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ABSTRACT 

 

 

My thesis documents the first-ever paleoseismic trench investigation of the Akatore 

Fault, which has long been considered the most active fault to exist near Dunedin City. 

Two trenches were excavated across the fault in order to investigate the late Quaternary 

activity (timing, magnitude and recurrence of large ground rupturing earthquakes). 

Trenching investigations at Big Creek and Rocky Valley have concluded that there have 

been three ground-rupturing earthquakes in the Holocene. An antepenultimate event has 

been constrained between 10,400 ± 1,700 and 1,326 ± 22 cal. yr BP, while, the 

penultimate and most recent events have been constrained between 1,326 ± 22 and 776 

± 22 cal. yr BP. These events resulted in 5 m of dip slip, hence 1 - 2 m of surface 

displacement per event, which may to have produced earthquakes with moment 

magnitudes 6.8 - 7.4. 

Further studies at Taieri Mouth provided information on the longer term behaviour of the 

Akatore Fault. We estimated only 2 – 3 m of scarp development since the 125 ka marine 

terrace was formed. Since the Big Creek trench results indicated similar displacements 

achieved over three Holocene earthquakes, it is plausible that the scarp development has 

happened by way of these same three Holocene events. This would imply that there has 

been no activity along the Akatore Fault for a long period prior to these Holocene events 

i.e. little to no movement between 125,000 – 10,000 cal. yr BP. Furthermore, the 

Holocene slip rate along the Akatore Fault is significantly greater than the long term slip 

rate. This suggests the fault does not act in a characteristic fashion. It has an episodic / 

irregular behaviour. Similar behaviours have been determined for other Otago faults, 

which is problematic for forecasting future earthquakes. If inception of uplift along the 

Akatore Fault occurred ~1 Ma, the implied long-term slip rate is such that the fault may 

not yet have slipped enough in these Holocene events to accommodate the accumulated 

slip over the previous~110 ka. The Akatore Fault needs to become the focus of a time-

dependent seismic hazard calculation for Dunedin.
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Chapter 1                                          

INTRODUCTION 
 

 

Study Area  

Source: Landcare Research Ltd 2012 
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1.1  INTRODUCTORY REMARKS 

 

 

The present work has been undertaken to assess the timing and occurrence of Holocene 

earthquakes on the Akatore Fault, East Otago, and the hazard it poses to Dunedin City 

and elsewhere. In this introductory chapter, I have introduced the basic foundations of 

faults and reverse rupture characteristics. Next, I have described the regional geology and 

tectonic setting of the study area. Finally, I have reviewed previous work and 

paleoseismic methods, followed by the aims and objectives of this study.  

 

 

1.2  FAULTS AND EARTHQUAKES 

 

 

Fault zones are features of the Earth’s lithosphere that accommodate local deformation, 

they are associated with altered rheological properties relative to the host rock (Ben‐Zion, 

2008). These zones are generally constrained from surface expression, and most 

commonly occur in the active boundary zones of tectonic plates. When the build-up of 

strain across the fault plane becomes too great, energy is released as an earthquake (Yeats 

et al., 1997). This sudden motion generates seismic waves (earthquakes) which propagate 

outwards from the fault plane. Earthquake size is measured in units of magnitude (M), 

and a range of methods are utilised to develop different magnitude scales, such as the 

Richter and moment magnitude. The Richter scale was developed in 1935 and is the basis 

of all magnitude scales (Richter, 1935). The Richter magnitude scale is a logarithmic 

curve of the amplitude of seismic waves recorded by a seismograph (Boore, 1989). 

Moment magnitude was developed in the 1970’s and succeeded the Richter scale (Hanks, 

1979). Moment magnitude (Mw) is a magnitude scale that is derived from the seismic 

moment (Mo) of an earthquake, it is a measure of energy released during an earthquake. 

The following equation (Eq. 1.1) by Kanamori and Anderson (1975), provides an 

estimate of seismic moment from the rupture dimensions (L and W), rupture 

displacement (D), and rigidity modulus (of the faulted rock mass. 
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 𝑀𝑜 =  𝜇𝐿𝑊𝐷 (1.1) 

 

The depth at which earthquakes initiate, the hypocentre, is a function of temperature, 

pressure and rock type. The majority of crustal earthquakes occur in the upper crust, 

where rocks have brittle “stick-slip” behaviour.  In the mid crust, the rock strength 

decreases with increasing temperature and the material transitions from brittle to ductile 

behaviour (Fig. 1.1; Yeats et al., 1997). This transition is dependent on the geothermal 

gradient and lithology, it usually occurs around a depth of 15 km and defines the base of 

the seismogenic (earthquake) layer. The seismogenic zone is where deformation occurs 

by frictional sliding, while the deeper ductile layer is where deformation occurs by plastic 

flow (Scholz, 1988). Large, destructive earthquakes typically nucleate at 10 – 15 km 

depth (Fukuyama, 2009). Earthquakes do not often nucleate in the upper 2 km of the 

crust; but are capable of rupturing to the surface in large events (Fig. 1.1; Scholz, 1988).  

 

 

 

Fig. 1.1 The rheology of the lithosphere with annotations of key geological and 

seismological features. Modified from Scholz (1988). 
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During a large earthquake, a fault will generally produce displacement at the Earth’s 

surface, and it is from the features of these displacements that the different types of faults 

can be recognised. There are three primary types of faults, normal, reverse and strike-

slip; each of these faults has developed from different physical conditions. These can be 

characterised mathematically as “any system of forces, acting within a rock, resolves 

itself at any particular point into three pressures or tensions, acting across three planes 

which are at right angles to one another” (Anderson, 1951). The three principle 

compressional stresses can be defined as the principle vertical stress (σv) and the principle 

horizontal stress which is in two directions (σH, σh; Lisle et al., 2006). The resulting fault 

motion is a function of the magnitude and direction of applied principle stress, this is 

shown in Fig. 1.2.  

Reverse faults are recognised by their characteristic displacement, which is uplift of the 

hanging wall relative to the footwall (Fig. 1.2B). The hanging wall is the block on top of 

the fault which forms an acute angle with the ground surface, while the footwall forms 

an obtuse angle with the ground surface (Oglesby et al., 1998). This movement results 

from the principle compressional stress in the horizontal direction. When the pressure 

becomes too great the fault will release energy by rupturing, moving in the direction of 

the least resistance, which in the case of reverse faults is the vertical direction. Reverse 

faults occur in compressional settings; they are often accompanied by broader folding. 

Folding is common within unconsolidated deposits and shallow dips (McCalpin, 2009). 

Reverse faults dip at angles less than 90°; common dip angles are between 25° to 35° and 

45° to 55°, the latter are more common for reactivation of former normal faults (Sibson 

and Guoyuan, 1998).  When reverse faults dip at or less than 45° they can be classified 

as a thrust fault. In this thesis for simplicity or unless specified, reverse faults refer to 

reverse and thrust faults. 

An example of an historical reverse fault in New Zealand is the White Creek Fault, which 

ruptured during the M7.8, 1929 Murchison Earthquake. The maximum surface 

displacement of the rupture was 2.5 m (Berryman, 1980; Yeats et al., 1997). 

Normal faults are characterised by the opposite sense of movement to reverse faults, a 

rupture produces movement in the horizontal direction and the footwall is uplifted 

relative to the hanging wall (Fig. 1.2A; Anderson, 1951; Yeats et al., 1997). They usually 
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occur in extensional settings, and generally have steeper dip angles than reverse faults. 

An example of an historical normal fault in New Zealand is the Edgecumbe Fault which 

ruptured during the M6.5, 1987 Edgecumbe Earthquake. The maximum surface 

displacement of the rupture was 3.1 m (Beanland et al., 1989). 

Strike-slip faults are the third major type of fault. Strike-slip faults can take place in a 

variety of tectonic settings, but they occur mainly in zones of translation, transtension 

and transpression (Yeats et al., 1997). These faults dip sub-vertically and the movement 

is wholly or dominantly horizontal (Fig. 1.2C). Strike-slip faults can be further classified 

depending on the direction of horizontal motion. Strike-slip faults with left lateral motion 

are named sinistral, while those with right lateral motion are named dextral. An example 

of a major recent strike-slip earthquake is the M7.1 2010 Darfield earthquake, caused by 

rupturing of the Greendale Fault. Maximum displacements were ~5 m horizontally 

(dextral) and ~1.5 m vertically (Gledhill et al., 2011; Quigley et al., 2012). 
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Normal faults occur in an 

extensional tectonic setting 

where the principle 

compressional stress is in the 

vertical direction (σv>σH>σh) 

or (σv>σh>σH). This results in 

local lengthening of the crust.  

E.g. Edgecumbe Fault                                    

 

Reverse faults are a common 

structure in a compressional 

tectonic setting where the 

principle compressional stress 

is in the horizontal direction 

(σH>σh>σv) or (σH>σh>σv). 

This results in local 

shortening of the crust.  

E.g. White Creek Fault 

Strike-slip faults can take 

place in extensional or 

compressional tectonic 

settings. The principle 

compressional stress is in one 

of the horizontal directions 

and the other will be weak 

(σH>σv>σh) or (σh>σv>σH).  

E.g. Greendale Fault  

Fig. 1.2 Schematic representation of compressional stress, comparing normal (A), reverse (B) 

and strike-slip (C) faults. The three planes of pressure are at 90° to one another and include 

the vertical stress direction, σv, and the two horizontal stress directions, σH and σh. The 

different magnitudes of stress include the principle (red + longest arrow), intermediate 

(yellow) and weakest (blue + shortest arrow).  New Zealand fault examples and their rake 

values, λ, are given. Stress data from Lisle et al. (2006). 

λ= -90° 

 

λ = 90° 

 

λ =0 or λ = ± 180° 

 

A 

B 

C 

 



 7   
 

1.2.1  Global reverse fault rupture characteristics  

 

Earthquake hazard and risk models are key to reducing fatalities and damage; however 

the way earthquakes are initiated is poorly understood, large and very destructive 

earthquakes can occur without warning (Fukuyama, 2009). Observation of the 

characteristics of historical fault ruptures can be used to determine the possible behaviour 

of future events. I have compiled data for past worldwide reverse fault ruptures in 

Table.1.1 in order to understand the range of rupture lengths and associated 

displacements that characterise reverse faults, and to give my paleoseismic studies of the 

Akatore Fault greater context. The earthquake rupture data comes from earthquakes in 

thrust belts (e.g. Algeria, 1980), collision zones between continental boundaries (e.g. 

Iran, 1978), transform boundaries (e.g. California, 1971), and from stable continental 

areas (e.g. Australia, 1979 & 1988; McCalpin, 2009). The global earthquake rupture data 

shows that an earthquake typically must have a moment magnitude (Mw) greater than 

about 6 in order to rupture to the ground surface (Yeats et al., 1997). The magnitude of 

recorded ruptures on reverse faults range between Mw 6 and 7.9 (Table.1.1). The majority 

of the faults are thrust, with an average dip of 35°. Reverse faults often develop from low 

angle dips since the main compressional stress is in the horizontal direction. Furthermore, 

reverse faults undergo greater ground motion and fault weakening if they rupture at 

shallow dip angles (Oglesby et al., 1998; Oglesby et al., 2000). 

 

The average slip on a reverse fault rupture is about 2 m, however the data compiled in 

Table.1.1 shows that slips ranging from 0.13 to 5.5 m are common. However, the average 

value is not particularly useful, as the slip on reverse faults are often irregular and they 

show 50% more variability than normal and strike-slip faults. Part of this irregularity may 

be from the complex interaction between folding and faulting (McCalpin, 2009). While 

the slips on reverse faults are irregular, the compilation of reported values still provides 

a range that can be used in assessing the reliability of future slip data. Furthermore, 

relationships between slip and other rupture information can be useful for assessing 

future seismic hazard. I have used the dataset from Table.1.1 to estimate the likely 

displacements that would be expected for ruptures along lengths similar to the Akatore 

Fault. 
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Specifically, the length of the onshore portion of the Akatore Fault is ~22 km; this is the 

minimum length of the active fault. If the onshore portion of the fault ruptured on its 

own, our data (Table 1.1) shows that we can expect a resulting average slip of ~1 m (Fig. 

1.3). Assuming the fault extends ~62 km from Kaitangata, in the south to Kaikorai 

Estuary in the north, our data shows that a rupture of this length would result in an 

average slip of ~2 m (Fig. 1.3). These expected displacements have been used later in the 

thesis to interpret my trench data.  
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# Date  Earthquake & Location 
Hypocentre 

(km) 

Moment 

Magnitude  

Seismic 

Moment          

(x1019 Nm)   

Rupture 

Length  

(km) 

Rupture 

Width  

(km) 

Average 

Slip (m)  

Maximum 

Slip (m) 
Strike Dip 

 

1 3/07/2015 Pishan, China 8.00 6.40 0.61 22.10 10.10 0.20 0.89 114.00 25.00 97.00 

2 25/04/2015 Gorkha, Kathmandu 15.00 7.90 77.00 130.00 80.00 5.50 7.50 287.00 7.00 98.70 

3 31/10/2014 Rueisuei, Taiwan 14.98 6.36 0.34 30.00 30.00 0.13 0.56 205.00 42.00 57.00 

4 18/08/2014 Mormori, Iran 7.00 6.20 0.35 27.00 19.00 0.20 0.60 304.00 29.00 101.00 

5 20/04/2013 Lushan Earthquake 16 ± 2 6.66 1.01 35.00 16.00 0.25 1.50 209.00 44.00 91.00 

6 28/10/2012 Haida Gwaii 15.90 7.80 69.00 150.00 30.00 3.30 7.70 317.10 18.50 103.30 

7 23/10/2011 Van, Turkey 16.00 7.10 6.10 70.00 40.00 1.85 3.5 - 4.5 241.00 51.00 58.00 

8 10/09/2008 Qeshm Island, Iran 6.00 6.20  10.00 6.00 0.90 0.90 34.00 50.00 55.00 

9 12/05/2008 Wenchuan, China 19.00 7.90 120.00 285.00 30.62 5.13 10.30 229.00 33.00 141.00 

10 27/11/2005 Qeshm Island, Iran 6.10 6.00 0.13 9.00 3.00 1.70 1.70 73.00 36.00 66.00 

11 8/10/2005 Kashmir 5-15 7.60 24.00 100.00 30.00 5.10 9.60 331.00 31.00 108.00 

12 21/03/2003 Zemmouri, Algeria 8.00 6.80 2.80 54.00 15.00 0.55 0.75 54.00 50.00 90.00 

13 26/01/2001 Gujarat, India 22.00 7.60 36.00 25.00 15.00 3.00 12.40 82.00 51.00 77.00 

14 26/01/2001 Bhuj, India 23.00 7.70 36.00 75.00 22.50 2.50 8.50 82.00 51.00 77.00 

15 21/09/1999 Chi-Chi, Taiwan 8.00 7.60 18.00 72.00   2.00 7.50 20.00 30.00 85.00 

16 17/01/1994 Northridge, California 17.50 6.70 1.30 16.00 22.50 1.30 3.20 122.00 40.00 101.00 

17 22/01/1988 Tennant Crk, Australia 8.00 6.60 1.10 30.00   1.00 2.50 100.00 40.00 85.00 

18 10/10/1980 El Asnam, Algeria 12.00 7.10 2.50 27.00 14.00 2.20 6.50 210.00 50.00 82.00 

19 2/06/1979 Cadoux, Australia 6.00 6.10 0.20 28.00 12.00 0.60 2.40 166.00 26.00 71.00 

20 16/09/1978 Tabas, Iran <20 7.09 13.00 85.00 23.00 2.25 3-3.5 332.00 31.00 114.00 

21 6/03/1976 Friuli, Italy 7.00 6.50 0.57 18.50 11.20 0.33 0.50 288.00 29.00 112.00 

Rake 

Table. 1.1 Compilation of global reverse faults and their associated earthquake source parameters. References listed in Appendix 1. 
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# Date  Earthquake & Location 
Hypocentre 

(km) 

Moment 

Magnitude  

Seismic 

Moment       

( x1019 Nm)   

Rupture 

Length  

(km) 

Rupture 

Width  

(km) 

Average 

Slip (m)  

Maximum 

Slip (m) 
Strike Dip Rake 

22 6/09/1975 Lice, Turkey 15-25 6.70 7.40 26.00 13.00 0.50 0.63 72.00 15.00  - 

23 9/02/1971 San Fernando, Ca 12.00 6.70 1.00 15.00   0.95 2.50 67.00 52.00 72.00 

24 1/12/1945 Mikawa, Japan 10.00 6.60 1.00 20.00 15.00 1.10 2.10 135.00 30.00 65.00 

25 7/12/1944 Tonankai  30.00 7.90 100.00 140.00 80.00 3.00 4.40 225.00 15.00 79.00 

26 31/08/1896 Rikuu, Japan 15.00 7.20 8.20 37.00  3.50 8.80 - 45.00  - 

Table. 1.1 Continued. 
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Fig. 1.3 Plot of linear earthquake scaling relationships illustrating the two Akatore Fault 

ruptures. The yellow star corresponds to the minimum value (onshore portion only) and 

the red star, the maximum value (entire length). Data from Table.1.1. Fault width has 

been calculated based on an assumed seismogenic width of 12 km (Stirling et al. 2012). 
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1.3  REGIONAL GEOLOGY AND TECTONIC SETTING 

 

 

The tectonically active Southern Alps lie in the South Island of New Zealand; they are a 

700 km long mountain belt that currently show uplift rates of  5 mm / yr (Molnar et al., 

2007). Rocks are being actively exhumed from a 20 - 25 km depth (Stern and McBride, 

1998). The Southern Alps rise over 3000 m and create a barrier against the predominantly 

westerly winds, influencing the regions precipitation patterns. This results in  up to 12 m 

per year of rain on the west coast of the South Island and only 1 m to the east of the Alps 

(Griffiths and McSaveney, 1983; Koons, 1990). The landscape here evolves rapidly, and 

weathering of the Southern Alps provides more than 4,000 tonnes k2 per year of sediment 

(Bull, 2009).  

The Southern Alps mark the transpressive continental boundary between the Australian 

and Pacific plates, with the principal element of the plate boundary being the Alpine Fault 

(Davey et al., 1998; Norris and Cooper, 2001). The present rate of plate motion in the 

central South Island is 37 mm/ yr Wallace et al. (2007). Motion before 6.4 Ma was 

predominantly strike-slip, however after 6.4 Ma the motion transformed to oblique 

compressional movement. Since 6.5 Ma, 230 km of dextral strike-slip motion and 90 km 

of shortening has occurred along the fault (Walcott, 1998).  The Alpine Fault zone dips 

to the south-east at about 40°, producing steep topographic gradients in the west and more 

gradual gradients in the east (Fig. 1.4; Davey et al., 1998; Norris et al., 1990). The Alpine 

Fault accommodates 60 - 70% of the relative plate motion between the Pacific and 

Australian plates. The rest is primarily distributed to the east, in a 200 km wide area 

which includes the entire Otago region (Fig. 1.4; Norris, 2004; Norris et al., 1990). 

Within this region lies the Otago fault-fold belt, which is an imbricate system of parallel 

reverse faults, trending north-east (Barker, 2005; Beanland and Berryman, 1989; Jackson 

et al., 1996; Norris, 2004). The Otago fault –fold belt is thought to be a zone of back 

thrusting to the east of the Alpine Fault, and is interpreted to control the extent of the 

Otago reverse fold-fault province (Norris, 2004). Associated faults accommodate several 

mm/yr of oblique convergence (Jackson et al., 1996). These faults uplift Tertiary 

sediments which overlie an erosion surface, named the Waipounamu Erosion surface, 

also known as the Otago Peneplain (Landis et al., 2008). This erosion surface is a sub-
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horizontal regional unconformity between basement rock, schist, and overlying 

diachronous Cretaceous - Tertiary marine sediments (Landis et al., 2008; Markley and 

Norris, 1999). This surface signifies an extended period of time (Cretaceous - Miocene 

period) when erosion was the dominant process as a result of marine transgression and 

regression. In much of Otago, the terrestrial sediments have been eroded away, however, 

remnants are preserved in syncline and footwall blocks. The Haast Schist basement rock 

has been exposed throughout Otago, as a result of faulting and folding (Jackson et al., 

1996).   

The active faults of the Otago region are shown in Fig. 1.4. An active fault in New 

Zealand has been defined by Langridge et al. (2016) as “a fault that shows evidence of 

surface rupture or ground deformation within the last 125,000 years”. Many of the Otago 

region faults are  blind thrusts, which dip towards the west with little surface expression 

except for large anticlinal mountain ranges (Landis et al., 2008; MacKenzie and Craw, 

2005). The Southern Alps create a rain shadow over the East Coast of the South Island, 

which results in low rates of erosion; therefore the total deformation is often determined 

from interpreting uplift and deformation of the peneplain surface and associated drainage 

patterns (MacKenzie and Craw, 2005; Youngson, 2005; Jackson et al., 1996).  
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Fig. 1.4 Tectonic setting of Otago, New Zealand A. Onshore known active faults in the South Island are marked in red (source:gns.cri.nz) B. A 

schematic diagram of the Alpine Fault ramp encompassing the Otago faults (modified from Stern and McBride, 1998). C. A profile of the Otago 

fault - fold belt (modified from Litchfield and Norris, 2000). 

A

. 
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. 
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1.3.1  Study area - SE Otago 

 

This study focuses on an area located within south-east Otago. Most of the region has 

low relief, with hill country generally underlain by the Otago Schist (Fig. 1.5). These 

rocks range from non-schistose volcaniclastic sandstone and mudstone to the south-west, 

and strongly foliated and segregated schist to the north-east (Bishop and Turnbull, 1996).  

In this region, mapped active faults include the Maungatua, North Taieri, Titri and 

Akatore Faults (Fig. 1.5). The Maunagatua and North Taieri Faults have progressively 

uplifted the Maungatua Ridge on the west side of the Taieri Basin, and to the east, the 

Titri Fault and Akatore Fault have uplifted two ranges of coastal hills which slope gently 

to the east and steeply to the west (Bishop and Turnbull, 1996; Litchfield et al., 2002; 

Litchfield and Lian, 2004).  

The Akatore Fault is the eastern-most onshore component of the Otago reverse fault-fold 

belt, it strikes north-east to south-west and dips 45°- 060° E/SE (Litchfield and Norris, 

2000). The southernmost extent of the fault travels offshore near Measly Beach and splits 

into multiple strands near Wangaloa, before terminating near the Clutha River mouth, at 

the Castle Hill Fault Zone (Fig. 1.5). The fault is observed onshore between Taieri Mouth 

and Tokomairiro Mouth (~22 km) by the displacement of the subhorizontal peneplain 

surfaces (Fig. 1.6). Exposures of the fault are observed in road cuttings and within a 

Quarry near Big Creek (Litchfield and Norris, 2000).  

Tertiary sediments have deposited along the downthrown side of the Akatore Fault. 

These sediments consist primarily of non-marine sands and gravels to the north-east and 

marine sands and silt to the south-west. South-west of Crystalls Beach the peneplain is 

obscured by the Taratu Formation (Bishop and Turnbull, 1996), whereas to the north-

east it is exposed. Rivers and creeks have cut through these hills, creating antecedent 

gorges at Akatore Creek, Big Creek, Bull Creek and Nobles Stream (Litchfield and 

Norris, 2000). Voluminous Quaternary alluvial terrace and flood plain deposits are found 

at the mouth of Tokomairiro and Taieri Rivers, comprising of loose sands and gravel, 

many of which are capped with loess. At Taieri Mouth a sequence of marine terraces are 

preserved along the coast (Bishop and Turnbull, 1996). The marine terraces appear to be 
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displaced across the Akatore Fault, based on the difference in terrace heights on east and 

west fault blocks  (Litchfield and Norris, 2000). 

Hills along the coastal range vary in elevation from 190 m around the centre onshore 

portion of the fault (e.g. Big Creek), to less than 50 m at the ends (e.g. Tokomairiro and 

Taieri Mouth). The maximum slip of dip-slip faults typically occurs in the centre of the 

fault and tapers towards the edges (Scholz, 2002). Towards the southern end of the 

Akatore Fault, near Tokomairiro Mouth, the fault scarp is poorly expressed. This may be 

due to the soft Taratu and Wangaloa Formations cover in the area, which would mute the 

fault expression. The fault may also break up into small strands with different strikes 

(north-south to south-west) as it transitions offshore in the vicinity of Tokomairiro Mouth 

(Johnstone, 1990; Litchfield and Norris, 2000).  

In contrast, there is a distinctive fault expression from Nobles Stream to the north-east 

near Taieri Mouth. At the north-eastern end of the fault, south of Taieri Mouth, there is 

a ~ 2 m high scarp which is the last evidence of the fault before it strikes offshore. 

Offshore postglacial sediments are unconformably underlain by Cretaceous and Tertiary 

sediments. These sediments are faulted and folded from a sequence of offshore faults 

which trend parallel to the Otago faults (Johnstone, 1990). 

The northern end of the fault has not been well constrained, however, it is observed in 

marine geophysical data approximately 15 km south of Dunedin, and may strike onshore 

near Kaikorai Valley, Dunedin (Bruce, 2010). The possible close proximity of the fault 

to the city means that it is considered to be Dunedin’s most significant local seismic 

hazard (Glassey et al., 2003). The Dunedin Earthquake (M 5) in 9th April 1974 was 

centred only ~10 km south of Dunedin City at ~20 km depth; it is believed to have been 

the result of movement on the Akatore Fault or one of related parallel offshore faults 

(Adams and Kean, 1974; Bishop, 1974a). 
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A. 

B. 

Fig. 1.5 Study Area, North-East Otago. 

A. Regional geology, highlighting major 

faults. B. A topographic profile across 

the Akatore and adjacent faults showing 

their senses of motion. Modified from 

Bishop and Turnbull (1996) and Bull 

(2009). 
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Fig. 1.6 The Akatore Fault onshore 

expression. Red arrows illustrate the 

fault’s location (Digital terrain model 

from GNS Science). 

 

Taieri Mouth 

Tokomairiro Mouth 
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1.3.2  Late Quaternary fault motion 

 

The Late Quaternary faults of Otago are characterised by low slip rates, long recurrence 

intervals and low rates of historical seismicity (Anderson and Webb, 1994; Beanland and 

Berryman, 1989; Berryman and Beanland, 1991; Norris, 2004). Overall, Central Otago 

shows less than 5 mm per year of shortening across the Late Quaternary faults (Beavan 

and Haines, 2001; Jackson et al., 2002). 

The Otago faults have an average length of 24 km and relatively steep dips, such as the 

~ 65° dips which have been measured on sections of the Titri and Pisa Faults (Beanland 

and Berryman, 1989; Litchfield, 2001). Some of the Otago faults are shown to have been 

reactivated normal faults, which may explain the high dip values. Evidence of Cretaceous 

normal faults is often suggested by greywacke and semischist juxtaposed, which occurs 

along the St Bathans, Hawkdun and Kakanui Ranges (Bishop, 1974b; Markley and 

Norris, 1999). During the Quaternary, north-east striking mountain ranges throughout 

Otago have been uplifted, with an average vertical displacement of 1000 m, this has been 

measured from the offset of ranges from the Otago wide Waiponamu erosional surface 

(Landis et al., 2008; Norris, 2004).  

The Otago faults show clear evidence of Late Quaternary activity from field mapping 

and paleoseismic investigations (Table.1.2); however, limited paleoseismic data is 

available to establish the behaviour of many of the Otago faults.  
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       Table. 1.2 Compiled paleoseismology data for Otago active faults. 

 

Fault Length (km) Recurrence interval 
Slip rate 

(mm/ year) 

Recent 

movement 
Paleoseismic method Reference 

Pisa- Grandview Fault 

zone 
- 20,000– 30,000 1 > 23, 000 

Fault history was constrained 

through preserved glacial 

geomorphology features 

(Beanland and Berryman, 

1989) 

Nevis -Cardrona Fault 

system 

Continuous 

10 km faults 
<3600 - < 10,000 Trenching and field mapping 

(Beanland and Barrow-

Hurlbert, 1988) 

Dunstan Fault  8,000 - < 23,000 Trenching and field mapping Berryman, 1991 #248} 

Akatore Fault > 40 6000 - 12000 - 
1150 – 1000 

year 

Coring of swamps and uplift 

of marine terraces 

(Litchfield and Norris, 

2000, Norris et al., 1994) 

 

Hyde Fault - 4000-5000 0.4-0.5 <14,000 
Coring, seismic surveys , 

field investigation 
(Norris et al., 1994) 

South Rough Ridge 

Fault 
20-30 6000 – 10,000 0.1 – 0.15  

In situ cosmogenic 10Be 

measurements in quartzites 

(Jackson et al., 2002) 

 

Titri Fault 

 
58 - - 

Evidence 

for late 

Quaternary 

activity 

Trenching (D. Barrell, pers. comm.) 
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1.4  AKATORE FAULT - PREVIOUS WORK 

 

 

The Akatore Fault was first identified by Benson (1935), he suggested there was evidence 

of crustal movement from landforms around coastal NE Otago, such as uplifted marine 

terraces, coastal cliffs and geological discontinuities. Since Benson’s discovery, much 

work has gone into mapping the extent and assessing past movement along the Akatore 

Fault, encompassing many disciplines, such as geomorphology, paleoseismology, and 

archaeology (e.g. McFadgen, 2008). Investigating the Akatore Fault’s seismic hazard 

potential has become of importance due to its close vicinity to populated areas, such as 

the Dunedin City, Milton and Balclutha. 

 

1.4.1  Onshore and offshore extent 

 

The Akatore Fault was named by Ongley (1939) who mapped the fault as extending 12 

miles from the mouth of the Taieri River to Tokomairiro River. The Akatore Fault was 

initially mapped as a simple configuration with a south-west strike. It was noted by 

Ongley (1939) that the Akatore Fault is “clearly marked with steep escarpment on the 

east and gentle back slope of the inland block on the west”. The ends of the fault were 

further constrained by McKellar (1966), where the entire onshore extent of the Akatore 

Fault was first published within a geological map of Dunedin.  

 

Since then, it has been suggested by many authors, that the Akatore Fault strikes offshore 

to the south of Taieri Mouth. The offshore extent of the fault has not been well 

constrained as seismic reflection methods cannot be used to image in shallow waters, 

such as near Taieri Mouth (Bruce, 2010). Offshore investigations have been conducted 

by Johnstone (1990), later published by Gorman et al. (2013), who used high resolution 

sub-bottom profiled and side scan sonar images to map the Akatore Fault, 12 km offshore 

between Blackhead and Mitchells Point. In places, the fault has a clear surface expression 

where it offsets the sea floor. Johnstone (1990) discovered that once the fault extends 
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offshore, it follows parallel to the coast for some time, striking at 040 - 050°, before it 

bends back towards the shore, near Bruce’s Rock. From here it may project back onshore 

north of the Kaikorai Estuary, where shallow dipping (15°) bedding in road cuttings at 

Waldronville may be interpreted as being faulted (Johnstone, 1990). This idea was also 

proposed by Robertson (1958) who suggested that the fault possibly strikes towards 

Dunedin along Kaikorai Valley.  

 

Later, Bishop and Turnbull (1996) published a map of the ‘Geology of the Dunedin Area’ 

which contained the onshore and offshore extent of the Akatore Fault. The offshore 

material is provided by the Geology Department of Otago University, and is dashed with 

uncertainty (see Fig. 1.5). This is the most recently published map of the Akatore Fault. 

Later, however, Bruce (2010) and Gorman et al. (2009) revised the offshore extent by 

investigating the fault between Taieri Mouth and Blackhead using Boomer, CHIRP and 

side scan sonar data. Bruce (2010) determined that the Akatore Fault runs parallel to the 

coast 800 – 1000 m offshore near Taieri Mouth, south of Brighton it bends around and 

strikes offshore at 40° - 50°. Here it may be associated with the offshore Green Island 

Fault, therefore it may not propagate back onshore (Bruce, 2010).  

 

1.4.2  Seismological investigations 

 

In 1979, the ‘Akatore Fault Monitoring Pattern’ was established. It is one of many fault 

monitoring networks within New Zealand installed by New Zealand Geological Survey 

(NZGS) / Earth Deformation Studies (EDS) to monitor earth deformation, as past studies 

have indicated that elastic deformation occurs before large earthquakes (Blick, 1981; 

Brill, 1981; Farrier, 1990). The Akatore Fault was monitored due to its close vicinity to 

the city, and because the Dunedin earthquake on the 9th of April in 1974 (M5), is believed 

to have occurred on this fault or one of its associated offshore faults (Adams and Kean, 

1974; Bishop, 1974a). The Akatore Fault was classified as Class 1 active, indicating it 

has a recurrence time of  ≤ 2000 years; evidence has come from one to three metre high 

scarps along the fault (Brill, 1981). Since these early projects took place, multiple 

subsequent surveys have been carried out but little informative data has been retrieved 

due to measurement uncertainties (Farrier, 1990).  
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A report on the North East Otago faults was compiled by Norris et al. (1994) to assess 

the potential earthquake hazard in Dunedin. From field observations the fault was 

characterised as relatively young, generally striking NE-SW and dipping 60° E, and with 

a reverse sense of slip. They determine the total offset of the fault to be 120 - 130 m, 

which was measured from the Cretaceous erosion surface near Big Creek. The Akatore 

Fault was mapped from Taieri Mouth to Tokomairiro River mouth, where five cores were 

taken and radiocarbon dated. From these results, it is evident that at least two events have 

occurred since ~14,000 years BP, and the last event occurred ~1,200 years BP with an 

estimated single event displacement of ~2 m per event (Norris et al., 1994).  

Later, Litchfield and Norris (2000) performed a comprehensive investigation of 

Holocene movement along the Akatore Fault. Along the fault, uplift has caused 

temporary blockage of the drainage along antecedent rivers. Blockage of the streams 

often causes a build-up of silt, clay and peat which can be dated and correlated to recent 

movement. Ten auger cores were collected from gorges along the fault and radiocarbon 

dates, along with the geomorphology of uplifted marine terraces, were used to interpret 

past fault activity. Results determined that the last event along the fault is constrained 

between 1,150 and 1,000 years BP and there has been no fault movement between 80 ka 

and > 3800 year BP (the penultimate event). The marine terraces suggested an average 

single event displacement of 3 m (Litchfield and Norris, 2000). These terraces have been  

dated by OSL dating by Rees‐Jones et al. (2000) and Litchfield and Lian (2004). Their 

ages suggest that no activity has occurred on the Akatore Fault between 125 and 3.8 ka.  

Since Litchfield and Lian (2004), few studies have been conducted on the Akatore Fault. 

Recently, Denys et al. (2016) analysed the geodetic data and found irregular velocities 

that have been measured in close vicinity to the Akatore Fault, which indicate contraction 

of about 1 mm/yr. Additional investigations were clearly required to further assess the 

activity and potential hazard of the Akatore Fault. 

 

 

 

 



 24   
 

1.5  REVIEW OF METHODS 

 

1.5.1  Paleoseismic techniques 

 

Paleoseismology is a multidisciplinary science, which utilises geomorphology, 

sedimentology and stratigraphy to study the location, timing, geometry, and size of 

historical ground-rupturing earthquakes. This information can be used for earthquake 

forecasting by assessing the probability and severity of future seismic events, and 

increasing public awareness (Kondo and Owen, 2013; McCalpin, 2009; Štěpančíková et 

al., 2010; Van Arsdale, 2000). This section will evaluate several paleoseismology 

techniques for fault investigations that are common throughout the literature. These 

methods include subsurface imaging techniques, coring and drilling, fault trenching and 

magnetic intensity surveying. By assessing their advantages and disadvantages, the most 

suitable method can be selected for the site being study (Table. 1.3). Although these 

methods can be used in a variety of contexts this section will focus on their application 

to paleoseismology. 

 

Seismic reflection (SR) and Ground Penetrating Radar (GPR) are two subsurface 

imaging techniques which are based on wave propagation principles. When an energy 

source is released reflected waves are recorded by the receivers. The difference in density 

between two layers changes the angle at which the wave reflects. The offset distances 

provides information on the underlying geology (Fig. 1.7). SR is a long established 

technique which provides high quality spatial resolution of geological features (Feng and 

McEvilly, 1983; Woodward and Sloss, 2013). It uses seismic waves at low frequencies 

to measure the variations in elastic properties of materials, such as pressure, composition 

and water content (Everett, 2013; Guéguen and Palciauskas, 1994; Hildebrand et al., 

2002; McCalpin, 2009; Murray et al., 2005; Zoback et al., 2010). SR has been utilised 

on the San Andreas Fault Zone, California, to analyse the crustal structure, which requires 

a deep-imaging survey (Feng and McEvilly, 1983). GPR has gained popularity since the 

1980s as it can accurately identify discontinuity and heterogeneity in the shallow 

subsurface (<10 m; Murray et al., 2005; Rashed et al., 2003). GPR uses electromagnetic 

waves at high frequencies to measure variations in dielectric properties of materials, such 
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as clay composition, water content and compaction (Everett, 2013; Hildebrand et al., 

2002; Murray et al., 2005). For example, the Uemachi Fault in Japan, consists of 

alternating clay and sand layers which have strong differences in their dielectric 

properties making them ideal for GRP analysis (Rashed et al., 2003). Subsurface imaging 

is a common technique for identifying fault induced deformation of the strata such as, 

tilting, folding and fault block offset (McCalpin, 2009). They are mainly utilised for 

identifying displacement and orientation of dip-slip faults with high contrasts in the 

physical and chemical properties of the unit contacts, and when fault identification at 

depth is necessary (McCalpin, 2009).  

 

 

 

 

 

Drilling and coring are common techniques where a continuous sample is collected below 

the earth’s surface by forcing a tube into sediment manually, e.g. hand augers, or 

mechanically e.g. vibra-coring (Woodward and Sloss, 2013). Once collected, strata can 

be correlated to tectonically induced sedimentation in a continuous core (Fig. 1.8). 

Coring and drilling are mainly utilised for gaining samples at great depths and in settings 

where other techniques are not practical (McCalpin, 2009). For example, the Hollywood 

Fig. 1.7 Graphical representation of wave propagation principles used in 

ground penetrating radar and seismic reflection.  
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reverse fault and Compton blind thrust fault are underlying heavily urbanised areas in 

Los Angeles. Coring boreholes was the most practical option to gain information on the 

most recent movement (Dolan et al., 1997; Leon et al., 2009). Coring and drilling are 

particularly useful techniques in difficult water logged settings, where there are few other 

options. For example, Hubert-Ferrari et al. (2012) cored a sag-pond on the North 

Anatolian Fault and identified four past earthquakes from disturbed sedimentary 

sequences presumed to be caused by earthquake shaking.  

 

 

 

 

Fault trenching is a more invasive technique which is commonly used in 

paleoseismology. Trenching involves excavating the ground across the path of an active 

fault to create near-surface geological exposures of the fault. The stratigraphy and 

deformation is mapped along the trench walls and often dated to constrain the 

paleoearthquake history, and hence recurrence information (McCalpin, 2013). The size 

of a trench can vary, although a bench must be created every few metres for accessibility 

and safety (McCalpin, 2009). Trenching is the most effective technique for near surface 

fault investigations as it gives a three dimensional view of a deformed zone, therefore 

providing an ability to see the relationships between sediments and faulting (McCalpin, 

2009; Štěpančíková et al., 2010). A recent trenching study on the Alpine Fault by 

Berryman et al. (2012), involved trenching five sites along the trace of the Alpine Fault, 

New Zealand. The trenches were located on strath terraces and exposed evidence for the 

Fig. 1.8 Illustration of cores collected on the downthrown side of a fault. Dammed 

sediments can provide information of past ground rupture events.  
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most recent seismic events on the Fault. By trenching they were able to record the 

orientation of the fault, and determine that five events had occurred within the last 1,000 

years, each event resulting in dextral displacements of up to 8 – 9 m and vertical 

displacements of 1 m (Berryman et al., 2012). However, in older surfaces, interpretations 

can be difficult, as a trench may show complex faulting such as cross cutting, inter-

faulting and shearing. Younger events can obscure the older events and can make rupture 

events difficult to reconstruct (McCalpin, 2009).  

A less commonly used method is a magnetic intensity survey. This technique is often 

used when locating structures prior to trenching (McCalpin, 2009). Surveys can be done 

aerially, for detecting large scale faulting (e.g. Grauch et al., 2001) or on the ground to 

detect smaller features using a magnetometer (e.g. Bailey, 1974). The magnetometer 

measures fluctuations in the earth’s magnetic field, resulting from rocks with different 

magnetic properties (Fig. 1.9). High magnetic intensities are associated with materials 

with higher magnetic properties. An abrupt change in magnetic properties is often 

associated with a dip slip fault, where there is thickening of more magnetic, syntectonic 

sediments on the uplifted side. Magnetic surveys are effective at detecting faults as they 

are not limited by moisture and salinity, which effect GPR, however they can easily 

produce false signals due to metal objects in the vicinity of the survey (McCalpin, 2009). 

 

 

 

 

Fig. 1.9 Simplified illustration of a magnetic intensity survey. The 

abrupt change in the magnetic intensity along the graph suggests a 

change in the underlying geology. 
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Each of these techniques have their advantages and disadvantages in their application to 

paleoseismology. Using a combination of techniques is the most advantageous way to 

produce quality data, however circumstances (expense, limited equipment and time) do 

not always make this possible. In favourable site conditions, trenching is the best 

technique to gain more comprehensive and definitive information as it typically produces 

a 3D exposure of the fault. This generally leads to the least ambiguous of fault 

interpretations (Hatheway and Leighton, 1979).  
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 Table. 1.3 Advantages and disadvantages of several paleoseismic techniques. 

  

Technique Advantages Disadvantages 

Subsurface 

imaging  

 Detailed imaging of structural 

features in the subsurface 

 Fault identification at depth 

 Non-intrusive/ destructive 

 Time efficient  

 Easy to operate 

 Easy to transport 

 

 Expertise is required for 

processing and interpretation, 

which can be time consuming 

 Large amounts of data 

 Subsurface samples as often 

required for calibration  

 Data decays exponentially with 

distance from source 

Reflection  
 High resolution at depths >100 

m 

 

 Cannot penetrate through 

inelastic layers 

 Need a large number of 

receivers and acquisition 

equipment  

 expensive 

Ground 

Penetrating 

Radar 

 High resolution in the upper 

subsurface (<10m) 

 Cannot penetrate through 

electrically conductive 

materials e.g. below the water 

table 

 Material with the same 

dielectric properties may be 

indistinguishable 

Coring and 

drilling  

 Continuous record 

 Gaining samples at depth 

 Portable 

 Can be used in waterlogged 

setting 

 

Coring 

 Inexpensive  

 Simple to use 

 They can be used in most 

sedimentary units  

 Cores are often disturbed so 

may not be representative 

 Cannot penetrate through 

coarser material  

Drilling  

 Greater penetration depth (km 

scale) 

 Can provide information on the 

stress on the fault and physical 

and chemical processes 

 Expensive 

 Size and weight of equipment  

 need a power source 

 limited access to sites 

Paleoseismic 

trenching  

 Three dimensional view of 

deformed zone  

 Strike and dip information 

 More reliable and definitive 

interpretations  

 High precision in measurements  

 Easy acquisition of dating 

materials 

 

 invasive  

 difficult to interpret complex 

faulting  

 site dependant  

 require space, landowner 

cooperation, environmental 

consenting, equipment 

 Money and time consuming 

 require a number of people 

 cannot trench under high water 

conditions 

Magnetic 

intensity 

surveying 

 Can detecting large and small 

scale faulting 

 Depth is not limited by moisture, 

salinity or clays  

 False signals are common from 

metals objects, especially in 

urban areas 

Source: Guéguen and Palciauskas (1994), McCalpin (2009), Murray et al. (2005), Štěpančíková et al. (2010), 

Van Arsdale (2000), Woodward and Sloss (2013) and Zoback et al. (2010) 
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1.5.2  Dating techniques 

 

Ages of past earthquakes can be obtained by measuring and dating faulted materials 

within exposures (McCalpin, 2009). The numbers are obtained by defining maximum 

and minimum ages for each event. Maximum ages are determined from materials which 

were deposited or emplaced before the earthquake and minimum ages are determined 

from materials which were deposited or emplaced after the earthquake. The most 

common technique for obtaining a materials age in paleoseismology is radiocarbon 

dating, however, where no carbon material is present Optical Stimulated Luminescence 

(OSL) dating is one of the techniques that is often utilised.  

Radiocarbon dating is the most popular and reliable method for determining the absolute 

age of sediment during the Quaternary (Vittori et al., 1991). The radiocarbon dating 

method was first published in December 1949 and utilises the properties of the carbon 

isotope C14 to deduce the age of a material containing organic material (carbon). 

(Broecker, 2014). C14 decays exponentially over time and has a half life is 5,568 years, 

which is the time taken for the half of the atoms to decay (Jull and Burr, 2015). Measuring 

the remaining C14 in a sample allows the age to be determined. This technique cannot be 

used on samples which are greater than ~50,000 years in age, therefore it is commonly 

used on late Quaternary aged carbon (Jull and Burr, 2015). After dating materials the age 

is usually shown in calibrated years before present (cal. yr BP) or years after death (AD), 

which uses a base year of 1950 (Jull and Burr, 2015). This date was selected as after 1950 

major nuclear testing altered the atmospheres carbon isotope ratio (Arnold and Libby, 

1949). Dating C14 is not very straight forward, the activity and number of the atoms 

varies, and it is therefore necessary to calibrate the samples with environmental factors, 

such as CO2 and water content (McCalpin, 2009). Also, radiocarbon dates can over or 

underestimate ages if older or younger carbon contaminates the sample. 

OSL is an alternative method for geological dating of sediments, often utilised when 

there is little in-situ material available for radiocarbon dating, such as alluvial and fluvial 

deposits. OSL is related to the stimulation of luminescence of a substance by the 

absorption of radiation; it became popular in the literature of the 21st century (Yukihara 

and McKeever, 2011). In geological dating, OSL measures the materials background 

radioactivity, and the length of time since the material was last exposed to sunlight (Le 
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Dortz et al., 2011). OSL dating can be applied to materials that have undergone large 

levels of bleaching which is absorbed by minerals such as quartz and feldspar. Quartz is 

a reliable material for OSL application in geology as it is abundant within sedimentary 

deposits and has a simple crystal structure (Yukihara and McKeever, 2011). Samples 

containing quartz can be dated up to 350,000 years (Murray and Olley, 2002). Feldspar 

is also common in many sedimentary deposits, and it can store a high amount of 

luminescence, therefore has the potential for even longer term dating (Rhodes, 2011; 

Yukihara and McKeever, 2011). OSL is often utilised for dating alluvial layers, however 

natural materials have a wide variety of properties and incomplete bleaching can be 

associated with errors (Le Dortz et al., 2011).  

Radiocarbon and OSL dating are best used together to gain the most accurate results; for 

example, both techniques were utilised on samples collected and dated from along the 

surface rupture of the 1999 Chi-Chi, Taiwan earthquake to obtain a slip rate on the 

causative fault (Chen et al., 2003). 

 

 

1.6  AIMS AND OBJECTIVES 

 

 

Previous studies identified that augering sediments that have been dammed behind 

Akatore Fault scarps can be used to gain information on past events (Litchfield and 

Norris, 2000; Norris et al., 1994). Trenching the Akatore Fault has allowed us to build 

on previous work and provides a 3D exposure of the fault, which augering does not. 

Hence, we are able to gain more definitive and comprehensive information on past 

events. 

  

Along the Akatore Fault, each uplift event has caused blocking of drainage of antecedent 

streams resulting in the build-up of silt, clay and often peat, therefore swamp sediments 

can be correlated to fault motion. Several sites along the Akatore Fault, which show 

evidence of stream blockage, appear to have trenching potential. In this study, we have 
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selected two sites to trench, at Big Creek and Rocky Valley Stream. Suitable layers within 

the trenches have been dated using radiocarbon and OSL methods, to investigate the 

timing and magnitude of prehistoric ruptures in the Holocene.  

Furthermore, we have utilised geophysical techniques (GPR and magnetic intensity) to 

image the Akatore Fault at a site south of Taieri Mouth. Previous efforts to date marine 

terraces have suggested that the fault has offset the 125 ka marine terrace (Litchfield and 

Lian, 2004), therefore it will constrain the longer term behaviour of the fault.  

Our findings have allowed us to assess the hazard implications of the Akatore Fault for 

Dunedin and comparison to other Otago faults. 

My research questions have been as follows: 

1. When did the Akatore Fault produce the most recent large earthquakes and how 

often do they occur? 

2. What are the estimates of magnitude and recurrence interval for large Akatore 

Fault earthquakes? 
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Chapter 2                  

PALEOSEISMOLOGY 

 

 

 

 

 
Big Creek antecedent gorge and trench site across the Akatore Fault scarp, the prominent step in the 

valley floor in the right-centre of the image. View is to the northeast. 
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2.1  INTRODUCTORY REMARKS 

 

 

For this study, we trenched the Akatore Fault at two antecedent streams (Big Creek and 

Rocky Valley Stream) to constrain the timing of past earthquakes. In this chapter, I have 

described the process of selecting the site, the trenching procedure and the resulting 

trench logs. Then I have compiled the results to form a Holocene event history at Big 

Creek.  

 

 

2.2  SITE SELECTION 

 

 

Potential sites for trenching investigations were selected based on two criteria: A stream 

must cross the fault and the hanging wall must be in the downstream direction. In these 

situations a fault rupture would dam the stream and cause it to pond. Over time the stream 

will cut its way back into the uplifted side and continue to flow out towards the ocean. A 

number of sites meeting these criteria have been identified along the Akatore Fault, 

generally on the upstream sides of antecedent gorges. These sites may contain distinctive 

sedimentary successions from stream blockage, and provide useful stratigraphic 

relationships for paleoseismic fault trenching.  

Site selection was also based on non-geological conditions such as amount of ground 

water, access and land owner permission. Two sites were selected. Site one at Big Creek 

and Site two at Rocky Valley Creek (Fig. 2.1). 
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Fig. 2.1 Location of sites along the Akatore Fault and key transportation routes. 
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2.2.1  Big Creek  

 

The Big Creek site is located on the south-east side of Akatore Road, GR: 46° 08’ 51.887” 

S / 170° 07’ 06.738” E (Fig. 2.1). The site is situated at the north-western side of an 

antecedent gorge, where Big Creek intersects an onshore section of the Akatore Fault 

(Fig. 2.2). The antecedent gorge and fault scarp can be clearly viewed from the road.  

 

Previous investigations including mapping, coring, and shallow seismic refraction have 

been undertaken at this site by Norris et al. (1994) and  Litchfield and Norris (2000). 

Sediments from coring consisted of silt and clays which are favourable indicators of 

stream blockage. On viewing the site, the fault has a distinctive ~ 2 m high scarp which 

cross cuts Big Creek (Fig. 2.3). This scarp protrudes out from a grass paddock, which 

can be accessed through a gate onto Akatore Road. The vegetation below the scarp (on 

the footwall) suggests a swamp environment with high water percolation, which may be 

problematic for fault trenching. The main stream, Big Creek, cross cuts the scarp along 

the edge of the valley wall to the north-east. To minimise the flow of water into the 

trench, the site was selected ~100 m down the scarp to the south-west. An auger core was 

collected ~ 4 m from the scarp, on the footwall side, to assess the underlying near-surface 

geology. Cores looked promising as they consisted primarily of grey silt and peat until 

2.15 m in depth, where the sediment gradually transformed into consolidated, gritty silt 

with schist clasts. The cores contacted gravel at ~ 2.4 m, which gave some idea of the 

potential depth the trench would need to be excavated to (Fig. 2.4). 
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Fig. 2.2 View of Big Creek antecedent gorge (facing east). The Akatore Fault scarp is 

marked by stripes. 
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Fig. 2.3 View of the Akatore Fault scarp at Big Creek (facing north / perpendicular to the 

fault scarp). The fault scarp is marked by stripes. 
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Fig. 2.4 Annotated down-core profile of an auger core collected on the footwall of the 

Akatore Fault at Big Creek. 
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2.2.2  Rocky Valley Creek 

 

The Rocky Valley Creek site is located on the north-west side of Coast Road, at GR: 46° 

13’ 16.479” S / 170° 01’ 45.404” E (Fig. 2.1). Light Detecting and Ranging (Lidar) 

images capture the southern onshore end of the Akatore Fault before it trails offshore. 

There is a distinctive trace of the Akatore Fault from depressions in the elevation, shown 

on the Lidar image (Fig. 2.5). Due to the lack of topography the trace of the fault is not 

as clear as through the valley. The Akatore Fault is expected to cross the path of the 

Rocky Valley Stream which should produce distinctive sedimentary sequences 

associated with uplift events. 

Previous investigations have been undertaken at Rocky Valley Stream by Litchfield and 

Norris (2000). Ten auger cores were collected which contained peat, grey silt layers and 

sandy basal gravels, which suggested Rocky Valley as a promising site for fault 

trenching. The site was not as easily accessible as the Big Creek site, 4WD farm tracks 

provided access from Coast Road (Fig. 2.1).  

Some difficulties emerged when viewing the site. The trace of the fault was not clear and 

potential trenching locations were limited by many obstacles such as farm crops, pine 

trees, fences, creeks/streams and swamp settings (Fig. 2.6). In addition, to the north, 

multiple valleys have transported young sediment into the site which could interfere with 

the interpretation of sediment deposition, therefore will not give a true representation of 

faulting events. Taking these factors into consideration, the trenching site was selected 

on a low lying paddock to the northern side of Rocky Valley Stream (Fig. 2.7).  
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Fig. 2.5 Lidar image of the Rocky Valley site. The Akatore Fault is clearly marked by 

the change in elevation from the south-west to the north-east of the image (Lidar image 

sourced from the Otago Regional Council). Lidar uses laser scanners to produce detailed 

3d images of structures by measuring the distance between the object and the receiver 

(Glennie et al., 2013). 

Rocky 

Valley Site 



 42   
 

 

 

 

 

Fig. 2.6 View of Rocky Valley and the Akatore Fault (in red), facing south-east. The 

fault trace is not clear throughout the valley.
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Fig. 2.7 View of Rocky Valley site facing east. The Akatore Fault trace (in red) is not 

clear through the site. 
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2.3  TRENCHING PROCEDURE 

 

 

2.3.1  Excavating  

 

Once the sites were selected, digger excavation was undertaken on the 2nd of March 2016. 

The Rocky Valley site was excavated starting at 9 am, 5.5 m above sea level. The trench 

was ~15 m long, ~ 3.5 m deep and several metres wide to accommodate a ~ 1 m deep 

bench on either side of the trench. The trench was dug across what appeared to be, a small 

scarp within the paddock near Rocky Valley Stream. Ground water was problematic as 

the trench quickly filled up with water, resulting in the collapse of the bench on the north 

wall. As a result the trench was not excavated deep enough to expose the fault plane or 

schist bedrock (Fig. 2.8). The walls of the trench were cleaned by removing the top layer 

of sediment which was disrupted by the digger. The aim was to search for any 

discontinuities in the stratigraphy or folding which may suggest that the trench has 

intersected the fault. Folding of layers towards the western end of the Rocky Valley 

trench were apparent (Fig. 2.9), which suggested the trench encompassed the hanging 

wall and that the fault was close. We would like to have trenched deeper towards the 

south but were unable to because of the Rocky Valley Stream. The trench contained a 

substantial amount of peat and pieces of wood, which would be useful for radiocarbon 

dating.  

 

Excavation began at Big Creek at 1 pm. Big Creek is ~11 km north-east of the Rocky 

Valley site, ~100 m above sea level. The trench was excavated across the ~ 2 m scarp 

and was dug ~ 30 m long, ~ 4 m deep, and several metres wide to account for the 1 m 

deep benches. It was clear from the excavation that there was a distinct change in 

lithology as the digging commenced over the scarp. Here the lithology changed from 

hard schist bedrock to consolidated sediment which indicated the trench had intercepted 

the fault (Fig. 2.10). Further digging of the footwall exposed underlying schist, which 

suggested that the trench contained the entire package of sediment. After cleaning down 

the walls of the trench, initial observations identified one or two colluvial wedges, which 
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correlated to faulting events. A peat layer was apparent where the trench exposed the 

fault. 

 

Fig. 2.8 Rocky Valley trench after excavation (facing south-east).  

 

 

Fig. 2.9 Folding lithology (red dashed lines) on the south wall of Rocky Valley trench. 
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Fig. 2.10 Big Creek trench after excavation. The red dashed lines denote where the trench 

intercepts the Akatore Fault. A. View of the trench looking east, perpendicular to the 

scarp. B. The Akatore Fault on the south wall of the trench. 

 

A 

B 
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2.3.2  Logging and sampling 

 

Considerable work was carried out at the Big Creek site as it contained the most useful 

paleoseismic information. This took place over five consecutive days. When visiting Big 

Creek the second day (3rd of March) some of the walls had caved in and the water level 

had risen. The water was pumped out every morning prior to working in the trench.  

 

Firstly, the trench had to be prepared for logging. A 1 m quadrant string grid was 

constructed on the trench walls. Next, the different units / horizons and interesting 

features were marked with coloured nails (Fig. 2.11). 

 

Once all features had been marked, such as lithology, liquefaction features, colluvial 

wedges, bedding and faults, the trench walls were logged onto graph paper. Caving in of 

the trench walls had caused the schist on the footwall to be concealed. Two schist 

outcrops were exposed from digging 50 cm into the bottom of the trench. Once both the 

north and south wall had been logged, descriptions of each of the units were compiled.  

Finally, the site was surveyed with a Leica GNSS Smart Antenna to obtain a profile of 

the trench and the scarp. The perimeter of the trench was surveyed every few metres and 

several measurements were collected of the strath and fault. In addition, the scarp was 

surveyed by collecting measurements at 1 m increments.  

 

Once the site had been surveyed, samples were collected for radiocarbon dating (Fig. 

2.11). Samples were selected on horizons that correspond to time before and after faulting 

events, and to correlate the two ends of the trench. Various sized samples were excavated, 

placed inside zip lock bags and labelled. Four radiocarbon samples (BC01-BC04) were 

collected consisting of peat, wood fragments and sediment containing small pieces of 

organic material. BC01 and BC02 were both collected from a layer of peat in the north 

wall. BC01 was a peat sample, while BC02 was a wood sample, 2.5 cm in diameter. 

BC03 and BC04 were also from the peat layer but were collected on the south wall. BC03 

was a peat sample while BC04 was a wood sample, 2 cm in diameter. 
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Fig. 2.11 Big Creek trench divided into 1 x 1 m quadrants with important features 

highlighted. A. The different lithologies with coloured nails are being marked on the 

south wall in the image. B. View of the Akatore Fault (schist overlying sediments) on the 

north wall. Writing in orange corresponds to radiocarbon sample locations.  

 

A 

B 
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Only one day (8th March), was spent at Rocky Valley Stream, as the trench was 

completely full of water, and it took a large portion of the day to drain by way of flexi 

pump (Fig. 2.12A). The bench on the north side was completely collapsed so only the 

south side was logged. Similar procedures took place as at the Big Creek Site (Fig. 2.12B; 

2.13). Radiocarbon samples were selected to best characterise the earthquake history of 

the fault. Ten radiocarbon samples (RV01-RV10) were collected consisting of wood 

fragments and silt with small pieces of organic material. Samples RV01 – RV05 were 

collected on the same layer within faulted sediment (organic rich silt). RV01, RV04 and 

RV05 were sample of wood, while RV02 and RV03 were samples of plant material. 

Above this layer RV10 was collected from unfaulted-faulted sandy silt and RV06 – RV09 

were collected from the unfaulted subsoil.  

 

On the 9th of March, David Barrell from GNS Science visited the Big Creek trench to 

review the trench and initial interpretations. Optically stimulated luminescence (OSL) 

samples were collected for dating. Samples were collected from fine grain sands and silts. 

All of the samples were collected from vertical faces. The faces were excavated to a 30 

cm depth before sampling to gain a ‘fresh sample’. Samples were collected by 

hammering a plastic piston core into the sediment (Fig. 2.14). Once the core was well 

immersed it was removed along with the sediment. The ends of the core were packed 

with aluminium foil and then wrapped extensively in black tape. Samples were labelled 

and placed in a black bag. These methods were used to minimise light exposure. Seven 

OSL samples were collected from silt and soil horizons (BCK01-BCK07). BCK01-

BCK06 were collected in the north wall. BCK01 was collected from a silt lens within the 

gravel. BCK02 and BCK03 were collected from silt above the gravel on the hanging 

wall, while BCK04 and BCK05 were collected from silt above the gravel on the footwall 

to see if the silts on both walls are correlated. BCK06 was collected in silt above the peat 

and BCK07 was collected from silt within the colluvial wedge in the south wall.  

 

Several of the radiocarbon and OSL samples from the trenches were sent to the laboratory 

at GNS science in Lower Hutt to be dated. The OSL samples were dated using a fine 

grained method which involves dating K-feldspar. Details can be found in the OSL report 

(Appendix 3). 
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Fig. 2.12 Preparing Rocky Valley trench for logging (facing south-west). A. On arrival 

the trench was completely filled with water. B. Hours later, the majority of the water was 

pumped from the trench and the south wall was divided up into 1 x 1 m quadrants.   

B 

A 
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 Fig. 2.14. Collecting an OSL sample (BCK04) in the north wall of the 

Big Creek trench. 

Fig. 2.13 The coloured nails mark the folding over of lithology on the 

southern wall of the Rocky Valley trench. 
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2.4  TRENCH DESCRIPTION 

 

 

This section describes the lithology, stratigraphy and initial interpretations of Big Creek 

and Rocky Valley trenches. Detailed unit descriptions can be found alongside the 

digitised logs (Fig. 2.16; 2.17; 2.19). 

These trench logs were constructed based on a colour and labelling scheme developed by 

GNS science (D. Barrell, pers. comm.). The simple colour scheme is shown in Fig. 2.15. 

Units are labelled based on the degree of deformation and their sedimentary 

characteristics. Each unit is assigned a number/s which refers to their degree of 

deformation; 1 is given for top soil, 2 is given to un-deformed sediments below the top 

soil, 3, 4 and 5 are given to deformed units, in order of the degree of deformation. Where 

the deformation is unclear a range of numbers were given. Next, each unit is assigned a 

letter which is used to distinguish its sedimentary characteristics. In addition some letters 

are assigned an exponent, where they have slight variations in their sedimentary 

characteristics but overall have been interpreted as the same unit.  

 

 

Fig. 2.15 Legend for digitised trench logs at Big Creek and Rocky Valley sites 
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2.4.1  Big Creek trench 

 

Logs from both the north and south walls of the Big Creek trench were digitised using 

Arc GIS and Inkscape software (Fig. 2.16; 2.17). Also, field photos were compiled to 

produce a detailed picture of the trench walls (Appendix 2). 

On the hanging wall, schist bedrock was exposed that has overthrust the sediments in the 

footwall. Schist was also exposed at the base of the trench in the footwall and has a flat 

surface (strath) cut into it. Overlying the schist unconformably was a unit of gravel, which 

has also been offset. The gravel had faint imbrication orientated west-east. Tilting of the 

sediments was observed in the hanging wall, and was most evident on the south wall. 

Within the gravel were lenses of silt, unit 5d. Overlying the gravel, in an erosional 

contact, was a sediment package that largely consisted of silt (unit 5b1 and 5a1). Towards 

the surface the silt transitioned into soil horizons (unit 2a, 2b and 1a). Here there were 

fissures and possible evidence of liquefaction, most noticeably on the north wall. 

On the footwall the schist bedrock was exposed during excavation, however it was buried 

the following day due to collapsing of the trench walls and the infilling by ground water. 

The schist was dug out on the north wall at two locations, illustrated on the trench logs 

(Fig. 2.16; 2.17.). Overlying the schist was gravel, similar to the hanging wall, however 

the upper contact was much more undulating. A unit of silt (5b2) overlaid the gravel. The 

silt on the hanging wall and footwall (unit 5b1 and 5b2 respectively) were similar with 

some variations in the percentage of schist gravel and mottling. Above this unit was 

another package of silt (unit 5a2), which had a mottled appearance on the north wall of 

the trench. This in turn was overlaid by peat (unit 4a), silt (unit 3c) and modern organic 

material (unit 2d), which was consistent with the present day swamp setting. The wet, 

swamp setting had restricted the formation of the soil horizons; in the hanging wall, no 

soil horizons were observed on the south wall of the trench, and only the top soil was 

apparent on the north wall, with a small amount of subsoil (unit 2a) near the fault. 

The fault zone contained multiple units of colluvial gravel, which are described in detail 

on the trench logs (Fig. 2.16; 2.17.). These ranged from silt to gravel. 

From observing the different sedimentary packages, multiple faulting events were 

interpreted from the trench. Each fault trace has been marked along the trench log in red. 
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The antepenultimate event was defined on the basis of the displacement of the basal unit, 

(schist, unit 5e) and the deposition of the peat (unit 4a). Uplift of the hanging wall during 

the first earthquake would have displaced the schist across the fault. This would have 

dammed Big Creek, resulting in ponding on the footwall. As the peat was only on the 

footwall, it was likely to have developed in response to this preserved fault rupture event. 

The fault plane had a strike and dip of: 050/ 28 E (north wall; Fig. 2.16).  

A colluvial wedge (unit 3a) overlay the peat (unit 4a) which suggested a second event. 

This means an unstable scarp had to have been formed above and beside the peat. The 

penultimate and most recent event were separated by a mixed zone (Mz), which was a 

combination of gravel and silt. The fault plane had a strike and dip of: 052/ 33° E (north 

wall; Fig. 2.16) and 064 / 49° E (south wall; Fig. 2.17) for the second event.  

The colluvial gravel (unit 3a), was in faulted contact with the schist, which suggested a 

third event in the trench (i.e. faulting of the colluvial wedge). Distinguishing any 

additional colluvial wedges, proved to be difficult, as some of them had been faulted, 

while others were deposited after the last event. The fault plane for this third event was 

not well defined, therefore a strike and dip was not measured. For the rest of this study 

41° was used for the dip of the fault, which is the average dip calculated in the Big Creek 

trenches for the penultimate event. Using this dip and the offset between the top of the 

gravels, resulted in a total displacement of ~5 m.  

In addition to the trench, the fault was also exposed on the south side of the Big Creek 

Valley (Fig. 2.18). Here the fault had a strike and dip of 018/ 28 E.  
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Fig. 2.16 Graphical representation of Big Creek trench (north wall), during field work early March, 2016. Refer to Fig. 2.15 for legend.  
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Fig. 2.17 Graphical representation of Big Creek trench (south wall), during field work early March, 2016. Refer to Fig. 2.15 for legend and Fig. 2.16 for unit descriptions previously described.  
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Fig. 2.18 The Akatore Fault exposure on a hill 

 to the south of the Big Creek site. 
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.4.2  Rocky Valley trench 

 

A log from the south wall of Rocky Valley trench was digitised using Arc GIS and 

Inkscape software (Fig. 2.19). Field photographs were also compiled to produce a 

detailed picture of the south trench wall (Appendix 2). 

The Rocky Valley trench only exposed the uppermost portion of the hanging wall of the 

fault, and only the south wall was logged. Roll over tilting of the sediments indicated 

close proximity of the footwall at the end of the trench, however rapid influx of water 

into the trench prevented further excavation. As the fault was not exposed in the trench 

the extent of deformation of the units is unclear. For this reason, all units which have 

undergone deformation have been labelled with a 3, regardless of the level of deformation 

(Fig. 2.19). 

Schist bedrock was not exposed in the Rocky Valley trench. The oldest unit visible was 

a quartz gravel (unit 3e), likely either primary, or reworked gravel from the Taratu 

formation. Overlying the gravel was an organic rich silt which may represent an ancient 

swamp deposit (unit 3b). Within the silt were lenses of peat which showed rollover tilting 

towards the western end on the trench. The organic rich silt progressively became drier 

towards the east (away from the fault) where it fingered into a gritty sand (unit 3d). This 

unit was interbedded with sand and silt, and was interpreted as an old channel deposit. 

Overlying these units was a mottled sandy silt (unit 3a). Towards the western end of the 

trench, sand beds also showed rollover tilting. This unit gradually transitioned into sub 

soil and top soil towards the surface, 2a and 1b respectively. These were unfaulted 

sediments. Within the top soil there was a large overbank deposit (unit 1a), suggesting 

this was a modern floodplain setting.  
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Fig. 2.19 Graphical representation of Rocky Valley trench (south wall), during field work early March, 2016. Refer to Fig. 2.15 for legend.  
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2.5  RADIOCARBON AND OSL DATING RESULTS 

 

 

Sediment samples were selected for OSL and radiocarbon dating. Sampling locations can 

be observed in Fig. 2.16, 2.17 and 2.19. Sample information and their corresponding ages 

are shown in Table 2.1, 2.2. Detailed reports can be found in Appendix 3. 

 

Multiple samples from the same units provided varying radiocarbon ages. We chose 

preferred ages, to use for sequential work, for units 4a, 3b and 2a for the following 

reasons:  

 Wood is often disturbed and not in its original growth position. Dating wood only 

provides the maximum age of the sediment, as the wood may have died and been 

re-deposited in younger material (Bartsch-Winkler and Schmoll, 1992). We used 

samples with the least wood such as BC01 (for unit 4a; Fig. 2.16) and RV02 (for 

unit 3b; Fig. 2.19). 

 Samples of plant material in the upper layers of a trench can often be 

contaminated by younger roots. Within the subsoil (unit 2a; Fig. 2.19) in Rocky 

Valley trench, plant material was abundant and some of the radiocarbon ages 

were younger than expected. We use sampled RV09 which had the oldest 

radiocarbon age. 
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     Table. 2.1 Big Creek and Rocky Valley radiocarbon ages from this study. Detailed reports are in Appendix 3 

Trench 

Site 

Sample 

# 
Description Unit 

Collection 

date 

Calibratio

n curve 

Max. Age 

(Cal.cal. 

yr BP) 

Min. Age 

(Cal.cal. 

yr BP) 

Max 

Age 

(AD) 

Min Age 

(AD) 

Convention

al 

radiocarbo

n age (cal. 

yr BP) 

Rocky 

Valley 
RV01 

Wood within 

organic silt. 
3b 8-Mar-16 SHCaLI3 1170 977 973 776 1201 ± 21 

Rocky 

Valley 
RV02 

Plant material 

within organic 

silt. 

3b 8-Mar-16 SHCaLI3 924 801 1149 1026 1006 ± 21 

Rocky 

Valley 
RV06 

Bulk peat 

sample. 
3a 8-Mar-16 SHCaLI3 253 0 1697 1950 134 ± 21 

Rocky 

Valley 
RV08 

Bulk peat 

sample. 
3a 8-Mar-16 SHCaLl3 551 517 1399 1433 570 ± 18 

Rocky 

Valley 
RV09 Organic silt. 3a 8-Mar-16 SHCaLI3 721 652 1298 1229 776 ± 22 

Big 

Creek 
BC01 

Bulk peat 

sample. 
4 7-Mar-16 SHCAL13 1275 1121 829 675 1326 ± 22 

Big 

Creek 
BC02 

Piece of wood in 

peat. 
4 7-Mar-16 SHCAL13 1300 1184 766 650 1375 ± 22 
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   Table. 2.2 Big Creek OSL ages from this study. Detailed report is in Appendix 3. 

Trench Site Sample # Description Unit Collection date 
Luminescence Age 

(cal. yr BP) 

Big Creek BCK01 Silt lens within gravel 5d1 9-Mar-16 1325 ±1201 

Big Creek BCK02 Silt from BT horizon 5a1 9-Mar-16 9300 ± 900 

Big Creek BCK05 Mottled silt above gravel 5a2 9-Mar-16 10400 ± 1700 

Big Creek BCK06 Silt grading to fine sand 3c 9-Mar-16 8900 ± 1600 

Big Creek BCK07 Silt from Colluvial wedge 3d 9-Mar-16 10000 ± 700 
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2.5.1   Comparing OSL and radiocarbon ages with previous work 

 

Previously, Litchfield and Norris (2000) collected auger and percussion cores from Bull 

Creek, Nobles Stream, and Rocky Valley Creek. These cores were collected on the 

downthrown side of the Akatore Fault, in an attempt to capture samples from buried peat 

horizons which had resulted from damming during uplift events. These samples have 

been radiocarbon dated, and the results are shown in Table. 2.3. Most of the new 

radiocarbon ages, from this study, correlate well to those by Litchfield and Norris (2000), 

which gave us confidence in our results (Fig. 2.20). The exception is RV06, which has 

been contaminated with modern material and, most notably, B9(2) which was a single 

radiocarbon age from a buried wood horizon (Fig. 2.20). 

OSL ages of original alluvium deposits were compared to McKellar’s (unpublished) 

gravel radiocarbon age which was collected from a riverbank deposit at Nobles Stream 

(Table. 2.4). Our ages correlated well with McKellar’s which gave us confidence in our 

OSL ages at Big Creek (Fig. 2.21).  

 

These ages provide the critical information for understanding the event history of the 

Akatore Fault.  
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Table. 2.3 Litchfield and Norris (2000) radiocarbon ages along the Akatore Fault. 

Location 
Sample 

# 
Description  

Sampling 

method 

Collection 

date 

Calibration 

curve 

Max. Age 

(Cal.cal. 

yr BP) 

Min. Age 

(Cal.cal. 

yr BP) 

Max Age 

(AD) 

Min Age 

(AD) 

Bull 

Creek 
B9(1) 

Peat layer at 1.1-1.3 

m depth 
Auger 2-Oct-97 SHCal 1287 1073 1073 1070 

Bull 

Creek 
B9(2) 

Plant material in 

gravel at 3.6 m depth 
Auger 2-Oct-97 SHCal 4080 3698 4080 3700 

Nobles 

Stream 
N1(4) 

Wood in peat at 

4.08-4.24 m 
Auger? 12-Aug-98 SHCal 1519 1288 1520 1290 

Nobles 

Stream 
PN1 

Wood in peat at 3.85 

m depth 

Percussion 

core 
3-Sep-98 SHCal 1055 744 1060 740 

Rocky 

Valley  
R3 

Wood and twigs at 

0.7-0.8 m depth 

within brown clay 

Auger 4-Sep-97 SHCal 1270 987 1270 990 

Rocky 

Valley  
R4(1) 

Wood and peat at 1.4 

m depth within grey 

silt 

Auger 4-Sep-97 SHCal 1262 933 1260 930 

Rocky 

Valley  
R7(1) 

Wood in peat at 1.75 

m depth 
Auger 2-Oct-97 SHCal 1177 936 1180 940 
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Fig. 2.20 Comparison between Litchfield and Norris (2000) (orange) and our study’s radiocarbon ages (blue) from the Akatore Fault. 
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Table. 2.4 McKellar (unpublished) radiocarbon age along the Akatore Fault. 

Location 
Sample 

# 
Description  

Sampling 

method 

Collection 

date 

Calibration 

curve 

Max. Age 

(Cal.cal. 

yr BP) 

Min. Age 

(Cal.cal. 

yr BP) 

Max Age 

(AD) 

Min Age 

(AD) 

Nobles 

Stream 

H45/F9

532 

Log not in growth 

position in clay 

lens in material of 

small flood plain 

Riverbank 

exposure 
12-Sep-63 SHCal 11164 10301 11160 10300 
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Fig. 2.21 Comparison between McKellar’s gravel age (orange) and our study’s OSL ages (blue) from the Akatore Fault. 
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2.6  BIG CREEK HOLOCENE EVENT HISTORY  

 

 

2.6.1  Pre event stratigraphy and age 

 

Bog cores by Mcglone and Wilmshurst (1999) suggested that the mid-late Holocene 

climate in East Otago was largely dry with periods of increased rainfall. Uplift would 

have resulted from the older Titri Fault, which was active from the middle – late 

Quaternary (Litchfield, 2001). The bottom of Big Creek is composed of schist basement. 

Gravel, sand and silt, overlies the schist, and have accumulated over time through fluvial 

processes. Sedimentary packages on the footwall and hanging wall of the fault indicated 

these fluvial deposits were present before the fault ruptured. The gravel (unit 5c in Fig. 

2.16; 2.17) was the oldest sediment, deposited 13,200 ± 1,700 cal. yr BP. The gravel was 

varied in size, with clasts measured up to 20 cm in diameter. Interpretation of Hjulstrom’s 

curve indicates that gravels of this size require high river velocities, ~ 2.5 m/ sec, to be 

transported (Hjulström, 1935). These velocities would have been acquired during flood / 

high discharge events, which were common during this time (Mcglone and Wilmshurst, 

1999). The mottled silt on the footwall (unit 5a1 with OSL age 10,400 ± 1,700 cal. yr BP) 

and the silt on the hanging wall (unit 5a2 with OSL age 9,300 ± 900 cal. yr BP) have 

similar ages, therefore may have come from the same overall sedimentary package (Fig. 

2.16: Fig. 2.17). Silts are indicative of a low energy environment (Hjulström, 1935), so 

the silts of unit 5a and 5b may have accumulated during periods of low discharge on Big 

Creek, under drier climatic conditions (Fig. 2.16; 2.17). 

 

2.6.2  Antepenultimate event 

 

The antepenultimate event was suggested by the formation of peat on the downthrown 

side of the fault. Peat is the accumulation of organic matter, which has only partially 

decayed as a result of water-saturated conditions (Keddy, 2010). Here, the peat (unit 4a 

in Fig. 2.16; 2.17) is aged 1,326 ± 22 cal. yr BP. The uplift of the hanging wall of the 
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fault could have led to damming of Big Creek. As a result, the footwall would have 

become waterlogged. Carbon material may have been trapped against the scarp as a result 

of the drainage path being blocked. The slow accumulation rate of peat, ~1 mm/yr, 

suggests Big Creek was blocked for some time before the scarp was eroded and the water 

found a path through the gorge (Martini et al., 2007). Reduced sedimentation, would have 

been conducive to the formation of peat. The silt, which lies below (unit 5a in Fig. 2.16; 

2.17), pre-dates the uplift event which allows the first event to be constrained between 

10,400 ± 1,700 and 1,326 ± 22 cal. yr BP. It is likely however, that the timing of this 

event is closer to the timing of peat deposition, so immediately prior to 1,326 ± 22 cal. 

yr BP. 

 

2.6.3  Penultimate event 

 

The penultimate event is suggested by the accumulation of silt above the peat, and the 

deposition of a colluvial wedge. The silt (unit 3c in Fig. 2.16; 2.17) is dated at 8,900 ± 

1,600 cal. yr BP, which is significantly older than the peat (unit 4a in Fig. 2.16; 2.17, 

with radiocarbon age 1,326 ± 22 cal. yr BP), yet a similar age to the underlying mottled 

silt, (unit 5a with in Fig. 2.16; 2.17, radiocarbon age 10,400 ± 1,700 cal. yr BP). The silt 

has possibly been expelled syn-earthquake, and ‘squeezed out’ from the underlying 

mottled silt, resulting in the age inversion. The peat appears to thin out near the fault, and 

this may have been due to the underlying silt being ejected above the peat during the 

earthquake. The silt wedge on the footwall would have been expelled prior to 

development of a colluvial wedge over the silt. The peat provides an age for the second 

event of post 1,326 ± 22 cal. yr BP.  

 

A colluvial wedge is formed at the base of an unstable scarp by an earthquake (McCalpin, 

2009). Partial collapse of the Big Creek scarp would have produced a wedge shape on 

top of the silt and pre-faulted surface (Fig. 2.16; 2.17). 
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2.6.4  Most recent event 

 

The colluvial wedge was distorted and it was in fault contact with the schist; this implies 

that there has been an additional event post the formation of the wedge. The third event 

would have thrust the hanging wall up over the footwall, resulting in the colluvium wedge 

on the downthrown side being in direct contact with the schist on the uplifted side. This 

event caused an unstable scarp and resulted in new colluvium being deposited on the pre-

existing colluvial wedge.  

 

The age of the colluvium (unit 3d in Fig. 2.16; 2.17, with OSL age 10,000 ± 700 cal. yr 

BP) is similar to the silt layer above the gravel (unit 5a in Fig. 2.16; 2.17, with OSL age 

9,300 ± 900 cal. yr BP). This suggested the alluvium from the hanging wall has been 

reworked and re-deposited. The lack of sediment accumulation on the footwall during 

the most recent two events suggested that Big Creek was only dammed by the fault for a 

short amount of time before it was able to erode the scarp and re-establish a path out to 

sea.  

Above the colluvium are unfaulted soil horizons (unit 1a, 2a and 2b in Fig. 2.16; 2.17; 

2.19) which suggested the colluvium represents the last event on the Akatore Fault. This 

event can be correlated to ages from Rocky Valley trench, which also captured the most 

recent uplift event on the Akatore Fault. The soil horizon layers were planar, while the 

underlying silt and peat layers overturn towards the end of the trench, suggesting these 

have been faulted. By dating the peat (unit 4a in Fig. 2.16; 2.17), which has been 

deposited after the first event, and the base of the subsoil (unit 2a in Fig. 2.19), which is 

unfaulted, the most recent uplift event on the Akatore Fault can be constrained between 

1,326 ± 22 and 776 ± 22 cal. yr BP. The second (penultimate) event also occurred within 

these dates. 

 

2.6.5  Modern day  

 

Over time, soil horizons have developed. Distinctive marks and fissures in the soil 

horizons suggested liquefaction has occurred at some time during activity on the fault. 

The time at which liquefaction has occurred cannot be constrained. The silts on either 
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side of the fault, which are part of the same sedimentary package (unit 5a and 5b in Fig. 

2.16; 2.17), have different thicknesses. After the first earthquake, the thickness of the silt 

on the footwall was presumably buried and preserved, while the silt on the hanging wall 

was eroded during sequential earthquakes. Another differing characteristic, was the silt 

on the footwall was mottled (unit 5a2 in Fig. 2.16; 2.17). This was related to the sediment 

drainage, and is often caused by water table fluctuations in the soil (Húska and Jurík). 

The grey colour of the silt implies soil saturation. Mottling of the silt may have been the 

result of continual damming of Big Creek. 

 

After each of the Akatore Fault events Big Creek’s flow has been briefly restricted prior 

to re-establishing a new, easier path through the scarp towards the coast. Past courses of 

Big Creek can be observed from paleochannels on the uplifted side of the paddock.  

 

2.6.6   Comparison with Litchfield and Norris (2000) 

 

From this study we have determined that the oldest Holocene event occurred between 

10,400 ± 1,700 and 1,326 ± 22 cal. yr BP, however this is likely to be closer to the later 

date.  

The penultimate event determined from this study occurred between 1,326 ± 22 and 776 

± 22 cal. yr BP. Litchfield and Norris (2000) suggested an age post 3.8 ka. Our new 

results do not show a 3.8 ka event (Fig. 2.20). 

The most recent event from, this study, also occurred between 1,326 ± 22 and 776 ± 22  

cal. yr BP. Litchfield and Norris (2000) concluded an age of 1150 - 1000 yr BP which 

fits within our age range.  
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2.7  GRAPHICAL SUMMARY OF HOLOCENE EVENTS 

 

 

During the late Holocene, three ground rupturing events have been interpreted from the 

trenches. Below is a sequence of schematic diagrams of Big Creek, demonstrating how 

the fault has behaved over time, resulting in its distinctive stratigraphy (Fig. 2.22). These 

have been constructed from trench observations and by dating key layers in the trench. 
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Big Creek 

Akatore F. 

Pre event stratigraphy and age  

Prior to the three Holocene earthquakes, 

sediments were transported through 

alluvium processes and deposited at the 

bottom of Big Creek.  

Age of alluvium deposition:  

 Gravel: 13,200 ± 1,700 cal. yr BP. 

 Silt: 9,850 ± 1,300 cal. yr BP 

 

Antepenultimate event 

Between 10,400 ± 1,700 and 1,326 ± 22 

cal. yr BP the Akatore Fault ruptured, 

uplifting the hanging wall relative to the 

foot wall. This resulted in damming of Big 

Creek as its path was blocked by the fault 

scarp.  

 

Schist 

Gravel 

Sand/ Silt 

Fig. 2.22 Schematic diagrams illustrating the tectonic evolution of Big Creek. 
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It took some time before the river eroded a 

channel through the scarp. During this 

time peat formed at the bottom of the 

scarp.  

Peat 

Eventually the river carved a new path 

through the fault scarp out towards the 

coast. The exposed scarp has led to 

thinning (weathering and erosion) of silt 

on the hanging wall.  

Fig. 2.22. Continued. 
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Penultimate event 

 

The penultimate event occurred between 

1,326 ± 22 and 776 ± 22 cal. yr BP. 

During this event the silt on the footwall 

has been ‘squeezed out’ and ejected on top 

of the peat syn-earthquake. The uplift 

caused an unstable scarp leading to a 

collapse of loose material onto the base of 

the scarp, forming a colluvial wedge.  

 

Soil liquefaction appears to have occurred 

in the hanging wall, however the timing of 

its occurrence is unknown.   

 

Over time the river was able to re-establish 

a path to the coast. Big Creek was dammed 

only for a short amount of time, relative to 

the first event, as peat formation did not 

occur.  

 

 

 

 

 

 

An age has not been constrained for the 

Liquefaction 

Colluvium  

Fig 2.22. Continued. 
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Most recent event 

The last event also occurred between 

1,326 ± 22 and 776 ± 22 cal. yr BP. 

During this event the colluvial wedge was 

faulted. The scarp was once again unstable 

leading to the re-deposition of the uplifted 

colluvium onto the base of the scarp. 

A colluvial wedge has formed, and over 

time the river has carved its way back out 

to the coast. The continual damming of 

Big Creek has led to a depression on the 

footwall of the fault and mottling of the 

silt below. A depression in the land has 

resulted in a modern swamp setting around 

the base of the scarp.  

2 m high 

scarp 

Fig. 2.22 Continued. 
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Chapter 3                                              

FAULTED MARINE TERRACES AT              

TAIERI MOUTH 

 

 

 

 

Aerial photograph of Taieri Mouth 

(Source: Algie, 2016) 
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3.1  INTRODUCTORY REMARKS 

 

 

At the north-eastern end, the Akatore Fault has a distinctive 2 m west facing scarp which 

can be observed in a paddock when looking east from Moturata Road (Fig. 3.1). This site 

is located 30 km south of Dunedin and it provides the last expression of the fault before 

it strikes offshore. It is of significance as here the Akatore Fault displaces the 125 ka 

marine terrace, therefore provides constraints on the longer term behaviour of the fault. 

In this chapter, I have reviewed previous paleoseismic studies of the marine terraces at 

Taieri Mouth. Then I have described field work we have undertaken, which includes 

geological observations, magnetic intensity and ground penetrating radar investigations, 

before discussing the results. 

 

 

 

 

 

 

Fig. 3.1 Location of the Taieri Mouth site along the Akatore Fault (red). 

 



 83   
 

3.2  MARINE TERRACES  

 

 

Multiple marine terraces are observed along the coast in the Akatore Fault area. The 

series of marine terraces are well preserved around Taieri Mouth (Bishop and Turnbull, 

1996; Barrell et al., 1998).  

 

 

3.2.1  Previous work 

 

Few geological studies were conducted at Taieri Mouth before the 1990’s (Gage, 1953; 

Pillans, 1990). Those that have been undertaken have focused on the marine terraces, 

which are extensive in the area. The marine terraces have been investigated to gather 

information on past sea level stands (Gage, 1953). Early studies by Cotton (1957), 

acknowledged the relationship between tectonics and the marine terraces along the coast. 

Since terraces reached heights of over 50 - 60 m above the maximum sea level, tectonic 

activity must have played a role in their formation. At Taieri Mouth these terraces range 

from 2 – 120 m above average sea level (Barrell et al., 1998).  East of the Akatore Fault, 

the youngest marine erosional surface is at ~ 5 m above sea level, at least 2 m higher than 

elsewhere along the coast (Bishop, 1994). 

The marine terraces were dated at Taieri Mouth to gain information on past movement 

along the Akatore Fault (Litchfield and Lian, 2004; Rees‐Jones et al., 2000). Motion on 

the fault has uplifted the marine terraces on the hanging wall (east). This was evident as 

the marine terraces do not appear to be well aligned across the fault (Barrell et al., 1998). 

Luminescence dating of the marine terraces provided an age for the burial of the 

sediments.  Samples were dated using Optical Luminescence, with one sample dated 

using Thermoluminescence (TL); TL is a luminescence dating technique where the 

minerals are heated during the measurement (Rhodes, 2011). Results are shown in Table. 

3.1. 
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These samples were collected along the east (uplifted) side of the Akatore Fault, south 

of Taieri Mouth (Fig. 3.2). Here Otago Schist basement, which has been eroded into a 

wave cut platform, was observed. Overlying this was red / orange coarse grained sands, 

~1 m thick and then fine yellow sands, ~1.5 m thick covered with loess (~1 m).  

Loess is extensive throughout eastern South Island, on late Pleistocene and older terraces, 

it has been transported and deposited by wind during glaciations (Fig. 3.2; Eden and 

Hammond, 2003). The loess has been deposited at ~ 20 ka, during the Last Glacial 

Maximum; this is a similar age to that recorded elsewhere in New Zealand (Berryman, 

1993; Eden and Hammond, 2003).  

The red / orange coarse sands have been interpreted as beach sands as they are deposited 

on top of a shore platform, and have similar characteristics to modern day sands.  The 

beach sands are interpreted to have been deposited during a high-stand of the last 

interglacial (~80 ka), when sea level was 4 - 6 m higher than present day (Harmon et al., 

1983; Rees‐Jones et al., 2000). After the sea retreated the younger fine sand was 

deposited. Since these sediments are currently at higher elevation than present day sand 

levels, significant uplift of the marine terraces must have occurred within this area. The 

youthful appearance of the scarp suggests recent movement along the Akatore Fault 

(Rees‐Jones et al., 2000).  

The beach sands were re-dated by Litchfield and Lian (2004; Fig. 3.2). These ages 

suggest the beach sands correspond to the 125 ka last interglacial peak high stand, rather 

than the previously interpreted 80 ka. These beach sands are ~ 3 m thick, overlying ~ 4 

m (above high sea level) of basement and capped with loess 1 m thick. These sands were 

sampled 1 m up from the basement where their ages most likely correspond to the terrace 

formation (Fig 3.2).  

The uplifted block of the 125 ka terrace has a relatively low elevation of 5 - 20 m above 

high sea level, furthermore, this terrace is offset by 2 - 4 m across the fault. These findings 

suggest all of the uplift on the Akatore Fault has been wholly accounted for during the 

Holocene events (Litchfield and Norris, 2000; Litchfield and Lian, 2004). Litchfield and 

Lian (2004) suggested the last Holocene event (the penultimate event) occurred post 3.8 

ka, their findings imply that there has been little or no uplift on the Akatore Fault 125 – 

3.8 ka.
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Table. 3.1 Luminescence ages of sands and loess south of Taieri Mouth, East Otago. Samples are in stratigraphic order.  

Sample 

Number 
Unit Description Method Age (ka) Reference 

NZ8 Loess OSL 
19 ± 7 

22 ± 7 
Rees‐Jones et al. (2000) 

B1* Loess OSL 28 ± 7 Barrell et al. (1998) 

NZ9 Yellow fine sand OSL 47 ± 15 Rees‐Jones et al. (2000) 

B2* Yellow fine sand OSL 57 ± 18 Barrell et al. (1998) 

NZ10 Red/orange coarse sand OSL 71 ± 14 Rees‐Jones et al. (2000) 

B2* Red/orange coarse sand OSL 87 ± 19  Barrell et al. (1998) 

TBE1 Red/orange coarse sand OSL 117 ± 12 Litchfield and Lian (2004) 

W2857 Red/orange coarse sand TL 117 ± 13 Litchfield and Norris (2000) 

* Not original sample codes.
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Fig. 3.2 Sample locations and corresponding logs of Pleistocene terraces, h (larger numbers 

are associated with older terraces). Text in bold indicates the sample number. The red dashed 

line is the Akatore Fault. 
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 Rees‐Jones et al. (2000) 

Barrell et al. (1998) 

Location map has been 

modified from Rees‐Jones et 

al. (2000) and Bishop (1994). 
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3.3  FIELD WORK  

 

 

Geophysical data (magnetic intensity and ground penetrating radar data) were collected, 

with the help from the undergraduate “Geophysics of the Earth” students (GEOL 

251/361), throughout the paddock, south of Taieri Mouth, as an attempt to image the 

subsurface expression of the Akatore Fault. Assessing the characteristics of the fault 

before it strikes offshore has provided information on the activity of the fault in the north-

eastern areas, and therefore, the hazard it poses to Dunedin and elsewhere. 

  

 

3.3.1  Site geomorphology 

 

The Akatore Fault is evident from the ~ 2 m scarp which crosses the large paddock (Fig. 

3.3; 3.4.). Towards the south the fault strikes ~ 60°, it then slightly alters its orientation 

and strikes ~40° at the northern end. Towards the north of the paddock the fault moves 

offshore 150 m NE of the large tree in the paddock (Fig. 3.3). The fault is expressed in 

the near-shore areas of Taieri Mouth by a north-east alignment of schist reefs and an 

island (Fig. 3.3). To the south-west the fault scarp is present and the peneplain uplift on 

the hanging wall of the fault progressively increases in height. 
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Fig. 3.3 Bird’s eye view of the Taieri mouth site (original image sourced from Google Maps). A. The Taieri Mouth site with the Akatore Fault 

scarp annotated in red. B. The black box marks where the fieldwork was conducted. The fault can be projected offshore (arrow) by the exposed 

schist outcrops. The schist outcrops and Taieri Island are on the hanging wall of the fault.

A

. 

B 
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Fig. 3.4 Close up of the distinctive ~ 2 m Akatore Fault scarp at the Taieri mouth site. A. 

View is to the south. B. View is to the north.  

 

 

  

A 
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3.3.2  Geological observations  

  

On the 12th of August we investigated the Taieri Mouth site to see if we could measure 

the offset of units across the fault. On the coast (GR: -46.07, 170.12) a marine cliff 

exposes friable and weathered Otago Schist bedrock. The Otago Schist forms part of the 

Chrystal Beach Complex (Nelson, 1982) which is an accretionary melange in south-east 

Otago, composed of bedrock with sandstone-shale and volcanogenic affinity (Fagereng 

and Cooper, 2010; Nelson, 1982). Within the Otago Schist at Taieri Mouth are altered 

metabasalts containing microcrystalline pillow structures. The mineral assemblage is 

largely epidote, actinolite, pumpellyite, albite and chlorite, providing the Otago Schist 

outcrop with its green colour (Pitcairn et al., 2015). The Otago Schist is ~ 6 m below the 

top of the cliff and is concealed by modern and paleo-beach sands elsewhere. Above the 

Otago Schist are schist-derived gravels that are overlain by a thick layer of sand, and 

capped by loess (Fig. 3.6). The Otago Schist was not exposed on the footwall, therefore 

we looked for correlatable horizons in the tertiary sands to constrain the long-term 

behaviour of the fault. 

A riser truncates the marine terrace and fault scarp to the north at GR: -46.07, 170.12. 

Here, we observed an outcrop of sands and loess within the road cuttings (Fig. 3.7a). We 

excavated the exposed sediments by shovel. Within the road cuttings and immediately 

below the faulted marine terrace surface was a thick bed of well consolidated whitish 

loess. The loess had vertical joints, which were cracks caused by faulting. The loess is ~ 

20 ka in age (Table. 3.1.), and is associated with the low stand of the last glaciation 

(Berryman, 1993). The fault was evident by the change in height at the top of the loess 

(Fig. 3.7a). The loess was overlying well sorted, loose – poorly consolidated mottled 

sands below, which were orange to red in colour. These sands vary in age and are 

associated with the last interglacial high stands, 80 – 125 ka (Table. 3.1; Berryman, 

1993). There was a gradual transition between the sands and loess, which were separated 

by a layer of gritty iron cement (Fig. 3.5.). North-west of the fault scarp, similar 

sediments were observed on the footwall of the fault which correlate with the hanging 

wall (Fig. 3.7b). The cementation caused part of the sediments to be well-expressed in 

the footwall exposure (Fig. 3.7b). These sediments had an equivalent gritty cemented 

layer to that of the hanging wall. By correlating the sedimentary relations across the fault 
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(the cemented gritty iron stained layers and underlying sandy sediments) it was estimated 

that there has been approximately 1 – 2 m of throw across the fault. The loess on the 

hanging wall was ~ 1.7 m thick, while the loess on the footwall was ~ 1.1 m thick, 

suggesting there has been some erosion of the loess on the footwall. It was estimated that 

there was a minimum of 1 m throw across the fault, taking into account the potential 

erosion prior to the deposition of the loess.  

The height of this offset (1 – 2 m) was similar to that of the fault scarp in the paddock, 

suggesting a minimum of 1 – 2 m of scarp development since the formation of the marine 

terrace (~125 ka). Furthermore the youngest Holocene marine terrace is 1 - 3 m above 

sea level along most of the coast (Litchfield and Norris, 2000), however, east of the 

Akatore Fault the surface is 5 m above sea level suggesting  2 - 4 m of uplift along the 

fault (Bishop, 1994, Bishop and Turnbull, 1996). Weathering and erosion may have 

played a part in reducing the faulted topography but, if not, our observation was simply 

that there may have only been the 2 - 4 m of scarp development since the marine terrace 

was formed. Since the Big Creek trench results indicated similar displacements achieved 

over three Holocene earthquakes, it was plausible that the scarp development has 

happened by way of these same three Holocene events, with nothing occurring for a long 

period prior. Specifically, three ground rupturing events in the recent Holocene, and none 

since the formation of the marine terrace at ~125 ka.  

Our findings support those from Litchfield and Lian (2000) who suggested little to no 

uplift between 125 – 3.8 ka; however we have determined, from our paleoseismic data at 

Big Creek, that the oldest Holocene uplift event occurred 10,400 ± 1,700 cal. yr BP, 

therefore suggesting the Akatore Fault was in a period of quiescence between 125 – 10 

ka.

Fig. 3.5 A close up of the gritty, 

iron cement separating the loess 

(above) from the underlying 

(presumably Tertiary) sands. 
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Fig. 3.6 Beach outcrop south of Taieri Mouth; GR: -46.07, 170.20, facing south-west. Key features are annotated on the log. “Fat Lamb” for scale.
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Fig. 3.71a Loess and sands within road cuttings primarily on the east side of the fault (hanging wall), south of Taieri Mouth. The slope of the scarp 

can be observed in the skyline and the fault is annotated by black dashed lines. 
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Fig. 3.7b Loess and sands within road cuttings on the west side of the fault (footwall), south of Taieri Mouth.
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3.3.3  Magnetic intensity 

 

Two weekends in September were spent at Taieri Mouth collecting field data as part of 

the GEOL 261/361 field school in which the author was a teaching assistant. The students 

ran a geophysical survey across the Akatore Fault scarp and collected magnetic intensity 

data.  

Magnetic surveys can be used to investigate the magnetic properties of the underlying 

rocks. A magnetometer was used to measure the strength of the magnetic field in a 

transect across the scarp (Mariita, 2007; Likkason, 2014). Variations, referred to as 

magnetic anomalies, are related to the underlying rock’s magnetic susceptibility. A high 

anomaly is where the magnetic field is higher than expected and a low anomaly is where 

the magnetic field is lower than expected. The students collected multiple lines over the 

two weekends (Fig. 3.8.). 

Results and interpretation. The results from the survey showed areas of magnetic 

anomalies. The net variance in the magnetic field strength was 72 nT (Fig. 3.9.). By 

comparing the results from the four days, we found that there were high magnetic 

anomalies that do not appear on sequential days. These outliers are most likely picking 

up metal objects (belts, shoes, keys etc.) which may have been in the vicinity of the 

survey at the time (Mariita, 2007). The small red anomalies which appear on the centre 

of the maps were associated with the electric fence which was located in the middle of 

the paddock (Fig. 3.9).  

Ignoring these outliers, we can see that majority of the highly magnetic anomalies were 

located to the east of the paddock, whereas the lower magnetic anomalies were located 

to the west. The fairly abrupt change in magnetic intensity suggested that the fault had 

been crossed. On the hanging wall we expected to see the schist basement uplifted 

relative to the footwall. Metamorphic rocks tend to have greater magnetic susceptibilities 

than sediments, so the magnetic intensity would be expected to be significantly different 

on either side of the fault. The minerals which make up most sediments (e.g. quartz and 

calcite) have very weak, negative magnetic susceptibilities (Clark, 1997). The magnetic 

survey, hence provides a clear image of this geological boundary (Fig. 3.9). Furthermore, 

there was a second high magnetic intensity area to the east, separated by a small area of 

lower magnetic intensity. This was roughly parallel to the main fault scarp, suggesting it 
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was a subsidiary scarp that has accommodated some of the displacement (Fig. 3.9). This 

secondary scarp can also be detected by an increase in the elevation (see Lidar Image in 

Fig. 3.11). 

 

 

 

 

Fig. 3.8 Magnetic survey lines which collected magnetic intensity data over four days at 

the Taieri Mouth site. Data collected by students on the GEOL 261/361 field school and 

compiled by Hamish Bowman.  
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Fig. 3.9 Annotated magnetic intensity results from the lines collected in Fig. 3.8 (above). 

The dark red and dark purple areas are associated with high and low magnetic anomalies, 

respectively.  
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3.3.4  Ground penetrating radar (GPR)  

 

GPR has been utilised as an attempt to image the subsurface geology across the scarp. 

GPR equipment images the subsurface by sending out electromagnetic pulses into the 

ground from a transmitter at the surface. The electromagnetic pulses are reflected back 

towards the surface and recorded by a receiver. The reflection happens when the pulses 

come into contact with the boundary between two materials with different dielectric 

properties. These differences depend on the water content, rock type, porosity, 

compaction etc.(Jol and Bristow, 2003). GPR has become a popular method in subsurface 

geology studies, as it is portable, light weight, and digital; the GPR data can be collected 

continuously and can be viewed in real time in the field (Jol and Bristow, 2003).  

On the 11th of October 2016, two GPR lines were collected at the Taieri Mouth site in 

order. We collected two lines rather than just one to enable more accurate interpretations. 

The GPR equipment was supplied from the Geography Department of Otago University. 

We used 100 MHz paddles (recorders), and our hopes were that we would be able to 

image down to the schist bedrock. The lower the frequency of the transmitter the greater 

the depth of penetration, but also the reduction in quality (Jol and Bristow, 2003). We 

collected our data after a week of damp weather which may have enhanced the radar 

signal (Jol and Bristow, 2003). Our previous observations along the cliff face, showed 

that the bedrock is at ~6 m in depth on the hanging wall of the fault. The two lines were 

collected across the fault scarp at right angles to the scarp (Fig. 3.10; 3.11). The lines 

were both 139 m long. Starting on the hanging wall, each measurement was collected at 

0.5 m intervals, holding the transmitter and receiver 1 m apart. The first line (line01) was 

collected parallel to second line (line02), at ~ 50 m apart. The fault was clearly shown in 

the raw GPR data. 

Once the fieldwork was completed, the data was imported into Ekko View to produce an 

image of the subsurface. To produce an image a velocity had to be selected. The velocity 

value was derived from diffractions at the lower band of reflectivity in the data, which 

was hoped to provide a good average of the section.  The velocity was set to 0.068 m/ns. 

From field observations we expected the subsurface to consist primarily of loess, sands 

and schist. In the literature a velocity of 0.06 m/ns was seen to be associated with moist 
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loamy soils. This average velocity is commonly used in sedimentological studies (Jol and 

Bristow, 2003).  

This average velocity was used to convert TWT to an approximate depth. The GPR 

equipment has collected data up to ~6 m in depth. The topography was added to all 

profiles by overlying elevation values from the Lidar images onto the top of the GPR 

data. The topography was added in Ekko View and smoothed, which produced the final 

picture. Processing was kept to a minimum to keep the integrity of the data.  

 

 

 

 

 

Fig. 3.10 The setup of our GPR survey. A 140 m long tape is laid out across 

the fault scarp and the paddles are placed 1 m apart.  
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Fig. 3.11 Lidar image of Taieri Mouth paddock. The fault scarp is well defined from the sudden change in elevation. The two GPR lines are 

annotated with black dots highlighting their extent. The lines were collected right (east) to left (west). The Lidar image is sourced from the Otago 

Regional Council.  
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Results and interpretation. In general, the interpretations of the layers within the GPR 

profile correlate well with what was observed and what has been documented previously 

(e.g. Rees‐Jones et al., 2000; Barrell et al., 1998; Litchfield and Lian, 2004). 

The data shows that there is a ~ 2 m drop in elevation across the scarp (Fig. 3.13; 3.14). 

Line02, which was collected to the south of line01, shows that the scarp is increasing in 

height towards this direction. Apart from the elevation variation, the two profiles have 

very similar characteristics within the subsurface hence the two profiles have been 

interpreted together (Fig. 3.13; 3.14). 

The first strong reflection in the data correlated to the boundary between the air and the 

ground, 0 – 55 ns (Fig. 3.13; 3.14). This was a distinct first reflection as energy has low 

attenuation and travels at high velocity within the air (Jol and Bristow, 2003). Below the 

surface was a unit of loess. This unit was massive and homogenous therefore reflections 

were sparse (Fig. 3.13; 3.14; Ékes and Friele, 2003). The loess unit was thicker on the 

hanging wall than the footwall most likely a consequence of erosion on the footwall. On 

the profile the loess on the hanging wall is ~ 2 m in thickness. The loess is ≤ 1 m in 

thickness on the footwall, however it is difficult to distinguish in this resolution of the 

GPR data. The 1 - 2 m thickness of the loess agrees with previous field observations. 

Below the loess was the next strong reflection between 50 – 100 ns (Fig. 3.13; 3.14). 

From our observations we have interpreted this interference pattern as the boundary 

between the loess and the mottled sand below. At the boundary between these two layers 

we observed layers and clasts of iron cement. The iron cement was considered to be 

responsible for the strong reflection. Within the mottled sand unit were multiple small 

wave diffractions, some were continuous and some were intermittent. These were most 

evident on the footwall. These may be bedding plains within the sand. This unit was 2 – 

4 m thick which is similar to that observed on the beach cliff (Fig. 3.6). 

The last strong reflection was only observed on the footwall at ~ 150 ns (Fig. 3.13; 3.14). 

This reflection was difficult to interpret. It may have correlated to the schist bedrock, as 

this was a similar depth to where we observed the bed rock on the coastal cliff and similar 

to what was recorded in the literature (Fig. 3.6; e.g. Barrell et al., 1998; Litchfield and 

Lian, 2004; Rees‐Jones et al., 2000). It was speculated that this unit may correspond to a 

faint reflection on the hanging wall which has similar characteristics at ~ 100 ns (Fig. 

3.13; 3.14). Below this unit was a weak hyperbolic reflection at 200 ns, between 60 and 
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70 m along the profile. This is best observed in line01 (Fig. 3.13). This hyperbolic feature 

is a common characteristic associated with a localised feature, in this case the GPR 

equipment has reflected off the vehicle that we drove to the site. There was no continuous 

sub horizontal strong reflection throughout the profile, this indicates that we have not 

crossed the water table.  

In these profiles the Akatore Fault was clearly depicted by the interruption of reflectors 

and the tilting of the units near the fault. This occurs 70 – 90 m along the profile (Fig. 

3.13; 3.14). Near the fault the reflectors were faint, suggesting that the faulting has 

disturbed the surrounding sediments. Assuming the faint reflection at ~ 100 ns 

corresponds to the strong reflection at ~ 150 ns, and that the fault is dipping at a 41° (dip 

is from the penultimate event at Big Creek) this would suggest ~ 4 m of total 

displacement from the offset of the bedrock (Fig. 3.12). This total displacement is similar 

to that measured from the Big Creek trench (~5 m). These results support our findings 

that all of the displacement which as has occurred since the formation of the 125 ka 

marine terrace can wholly be accounted for by the three Holocene earthquakes we 

measured at Big Creek.  
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Fig. 3.12 GPR profile of the fault zone suggesting ~ 4 m of offset of the 

bedrock across the fault (assuming the deepest reflection on the hanging 

wall and footwall are from the top of the schist). 
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Fig. 3.13a GPR Line 01 Profile with topography corrected. Exported from EkkoView. 
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Fig. 3.13b Annotated diagram of GPR Line 01 profile (Fig.3.13a), showing key features. 
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Fig. 3.14a GPR Line 02 Profile with topography corrected. Exported from EkkoView 
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Fig. 3.14b Annotated diagram of GPR line 02 profile (Fig. 3.14a), showing key features. 
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3.4  SUMMARY 

 

 

 The site south of Taieri Mouth is of significance as here the Akatore Fault has 

displaced the 125 ka marine terrace, and this is the last expression of the fault 

before it heads offshore.  

 Observations of historic beach sands show 1 - 2 m of throw across the fault. This 

is similar to the height of the Akatore Fault scarp. This is a minimum, as erosion 

and weathering may have played a part in reducing the displacement recorded by 

the hanging wall. 

 The magnetic intensity data clearly show some expression of the fault, and 

suggest a secondary fault scarp. 

 It can be speculated from the GPR results, that there may have been ~4 m of dip 

slip on the fault since ~125 ka. 

 Our observations, combined with findings from previous work, suggests there 

may have only been the 3 Holocene earthquakes since ~125 ka, and there has 

been very little activity along the Akatore Fault between ~125 and 10 ka.  
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Chapter 4                                            

SEISMIC HAZARD IMPLICATIONS 

 

 

 

 

1.1 INTRODUCTION 

 

Damaged chimney on house in Bayview Road, Saint Kilda, caused from 

the 1974 Dunedin Earthquake. Source: Bishop (1974a) 
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4.1  INTRODUCTORY REMARKS 

 

 

Recent moderate - large earthquakes in the South Island of New Zealand include the 2010 

Darfield Earthquake (Mw 7.1) and the 2016 Kaikoura Earthquake (Mw 7.8; Hamling et 

al., 2017; Xuhua et al., 2017). These events have highlighted the importance of 

investigating the locations and characteristics of active faults and their obvious seismic 

hazard, especially when they are in close proximity to cities. The 2011, Christchurch 

Earthquake resulted in 183 fatalities over 7,000 injuries, caused $40 billion of damage 

and left tens of thousands of people without homes (Orchiston et al., 2016).  

The Akatore Fault is in close vicinity to Dunedin City. To the north it is last observed 

onshore at Taieri Mouth, ~30 km from Dunedin, but its offshore northern continuation 

may extend close to Kaikorai Valley, only ~ 10 km from the city centre. It is potentially 

the single greatest source of seismic hazard for Dunedin (Glassey et al., 2003).  

In April 1974 an earthquake struck Dunedin with the magnitude (M) 5 and a felt intensity 

of MM VII. It was located only 10 km south of Dunedin City and caused ~ $250,000 

worth of damage. This earthquake is thought to have been the result of movement on the 

Akatore Fault or one of related parallel offshore faults (Adams and Kean, 1974; Bishop, 

1974a). The worst damage occurred in South Dunedin where the unconsolidated ground 

amplified the effects (Adams and Kean, 1974; Bishop, 1974a). Since this event smaller 

earthquakes have been recorded by a seismograph located at the University of Otago. An 

M 4 earthquake occurred offshore near Taieri Mouth in 1989 (Norris et al., 1994). 

In this chapter I have used the data we have collected at Big Creek, Rocky Valley and 

Taieri Mouth along with earthquake scaling relationships to gain estimates of single event 

displacement, slip rates, recurrence intervals and magnitude of an event along the 

Akatore Fault. I then compare our results to those of other faults in the Otago region.  
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4.2  SUMMARY OF HOLOCENE EVENTS 

 

 

Trenching of the Akatore Fault at Big Creek and Rocky Valley, has allowed me to 

conclude that there were three fault rupture events in the Holocene. Evidence of the 

antepenultimate event comes from the displacement of the schist basement and the 

damming of sediments, resulting in peat deposition. This event is constrained between 

10, 400 ± 1,700 and 1,326 ± 22 cal. yr BP. The evidence for the penultimate event is 

from the formation of a colluvial wedge. This wedge is in fault contact with the schist 

suggesting a third (most recent) event. These two events have been constrained between 

1,326 ± 22 and 776 ± 22 cal. yr BP. 

Observations at Taieri Mouth, and previous dating of the marine terraces (Litchfield and 

Lian, 2004), suggests that there has been no, or very little activity along the Akatore Fault 

between ~125 and 10 ka ). These results indicate there may have been only three 

Holocene events since the formation of the ~125 ka marine terrace. 

 

 

4.3  RUPTURE CHARACTERISTICS 

 

 

The single event displacement (mm), slip rate (mm/yr) and dimensions (W/D) of the fault 

are crucial in determining the rupture characteristics (recurrence interval and magnitude). 

These parameters can be determined from paleoseismic studies, and where no data is 

present, can be inferred from the fault expression. Equations come from Stirling et al. 

(2012). 
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4.3.1  Single event displacement 

 

The single event displacement is the amount of dip slip displacement per rupture event. 

At Big Creek ~5 m of total displacement has been determined from offset of the strath 

on the schist on the hanging wall and footwall, along the fault plane (41° dip angle). This 

is slightly greater than the total offset we estimated from the GPR at Taieri Mouth of ~4 

m (assuming the deepest reflections correspond to the schist bedrock). Taieri Mouth is 

the northern most onshore portion of the Akatore Fault, whereas Big Creek is located in 

the centre of the onshore portion, commonly the dip-slip of a fault tapers towards the end 

(Scholz, 2002). From trench data at Big Creek and Rocky Valley three rupture events 

have been determined; giving a single event displacement of 1 – 2 m. 

 

4.3.2  Slip rate  

 

The slip rate defines the long-term average movement along the fault each year, averaged 

over multiple earthquake cycles. The recent slip rate of the Akatore Fault can be 

determined from the paleoseismic data collected from the Big Creek and Rocky Valley 

trenches. The three Holocene events all occurred post 10,400 ± 1,700 cal. yr BP, after the 

deposition of the silt (unit 5a; Fig. 2.16; 2.17). If the total Holocene displacement is 5 m 

and the dip slip has a 41° dip angle, we calculate a slip rate of 0.5 mm / yr (Eq. 4.1).  

 

 5,000

10, 400
= 0.48 = 0.5 𝑚𝑚/𝑦𝑟 

(4.1) 

 

The silt (unit 5a; Fig. 2.16; 2.17) has been interpreted as deposited before the first 

Holocene event, therefore this value is a minimum. The first Holocene event was 

interpreted from the presence of peat (unit 4a; Fig. 2.16; 2.17.) in the footwall. Using the 

age of the peat, 1,326 ± 22 cal. yr BP we determine a maximum slip rate of 3.9 mm / yr 

(Eq. 4.2). 
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 5,000

1,326
= 3.877 = 3.9 𝑚𝑚/𝑦𝑟 

(4.2) 

 

Hence, the Holocene slip rate is between 3.9 and 0.5 mm / yr.  

In the absence of paleoseismic data, the long-term slip rate can be inferred from the 

geomorphic expression of the fault (Stirling et al., 2012). Here, we have determined the 

long-term slip rate by measuring the offset of the Otago peneplain near the Akatore Fault. 

The Otago peneplain is a low relief surface which is well preserved on schist terrain. It 

is of low topography and is often buried beneath Tertiary sediments (Stirling, 1991). The 

peneplain is thought to be the result of two erosional periods, one in the late Cretaceous, 

and the other in the early Cenozoic. In East Otago the Titri and Akatore Faults have 

displaced the peneplain surface (Bishop and Turnbull, 1996). By measuring the offset of 

the Otago peneplain near the Akatore Fault we have determined the long term slip rate. 

The largest offset of the peneplain is near Big Creek. The hill to the immediate south of 

the Big Creek trench site is ~ 122 m above the valley floor.  

Assuming a fault dip of 41°, there has been 186 m of uplift across the fault plane (Eq. 

4.3). 

 

 122 𝑚

sin(41)
= 186 𝑚 

(4.3) 

 

To calculate the long-term slip rate, the age of initiation of reverse motion on the Akatore 

Fault must be determined, which requires an understanding of when the ~120 m of 

peneplain uplift began on the hanging wall of the Akatore Fault 

Landis et al. (2008) suggested East Otago was completely inundated in the Oligocene. In 

East Otago ocean marine regression began ~21 Ma, which has been linked to the 

beginning of uplift in the area. Oblique convergence and incipient uplift occurred in New 

Zealand in the early Miocene, 22 – 5 Ma, as a result of the collision of the Pacific and 

Australian plates. Thickening crust resulted in the formation of mountains (Landis et al., 

2008). The Otago Schist has developed strong planar schistosity associated with regional 

metamorphism. In the Taieri River catchment, incipient uplift of the surrounding schist 



 114   
 

ridges have been aged at middle Quaternary, ~ 1 Ma, from cosmogenic dating of 

sedimentary quartzites (Bennett et al., 2006; Bennett et al., 2005; Waters et al., 2015).  

The Titri Fault is a Mesozoic fault which was reactivated in the late Miocene (Mutch and 

Wilson, 1952; Bishop and Turnbull, 1996; Litchfield, 2001). Stream catchments have 

developed on the Titri Fault block and flow south-east down the dip slope. These include 

streams such as Akatore Creek, Big Creek, Bull Creek and Nobles Stream, which have 

cut through the Akatore Fault block, forming antecedent gorges. Evidence comes from 

remnants of the late Cretaceous sedimentary cover on the footwall of the Akatore Fault 

(Fig. 4.1). Drainage patterns indicate that the initiation of reverse motion on the Akatore 

Fault is much younger than the parallel Titri Fault (Norris et al., 1994). 

 

 

Fig. 4.1 Schematic diagram of the drainage patterns along the Akatore Fault (fault plane 

illustrated in red).  

 

The reverse displacement on the Akatore Fault postdates the eruption of the Dunedin 

Volcanic Group which indicates motion along the fault occurred post 5 Ma (Bishop and 

Turnbull, 1996; Litchfield and Norris, 2000; Norris et al., 1994). Furthermore, the 

Akatore Fault scarp is well preserved with a youthful appearance (apparent from limited 

river incision and drainage development) suggesting it is Quaternary in age (Litchfield, 

2001; Litchfield and Norris, 2000; Norris et al., 1994). 
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In consideration of all the above, we have used 1 Ma as the initiation of uplift on the 

hanging wall block of the Akatore Fault. If the uplift began 1 Ma this would result in a 

slip rate of 0.2 mm / yr (Eq. 4.4).  

 

 186,000

1,000,000
= 0.186 = 0.2 𝑚𝑚/𝑦𝑟 

 

(4.4) 

For comparison, I have also calculated the slip rate for a 5 Ma inception age of uplift on 

the peneplain. This is a maximum age for the peneplain uplift. If the uplift began at 5 Ma 

this would result in a slip rate of 0.04 mm per year (Eq. 4.5).  

 

 186,000

5,000,000
= 0.0372 = 0.04 𝑚𝑚/𝑦𝑟 

 

(4.5) 

Comparing the short-term and long-term slip rates (Equations 4.1 - 4.5) can provide 

information on the behaviour of the fault through time. The short term (Holocene) slip 

rate, 3.9 – 0.5 mm / yr, is significantly higher than the long-term slip rate of 0.04 – 0.2 

mm/yr. This suggests that motion along the fault is not periodic and that the Akatore 

Fault has been experiencing a period of ‘higher than expected’ activity in geologically 

recent time. This line of reasoning, of course, is dependent on our assumed age estimates 

for the initiation of peneplain uplift at the Akatore Fault. 

Our results suggest there have only been three Holocene events in the last ~125 ka. This 

indicates that the Akatore Fault has gone through a period of activity post 10,400 yr ± 

1,700 cal. yr BP; prior to this the Akatore Fault was in a period of quiescence. If there 

have only been the three Holocene earthquakes since ~125 ka, we can use this age along 

with the long-term slip rate, 0.2 and 0.04 mm/year, to gain an expected total displacement 

over that 125 ka time period. This is highly speculative, as we remain unsure as to 

whether evidence of pre-Holocene earthquakes is missing at Taieri Mouth due to 

modification of the 125 ka marine terrace. 

 

Using the 1 Ma slip rate gives us an expected total post-125 ka displacement of 24 m 

which is significantly greater than the 5 m of total displacement measured in the trenches 
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(Eq. 4.6). This provides a slip deficit of 19 m; in this scenario, where all of the uplift 

occurred in the last 1 Ma, the Akatore Fault has not presently slipped enough to 

accommodate the longer-term strain accumulation. 

 

 0.19 × 125,000 = 23,750 𝑚𝑚 = 24 𝑚 (4.6) 

 

However, if we use the 5 Ma slip rate we gain an expected total post 125 ka displacement 

of 4.6 m (Eq. 4.7). This is similar / slightly less than the total displacement measured in 

the trenches, so would suggest that the Holocene slip has been enough to accommodate 

the long term strain accumulation; there is no post 125 ka slip deficit in this scenario. 

 

0.037 × 125,000 = 4,625 𝑚𝑚 = 4.6 𝑚 (4.7) 

 

As discussed previously, relevant literature suggests it is more probable that the inception 

of peneplain uplift occurred in the Quaternary, therefore the 0.2 mm/yr slip rate is more 

likely. This would imply that the Akatore Fault may not have accommodated the total 

strain accumulated at that rate, and therefore possibly still be in a state of ‘activity’. Even 

if the peneplain inception began at 4 Ma this may result in some slip deficit on the fault. 

Overall the fault may pose a higher seismic hazard for Dunedin and the surrounding areas 

if a younger age of peneplain uplift is considered and if there has only been three 

Holocene events since ~125 ka.   

 

4.3.3  Recurrence interval 

 

The recurrence interval is the average recurrence, in years, of ground motion along a fault 

assuming the fault behaves in a periodic fashion. The recurrence interval (𝑇) can be 

calculated from the single event displacement (𝐷) and the slip rate (𝑆𝑅; Eq. 4.8). 

 

 
 

𝐷

𝑆𝑅
= 𝑇  

 

(4.8) 
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From our paleoseismic data, we obtained a single event displacement of 1 - 2 m. Here 

we have used a single event displacement of 1.5 m and the previously calculated slip 

rates to obtain a recurrence interval.  

To calculate the short term (Holocene) recurrence interval we use the minimum slip rate 

of 0.48 mm/yr and the maximum slip rate of 3.8 mm/yr. Hence, our Holocene recurrence 

interval is 395 – 3,125 years (Eq. 4.9). 

 

 1,500

0.48
= 3,125 𝑦𝑟𝑠 (min),

1,500

3.8
=  395 𝑦𝑟𝑠 (max) 

 

(4.9) 

Our short term recurrence interval is similar to that of the National Seismic Hazard Model 

for New Zealand; the Akatore Fault has been modelled to have a recurrence interval of 

3,480 years (Stirling et al., 2012). 

 

The long-term recurrence interval can be calculated from the slip rate 0.2 mm/yr, 

assuming peneplain uplift began around 1 Ma. This provides us with a long term 

recurrence interval of 7,900 years (Eq. 10). 

 

 1,500

0.19
= 7,900 𝑦𝑟𝑠 

(4.10) 

 

This is similar to the 6,000 – 12,000 year recurrence interval calculated by Norris et al. 

(1994). The long-term recurrence interval provides an average recurrence of a ground 

rupture since the initiation of reverse motion along the Akatore Fault. Since movements 

on the Akatore Fault are irregular and episodic, with short periods of activity followed 

by long periods of quiescence, the recurrence interval does not provide useful 

information in predicting future events. Given the considerable aperiodicity in the 

Akatore paleoseismic data, and resulting calculations (above), the fault should be 

modelled by way of time-dependent methods. 
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4.3.4  Magnitude 

 

Moment magnitude (Mw) is a measure of energy released and correlates approximately 

to fault’s length or area. The moment magnitude for New Zealand faults is calculated 

using the following regression in equation (4.11), where W, is the fault width and L, is 

the fault length (Stirling et al., 2012). 

 

 
4.18 +  

2

3
 𝑙𝑜𝑔 𝑊 +  

4

3
 𝑙𝑜𝑔 𝐿 = 𝑀𝑤 

(4.11) 

 

For the Akatore Fault we use a width of 18.3 km which has been calculated using 12 km 

as the base depth of the seismogenic zone and dip of 41° (dip is from the penultimate 

event at Big Creek; Eq. 4.12). In most of the central South Island the depth of the 

seismogenic base is 12 ± 2 km (Leitner et al., 2001). 

 

 12 𝑘𝑚

sin(41)
= 18.3 𝑘𝑚 

(4.12) 

 

The onshore extent of the Akatore Fault is well constrained at ~ 22 km in length, however 

the extent of the offshore portion is still in debate. If the fault extends from off the coast 

of Kaitangata, to the south and to Kaikorai Estuary in the north, the total will be a 

maximum rupture length of ~62 km (Bishop and Turnbull, 1996); we will calculate two 

magnitudes based on the maximum and minimum fault lengths. 

 

Using a fault length of 22 km results in an earthquake with a moment magnitude of 6.8 

(Eq. 4.13). This is the minimum Mw expected along the Akatore Fault. The relevant 

calculation is as follows: 

 

 
4.18 + 

2

3
 𝑙𝑜𝑔 (18.3) +  

4

3
  𝑙𝑜𝑔 (22) = 6.81 

(4.13) 

 

Assuming the fault extends to a total length of 62 km, results in an earthquake with a 

moment magnitude of 7.4 (Eq. 4.14). This is the maximum Mw expected along the 

Akatore Fault.  
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4.18 + 

2

3
 𝑙𝑜𝑔 (18.3) +  

4

3
 𝑙𝑜𝑔 (62) = 7.41     (14) 

(4.14) 

 

Utilising the New Zealand regression equation, an earthquake on the Akatore Fault is 

likely to result in an Mw of 6.8 – 7.4. This gives us an average earthquake Mw of 7.1. 

 

4.3.5  Modified Mercalli Intensity (MMI) 

 

From these moment magnitudes, the intensity of an earthquake near Dunedin can be 

estimated. Intensity is a measurement of damage to manmade structures, humans and 

nature caused by strong motion from an earthquake (Alvarez et al., 2012). The Modified 

Mercalli Intensity (MMI) in Dunedin can be estimated from Equation (4.15), which is 

has been modelled from felt earthquake reports in California. In this equation, ∆ is the 

distance between the site and the epicentre (Bakun and Wentworth, 1997). 

 

 1.68 𝑀𝑤 − 3.29 − 0.0206 ∆ = 𝑀𝑀𝐼 (4.15) 

 

Here we have calculated a range of MMI values for Dunedin CBD, based on different 

epicentral locations along the fault, Kaikorai Valley (Eq. 4.16), Taieri Mouth (Eq. 4.17), 

Big Creek (Eq. 4.18) and Tokomairiro Mouth (Eq. 4.19). We will assume the earthquake 

has average Mw of 7.1. 

 

 1.68 (7.1) − 3.29 − 0.0206 (10) = 8.4 

1.68 (7.1) − 3.29 − 0.0206 (30) = 8.0 

1.68 (7.1) − 3.29 − 0.0206 (40) = 7.8 

1.68 (7.1) − 3.29 − 0.0206 (50) = 7.6 

 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

These provide us with MMI values between 7.6 and 8.4, which relate to considerable 

damage of infrastructure (Table. 4.1).  
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These are average intensities that are typically experienced, however the intensities may 

vary depending on earthquake parameters and the underlying geology. Sites which are 

underlain by hard rock typically experience lower intensities than  sites underlain by soft, 

unconsolidated sediments (Bakun and Wentworth, 1997). Dunedin has many high risk 

areas, such as those underlain by poorly consolidated, fine grained sediments and water 

saturated areas (e.g. Taieri Plains and coastal areas) which are prone to greater shaking 

and liquefaction than sites with firmer geology. Also, landslides would be likely to occur 

on moderate to steep slopes, notably where Tertiary marine sediments overlie bedrock 

(e.g. Green Island and Saddle Hill; Bakun and Wentworth, 1997; Barrell et al., 2014; 

Glassey et al., 2003). 

 

 

Table. 4.1 Modified Mercalli Intensity Scale, VII - IX, for Dunedin (Murashev et al., 

2006; Wood and Neumann, 1931). The complete MMI scale can be found in Appendix 

4. 

VII 

 

Moderate shaking, damage considerable in poorly built houses e.g. fallen 

chimneys, wall damage, broken windows, and furniture. Damage negligible 

in well-designed buildings. Small landslides and rock fall in susceptible 

areas. 

VIII 

Trees shaken, liquefaction in susceptible areas, considerable damage in most 

houses. Partial collapse in some cases. Fallen walls, chimneys, columns and 

monuments. Overturned heavy furniture. Small landslides and rock fall in 

all areas. 

IX 

Considerable damage. Liquefaction in susceptible areas. Obvious cracked 

ground. Great damage in all buildings. Large collapse. Buildings shifted off 

foundations, underground pipes. Small to moderate landslides and rock fall. 
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4.4  COMPARISON WITH OTHER OTAGO FAULTS 

 

 

For the Otago faults Norris et al., (2004) have compiled data on the average fault rupture 

parameters. The average fault length is 24 km and the single event displacement is 1 -2 

m. The average slip rate is 0.2 mm/yr, with a range of 0.1-1 mm /yr, which suggest a 

recurrence interval of 5,000 – 15,000 years (Berryman and Beanland, 1991; Norris, 2004; 

Stirling et al., 2002). Our Akatore results fit within these averages for Otago faults. We 

calculated a recurrence rate of 7,900 years, 1-2 m of single event displacement and a 

long-term slip rate of 0.2 mm/years, assuming that uplift began 1 Ma. Total vertical 

displacements of the Otago faults range from 120 to 2,000 m (Youngson et al., 1998). 

The Akatore Fault is on the lower end of this range, perhaps signifying it is a relatively 

young fault. 

The Akatore Fault may behave episodically, with short periods of activity followed by 

long periods of quiescence. There may have been no movement between ~125 and 10 ka, 

which means that the fault may have been in a period of quiescence for at least 100 ka. 

In Otago, other faults have been suggested as possibly exhibiting similar behaviours, 

such as Pisa, Dunstan and Titri Faults. These faults may have periods of quiescence 

similar to the Akatore Fault (Beanland and Berryman, 1989; Norris, 2004). 

More information is required to establish if this episodic behaviour is wide-spread in 

Otago. This behaviour of long periods of quiescence may explain the low rates of historic 

seismicity. This provides issues for earthquake hazard assessment in Otago.  
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4.5  SUMMARY  

 

 

 Three Holocene events have been determined from the trench data. The 

antepenultimate event occurred between 10,400 ± 1,700 and 1,326 ± 22 cal. yr 

BP. The penultimate event and most recent event occurred between 1,326 ± 22 

and 776 ± 22 cal. yr BP 

 There is ~ 5 m of total dip-slip displacement on the fault plane at Big Creek 

trench, indicating single event displacement of 1 - 2 m per Holocene event. 

 We have calculated a Holocene slip rate of 3.8 - 0.5 mm/yr and a long-term slip 

rate of 0.2 and 0.04 mm/yr assuming the inception of peneplain uplift is 1 and 5 

Ma, respectively.  

 If the Akatore Fault uplift commenced ~1 Ma then there may not have been 

enough Holocene slip to have accommodated 125 ka of accumulated strain.  

 The Akatore Fault has a wide range of recurrence intervals (Holocene: 395 – 

3,125 years; long term: 395 - 7,900 years), in addition to the possible longer-term 

aperiodicity. 

 Depending on the total fault length, earthquakes between Mw 6.8 and 7.4 are 

expected along the Akatore Fault. 

 These moment magnitudes would result in estimated MMIs between 7.6 and 8.4 

for Dunedin. Depending on the rupture length of the fault, these intensities would 

cause considerable damage to the city.  

 The Akatore Fault has similar parameters to other Otago faults. Episodic fault 

behaviour may be characteristic of other faults in Otago. 
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Chapter 5                                 

CONCLUSIONS AND FUTURE 

WORK 

 
 

 

 

 

Akatore Fault in the distance, evident from the offset of peneplain surface (the notch in 

the distant hillslopes).  

Photo taken from Flagstaff Hill, Dunedin. 
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5.1  PALEOSEISMOLOGY 

 

 

In order to investigate the rupture history of the Akatore Fault in the Holocene we 

successfully trenched the fault, and radiocarbon and OSL dated unfaulted and faulted 

sediments. We have determined that there have been three ground rupturing events along 

the Akatore Fault in the Holocene. The antepenultimate event has been constrained 

between 10,400 ± 1,700 and 1,326 ± 22 cal. yr BP, however this is likely to be closer to 

the later data, while, the second and third (most recent) events have been constrained 

between 1,326 ± 22 and 776 ± 22 cal. yr BP. The offset of gravels within Big Creek 

trench produced a total displacement of ~ 5 m along the fault plane, therefore, 1-2 m of 

slip per event.  

 

Observations along exposures of beach sands at Taieri Mouth suggest there has been 1-

2 m of throw since the deposition of loess (~20 ka). Furthermore I speculate, on the 

basis of the Taieri Mouth GPR results, that there may have been only 4 m of dip slip on 

the fault since 125 ka. These results are similar to those of previous work (e.g. 

Litchfield and Lian, 2004; Litchfield and Norris, 2000; Bishop and Turnbull, 1996; 

Bishop, 1994), and suggest there have only been three Holocene events since the 

formation of the marine terrace, and therefore no movement between ~10 and 125 Ka. 

 

 

5.2  SEISMIC HAZARD 

 

 

My findings suggest that the Akatore Fault has the potential to produce earthquakes of 

6.8 – 7.4 Mw. Assuming uplift of the hanging wall of the Akatore Fault began at 1 Ma, 

the fault has an estimated long term recurrence interval of 7, 900 years. However, the 

Akatore Fault may have episodic behaviour, which makes it difficult to estimate the 
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overall recurrence parameters and future hazard implications; other Otago faults may 

have similar behaviours. The Akatore Fault may not have slipped as much as expected 

based on the long-term slip rate, which means that further fault ruptures could occur in 

the near future, geologically-speaking. A large earthquake on the Akatore Fault could 

cause considerable damage to Dunedin, and in neighbouring areas underlain by soft 

sediments. The Akatore Fault needs to become the focus of a time-dependent seismic 

hazard calculation for Dunedin.  

 

 

5.3  FUTURE WORK 

 

 

To provide more concise information on the hazard Akatore Fault poses, it is crucial 

that future work is aimed at better constraining the age of inception of Akatore Fault 

uplift. This age is vital to determining whether the three Holocene events have 

accommodated enough long term strain accumulation, or whether there is currently slip 

deficit across the Akatore Fault. Also, it is important that we determine the total length 

of the fault to produce improved moment magnitude estimates. Depth data of the 

seismogenic base near the Akatore Fault, will be updated in the following year (M. 

Reyners pers.comm.), which will allow for more accurate estimates of magnitude.  

Future work could also include coring and/or trenching the Akatore Fault at the site 

south of Taieri Mouth, in order to verify the GPR profile interpretations of minimal 

post 125 ka displacement across the fault. Finally, it is essential that further 

paleoseismic studies are undertaken in Otago to better understand the behaviour of 

these faults, particularly whether they are episodic like the Akatore Fault. 
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APPENDICES 
 

 

 

APPENDIX 1: REFERENCE LIST FOR TABLE. 1.1 

 

 

The following table contains the reference list for Table. 1.1 

 

1 Wen et al. (2016) 

2 Lay et al. (2016) 

3 Chung and Gao (1995) & Lee et al. (2014) 

4 Copley et al. (2015) & Motagh et al. (2015) 

5 Fang et al. (2013), Liu et al. (2013), Xie et al. (2013) & Xu et al. (2013) 

6 Cassidy et al. (2014) & Lay et al. (2013) 

7 Akinci and Antonioli (2012), Fielding et al. (2013) & Wang et al. (2015) 

8 Lohman and Barnhart (2010) & Nissen et al. (2010) 

9 Nakamura et al. (2010) & Xu et al. (2009) 

10 Lohman and Barnhart (2010), Nissen et al. (2007) & Nissen et al. (2010) 

11 Parsons et al. (2006) & Pathier et al. (2006)  

12 Meghraoui et al. (2004) 

13 Antolik and Dreger (2003) 

14 Antolik and Dreger (2003), Hough et al. (2002) & Mandal et al. (2004) 

15 Lin et al. (2001) & Ma et al. (2001) 

16 Wald et al. (1996) 

17 Crone et al. (1992) 

18 Yielding et al. (1981) 

19 Denham et al. (1987) & Lewis (1981)  

20 Berberian (1979), Berberian et al. (1979) & Hartzell and Mendoza (1991) 

21 Aoudia et al. (2000) & Cipar (1980) 

22 

Mitchell (1977), Moazami-Goudarzi and Akasheh (1977) & Wells and Coppersmith, 

(1994)  

23 Trifunac and Hudson (1971), Wesnousky (2008) & Whitcomb et al. (1973) 

24 Kikuchi et al. (2003) 

25 Kikuchi et al. (2003) 

26 Matsuda et al. (1980) 
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APPENDIX 2: COMPILED TRENCH PHOTOS 

 

 

Contained here are compiled photos of Big Creek and Rocky Valley trench; pictures were 

generated in Agisoft Photoscan.   
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APPENDIX 3: OSL AND RADIOCARBON REPORTS 

 

 

Optically Stimulated Luminescence and Radiocarbon Reports from which Table 2.1 and 

2.2 were compiled.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 150   
 

 

 



 151   
 

 

 



 152   
 

 

 



 153   
 

 

 



 154   
 

 

 



 155   
 

 

 



 156   
 

 

 

 

 



 157   
 

 

 



 158   
 

 

 



 159   
 

 

 



 160   
 

 

 



 161   
 

 

 



 162   
 

 

 



 163   
 

 

 



 164   
 

 



 165   
 

 

 



 166   
 

 



 167   
 

 



 168   
 

 



 169   
 

 



 170   
 

 

 

 



 171   
 

 



 172   
 

APPENDIX 4: MODIFIED MERCALLI INTENSITY SCALE  

 

 
The complete Modified Mercalli Intensity Scale of 1931 (Wood and Neumann, 1931). 

 

 

I. Not felt except by a very few under especially favourable circumstances.  

 

II. Felt only by a few persons at rest, especially on upper floors of buildings. Delicately 

suspended objects may swing. 

 

III. Felt quite noticeably indoors, especially on upper floors of buildings, but many people do 

not recognize it as an earthquake. Standing motor cars may rock slightly. Vibration like passing 

of truck. Duration estimated. 

 

IV. During the day felt indoors by many, outdoors by few. At night some awakened. Dishes, 

windows, doors disturbed; walls made cracking sound. Sensation like heavy truck striking 

building. Standing motor cars rocked noticeably. 

 

V. Felt by nearly everyone; many awakened. Some dishes, windows, etc. broken; a few 

instances of cracked plaster; unstable objects overturned. Disturbance of trees, poles and other 

tall objects sometimes noticed. Pendulum clocks may stop. 

 

VI. Felt by all; many frightened and run outdoors. Some heavy furniture moved; a few 

instances of fallen plaster or damaged chimneys. Damage slight 

 

VII. Everybody runs outdoors. Damage negligible in buildings of good design and 

construction; slight to moderate in well-built ordinary structures; considerable in poorly built 

or badly designed structures; some chimneys broken. Noticed by persons driving motor cars. 

 

VIII. Damage slight in specially designed structures; considerable in ordinary substantial 

buildings with partial collapse; great in poorly built structures. Panel walls thrown out of frame 

structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy furniture 

overturned. Sand and mud ejected in small amounts. Changes in well water. Disturbed persons 

driving motor cars. 

 

IX. Damage considerable in specially designed structures; well-designed frame structures 

thrown out of plumb; great in substantial buildings, with partial collapse. Buildings shifted off 

foundations. Ground cracked conspicuously, Underground pipes broken. X. Some well-built 

wooden structures destroyed; most masonry and frame structures destroyed with foundations; 

ground badly cracked. Rails bent. Landslides considerable from river banks and steep slopes. 

Shifted sand and mud. Water splashed (slopped) over banks. 

 

XI. Few, if any (masonry), structures remain standing. Bridges destroyed. Broad fissures in 

ground. Underground pipe lines completely out of service. Earth slumps and land slips in soft 

ground. Rails bent greatly. 

 

XII. Damage total. Waves seen on ground surfaces. Lines of sight and level distorted. Objects 

thrown upward into the air. 

 

 


