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Abstract

Transient spatiotemporal chaos was reported in models for chemical reactions and in ex-

periments for turbulence in shear flow. This study shows that transient spatiotemporal 

chaos also exists in a diffusively coupled Morris-Lecar (ML) neuronal network, with a 

collapse to either a global rest state or to a state of pulse propagation. Adding synaptic 

coupling to this network reduces the average lifetime of spatiotemporal chaos for small to 

intermediate coupling strengths and almost all numbers of synapses. For large coupling 

strengths, close to the threshold of excitation, the average lifetime increases beyond the 

value for only diffusive coupling, and the collapse to the rest state dominates over the col-

lapse to a traveling pulse state. The regime of spatiotemporal chaos is characterized by 

a slightly increasing Lyapunov exponent and degree of phase coherence as the number 

of synaptic links increases. In contrast to the diffusive network, the pulse solution must 

not be asymptotic in the presence of synapses. The fact that chaos could be transient in 

higher dimensional systems, such as the one being explored in this study, point to its 

pres-ence in every day life. Transient spatiotemporal chaos in a network of coupled 

neurons and the associated chaotic saddle provide a possibility for switching between 

metastable states observed in information processing and brain function. Such 

transient dynamics have been observed experimentally by Mazor, when stimulating 

projection neurons in the locust antennal lobe with different odors.
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Chapter 1

Introduction

Transient chaos is a special case of chaotic dynamics in which the system dynamics spon-

taneously collapses to a system attractor without external perturbation. Such collapse is

typically associated with the existence of a chaotic saddle[1], i.e., an invariant manifold

that is not attractive. Recent studies in Neuroscience suggest that a good candidate for

the switching of neural activity between metastable states could be due to a sequence of

saddle points[2]. We argue that chaotic saddles might be important in this context since

they allow for more complex dynamics near a metastable state.

Transient chaos has been reported for several systems and across scientific disciplines.

Transient chaos in low-dimensional dynamical systems has been studied, e.g., in a three

species food chain model for species extinction in ecology[3], and in Chua’s electronic

circuits[4]. Transient spatiotemporal chaos has been found in reaction-diffusion models for

semiconductor charge transport[5], for the CO oxidation on a single-crystal Pt surface[6],

for a cubic autocatalytic reaction[7], and for turbulence in shear flows[8]. Recently, tran-

sient spatiotemporal chaotic dynamics has been shown to exist in a ring network of diffu-

sively coupled, identical Morris-Lecar[9] (ML) neurons[10].

In a realistic neural network the main connections are electrical and chemical synapses.

Chemical synapses involve the release of a neurotransmitter that either inhibits or excites

the postsynaptic neuron. An electric synapse is a much shorter, faster and simpler con-

nection happening through gap junctions between neighboring neurons via diffusive cou-

pling. Models for neuron networks often focus on synaptic coupling. The importance of

diffusive coupling in model systems has recently been linked to the observed lateral potas-

sium diffusion in neuronal networks[11]. In an ML network, diffusively and synaptically

coupled, chemical synapses have been shown to be more efficient in enhancing stochastic

coherence[12].

This study explores transient spatiotemporal chaos when synapses are added to a diffu-

sively coupled ML neuronal ring network. The synapses are modeled as excitatory, chemi-

cal synaptic coupling that activate AMPA receptors for glutamate. This particular receptor

is commonly used in network models [13], and has a fast excitatory response. The model

is introduced in Chapter 2. Statistics and dynamical properties of transient chaos in the

presence of synapses are presented in Chapter 3. Chapter 4 discusses the possibility of

chaos initiation upon collapse.
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Chapter 2

Model

A network of N diffusively and synaptically coupled, identical, excitatory Morris-Lecar

neurons is considered[9, 14] (Fig. 2.1a). The membrane potential Vi, and the fraction of

open potassium channels ni for neuron i is modeled by

V̇i =
1

Cm
(−Iion− Isyn + I) + D∆i, (2.1)

ṅi = τn (nss−ni) , (2.2)

where Cm is the membrane capacitance per unit area, Iion is the ionic current, Isyn is the

synaptic current and I is the applied current. When Isyn is set to zero the network is only

diffusively coupled. The ∆ operator characterizes the diffusive coupling between neigh-

boring neurons, defined as ∆i = (Vi−1 +Vi+1−2Vi). D is the diffusive coupling strength. The

ionic current, Iion, models the membrane activity as the sum of three ohmic currents: the

inward calcium current, the outward potassium current, and the leak current associated

with other ion fluxes.

Iion = gCamss(Vi−VCa) + gKni(Vi−VK) + gL(Vi−VL). (2.3)

The open-state probability functions, mss and nss, and the term τn are associated with the

time course of potassium channel activation. These terms are governed by

mss =
1
2

(
1 + tanh

[
Vi−V1

V2

])
, (2.4)

nss =
1
2

(
1 + tanh

[
Vi−V3

V4

])
, (2.5)

τn = ϕcosh
(

Vi−V3

2V4

)
. (2.6)

The parameters used in the above equations are summarized in Table I. The synaptic cur-

rent in Eq. (2.1) is also modeled as an ohmic current[15],

Isyn = g
N

∑
j=1

wj,isj,i(Vi−Vs), (2.7)
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Table 2.1. Model parameters for the Morris-Lecar (Type I) neuron[9, 14] and for synaptic
coupling with AMPA receptor[16]

Cm Membrane Capacitance 20 µF/cm2

gK Potassium Conductance 8 mS/cm2

gL Leak Conductance 2 mS/cm2

gCa Calcium Conductance 4 mS/cm2

VK Potassium Equilibrium Potential -80 mV
VCa Calcium Equilibrium Potential 120 mV
VL Leak Equilibrium Potential -60 mV
V1 Calcium Activation Potential -1.2 mV
V2 Fitting parameter for Voltage 18 mV
V3 Potassium Activation Potential 14.95 mV
V4 Fitting Parameter for Voltage 17.4 mV
ϕ Inverse Time Scale for Recovery Process 1/15 s
Vs Reversal Potential of the Channel 0 mV
α Growth Rate of Synaptic Conductance 1.1 mM−1ms−1

β Decay Rate of Synaptic Conductance 0.19 ms−1

Tm Maximal Concentration of Transmitter 1.0 mM
Vp Voltage for Half-maximal Rate 2.0 mV
Kp Steepness of the Voltage Dependence 5.0 mV

where g is the conductance of the synapse, wj,i represents the synaptic coupling matrix

with wj,i=1, if there exists a synaptic link from neuron j to i, otherwise wj,i=0. sj,i is the

fraction of open channels in the synaptic link between neuron j and i, and Vs is the reversal

potential of the channel. The fraction of open channels is modeled by

ṡj,i = αT(1− sj,i)−βsj,i, (2.8)

where T is the concentration of the neurotransmitter in the synaptic cleft, α and β are rise

and decay time constants respectively. The concentration of neurotransmitter T depends

on the membrane voltage of the presynaptic neuron Vj, and is modeled by a sigmoidal

function,

T =
Tm

1 + exp
(
− (Vj−Vp)

Kp

) . (2.9)

where Tm, Vp, and Kp represent parameter values defined in Table I. Figure 2.1b shows how

the fraction of open channels changes in time subject to different presynaptic membrane

potentials starting with three representative initial values for s.
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Figure 2.1. Network topology and time evolution of the fraction of open channels. (a) Example network
topology for a ring network of N=20 diffusively coupled identical ML neurons, with the addition of Ns=7
(unidirectional) synaptic links (red arrows). (b) Typical time evolution of the fraction of open channels (s) for
several presynaptic membrane potentials Vj and initial conditions s(t=0)=0, 0.5, 1.0.

A bifurcation analysis for the single Morris-Lecar neuron shows that the neuron[10, 14]

is excitable below I=38.7µA/cm2, where the SNIC (saddle-node on invariant circle) bifur-

cation occurs. In this excitable regime the system has three steady states, a stable node,

a saddle point, and an unstable focus. A typical excitation cycle for a single ML neuron

is shown in Fig. 2.2. If a neuron gets perturbed above a critical threshold, the trajectory

goes around the unstable focus to then return to the stable node. Above I=38.7µA/cm2

the system presents a stable limit cycle and thus oscillatory behavior. At the subcritical

Hopf bifurcation near I=41.4µA/cm2, the unstable focus becomes stable and an unstable

limit cycle is born. The threshold for excitation in an ML ring network is near I=28µA/cm2.

Throughout this study an intermediate value in the excitable regime, I=32µA/cm2, was

used.

−40 −20 0 20 40

0

0.1

0.2

0.3

0.4

0.5

V [mV]

n

Figure 2.2. A typical excitation cycle in phase space (red, dashed line) for a single Morris Lecar neuron
(I=32µA/cm2). The two nullclines (blue) and the three steady states, a stable node (triangle), a saddle point
(square), and an unstable focus (circle) are shown.
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Figure 2.3. Collapse of transient spatiotemporal chaos in a diffusively coupled ML network of size N=50.
a) Collapse to a global rest state. b) Collapse to a traveling pulse solution. The colors indicate a membrane
potential value close to the unstable focus (orange) or close to the stable point (blue).

In a diffusively coupled ML ring network the spatiotemporal chaos is transient[10].

The network remains in the chaotic state until a sudden collapse to either the rest state

(stable node) or a pulse solution (Fig. 2.3). The rest state corresponds to a global steady

state where every neuron in the network is at the stable node. The pulse solution is asso-

ciated with the network reaching a homoclinic orbit in phase space. Two distinct pulses

have been observed, a wide pulse and a narrow pulse. They differ in their pulse profile

(Fig. 2.4a), in their phase portraits (Fig. 2.4b), and in their spatiotemporal representation

(Fig. 2.4c,d). Another important aspect of a diffusively coupled ML ring network is that

the average lifetime of the chaotic transient increases exponentially with the network size.

This study explores how all of those characteristics change when synaptic links are added

to the diffusive network.
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and spacetime pattern for the wide (c) and the narrow (d) pulse solution.
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Chapter 3

Adding synaptic coupling

A variety of synaptic links are added to the diffusively coupled ML ring network. The

synaptic links are unidirectional and restricted to no more than one per neuron. The num-

ber of synaptic links, Ns, the length of a synaptic link, Ls, and the coupling strength, g,

are the main parameters. Typical spacetime patterns of a synaptically coupled neural net-

work are shown in Fig. 3.1. States of excitation (orange) are alternated with states where

neighboring neurons are close to the rest state (blue). For low enough coupling strength,

g=0.3mS/cm2, the spatiotemporal patterns are similar to the diffusive case, and indepen-

dent on the number of links. As the coupling strength g increases (g=1.0 mS/cm2) the spa-

tiotemporal pattern starts to change for high Ns. Larger regions of neurons in the rest state

become more rare. The timescale of neighboring neurons in the rest state decreases. For

g=1.7mS/cm2 and g=2.4mS/cm2 this behavior becomes more extreme. For a high number

of synaptic links, the active and non-active regimes become more localized. The ”diffusive

neighborhood” is destroyed by the nonlocal synaptic couplings, thus creating the vertical

patterns in Fig. 3.1. The critical coupling strength above which a single synapse from an

active presynaptic neuron can excite a postsynaptic neuron is g=2.5mS/cm2.

The neurons’ phase coherence is measured with the Kuramoto [17] order parameter.

The amplitude R∈[0,1] of the mean field neuron population is given by

Reiψ =
1
N

N

∑
j=1

eiθj , (3.1)

where θj is the phase of neuron j relative to the unstable focus, and ψ is the mean field

phase. When a network undergoes the collapse of the chaotic state to the global rest state,

the order parameter will reach its maximum value, R=1 (Fig. 3.2a, b). For a collapse to a

pulse solution, R will oscillates below one within a small amplitude (Fig. 3.2b). The order

parameter was measured for a network of N=100 neurons with Ns∈ [1,N/2] links at three

representative values of g. A sample illustrating the convergence behavior of R is shown in

Fig. 3.3a. The phase coherence R for small coupling strength, g=0.3mS/cm2, is much lower

than for the cases where g=1.0mS/cm2 or g=1.7mS/cm2. For each coupling strength there

are a total of 100 simulations with a combination of 10 initial conditions for V and n, and

10 random link locations. For every simulation the time it takes to reach convergence of

the order parameter was short.
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Figure 3.1. Spatiotemporal dynamics in the presence of synaptic links. Spatiotemporal dynamics for the
membrane potential (V) in a ring network of N=100 diffusively coupled Morris-Lecar neurons to which Ns
synaptic links have been added with varying coupling strength g. The length of each link is randomly chosen,
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been started with the same initial chaotic state, and the synaptic coupling was added at time t=0. Each of the
spatiotemporal patterns is analogous to Fig. 2.3, covering a time interval of 10 s and 100 neurons.
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Figure 3.2. Spatiotemporal dynamics and corresponding order parameter, R, for a diffusively coupled ML
network of N=50 neurons, for the collapse of chaos to (a, b) the global rest state, and to (c, d) a pulse solution.

For small coupling strength (g=0.3mS/cm2), the average order parameter, 〈R〉, is slightly

increased in comparison to the diffusively coupled network, independent of the number of

synapses, Ns (Fig. 3.3b). This behavior is consistent with Fig. 3.1; the spatiotemporal pat-

terns, for high Ns are statistically indistinguishable from a network that is just diffusively

coupled. For intermediate coupling strength, g=1.0mS/cm2, 〈R〉 increases almost linearly

with Ns, until Ns=30 where it seems to reach a plateau. For, g=1.7mS/cm2, 〈R〉 increases

with increasing Ns, and does not reach a plateau even for the largest possible number of

synapses.
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Figure 3.3. Convergence behavior of the order parameter. (a) Convergence behavior of the order param-
eter, R, for an ML network with N=100 neurons, and Ns=20 synaptic links of strength g=0.3 mS/cm2 (blue),
g=1.0mS/cm2(red), and g=1.7mS/cm2(black). For each coupling strength there are a total of 100 simulations
with a combination of 10 initial conditions for V and n, and 10 random locations for Ns links. (b) The average
order parameter, 〈R〉, versus the number of synapses, Ns, for different coupling strength, g. The statistical
analysis of transient chaos is done on a network of size N=100 to ensure a long enough lifetime to reach
convergence.

Figure 3.4 shows the order parameter, R, for a wide variety of coupling strengths and

number of links, covering the entire range of possible link numbers and also coupling

strengths for up to the critical coupling strength where a synapse induces excitation. For

a single synaptic link, Ns=1, the order parameter, R, is close to the order parameter for

the diffusive case for all coupling strengths. For larger number of couplings, Ns, the order
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Figure 3.4. Order parameter versus coupling strength. Order parameter, R, versus coupling strength for
transient chaos on an ML network with N=100 neurons. Each line represents a different number of synaptic
links, Ns. The location of the synaptic link was chosen randomly. For Ns=1 a link length of Ls=1 and Ls=N/2
are shown; for all others, Ls was randomly chosen.

parameter starts out the same as for the diffusive case, then increases clearly with increas-

ing coupling, until it levels off, typically remaining close to constant. For a network with

maximum possible number of links, Ns=N/2, R increases until g=1mS/cm2 where it starts

to decrease. From the order parameter study it can be deducted that a single synaptic link,

or a high number of links at low coupling strength, do not change the dynamics (phase

coherence) on the network. On the other hand, as g increases the effects on the dynamics

are visible and distinct for every Ns case, resulting in an increase in the averaged order

parameter.

The convergence behavior of the finite time Lyapunov exponent[18] shows that the

spatiotemporal dynamics is chaotic in the presence of synapses. The Lyapunov exponent,

λ, convergences to a positive value that is different from the diffusive case, implying that

synapses influence the strength of chaos for a variety of coupling strengths. An example

for convergence of the largest Lyapunov exponent for a network with an intermediate

number of synaptic links, Ns=20, at several coupling strengths, is given in Fig. 3.5a. The

dynamics is typically more chaotic than without a synapse and the error bar increases with

increasing coupling strength, g. For high coupling strength above the critical coupling
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Figure 3.5. Lyapunov exponent convergence and dependence on the coupling strength. (a) Convergence
behavior of the largest Lyapunov exponent, λ, in an ML network of N=100 neurons and Ns=20 synapses, at
several coupling strengths g. The error bar was calculated from 100 simulations, a combination of 10 random
initialization of V and n, and 10 random locations of links. The error bars are offset in the figure for a more
clear representation. (b) Lyapunov exponent for an ML network of N=100 neurons, where convergence is
reached in good approximation. Each line represents a different number of synaptic links, Ns. The location of
the synaptic link was chosen randomly. For Ns=1 a link length of Ls=1 and Ls=N/2 are shown. The diffusive
case is shown as a dotted line.

strength of synapse-induced excitation, the dynamics is slightly less chaotic than for the

diffusive case. The Lyapunov exponent is shown in Fig. 3.5b for several g and Ns values.

For few links, Ns=5, the Lyapunov exponent is slightly above the value of the diffusive

case. As Ns increases further, λ differs more and more from the diffusive case. λ increases

(faster) for low g, and then after reaching its maximum value at around g=0.5mS/cm2, it
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line represents a Ls. The bold red line shows the average over all Ls. The chaotic initial condition is the same
for all simulations.

decreases reaching the λ for the diffusive case for large coupling strengths (g=2.5mS/cm2).

After the chaotic phase the network dynamics collapses to either a rest state or a pulse

solution. The time the network requires to reach the collapse of the chaotic state is called

lifetime. The lifetime, τ, was first calculated for a network where only a single synaptic

link of length Ls was introduced (Fig. 3.6). For small links Ls=1 and Ls=2, τ is increasing

with increasing coupling strength g, and usually greater than the average lifetime for the

diffusive case. For any other Ls, the collapse is reached faster than for the diffusive case,

for small and intermediate coupling strength (up until g=1.7mS/cm2). For large coupling

strength, τ starts increasing rapidly with increasing coupling strength. For Ns=5 the aver-

age lifetime for 100 collapses (Fig. 3.7), is close to the average value for a single synaptic

link (Fig. 3.6). As more links are added to the network; the effects on the lifetime are more

noticeable. The average lifetime at first decreases below the value for the diffusive case for

low g. As the coupling strength increases to intermediate and high values, g>1mS/cm2,

〈τ〉 increases. Around g=1.6mS/cm2, 〈τ〉 passes the value for the diffusive network, and

clearly increases with g. The longest average lifetime was obtained when the network was

coupled with an intermediate value of Ns=15 links.

Figures 3.6 and 3.7 reveal that a single synaptic link can influence the lifetime of a dif-

fusively coupled network. A short, single link increases the lifetime of the network, while
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Figure 3.7. Mean lifetime versus coupling strength. Mean Lifetime, 〈τ〉, versus coupling strength, g, for
a network with N=50 neurons and different number of synapses, Ns. Each colored line represents a given
number of synaptic links. Each point of a line is an average over 100 simulations combined from 10 random
initial (V,n) conditions and 10 random synaptic link locations. For a single synaptic link, the average was done
over all possible link lengths Ls=1,..,25, and a single chaotic initial condition, and a single location of synapse.
Inset shows a zoom in of the boxed region.

a link length longer than two neurons decreases the lifetime to even shorter times than for

the diffusive case, unless the coupling strength is high enough to overcome the threshold

of excitability. When the network is coupled with more synaptic links at a low coupling

strength g, the order parameter (Fig. 3.4) and the spatiotemporal patterns (Fig. 3.1) are sim-

ilar to the diffusive case while the Lyapunov exponent increases for increasing number of

synapses, and the transient lifetime decreases to even shorter values than for the diffusive

case. On the other hand for large coupling (g>1mS/cm2), the order parameter increases,

the Lyapunov exponent decreases, the spatiotemporal pattern exhibits different features

from the diffusive case, and the lifetime of the transient chaos increases with increasing g.

The addition of synaptic links also influences the state that is reached upon collapse.

Once the network is synaptically coupled, the percentage of pulse solutions is typically less

than in the diffusive case. Figure 3.8 shows the frequency of collapse to a pulse solution

(P) for various coupling strengths g, and number of links, Ns. Without synaptic coupling,

about 50% of the 100 simulations reach a pulse state, and not the rest state. For a single

synaptic link the percentage of pulse solutions, P, fluctuates between 40-50% for low and
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Figure 3.8. Percentage of collapse to a pulse solution. Percentage P of collapse to a pulse solution for a
network with N=50 neurons at different coupling strength, g, and number of synaptic links, Ns. The dashed
line shows the diffusive case.

intermediate values of coupling strength. For higher values of g, the percentage of pulse

solutions starts decreasing, reaching a value of 30%. As Ns increases, this trend is repeated,

showing that P starts to decrease at even lower values of g, reaching a value of P=0 for high

g. With more synapses the network collapses only to the rest state for sufficiently large

coupling strength. The decrease of P for increasing g is qualitatively understandable; in

this case the lifetime of transient chaos is large, and the asymptotic state will be less likely

a pulse solution, in agreement with Fig. 3.7. This behavior shows that the collapse to the

pulse state is avoided for high coupling strength, because the synaptic links prevent the

collapse to pulse by providing super threshold perturbations to further excite the system.
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Chapter 4

Chaos initiation after collapse

After the collapse of the chaotic state, the network is in a state of global rest or it will have

collapsed to a traveling pulse solution. In a network that has only diffusive couplings,

these two states are permanent unless being perturbed by an external source (Fig. 4.1a).

On the other hand, when a network is both diffusively and synaptically coupled, the chaos

state can be initiated from a pulse solution under particular conditions (Fig. 4.1b). Such

behavior happens even when the synaptic coupling strength is very low. A synaptically

coupled network that collapses to a wide pulse can shift to a narrow pulse solution before

initiating chaos. The location of the change from wide pulse to narrow pulse, and the

location of the start of chaos is near the location of the postsynaptic neuron (Figs. 4.1 c, d).

To better understand the conditions for chaos onset, a single pulse in the presence of a

single synapse is studied for varying coupling strength and link length, and representative

spacetime patterns are shown in Fig. 4.2. Depending on the parameters an initially wide

pulse solution can be either asymptotic, or initiate chaos during its first interaction with

the synaptic coupling, or it can become a narrow pulse during its first interaction with the

synapse. The narrow pulse can then be either asymptotic or initiate chaos after its first in-

teraction with the synapse. Figure 4.3a shows a binary map of the system state (for a wider

range of parameters than Fig. 4.2) in the parameter space, given by the strength and length

of the synapse. An asymptotic pulse solution is labeled as black pixel, whereas chaos ini-

tiation is labeled as a white pixel. For low coupling strengths chaos initiation happens for

link lengths of Ls ≤ 9 neurons (Fig. 4.3a), indicating that the link connects neurons within

the pulse. The shorter the link length, Ls, the lower the coupling strength needs to be to

initiate chaos. As Ls increases it takes a higher g to initiate chaos. The alternating pattern

of chaos and no chaos shown for small Ls is caused by whether the synapse is connected

to the back (Ls increasing going left) or the front (Ls increasing going right) of the travel-

ing pulse. Once the link length becomes large enough (Ls > 9) chaos is always initiated at

coupling strengths above a critical value g > 1.8 mS/cm2. For a narrow pulse the critical g

is higher (g > 2.4 mS/cm2), and chaos initiation for low coupling strengths is possible for

link lengths up to Ls=7 (Fig. 4.3b). The narrow pulse presents less cases of chaos initiation

than the wide pulse. Figure 4.3c additionally labels parameter values for which the wide

pulse undergoes a switch to the narrow pulse, as presented in Fig. 4.1c. Such switches are

only present for small link lengths, Ls. A shift from the narrow pulse to the wide pulse
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Figure 4.1. Non-asymptotic behavior of synaptic network. (a) Collapse to a pulse solution for a diffusively
coupled network (g=0) with N=50 neurons. (b) Onset of chaos after collapse to pulse state in a network with
N=50 neurons and a single synapse, from neuron j=8 to i=11 (vertical red lines). Zoom in of Fig.(b), where the
change from wide to narrow pulse takes place (c), and where chaos is initiated again (d).

was not observed in the presence of a single pulse. A comparison of the parameters for

chaos initiation for the wide and narrow pulse in the map of Fig. 4.3d reveals that the area

representing links to the front of the traveling pulse (between Ls=3 and Ls=6 on the right

of the map) overlaps (Fig. 4.3d, black circles, white squares). This phenomenon is due to

the shape of the traveling pulse (Fig. 2.4).
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Figure 4.2. Example of chaos initiation. Panel of spatiotemporal evolutions of an initially wide pulse in
the presence of a single synaptic link in an ML network of size N=50 neurons, at different coupling strength
g and link length. The presynaptic neuron is held constant (j=8), while the link length is varied by changing
the postsynaptic neuron (i). The diffusive case corresponds to g=0. For parameter values close to regions of
chaos onset, longterm numerical simulations confirm that the pulse stays a pulse. The simulation time for
each pattern is 4000ms; for other parameters see Fig. 2.3.

A single pulse in the presence of two synapses yields more complicated patterns in the

maps. For small coupling strengths g, chaos is originated when the postsynaptic neuron i

is close to either of the two presynaptic neurons (j=8, and j=33 in this study), such that the

synaptic link connects neurons within the pulse near either of the postsynaptic neurons.
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Figure 4.3. Binary map for chaos initiation in the presence of a single synapse. Binary map of the system
state for varying coupling strength, g, and length of synapse, Ls, in the presence of a single synaptic link,
in analogy to Fig. 4.2. The simulations are started with either a wide pulse (a) or a narrow pulse (b). An
asymptotic pulse state is marked with a black pixel, whereas chaos initiation is marked with a white pixel.
The map in (c) corresponds to (a), additionally showing the locations where the wide pulse changes to a
narrow pulse. The maps in (a) and (b) are superimposed in (d), with dots indicating chaos initiation for the
narrow initial pulse.

This causes two ”bumps” in the parameter space (Fig. 4.4) that identify chaos initiation

for coupling strengths lower than the critical coupling strength. The shape of the bump

is related to whether the synapse is connecting the back of the traveling pulse to the front

or vice versa. In Fig. 4.4a the front is connected to the back of the right traveling pulse

first. As Ls8 increases to the left, neuron j=8 is connected first to neurons i=5, 6, and 7

(the back of the traveling pulse) and then to neurons i=9, 10, and 11 as Ls8 increases to

the right (the front of the pulse). This repeats for neuron j=33, resulting in two almost

identical bumps, very similar to the bump for a single synapse. On the other hand when

the back of the pulse is connected to the front of the traveling pulse first, the bump will

look as reflected (Fig. 4.4b). This happens when neuron j=33 is connected to i=36, 35, and

34 as Ls33 increases to the right (the front of the traveling pulse) and then to neurons i=32,

31, 30 as Ls33 increases to the left (the back of the pulse). The small differences in the two

bumps are due to the direction of the traveling pulse. For example, the black squares in

Fig. 4.4a for high coupling strength at Ls8=4, Ls33=21 are not present at Ls8=21, Ls33=4, which
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Figure 4.4. Binary map for two synapses, special case. Map of system states for varying coupling strength g
and link length in the presence of two synaptic links, Ls8 and Ls33 , in an ML network of N=50 neurons. The two
presynaptic neurons are held constant at j=8 and j=33 for all simulations. The two presynaptic neurons have a
synapse in the direction of the traveling pulse for Ls8 and Ls33 increases to the right (a). A synapse connecting
the front to the back of the traveling pulse Ls33 increases to the left (b). Initial condition, color coding, and
other parameters are same as in Fig. 4.3a

is understandable. When the pulses first encounter is with a short synaptic link, the wide

pulse will change to the narrow pulse and no chaos will be initiated, otherwise if the pulse

travels to a long link chaos will initiate.

The bumps, where chaos initiated for small coupling strength, can interact with each

other if the distance between the two postsynaptic neurons is changed. As before, the

presynaptic neuron j=8 is connected to the postsynaptic neuron with a synapse of length

Ls8 , and the presynaptic neuron j=33 is connected to a different postsynaptic neuron with
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(a) (b)
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Figure 4.5. Traveling pulse schematic. Schematic of the network used in Fig. 4.6. Diffusively coupled net-
work (red connections), in the presence of two synaptic links (blue arrows), having a traveling pulse solution
as initial condition(black curve). (a, b) A network in the presence of a short link and a long link (` is high). (c)
A network in the presence of two short links (` is low). (d) A network in the presence of two long links (` is
low).

a synapse of length Ls33 . The offset ` between Ls8 and Ls33 was introduced to allow the

network to have small and long links at the same time.

When the offset ` is high, one of the links is short and the other is long (Figs. 4.5a, b),

the two bumps are the farthest possible (Fig. 4.4a), and the pulse affects each presynaptic

neuron at different times. As the offset ` decreases, the difference in length between the

two links decreases allowing the two bumps to move towards each other. When `=1 the

offset is low enough to have almost the same link length for both synapses (Figs. 4.5c, d).
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The two bumps overlap, since the pulse reaches the presynaptic neuron at j=8 first, and is

able to initiate chaos for short synapses, before it reaches the presynaptic neuron at j=33.

This dependence on ` is the same for both, the wide pulse (Fig. 4.6a), as well as the narrow

pulse (Fig. 4.6b).

This study shows that synaptic coupling can cause chaos initiation in the presence of

a single pulse. Adding more synapses to the ring network influences chaos initiation in-

sofar as the probability for a short synapse increases, and only such short synapses that

cause coupling within a pulse allow chaos to start. This is expected to change, if a ring

network is small, of the order of twice the width of a pulse, N ≤ 20, such that all synapses

transfer information continuously. Preliminary results for initially two pulses in the presence

of a single synapse show that the onset of chaos is reached for a wider variety of coupling

strength and link length than for the single pulse in Fig. 4.3a. The synapse influences the

speed of propagation of one of the two pulses to eventually cause the moving of the pulse

to a location were the onset of spatiotemporal chaos can happen. For a long link length,

Ls, it can take a very long time for chaos to be initiated.
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Figure 4.6. Binary map for chaos initiation in the presence of two synapses. Panel of system state maps for
an initially (a) wide and (b) narrow pulse, in the presence of two synaptic links at varying synapse length, Ls8

and Ls33 , in an ML network of N=50 neurons. The offset ` between Ls8 and Ls33 , decreases from top to bottom
(`=24, `=19, `=14, `=9, `=4, `=1). For other details see Fig. 4.3a.
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Chapter 5

Conclusion

A diffusively coupled ring network of Morris-Lecar neurons presents transient spatiotem-

poral chaos before collapsing spontaneously and unpredictably to either a rest state or a

pulse solution[10]. The lifetime of transient chaos was shown to increase exponentially

with the network size[10]. After the collapse of chaos, the pulse solution exists in two con-

figurations, a wide pulse or a narrow pulse. This study shows how transient chaos changes

with the introduction of excitatory synaptic links that activate fast response AMPA recep-

tors.

The majority of rapid excitatory synaptic transmission in the central nervous system is

regulated by the AMPA receptor[13]. Epileptic synchronization was also attributed to this

fast synaptic connection, making the AMPA receptor a target for epilepsy therapy[19].

When adding (unidirectional) excitatory synaptic links to a diffusively coupled net-

work, the degree of coherence between neurons and the strength of chaos increases in

comparison to the diffusive network. With the introduction of a single synaptic link, the

network dynamics is rather similar to the diffusive case. When the number of synaptic

links increases, the neuron dynamics has a larger Lyapunov exponent and a higher degree

of phase coherence.

The lifetime of transient chaos is also affected by the presence of synaptic connections.

For low to intermediate coupling strengths, the chaotic state will reach the collapse faster

than for the diffusive case, while for high coupling strength the lifetime will increase expo-

nentially with increasing link strength. A maximum lifetime for the transient was reached

when the network was coupled with an intermediate number of synapses. The collapse

state for high coupling strengths favors a global rest state over the pulse solution. In con-

trast to a purely diffusive network where each collapse state is asymptotic, the chaotic state

can be initiated after the collapse to a pulse, if synaptic coupling is present. Previous stud-

ies show the weakening in neuron synchronization, and a taming of spatiotemporal chaos

with increasing coupling strength in a network of only synaptically coupled neurons[20].

The onset of chaos can happen even with the addition of a single synapse at a low

coupling strength and short link length. Above a critical coupling strength chaos is al-

ways initiated. Adding more synaptic links allows the parameters that initiate chaos to be

distributed more complicated.

Studies of cognitive functions in the brain through fMRI and EEG[21] have shown that
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the brain dynamics are transient and sequential. The brain transient dynamics consist-

ing of the switching of metastable states has recently been hypothesized to be due to the

presence of chains of saddle nodes, rather than due to a sequence of attractors[2].

Further study should focus on how the transient chaotic state changes when introduc-

ing a mixture of inhibitory and excitatory synapses, creating a more balanced network

activity[22]. While the excitatory synapse can initiate chaos, an inhibitory synapse could

perhaps facilitate the collapse. Inhibitory synapses through their negative feedback and

slow synaptic current can control the neural firing rate, thus playing an important role for

working memory function in the prefrontal cortex[23].

This study used a diffusively coupled ring network with unique synapses that could

connect to each neuron only once. Further work should be concentrated on allowing more

synapses per neuron, and on creating different network topologies[24], and by so doing

mimicking a more realistic real-world neural network. Studies on rewiring of synaptic

links between oscillatory neurons have shown that synchronization in neural activity can

be promoted[25].
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