorithm that computes the intersection of IR1 and IR2 is

presented in Algorithm 15.

The algorithm firstly transforms the infinite-region objects into finite polygons using

the cropping operation defined above; it then computes the intersection of the two

resulting polygons. Afterwards, it has to be checked whether the actual intersection of

the two infinite-region objects has a finite or an infinite extent. In the first case, any

point that defines the object belongs either to ΛIR1 , or to ΛIR2 , or is an intersection

point between the rays of the two objects. Hence, the inflation of the MBR that

bounds the union of ΛIR1 and ΛIR2 with the intersection points of the rays necessarily

contains the resulting object. Conversely, in the other case, the object resulting from

the standard polygon intersection is tangential to the clipping box. Thus, Algorithm 15

uses the function Tangential that checks whether at least one edge of O lays upon one

of the edges of CB, meaning that the polygon is tangential to the clipping box. Finally,

the function InfiniteRegion(O,CB) is used to build the infinite-region object from the

polygon resulting from the intersection. The result is an object composed by one or

more disconnected components. Even though for the sake of simplicity it has not

been specified in the algorithm, if two rays are parallel (or coincident), they have no

(respectively infinite) intersection point: in such a case an arbitrary point in the plane

can be used as a substitute for their mutual intersection point without affecting the

intersection result.

Algorithm 15 IRIntersection(IR1, IR2)

1: i1 ← −→
λ IR1,1∩

−→
λ IR2,1, i2 ←

−→
λ IR1,1∩

−→
λ IR2,2, i3 ←

−→
λ IR1,2∩

−→
λ IR2,1, i4 ←

−→
λ IR1,2∩

−→
λ IR2,2

2: CB ← BUF
(
MBR

( 〈i1, i2, i3, i4,ΛIR1
,ΛIR2

〉 ), α)

3: O ← IRCropping(IR1, CB) ∩ IRCropping(IR2, CB)

4: if Tangential(O,CB) then
5: return O
6: else
7: return InfiniteRegion(O,CB)
8: end if
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An example of the intersection procedure is depicted in Fig. A.3. Given the two

infinite-region objects IR1 and IR2 shown in Fig. A.3(a), the transformation into simple

polygons is done by cropping them with a clipping box big enough to contain all the

defining points of the objects themselves as well as all intersection points between the

rays marking the regions’ boundaries. The intersection points between the rays of

IR1 and IR2 are computed and the bounding box MBR is derived. Lastly, MBR is

enlarged by an arbitrary value α resulting in the clipping box CB, as Fig. A.3(a) shows.

Now, IR1 and IR2 are cropped with CB resulting in the simple polygons P1 and P2

(see Fig. A.3(b)). The intersection of P1 and P2 is then computed. The result will be a

multi-region object which might have more than one component. In the example only

a single component is obtained. For each component, it has to be checked whether its

polygon needs to be transformed back into an infinite-region object. The final result

is shown in Fig. A.3(c). If one of the original objects IR1 and IR2 already is a simple

polygon, the intersection algorithm works in the same way except that no cropping is

required for this object.

MBR

IR1

IR2

CB

�

(a) Clipping box

P1

P2P2

(b) Polygons intersection

IR1 � IR2

(c) Resulting IR object

Figure A.3: Intersection of two infinite-region objects.

Computational Complexity of Infinite-Region Objects Intersection

The computational complexity is evaluated considering as input for Algorithm 15 two

infinite-region objects IR1 and IR2, represented respectively by n and m points. Since

two points define the end-points for the rays, n−2 points describe Λ1 and m−2 describe

Λ2. The steps performed by the algorithm to compute the intersection are:

1. Intersection of infinite-region objects’ rays (Line 1). The intersection is computed

through algebraic line intersection equations. Hence, this step runs in O(1) time.

2. The MBR of the union of the intersection points got in Step 1 with the finite

boundaries of the two infinite-region objects is computed (Line 2). As shown in

Section 2.1.2.1, this operation requires O(n+m) time.
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3. MBR, computed in Step 2, is enlarged by a value α (Line 2). The buffering operation

has a quadratic time complexity (Section 2.1.2.3). However, MBR has a constant

number of vertices, hence this step requires O(1) time.

4. Cropping IR1 and IR2 (Line 3). This step runs in O(1) time.

5. Standard polygon intersection between the results of the cropping operations (Line

3). Since the number of vertices of the cropped polygon is the same as the infinite-

region object, the time complexity of this operation is O(nm). Moreover, the result-

ing polygon is described by 2(n+m) vertices in the worst case.

6. Test if the result of Step 5 is tangential to the clipping box (Line 4). The function

Tangential(O,CB) has to test whether at least one edge of O exists that lies on one

of the edges of CB. Since CB has a constant number of edges, the computational

time is O(n+m).

7. Computation of an infinite-region object (Line 7). The InfiniteRegion creator func-

tion iterates over all edges of O in order to remove the ones that lie on the boundary

of CB. Another iteration is required to build the infinite-region object representa-

tion for every resulting component. The computational time complexity of this step

is hence O(n+m).

Overall, the computational time complexity of Algorithm 15 is, in the worst case,

O(nm), that is the same complexity as for the computation of the intersection of two

finite polygons (Margalit & Knott, 1989).

A.2.3 Infinite-Region Objects Union and Difference

The algorithms to perform the union and the difference of two infinite-region objects

is based on the same principle described for the intersection operation that has been

discussed above. However, differently from the intersection case, the union operation

never yields a finite polygon. The procedure to compute the union of infinite-region

objects is described in Algorithm 16. The difference algorithm, instead, is obtained from

Algorithm 15 by replacing the operation ∩ with \ in Line 3. As for the IRIntersection

algorithm, the time complexity of the infinite-region objects intersection and difference

algorithms is O(nm) in the worst case.

Algorithm 16 IRUnion(IR1, IR2)

i1 ← −→
λ IR1,1 ∩

−→
λ IR2,1, i2 ←

−→
λ IR1,1 ∩

−→
λ IR2,2, i3 ←

−→
λ IR1,2 ∩

−→
λ IR2,1, i4 ←

−→
λ IR1,2 ∩

−→
λ IR2,2

CB ← BUF
(
MBR

( 〈i1, i2, i3, i4,ΛIR1 ,ΛIR2〉
)
, α

)

O ← IRCropping(IR1, CB) ∪ IRCropping(IR2, CB)

return InfiniteRegion(O,CB)
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A.2.4 MBR, Convex Hull, and Tangents of Infinite-Region Objects

The definition of the Minimum Bounding Rectangle (Section 2.1.2.1) does not undergo

any change when an infinite-region object is considered. Indeed, the x-axis and y-

axis maximum and minimum values can be equal to ∞ or −∞. Considering, for

example, the infinite-region object IR depicted in Fig. A.4(a), its x-axis maximum value

is X(IR) = +∞, while the other maximum and minimum values are real numbers.

The computation of the MBR requires only to analyze the direction of the infinite-

region object’s rays and, consequently, set to ∞ or −∞ the corresponding values. The

computational time complexity is hence the same as the finite region case.

Conversely, the convex hull can not be defined for all infinite-region objects. Con-

sidering for instance the two infinite-region objects in Fig. A.4; the convex hull of the

shaded area in Fig A.4(b) can, in principle, be defined as in Section 2.1.2.2 resulting in

the infinite-region object having a red boundary in the image. Instead, for the object

in Fig. A.4(c) the definition of convex hull for finite polygon can not be propagated.

Hence, it is not possible to define the convex hull for infinite-region objects.

Similarly, the common tangents’ definition (Section 2.1.2.5) loses its semantics when

one of the objects represent a region with infinite extent, since no tangent exists between

a finite and an infinite region. Hence, they can not be computed when one of the input

objects represents a region with infinite extent.

(a) MBR (b) Convex hull (c) Non-existing convex hull

Figure A.4: MBR and convex hull of infinite-region objects.
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Appendix B

Testbed – Complementary

Information

This appendix provides complementary information about the testbed used for the

empirical evaluation, described in Chapter 7, of the qualification component and of the

hybrid reasoning system.

Qualification Testbed The qualification testbed is based on 90 geometries selected

from the OpenStreetMap1 dataset of Bremen. All geometries describe the footprint of

buildings in the Findorff district in Bremen. The original geometries have been oppor-

tunely modified for simulating imprecise descriptions of spatial entities. The details of

the modification made over the original geometries are explained in Section 7.2.2.

The qualification testbed (cf. Fig. 7.12), overlaid on a Google Maps2 map of the

Findorff district, is shown in Fig. B.1. The top-left corner of the map has coordinates

(Latitude, Longitude): 53◦05′55′′N , 8◦48′12′′E. The bottom-right corner of the map

has coordinates: 53◦05′23′′N , 8◦49′06′′E.

Hybrid Reasoning System Testbed The hybrid reasoning system has been evalu-

ated over a testbed based on six geometries extracted from the OpenStreetMap dataset

of Bremen (cf. Section 7.2.3). All geometries describe the footprint of buildings in the

Findorff district.

The hybrid reasoning system testbed (cf. Fig. 7.16), overlaid on a Google Maps

map, is shown in Fig. B.2. The top-left corner of the map has coordinates (Latitude,

Longitude): 53◦05′38′′N , 8◦48′33′′E. The bottom-right corner of the map has coordi-

nates: 53◦05′28′′N , 8◦49′05′′E.

1OpenStreetMap: http://www.openstreetmap.org/
2Google Maps: http://maps.google.com/
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Figure B.1: Qualification testbed.

Figure B.2: Hybrid spatial reasoning testbed.
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Fachberichte, 157–167, Springer. (21, 22, 31)

Frank, A.U. (1992). Qualitative spatial reasoning about distances and directions in geographic space.

Journal of Visual Languages and Computing , 3(4), 343–371. (39, 145)

Frank, A.U. (1996). Qualitative spatial reasoning: cardinal directions as an example. International

journal of geographical information systems, 10(3), 269–290. (32)

Frank, A.U., Haunold, P., Kuhn, W. & Kuper, G. (1996). Representation of geometric objects

as set of inequalities. In K.H. Hinrichs, ed., 12th European Workshop on Computational Geometry

CG’96 , 51–56, Universität Münster. (73, 181)

Freksa, C. (1980). Communication about visual patterns by means of fuzzy characterizations. In

XXIInd International Congress of Psychology, Leipzig, Germany . (42)

Freksa, C. (1982). Linguistic description of human judgments in expert systems and in the ’soft’

sciences. In M. Gupta & E. Sanchez, eds., Approximate Reasoning in Decision Analysis, 297–305,

North-Holland Publishing Company. (42)

Freksa, C. (1991). Qualitative spatial reasoning. In Mark, D.M. and Frank, A.U., ed., Cognitive and

linguistic aspects of geographic space, 361–372. (54)

Freksa, C. (1992). Using orientation information for qualitative spatial reasoning. In A.U. Frank,

I. Campari & U. Formentini, eds., Proceedings of the International Conference GIS - From Space

to Territory: Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, 162–178,

Springer-Verlag. (21, 22, 25)

Freksa, C. (1994). Fuzzy systems in AI: An overview. In R. Kruse, J. Gebhardt & R. Palm, eds.,

Fuzzy systems in computer science, 155–169, Vieweg, Braunschweig/Wiesbaden. (41, 65)



196 REFERENCES
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