300 research outputs found

    Complex Dynamics and Synchronization of Delayed-Feedback Nonlinear Oscillators

    Full text link
    We describe a flexible and modular delayed-feedback nonlinear oscillator that is capable of generating a wide range of dynamical behaviours, from periodic oscillations to high-dimensional chaos. The oscillator uses electrooptic modulation and fibre-optic transmission, with feedback and filtering implemented through real-time digital-signal processing. We consider two such oscillators that are coupled to one another, and we identify the conditions under which they will synchronize. By examining the rates of divergence or convergence between two coupled oscillators, we quantify the maximum Lyapunov exponents or transverse Lyapunov exponents of the system, and we present an experimental method to determine these rates that does not require a mathematical model of the system. Finally, we demonstrate a new adaptive control method that keeps two oscillators synchronized even when the coupling between them is changing unpredictably.Comment: 24 pages, 13 figures. To appear in Phil. Trans. R. Soc. A (special theme issue to accompany 2009 International Workshop on Delayed Complex Systems

    Transient spatiotemporal chaos in a diffusively and synaptically coupled Morris-Lecar neuronal network

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2014Transient spatiotemporal chaos was reported in models for chemical reactions and in experiments for turbulence in shear flow. This study shows that transient spatiotemporal chaos also exists in a diffusively coupled Morris-Lecar (ML) neuronal network, with a collapse to either a global rest state or to a state of pulse propagation. Adding synaptic coupling to this network reduces the average lifetime of spatiotemporal chaos for small to intermediate coupling strengths and almost all numbers of synapses. For large coupling strengths, close to the threshold of excitation, the average lifetime increases beyond the value for only diffusive coupling, and the collapse to the rest state dominates over the collapse to a traveling pulse state. The regime of spatiotemporal chaos is characterized by a slightly increasing Lyapunov exponent and degree of phase coherence as the number of synaptic links increases. In contrast to the diffusive network, the pulse solution must not be asymptotic in the presence of synapses. The fact that chaos could be transient in higher dimensional systems, such as the one being explored in this study, point to its presence in every day life. Transient spatiotemporal chaos in a network of coupled neurons and the associated chaotic saddle provide a possibility for switching between metastable states observed in information processing and brain function. Such transient dynamics have been observed experimentally by Mazor, when stimulating projection neurons in the locust antennal lobe with different odors

    Controlled synchronization in networks of diffusively coupled dynamical systems

    Get PDF

    Synchronous behavior in networks of coupled systems : with applications to neuronal dynamics

    Get PDF
    Synchronization in networks of interacting dynamical systems is an interesting phenomenon that arises in nature, science and engineering. Examples include the simultaneous flashing of thousands of fireflies, the synchronous firing of action potentials by groups of neurons, cooperative behavior of robots and synchronization of chaotic systems with applications to secure communication. How is it possible that systems in a network synchronize? A key ingredient is that the systems in the network "communicate" information about their state to the systems they are connected to. This exchange of information ultimately results in synchronization of the systems in the network. The question is how the systems in the network should be connected and respond to the received information to achieve synchronization. In other words, which network structures and what kind of coupling functions lead to synchronization of the systems? In addition, since the exchange of information is likely to take some time, can systems in networks show synchronous behavior in presence of time-delays? The first part of this thesis focusses on synchronization of identical systems that interact via diffusive coupling, that is a coupling defined through the weighted difference of the output signals of the systems. The coupling might contain timedelays. In particular, two types of diffusive time-delay coupling are considered: coupling type I is diffusive coupling in which only the transmitted signals contain a time-delay, and coupling type II is diffusive coupling in which every signal is timedelayed. It is proven that networks of diffusive time-delay coupled systems that satisfy a strict semipassivity property have solutions that are ultimately bounded. This means that the solutions of the interconnected systems always enter some compact set in finite time and remain in that set ever after. Moreover, it is proven that nonlinear minimum-phase strictly semipassive systems that interact via diffusive coupling always synchronize provided the interaction is sufficiently strong. If the coupling functions contain time-delays, then these systems synchronize if, in addition to the sufficiently strong interaction, the product of the time-delay and the coupling strength is sufficiently small. Next, the specific role of the topology of the network in relation to synchronization is discussed. First, using symmetries in the network, linear invariant manifolds for networks of the diffusively time-delayed coupled systems are identified. If such a linear invariant manifold is also attracting, then the network possibly shows partial synchronization. Partial synchronization is the phenomenon that some, at least two, systems in the network synchronize with each other but not with every system in the network. It is proven that a linear invariant manifold defined by a symmetry in a network of strictly semipassive systems is attracting if the coupling strength is sufficiently large and the product of the coupling strength and the time-delay is sufficiently small. The network shows partial synchronization if the values of the coupling strength and time-delay for which this manifold is attracting differ from those for which all systems in the network synchronize. Next, for systems that interact via symmetric coupling type II, it is shown that the values of the coupling strength and time-delay for which any network synchronizes can be determined from the structure of that network and the values of the coupling strength and time-delay for which two systems synchronize. In the second part of the thesis the theory presented in the first part is used to explain synchronization in networks of neurons that interact via electrical synapses. In particular, it is proven that four important models for neuronal activity, namely the Hodgkin-Huxley model, the Morris-Lecar model, the Hindmarsh-Rose model and the FitzHugh-Nagumo model, all have the semipassivity property. Since electrical synapses can be modeled by diffusive coupling, and all these neuronal models are nonlinear minimum-phase, synchronization in networks of these neurons happens if the interaction is sufficiently strong and the product of the time-delay and the coupling strength is sufficiently small. Numerical simulations with various networks of Hindmarsh-Rose neurons support this result. In addition to the results of numerical simulations, synchronization and partial synchronization is witnessed in an experimental setup with type II coupled electronic realizations of Hindmarsh-Rose neurons. These experimental results can be fully explained by the theoretical findings that are presented in the first part of the thesis. The thesis continues with a study of a network of pancreatic -cells. There is evidence that these beta-cells are diffusively coupled and that the synchronous bursting activity of the network is related to the secretion of insulin. However, if the network consists of active (oscillatory) beta-cells and inactive (dead) beta-cells, it might happen that, due to the interaction between the active and inactive cells, the activity of the network dies out which results in a inhibition of the insulin secretion. This problem is related to Diabetes Mellitus type 1. Whether the activity dies out or not depends on the number of cells that are active relative to the number of inactive cells. A bifurcation analysis gives estimates of the number of active cells relative to the number of inactive cells for which the network remains active. At last the controlled synchronization problem for all-to-all coupled strictly semipassive systems is considered. In particular, a systematic design procedure is presented which gives (nonlinear) coupling functions that guarantee synchronization of the systems. The coupling functions have the form of a definite integral of a scalar weight function on a interval defined by the outputs of the systems. The advantage of these coupling functions over linear diffusive coupling is that they provide high gain only when necessary, i.e. at those parts of the state space of the network where nonlinearities need to be suppressed. Numerical simulations in networks of Hindmarsh-Rose neurons support the theoretical results

    Synchronization of Chaotic Optoelectronic Oscillators: Adaptive Techniques and the Design of Optimal Networks

    Get PDF
    Synchronization in networks of chaotic systems is an interesting phenomenon with potential applications to sensing, parameter estimation and communications. Synchronization of chaos, in addition to being influenced by the dynamical nature of the constituent network units, is critically dependent upon the maintenance of a proper coupling between the systems. In practical situations, however, synchronization in chaotic networks is negatively affected by perturbations in the coupling channels. Here, using a fiber-optic network of chaotic optoelectronic oscillators, we experimentally demonstrate an adaptive algorithm that maintains global network synchrony even when the coupling strengths are unknown and time-varying. Our adaptive algorithm operates by generating real-time estimates of the coupling perturbations which are subsequently used to suitably adjust internal node parameters in order to compensate for external disturbances. In our work, we also examine the influence of network configuration on synchronization. Through measurements of the convergence rate to synchronization in networks of optoelectronic systems, we show that having more network links does not necessarily imply faster or better synchronization as is generally thought. We find that the convergence rate is maximized for certain network configurations, called optimal networks, which are identified based on the eigenvalues of the coupling matrix. Further, based on an analysis of the eigenvectors of the coupling matrix, we introduce a classification system that categorizes networks according to their sensitivity to coupling perturbations as sensitive and nonsensitive configurations. Though our experiments are performed on networks consisting of specific nonlinear optoelectronic oscillators, the theoretical basis of our studies is general and consequently many of our results are applicable to networks of arbitrary dynamical oscillators

    Complex partial synchronization patterns in networks of delay-coupled neurons

    Get PDF
    We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh–Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Amplitude and phase effects on the synchronization of delay-coupled oscillators

    Get PDF
    We consider the behavior of Stuart–Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and two delay-coupled elements with self-feedback. Taking only the phase dynamics into account, no chaotic dynamics is observed, and the stability of the identical synchronization solution is the same in each of the three studied networks of delay-coupled elements. When allowing for a variable oscillation amplitude, the delay can induce amplitude instabilities. We provide analytical proof that, in case of two mutually coupled elements, the onset of an amplitude instability always results in antiphase oscillations, leading to a leader-laggard behavior in the chaotic regime. Adding selffeedback with the same strength and delay as the coupling stabilizes the system in the transverse direction and, thus, promotes the onset of identically synchronized behaviorWe would like to thank T. Erneux, E. Schöll, S. Yanchuk, and P. Perlikowski for helpful discussions. O.D. acknowledges the Research Foundation Flanders FWO-Vlaanderen for a fellowship and for project support. This work was partially supported by the Interuniversity Attraction Poles program of the Belgian Science Policy OfïŹce, under Grant No. IAP VI-10 “photonics@be,” by MICINN Spain under project DeCoDicA Grant No. TEC2009- 14101 ,, and by the project PHOCUS EU FET Open Grant No. 240763 .Peer reviewe

    Synchronicity From Synchronized Chaos

    Get PDF
    The synchronization of loosely coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical notion of synchronicity. Effectively unpredictable chaotic systems, coupled through only a few variables, commonly exhibit a predictable relationship that can be highly intermittent. We argue that the phenomenon closely resembles the notion of meaningful synchronicity put forward by Jung and Pauli if one identifies "meaningfulness" with internal synchronization, since the latter seems necessary for synchronizability with an external system. Jungian synchronization of mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system as in meteorological data assimilation. Internal synchronization provides a recipe for combining different models of the same objective process, a configuration that may also describe the functioning of conscious brains. In contrast to Pauli's view, recent developments suggest a materialist picture of semi-autonomous mind, existing alongside the observed world, with both exhibiting a synchronistic order. Basic physical synchronicity is manifest in the non-local quantum connections implied by Bell's theorem. The quantum world resides on a generalized synchronization "manifold", a view that provides a bridge between nonlocal realist interpretations and local realist interpretations that constrain observer choice .Comment: 1) clarification regarding the connection with philosophical synchronicity in Section 2 and in the concluding section 2) reference to Maldacena-Susskind "ER=EPR" relation in discussion of role of wormholes in entanglement and nonlocality 3) length reduction and stylistic changes throughou
    • 

    corecore