34 research outputs found

    The InflateSAR Campaign: Developing Refugee Vessel Detection Capabilities with Polarimetric SAR

    Get PDF
    In the efforts to mitigate the ongoing humanitarian crisis at the European sea borders, this work builds detection capabilities to help find refugee boats in distress. For this paper, we collected dual-pol and quad-pol synthetic aperture radar (SAR) data over a 12 m rubber inflatable in a test-bed lake near Berlin, Germany. To consider a real scenario, we prepared the vessel so that its backscattering emulated that of a vessel fully occupied with people. Further, we collected SAR imagery over the ocean with different sea states, categorized by incidence angle and by polarization. These were used to emulate the conditions for a vessel located in ocean waters. This setup enabled us to test nine well-known vessel-detection systems (VDS), to explore the capabilities of new detection algorithms and to benchmark different combinations of detectors (detector fusion) with respect to different sensor and scene parameters (e.g., the polarization, wind speed, wind direction and boat orientation). This analysis culminated in designing a system that is specifically tailored to accommodate different situations and sea states

    훈련 자료 자동 추출 알고리즘과 기계 학습을 통한 SAR 영상 기반의 선박 탐지

    Get PDF
    학위논문 (석사) -- 서울대학교 대학원 : 자연과학대학 지구환경과학부, 2021. 2. 김덕진.Detection and surveillance of vessels are regarded as a crucial application of SAR for their contribution to the preservation of marine resources and the assurance on maritime safety. Introduction of machine learning to vessel detection significantly enhanced the performance and efficiency of the detection, but a substantial majority of studies focused on modifying the object detector algorithm. As the fundamental enhancement of the detection performance would be nearly impossible without accurate training data of vessels, this study implemented AIS information containing real-time information of vessel’s movement in order to propose a robust algorithm which acquires the training data of vessels in an automated manner. As AIS information was irregularly and discretely obtained, the exact target interpolation time for each vessel was precisely determined, followed by the implementation of Kalman filter, which mitigates the measurement error of AIS sensor. In addition, as the velocity of each vessel renders an imprint inside the SAR image named as Doppler frequency shift, it was calibrated by restoring the elliptic satellite orbit from the satellite state vector and estimating the distance between the satellite and the target vessel. From the calibrated position of the AIS sensor inside the corresponding SAR image, training data was directly obtained via internal allocation of the AIS sensor in each vessel. For fishing boats, separate information system named as VPASS was applied for the identical procedure of training data retrieval. Training data of vessels obtained via the automated training data procurement algorithm was evaluated by a conventional object detector, for three detection evaluating parameters: precision, recall and F1 score. All three evaluation parameters from the proposed training data acquisition significantly exceeded that from the manual acquisition. The major difference between two training datasets was demonstrated in the inshore regions and in the vicinity of strong scattering vessels in which land artifacts, ships and the ghost signals derived from them were indiscernible by visual inspection. This study additionally introduced a possibility of resolving the unclassified usage of each vessel by comparing AIS information with the accurate vessel detection results.전천후 지구 관측 위성인 SAR를 통한 선박 탐지는 해양 자원의 확보와 해상 안전 보장에 매우 중요한 역할을 한다. 기계 학습 기법의 도입으로 인해 선박을 비롯한 사물 탐지의 정확도 및 효율성이 향상되었으나, 이와 관련된 다수의 연구는 탐지 알고리즘의 개량에 집중되었다. 그러나, 탐지 정확도의 근본적인 향상은 정밀하게 취득된 대량의 훈련자료 없이는 불가능하기에, 본 연구에서는 선박의 실시간 위치, 속도 정보인 AIS 자료를 이용하여 인공 지능 기반의 선박 탐지 알고리즘에 사용될 훈련자료를 자동적으로 취득하는 알고리즘을 제안하였다. 이를 위해 이산적인 AIS 자료를 SAR 영상의 취득시각에 맞추어 정확하게 보간하고, AIS 센서 자체가 가지는 오차를 최소화하였다. 또한, 이동하는 산란체의 시선 속도로 인해 발생하는 도플러 편이 효과를 보정하기 위해 SAR 위성의 상태 벡터를 이용하여 위성과 산란체 사이의 거리를 정밀하게 계산하였다. 이렇게 계산된 AIS 센서의 영상 내의 위치로부터 선박 내 AIS 센서의 배치를 고려하여 선박 탐지 알고리즘의 훈련자료 형식에 맞추어 훈련자료를 취득하고, 어선에 대한 위치, 속도 정보인 VPASS 자료 역시 유사한 방법으로 가공하여 훈련자료를 취득하였다. AIS 자료로부터 취득한 훈련자료는 기존 방법대로 수동 취득한 훈련자료와 함께 인공 지능 기반 사물 탐지 알고리즘을 통해 정확도를 평가하였다. 그 결과, 제시된 알고리즘으로 취득한 훈련 자료는 수동 취득한 훈련 자료 대비 더 높은 탐지 정확도를 보였으며, 이는 기존의 사물 탐지 알고리즘의 평가 지표인 정밀도, 재현율과 F1 score를 통해 진행되었다. 본 연구에서 제안한 훈련자료 자동 취득 기법으로 얻은 선박에 대한 훈련자료는 특히 기존의 선박 탐지 기법으로는 분별이 어려웠던 항만에 인접한 선박과 산란체 주변의 신호에 대한 정확한 분별 결과를 보였다. 본 연구에서는 이와 함께, 선박 탐지 결과와 해당 지역에 대한 AIS 및 VPASS 자료를 이용하여 선박의 미식별성을 판정할 수 있는 가능성 또한 제시하였다.Chapter 1. Introduction - 1 - 1.1 Research Background - 1 - 1.2 Research Objective - 8 - Chapter 2. Data Acquisition - 10 - 2.1 Acquisition of SAR Image Data - 10 - 2.2 Acquisition of AIS and VPASS Information - 20 - Chapter 3. Methodology on Training Data Procurement - 26 - 3.1 Interpolation of Discrete AIS Data - 29 - 3.1.1 Estimation of Target Interpolation Time for Vessels - 29 - 3.1.2 Application of Kalman Filter to AIS Data - 34 - 3.2 Doppler Frequency Shift Correction - 40 - 3.2.1 Theoretical Basis of Doppler Frequency Shift - 40 - 3.2.2 Mitigation of Doppler Frequency Shift - 48 - 3.3 Retrieval of Training Data of Vessels - 53 - 3.4 Algorithm on Vessel Training Data Acquisition from VPASS Information - 61 - Chapter 4. Methodology on Object Detection Architecture - 66 - Chapter 5. Results - 74 - 5.1 Assessment on Training Data - 74 - 5.2 Assessment on AIS-based Ship Detection - 79 - 5.3 Assessment on VPASS-based Fishing Boat Detection - 91 - Chapter 6. Discussions - 110 - 6.1 Discussion on AIS-Based Ship Detection - 110 - 6.2 Application on Determining Unclassified Vessels - 116 - Chapter 7. Conclusion - 125 - 국문 요약문 - 128 - Bibliography - 130 -Maste

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Use and assessment of remote sensing for the safety of maritime shipping

    Get PDF
    Αντικείμενο της εργασίας είναι η εφαρμογή της δορυφορικής τηλεπισκόπησης για τον υπολογισμό και την εκτίμηση φυσικών παραμέτρων συνδεόμενων με κινδύνους για τη ναυτιλία. Ειδικότερα, μέσω της χρήσης δορυφορικών εικόνων σε διάφορες φασματικές περιοχές, θα εξαχθούν οι κατάλληλες παράμετροι, ώστε να μελετηθεί η κίνηση των θαλασσίων ρευμάτων, η μεταβλητότητα στην παγοκάλυψη σε διαύλους ναυσιπλοΐας, ο εντοπισμός πετρελαιοκηλίδων και η παρουσία επικίνδυνων φορτίων. Στο πλαίσιο της εργασίας, θα διαμορφωθεί η εργαλειοθήκη που θα συμβάλει στην ασφάλεια της ναυσιπλοΐας και θα αξιολογηθεί η εφαρμοστικότητά της και η δυνατότητα επιχειρησιακής χρήσης, βάσει των διαθέσιμων δεδομένων και μελλοντικών δορυφορικών αποστολών.The scope of this work is the implementation of satellite remote sensing for the calculation and estimation of physical parameters associated with risk for maritime shipping. In particular, through the use of satellite imagery in different spectral regions and the exploitation of the advantages of passive and active remote sensing, the appropriate parameters will be extracted, in order to study the wind speed and direction, the variability of sea ice coverage in marine channels, oil spillages and the presence of dangerous cargoes. As part of the work, Sentinel Application Platform (SNAP) and QGIS will be configured, which based on satellites observations, will contribute to marine navigation. Finally, the thesis will evaluate the applicability of the toolbox to business function depending on the available satellite data and the future satellite missions

    Wetland mapping and monitoring using polarimetric and interferometric synthetic aperture radar (SAR) data and tools

    Get PDF
    Wetlands are home to a great variety of flora and fauna species and provide several unique environmental functions, such as controlling floods, improving water-quality, supporting wildlife habitat, and shoreline stabilization. Detailed information on spatial distribution of wetland classes is crucial for sustainable management and resource assessment. Furthermore, hydrological monitoring of wetlands is also important for maintaining and preserving the habitat of various plant and animal species. This thesis investigates the existing knowledge and technological challenges associated with wetland mapping and monitoring and evaluates the limitations of the methodologies that have been developed to date. The study also proposes new methods to improve the characterization of these productive ecosystems using advanced remote sensing (RS) tools and data. Specifically, a comprehensive literature review on wetland monitoring using Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques is provided. The application of the InSAR technique for wetland mapping provides the following advantages: (i) the high sensitivity of interferometric coherence to land cover changes is taken into account and (ii) the exploitation of interferometric coherence for wetland classification further enhances the discrimination between similar wetland classes. A statistical analysis of the interferometric coherence and SAR backscattering variation of Canadian wetlands, which are ignored in the literature, is carried out using multi-temporal, multi-frequency, and multi-polarization SAR data. The study also examines the capability of compact polarimetry (CP) SAR data, which will be collected by the upcoming RADARSAT Constellation Mission (RCM) and will constitute the main source of SAR observation in Canada, for wetland mapping. The research in this dissertation proposes a methodology for wetland classification using the synergistic use of intensity, polarimetry, and interferometry features using a novel classification framework. Finally, this work introduces a novel model based on the deep convolutional neural network (CNN) for wetland classification that can be trained in an end-to-end scheme and is specifically designed for the classification of wetland complexes using polarimetric SAR (PolSAR) imagery. The results of the proposed methods are promising and will significantly contribute to the ongoing efforts of conservation strategies for wetlands and monitoring changes. The approaches presented in this thesis serve as frameworks, progressing towards an operational methodology for mapping wetland complexes in Canada, as well as other wetlands worldwide with similar ecological characteristics

    Scalable computing for earth observation - Application on Sea Ice analysis

    Get PDF
    In recent years, Deep learning (DL) networks have shown considerable improvements and have become a preferred methodology in many different applications. These networks have outperformed other classical techniques, particularly in large data settings. In earth observation from the satellite field, for example, DL algorithms have demonstrated the ability to learn complicated nonlinear relationships in input data accurately. Thus, it contributed to advancement in this field. However, the training process of these networks has heavy computational overheads. The reason is two-fold: The sizable complexity of these networks and the high number of training samples needed to learn all parameters comprising these architectures. Although the quantity of training data enhances the accuracy of the trained models in general, the computational cost may restrict the amount of analysis that can be done. This issue is particularly critical in satellite remote sensing, where a myriad of satellites generate an enormous amount of data daily, and acquiring in-situ ground truth for building a large training dataset is a fundamental prerequisite. This dissertation considers various aspects of deep learning based sea ice monitoring from SAR data. In this application, labeling data is very costly and time-consuming. Also, in some cases, it is not even achievable due to challenges in establishing the required domain knowledge, specifically when it comes to monitoring Arctic Sea ice with Synthetic Aperture Radar (SAR), which is the application domain of this thesis. Because the Arctic is remote, has long dark seasons, and has a very dynamic weather system, the collection of reliable in-situ data is very demanding. In addition to the challenges of interpreting SAR data of sea ice, this issue makes SAR-based sea ice analysis with DL networks a complicated process. We propose novel DL methods to cope with the problems of scarce training data and address the computational cost of the training process. We analyze DL network capabilities based on self-designed architectures and learn strategies, such as transfer learning for sea ice classification. We also address the scarcity of training data by proposing a novel deep semi-supervised learning method based on SAR data for incorporating unlabeled data information into the training process. Finally, a new distributed DL method that can be used in a semi-supervised manner is proposed to address the computational complexity of deep neural network training

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Application of Multi-Sensor Fusion Technology in Target Detection and Recognition

    Get PDF
    Application of multi-sensor fusion technology has drawn a lot of industrial and academic interest in recent years. The multi-sensor fusion methods are widely used in many applications, such as autonomous systems, remote sensing, video surveillance, and the military. These methods can obtain the complementary properties of targets by considering multiple sensors. On the other hand, they can achieve a detailed environment description and accurate detection of interest targets based on the information from different sensors.This book collects novel developments in the field of multi-sensor, multi-source, and multi-process information fusion. Articles are expected to emphasize one or more of the three facets: architectures, algorithms, and applications. Published papers dealing with fundamental theoretical analyses, as well as those demonstrating their application to real-world problems

    Advanced machine learning algorithms for Canadian wetland mapping using polarimetric synthetic aperture radar (PolSAR) and optical imagery

    Get PDF
    Wetlands are complex land cover ecosystems that represent a wide range of biophysical conditions. They are one of the most productive ecosystems and provide several important environmental functionalities. As such, wetland mapping and monitoring using cost- and time-efficient approaches are of great interest for sustainable management and resource assessment. In this regard, satellite remote sensing data are greatly beneficial, as they capture a synoptic and multi-temporal view of landscapes. The ability to extract useful information from satellite imagery greatly affects the accuracy and reliability of the final products. This is of particular concern for mapping complex land cover ecosystems, such as wetlands, where complex, heterogeneous, and fragmented landscape results in similar backscatter/spectral signatures of land cover classes in satellite images. Accordingly, the overarching purpose of this thesis is to contribute to existing methodologies of wetland classification by proposing and developing several new techniques based on advanced remote sensing tools and optical and Synthetic Aperture Radar (SAR) imagery. Specifically, the importance of employing an efficient speckle reduction method for polarimetric SAR (PolSAR) image processing is discussed and a new speckle reduction technique is proposed. Two novel techniques are also introduced for improving the accuracy of wetland classification. In particular, a new hierarchical classification algorithm using multi-frequency SAR data is proposed that discriminates wetland classes in three steps depending on their complexity and similarity. The experimental results reveal that the proposed method is advantageous for mapping complex land cover ecosystems compared to single stream classification approaches, which have been extensively used in the literature. Furthermore, a new feature weighting approach is proposed based on the statistical and physical characteristics of PolSAR data to improve the discrimination capability of input features prior to incorporating them into the classification scheme. This study also demonstrates the transferability of existing classification algorithms, which have been developed based on RADARSAT-2 imagery, to compact polarimetry SAR data that will be collected by the upcoming RADARSAT Constellation Mission (RCM). The capability of several well-known deep Convolutional Neural Network (CNN) architectures currently employed in computer vision is first introduced in this thesis for classification of wetland complexes using multispectral remote sensing data. Finally, this research results in the first provincial-scale wetland inventory maps of Newfoundland and Labrador using the Google Earth Engine (GEE) cloud computing resources and open access Earth Observation (EO) collected by the Copernicus Sentinel missions. Overall, the methodologies proposed in this thesis address fundamental limitations/challenges of wetland mapping using remote sensing data, which have been ignored in the literature. These challenges include the backscattering/spectrally similar signature of wetland classes, insufficient classification accuracy of wetland classes, and limitations of wetland mapping on large scales. In addition to the capabilities of the proposed methods for mapping wetland complexes, the use of these developed techniques for classifying other complex land cover types beyond wetlands, such as sea ice and crop ecosystems, offers a potential avenue for further research

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography
    corecore