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Preface to “Application of Multi-Sensor Fusion
Technology in Target Detection and Recognition”

Application of multi-sensor fusion technology has drawn a lot of industrial and academic
interest in recent years. The multi-sensor fusion methods are widely used in many applications such
as autonomous systems, remote sensing, video surveillance and military. These methods can obtain
the complementary properties of targets by considering multiple sensors. On the other hand, they
can achieve a detailed environment description and accurate detection of interest targets based on
the information from different sensors.

This book collects novel developments in the field of multi-sensor, multi-source and
multi-process information fusion. Articles are expected to emphasize one or more of the three facets:
architectures, algorithms, and applications. Published papers dealing with fundamental theoretical

analyses as well as those demonstrating their application to real-world problems.
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Abstract: Object detection is a fundamental computer vision task for many real-world applications.
In the maritime environment, this task is challenging due to varying light, view distances,
weather conditions, and sea waves. In addition, light reflection, camera motion and illumination
changes may cause to false detections. To address this challenge, we present three fusion architectures
to fuse two imaging modalities: visible and infrared. These architectures can provide complementary
information from two modalities in different levels: pixel-level, feature-level, and decision-level.
They employed deep learning for performing fusion and detection. We investigate the performance
of the proposed architectures conducting a real marine image dataset, which is captured by color
and infrared cameras on-board a vessel in the Finnish archipelago. The cameras are employed for
developing autonomous ships, and collect data in a range of operation and climatic conditions.
Experiments show that feature-level fusion architecture outperforms the state-of-the-art other fusion
level architectures.

Keywords: multi-sensor fusion; object detection; deep learning; convolutional neural networks;
autonomous vehicles; marine environment

1. Introduction

Object detection is a crucial problem for autonomous vehicles and has been studied for years to
make it efficient and faster. A reliable autonomous driving system relies on accurate object detection
for providing robust perception of the environment. In addition, the performance of subsequent
tasks such as object classification and tracking depend strongly on the object detection. In marine
environment, object detection is a challenging problem due to varying light, view distances, weather
conditions, and dynamic sea nature. In addition, light reflection, camera motion and illumination
changes may cause false detections [1].

Multi-sensor fusion technology is a promising solution for achieving accurate object detection by
obtaining the complementary properties of objects based on multiple sensors. The multi-sensor fusion
architectures are generally classified into three groups that are based on the level of data abstraction
used for fusion [2]. (1) Early fusion, also called pixel-level fusion, combines raw data from the sensors
before applying any information extraction strategies. (2) Middle fusion, also called feature-level
fusion, fuses the extracted features from each raw sensor data and then performs detection on the
fused data. (3) Late fusion, also called decision-level fusion, independently performs detection from
each sensor and the outputs of each sensor are fused at the decision level for final detection.

Among the combination of sensor types, InfRared (IR) and visible (RGB) image fusion is superior
in many aspects [3]. Firstly, image sensors are cheap when compared in other sensors, such as
radar and LiDAR (Light Detection And Ranging). Secondly, collecting and annotating image data is
much easier than LiDAR point clouds. Thirdly, IR and RGB images share complementary properties,
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thus producing robust and informative fused images. Finally, RGB images typically have high spatial
resolution and considerable detail when compared to the images that obtained from other sensors.
However, these images can be easily influenced by severe conditions, such as poor illumination, fog,
and other effects of bad weather. Meanwhile, the thermal IR cameras capture relative temperature,
which allows for distinguishing warm objects, like person from cold objects, like navigation buoy or
the island. Moreover, IR cameras can improve navigation safety at night/day time and all-weather
conditions by determining interest objects based on radiation difference [1-3].

Convolutional Neural Networks (CNNs) or ConvNet allowed for a significant improvement
in the performance of computer vision tasks, such as object classification [4], detection [5,6],
and segmentation [7]. Moreover, various fusion approaches have been employed CNN in autonomous
vehicles [1,8,9]. While the majority of these approaches has focused on RGB images, some of them
have also been directed using infrared images for object detection. We use CNN for addressing the
object detection problem in marine environment to fill this gap and by the fact that CNN is a very
powerful model for computer vision tasks.

In this work, we present three early, middle and late fusion CNN architectures to carry out
vessel detection in marine environment. These architectures can fuse the images from the visible and
thermal infrared cameras at the different levels of data abstraction. In addition, these architectures
employed a deep CNN as a detector to generate bounding box proposals for interest vessels in
marine environment. We did not take into consideration any semantic segmentation algorithms in
this study. The CNN is trained on data from a single sensor or two used sensors according to the
proposed fusion strategies. On the other hand, we investigate the training of uni-modal architectures
as well as multi-modal architectures. We also evaluated the proposed fusion architectures on a real
marine dataset that was collected by a vessel in the Finnish archipelago. The data represents images
which are captured by RGB and IR cameras in different marine environmental conditions (i.e., weather
conditions, light conditions, daytime/nighttime). To the best of our knowledge, no work has been done
on studying the effectiveness of three different levels of fusion in marine environment. To summarize,
the main contributions of this paper are in three-fold:

¢ We collect two carefully annotated maritime datasests in diverse environmental conditions and
dynamic ranges.

*  We present three multi-modal CNN-based architectures to fuse RGB and IR images for achieving
robust vessel detection in marine environments.

*  Weinvestigate the effect of three deep learning-based and four traditional image fusion methods
in the proposed middle fusion architecture.

e We evaluate the performance of the proposed architectures. The effectiveness of the fusing of two
modalities against one modality is investigated.

The remainder of the work is organized, as follows. Section 2 discusses some of the most
important related works. The proposed architectures are presented in Sections 3-5. Sections 6 and 7
show the experimental setup and results of our implementations, respectively. Finally, we present our
conclusions in Section 8.

2. Related Work

In this section, we briefly review the related work on infrared and visible image fusion and object
detection using CNN. In addition, the vessel detection for maritime is also discussed.

CNN:s for fusion: many image fusion techniques have been developed in recent years. The main
idea of these techniques is obtaining salient features from input images and then combining them for
generating a fused image [10]. Deep Learning (DL) is one of the widely-used approaches that has
recently been used by theses techniques, since it can explore the features from the data efficiently [8].
It is able to obtain features from input images and then reconstruct a fused images with more details.

Multi-Scale CNN (MS-CNN) is one of these techniques that uses DL for performing pixel-level
image fusion. It uses a proposal sub-network to perform target detection at multiple output layers,
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so that receptive fields match objects of different scales. These complementary scale-specific detectors
are combined in order to create a strong multi-scale object detector. In [9], a middle fusion approach is
proposed for fusing LiDAR and RGB data in order to classify objects in autonomous vehicle application.
This approach first converts LIDAR point cloud data into depth map and then fed the data to a CNN
for object classification. In a similar work [11], the dense depth map from LiDAR data and color
imagery are fused for pedestrian detection while using CNN. Their results show that fusing LIDAR
can improve the detection results. In another work, a DL-based fusion method [10] is presented to
generate a fused image containing whole features from two sources IR and RGB images. We will
describe the details of this method in Section 4.1.

DenseFuse [8] is another well-known DL-based fusion architecture for extracting and preserving
most of the deep features of both RGB and IR images in a middle fusion fashion. In [1], a late fusion
method is proposed based on the Probabilistic Data Association (PDA) [12] in order to produce object
region proposals by fusing detection results from RGB, IR, radar and LiDAR. Then, a CNN is applied
on the top of region proposals for classifying the interest objects within the regions. DyFusion [13] is a
decision level fusion for maritime vessel classification. It first uses a CNN to generate the probabilities
over maritime vessel classes for each input sensor. Subsequently, a fusion part updates the sensor
probabilities by considering the contextual data.

PointFusion [14] leverages both image and three-dimensional (3D) point cloud data based on a late
fusion architecture to perform target detection. The image data and point cloud data are independently
processed by a CNN and then their results are combined to estimate object bounding boxes from
image and point cloud data. The main contribution of PointFusion is using using heterogeneous
network architectures. Moreover, the raw point cloud data is directly handled using a PointNet model,
which avoids time consuming input pre-process such as quantization or projection.

CNNs for object detection: CNN were recently used in the development of object detection,
as they are capable exploiting unknown structures in training data for discovering good
representations [15]. The CNN-based object detectors are divided into two categories: two-stage
detectors and one-stage detectors. Two-stage detectors employ an external module for generating
interest object region proposals and their speed usually slower than one-stage detectors. In contrast,
one-stage object detectors integrate region proposition and classification into one single stage. However,
two-stage detectors usually have higher detection accuracy when compared to the one-stage detectors.
Popular two-stage detectors include R-CNN [16], Fast/Faster R-CNN [17,18], and R-FCN [19].
Between one-stage detectors, SSD [20] and YOLO [21] are most common.

Region-based Convolutional Neural Network (R-CNN) [16], which leads to substantial gains in
object detection accuracy. R-CNN first identifies region proposals and then classifies these regions
into object categories or background using a CNN. One disadvantage of R-CNN is that it performs
exhaustive search and proposes large number of regions from an image. Therefore, RCNN leads
to time-consuming and energy-inefficient computation. The extension version of R-CNN is Fast
R-CNN [17] which uses CNN to generate feature map straight from the input image instead of regions.
Both R-CNN and Fast R-CNN use selective search for obtaining the region proposals. In order to reduce
running time of Fast R-CNN, Faster R-CNN [18] omits the selective search method for generating
object region proposals. Instead of using selective search, Faster R-CNN identifies the regions by using
a separate network.

Maritime vessel detection: A few studies utilized object detection algorithms from waterborne
images beyond maritime vessel detection from spaceborne imagery [22]. Some of these works have
focused on classifying the interest objects from the background [23], others employed the Histogram of
Oriented Gradients (HOG) approach using sliding-windows [24]. Recently, CNNs have been used for
seaborne vessel detection. However, developing more new dataset and applications are necessary for
autonomous maritime navigation. For instance, the Singapore Maritime Dataset is used in [25] for ship
detection under a new proposed model, YOLO [21]. In [26], a contextual region-based convolutional
neural network with multi-layer fusion is proposed for ship detection. It consists of a region proposal
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network (RPN) and an object detection network with contextual features. Their results show that the
additional contextual features provide more information for detection. However, this method can not
detect small objects efficiently. In [27], an approach based on selective search is presented in order to
extract the initial region proposals from RGB images. Subsequently, the initial proposals are filtered
using the information from other sensors in order to find more dense proposals. Finally, a CNN is
employed to identify the class of objects within the final proposals. The results are collected based on
the marine data that were collected for the Advanced Autonomous Waterborne Applications Initiative
(AAWA) project [28].

In [29], another novel dataset, SeaShips, consisting of a collection of in-shore and offshore ship
images is introduced. Moreover, they used three object detectors (Faster R-CNN [18], SSD [20],
and YOLO [21]) for detecting maritime vessels. In [30], a maritime vessel image dataset from a Vessel
Tracking System (VST) is collected. This dataset contains authentic situations from traffic management
operators. In addition, they proposed a SSD detector in order to identify vessels.

3. The Proposed Early Fusion Architecture

In this architecture, fusion happens at a very low abstraction level. As shown in Figure 1, the early
fusion architecture concatenates RGB and IR images and produces a tensor with four channels (three
channels from RGB and one channel from IR). This four-channel tensor is used as an input for a
detector network. The intuition behind this is simple, since the features of the concatenated image
should contain both information from RGB and IR. The detector produces Bounding Boxes (BBs) from
the feature maps to localize the vessels. The localization is determined with a box that the top-left
corner’s coordinate (x1,y1) and bottom-right corner’s coordinate (xy, y2). Moreover, each bounding
box is associated with a confidence score s, which indicates how likely does the bounding box contain a
vessel. The bounding boxes with the highest confidence are kept in order to filter by a Non-Maximum
Suppression (NMS). NMS is a popular post-processing method in object detection methods [5,18] for
filtering redundant bounding boxes and obtaining final detections.

A)

(B) ©

Vessel:0.89
Vessel:0.39

Detector Output image
BBs, scores, labels

Input RGB and IR imageS
(4 channels input )

Figure 1. An overview of the proposed early fusion architecture. (A) The 3-channel RGB input image
and 1-channel IR image are concatenated. (B) Subsequently, the produced four-channel input data
is processed by a detector in order to robustly detect vessels. (C) The output image consists of the
predicted BBs and corresponding scores and labels.
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4. The Proposed Middle Fusion Architecture

The middle fusion architecture consists of two layers, as illustrated in Figure 2. The first layer is a
fuse layer that combines the information given by two RGB and IR cameras and constructs a fused
image (Figure 2C). The fused image represents the thermal radiation information in infrared images
and detailed texture information in visible images. Afterwards, a detector layer (Figure 2D) performs
detection on the fused image in order to generate the object bounding box proposals.

@V

S| © o ®
avs

Input RGB image

()

Fused image Detector Output image
BBs, scores, labels

Input IR image

Figure 2. An overview of the proposed middle fusion architecture. The original input images (A,B) are
fused using by an image fusion method in order to provide complementary information for object
detection. (C) The image fusion method can be one of the mentioned method in Sections 4.1-4.7.
(D) Subsequently, the fused image is processed by a detector in order to detect and localize marine
vessels. (E) The output image localizes the detected vessels with the corresponded scores and labels.

To generate the fused image in the fuse layer, we employed three DL-based image fusion methods
(see Sections 4.1-4.3) and four traditional image fusion methods (see Sections 4.4-4.7). Here, we briefly
review the tested image fusion methods, three DL and four traditional, which were evaluated in this
work. The DL-based methods include: deep learning framework based on VGG19 and Multi-Layer
(VGG-ML) [10], DenseFuse [8], and ResNet and Zero-phase Component Analysis-based method
(ResNet-ZCA) [31]. The traditional fusion algorithms are categorized into two main groups: Multi-Scale
Decomposition (MSD)-based methods [32] and Sparse Representation (SR)-based methods [33,34]
according to the the fusion strategies. The MSD-based methods usually use different transform
functions: pyramidal and discrete wavelet. The SR-based methods calculate the activity level of input
images in a sparse domain. In this work, we utilized the weighted least square [32] as a MSD-based
method and convolutional sparse representation [35] as a common SR-based method.

4.1. Deep Learning Framework Based on VGG19 and Multi-Layers

Deep learning framework based on VGG19 and Multi-layer (VGG-ML) [10] can combine the
features from two source IR and RGB images and generate a fused image. For this purpose, the source
images are firstly decomposed into base and details parts using the image decomposition method [36].
The base part of each source image contains the common features and redundant information and
obtains it by the average filter. The details part represents the detail contents of source images and
it produces by subtracting the base part from the source image. The base parts of both images are
then fused by a weighted average strategy. For the detail parts, a pre-trained VGG19 network [37]
obtains deep features from source images. Finally, the base and detail parts are added for creating a
final output fused image.
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4.2. DenseFuse

DenseFuse [8] is a deep network including three elements: encoder, fusion, and decoder.
For testing the network, the encoder first extracts and preserves most deep features of both input RGB
and IR images using DenseBlock [38] architecture. DenseBlock contains three cascaded convolutional
layers. Subsequently, the fusion layer uses either additional fusion [38] or 11-norm fusion strategy for
fusing the extracted features maps from both source images. Finally, the three convolutional-layered
decoders receive the fused feature maps in order to create a fused image. For training the network,
only encoder and decoder are employed to reconstruct the training images and fix weights of the
network. In order to reconstruct the images, DenseFuse aims to reduce the A weighted combination of
pixel and structural similarity losses.

4.3. ResNet and Zero-Phase Component Analysis-Based Fusion

ResNet and Zero-Phase Component Analysis-based (ResNet-ZCA) method [31] has shown to be
an efficient method for image fusion. Firstly, it employs ResNet [39] for extracting deep features from
source images. Subsequently, ZCA [40] and 11-norm are used in order to project deep features into
sparse domain. The initial weight maps are obtained by 11-norm. Finally, a bicubic interpolation is
used to resize the initial weight maps to source image size. The final weight maps are generated by
soft-max and the fusion image is reconstructed by final weight maps and source images.

4.4. Visual Saliency Map and Weighted Least Square

Visual Saliency Map and Weighted Least Square (VSM-WLS) [32] is a multi-scale fusion method
that is based on WLS optimization and VSM. To perform Multi-Scale Decomposition (MSD), it first
employs the rolling guidance filter [41] and Gaussian filter and decomposes both source IR and
RGB images into base and detail parts. Afterwards, the fusion of base parts is carried by using a
weighted average technique in order to enhance the fused image contrast. For fusing the detail parts,
WLS optimization is used. Finally, inverse MSD is employed on the fused base and details parts to
construct the output fused image.

4.5. Cross Bilateral Filter

Cross Bilateral Filtering (CBF) [42] is a non-iterative and local nonlinear method that combines
an edge-stopping function with a low-pass filter for reducing the filter effect wherever the intensity
between neighbouring pixels is large. It can filter the images while preserving the edges. Initially, CBF is
applied to both RGB and IR source images to extract the base images. Subsequently, the detailed images
are obtained by subtracting the base images from the original IR and RGB images. Finally, the fused
image is obtained by multiplying the weights with input images, followed by a weight normalization.

4.6. Convolutional Sparse Representation

Convolutional Sparse Representation (ConvSR) [35] address the problem of SR-based image
fusion methods by considering a global approach that aims the SR-based image fusion of the whole
image rather than of local image patch windows. The global approach enhances the detail preservation
and model sensitivity regarding mis-registration. ConvSR consists of hierarchical layers, where each
layer includes an image decomposition to divide the input images into base and detail parts. The detail
parts are combined using a choose-max strategy. An averaging strategy is applied in order to fuse the
base parts and built the fused coefficient maps. The output fused image is built by combining the base
and detailed layers.

4.7. Guided Filtering Based Fusion Method

Guided Filtering based Fusion (GFF) [36] method can generate a highly informative fused image
based on a two-scale decomposition strategy. This strategy produces base and detail layers containing
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large scale variations in intensity and small scale details, respectively. Finally, a guided filtering-based
weighted average technique is employed in order to make full use of spatial consistency for fusion of
the base and detail layers.

©

(A)

¢} RGB
(D)
B

Input RGB image

Y
CD ORGB+IR >

A

Detectorl

Output image
NMS BBs, scores, labels

Input IR image Detector2

Figure 3. An overview of the proposed late fusion architecture. (A) The input RGB image and (B) IR
image are feed into the Detector]l and Detector2, respectively. (C) These detectors independently
extract features from the corresponding input image. (D) The architecture concatenates outputs
of detectors (Orgp,Orr), and then a final set of object proposals is obtained after none-maximum
suppression. (E) The final output containing predicted BBs, which are associated with a category label
and a confidence score.

5. The Proposed Late Fusion Architecture

Figure 3 demonstrates the proposed late fusion architecture. The late fusion architecture first

combines the detection results from two detectors. These two detectors have similar architecture.
One detector takes a RGB image as input and the other one takes the corresponding IR image as
input. To be more specific, a separate detector is utilized in order to process each input camera
image independently and extracts feature from the image. This process involves the estimation of the
bounding box proposals, which indicate the objects’ localization in the image. Subsequently, the output
bounding boxes of two detectors (Orgp,O1r) are concatenated to explicitly capture complementary
information of RGB and IR. In this case, fusion happens at the decision level. After that, the following
steps are applied on the all boxes (Orgp + Ojr) in order to generate final boxes and remove redundant

detections, as follows:

1.

It first discards all those predicted boxes which the score value is lower than 0.6. Subsequently,
it assumes the box with the largest score value among the remaining candidate as the accurate

predicted box by, (Figure4A).
Finally, it removes any remaining boxes that the Intersection over Union (IoU) is lower than «
with by, (Figure4B). Each box b; is assumed as a final box if it is overlapped by the by, according
to the following function:

0, ifloU <«

f(bi/ bbest) = . (1)

1, iflIoU >=u«
where « is Intersection of Unit (IoU) threshold between two bounding boxes and it is determined
experimentally. Based on a series of preliminary experiments, we got the best performance with
« = 0.5. IoU is intersection of two boxes divided by their union.
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Sbi m Sbbest

= 2
Sbi U Sbhest ( )

IOU(bi, bbest)

where S, represents the area of bounding box b.

§=0.86(Pest)
10U=0.71

[] Ground-truth
["] Detction by RGB-based detector
Detction by IR-based detector

Figure 4. An example of applying NMS in the proposed late fusion architecture: (A) the predicted BBs
which their score is lower than 0.6 are removed and then (B) each box between the remaining boxes is
assumed as an output box if IoU between ground truth BB and predicted BB is more or equal than 0.5.

6. Experimental Setup

6.1. Datasets

We collect a real marine dataset by a vessel in Finnish archipelago for evaluating our proposed
fusion architectures. The dataset is recorded by two sensors continuously, providing data from various
environmental and geographical scenarios. This sensor system includes RGB (visible spectrum) and IR
(thermal) camera arrays, providing output that can be synchronized and stitched to form panoramic
images. The individual visible cameras have full HD resolution while the thermal cameras have
VGA resolution. Both camera types have a horizontal field of view of approximately 35 degrees.
For image alignment in this sensor set, the registration parameters are manually determined by
finding corresponding features in calibration images and minimizing alignment mismatch. Therefore,
our dataset contains well-aligned IR/RGB images. The images were sampled one frame per second in
and stored in MPEG format. The images show maritime scenarios under different illumination
conditions with various marine vessels. We manually annotated all vessels (passenger vessel,
motorboat, sailboat, or docked vessel) within each RGB sequence with a bounding box as accurately
as possible. However, all of the vessels have a general label “Vessel” in our datatset. The bounding
box should contain all pixels that belong to that object and, at the same time, be as tight as possible.
In addition, two different scenarios are proposed in order to evaluate the proposed architectures in
different light condition, time imaging and location.

Scenariol: the training dataset is collected by two visible and infrared cameras at daytime. In this
scenario, the training dataset consists of 7250 pairs of well-aligned multispectral images captured by
cameras. For evaluation, a separate test dataset is gathered in the same light and weather condition
contains 1750 RGB/IR pair images. Figure 5a demonstrates a sample of RGB images and corresponding
IR in this scenario. The number of vessels in the training and test datasets is determined in Table 1.

Scenario2: RGB and IR images are collected by a vessel operating near the harbour at nigh
time. This data represent a challenging data (dark and oversaturated areas) in marine environment.
The source videos for generating training and test images are different. The training and test datasets
consist of 2250 and 1000 pair RGB/IR images, respectively. Table 1 shows the number of vessels in each
dataset. Furthermore, Figure 5b illustrates an IR/RGB pair of a sample of our data in this scenario.

The original size of all images is 3240 x 944 pixels for both scenarios. To reduce the computation
time, we re-sized the original images into 1200 x 400 pixels.
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Table 1. Number of vessels in our training and testing marine datasets for each Scenario.

Scenario Dataset Number of Vessel
. Training 46,890
1(daytime) — “p 15,312
. 1 Trainin 5000
2 (nightime) Test & 3500

(a) Day time (b) Night time

Figure 5. Example of RGB and InfRared (IR) pair images in the real maritime dataset at (a) Scenariol
and (b) Scenario2.

6.2. Implementation Details

Here, we give more information regarding the method parameters. The parameter setting of
the proposed (1) image fusion methods in the middle architecture and (2) CNN-based detector in all
architectures are as follows:

Image fusion methods: we selected all parameters of the image fusion methods based on the
existing works which are described in Section 4. VGG-ML fuses the detailes parts by using VGG-19 [37]
with four relu layers. The weight values for pixel in two base part images a7 = 0.5 and a, = 0.5
in VGG-ML. DenseFuse is pre-trained on MS-COCO [43] and utilizes two methodologies for fusion:
addition and I1-norm. DenseFuse achieves the minimum pixel and structural similarity losses when A
is 100. For ResNet-ZCA, we used ResNet50 with 11-norm. ResNet50 is pre-trained by ImageNet [44].
In VSM-WLS, the initial spatial weight, os, is 2. The number of decomposition levels N is 4 and
A = 0.01. CBF uses the neighborhood kernel with 11 x 11 size, as it can achieve good enough fusion
results [42]. The value of 0; and o, are 1.8 and 25, respectively. Moreover, the parameter A is fixed at
0.01 in ConvSR. In the GFF experiment, the parameters of the guided filter are set as r; = 45, €; = 0.3,
rp =7 and ey = 107°. All of the image fusion methods require the grayscale images transformed from
the input RGB images except DenseFuse and VSM-WLS, .

CNN-based detectors: we use Faster R-CNN as a detector in all proposed architectures. The CNN
parameter are chosen based on several experimental results. Faster R-CNN is trained for 900 k
iterations with a learning rate of 0.0003 and then 1200k iterarions with a learning rate of 0.000003.
We use 4 sub-octave scales (0.25, 0.5, 1.0, 2.0) and three aspect ratios [0.5, 1.0, 2.0] mainly motivated by
handling small objects on this dataset.

Since Microsoft COCO dataset [43] consists of 3146 images of marine vessels, the Faster R-CNN
is pre-trained on it to learn more good feature representation. Subsequently, the model is fine-tuned
on our data. We utilize different source videos to train and test architectures. These fixed parameter
setting can obtain good results for our experiments done in this work.
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7. Experimental Results

In this work, three multi-modal architectures were considered for vessel detection: early fusion,
middle fusion, and late fusion. In addition, two uni-modal architectures are proposed, which utilized
RGB or IR camera images. We have done three experiments: (1) evaluation of seven image fusion
methods in the middle fusion architecture, (2) evaluation of all fusion architectures, and (3) a visual
comparison between all architectures in each scenario.

7.1. Comparison of Image Fusion Methods

In the propose middle fusion architecture, an image fusion method is first employed to combine
source RGB and IR images and produce a fused image (see Sections 4.1-4.7). Subsequently, a CNN is
applied on the obtained fused image for detection. Therefore, the image fusion method provides an
essential functionality in our proposed middle fusion architecture. For this reason, we first evaluated
the performance of three DL-based image fusion methods and four traditional methods. The details
of our experiment are introduced in Section 6.2. These methods are compared with six common
assessment metrics to conduct qualitative and quantitative experiments. These metrics include:

1. Structural SIMilarity (SSIM) [45] is an objective image quality metric to obtain contrast, structure,
and illuminates between the source image and fused image.

2. Feature Mutual Information (FMI) [46] is a quality metric for calculating the mutual information
between source and fused images. Here, wavelet (FMI) and discrete cosine (FMI;,;) features
are used for measuring the amount of information conducted from source images to fused image.

3. Entropy (EN) measures the amount of information presented in the fused image on the basis of
information theory [47]. The better fusion results have minimum entropy value.

4. Quality (QAB/FY [48] metric represents the visual information that is associated with the edge
information. It computes the amount of edge preservation from input images (A and B) to the

fused image (F) using edge strength and orientation.

5.  Noise (N4B/F) is a fusion artifacts metric introduced by [49] which calculates the amount of
added noise or artifacts in the fused image (F) from two input images (A and B).

6.  Sum of the Correlations of Differences (SCD) metric [50] measures the complementary information
transferred from the input images to the fused image.

Figures 6 and 7 demonstrate the average values of performance metrics for whole test dataset
in two scenarios. In Scenariol (Figure 6), the results show that DL-based fusion methods perform
better than traditional methods with the larger values of FMI,, FMI;.;, and SSIM. The reason is these
methods (VGG-ML, DenseFuse, and ResNet-ZCA) can extract more structural and rich features that
are based on their DL architectures. Between these DL-based methods, ResNet-ZCA has the highest
value of FMI,, FMI;,, and SSIM. However, DenseFuse provide more natural results and contain
less artificial noise as it has the minimum values of NA4B/F, QAB /F EN and SCD. Between traditional
methods, GFF can achieve more complementary information in the fused image, since it has the
maximum value of FMI,,, FMI;., and SSIM.

Figure 7 shows the average values of six quality metrics for Scenario2. We can observe that
DL-based method is roughly more natural and less noise than other traditional methods. Furthermore,
the results represent DenseFuse can generate the fused image with less artificial information and noise
as the value of N4B/F is low. However, ResNet-ZCA provide more structural information and features,
as it has the highest value of FMI,,, FMI;.;, and SSIM. GFF performs betters than other traditional
image fusion methods in terms of FMI,, FMI;., and SSIM. This is because GFF can effectively keep
the contrast in the fused image.

10
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#DenseFuse(adde2)  # DenseFuse(ll le2)
=VSM-WLS = CBF

Figure 6. The average values of six quality metrics for test images obtained by the deep and traditional

methods in Scenariol.
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Figure 7. The average values of six quality metrics for test fused images obtained by the deep and
traditional methods in Scenario2.

Moreover, we performed a visual comparison between all image fusion methods for an example
test image in each scenario. In the scenariol, the obtained fused image by DL-based method contains
more frequency details and edge preservation (Figure 8A-D). The fused image that is generated by
VSM-WLS, CBE, ConvSR, and GFF includes more artificial noise and their saliency features are not clear.
CBF and ConvSR produce the fused images with more artifacts as well. On the contrary, the fused
images obtained by VGG-MI, DenseFuse, ResNet-ZCA and VSM-WLS look more natural and less
noise. Generally, the obtained results of these DL-based methods are roughly more clear than other
traditional methods in Scenariol.

Figure 9 shows the fused image obtained by DL and traditional image fusion methods in the
Scenario2. From the Figure 9A-E, it is observed that VGG-MI, DenseFuse, ResNet-ZCA, and VSM-WLS
provide a more pleasing image with clear texture details. From the red box (part of a land), it is observed
the fused image by VGG-MI contains less noise, and details are more clearer than other image fusion
methods. In contrast, CBF, ConvSR, and GFF (Figure 9F-H) produce results with more noise, color
distortion and contrast loss.
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(A) VGG-ML

(C) DenseFuse-11 (E) VSM-WLS (F) CBF

(G) ConvSR (H) GFF

Figure 8. Qualitative results of the fused image in Scenariol by (A) VGG-ML, (B) DenseFuse-add,
(C) DenseFuse-11, (D) ResNet-ZCA, (E) VSM-WLS, (F) CBF, (G) ConvSR, and (H) GFF on the original
RGB and IR images.

.—q -

Original RGB image Original TR image (A) VGG-ML

‘

(C) DenseFuse-11 (D) ResNet-ZCA

(B) DenseFuse-add

(E) VSM-WLS

(G) ConvSR (H) GFF

Figure 9. Qualitative results of the fused image in Scenario2 by (A) VGG-ML, (B) DenseFuse-add,
(C) DenseFuse-11, (D) ResNet-ZCA, (E) VSM-WLS, (F) CBF, (G) ConvSR, and (H) GFF on the original
RGB and IR images.

Processing Time: Table 2 shows the running time (second) of all image fusion methods for one
image. The tested system specification is: Intel(R) Core(TM) i7-4702MQ CPU @ 2.20 GHzx8 CPU
with 15.4 GB RAM. The running time for obtaining the fused image by ResNet-ZCA is 4.9 s per image.
ResNet-ZCA has the minimum time between DL-based methods. In addition, GFF can generate a
fused image in 0.4 s that is lower than ResNet-ZCA.
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Table 2. The running time (seconds) of the deep and traditional image fusion methods for one image.

VGG-ML DenseFuse(add,le2) DenseFuse(l1,le2) ResNet-ZCA VSM-WLS CBF ConvSR GFF
10.1 12.4 13.1 49 6.6 38.7 175.35 0.4

7.2. Multi-Modal Architectures vs. Vni-Modal Architectures

We compared the fusion architectures for the test dataset in terms of Average Precision (AP) as a
main detection accuracy metrics. For this purpose, we measured the IoU of detected bounding boxes
and matching those from ground truth annotations. A detected bounding box result is counted as a
true positive if the IoU with a ground truth one exceeds 50%. Unmatched detected bounding boxes are
counted as false positives and unmatched ground truth ones are counted as false negatives.

Table 3 shows that AP for the proposed architectures in each scenario. The best results are
highlighted in bold. This results show the effect of the fusion on the object detection performance, as we
compared uni-modal and multi-modal architectures. It is observed from the result, the multi-modal
middle architecture generates reliable detection results (bold font in Table 3) for both scenarios
(scenariol:79.1% and scenario2:61.6%), as it can provide complementary information when compared
with the uni-modal architectures. However, the performance can be improved when the dataset
contains more bigger targets. Our dataset consists of large amount of small targets which occupying
areas lower than 16 by 16 pixels. Detecting very small objects with a few pixels is still challenging
because of less information being associated with them.

In addition, the results show that uni-modal RGB-based architecture can provide higher accuracy
in comparison with uni-modal IR-based architecture. For instance, the accuracy of uni-modal
RGB-based architecture is 9.0% and 9.7% more than the uni-modal IR-based architecture for scenariol
and 2, respectively. This is because it can learn richer features from color images than infrared images.
Moreover, the results show that DenseFuse totally have higher accuracy in comparison with other
middle-fusion architectures.

Table 3. Average Precision (AP) (in %) on the test dataset of two scenarios.

Architecture Input Images Fusion Scenariol Scenario2
Uni-modal RGB - 63.8 51.5
Uni-modal IR - 545 41.8

Multi-modal early fusion RGB + IR 4 channels 66.7 58.4
VGG-ML 75.4 55.9

DenseFuse (add,le2) 77.3 57.8

DenseFuse (11,1e2) 79.1 61.6

. . . ResNet-ZCA 73.1 59.6
Multi-modal middle fusion RGB + IR VSM-WLS 673 554
CBF 63.9 49.8

ConvSR 62.7 495

GFF 68.4 60.7

Multi-modal late fusion RGB + IR NMS 60.7 57.2

7.3. Qualitative Results

Figure 10 demonstrates an examples of the detection results from the visible-only architecture,
infrared-only architecture and multi-modal architectures in each scenario (day-time and night-time).
We observe that the proposed fusion architectures is better at the detection of objects than the uni-modal
architectures. Note that, because the fusion architectures can integrate information from both color
and infrared images. The fusion architectures successfully detected the size/location of the bounding
boxes. In the third row, our middle- fusion architecture has detected marine vessels that other
architectures have missed. Moreover, the middle-fusion architecture is able to detect small objects

13
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with a few pixels as shown in Figure 10 and many of them are detected by our framework. It shows
the generalisation capability of the proposed middle-fusion architecture and indicates its potentials in
executing two-dimensional (2D) object detection in real situations beyond a pre-designed dataset.

Uni-modal
based on RGB

Uni-modal
based on IR

Multi-modal
early fusion

Multi-modal
middle fusion

Vessel:0.99
el:0,9 -

Multi-modal
late fusion

(A) Day time (B) Night time

Figure 10. Qualitative vessel detection results for (A) Scenariol and (B) Scenario2 based on uni-modal
based on RGB, uni-modal based on IR, multi-modal early fusion, multi-modal middle fusion,
and multi-modal late fusion architectures. The ground truth bounding boxes are shown as green
rectangles. Predicted boxes by the architectures are depicted as red bounding boxes. Each output box
is associated with a category label and a score value in [0, 1].

8. Conclusions

In this paper, we proposed three image fusion architectures for vessel detection in marine
environments. The architectures can combine the thermal radiation information on infrared images and
the texture detail information on visible images. They also utilized a simple fast CNN, Faster R-CNN,

14
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in order to carry out the final detection task. The evaluation on our real marine dataset show that the
proposed middle-fusion architecture is able to detect the vessel at the state of the art accuracy.

For future work, we plan to improve the detection network of these architectures in order to
address the detection problem of very small objects (less than 16 by 16 pixels) in our data. We will
investigate the effect of using transfer learning and domain-specific data on the detection performance.
We also plan to extend our fusion framework by considering other common sensors in autonomous
vessels, such as LIDAR and radar, besides IR and RGB cameras.
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Abstract: Availability of domain-specific datasets is an essential problem in object detection. Datasets
of inshore and offshore maritime vessels are no exception, with a limited number of studies addressing
maritime vessel detection on such datasets. For that reason, we collected a dataset consisting of
images of maritime vessels taking into account different factors: background variation, atmospheric
conditions, illumination, visible proportion, occlusion and scale variation. Vessel instances (including
nine types of vessels), seamarks and miscellaneous floaters were precisely annotated: we employed
a first round of labelling and we subsequently used the CSRT tracker to trace inconsistencies and
relabel inadequate label instances. Moreover, we evaluated the out-of-the-box performance of four
prevalent object detection algorithms (Faster R-CNN, R-FCN, SSD and EfficientDet). The algorithms
were previously trained on the Microsoft COCO dataset. We compared their accuracy based on
feature extractor and object size. Our experiments showed that Faster R-CNN with Inception-Resnet
v2 outperforms the other algorithms, except in the large object category where EfficientDet surpasses
the latter.

Keywords: maritime vessel dataset; ship detection; object detection; convolutional neural network;

deep learning; autonomous marine navigation

1. Introduction

Maritime vessel detection from waterborne images is a crucial aspect in various
fields involving maritime traffic supervision and management, marine surveillance and
navigation safety. Prevailing ship detection techniques exploit either remote sensing images
or radar images, which can hinder the performance of real-time applications [1]. Satellites
can provide near real-time information, but satellite image acquisition, however, can be
unpredictable, since it is challenging to determine which satellite sensors can provide the
relevant imagery in a narrow collection window [2]. Hence, seaborne visual imagery can
tremendously help in essential tasks both in civilian and military applications, since it can
be collected in real-time from surveillance videos, for instance.

Ship detection in a traditional setting depends extensively on human monitoring,
which is highly expensive and unproductive. Moreover, the complexity of the maritime
environment makes it difficult for humans to focus on video footage for prolonged periods
of time [3]. Machine vision, however, can take the strain from human resources and provide
solutions for ship detection. Traditional methods based on feature extraction and image
classification, involving background subtraction and foreground detection, as well as
directional gradient histograms, are highly affected by datasets exhibiting challenging
environmental factors (glare, fog, clouds, high waves, rain etc.), background noise or
lighting conditions.

Convolutional neural networks (CNNs) contributed massively to the image classifica-
tion and object detection tasks in the past years [4-8]. They incorporate feature extractors
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and classifiers in multilayer architectures, whose number of layers regulate their selective-
ness and feature invariance. CNNs exploit convolutional and pooling layers extracting local
features, and gradually advancing object representation from simple features to complex
structures, across multiple layers. CNN-based detectors can subtract compelling distin-
guishable features automatically unlike more traditional methods which use predefined
features, manually selected. However, integrating ship features into detection proves to
be challenging even in this context, given the complexity of environmental factors, object
occlusion, ship size variation, occupied pixel area etc. This often leads to unsatisfactory
performance of detectors on ship datasets.

To address ship detection in a range of operating scenarios, including various atmo-
spheric conditions, background variations and illumination, we introduce a new dataset
consisting of 9880 images, and annotations comprising 41, 967 carefully annotated objects.

The paper is organized as follows. Section 2 describes related work, including notable
results in vessel detection and maritime datasets comprising waterborne images. Section 3
describes data acquisition, dataset diversity, dataset design and our relabelling algorithm
along with basic dataset statistics based on the final annotation data. In Section 4, we
discuss evaluation criteria and present experimental results; we investigate four CNN-
based detectors and discuss the feature extractors and object size effect on the performance
of the detectors. Section 5 provides a qualitative overview of the experimental results.
In Section 6, we provide a brief analysis of our dataset specifications in comparison with
other similar datasets. Conclusions are presented in Section 7.

2. Related Work
2.1. Object Detection

Object detection is one of the fundamental visual recognition problems where the
requirement is to predict whether there are any objects from given categories in an image
and provide their location (bounding boxes or pixel-level localization in case of instance
segmentation), if any are found. Generally, this is achieved by extracting features in an
image and matching them against features from trained images. Traditional approaches
use sliding windows to generate proposals, then visual descriptors to generate an em-
bedding, which are subsequently classified (such as SVM, bagging, cascade learning and
AdaBoost). Traditional algorithms with best performance focus on carefully designing the
descriptors for extracting the features (SIFT, Haar, SURF). However, since 2008, more and
more limitations of this approach became evident [7]. We list below the most notable ones:

¢ Hand-annotated visual descriptors provided large number of proposals, which caused
high rates of false positives.

e  Visual descriptors (as mentioned above) extract low-level features, but are unsuitable
for high-level features.

¢ Each step of a detection pipeline is optimized separately, so global optimization is
difficult to attain.

In the early 2010s, deep learning approaches came to prominence and started replacing
the traditional ones. Object detection networks can be roughly categorized into 2 types: one-
stage detectors and two-stage detectors. The structure of the latter resembles traditional
object detectors in that they generate proposal-regions and then classify the proposals,
while the former considers positions within an image as potential objects and attempts
to classify them immediately. The traditional approach of sliding windows for proposal
generation is still used in CNNs, but other notable advances emerged, which allow for more
efficient proposal generation, such as anchor-based and key-point approaches (CenterNet
being one of the more notable examples of the kind) [7].

However, the key difference between traditional object detection and CNNs stems
from the manner in which visual descriptors are generated. In deep learning, instead
of creating visual descriptors by hand, convolutional layers perform this role. Instead
of defining feature extractors by hand, basic CNNs train multiple convolutional layers
to extract both high- and low-level features, which are then classified with the help of
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fully-connected layers. The resulting network essentially solves all the main limitations of
a traditional approach, but the trade-off is that it requires a significantly larger number of
training images for hyperparameter optimization [7,8].

While the requirement of a large number of training samples can prove to be a large
obstacle, one of the benefits of CNN-based models is that they can be generalized into
other fields with similar characteristics with the help of transfer learning. By training a
model on a specific dataset, the backbone of the model can be later used to extract features
in other tasks with similar features. For this reason, the aim of recent CNN-models was to
be as generic as possible, since with the help of transfer learning, they can be specialized
for the field of interest. The challenge, however, appears when those generic models are
not suitable feature extractors for a new field and there is not enough data to train them [6].
For those specific cases, the only viable solution is creation of new datasets.

2.2. General Object Detection Datasets

The two main reasons for the remarkable progress computer vision made in the past
decades are the availability of large-scale datasets and powerful GPUs that made it possible
for deep learning to take off considerably [9]. Deep learning made notable contributions to
the field of computer vision, the tasks of image classification and object detection being in
the forefront of research areas that benefited from it. International competitions such as
ILSVRC, PASCAL VOC, and Microsoft COCO motivated the community tremendously,
each of their contributions offering large-scale datasets that have been exploited ever since.
These general object detection datasets have been extensively used for object detection
with deep neural networks. They are essential for testing and training computer vision
algorithms. We will discuss below some of the most prominent general-purpose object
detection datasets.

Microsoft COCO [10] provides a selection of 330,000 images with a number of 2.5 mil-
lion of labelled object instances, over 91 object classes. The dataset labeling used per-
instance segmentation to ensure precise object localization. Two crucial aspects of the
dataset are that it exhibits abundant contextual information and images contain multiple
objects per image.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) ran annually
for a number of years and was established as one of the typical benchmarks for object
classification and detection. The Imagenet dataset [4], the foundation of the challenge,
is an image collection based on the WordNet hierarchy [11], which provides on average
1000 manually verified images for every synset (synonym set) in the hierarchy. These
images are subjected to quality-control and are human-annotated. The dataset consists of
over 14 million images, of which over 14 million were annotated to denote what objects are
present in the image and, for over a million of them, bounding boxes are provided too.

Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL) Vi-
sual Object Classes (VOC) is a prominent project in the computer vision community;,
which provided publicly available image datasets including ground truth annotations
and standardized evaluation metrics. These datasets were exploited as part of a number
of challenges on various tasks such as: classification, detection, segmentation, etc. The
greater number of scientific publications regarding object detection use the PASCAL VOC
challenges to benchmark their proposed algorithms. The reason is that these challenges in-
troduced a number of evaluation methods: bootstrapping, to decide significant differences
among algorithms, a normalised average precision across classes, etc. The dataset released
by last PASCAL VOC challenge includes 11,530 images with 27,450 annotated objects over
20 classes. Table 1 shows a variety of object detection datasets, with their total number of
images and clasess. We can notice that ImageNet is by far the largest of the ones mentioned
in the table, encompassing the greater number of total images and classes.
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Table 1. Different object detection datasets comprising various object classes, with their correspond-
ing annotations.

General Object Detection Dataset

Dataset Total Images Total Classes Annotations
ImageNet 14,197,122 1000 1,034,908
COCO 330,000 91 2,500,000
Openlmage (V6) 9,000,000 600 16,000,000
PASCAL VOC (2012) 11,530 20 27,450

Of the general-purpose object detection datasets, in Table 1, the total number of
maritime vessels included is limited, only Microsoft COCO comprising a considerable
amount of vessels, 3146. All vessel counts can be found in Table 2.

Table 2. Maritime vessel instances in general object detection datasets.

Maritime Vessel Instances

Dataset Vessel Count
ImageNet 1071

COCO 3146
Openlmage 1000
PASCAL VOC 353

2.3. Maritime Vessel Detection Datasets

Maritime vessel detection from satellite imagery was employed in many studies, over
the past 40 years, a review from 2018, [12], gathering a number of 119 papers regarding
ship detection and classification only from optical satellites. At the same time, the studies
regarding maritime vessel detection from waterborne images are still quite scarce to this
day. Some studies proposed algorithms utilizing the idea of background subtraction and
detection of the foreground in maritime images. This class of techniques is predominantly
used in surveillance applications due to their ability to perform well with unexpected
changes in illumination, frequency or background noise [13]. Other studies proposed
solutions for ship detection based on the Histogram of Oriented Gradients (HOG) and
sliding windows [14].

However, since the bloom of deep learning in the past 15 years, CNNs were employed
in ship detection from waterborne images. Even so, datasets of seaborne images are scarce,
the most notable ones we briefly discuss below.

The Singapore Maritime Dataset, introduced in [15] consists of 80 videos recorded
during daytime and nighttime, and provides ground truth labels for every frame of every
video, comprising bounding-boxes and object classes for the corresponding bounding-
boxes. The annotations for the Singapore Maritime Dataset include 10 object classes,
of which 6 ship types. This dataset is used for ship detection employing the YOLO v.2
algorithm [16].

Another recent ship dataset, SeaShips [3], consists of over 31,455 inshore and offshore
images of ships, comprising 6 ship types. In [3], they employ three object detectors (Faster
R-CNN [17], SSD [18] and YOLO [16]) to detect ships.

One of the most recent datasets published is MCShips [19], comprising a number
of 14,709 images of ships, whose annotations cover 6 warship classes and 7 civilian ship
classes. In [19], they also use the object detection algorithms above (Faster R-CNN [17],
SSD [18] and YOLO [16]) to evaluate the dataset over the 13 ship classes.

We compared our ABOships dataset against other existing ship datasets. Table 3
illustrates the main differences. Our dataset has the smallest number of images (9880)
amongst the four datasets, however it contains a great number of annotations (41, 967)
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given the image total, which shows it represents well real scenarios of maritime imagery,
taking into account the fact that it includes on average more than 4 annotated objects
per image.

Table 3. Comparison of ABOships with other maritime datasets.

Datasets for Ship Detection

Name Total Images Annotations Ship Types Included
SeaShips 31,455 40,077 6

Singapore 17,450 192,980 6

MCShips 14,709 26,529 13

ABOShips 9880 41,967 9

3. Materials and Methods
3.1. Camera System

The dataset was acquired from a set of 135 videos, collected from a sightseeing
watercraft, by a camera with a field of view of 65° and stored in FullHD (1920 x 720)
resolution at 15 FPS in MPEG format. The route of the watercraft extended from the city
of Turku to Ruissalo in South-West Finland, the videos comprising the urban area along
the Aura river, the port and the Finnish Archipelago, for a duration of 13 days (26 June
2018-8 July 2018). The watercraft ran each day in a timeframe between 10.15 and 16.45.
The videos were captured into 30-min long periods consisting of footage from the route
that the watercraft took. While the route remained largely the same, the data contains a
variety of typical maritime scenarios in a range of weather conditions.

In addition to camera video data, the platform had a LiDAR attached to it (SICK
LD-MRS, FoV 110 degrees, 2 x 4 planes, up to 300 m detection, at 5 Hz). The data from
the LiDAR was captured alongside the video at a rate of 5 entries of up to 800 points per
0.2 s. Given the utilized LiDAR had a detection range of up to 300 m, it was very useful for
detecting other objects in the harbor environment. Due to having only 2 times 4 lasers in
the height direction however, the provided data was not reliable enough for discerning the
nature of the object (i.e., what object was detected). It was useful however to determine
distances to the objects perceived in the videos. For the purpose of creating the dataset
presented in this paper, we used the LiDAR data to filter out video segments that were
captured in the harbor area (usually the ones that had too many points for a prolonged
period of time).

To evaluate the models, we acquired 9880 image photos from the videos. First, we
annotated all images with 11 categories: seamarks, 9 types of maritime vessels, and
miscellaneous floaters. In a second round, we relabelled all the inconsistencies we found,
using an algorithm based on the CSRT tracker [20].

3.2. Dataset Diversity

Maritime environments are inherently intricate, hence a range of factors have to be
accounted for when desinging a dataset. Dataset design must ensure that the dataset
characterizes well vessels in the environment. Of course, data augmentation methods
can be considered for reproducing certain environmental conditions, however authentic
conditions may be difficult to anticipate.

Background variation. Particular object detection tasks are more prone to be affected by
changes in the background of the picture. For instance, facial recognition is less susceptible
to background variations, because given the similar shape of most faces, it is easier to fit
them into bounding boxes in a congruous manner. However, the shapes of maritime vessels
are highly heterogeneous, making them more difficult to separate from the background
due to a potentially vast background information in the bounding box. The accuracy of
ship detection would be significantly affected if background information were classified
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as ship features. Figure 1 illustrates the background variation of images in our datasets,
including urban landscapes and an open sea environment.

a b

Figure 1. Example image of background variations in the ABOships dataset: (a) View of mar-
itime vessels on Aura river including the urban landscape; (b) View of a maritime vessel in the
Finnish Archipelago.

Atmospheric conditions. Atmospheric conditions were specific to Finnish summers,
with very sunny periods, alternating with rainy intervals and cloudy skies. The dataset
includes a variety of images of different atmospheric conditions throughout a day.

Illumination. Lighting variations can significantly impact image capture. Illumination
throughout the day, in various geographical areas and with specific daylight hours in a
given region can dramatically influence image detection.

Visible proportion. A great number of the images in our dataset consists of moving
ships, with objects being only partially captured in the camera field of view. However,
they still represent objects that were annotated since one has to detect them as well. The
annotation should comprise different visible proportions of the maritime vessels.

Occlusion. Due to the fact that our dataset has been captured in an open sea environ-
ment, in the harbor area and also comprises urban landscapes, there are many occasions
when maritime vessels occlude each other or occlude other objects in the environment
in the harbor area or in the urban landscape. In a subset of pictures especially in the
harbor area, there is significant occlusion due to a high number of maritime vessels in the
proximity of each other. Two examples of occlusion are shown in Figure 2.

a

Figure 2. Example image of a occlusion: (a) Boat in front of a militaryship; (b) Several sailboats
occluding each other while docked, on the right half of the image.

Scale variation. Detection of small object can prove to be quite difficult, especially in a
complex environment like the sea, ships that occupy a small pixel area in the picture can be
confused with other objects in the background. Maintaining a high level of detection for
ships requires including several scales for ships sizes in the dataset. For more information
regarding the annotation and the size of the bounding boxes, please refer to Section 3.4.

Figure 3 illustrates a sailboat from two different perspectives: a lateral and a frontal
view, which shows a variation in both occupied pixel area, but also the visible proportion.
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a b

Figure 3. Example image of a sailboat, view from two perspectives: (a) Lateral; (b) Frontal.

3.3. Dataset Design

The raw data acquired from the camera on the sightseeing watercraft is captured as
MPEG videos, with 720 p resolution at 15 FPS . The videos include some footage exhibiting
content that is irrelevant for the scope of vessel detection (especially footage captured
when the watercraft was docked, either at the start of its route on the Aura river or at the
Port of Turku) or sensitive content, such as faces of people. To address the latter issue,
we performed face detection on all videos and blurred all detected faces. Addressing the
former issue on the other hand, required additional data from the LiDAR.

In a maritime environment, LiDAR data is relatively sparse, authors of this study
observed that a high number of points detected for a prolonged duration correlates with
the watercraft being docked in the harbor. By setting a point threshold to detect these
(docked /harbor) cases, we were able to filter them out in their majority and extract only the
images regarding mostly the maritime environment. The images were extracted at an inter-
val of 15 s (one image every 225 frames) and still contained some images captured during
docking, but most of them were facing outwards from the harbor, so the images captured
in this manner still contain useful maritime data. As a result we acquired 9880 images in
the maritime environment.

The acquired images were subsequently separated into workpackages in such a
manner that chronologically adjacent pictures were separated into different workpackages.
The workpackages were then manually labelled by different annotators. After the initial
labelling was completed, we used the CSRT tracker [20] to combine labels of the same object
into traces, i.e., a collection of chronologically adjacent images containing a bounding-box
for that object. Due to inaccuracies in the tracking process and discrepancies in labelling,
the produced traces were not always accurate. After viewing the labels in these traces, we
identified the main causes for discrepancies in labelling, which were mainly caused by
different interpretations of label annotations. We refined those annotations to eliminate the
discrepancies and separated the data into a second collection of workpackages that were
provided to annotators, who then relabelled the data, according to refined annotations.
After the relabelling was completed, the images and their refined labels were compiled
into a dataset of maritime images with refined annotations.

3.4. Annotation

To perform the annotation task, we first investigated the captured videos and identified
the vessel types that appeared most often. Due to the fact that the videos were captured
at locations with a significant number of passenger ships, there is a certain level of bias
for labelers towards those types of ships. This is different from the Seaships database, for
instance, which comprises a higher variety of cargo ships. For the purposes of future use in
machine vision, rather than using maritime terminology as such (depicting ship scale and
purpose), we selected labels that had some clearly distinct visual characteristics. A visual
representation of the labels is illustrated in Figure 4. The label categories are discussed
below, with more specific details for every category:

*  boat—rowing boats or oval-shaped boats (from a lateral perspective), or small-sized
boats, visual distinction — rowing-like boats even if they possess engine power;
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e cargoship—Ilarge-scale ships used for cargo transportation, visual distinction—long
ship with cargo containers or designed with container carrying capacity;

*  cruiseship—large ship that transports passengers and/or cars on longer distances
(assumed at least some hundreds of km);

e ferry—medium-sized ship, used to transport people and cars, a.k.a. waterbus/watertaxi,
another appropriate term would be cableferry, visual distinction — it includes entrances
on two opposite sides and a cabin in the middle;

e militaryship—an official ship that is either military or Coast Guard and includes a
special hull with antennas. For Coast Guard fleets, usually the hulls of their ships read
“Coast Guard” and the military ones are dark gray/metallic/black/brown in colour;

*  miscboat—miscellaneous maritime vessel, visual distinction — generic boat that does
not include any visual distinction mentioned in the other ship categories;

*  miscellaneous—identified floaters (birds, other objects floating in the water) or uniden-
tified /unidentifiable floaters;

*  motorboat—primarily a speedboat, visual distinction—sleek, aerodynamic features;

*  passengership—medium-sized ship, used to transport people on short distances, ex.
restaurant boat, visual distinction-usually it has multiple noticeable lateral windows;

*  sailboat—sails-propelled boat or a boat which exhibits sails, visual distinction—sails;

e seamark—green/red/blue/black/yellow cone-shaped metal/plastic floater or pipe
emerging from the sea.

Figure 4. Example images of annotated objects in the ABOships dataset: (a) boat, (b) cargoship,
(c) cruiseship, (d) ferry, (e) militaryship, (f) miscboat, (g) miscellaneous (floater), (h) motorboat,
(i) passengership, (j) sailboat and (k) seamark.

3.5. Relabelling Algorithm

The labelling was performed by multiple annotators with different backgrounds, hence
some label types were interpreted differently among them. To increase the consistency of
labelling, we used the continuous nature of the raw data by tracking the labels between
frames using the CSRT tracker [20]. For every labelled frame, a tracker instance was
created. The aim was to track an object until the next labelled frame. At that point, the
existing traces would be mapped onto the labels of the new frame, based on the IoU metric.
During this mapping, it was assumed that labellers would not confuse seamarks with
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vessels, hence ship labels were not mapped onto seamarks or vice versa. More importantly,
previous labels were not taken into consideration, so even if annotators gave the same
object conflicting labels in different frames, these labels would still belong to the same
trace as long as the tracker could identify them. For cases where the mapping could not
be found, the trace would assign a new label, <Unlabeled>, to denote that even though
nothing was labeled in that specific case, the tracker indicated that the object should belong
to the trace.

After a certain number of frames, either the tracker would lose the object (the most
common reasons for this being object occlusion, or due to the object being either too far or
exiting the frame altogether) or the tracker would have none of the defined labels mapped
to it enough times (which would mean it most likely drifted onto another object). In both of
those cases, the tracker was stopped and the resulting trace was saved to a file for further
processing as described below.

To reduce the number of errors caused by occlusion and the tracker drifting towards
other objects than the current object of interest, we performed a second tracking in the
backwards direction. By comparing labels identified in the traces acquired from tracking
videos in both directions, one could detect situations where traces could not be mapped
onto each other. Those cases signify that the tracker was either occluded or drifted to
another object, so traces required to be split into smaller sequences still, until no more
conflicts could be detected.

The resulting traces (after the backwards tracking) were provided as batches for
relabelling. Traces containing a single entry were batched together with other singular
traces from the same category. This setup was done with the purpose of preventing
and removing accidental labels (mislabeling), while, at the same time, providing more
information about the objects being annotated. This allowed us to accurately label even
the objects at a longer distance as a consequence of tracking history. Traces obtained
in this manner were then provided for relabelling as a collection of labels belonging to
the same trace and annotators were asked to refine the labels so that labelling would be
consistent with the labelling specifications. Singular entries that did not belong to any
trace were subsequently batched together with other objects of the same category. The
process described above is illustrated in Figure 5, while the relabelling software application
is depicted in Figure 6.

Videos Images

(5)
Traces ’(4) Dataset

SRR

s
Figure 5. The video collection was separated into 48 workpackages of images (1), which were labelled

in an initial labelling step (2). Using the OpenCV Tracker, the objects were tracked across frames to
produce traces (3) and then relabelled to fix inconsistencies and fill in the labels that might have been
skipped (4). The resulting labels were then compiled into the maritime imagery dataset (5).
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Figure 6. The relabelling process utilized our relabelling software application. Its GUI (graphical user-
interface) shows the annotator traces of tracked images between annotation frames (1). The annotator
is required to either relabel every instance by selecting the correct label from the right panel, or edit
an annotation (by selecting a label that emerged distinct from others (2)) and change the label of
each image individually and possibly fix the bounding box to fit the object more tightly (3). Special
attention was required in certain situations when the tracker would drift onto other objects, in which
case that particular entry of the trace might have had a different label from the rest (4). When all
labels belonging to a trace were verified and steps (1)—(4) were completed (5), the changes were saved
into a new file and the annotator was provided with the next trace.

3.6. Dataset Statistics

Table 4 shows the number of images of each category in our dataset and the number
of annotations. The column Images represents the number of images that contain that
particular object class and then the percentage of images that comprise that class follows.
Then the column Objects represents the number of annotations for that particular class
in the dataset, along with the percentage of objects annotated for that specific class out
of all the annotated objects in the dataset. One can notice from Table 4 that the highest
representation of labels in the images from ABOships dataset is reached by three categories:
motorboats (present in 41.11% of the images), sailboats (present in 38.88% of the images),
and seamarks (present in 37.89% of the images). Conversely, the lowest representation is
registered for cargoships (in 1.58% of the images) and miscellaneous floaters (in 1.30% of
the images).
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Moreover, Figure 7 illustrates the distribution of annotated objects in our dataset based
on occupied pixel area at logy-scale, for every object category, and separates every object
category by size in small, medium and large objects based on the Microsoft COCO variants
(small: logy(area) < 10, medium: 10 < logy(area) < 13.16 and large: log,(area) > 13.16).
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Figure 7. Histograms of occupied pixel area at logp-scale for all annotated objects by object category, divided into three
groups for each category: small, medium and large according to Microsoft COCO variants (small: logy(area) < 10, medium:
10 < logp(area) < 13.16 and large: logy(area) > 13.16). The vertical colored lines represent the following values: the red
line—represents the mean of the distribution, the yellow line represents the threshold for small objects and the green vertical
line delineates the threshold for large objects. In each histogram, respectively, entries to the left of the yellow line represent
the small objects group, entries in between the yellow and the green line show the medium-sized objects group and those to
the right of the green line depict the large objects group.

Table 4. The table shows the number of images and annotations in the ABOships dataset for every
object category, along with their overall percentages.

Number of Images and Annotations for Every Object Category

Class Images Percentage Objects Percentage
Seamark 3744 37.89% 7670 18.27%
Boat 2034 20.58% 2913 6.94%
Sailboat 3842 38.88% 8147 19.41%
Motorboat 4062 41.11% 7092 16.89%
Passengership 2639 26.71% 4464 10.63%
Cargoship 157 1.58% 161 0.38%
Ferry 945 9.56% 1046 2.49%
Miscboat 2797 28.30% 4642 11.06%
Miscellaneous 129 1.30% 200 0.47%
Militaryship 2559 25.90% 4128 9.83%
Cruiseship 1347 13.63% 1504 3.58%
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4. Results
4.1. Evaluation Criteria

To evaluate the performance of different object detection algorithms on specific
datasets, one can employ various quantitative indicators. One of the most popular measures
in object detection is the IoU (Intersection of Union ), which defines the extent of overlap of
two bounding boxes as the intersection between the area of the predicted bounding box B,
and the area of the ground truth bounding box Bgt, over their union [21]:

Ioll = —/——=—
|Bp U Bgt|

M

Given an overlap threshold ¢, one can estimate whether a predicted bounding box belongs
to the background (IoU < threshold) or to the given classification system (IoU > threshold).
With this measure, one can proceed to assess the average precision (AP) by calculating the
precision and recall. The precision reflects the capability of a given detector to identify relevant
objects and it is calculated as the proportion of detected bounding-boxes, correctly identified,
over the total number of detected boxes. The recall reflects the capability of a detector to
identify relevant cases and it is calculated as the proportion of correct positive predictions to
all ground truth bounding boxes. Based on these two metrics one can draw a precision-recall
curve, which encloses an area representing the average precision. However, in a majority of
cases, this curve is highly irregular (zigzag pattern) making it challenging to estimate the area
under it, i.e., the AP. To address this, one can approach it as an interpolation problem, either
as an 11-point interpolation or an all-point interpolation [21].

The 11-point interpolation averages the maximum values of precision over 11 recall
levels that are uniformly distributed [21], as depicted below:

APy = Y. Pi(R), ()
Re{0,0.1,..,09,1}

with
P;(R) = max DP;(R*). 3
l( ) R*lR*ZR l( ) ()

APy is calculated using the maximum precision P;(R), with a recall greater than R.

4.2. Baseline Detection

To explore the performance of CNN-based object detectors on our dataset, we focused
on prevalent detectors: one-stage (SSD [18] and EfficientDet [22]) and two-stage detectors
(Faster R-CNN [17] and R-FCN [23]). The detectors were previously trained on the Mi-
crosoft COCO object detection dataset, which comprises a number of 91 object categories.
The training dataset contains a number of 3146 images of marine vessels. We investigated
the performance of different feature extractors in the aforementioned detectors. We collect
maritime vessel detection results based on SSD over different feature extractors (ResNet101,
MobileNet v1, MobileNet v2). Moreover, we evaluate the performance of a new state-
of-the-art detector, EfficientDet, on our dataset, which used EfficientNet D1 as feature
extractor. We also evaluated two-stage detectors: Faster R-CNN and RFCN with different
feature extractors. Combining all proposed detectors with the feature extractors, a total
of 8 algorithms were investigated. All information regarding the specific configuration of
these detectors can be found in [24].

We estimated the performance of these algorithms in detecting maritime vessels, so
we excluded seamark and miscellaneous labels from our experiments and focused on
detecting vessels. Moreover, we chose images with an occupied pixel area larger than
162 pixels. Based on these experiments, we attained Table 5.

Our experiments indicated that the object size impacts the detection accuracy. To cor-
roborate this observation, we divided all vessel labels (with an occupied pixel area larger
than 162 pixels) in our datasets into three categories, based on Microsoft COCO challenge’s
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variants: small (16% < area < 322), medium (322 < area < 96%) and large (area > 962). Out
of the annotated vessels with an occupied pixel area larger than 162 pixels in our dataset,
30.25% of the annotated vessels are small, 49.37% are medium and 20.37% are large.

Analyzing the results from our experiments, we observe that detection accuracy de-
creases with object size. The AP for best-performing detector on the ABOships dataset
(Faster R-CNN with Inception ResNet v2 as feature extractor) with a registered AP of 35.18%
more than doubles in size from small (APs = 23.16%) to large objects (AP;, = 46.84%).
The second best detector on the whole dataset (EfficientDet with EfficientNet as fea-
ture extractor) however had the best performance on the large-objects category, with an
AP = 55.48%. In general, detecting small objects turns out to be more difficult than
larger objects given that there is less information associated with a smaller occupied pixel
area. For medium-sized objects, the best performance is attained by SSD with ResNet101
as feature extractor (APy; = 31.18%). For small objects, the best-performing detector,
Faster R-CNN with Inception ResNet v2, outperforms the other detectors with a registered
APg = 23.16%. Among the SSD configurations, best performing, in general, was the one
having ResNet101 as feature extractor.

Table 5. Average Precision (AP) (in %) of the proposed CNN-based detectors on ABOships dataset,
with different feature extractors and object sizes, for all objects with an occupied pixel area > 162 pixels.

Detection Performance of Different Detectors on the ABOships Dataset

Method Feature extractor APs APy APr AP
Inception ResNet V2 23.16 30.86 46.84 35.18
Faster RCNN  ResNet50 V1 9.76 20.94 41.65 26.49
ResNet101 18.42 25.07 38.17 30.26
ResNet101 V1 FPN 21.39 31.18 42.07 30.03
SSD MobileNet V1 FPN 12.34 27.61 37.83 28.59
MobileNet V2 3.01 17.05 27.37 17.48
EfficientDet EfficientNet D1 10.94 29.68 55.48 33.83
RFCN ResNet101 18.05 26.20 41.61 32.46

5. Qualitative Results

Figure 8 illustrates an example of detection results for the proposed methods, selecting
for each the combination of feature extractor that scored the highest AP in each category.
We can notice in Figure 8 that Faster R-CNN with a Inception-ResNet-v2 feature extractor
(a) and R-FCN with a ResNet101 feature extractor (c) provide detected regions registering
high scores ranging from 0.91 to 0.99. The other two detectors in Figure 8, EfficientDet
with EfficientNet as feature extractor (b) and SSD with ResNet101 as feature extractor (d),
register satisfying results registering with scores ranging from 0.55 to 0.67.
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c d

Figure 8. Qualitative detection results for the ABOships dataset on (a) Faster R-CNN and Inception-
ResNet-v2 as feature extractor, (b) EfficientDet with EfficientNet as feature extractor, (c) R-FCN with
ResNet101 as feature extractor, and (d) SSD with ResNet101 as feature extractor. The ground truth
bounding-boxes are shown as red rectangles. Predicted boxes by these methods are depicted as green
bounding boxes. Each output box is associated with a class label and a score with a value in the
interval [0, 1].

6. Discussion

Maritime vessel detection of inshore and offshore images is a topical issue in many
areas, such as maritime surveillance and safety, marine and coastal area management,
etc. Many of these fields require intricate management of disparate activities, which in
practice often necessitate real-time monitoring. This implies, among other aspects, real-
time detection of inshore and offshore ships. However, in their majority, ship detection
studies and methodology are mostly concerned with either satellite or radar imagery,
which can prove to be unreliable in a real-time setting. For this very reason, algorithms,
and specifically CNNs, employed on waterborne imagery are especially beneficial either
on their own, or in fusion architectures.

Traditional ship detection methods using either background separation or histograms
of oriented gradients provide satisfactory results under favorable sea conditions. However,
the complexity of the marine environment, including challenging environmental factors
(glare, fog, clouds, high waves, rain etc.), renders the extraction of low-level features
unreliable. Recent studies involving CNNs address this issue, but deep learning requires
domain-specific datasets to produce satisfactory performance. However, public datasets
specifically designed for maritime vessel detection are scarce to this day [1]. We discuss
this in more detail in Section 2.

Performing exploratory analysis on our dataset, in comparison with other recent
maritime object detection datasets (Singapore Maritime Dataset [15], SeaShips [3], MC-
Ships [19]), there are a few aspects that emerge that we discuss as follows. Comparing our
dataset to the Singapore Maritime Dataset, one can notice (from Table 3) that ABOships
registers a higher number of ship types (9 vs. 6). However, considering the number of
annotations per image, the Singapore dataset registers almost 3 times more annotations on
average per image (11.05 vs. 4.2). The SeaShips dataset consists of 31,455 images, more
than 3 times the image total of our dataset, but ABOships provides more annotations than
the former, with a greater average number of annotations per image (4.2 vs. 1.2). SeaShips
consists mostly of images with one annotation per image. MCShips provides a number
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of 13 ship categories (vs. 9 ship categories in ABOships), but only offers just over 26K
annotations, with an average of 1.8 annotations per image, see Table 3. We note that our
dataset annotations comprise also seamarks and miscellaneous floaters in addition to the 9
ship types.

We tested our relabelling software application on the Singapore Maritime Dataset,
as suggested by our reviewers, and the tracker was able to consistently map object labels
from one frame to another correctly (without drifting from the object of interest to other
objects), which did not always occur when we performed the tracking on the ABOships
dataset. There are a few aspects that can influence the tracker’s performance and those
most probably affected its performance on the ABOships dataset. First, the videos included
in the Singapore Maritime dataset have a higher frame rate (30 FPS), double than those
in our dataset (15 FPS). Moreover, the videos from the Onshore dataset (one part of the
Singapore Maritime Dataset) have higher resolution. Videos in the Onshore dataset do not
have a high density of annotations per video. Furthermore, the environment present in the
images of our dataset is far more complex, including urban landscapes and complicated
background, especially in the port area.

7. Conclusions

This paper provides a solution for addressing the annotation inconsistencies appeared
as a consequence of manual labeling of images, using the CSRT tracker [20]. We build
traces of the images in the videos they originated from and use the CSRT tracker to traverse
these videos in both directions and identify the possible inconsistencies. After this step,
we employed a second round of labeling and obtained a set of 41, 967 carefully annotated
objects, of which 9 types of maritime vessels (boat, miscboat, cargoship, passengership,
militaryship, motorboat, ferry, cruiseship, sailboat), miscellaneous floaters and seamarks.

We ensured the dataset consists of images taking into account the following factors:
background variation, atmospheric conditions, illumination, visible proportion, occlusion
and scale variation. We performed a comparison of the out-of-the-box performances of
four state-of-the-art CNN-based detectors (Faster R-CNN [17], R-FCN [23], SSD [18] and
EfficientDet [22]). These detectors were previously trained on the Microsoft COCO dataset.
We assess the performance of these detectors based on feature extractor and object size.
Our experiments show that Faster R-CNN with Inception-Resnet v2 outperforms the other
algorithms for objects with an occupied pixel area > 162 pixels, except in the large object
category where EfficientDet registers the best performance with an AP = 55.48%.

For future research, we plan to investigate different types of errors in the manual
labelling, for cases where the labels still have inconsistencies, such as: fine-grained recog-
nition (which renders it more difficult for human even to detect objects even when they
are in plain view [25], class unawareness (some annotators become unaware of certain
classes as ground truth options) and insufficient training data (not enough training data
for the annotators).

Moreover, we plan to investigate in more detail the detection of small and very
small objects, including those with an occupied pixel area < 162 pixels. Furthermore,
distinguishing between different vessel types in our datasets will be an essential focus as the
next steps in our experiments. In order to do this, we plan to exploit transfer learning both
in the form of heterogeneous transfer learning, but also homogeneous domain adaptation.

To further our research, we will employ maritime vessel tracking detectors on the orig-
inal videos captured in the Finnish Archipelago and examine the impact on autonomous
navigation and navigational safety.
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Abstract: This article studies the design, modeling, and implementation challenges for a target detection
algorithm using multi-sensor technology of a co-operative autonomous offshore system, formed by
an unmanned surface vehicle (USV) and an autonomous underwater vehicle (AUV). First, the study
develops an accurate mathematical model of the USV to be included as a simulation environment for
testing the guidance, navigation, and control (GNC) algorithm. Then, a guidance system is addressed
based on an underwater coverage path for the AUV, which uses a mechanical imaging sonar as the
primary AUV perception sensor and ultra-short baseline (USBL) as a positioning system. Once the target
is detected, the AUV sends its location to the USV, which creates a straight-line for path following with
obstacle avoidance capabilities, using a LIDAR as the main USV perception sensor. This communication
in the co-operative autonomous offshore system includes a decentralized Robot Operating System (ROS)
framework with a master node at each vehicle. Additionally, each vehicle uses a modular approach
for the GNC architecture, including target detection, path-following, and guidance control modules.
Finally, implementation challenges in a field test scenario involving both AUV and USV are addressed
to validate the target detection algorithm.

Keywords: target detection; co-operative; autonomous; multi-robot; USV; AUV

1. Introduction

In recent years, the use of autonomous offshore vehicles, which includes autonomous underwater
vehicles (AUVs) and unmanned surface vehicles (USVs), for marine interventions has attracted increasing
interest from research scientists, maritime industries, and the military. These interventions include several
activities such as offshore surveillance, offshore target detection, seabed explorations, or search and
rescue (SAR) missions. Additionally, the use of multi-robot platforms can improve the performance in
these activities, as they can include above and below-water characterization. Regarding a multi-robot
platform, Vasilijevi¢ et al. [1] presented the co-operative robotic system consisting of an AUV and a USV
for ocean sampling and environmental monitoring. In [2], the study used a heterogeneous collaborative
system of above, surface, and underwater robots to obtain a multi-domain awareness on a floating
target. The heterogeneous system consists of a USV, an AUV, and an unmanned aerial vehicle (UAV).
Additionally, Gu et al. [3] presented a homogeneous study, where a guidance and control law design
method for coordinated path following of networked under-actuated robotic USVs under directed
communication links. In [4], the control scenario simulated a homogeneous AUV fleet to study formation
tracking control and collision-obstacle avoidance.

To accomplish the target detection in the offshore environment, the availability of accurate USV and
AUV mathematical models is crucial for simulation study purposes, controller design, and development.
The theoretical six-degrees-of-freedom (DOFs) dynamic model [5], based on nonlinear equations of
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motion, can be used for the design and modeling of the AUV. Equally, the USV can use the same
dynamic model of the AUV but with reduced order for the three DOFs horizontal plane control
(surge, sway, and yaw motions). Several tools can help to obtain the coefficients of the dynamic model
equations and the necessary transfer functions of each vehicle. These tools can include the parameter
estimation from MATLAB-Simulink [6], and the system identification (SI) [7,8], introduced to develop
the mathematical model using field test data. In [9], SI of the maneuvering data determined the
hydrodynamic coefficients of a USV. Also, the mathematical model of the USV includes the propulsion
and power system. Commonly, the rudder and propeller, or waterjet propulsion systems provide the
heading and the speed control of most existing USVs. In [10], a twin waterjet propelled USV was
modeled based on SI, but it neglects the calculation for the dynamics of the propulsion system.

Target detection in offshore environments is a fundamental activity that combines different perception
sensors. Numerous studies use passive (stereo cameras) or active (LiDAR or radar) perception methods
to obtain situational awareness of a USV. Nonetheless, most of the obstacle detection methods rely on
depth measurements, in which LiDAR sensors are the most reliable method of obtaining depth data.
Correspondingly, sonar devices are still the most convenient option for collecting data on underwater
environments. Mechanical imaging sonar, multibeam, profiler, or sidescan are some of the main sonar
imaging and ranging devices. For the target detection with sonar devices, how detectable is a target
is mainly dependent on the physical characteristics of the target and acoustic signal. Some studies use
sonar devices for target detection capabilities, as in [11], where a profiler sonar was adopted for obstacle
detection. According to [12], a method for underwater obstacle detection (standard buoy) was developed
using forward-looking sonar and a probabilistic local occupancy grid.

Correct localization and navigation are crucial to ensure the accuracy of the gathered data for all these
applications. Above the water surface, most of the autonomous systems rely on radio or global positioning
and spread-spectrum communications, as a GPS-compass installed in the USV platform. However,
those signals propagate only in short distances in an underwater scenario, where acoustic-based
systems perform better. Regarding underwater navigation, the three fundamental methods are dead-
reckoning (DR) and inertial navigation systems (INS), acoustic navigation, and geophysical navigation
techniques [13]. These navigation methods require specific survey and navigation sensors installed
in the AUV. The Girona 500 [14] is an example of AUV that performs the traditional dead-reckoning
navigation utilizing a doppler velocity log (DVL) and a solid-state attitude and heading reference
system (AHRS). Also, the absolute position can be obtained through a GPS when the vehicle is on
the surface and using an ultra-short baseline (USBL) while underwater. The high-accuracy USBL
system allows the localization of the AUV and the communication between the vehicle and the surface
unit. In [15], the study provided a navigation algorithm for an underwater vehicle with a Kalman
filter to estimate the error state via measurement residuals from aiding sensors. These aiding sensors
incorporate an attitude sensor, a DVL, a long-baseline (LBL) system, and a pressure sensor. In acoustic
navigation techniques, acoustic transponders and modems perform localization by measuring the
time-of-flight of signals from acoustic beacons or modems. USBL navigation allows an AUV to localize
itself relative to a USV, and it provides an efficient and reliable acoustic communication network [16].
In [17], the study presented the design and implementation of an USBL-aided navigation approach for
an AUV in a two-parallel extended Kalman filter (EKF). It also includes the measurements provided
by a DVL, a Visual Odometer, an inertial measurement unit (IMU), a pressure sensor, and a GPS.

Safe and adequate control of the offshore vehicles depends notably on proper guidance, navigation,
and control (GNC) systems. This study adopts a path-following as the guidance system for both
offshore platforms. The path-following approach is closer to practical engineering, and it is easier
to implement than trajectory tracking. A generally used method for path-following in autonomous
vehicles is the named line-of-sight (LOS) guidance. LOS guidance is classified as a three-point guidance
scheme, involving a commonly stationary reference point along with the interceptor and the target [5].
In [18], the study developed a guidance-based algorithm for path-following using the LOS algorithm
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in offshore operations. Additionally, in [10], a path-following with obstacle avoidance based on the
safety boundary box approach was implemented in a USV with a LOS-based guidance system.

Due to the co-operative offshore system in this study, it becomes necessary to fuse information
obtained from the individual vehicles. Robot Operating System (ROS) has been an effective tool when
working with multi-robot systems. This tool is a flexible framework for writing robot software and
provides the tools to acquire sensors’ data, process it, and generate the necessary response for the vehicle
actuators [19]. Multi-robot systems can either be centralized with a ROS master node at the ground
control station (GCS) or decentralized with each autonomous vehicle (AV) running an independent
ROS master. In the case of the decentralized control techniques, they are more flexible, profitable,
and generally reduce the communication network requirements compared with centralized control [20].
However, they are also more challenging due to obstacles, uncertainties, and communication constraints,
such as noises, delays, dropouts, or failures. In this case, the multi-master approach provides a solution
where each vehicle keeps its own ROS master and also exchange the necessary information with other
components of the multi-robot system. In [21], they proposed a package that efficiently developed
multi-master architectures.

In the presented manuscript, the mathematical model of the USV consists of the simplified
three DOFs dynamic model [5], where their parameters are obtained from field test data using the
parameter estimation tool. Additionally, the waterjet model has been included in the mathematical
model of the USV using data from the manufacturer and transfer functions based on SI. The AUV
platform considered in this study does not incorporate a DVL, neglecting the velocity feedback of the
vehicle. However, the installed USBL provides an absolute position and a communication link between
the USV and the AUV. Thus, the AUV platform includes a basic setup for underwater localization,
but it is not able to precisely locate the vehicle underwater. The path-following algorithm uses the
LOS approach for heading control to simplify the guidance control of the AUV, keeping a constant
depth and constant surge speed. The target detection algorithm uses a modular ROS architecture to
provide a computationally cheap and simple implementation in both offshore platforms. Furthermore,
the offshore system includes two different perception sensors based on the same target detection
algorithm. Finally, a multi-master architecture is in charge of the interaction between the AUV and
USV, providing an easy plug-and-play solution for the multi-robot system.

In this work, a model-based GNC architecture for a co-operative autonomous offshore system
is proposed for target detection using multi-sensor technology. In Section 2, the USV modeling and
simulation are presented using the parameter estimation tool to define the waterjet and USV maneuvering
model. Furthermore, this section includes an overview of the USV and AUV platforms. Then, in Section 3,
the GNC system for the co-operative tasks is included using the LOS-based guidance system for control.
The target detection algorithm is developed using a mechanical imaging sonar at the AUV and a LiDAR
at the USV as the primary perception sensor for underwater and surface inspection, respectively. Finally,
in Section 4, the implementation of a GNC architecture is described as modular and multilayer for the
multi-robot system. A control scenario in a field test is shown in this section to validate the proposed
target detection algorithm.

2. Modeling and Simulation for the Offshore Vehicles

The co-operative autonomous offshore system consists of two different vehicles: a USV and an
AUV. This section gives an overview of both subsystems, and it describes the simulation model of the
USV, which provides the capability to develop the GNC algorithms.

2.1. Overview of Under-Actuated USV

This article uses an under-actuated USV as the primary vehicle in the co-operative autonomous
offshore system. The USV is an aluminum hull with a thrust vectoring waterjet propulsion system, which
provides optimal maneuverability using a twin waterjet configuration. Figure 1 shows a simplified
model of the vehicle, where the port and starboard (STDB) waterjets produce the necessary thrust forces
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to move forward, backward, sideways or performing turns. Additionally, Figure 1 includes the position
and orientation of the USV in the North-East-Down (NED) coordinate system. The NED coordinate
system is related to planar Cartesian coordinates, so a coordinate transformation is performed from the
GPS-compass output to get the USV’s absolute position. This transformation is between longitude and
latitude (I, 1) from the world geodetic system 84 (WGS84) coordinate system and ETRS-TM35FIN [22],
which displays the NED position (xysy, yusy).- The Euler angles provide the USV heading or yaw angle
. The motion of the USV has three DOFs, which are surge, sway, and yaw (linear (#, v), and angular r
velocities) while ignoring roll, pitch, and heave motions.

NUSV

>
Eysv E

Figure 1. Simplified model of the unmanned surface vehicle (USV) using the North-East-Down (NED)
coordinate system. USV motion is described by surge u (linear longitudinal motion), sway v (linear
transverse), and yaw motion r (turning rotation about its z-axis).

2.2. USV Modeling

The development of an adequate maneuvering model will simplify the GNC algorithms design
and simulation. The three DOFs horizontal plane model for maneuvering of a USV consists of the
rigid-body kinetics [5]

Mv 4+ C(v)v +D(V)v = T + Tyind + Twave, 1)

where v = [u,v,7]" is the velocity vector composed of surge, sway and yaw. T = [1,0, T;] is the
vector forces and moments generated by twin waterjet configuration, while Ting and Twave are the
environmental forces. M, C(v), and D(v) are the mass, Coriolis and damping matrices, respectively,
where M and C(v) combine added and rigid-body terms. The mass matrix M is defined by

m — Xu 0 0
M = MRgp + Mp = 0 m—Yp mxg—Y,- , (2)
0 mxg — Y,; IZ — N;‘«
where m is the mass of the vehicle, I, is the moment of inertia about z;, axis, rg = [xg, Vg, zg] T is the vector
from origin o}, to centre of gravity CG, and Xj, Y, Y+, and N; represent hydrodynamic added mass.
The moment of inertia I, at the pivot point has been estimated based on the calculation of the moments
of inertia in the rear I rear and front I g.on¢ of the USV. These moments of inertia are defined by

1
I vear = Mpt l}%t + <3 Mhull Cg) l}%ivot' (3)

1
I front = 3 Mhull (1—cg) x (lusy — lpivot)zz (4)

where ¢ is the estimated powertrain mass (engines, waterjets, fuel, etc.), It is the estimated location
of the powertrain mass, my,,; is the hull weight without powertrain mass, cg is the relative center of
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mass point having one as the front of the USV, L,iyot is the pivot point location, « is a scaling factor as
the mass is not evenly distributed from the pivot point to the front of the USV, and Iygy is the length of
the USV. The total moment of inertia I, is defined by

I = (IZ/I‘eaI' + Iz,front) Ieor, (5)

where I is the tuning factor for the moment of inertia.

The Coriolis-centripetal matrix C(v) can always be parameterized such that C(v) = CT(v) [23].
However, linearization of the Coriolis and centripetal forces Crp(v) and Ca (v) about zero angular
velocity (p = q = r = 0) implies that the Coriolis and centripetal terms can be removed from the above
expressions, that is Crg(v) = Ca(v) = 0 [24]. Additionally, the mathematical model is simplified to
take into account only surge and yaw motions, so Coriolis and centripetal terms have been removed at
the three DOFs dynamic model in this study.

The different damping terms contribute to linear and quadratic damping [5]. Nonetheless, it is
generally difficult to distinguish these effects. The total hydrodynamic damping matrix D(v;) is the
sum of the linear part Dy, and the nonlinear part Dy, (vy) such that

D(Vr) = Djjn + Dnlin(vr)/ (6)

where Dy, is the linear damping matrix produced by potential damping and possible skin friction,
and Dy, (v;) is the nonlinear damping matrix as a result of the quadratic damping and higher-order
terms, defined by

Xy 0 0
Dy, = 0 Y, =Y, 7)
0 -Y; —N;
Xy 0 0
Dnlin(vr) = 0 *Y\v|v 0 ‘1/7| . (8)
0 0 =Ny,

The USV used in this study includes the AJ245 waterjet units [25]. The nozzle position Py, Varies
the direction of the jet flow, which generates the force needed for turning. Thus, the total thrust force
Fiotal combines the engine rpm of the waterjet #rpm and Ppoy1e- The variable #1ypm is directly gathered
from the waterjet engine, and Py, is a variable from —10,000 to 10,000, with O as the neutral position
and equal to forward motion. Table 1 shows the data obtained from the manufacturer Alamarin-Jet Oy
for these waterjet units at a specific operating point. This operating point is selected at 1800 rpm, nozzle
in the neutral position, and bucket in the full up position.

Table 1. Data obtained from manufacturer for an operating point of a single AJ245 waterjet unit.

Surge Speed [kt] Thrust Force [kN]

2 2
4 1.85
6 1.7

The thrust forces and torques for the mathematical model of the USV are defined according to the
manufacturer’s data and an affinity law. Thus, a two-dimensional (2D) lookup table can include the
relation between the shaft rotational speed of the waterjet engine N with the thrust force per waterjet
F. The affinity law used to obtain the thrust force at the waterjet units is defined by

(N .
B () ©)
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Figure 2 shows the results for the affinity law with the manufacturer’s data for a waterjet engine
from 600 to 2400 rpm, which match the operational engine speeds of this study.

4000 T

2 kt

3500

3000
2500

2000

Thrust [N

1500

1000

500

0 ‘ ‘ ‘ ‘ ‘ ‘
600 800 1000 1200 1400 1600 1800 2000 2200 2400
Waterjet engine [rpm]

Figure 2. Thrust force F generated by the waterjet propulsion system depending on the shaft rotational
speed N.

In the mathematical model, a 2D lookup table provides the engine rpm and the surge speed of the
USV as inputs, and the total thrust generated by the waterjet unit as output. Also, a one-dimensional (1D)
lookup table f(Joy,) obtains the engine rpm depending on the joystick input for surge motion, and a
second-order transfer function adds the waterjet dynamics of the engine rpm into the mathematical
model. This transfer function is obtained using the SI tool from MATLAB and the field test data of the
USV. Thus, the engine rpm is calculated based on the combination of the 1D lookup table and the engine
rpm transfer function, defined by

0.317s2 + 2.793s + 1.828
mpm(9) = — 3371095 1 1808 ) UOYw):

(10)

In the case of the heading motion of the USV, the total efficiency #,0,,1e for the thrust force depends
on the nozzle position (which refers to the angle of the waterjet thrust force ay,o,,10). According to the
waterjet manufacturer, if the nozzle position is deviated to a maximum nozzle angle #,,,. = £25°
(related to Pho,e = £10,000) , efficiency drops exponentially to 30-40% of the maximum (center).
The exponential function is obtained using the general exponential model.

Mnozzle (Pnozzle ) = aexp (b Pnozzle ) ’ (1 1)

wherea = 1and b = —9.163 x 1075.
Similarly to the dynamics of the waterjet calculation for the engine rpm, the nozzle position
includes a 1D lookup table f(Joy,) and a first-order transfer function. This transfer function is obtained

also from the SI tool from MATLAB based on field test data. The nozzle position of each waterjet is

defined by

—exp(—0.25s)
Regarding the behavior of the second-order transfer functions for both engine rpm and nozzle

position, Figure 3 shows the comparison between the SI tool transfer function and field test data for

both #1ypm and Ppe,1e variables.

Prozate (S) =
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Figure 3. Comparison between the USV field test data and the system identification (SI) transfer
functions: (a) Engine rpm n,pm. (b) Nozzle position Pphye-

Additionally, the parameters for the 1D Lookup table are obtained from field test data and are
presented in Table 2.

Table 2. 1D Lookup Table parameters.

Joy, 400 500 600 700 800 900 1000
mpm 690 920 1110 1300 1480 1650 1820
Joy, 0 50 150 200 250 300 400

Paogse O 1175 3500 4665 5830 7000 9325

Finally, the vector T = [y, 0, 7|, which represents the forces and moments generated by the two
waterjets, is defined by

{Tu = (FPORT + FSTDB)’?nozzle (13)

T = lpivot Sin(“nozzle) (Frort + F STDB)Unozzle

Figure 4 shows the schematic with all the necessary functions for the USV dynamic model,
from the joystick controller input to the vehicle’s position output. The waterjet model includes the
1D lookup table to translate between joystick commands to rpm, the second-order transfer function,
and the 2D lookup table related to the thrust force of each waterjet unit. Furthermore, it also includes
the 1D lookup table to translate between joystick commands to the nozzle position, the first-order
transfer function, the thrust force efficiency depending on the nozzle position, and the calculation of
the total torque. Both thrust force 7, and torque 7; are the inputs in the mathematical model of the
USV based on the three DOFs dynamic model. The position and orientation of the USV are performed
by integrating the velocity vector v.
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Figure 4. Schematic of the mathematical model of the USV including both waterjet propulsion system
and USV dynamic models.

2.3. USV Model-Validation Using Parameter Estimation

The matrices M and D(v) of the three DOFs Dynamic model are estimated with the parameter
estimation tool from MATLAB-Simulink. The matrices are defined in the Simulink model by creating
the matrices from input values. Then, the MATLAB-Simulink tool can estimate the individual
coefficients of the dynamic matrices.

There are two different parameter estimation runs related to surge and yaw motion. Table 3 shows
the constant values shared in both experiments, while Table 4 shows the coefficients obtained from the
parameter estimation tool with their results. Only surge and yaw motion coefficients, X,, Xy, X,
and N,, N;, N Irlr respectively, have been considered and estimated in this study, as the mathematical
model focuses in these two USV motions.

Table 3. Principal characteristics of the under-actuated USV.

Parameter Value
m 3500 [kg]
Mpt 1100 [kg]
Myl 2400 [kg]
lusy 8 [m]
lpivot 240 [m]
lpt 2.16 [m]
K 0.70
cg 0.30
Teor 0.6
I, from (5) 11,284.61 [kg mz]
Xg 0.0425 [m|

Table 4. Parameter estimation results for the surge and yaw motion coefficients.

Parameter Value
Xu —10.586
Xy —3277
Xjyfu 315.45
N, 3907.9
N; —36.555
Ny 3459.6

Figure 5 shows the comparison between the field tests, which include raw and filtered USV linear
and angular velocity, the three DOFs dynamic model with the coefficients obtained from the parameter
estimation, and the SI results from [10], for the joystick controller input shown in Figure 3. As shown
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in both linear and angular velocities results, the parameter estimation results improve the previous SI
approach, giving an accurate output of the USV maneuvering compared to the field test results.
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Figure 5. Comparison plot between SI tool, parameter estimation (PE) app, and field test data: (a) Surge
motion. (b) Heading motion.

2.4. Overview of the AUV

This article uses a high configurable AUV platform for different scientific instrumentation.
This vehicle contains basic instrumentation and sensors for localization and target detection, including a
USBL and a depth sensor for underwater localization and navigation, an AHRS from the flight
control for the navigation of the AUV, and a mechanical imaging sonar (Tritech Micron [26]) as main
underwater perception sensor.

Figure 6a shows a simplified model of the AUV. This AUV uses a six-thruster configuration to provide
thrust forces when moving in the surge, sway, heave motions, or performing turns. Also, the position
and velocities of the AUV are illustrated in Figure 6a. The general AUV motion in six DOFs is modeled
by using the NED local coordinate system. AUV position and velocities are considered with the
following vectors

n= [N,E,D,(P,G,IIJ]T,V: [u,v,w,p,q,r]T, (14)

where N, E, D denote the NED positions in Earth-fixed coordinates, ¢, 0, ¢ are the Euler angles, u, v, w
are the body-fixed linear velocities, and p, g, r are the body-fixed angular velocities [5].

The design and modeling of the AUV should be studied using a theoretical six DOFs dynamic
model [27]. However, due to the lack of instrumentation, it is not possible to obtain accurate navigation
data. Thus, the AUV is not fully simulated, and just simple control commands are established for
navigation. Once that navigation data is available, it is possible to use the same approach as the USV
mathematical model to obtain the six DOFs dynamic model, using the parameter estimation or SI
tools based on field test data. Regarding the control of the AUV, thrusters are located as it is shown in

Figure 6b, where thrusters Ty, T,, T3, and Ty effects in surge, sway, and yawing, and thrusters T5 and
T effects in heave and rolling motions.
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Figure 6. Six-thruster configuration in the AUV: (a) Simplified model of the considered vehicle using
the NED coordinate system. (b) Thrust forces with their direction for each thruster.

3. Gnc System for the Co-Operative Tasks

This study has the target detection and the guidance algorithms as main modules of the GNC
architecture of the offshore multi-vehicle system. This section describes both of these algorithms for
each platform and the description of the multi-vehicle guidance system.

3.1. Target Detection System

The mechanical imaging sonar installed at the AUV and the LiDAR at the USV are the primary
perception sensors in the co-operative autonomous offshore system. The target detection algorithm includes
the application in both perception sensors, depending on the position of the objects (underwater or over
the water surface).

For the mechanical imaging sonar, the employed algorithm consists of analyzing the acoustic
intensity at every bin to determine the presence of an underwater vehicle. The Tritech Micron sonar [26]
has an operating frequency chirp centered on 700 kHz, a beamwidth of 35° vertical and 3° horizontal,
a range from 0.3 to 75 m, a range resolution of approximately 7.5 mm, and a configurable mechanical
resolution of 0.45°, 0.9°, 1.8°, and 3.6°. In this study, the maximum range used to detect an obstacle is
10 m, a forward field-of-view (FoV) of 90°, and a mechanical resolution of 1.8°. If the target is known a
priori to be narrow, the imaging sonar can be configured with a lower resolution to detect the object.

Regarding the data obtained from the mechanical imaging sonar, it contains the heading of the
beam 0scan, the location of the specific point in Cartesian coordinates Pscan, and the intensity at every
bin Iscan. The dynamic range of the mechanical imaging sonar is 80 dB. Then, the dynamic range
controls allow to adjust the position of a sampling window within the defined dynamic band range of
the received signal, and it translates the intensity at every bin to an integer value ranging between 0
and 255.

After data acquisition from the mechanical imaging sonar, Algorithm 1 shows the post-processing
steps for target detection. This algorithm includes the position of the highest intensity value for each
bin in polar coordinates, filtering the data in the range of [0,1.5] meters to avoid possible noise from
the AUV structure.

Algorithm 1 provides the post-processing of a single bin of a specific angle. An additional function
forms an array of number of scans 7gcans, Obtained from 6scan min, Oscan,max, aNd Bscan increment Parameters
of the mechanical imaging sonar to create the complete array of scans from the sonar. After gathering
the scan array, the position of the targets needs to be calculated. The data from the perception sensors
is obtained in the body-fixed reference frame (BODY), and it requires a translation into an absolute
coordinate system. This translation is defined by

Xobs
Yobs

Yscan

— R, (Yav) [x“a“] ) (15)
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where R (ay) is the rotation matrix around the z-axis using the heading angle {ay of the selected AV.
This rotation matrix translates between the BODY and the East-North-Up (ENU) coordinate system.
The rotation matrix R;(av) in 2D is defined by

cos(Pay)  sin(Pav)

R:(pav) = —sin(ay) cos(Pay)

(16)

Algorithm 1: Post-processing of the mechanical imaging sonar data for target detection.

Input:Intensities Iscan, positions Pscan in Cartesian coordinates [X,Y], and current heading
Bscan value obtained from the mechanical imaging sonar.
Output:Position micron of the highest intensity value in polar coordinates.
1 initialization;
/* Remove data in the range from O to 1.5 m to avoid possible noise from the
AUV structure. #gyu equal to number of scans. */
fori = 1to ngy,, do
calculate distance dgcan from Pscan;
if dgean (i) < 1.5 then
‘ remove intensity Iscan(i);
end

[ N B

end

N

8 find maximum intensity Iscan,max from the Iscan data;
9 calculate value pscan related to distance in polar coordinates;
/* Return values for intensities greater than integer value of 80. Output in

polar coordinates. x/
10 if Lscan,max > 80 then
11 ‘ return micron = [Oscan, Pscanl;
12 else
13 ‘ return micron = [0scq, NaN];
14 end

After locating the obstacle by the mechanical imaging sonar in the ENU coordinate system,
the target’s origin position (N,, E,) is defined by

No| _ |Nav
Eo Eav
where Ry (1) is the rotation matrix around x-axis with v = pi [rad]. This matrix is used to translate
between ENU to NED coordinate system used for the offshore navigation. The Ry(1y) rotation matrix

in 2D is defined by
1 0
Ry(7) = [ ] : (18)

(17)

Xobs,init +xobs,end
2
+ Rx (’)/) Yobs,init TYobs,end | ”
2

0 cos(7)

Algorithm 2 includes the detected target localization for the perception sensor data array. This algorithm
distinguishes between different targets depending on the consecutive elements in the data array, and the
origin position of the targets is sent to the GNC algorithm to proceed with the autonomous navigation
of the offshore system.
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Algorithm 2: Localization of the detected targets.

Input:scan data array in Cartesian coordinates and RobotPose (position and orientation).
Output: Obstacle origin [N,, E,] calculated in absolute NED coordinates.

1 initialization;

2 translate scan data from BODY to ENU according to (15);

3 define consecutive non-NaN elements of the scan data array as same obstacle data;

4 if obstacle data is non-empty then

5 create vector to distinguish between different obstacles;
6 | define obstacle.x and obstacle.y for the different obstacles detected by the scan;
7 define number of obstacles 1. as equal to number of columns in obstacle.x;
8 if n,, > 0 then
9 fori = 1to nys do
10 calculate the obstacle origin [Ny (i), Eo(7)] in NED according to (17);
1 end
12 closely spaced obstacles are defined as same obstacle origin [No, Eo];
13 end
14 end

Figure 7 shows the steps from the scan data obtained from the mechanical imaging sonar in the
BODY reference frame to the final origin position of the detected targets. Figure 7a shows the raw
data from the mechanical imaging sonar. Then, Figure 7b shows the post-processing described in
Algorithm 1. Finally, Figure 7c,d represents the origin position of the targets in NED coordinate system,
with relative to origin [0,0] and absolute coordinates respectively.
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Figure 7. Post-processing of the mechanical imaging sonar data in the target detection algorithm:
(a) Scan data acquired from sonar. (b) Post-processing based on Algorithm 1. (c) Relative position in
NED with origin as [0,0] and calculation of target’s origin. (d) Absolute position in NED of the targets.

Regarding the USV platform, the SICK MRS1000 LiDAR [28] is the primary perception sensor.
This LiDAR has four spread-out scan planes and a multi-echo analysis to be used in harsh environment
applications, as it can avoid the noise produced by fog, rain, or dust. Also, this device has a 275°
aperture angle, and a working range from 0.2 to 64 m. Thus, in case that the target is above the water
surface, it can be detected by the LiDAR sensor.

The algorithm for target detection is similar to the described for the mechanical imaging sonar.
The only difference is that the LIDAR contains four spread-out scan planes, acquiring three-dimensional
(3D) scan data (see Figure 8a). The target detection algorithm is simplified by translating the received
data to 2D by avoiding the z-axis from the sensor data (see Figure 8b). Figure 8c shows the maximum
detection range and aperture angle with the scan data in the BODY reference frame. Finally, Figure 8d
shows the origin’s position of the targets in the NED coordinate system after applying Algorithm 2.
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Figure 8. Post-processing of the LiDAR in the target detection algorithm: (a) LIDAR scan data in 3D.

(b) LiDAR scan data in 2D. (c) Detection area of the USV in BODY including scan data. (d) Absolute
position in NED of the targets.

The same procedure detects obstacles from the LiDAR for the path-following with the obstacle
avoidance algorithm. After obtaining the origin position [N, Eo] from Algorithm 2, the obstacle avoidance
algorithm can define a safety boundary box around the obstacle [10].

3.2. Guidance System for Multi-Vehicle System

The multi-vehicle system aims firstly to detect a target using the AUV in a specific offshore area,
and after that, sends the location to the USV to do further exploration of the target. Thus, a path-
following algorithm is essential for both AUV and USV subsystems. This algorithm intends to reach
every waypoint of a specific path independent of time. A commonly used method for path-following
is the named LOS guidance, which is chosen as a reference trajectory in this study.

3.2.1. Auv Guidance System

The heading control can use a LOS vector from the AUV position to the next waypoint, similar
to [5]. The LOS path-following controller used in this study is the same as the one defined in [10].
However, the AUV movement includes a heave motion, which is avoided by keeping a constant
depth for the path-following algorithm. This controller computes the course angle ¢4 based on the
path-tangential angle x;, and the velocity-path relative angle x;. The lookahead-based steering can be
implemented related to the heading controller applying the transformation defined as

Ya=xp+txe—5 (19)

where the variable sideslip (drift) angle B [5] has been omitted in this study to simplify the steering
law. The velocity-path relative angle X establishes that the velocity has the direction facing a path
location that is in a lookahead distance A(t) > 0 along of the direct projection [29]. The path-tangential
angle xp and the velocity-path relative angle x; are defined as

Xp = atan2(Eyy1 — Ex, Ngy1 — Ni), (20)

xr(e) = arctan(—Kpe — K; /Ot e(t)dT), (21)

where (N, Ex) and (Njy1, Ex41) are the positions of the passed and next waypoint, respectively,
the proportional gain is Kp = 1/A(t) > 0, and K; > 0 represents the integral gain. The cross-track
error e(t) is given by

e(t) = —[Nauv(t) — NiJsin(xp) + [Eavv () — Ex] cos(xp)- (22)
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The switching mechanism is declared as a sphere of acceptance for AUVs [30]. This mechanism
selects the next waypoint as a lookahead point if the AUV position lies within a sphere with a radius R
around the position (Ny. 1, Ex11, Dx+1). The sphere of acceptance is defined as

[Nik1 = N(O)]* + [Exp1 — E()]* + [Dey1 — D(O)]* < RE,, (23)

where, if the time AUV position (N(t),E(t),D(t)) satisfies Equation (23), the next waypoint
(Nk+1, Ex+1, Dr41) needs to be selected. Radius R is equal to three AUV lengths Layy (R = 3Lauv),
as the position is only obtained from the USBL system.

After obtaining the course angle from the LOS path-following algorithm, this algorithm sends
the heading commands to the yaw controller to match the aimed path. The main control system of
the AUV is formed by three separate PID controllers for surge, heave, and yaw motions. Apart from
the heading controller, the heave controller keeps the AUV at a constant depth. Their PID parameters
for heading controller are obtained by using rapid control prototyping based on the Ziegler-Nichols
PID tuning [31] during field tests. Both amplitude K, and period T, are calculated for the AUV at
the water tank, and then, the PID parameters are defined based on Table 5. Furthermore, a simple
proportional controller has been selected in the heave controller. The surge motion is implemented as
a constant PWM value to the thrusters.

Table 5. PID parameters for AUV.

Controller Ty, [s] Kizn Kp K; Kp

Yaw 2.10 5.80 0.580 0.276 0.812
Heave - - 300 0.0 0.0
LOS - - 0.333 0.0 0.0

3.2.2. USV Guidance System

Same as the AUV guidance system, USV heading control uses a LOS vector from the USV position
to the next waypoint. The LOS path-following controller used in this study is the same as the one
defined in [10], including the obstacle avoidance capabilities with the safety boundary box approach.
The LOS path-following controller of the USV uses the same path-tangential angle X}, defined in
Equation (20), the velocity-path relative angle defined in Equation (21), and the total lookahead-based
steering from Equation (19). The switching mechanism is selected as a circle of acceptance for surface
vehicles [5]. It selects the next waypoint as a lookahead point if the position of the USV lies within a
circle with radius R around (Nj 1, Ex1). This circle of acceptance is defined as

[Nusv(t) — Neoa)? + [Eusv(t) — Exga]* < R, (24)

where, if the time surface vehicle position (Nysy (), Eusv (1)) satisfies (24), the next waypoint (Ni, 1, Ex11)
needs to be selected. Radius R is equal to two USV lengths Lygy (R = 2Lysy).

3.2.3. Multi-Vehicle Guidance System

At the beginning of the control scenario, the USV keeps its position in dynamic positioning (DP)
mode while the AUV is trying to search for targets in the coverage area. A DP vessel is a vessel that
maintains its position exclusively using active thrusters [24]. This study considers the use of conventional
controllers with cascade with low-pass and notch filters to simplify the implementation. The control
problem is solved by using PID-controllers for surge, sway, and yaw motions.

The AUV in this study aims to detect a target in a specific offshore area. The coverage area is
defined as a set of waypoints to cover a far-reaching range inside. However, this coverage area has
been substituted by a straight-path to simplify the control scenario. After detecting the object by the
target detection system, it sends a stop command to the AUV, and the vehicle stays in its position until

50



Remote Sens. 2020, 12, 4106

it received further instructions from the USV. As the AUV does not contain enough instrumentation to
have a precise localization of the subsystem, the AUV in this study stops its thrusters instead of having
a DP control of its final position. Additionally, if the target detection algorithm does not recognize any
target in the coverage area, the AUV stops after reaching the last waypoint of the predefined path.

After receiving the target position by the USV, the path-following algorithm creates the waypoints
with a straight-line trajectory. The first waypoint matches the current position of the USV at the time
that the target position is received, and the last waypoint is the target position itself. With a constant
distance between waypoints of 10 m, the number of waypoints is related to the length of the straight-line
path. These waypoints are sent to the LOS path-following algorithm to calculate the course angle of the
USV. Furthermore, an additional switching mechanism is included using the same principle as the circle
of acceptance defined in (24) to stop the LOS path-following controller once the USV has reached the
last waypoint of the predefined path. Then, the guidance system does not send any heading or surge
commands to the controllers, and there is no output from the target detection algorithm. In this case,
the USV changes to DP internal algorithm keeping its position constant.

Figure 9 shows the priority control level for the multi-vehicle guidance system. First, the AUV
starts the path-following of the coverage area based on predefined waypoints. The vehicle continues
to the next waypoint until the mechanical imaging sonar detects a target. Then, the AUV stops its
operation, and the target position is transmitted to the USV. The USV keeps its position in DP mode
and, when the target position is received, it starts the path-following with obstacle avoidance operation
with the target position as the final waypoint of the USV trajectory. After reaching the last waypoint,
the USV stops and uses the DP mode to keep its position, allowing the GCS to have further inspection
of the detected target. Additionally, the steering wheel and 3-axis joystick, both forming the manual
control of the USV, provides the safety feature in the autonomous algorithm.

USV moves in USV DP mode
manual mode
A
i i Path-following module )
- 2 V
USV manual Istarget BVRRN - tes path with target USV moves in
control detected? o . autonomous mode,
~ position as last waypoint.
AUV movesin Istarget — VES Target position is
autonomous mode detected?
NO
AUV contlnugs to AUV stops
next waypoint

sent to the USV.
Figure 9. Stateflow diagram for priority control level in the multi-vehicle guidance system. The target

i

detection algorithm at the AUV enables the autonomous operation of the USV.

4. Experimental Validation

4.1. System Implementation

For this particular study, the USV and AUV platforms incorporate multiple mechatronic systems
to implement the target detection algorithm. Both vehicles include high-level control (computers with
ROS), which performs complex computations and processes the data obtained from localization and
perception sensors, and low-level control (sensors and actuators units), that runs as the basic interface
for vehicle operations. Also, an intermediate-level (or mid-level) control is included, which is the main
link between low-level data acquisition and high-level logic operations.

Figure 10 shows the mechatronic systems used in the USV, including also the connection to the
AUV and external MATLAB-Simulink computer through the main network switch. These devices are
the link to the co-operative autonomous offshore system. In general, the USV platform is equipped with
a payload for navigation (high precision GPS-Compass), LIDAR as the main perception sensor, SeaTrac
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acoustic system for USBL localization, and communication with the AUV, and WiFi for communication
with the GCS. The USV system implementation is the same as the one studied in [10]. For the high-level
control, the ROS master includes the necessary stand-alone ROS-nodes for the path-following with
obstacle avoidance. The display computers act as intermediate-level control for translation between
CAN bus and ROS messages. Also, they are in charge of sending joystick commands to the waterjet
control units based upon priority levels.

\' Omni-directional | Main computer #1
antenna (ROS master) ~ —

Main display
computer

MATLAB-Simulink
ROS-CAN Display computer (ROS node) &8
Computer . —_—
Figure 10. System overview of the USV platform with high-level (blue boxes),intermediate-level (white
boxes), and low-level control (purple boxes), including the connection to the AUV platform (adapted
from [10]).

Figure 11 shows the mechatronic systems used in the AUV platform. The AUV is connected
to the USV via a neutrally buoyant tether to have a direct connection between the vehicles.
Similarly to the USV platform, the AUV contains high-level control with the ROS computer and an
intermediate-level control as a bridge between the main ROS computer and the companion computer,
which communicates using the MAVLink protocol. The low-level control includes actuators and
sensors, formed by six thrusters and their respective electronic speed controllers (ESCs), a pressure
sensor for depth measurements, a mechanical imaging sonar as the perception sensor, and the USBL
SeaTrac acoustic system for positioning and communication. Finally, the AUV includes a companion
computer with the flight controller and the ROS computer (Linux computer) connected to a network
switch. The ROS computer performs the complex computations for autonomous operation and
target detection.
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| \ USBL #2 ) Left side enclosure Unmanned surface
h g Vehicle (USV)
d/ Pressure
sensor / ‘ ROS computer #2 ROS computer #1
[— (ROS master) (ROS master)
Mechanical
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Figure 11. System overview of the AUV: High-level (Robot Operating System (ROS) computers), intermediate-
level (companion computer and Pixhawk flight controller), and low-level control (thrusters, ultra-short

(" Li-Po
\_ batteries Y,

baseline (USBL), pressure sensor, and mechanical imaging sonar).

The approach used in this study for the multi-robot architecture is multimaster-fkie, which provides
simplicity and ROS compatibility [21]. This package is a fully compatible multi-master implementation
for topic and services transactions. Nevertheless, this implementation can cause some drawbacks due
to the continuous master state scanning and the delay between changes in advertising, as well as
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information exchange. As this study requires a total of three ROS topics, this package is useful as an easy
plug-and-play solution.

Figure 12 illustrates the communication between the USV and AUV platforms, including the
nodes for the multimaster-fkie architecture. The exchanged topics are /target, which is the position
of the detected target, /usv_gps obtained from the USV GPS-compass and used to get the absolute
Cartesian coordinates of the AUV position, and /usv_heading which rotates the USBL coordinate
system according to the heading of the USV. The diagram also includes the links between the high-level,
mid-level, and low-level control in both platforms.
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