217 research outputs found

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Data-driven and data-oriented methods for materials science and technologies

    Get PDF
    The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    Context Awareness in Swarm Systems

    Full text link
    Recent swarms of Uncrewed Systems (UxS) require substantial human input to support their operation. The little 'intelligence' on these platforms limits their potential value and increases their overall cost. Artificial Intelligence (AI) solutions are needed to allow a single human to guide swarms of larger sizes. Shepherding is a bio-inspired swarm guidance approach with one or a few sheepdogs guiding a larger number of sheep. By designing AI-agents playing the role of sheepdogs, humans can guide the swarm by using these AI agents in the same manner that a farmer uses biological sheepdogs to muster sheep. A context-aware AI-sheepdog offers human operators a smarter command and control system. It overcomes the current limiting assumption in the literature of swarm homogeneity to manage heterogeneous swarms and allows the AI agents to better team with human operators. This thesis aims to demonstrate the use of an ontology-guided architecture to deliver enhanced contextual awareness for swarm control agents. The proposed architecture increases the contextual awareness of AI-sheepdogs to improve swarm guidance and control, enabling individual and collective UxS to characterise and respond to ambiguous swarm behavioural patterns. The architecture, associated methods, and algorithms advance the swarm literature by allowing improved contextual awareness to guide heterogeneous swarms. Metrics and methods are developed to identify the sources of influence in the swarm, recognise and discriminate the behavioural traits of heterogeneous influencing agents, and design AI algorithms to recognise activities and behaviours. The proposed contributions will enable the next generation of UxS with higher levels of autonomy to generate more effective Human-Swarm Teams (HSTs)

    12th International Conference on Geographic Information Science: GIScience 2023, September 12–15, 2023, Leeds, UK

    Get PDF
    No abstract available

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-

    Grounded Semantic Reasoning for Robotic Interaction with Real-World Objects

    Get PDF
    Robots are increasingly transitioning from specialized, single-task machines to general-purpose systems that operate in unstructured environments, such as homes, offices, and warehouses. In these real-world domains, robots need to manipulate novel objects while adapting to changes in environments and goals. Semantic knowledge, which concisely describes target domains with symbols, can potentially reveal the meaningful patterns shared between problems and environments. However, existing robots are yet to effectively reason about semantic data encoding complex relational knowledge or jointly reason about symbolic semantic data and multimodal data pertinent to robotic manipulation (e.g., object point clouds, 6-DoF poses, and attributes detected with multimodal sensing). This dissertation develops semantic reasoning frameworks capable of modeling complex semantic knowledge grounded in robot perception and action. We show that grounded semantic reasoning enables robots to more effectively perceive, model, and interact with objects in real-world environments. Specifically, this dissertation makes the following contributions: (1) a survey providing a unified view for the diversity of works in the field by formulating semantic reasoning as the integration of knowledge sources, computational frameworks, and world representations; (2) a method for predicting missing relations in large-scale knowledge graphs by leveraging type hierarchies of entities, effectively avoiding ambiguity while maintaining generalization of multi-hop reasoning patterns; (3) a method for predicting unknown properties of objects in various environmental contexts, outperforming prior knowledge graph and statistical relational learning methods due to the use of n-ary relations for modeling object properties; (4) a method for purposeful robotic grasping that accounts for a broad range of contexts (including object visual affordance, material, state, and task constraint), outperforming existing approaches in novel contexts and for unknown objects; (5) a systematic investigation into the generalization of task-oriented grasping that includes a benchmark dataset of 250k grasps, and a novel graph neural network that incorporates semantic relations into end-to-end learning of 6-DoF grasps; (6) a method for rearranging novel objects into semantically meaningful spatial structures based on high-level language instructions, more effectively capturing multi-object spatial constraints than existing pairwise spatial representations; (7) a novel planning-inspired approach that iteratively optimizes placements of partially observed objects subject to both physical constraints and semantic constraints inferred from language instructions.Ph.D
    • …
    corecore