9 research outputs found

    Coseismic and postseismic slip ruptures for 2015 Mw 6.4 Pishan earthquake constrained by static GPS solutions

    Get PDF
    AbstractOn 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang, China. By combining Crustal Movement Observation Network of China (CMONOC) and other Static Global Positioning System (GPS) sites surrounding Pishan region, it provides a rare chance for us to constrain the slip rupture for such a moderate event. The maximum displacement is up to 12 cm, 2 cm for coseismic and postseismic deformation, respectively, and both the deformation patterns show a same direction moving northeastward. With rectangular dislocation model, a magnitude of Mw6.48, Mw6.3 is calculated based on coseismic, postseismic deformation respectively. Our result indicates the western Kunlun range is still moving toward Tarim Basin followed by an obvious postseismic slip associated with this earthquake. To determine a more reasonable model for postseismic deformation, a longer GPS dataset will be needed

    Measuring Coseismic Deformation With Spaceborne Synthetic Aperture Radar: A Review

    Get PDF
    In the past 25 years, space-borne Synthetic Aperture Radar imagery has become an increasingly available data source for the study of crustal deformation associated with moderate to large earthquakes (M > 4.0). Coseismic surface deformation can be measured with several well-established techniques, the applicability of which depends on the ground displacement pattern, on several radar parameters, and on the surface properties at the time of the radar acquisitions. The state-of-the-art concerning the measurement techniques is reviewed, and their application to over 100 case-studies since the launch of the Sentinel-1a satellite is discussed, including the performance of the different methods and the data processing aspects, which still constitute topics of ongoing research

    Blind Thrusting, Surface Folding and the Development of Geological Structure in the Mw 6.3 2015 Pishan (China) Earthquake

    Get PDF
    The relationship between individual earthquakes and the longer-term growth of topography and of geological structures is not fully understood, but is key to our ability to make use of topographic and geological datasets in the contexts of seismic hazard and wider-scale tectonics. Here we investigate those relationships at an active fold-and-thrust belt in the southwest Tarim Basin, Central Asia. We use seismic waveforms and interferometric synthetic aperture radar (InSAR) to determine the fault parameters and slip distribution of the 2015 Mw 6.3 Pishan earthquake - a blind, reverse-faulting event dipping towards the Tibetan Plateau. Our earthquake mechanism and location correspond closely to a fault mapped independently by seismic reflection, indicating that the earthquake was on a pre-existing ramp fault over a depth range of ˜9–13 km. However, the geometry of folding in the overlying fluvial terraces cannot be fully explained by repeated coseismic slip in events such as the 2015 earthquake nor by the early postseismic motion shown in our interferograms; a key role in growth of the topography must be played by other mechanisms. The earthquake occurred at the Tarim-Tibet boundary, with the unusually low dip of 21° . We use our source models from Pishan and a 2012 event to argue that the Tarim Basin crust deforms only by brittle failure on faults whose effective coefficient of friction is ≀0.05±0.025. In contrast, most of the Tibetan crust undergoes ductile deformation, with a viscosity of order 10ÂČ⁰–10ÂČÂČ Pa s. This contrast in rheologies provides an explanation for the low dip of the earthquake fault plane

    Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach

    Get PDF
    New satellite missions (e.g., the European Space Agency's Sentinel‐1 constellation), advances in data downlinking, and rapid product generation now provide us with the ability to access space‐geodetic data within hours of their acquisition. To truly take advantage of this opportunity, we need to be able to interpret geodetic data in a prompt and robust manner. Here we present a Bayesian approach for the inversion of multiple geodetic data sets that allows a rapid characterization of posterior probability density functions (PDFs) of source model parameters. The inversion algorithm efficiently samples posterior PDFs through a Markov chain Monte Carlo method, incorporating the Metropolis‐Hastings algorithm, with automatic step size selection. We apply our approach to synthetic geodetic data simulating deformation of magmatic origin and demonstrate its ability to retrieve known source parameters. We also apply the inversion algorithm to interferometric synthetic aperture radar data measuring co‐seismic displacements for a thrust‐faulting earthquake (2015 Mw 6.4 Pishan earthquake, China) and retrieve optimal source parameters and associated uncertainties. Given its robustness and rapidity in estimating deformation source parameters and uncertainties, our Bayesian framework is capable of taking advantage of real‐time geodetic measurements. Thus, our approach can be applied to geodetic data to study magmatic, tectonic, and other geophysical processes, especially in rapid‐response operational settings (e.g., volcano observatories). Our algorithm is fully implemented in a MATLAB¼‐based software package (Geodetic Bayesian Inversion Software) that we make freely available to the scientific community

    Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry

    Get PDF
    The Daguangbao mega-landslide (China), induced by the 2008 Wenchuan earthquake (Mw = 7.9), with an area of approximately 8 km2, is one of the largest landslides in the world. Experts predicted that the potential risk and instability of the landslide might remain for many decades, or even longer. Monitoring the activity of such a large landslide is hence critical. Terrain Observation by Progressive Scans (TOPS) mode from the Sentinel-1 satellite provides us with up-to-date high-quality Synthetic Aperture Radar (SAR) images over a wide ground coverage (250 × 250 km), enabling full exploitation of various InSAR applications. However, the TOPS mode introduces azimuth-dependent Doppler variations to radar signals, which requires an additional processing step especially for SAR interferometry. Sentinel-1 TOPS data have been widely applied to earthquakes, but the performance of TOPS data-based time series analysis requires further exploitation. In this study, Sentinel-1 TOPS data were employed to investigate landslide post-seismic activities for the first time. To deal with the azimuth-dependent Doppler variations, a processing chain of TOPS time series interferometry approach was developed. Since the Daguangbao landslide is as a result of the collapse of a whole mountain caused by the 2008 Mw 7.9 Wenchuan earthquake, the existing Digital Elevation Models (DEMs, e.g. SRTM and ASTER) exhibit height differences of up to approximately 500 m. Tandem-X images acquired after the earthquake were used to generate a high resolution post-seismic DEM. The high gradient topographic errors of the SRTM DEM (i.e. the differences between the pre-seismic SRTM and the actual post-seismic elevation), together with low coherence in mountainous areas make it difficult to derive a precise DEM using the traditional InSAR processing procedure. A re-flattening iterative method was hence developed to generate a precise TanDEM-X DEM in this study. The volume of the coseismic Daguangbao landslide was estimated to be of 1.189 ± 0.110 × 109 m3 by comparing the postseismic Tandem-X DEM with the preseismic SRTM DEM, which is consistent with the engineering geological survey result. The time-series results from Sentinel-1 show that some sectors of the Daguangbao landslide are still active (and displaying four sliding zones) and exhibiting a maximum displacement rate of 8 cm/year, even eight years after the Wenchuan earthquake. The good performance of TOPS in this time series analysis indicates that up-to-date high-quality TOPS data with spatiotemporal baselines offer significant potential in terms of future InSAR applications.This work was supported by the National Natural Science Foundation of China under Grant No. 41474003. The research stay of Dr. TomĂĄs at Newcastle University was funded by the Ministry of Education, Culture and Sport within the framework of Project PRX14/00100. Additional funding was obtained from the Spanish Government under projects TIN2014-55413-C2-2-P and ESP2013-47780-C2-2-R. Part of this work is also supported by the UK Natural Environmental Research Council (NERC) through the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET, ref.: come30001) and the LICS and CEDRRiC projects (ref. NE/K010794/1 and NE/N012151/1, respectively), the ESA-MOST DRAGON-3 projects (ref. 10607 and 10665), the ESA-MOST DRAGON-4 project (ref. 32244) and the Open Fund from the Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources (ref.: gla2013001)

    Measuring and modelling the earthquake deformation cycle at continental dip-slip faults

    Get PDF
    In order for an earthquake to become a natural disaster, it needs to be significantly large, close to vulnerable populations or both. The largest earthquakes in the world occur in subduction zones, where cool, shallowly dipping fault planes enable brittle failure over a large area. However, these earthquakes often occur far away from major cities, reducing their impact. Similar, low angle fault planes can be found in continental fold and thrust belts, where sub-horizontal decollements offer large potential rupture areas. These seismic sources are often much closer to major urban centres than off-shore subduction zone sources. It is therefore essential to understand the processes that control how strain is accommodated and released in such settings. Much of our current understanding of the earthquake cycle comes from studying strike-slip faults. Can our knowledge of strike-slip faults be transferred over to dip-slip faults, and in particular, fold and thrust belts? Previous work has suggested that there may be significant differences between strike-slip and dip-slip settings, and therefore further study of the earthquake cycle in dip-slip environments is required. The recent launch of Sentinel-1, and the extensive Synthetic Aperture Radar (SAR) archive of the European Space Agency (ESA), offer an opportunity to obtain measurements of strain in dip-slip environments that can contribute to our understanding. In this thesis, I use geodetic measurements to contribute to our understanding of the earthquake cycle. Enhanced surface deformation rates following earthquakes (so called postseismic deformation) show temporal and spatial variation. Such variation can be used to investigate the material properties of faults and the surrounding medium. I collate measurements of postseismic velocity following contintental earthquakes to examine the temporal evolution of strain following an earthquake over multiple timescales. The compilation show a simple relationship, with velocity inversely proportional to time since the earthquake. This relationship holds for all fault types, with no significant difference between dip-slip and strike-slip environments. Such lack of difference implies that, at least in terms of the temporal evolution of near field postseismic deformation, both environments behave similarly. I compare these measurements with the predictions of various models that are routinely used to explain postseismic deformation. I find that the results are best explained using either rate-strengthening afterslip or power-law creep in a shear zone with high stress exponent. Such a relationship indicates that fault zone processes dominate the near-field surface deformation field from hours after an earthquake to decades later. This implies that using such measurements to determine the strength of the bulk lithosphere should only be done with caution. I then collate geodetic measurements from throughout the earthquake cycle in the Nepal Himalaya to constrain the geometry and frictional properties of the fault system. I use InSAR to measure postseismic deformation following the 2015 Mw~7.8 Gorkha earthquake and combine this with Global Navigation Satellite System (GNSS) displacements to infer the predominance of down-dip afterslip. I then combine these measurements with coseismic and interseismic geodetic data to determine fault geometries which are capable of simultaneously explaining all three data sets. Unfortunately, the geodetic data alone cannot determine the most appropriate geometry. It is therefore necessary to combine such measurements with other relevant data, along with the expertise to understand the uncertainties in each data set. Such combined measurements ought to be understood using physically consistent models. I developed a mechanically coupled coseismic-postseismic inversion, based on rate and state friction. The model simultaneously inverts the coseismic and postseismic surface deformation field to determine the range of frictional properties and coseismic slip which can explain the data within uncertainties. I applied this model to the geodetic data compilation in Nepal and obtained a range of values for the rate-and-state 'a' parameter between 0.8 - 1.6 x 10^-3, depending on the geometry used. Whilst the Nepal Himalaya is well instrumented, many continental collision zones suffer from a severe lack of data. The Sulaiman fold and thrust belt is one such region, with very sparse GNSS data, but significant seismicity. I apply InSAR to part of the Sulaiman fold and thrust belt near Sibi to examine the evolution of strain throughout the seismic cycle. I tie together observations from ERS, Envisat and Sentinel-1 to produce a time series of displacements over 25 years long which covers an earthquake which occurred in 1997. Using this time series, I investigate the contributions of different parts of the earthquake cycle to the development of topography. I find that postseismic deformation plays a clear role in the construction of short wavelength folds, and that the combination of coseismic and postseismic deformation can reproduce the topography over a variety of lengthscales. The shape of the frontal section of the fold and thrust belt, including the gradient of the topography, is roughly reproduced in a single earthquake cycle. This suggests that fold and thrust belts can maintain their taper in a single earthquake cycle, rather than through earthquakes occurring at different points throughout the belt. I find that approximately 1000 earthquakes like the 1997 event, along with associated postseismic deformation, can reproduce the topography seen today to first order. Such a result may aid our use of topography as a long-term record of earthquake cycle deformation. I finish by drawing these various findings together and commenting on common themes. Afterslip plays an important role in the earthquake cycle, contributing to the surface deformation field in multiple locations, over multiple timescales, and generating topography. This afterslip can be explained using a rate-strengthening friction law with a*sigma between 0.2 and 1.54 MPa. Combining this rate dependence with the static coefficient of friction determined from other methods, such as critical taper analysis, would enable a more complete picture of fault friction to be determined. Fault geometry in fold and thrust belts may control the size of potential ruptures, with junctions and changes in dip angle potentially arresting ruptures. In order to fully determine the role of fault geometry and friction in controlling the earthquake cycle in dip-slip settings, I suggest a more thorough exploitation of the wealth of InSAR data which is now available. These data then need to be combined with measurements from other fields, and models produced which are consistent within the uncertainties of each data set. I suggest that measurements of topography and insights from structural geology may help with understanding the long term and short term processes governing earthquake patterns in an area. As both observations and models are developed, interdisciplinary teams may be able to better constrain the key controls on earthquake hazard in continental dip-slip settings

    Paleoseismology of the Akatore Fault, East Otago

    Get PDF
    My thesis documents the first-ever paleoseismic trench investigation of the Akatore Fault, which has long been considered the most active fault to exist near Dunedin City. Two trenches were excavated across the fault in order to investigate the late Quaternary activity (timing, magnitude and recurrence of large ground rupturing earthquakes). Trenching investigations at Big Creek and Rocky Valley have concluded that there have been three ground-rupturing earthquakes in the Holocene. An antepenultimate event has been constrained between 10,400 ± 1,700 and 1,326 ± 22 cal. yr BP, while, the penultimate and most recent events have been constrained between 1,326 ± 22 and 776 ± 22 cal. yr BP. These events resulted in 5 m of dip slip, hence 1 - 2 m of surface displacement per event, which may to have produced earthquakes with moment magnitudes 6.8 - 7.4. Further studies at Taieri Mouth provided information on the longer term behaviour of the Akatore Fault. We estimated only 2 – 3 m of scarp development since the 125 ka marine terrace was formed. Since the Big Creek trench results indicated similar displacements achieved over three Holocene earthquakes, it is plausible that the scarp development has happened by way of these same three Holocene events. This would imply that there has been no activity along the Akatore Fault for a long period prior to these Holocene events i.e. little to no movement between 125,000 – 10,000 cal. yr BP. Furthermore, the Holocene slip rate along the Akatore Fault is significantly greater than the long term slip rate. This suggests the fault does not act in a characteristic fashion. It has an episodic / irregular behaviour. Similar behaviours have been determined for other Otago faults, which is problematic for forecasting future earthquakes. If inception of uplift along the Akatore Fault occurred ~1 Ma, the implied long-term slip rate is such that the fault may not yet have slipped enough in these Holocene events to accommodate the accumulated slip over the previous ~110 ka. The Akatore Fault needs to become the focus of a time-dependent seismic hazard calculation for Dunedin

    Deformation and Source Parameters of the 2015 Mw 6.5 Earthquake in Pishan, Western China, from Sentinel-1A and ALOS-2 Data

    No full text
    In this study, Interferometric Synthetic Aperture Radar (InSAR) was used to determine the seismogenic fault and slip distribution of the 3 July 2015 Pishan earthquake in the Tarim Basin, western China. We obtained a coseismic deformation map from the ascending and descending Sentinel-1A satellite Terrain Observation with Progressive Scans (TOPS) mode and the ascending Advanced Land Observation Satellite-2 (ALOS-2) satellite Fine mode InSAR data. The maximum ground uplift and subsidence were approximately 13.6 cm and 3.2 cm, respectively. Our InSAR observations associated with focal mechanics indicate that the source fault dips to southwest (SW). Further nonlinear inversions show that the dip angle of the seimogenic fault is approximate 24°, with a strike of 114°, which is similar with the strike of the southeastern Pishan fault. However, this fault segment responsible for the Pishan event has not been mapped before. Our finite fault model reveals that the peak slip of 0.89 m occurred at a depth of 11.6 km, with substantial slip at a depth of 9–14 km and a near-uniform slip of 0.2 m at a depth of 0–7 km. The estimated moment magnitude was approximately Mw 6.5, consistent with seismological results
    corecore