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We study the spatiotemporal dynamics of a multiplex
network of delay-coupled FitzHugh-Nagumo oscillators
with nonlocal and fractal connectivities. Apart from
chimera states, a new regime of coexistence of
slow and fast oscillations is found. An analytical
explanation for the emergence of such coexisting
partial synchronization patterns is given. Furthermore
we propose a control scheme for the number of fast
and slow neurons in each layer.

1. Introduction

The control of nonlinear dynamical systems and
networks has evolved into a wide interdisciplinary area
of research over the past decades [1-3]. Synchronization
phenomena in networks [4-7] are of great importance
in many areas ranging from physics and chemistry
to biology, neuroscience, physiology, ecology, socio-
economic systems, computer science, and engineering.
Chaos synchronization of lasers, for instance, may lead
to new secure communication schemes [8-10]. The
synchronization of neurons is believed to play a crucial
role in the brain under normal conditions, for instance
in the context of cognition and learning [11], and under
pathological conditions such as Parkinson’s disease [12].
Neuronal synchronization can also be induced by white
or colored external noise [13]. Fireflies are known to
synchronize their flashing [14]. Synchronization of power
grids is essential for their operation [15].
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Time delay effects are a key issue in realistic networks. For example, the finite propagation
time of light between coupled semiconductor lasers [16-21] significantly influences the dynamics.
Similar effects occur in neuronal networks [22,23]. Time delay has two complementary,
counterintuitive and almost contradicting facets. On the one hand, delay is able to induce
instabilities, bifurcations of periodic and quasiperiodic orbits, multistability and chaotic motion.
On the other hand, delay can suppress instabilities, stabilize unstable stationary or periodic states
and may control deterministic chaos. Both facets open up efficient methods of designing and
controlling nonlinear dynamics by time-delayed feedback [2,24].

To determine the stability of a synchronized state in a network of identical units, a
powerful method has been developed [25], i.e., the master stability function. This approach
has been extended to networks with coupling delays [26-32], where the master stability
function depends non-trivially on delay times. There exist different forms of synchronization,
i.e.,, complete or isochronous (zero-lag) synchronization, generalized synchronization, cluster
or group synchronization [31,33-36], and many other forms. Some progress has been made
in generalizing this work, for instance, towards adaptive control [37], inhomogeneous local
dynamics [38] and heterogeneous delay times [39], distributed [40,41], state-dependent, or time-
varying delays [42]. In general, the stability of synchronization in delay-coupled networks of
oscillators depends in a complicated way on the local dynamics of the nodes and the coupling
topology. However, for large coupling delays synchronizability relates in a simple way to the
spectral properties of the network topology, characterized by the eigenvalue spectrum of the
coupling matrix. The master stability function used to determine the stability of synchronous
solutions has a universal structure in the limit of large delay: it is rotationally symmetric and
increases monotonically with the radius in the complex plane. This allows for a universal
classification of networks with respect to synchronization properties [29]. For smaller coupling
delays the synchronization properties depend in a more subtle way upon the local dynamics,
and the details of the network topology. Various cluster synchronization states, where certain
clusters inside the network show isochronous synchronization, can be realized by tuning the
coupling parameters such as the coupling phase, coupling strength, and delay time [27,31]. To
find appropriate values of these control parameters, the speed-gradient method from control
theory can be applied to achieve a desired state of generalized synchrony (adaptive synchronization)
[37,43,44]. Transitions between synchronization and desynchronization can be induced by
introducing inhibitory links into an excitable regular network with a probability p in a small-
world like fashion, and changing the balance between excitatory and inhibitory links. This has
been demonstrated for different generic local dynamics of the nodes, and various coupling
topologies like rings, small-world, and random networks. In particular, oscillatory local dynamics
(the Stuart-Landau oscillator, i.e., a generic expansion near a Hopf bifurcation), type-I excitable
dynamics (near a saddle-node bifurcation on an invariant cycle, or saddle-node infinite period
(SNIPER) bifurcation), and type-II excitable dynamics (the FitzZHugh-Nagumo model) have been
considered [45,46].

Recent interest has focussed on more complex partial synchronization patterns, which cannot
be described by simple approaches like the master stability method. These synchronization
patterns may include self-sustained coherent or incoherent oscillations, and other parts where
the oscillations are quenched. Two types of oscillation quenching mechanisms, i.e., amplitude
death and oscillation death, have been intensely studied both theoretically and experimentally
[47-50]. Amplitude death is associated with the stabilization of an already existing trivial steady
state while oscillation death is characterized by a newly born inhomogeneous steady state. The
extensions of the studies of these global phenomena towards partial amplitude and oscillation
death [48,51,52] are first steps towards a better understanding of the emergence of local mesoscale
structures on networks and their influence on the global dynamics [53-57].

A very prominent example of partial synchronization patterns are chimera states, i.e.,
symmetry-breaking states of partially coherent and partially incoherent behavior, for recent
reviews see [58,59]. Chimera states are intriguing spatio-temporal patterns made up of
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spatially separated domains of synchronized (spatially coherent) and desynchronized (spatially
incoherent) behavior, although they arise in networks of completely identical units. Kuramoto et
al. discovered the chimeras in a network of phase oscillators with a simple symmetric non-local
coupling scheme [60]. Within these “classical” chimera states, coherent domains of periodic in-
phase oscillations coexist with incoherent domains, characterized by a chaotic behavior in time
and space. In Greek mythology, the chimera is a fabulous creature with a lion’s, a goat’s, and a
snake’s head. As the counterintuitive dynamical state is as well composed of incongruous parts,
it was named after the beast [61]. In real-world systems chimera states might play a role, e.g., in
the unihemispheric sleep of birds and dolphins [62,63], see also recent computer simulations with
empirical connectivities of human brains [64], in epileptic seizures [65-69], in power grids [15],
or in social systems [70]. Time-delayed feedback or coupling has been shown to be a versatile
method for controlling chimera states in networks of Stuart-Landau oscillators [71], Van der Pol
oscillators [72], or FitzHugh-Nagumo oscillators [73,74].

Recently, much research has been devoted to multilayer networks, which provide a description
of systems interconnected through different types of links. The interplay of intra-layer interaction
with inter-layer coupling opens up a plethora of phenomena in different fields, e.g. [75-78]. In
neural systems, multilayer networks represent, for instance, neurons in different areas of the brain
or neurons connected either by a chemical link or by an electrical synapsis [79,80]. A special case
of multilayer networks are multiplex topologies, where each layer contains the same set of nodes,
and only pairwise connections between corresponding nodes from neighbouring layers exist [81-
86].

In this paper we study the dynamics of two-layer neural networks using the FitzHugh-
Nagumo model [87,88] in the oscillatory regime with inter-layer coupling delay. The FitzHugh-
Nagumo model is paradigmatic for neuronal systems which show excitability of type II, i.e.,
are close to a Hopf bifurcation [89]. In [90,91] the dynamics of two coupled FitzHugh-Nagumo
systems with time-delayed feedback was considered in different regimes. In [92] it was shown
that chimera states can emerge in a single ring of FitzHugh-Nagumo oscillators with nonlocal
coupling. Here we focus on two coupled rings with different coupling topologies, namely
fractal connectivities, which have been associated in the literature with neuronal systems [93],
and compact nonlocal coupling, which has been extensively studied as a simple paradigmatic
topology for chimera states. Our motivation is to investigate the paradigmatic interaction of these
two typical neuronal architectures, fractal and compact, respectively, in a two-layer configuration.
This might help to better understand the mechanisms of real-world brain dynamics; as an
example we refer to [69], where we have compared the dynamics for an empirical neural
connectivity matrix prepared from real human diffusion-weighted magnetic resonance imaging
(MRI) data with an artificial fractal connectivity matrix with the aim to explain epileptic seizures.

In section 2 the model is presented. Section 3 discusses different synchronization patterns
which emerge in the network. In particular, the slow-fast coexistence state is introduced for
the case where the inter-layer coupling is stronger than the intra-layer coupling. In this state
some neurons oscillate essentially with the frequency of a single FitzHugh-Nagumo system,
while others have almost doubled their frequency. Section 4 is devoted to the mapping of the
various regimes in parameter space. In Section 5 the nature of the slow-fast coexistence state is
investigated, and analytical results are derived.

An important aspect of this work is to study possibilities for control of two-layer networks
(Section 6). Previous work on control of two-layer networks was mostly devoted to control of
the inter-layer synchronization [94]. However, in our case the coupling between the layers is
stronger than the coupling of neurons within one layer. Therefore inter-layer synchronization
is always observed and the control goal is different. Our analysis indicates that the number of
neurons with doubled frequency, which depends on the initial conditions, may be controlled. It is
shown in Section 6(a) that the intra-layer coupling strengths are appropriate parameters for such
control. Therefore the rest of Section 6 is devoted to the design of control algorithms to achieve
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the maximum or minimum number of fast and slow neurons in each layer. To this end the speed- n
gradient (SG) method [95,96] is applied and SG algorithms in the difference form are proposed.

Some numerical evidence of the feasibility of such an approach to control of two-layer networks
is presented.

2. Model

The FitzHugh-Nagumo (FHN) oscillator is a paradigmatic model for neural systems [87,88]. The
uncoupled dynamics of each node in the network is given by

(i}“) — Fluv),  Fluv)= (“ *uuja* ”) : @.1)

where v and v are activator and inhibitor variables, respectively, € >0 is a small parameter
characterizing the time scale separation between the fast activator and the slow inhibitor, and
the threshold parameter a € R defines the excitable (Ja| > 1) or oscillatory (|a| < 1) regime. We use
€ =0.05 and a = 0.5 throughout this work as in [92].

To obtain chimera states, in [92] nonlocal coupling of each node on a ring to its P neighbors to
the left and to the right, respectively, was used. If NV is the total number of oscillators, r = P/N is
the dimensionless coupling radius.
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We consider a two-layer network with different connectivity structure in the two layers (see
scheme in Fig. 1). Layer one (top) is chosen to be nonlocal with coupling radius r = P/N =0.35
and coupling strength o1 = 0.1. For layer two (bottom) a fractal connectivity is used as described
in [74]. It is constructed in an iterative hierarchical way by a Cantor algorithm using a base pattern
(an initiation string) of zeros and ones of length b = 3, where each element represents either a link
(") oragap ('0"). In our case this pattern is (101). In each iterative step, each link is replaced by the
initial base pattern, while each gap is replaced by b gaps. Thus, each iteration increases the size of
the final bit pattern, such that after n iterations the total length is N = b". In front of the resulting
string an additional zero is placed, corresponding to absent self-coupling. Using the resulting
string as the first row of the adjacency matrix G, and constructing a circulant adjacency matrix
G by applying this string to each element of the ring, a ring network of N =b" + 1 nodes (in
our case after 5 iteration steps N = 35 4+ 1 = 244) with (quasi)fractal or hierarchical connectivity is
generated [97,98]. We use the same coupling strength in the second layer o2 = 0.1. In both layers
the intra-layer coupling of the activator and inhibitor variables is through a 2 x 2 rotational matrix

R(¢):( cos¢ - sing ) 2.2)

depending on the coupling phase ¢ € [—m, 7). It was shown [92] that chimeras can be found for
nonlocal coupling when ¢ is close to 7/2 (we use ¢ =7/2 — 0.1), corresponding to dominant
activator-inhibitor cross-coupling, which is a common mechanism in neuroscience, see, e.g., the
recent review on different functional interactions [99]. Also, chimeras depend on ¢ and r; in
particular for o = 0.1 chimeras arise for r between 0.25 and 0.43.
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Figure 1. Scheme of the two-layer network with different layer topologies (top: nonlocal, bottom: fractal connectivities)

The two layers are only coupled vertically through corresponding nodes, thus creating a
multiplex network. The inter-layer coupling is via the u variables, with coupling strength 12
and coupling delay 7. We assume that the intra-layer coupling delay can be neglected compared
to the internal time scale of the FHN system, while the inter-layer coupling delay is larger and
cannot be neglected. Thus, the dynamics of the network is given by:

U Ui 1 — U u; 2(t — 1) — uy
( 1,1) :F(uiﬁl,vi,l) + 2(;7}\7 Z R((;S) < J,1 Z,l) + o019 ( 2,2( 0) 2,1) :

Vi1 GiTerN Vi1 — Vi1
2.3)
ety 2 o2 Ujo — U2 ui 1 (t—7) —u; 2
% =F(ui.2,v42) + R ’ “ + o012 ’ .
(%2 ) (ui,2,vi2) Tex GZ—1 (#) <vj72 _ Uz‘,2> 0
=

Here in u; p,, vi,m the subscripts denote the intra-layer node index ¢, and the layer number m,
respectively, and |G| denotes the row sum of the matrix G;;. As initial conditions throughout this
work we use a chimera state obtained from a previous simulation with random initial phases on a
circle of radius 2 in the (u, v)-plane in layer 1, and constant (u, v) = (1.3321, 0.5745) for all neurons
in layer 2.

3. Synchronization Patterns in the Network

We investigate our system by varying the inter-layer coupling strength 012 and the coupling delay
7, and observe the emerging spatio-temporal patterns. First of all, for sufficiently large inter-layer
coupling 012 (say, 012 > 0.02) the patterns in both layers become identical. In section 4 numerical
results supporting this proposition will be given.

We find two stable patterns that can arise in such a network, depending upon the parameters.
First of all, a chimera state characterized by the coexistence of synchronized and desynchronized
domains and by an arc-shaped mean frequency profile. Second, we obtain a pattern in which
some neurons oscillate with a frequency twice as large as the others. We call this pattern slow-fast
coexistence.

To characterize the spatial coherence and incoherence we use the real-valued local order
parameter

_ 1 iOk,m
Zrn=55| > €, ne{l2h (3.1)
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where Oy, ,, = arctan(vy,p/uy,,) is the geometric phase, and 0 =15 is the size of the local
averaging window.

a)

el |y g9E= S
node k 244 245 node k

Figure 2. Chimera pattern. a-b) Arc-shaped mean frequency profiles. c-d) Snapshots of u;, for t = 10%. e-f) Space-
time plot, where the local order parameter Z; (3.1) is color coded. g-h) Snapshots in the (uy, vr) phase plane for
t = 10* (black curve is the w nullcline of the single FHN system). In each double panel the left part corresponds to layer
one, and the right part corresponds to layer two. Parameters: N = 244, ¢ =0.05, a = 0.5, r =0.35, ¢ = /2 — 0.1,
o1 =02=012=0.1,7=0.5.

In Fig. 2 a chimera pattern is shown. In this case 012 = 0.1 and 7 = 0.5. It can be clearly seen that
the mean frequency profile w has the common arc-shaped form, with the synchronized domains
(flat) in both layers at the same location in the center.

a b
5, ) 5 )
4
3 3
3
9 .
1 node k 244

. = 0 99 " 1o
1 node k 244 245 node k 488 up,

Figure 3. Slow-fast coexistence pattern. Same plots as in Fig. 2 for different inter-layer coupling o12 and delay .
Parameters: N =244, =0.05,a=0.5,7r=0.35,¢ =7/2 —0.1,01 =02 =0.1,012 =0.4, 7= 1.2,

In Fig. 3 a coexistence pattern of slow and fast neuronal oscillations is shown. Here 12 = 0.4
and 7 =1.2. In Fig. 3a-b one can see that some neurons have a mean frequency wj, close to 5
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(we call them fast neurons), while others have a mean frequency close to 2.5 (we call them slow
neurons). The snapshots Fig. 3c-d and the space-time plots of the local order parameter Fig. 3e-f
clearly show two coexisting domains of synchronized dynamics (center) and incoherent behavior,
but the characteristic arc-shaped mean frequency profile of chimeras is absent; instead there are
only two discrete frequencies whose spatial sequence in the incoherent domain is random. Also,
in Fig. 3g-h the snapshot in the phase plane shows two distinct limit cycles, one with larger
sections on the slow manifolds (active phase and recovery phase), corresponding to the full
limit cycle of the single FHN system, and one with shortened sections on the slow manifolds
(approximately double frequency). Analogous shortening of the duty cycle (and hence reduced
period, i.e., increased frequency) has been observed in an opto-electronic delay oscillator with
similar null isocline [100] and in a single FHN oscillator with delayed feedback [101].

4. Map of Regimes

Here we map out the types of pattern in the (012, 7) plane, see Fig. 4a for 012 € {0.0125...0.5}
and 7 € {0.075...3}. From the map one can see that slow-fast coexistence (red) can arise only with
7 close to half of the intrinsic period Ty = 2.67 of a single FHN oscillator. Also sufficiently high
inter-layer coupling strength 012 > 0.1 is needed. Note that chimera states (white) always exist,
indicating bistability.

3 a) 3 b)
0.025
2 28 0.02
1 1 i 10.01
10.005
00 0.1 0.2 0.3 0.4 0.5 00 0.1 0.2 0.3 0.4 0.5 0
012 012

Figure 4. a) Map of regimes for the slow-fast coexistence state (red). The chimera state (white) always exists, indicating
bistability. b) Mean frequency deviation Aw between the two layers in the (o12, 7) plane. Parameters: N =244, ¢ =
0.05,a=0.5,r=0.35,p=7/2 — 0.1, 01 =02 =0.1.

It is interesting that the slow-fast characteristic of the neurons (u; ,,v;,) always applies
simultaneously to the pair of neurons (u; 1,v;1) and (u;2,v;2). This is because the mean
frequency profiles of both layers are similar: if w; 1 is high, w; 2 will also be high. To show this, we
use a measure of the frequency deviation:

Aw = i1 — W2l 4.1
w zE?;aXN} |Wz,1 Wz,2| ( )

In Fig. 4b the dependence of Aw on o12 and 7 is shown. For all considered values of 012 and
T Aw < 0.03. Moreover, for the region of slow-fast coexistence (Fig. 4a) Aw < 0.005. This means
that neurons with the same intra-layer subscript cannot have different slow-fast characteristics.
Aw only increases when 12 — 0.
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5. Analytical Results

In this section we will give an explanation for the existence of two frequencies for certain o2 and
T values. Also we will show that this characteristic always applies to the pair of neurons in the
two layers.

(a) A single Neuron with Delayed Feedback

We will start by considering one FitzHugh-Nagumo neuron with delayed self-coupling;:

uS
eu=u————v+to(ult—7)—u),

; (u(t =)~ u) 61
v=1u-+a.

Again, we fix € =0.05, a =0.5. Also we choose o =0.4 as in Fig. 3. If we start with 7=0 and
then increase 7, at some point the neuron (u(t), v(t)) starts to follow the virtual delayed neuron
(u(t — 7),v(t — 7)) on the limit cycle, whereas the limit cycle itself becomes smaller. This effect is
shown in Fig. 5a. Note that in [101] a similar model is studied, but it is operated in the excitable
regime (a > 1), and the analysis is performed for small delay 7 = O(e).

a) b) c) .
2 “ |
1 !
<0 .
3 g
1 2
2 13
2 0 2 ) 0 2 15 2.5 3
uy(t) 7, delay

Figure 5. a) Limit cycle for a single FitzHugh-Nagumo oscillator with delayed feedback for 7 = 1.2 in the (u, v) plane. Limit
cycle period T' = 1.31. The dark blue dot denotes the real neuron (u(t), v(t)), and the light blue dot is a delayed neuron
(u(t — 1), v(t — 7)). b) Phase plane (u1, u2) for a pair of in-phase neurons. ¢) Dependence of period 7" on delay T
for the FHN oscillator with delayed feedback (blue dots). Solid lines: theoretical bounds (5.3). Parameters: e = 0.05,
a=0.5, 0 = 0.4. The history function (initial condition) is chosen as constant for ¢ € [—7, 0].

The fact that the delayed neuron is slightly ahead of the real neuron means that the difference
h=T — 7 between period T and delay 7 is small. When the system is on a stable limit cycle,
u(t) =u(t + T). This means that u(t — 7) = u(t + T — 7) = u(t + h). Considering small h, we can
approximate u(t + h) =~ u(t) + hi(t). Then the dynamic equations become

'LL3
(e—och)i=u— — —v,
3 (5.2)
v=u+a.

This is equivalent to an undelayed FHN system with rescaled & =& — oh. It is obvious that £ >0
needs to hold. Thus we obtain the inequality h =T — 7 < /0. This argument assumes that the
delayed neuron is slightly ahead of the real neuron. It results in the following inequality giving
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upper and lower bounds for the period of the limit cycle:
T<T<r+§. (5.3)

Inequality (5.3) predicts the numerically obtained dependence of T on 7 which is shown in Fig. 5c.
Starting from 7 = 0.97 up to the intrinsic period 7 =Ty = 2.67, a very good approximation of the
period T is obtained.

(b) Two Delay-Coupled Neurons

Now let us consider a system of two FHN neurons coupled with delay [90,102]:

3

. U
6u1:u1—§1—v1 +o(ug(t—71)—u1),

U1 =u1 +a,

(5.4)

. ul
sugzugf37v2+0(u1(t77)7u2),

V2 = u9 + a.

The parameters € = 0.05, a = 0.5, o = 0.4 are the same as in the previous case.

If u1 &= ug and vy = v2 as initial conditions, the two neurons will synchronize, and their limit
cycle will be the same as for one neuron with delayed feedback. Also, if we depict the trajectory
(u1(t), u2(t)) in the phase plane, it will converge to the line u1 = uo, see Fig. 5b.

For a system of two neurons also anti-phase dynamics is possible [90], when the two neurons
are initially at antipodal positions, and the delay time is approximately half the period, i.e., each
neuron is slightly behind the delayed version of the other neuron. This is shown in Fig. 6a.

a)

c)

\

intrinsic period/2

intrinsic period

1.5 2
T, delay

no
(2}
w

Figure 6. a) Limit cycle for two delay-coupled FitzHugh-Nagumo neurons for 7 = 1.2 in the (u, v) plane. Limit cycle period
T = 2.55. The dark blue dot denotes the real neuron (u1(t), v1(t)), the dark red dot is the real neuron (u2(t), v2(t)),
the light blue dot is the delayed neuron (u1(t — 7),v1(¢t — 7)), and the light red dot is the delayed neuron (ua(t —
7),v2(t — 7)). b) Phase plane (u1,u2) for a pair of anti-phase neurons. ¢). Dependence of T" on T for two delay-
coupled FHN oscillators (blue dots). Solid lines: theoretical bounds (5.5). Parameters: ¢ = 0.05, a = 0.5, o = 0.4. Initial
conditions: The first neuron is placed at (u1, v1)=(1.7, 0) (i.e, in the middle of the right slow manifold in phase space), and
the second neuron is placed at the antipodal position (-1.7, 0). The history function is chosen as constant for ¢t € [—, 0].

The anti-phase dynamics shows up as a butterfly-like trajectory (uq(¢),u2(t)) in the phase
plane, see Fig. 6b. Again, on the limit cycle w1 (t) =u1(t +T)=u2(t +7/2). We can choose
h=T/2 — 71, then w1 (t — 7) =ug(t + T/2 — 7) = ua(t + h). The first order approximation gives
u1(t — 7) = uz(t) + hia(t). Thus, system (5.4) separates into two independent systems of the type
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of (5.2), which again gives the inequality h < /0. Recalling the definition of h, we obtain
2T<T<27'+2§. (5.5)

The numerical dependence of T" on 7 is shown in Fig. 6¢c. Inequality (5.5) holds from 7 =0.34 up
to half of the intrinsic period 7 =Tp/2 = 1.34.

(c) Application to the Two-Layer Network

Our results from subsections (a) and (b) show that there exist some values of 7 for which
two delay-coupled FHN neurons can exhibit two different types of dynamics with different
frequencies, depending on the realization of the initial conditions. Each pair of neurons (one
in layer 1 and the other in layer 2) has approximately equal probability of being in-phase or
anti-phase, and each realization may give a different dynamics, i.e., a different sequence of slow
(anti-phase) and fast (in-phase) oscillators within each layer, thus the system is highly multistable.
According to Fig. 5¢ and Fig. 6¢, for 0 =0.4 and 7 € [0.97,1.34] the period T' can be estimated
either by (5.3) (in-phase) or by (5.5) (anti-phase).

a) b)
2 2
1 1
t;/s 0 =0
3 5
1 1
_2 4 _2 4
9 0 2 9 0 2
uy(t) u12,1(t)

Figure 7. Phase planes (u1, u2) for two pairs of neurons in the two-layer network. a) Pair of neurons (u4,1(t), v4,1(t))
and (ug4,2(t), v4,2(t)), which belongs to the fast class (in-phase, mean frequency w4 = 4.87). b) Pair of neurons
(u12,1(¢),v12,1(t)) and (u12,2(t), v12,2(t)), which belongs to the slow class (anti-phase, mean frequency wi2 =
2.68).

Those neurons who follow (5.3) have almost double frequency as those who follow (5.5). Hence
the fast class in the two-layer network corresponds to in-phase dynamics, while the slow class is
associated with anti-phase dynamics. To verify this, we show exemplary phase planes (u1, u2) for
the full network. In Fig. 7 panel a) depicts the trajectory (u4,1(t), u4,2(t)). This trajectory tends
to the line w1 =wu2, as in Fig. 5b. Neuron (u4,1(t), v4,1(t)) has mean frequency wy = 4.87, thus
belonging to the fast class. At the same time, Fig. 7b shows the trajectory (u12,1(t), u12,2(t)), which
is clearly of the “butterfly” shape, as in Fig. 6b. Neuron (u12,1(t), v12,1(t)) has mean frequency
w12 = 2.68 and belongs to the slow class. This is in good agreement with previous numerical
results for two delay-coupled neurons [90].

Also, one can see that the limit cycles in Fig. 5a and Fig. 6a perfectly match with the phase
space snapshots in Fig. 3g-h, where two limit cycles coexist.

Throughout this paper we choose the coupling radius equal to 7 = 0.35, since the regime where
chimeras occur is centered around values close to r =1/3 (see [92], Fig. 3). As long as we stay
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in that regime, the results are robust. In general, the effect of slow-fast coexistence should not
depend upon the intra-layer topology, since our analytical explanation of coexistence of slow-fast
oscillations is independent of the intra-layer topologies and relies mainly on the delayed coupling
of a pair of neurons, one from layer 1, the other from layer 2, thus this effect can be observed
with many different network structures. For our choice of N =244, the fractal connectivity
network in layer two is much sparser than the compact nonlocally coupled network in layer
one; actually, the intra-layer fractal connectivity string has only 32 non-zero connections for each
neuron versus 162 connections for nonlocal coupling (for r =1/3). For single-layer networks a
careful analysis of the robustness of chimera states for FitzHugh-Nagumo oscillators with various
coupling topologies, including different fractal connectivities, has established that the patterns
are rather robust [97]. However, we have found slow-fast coexistence only in two-layer multiplex
networks, due to the delayed coupling of pairs of neurons from the two layers. The successive
elimination of links in the nonlocal coupling to make a stepwise transition from compact nonlocal
to fractal connectivities has been systematically studied in a one-layer network in [98]. In order
to investigate this transition for our two-layer model, we have performed simulations for the
parameters of Fig. 3, but with m =1, 2, 3, 4 iteration steps of the base pattern (101) in layer 2. For
this purpose we have expanded the m-step bit pattern of size 3™ to a full final bit pattern of size
N =3 4 1 = 244 identical elements by replacing each element with 243/3™ copies of itself and
again adding the additional zero in the first entry of the final pattern (corresponding to absent self-
coupling), similar to [98]. The compact nonlocal coupling of layer 1 is kept fixed at r =1/3. We
find that the slow-fast patterns persist for all iteration steps m =1, 2, 3, 4, 5, even for m = 1 which
means identical compact nonlocal topologies in both layers. The results are displayed in Figs. 8
and 9 for m =1 and m = 3, respectively. Note that both figures show two coherent domains, but
the slow-fast frequency profiles are very similar to the case m = 5 shown in Fig. 3.

a) b) c) d)
5 5 27, . . . 25, . . o
4 4 r : . Tt
5 5 g0 ) £0 .
3 3 . . . . . ° .
e o o oonn & wp @ o o oovn o mm . . . ,... s . °
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Figure 8. Slow-fast coexistence patterns for different topologies of layer 2. Same plots as in Fig. 3 for iteration stepm =1
of the base pattern (101) in layer 2, i.e., identical nonlocal topologies in both layers. Parameters: N = 244, € = 0.05,
a=0.5,r=81/244=0.33,p=n/2—0.1,01 =02=0.1,012 =04, 7=1.2.
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Figure 9. Slow-fast coexistence patterns for different topologies of layer 2. Same plots as in Fig. 3 for iteration step m = 3
of the base pattern (101) in layer 2. Parameters as in Fig. 8.

6. Control of the Two-Layer Network

(a) Control of two delay-coupled oscillators

As shown in Section 5(c), the dynamics of the full network depends heavily on the properties of
corresponding pairs of delay-coupled neurons (one in layer 1, the other in layer 2). These pairs
can perform in-phase or anti-phase oscillations, depending on initial conditions, similar to two
delay-coupled oscillators in Eq. (5.4). Our aim now is to select and stabilize either of these two
behaviors, independently of initial conditions. For this purpose we use proportional control with
control coefficient K in the following form:

3
EUL =Ul — % —v1+o(ug(t—7) —u1) + K(ug —uy),
'[)1:u1+a—|—K(v2—v1),

, 6.1)

51},2:1@_%—U2+U(u1(t—T)—u2)+K(U1—UZ)a

@QIUQ-FCL-I—K(vl—Ug).

K =0 corresponds to the previous case (Section 5). For sufficiently large positive K the anti-
phase mode becomes unstable and in-phase dynamics arises even if the initial condition is
chosen in anti-phase; numerical simulations show that it is sufficient to choose K > 0.3, see
Fig. 10a. For negative K the in-phase mode becomes unstable and anti-phase dynamics occurs
even for symmetric initial conditions, see Fig. 10b. Therefore it is possible to control the type of
synchronization (in-phase or anti-phase, corresponding to the fast and the slow periodic mode,
respectively) of the system (5.4) by proportional control.
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Figure 10. Proportional control of in-phase and anti-phase dynamics of two delay-coupled FHN oscillators: Phase plane
(u1,u2) for @) K = 0.5: Transition from anti-phase to in-phase; b) K = —0.2: Transition from in-phase to anti-phase.
Other parameters: € = 0.05, a = 0.5, 0 = 0.4.

(b) Control of Proportion between Slow and Fast Classes in the Network

The slow-fast coexistence state in the two-layer network arises when some neuron pairs oscillate
in-phase, whereas others oscillate in anti-phase. The number of neurons in each class depends on
the initial conditions. Since the proportion of the numbers in the slow and fast class determines
the overall mean frequency of the network, it is important to find a way of controlling this ratio.
For instance, in neuroscience different stages of sleep are associated with different frequencies of
spiking neurons, and sleep regulation is controlled by the thalamocortical system [64].

To this purpose first we rewrite the network equations (2.3):

3
Ui\ _ (g — 5 — v t o Ay t o w2t —7) — w1
i1 ui1+a i1 0 7
. ul u
clin) _ (w2 — =4 —vi2) 4 - Ajy 4 o1 i1 (t—7) — w2 .
Vi 2 ui2+a 02 0

Here A}, and A7, denote the cumulative intra-layer coupling effect of layer n on neuron :

u 1 Wi 1 — Wi u 1 Wi o — Ws
1) 7,1 7,1 2| _ 7,2 7,2
L - E R(¢ , | = E R(o
( ?,1) 2rN (@) (vj,l - %1) < 2’,2) Gil 5 (@) (%2 - Ui,2>

li—il<rN ij=1
(6.3)

6.2)

To simplify the notation we define x; = u; 1 — u; 2 and y; =v; 1 — v; 2.

Parameters o12 and 7 are crucial for the emergence of the slow-fast coexistence state (see map
of regimes in Fig. 4a. In the following we fix them as 012 = 0.4 and 7 = 1.2. In analogy with the
instantaneous proportional control term with control coefficient K in Subsection (a) we now use

u

S . . Aln .
the cumulative instantaneous intra-layer coupling terms oy, Av | in the role of control terms

in
for the full network equations (6.2) with control parameters o1 and 2. We will develop a control
algorithm using the speed-gradient method [95,96].
Given the general nonlinear dynamical system z = F'(z, u), the speed-gradient method can be
used to minimize a nonnegative function Q(z), also known as goal function, along the trajectories
of the system by properly choosing the control parameter u. In order to design a control algorithm,
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the scalar function w(z, u) = Q is calculated along the trajectories:
w(z,u) =[V2Q(2)]" F(z,u). (6.4)

Then the gradient of w(z, u) with respect to the control variable u is evaluated as

$(zu) = Vu ([V:Q)] Fz,u)) - (6.5)
Finally, the control function u is obtained as

w=up — 74 (2,u) (66)

with some control gain v >0, and ug is the initial (reference) control value (often ug =0 is
assumed). Eq. (6.6) is called speed-gradient (SG) algorithm in finite form since it suggests to
change u proportionally to the gradient of the speed of changing (). For the speed-gradient in
its differential form see [96].

The idea of this algorithm is the following: The term —V,w(z,u) points to the direction in
which the value of ) decreases with the highest speed. Therefore, if one forces the control signal
to “follow” this direction, the value of Q will decrease and finally be negative. When Q <0, then
Q will decrease and, eventually, will tend to zero.

Let us now apply this control algorithm to the two-layer network. If we want to control the
proportion between the numbers of fast and slow neurons, we can use the following strategy: we
find two algorithms, one aimed at increasing the number of fast neurons and another one aimed
at decreasing it. Then we apply these algorithms subsequently in order to get the desired value
of proportion. The results from section 3 show that once we stop the control algorithms and fix
the control parameters o1 and o2 to some constant values, the numbers of fast and slow neurons
remain also constant.

To find the algorithm for increasing the number of fast neurons let us use the SG method with
goal function

N

Qr=3> (#F+42). (67)

=1

This function should be zero if every neuron pair is in-phase, so minimizing it gives us the
maximizum size of the fast class. Applying the SG method leads to the control algorithm

N
o1=—7 Y [£i A1 +yiAY ),
=1

. 6.8)

o2 =7 [2iAfs +yi AL,
i=1

As shown above, the fast and the slow class correspond to in-phase and anti-phase oscillations,
respectively, which can be used as an approximately instantaneous criterion for determining the
size of the fast and the slow class. If a neuron pair is approximately in-phase, |x;| and |y;| should
be small. Thus, we can use the number of nodes K, with sufficiently small |z;| and |y;| as a
measure of the size of the fast class:

K pase = ##{i : 27 + 4y} <2} 6.9)

In order to have comparable magnitude of z; and y; we use 4yiz. The evolution of Ky, in the
system with control (6.8) is shown in Fig. 11a. This plot shows significant oscillations of Kt
on the time scale of one FHN period, because the measure of the size of the class is not strictly
instantaneous. Asymptotically, all neurons are in the fast class.

10000000 V 008 "H "SUBLL lud B10'BulysgndAlaioosiesol-els)



260 a)

240
£ 920
<
200
180
0 5 0 15 20 25 30 0 100 200 300 400 500 _ 600
t t

Figure 11. a). Control (6.8) for driving all neurons to the fast class. b). Control (6.11) for driving all neurons to the slow
class. Parameters: N =244, =0.05,a=0.5,7r=0.35, p=7/2 — 0.1, 012 = 0.4, 7= 1.2,y = 0.03.

To obtain an algorithm for decreasing the number of fast neurons, we can use a different goal
function:

N
Qszzz(:sﬂ/m\f\/@). (6.10)
=1

Here the constant 3 is used to guarantee nonnegativity, but it has no effect on the algorithm itself
(any number > 3 can be chosen). Square roots are used since they give more weight to the neurons
with small |z;| and |y;|. Applying the speed-gradient method we obtain:

518N T4 u Slgnyz v
- 7}: A
o {w 2l T ]

o9 = ’Yi |:Slgn Ty Au + signy; Av :|
Vil Vil
Fig. 11b shows the measure for the size of the fast class K,,; with this control algorithm. As in
the previous case, the goal is asymptotically approached, i.e., no neurons are left in the fast class,
but this requires slightly more time, because destabilizing the in-phase dynamics is more difficult.

Thus the proposed algorithms (6.8) and (6.11) allow to achieve the maximum and minimum
values of K f44, respectively, i.e., all nodes or no nodes, respectively, are in the fast class.

(6.11)

7. Conclusion

We have shown that in a two-layer network with delayed inter-layer coupling a new regime of
coexistence of slow and fast oscillations can arise. We have found the regimes of existence in the
plane of the inter-layer coupling strength and delay, and have proposed an analytical explanation.
We have also designed a control algorithm to control the proportion between the numbers of slow
and fast neurons in the network, and thereby control the overall mean frequency. Moreover, our
study might open up further interesting directions of future research by analyzing the effects of
other topologies in both layers.
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