


Application of Multi-Sensor Fusion
Technology in Target Detection and
Recognition





Application of Multi-Sensor Fusion
Technology in Target Detection and
Recognition

Editors

Jukka Heikkonen
Fahimeh Farahnakian

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Jukka Heikkonen

Computing

University of Turku

Turku

Finland

Fahimeh Farahnakian

Computing

University of Turku

Turku

Finland

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Remote Sensing (ISSN 2072-4292) (available at: www.mdpi.com/journal/remotesensing/special

issues/application multi-sensor fusion technology target detection recognition).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-1352-2 (Hbk)

ISBN 978-3-0365-1351-5 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

www.mdpi.com/journal/remotesensing/special_issues/application_multi-sensor_fusion_technology_target_detection_recognition
www.mdpi.com/journal/remotesensing/special_issues/application_multi-sensor_fusion_technology_target_detection_recognition


Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Application of Multi-Sensor Fusion Technology in Target Detection and
Recognition” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Fahimeh Farahnakian and Jukka Heikkonen
Deep Learning Based Multi-Modal Fusion Architectures for Maritime Vessel Detection
Reprinted from: Remote Sensing 2020, 12, 2509, doi:10.3390/rs12162509 . . . . . . . . . . . . . . . 1

Bogdan Iancu, Valentin Soloviev, Luca Zelioli and Johan Lilius
ABOships—An Inshore and Offshore Maritime Vessel Detection Dataset with Precise
Annotations
Reprinted from: Remote Sensing 2021, 13, 988, doi:10.3390/rs13050988 . . . . . . . . . . . . . . . . 19

Jose Villa, Jussi Aaltonen, Sauli Virta and Kari T. Koskinen
A Co-Operative Autonomous Offshore System for Target Detection Using Multi-Sensor
Technology
Reprinted from: Remote Sensing 2020, 12, 4106, doi:10.3390/rs12244106 . . . . . . . . . . . . . . . 37

Agathe Puissant, Roy El Hourany, Anastase Alexandre Charantonis, Chris Bowler and Sylvie
Thiria
Inversion of Phytoplankton Pigment Vertical Profiles from Satellite Data Using Machine
Learning
Reprinted from: Remote Sensing 2021, 13, 1445, doi:10.3390/rs13081445 . . . . . . . . . . . . . . . 61

Md Nazrul Islam, Murat Tahtali and Mark Pickering
Specular Reflection Detection and Inpainting in Transparent Object through MSPLFI
Reprinted from: Remote Sensing 2021, 13, 455, doi:10.3390/rs13030455 . . . . . . . . . . . . . . . . 81

Mostafa Mansour, Pavel Davidson, Oleg Stepanov and Robert Piché
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Abstract: Object detection is a fundamental computer vision task for many real-world applications.
In the maritime environment, this task is challenging due to varying light, view distances,
weather conditions, and sea waves. In addition, light reflection, camera motion and illumination
changes may cause to false detections. To address this challenge, we present three fusion architectures
to fuse two imaging modalities: visible and infrared. These architectures can provide complementary
information from two modalities in different levels: pixel-level, feature-level, and decision-level.
They employed deep learning for performing fusion and detection. We investigate the performance
of the proposed architectures conducting a real marine image dataset, which is captured by color
and infrared cameras on-board a vessel in the Finnish archipelago. The cameras are employed for
developing autonomous ships, and collect data in a range of operation and climatic conditions.
Experiments show that feature-level fusion architecture outperforms the state-of-the-art other fusion
level architectures.

Keywords: multi-sensor fusion; object detection; deep learning; convolutional neural networks;
autonomous vehicles; marine environment

1. Introduction

Object detection is a crucial problem for autonomous vehicles and has been studied for years to
make it efficient and faster. A reliable autonomous driving system relies on accurate object detection
for providing robust perception of the environment. In addition, the performance of subsequent
tasks such as object classification and tracking depend strongly on the object detection. In marine
environment, object detection is a challenging problem due to varying light, view distances, weather
conditions, and dynamic sea nature. In addition, light reflection, camera motion and illumination
changes may cause false detections [1].

Multi-sensor fusion technology is a promising solution for achieving accurate object detection by
obtaining the complementary properties of objects based on multiple sensors. The multi-sensor fusion
architectures are generally classified into three groups that are based on the level of data abstraction
used for fusion [2]. (1) Early fusion, also called pixel-level fusion, combines raw data from the sensors
before applying any information extraction strategies. (2) Middle fusion, also called feature-level
fusion, fuses the extracted features from each raw sensor data and then performs detection on the
fused data. (3) Late fusion, also called decision-level fusion, independently performs detection from
each sensor and the outputs of each sensor are fused at the decision level for final detection.

Among the combination of sensor types, InfRared (IR) and visible (RGB) image fusion is superior
in many aspects [3]. Firstly, image sensors are cheap when compared in other sensors, such as
radar and LiDAR (Light Detection And Ranging). Secondly, collecting and annotating image data is
much easier than LiDAR point clouds. Thirdly, IR and RGB images share complementary properties,
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thus producing robust and informative fused images. Finally, RGB images typically have high spatial
resolution and considerable detail when compared to the images that obtained from other sensors.
However, these images can be easily influenced by severe conditions, such as poor illumination, fog,
and other effects of bad weather. Meanwhile, the thermal IR cameras capture relative temperature,
which allows for distinguishing warm objects, like person from cold objects, like navigation buoy or
the island. Moreover, IR cameras can improve navigation safety at night/day time and all-weather
conditions by determining interest objects based on radiation difference [1–3].

Convolutional Neural Networks (CNNs) or ConvNet allowed for a significant improvement
in the performance of computer vision tasks, such as object classification [4], detection [5,6],
and segmentation [7]. Moreover, various fusion approaches have been employed CNN in autonomous
vehicles [1,8,9]. While the majority of these approaches has focused on RGB images, some of them
have also been directed using infrared images for object detection. We use CNN for addressing the
object detection problem in marine environment to fill this gap and by the fact that CNN is a very
powerful model for computer vision tasks.

In this work, we present three early, middle and late fusion CNN architectures to carry out
vessel detection in marine environment. These architectures can fuse the images from the visible and
thermal infrared cameras at the different levels of data abstraction. In addition, these architectures
employed a deep CNN as a detector to generate bounding box proposals for interest vessels in
marine environment. We did not take into consideration any semantic segmentation algorithms in
this study. The CNN is trained on data from a single sensor or two used sensors according to the
proposed fusion strategies. On the other hand, we investigate the training of uni-modal architectures
as well as multi-modal architectures. We also evaluated the proposed fusion architectures on a real
marine dataset that was collected by a vessel in the Finnish archipelago. The data represents images
which are captured by RGB and IR cameras in different marine environmental conditions (i.e., weather
conditions, light conditions, daytime/nighttime). To the best of our knowledge, no work has been done
on studying the effectiveness of three different levels of fusion in marine environment. To summarize,
the main contributions of this paper are in three-fold:

• We collect two carefully annotated maritime datasests in diverse environmental conditions and
dynamic ranges.

• We present three multi-modal CNN-based architectures to fuse RGB and IR images for achieving
robust vessel detection in marine environments.

• We investigate the effect of three deep learning-based and four traditional image fusion methods
in the proposed middle fusion architecture.

• We evaluate the performance of the proposed architectures. The effectiveness of the fusing of two
modalities against one modality is investigated.

The remainder of the work is organized, as follows. Section 2 discusses some of the most
important related works. The proposed architectures are presented in Sections 3–5. Sections 6 and 7
show the experimental setup and results of our implementations, respectively. Finally, we present our
conclusions in Section 8.

2. Related Work

In this section, we briefly review the related work on infrared and visible image fusion and object
detection using CNN. In addition, the vessel detection for maritime is also discussed.

CNNs for fusion: many image fusion techniques have been developed in recent years. The main
idea of these techniques is obtaining salient features from input images and then combining them for
generating a fused image [10]. Deep Learning (DL) is one of the widely-used approaches that has
recently been used by theses techniques, since it can explore the features from the data efficiently [8].
It is able to obtain features from input images and then reconstruct a fused images with more details.

Multi-Scale CNN (MS-CNN) is one of these techniques that uses DL for performing pixel-level
image fusion. It uses a proposal sub-network to perform target detection at multiple output layers,
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so that receptive fields match objects of different scales. These complementary scale-specific detectors
are combined in order to create a strong multi-scale object detector. In [9], a middle fusion approach is
proposed for fusing LiDAR and RGB data in order to classify objects in autonomous vehicle application.
This approach first converts LiDAR point cloud data into depth map and then fed the data to a CNN
for object classification. In a similar work [11], the dense depth map from LiDAR data and color
imagery are fused for pedestrian detection while using CNN. Their results show that fusing LiDAR
can improve the detection results. In another work, a DL-based fusion method [10] is presented to
generate a fused image containing whole features from two sources IR and RGB images. We will
describe the details of this method in Section 4.1.

DenseFuse [8] is another well-known DL-based fusion architecture for extracting and preserving
most of the deep features of both RGB and IR images in a middle fusion fashion. In [1], a late fusion
method is proposed based on the Probabilistic Data Association (PDA) [12] in order to produce object
region proposals by fusing detection results from RGB, IR, radar and LiDAR. Then, a CNN is applied
on the top of region proposals for classifying the interest objects within the regions. DyFusion [13] is a
decision level fusion for maritime vessel classification. It first uses a CNN to generate the probabilities
over maritime vessel classes for each input sensor. Subsequently, a fusion part updates the sensor
probabilities by considering the contextual data.

PointFusion [14] leverages both image and three-dimensional (3D) point cloud data based on a late
fusion architecture to perform target detection. The image data and point cloud data are independently
processed by a CNN and then their results are combined to estimate object bounding boxes from
image and point cloud data. The main contribution of PointFusion is using using heterogeneous
network architectures. Moreover, the raw point cloud data is directly handled using a PointNet model,
which avoids time consuming input pre-process such as quantization or projection.

CNNs for object detection: CNN were recently used in the development of object detection,
as they are capable exploiting unknown structures in training data for discovering good
representations [15]. The CNN-based object detectors are divided into two categories: two-stage
detectors and one-stage detectors. Two-stage detectors employ an external module for generating
interest object region proposals and their speed usually slower than one-stage detectors. In contrast,
one-stage object detectors integrate region proposition and classification into one single stage. However,
two-stage detectors usually have higher detection accuracy when compared to the one-stage detectors.
Popular two-stage detectors include R-CNN [16], Fast/Faster R-CNN [17,18], and R-FCN [19].
Between one-stage detectors, SSD [20] and YOLO [21] are most common.

Region-based Convolutional Neural Network (R-CNN) [16], which leads to substantial gains in
object detection accuracy. R-CNN first identifies region proposals and then classifies these regions
into object categories or background using a CNN. One disadvantage of R-CNN is that it performs
exhaustive search and proposes large number of regions from an image. Therefore, RCNN leads
to time-consuming and energy-inefficient computation. The extension version of R-CNN is Fast
R-CNN [17] which uses CNN to generate feature map straight from the input image instead of regions.
Both R-CNN and Fast R-CNN use selective search for obtaining the region proposals. In order to reduce
running time of Fast R-CNN, Faster R-CNN [18] omits the selective search method for generating
object region proposals. Instead of using selective search, Faster R-CNN identifies the regions by using
a separate network.

Maritime vessel detection: A few studies utilized object detection algorithms from waterborne
images beyond maritime vessel detection from spaceborne imagery [22]. Some of these works have
focused on classifying the interest objects from the background [23], others employed the Histogram of
Oriented Gradients (HOG) approach using sliding-windows [24]. Recently, CNNs have been used for
seaborne vessel detection. However, developing more new dataset and applications are necessary for
autonomous maritime navigation. For instance, the Singapore Maritime Dataset is used in [25] for ship
detection under a new proposed model, YOLO [21]. In [26], a contextual region-based convolutional
neural network with multi-layer fusion is proposed for ship detection. It consists of a region proposal
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network (RPN) and an object detection network with contextual features. Their results show that the
additional contextual features provide more information for detection. However, this method can not
detect small objects efficiently. In [27], an approach based on selective search is presented in order to
extract the initial region proposals from RGB images. Subsequently, the initial proposals are filtered
using the information from other sensors in order to find more dense proposals. Finally, a CNN is
employed to identify the class of objects within the final proposals. The results are collected based on
the marine data that were collected for the Advanced Autonomous Waterborne Applications Initiative
(AAWA) project [28].

In [29], another novel dataset, SeaShips, consisting of a collection of in-shore and offshore ship
images is introduced. Moreover, they used three object detectors (Faster R-CNN [18], SSD [20],
and YOLO [21]) for detecting maritime vessels. In [30], a maritime vessel image dataset from a Vessel
Tracking System (VST) is collected. This dataset contains authentic situations from traffic management
operators. In addition, they proposed a SSD detector in order to identify vessels.

3. The Proposed Early Fusion Architecture

In this architecture, fusion happens at a very low abstraction level. As shown in Figure 1, the early
fusion architecture concatenates RGB and IR images and produces a tensor with four channels (three
channels from RGB and one channel from IR). This four-channel tensor is used as an input for a
detector network. The intuition behind this is simple, since the features of the concatenated image
should contain both information from RGB and IR. The detector produces Bounding Boxes (BBs) from
the feature maps to localize the vessels. The localization is determined with a box that the top-left
corner’s coordinate (x1, y1) and bottom-right corner’s coordinate (x2, y2). Moreover, each bounding
box is associated with a confidence score s, which indicates how likely does the bounding box contain a
vessel. The bounding boxes with the highest confidence are kept in order to filter by a Non-Maximum
Suppression (NMS). NMS is a popular post-processing method in object detection methods [5,18] for
filtering redundant bounding boxes and obtaining final detections.

Input RGB and IR imageS 
(4 channels input )

Detector

(A)

(B) (C)

Output image
BBs, scores, labels

Vessel:0.89
Vessel:0.91Vessel:0.39

Figure 1. An overview of the proposed early fusion architecture. (A) The 3-channel RGB input image
and 1-channel IR image are concatenated. (B) Subsequently, the produced four-channel input data
is processed by a detector in order to robustly detect vessels. (C) The output image consists of the
predicted BBs and corresponding scores and labels.
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4. The Proposed Middle Fusion Architecture

The middle fusion architecture consists of two layers, as illustrated in Figure 2. The first layer is a
fuse layer that combines the information given by two RGB and IR cameras and constructs a fused
image (Figure 2C). The fused image represents the thermal radiation information in infrared images
and detailed texture information in visible images. Afterwards, a detector layer (Figure 2D) performs
detection on the fused image in order to generate the object bounding box proposals.

Input RGB image

Input IR image

Detector

(A)

(B)

(C) (D)

Output image

BBs, scores, labels

Vessel:0.81
Vessel:067

(E)

Fused image

Figure 2. An overview of the proposed middle fusion architecture. The original input images (A,B) are
fused using by an image fusion method in order to provide complementary information for object
detection. (C) The image fusion method can be one of the mentioned method in Sections 4.1–4.7.
(D) Subsequently, the fused image is processed by a detector in order to detect and localize marine
vessels. (E) The output image localizes the detected vessels with the corresponded scores and labels.

To generate the fused image in the fuse layer, we employed three DL-based image fusion methods
(see Sections 4.1–4.3) and four traditional image fusion methods (see Sections 4.4–4.7). Here, we briefly
review the tested image fusion methods, three DL and four traditional, which were evaluated in this
work. The DL-based methods include: deep learning framework based on VGG19 and Multi-Layer
(VGG-ML) [10], DenseFuse [8], and ResNet and Zero-phase Component Analysis-based method
(ResNet-ZCA) [31]. The traditional fusion algorithms are categorized into two main groups: Multi-Scale
Decomposition (MSD)-based methods [32] and Sparse Representation (SR)-based methods [33,34]
according to the the fusion strategies. The MSD-based methods usually use different transform
functions: pyramidal and discrete wavelet. The SR-based methods calculate the activity level of input
images in a sparse domain. In this work, we utilized the weighted least square [32] as a MSD-based
method and convolutional sparse representation [35] as a common SR-based method.

4.1. Deep Learning Framework Based on VGG19 and Multi-Layers

Deep learning framework based on VGG19 and Multi-layer (VGG-ML) [10] can combine the
features from two source IR and RGB images and generate a fused image. For this purpose, the source
images are firstly decomposed into base and details parts using the image decomposition method [36].
The base part of each source image contains the common features and redundant information and
obtains it by the average filter. The details part represents the detail contents of source images and
it produces by subtracting the base part from the source image. The base parts of both images are
then fused by a weighted average strategy. For the detail parts, a pre-trained VGG19 network [37]
obtains deep features from source images. Finally, the base and detail parts are added for creating a
final output fused image.
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4.2. DenseFuse

DenseFuse [8] is a deep network including three elements: encoder, fusion, and decoder.
For testing the network, the encoder first extracts and preserves most deep features of both input RGB
and IR images using DenseBlock [38] architecture. DenseBlock contains three cascaded convolutional
layers. Subsequently, the fusion layer uses either additional fusion [38] or l1-norm fusion strategy for
fusing the extracted features maps from both source images. Finally, the three convolutional-layered
decoders receive the fused feature maps in order to create a fused image. For training the network,
only encoder and decoder are employed to reconstruct the training images and fix weights of the
network. In order to reconstruct the images, DenseFuse aims to reduce the λ weighted combination of
pixel and structural similarity losses.

4.3. ResNet and Zero-Phase Component Analysis-Based Fusion

ResNet and Zero-Phase Component Analysis-based (ResNet-ZCA) method [31] has shown to be
an efficient method for image fusion. Firstly, it employs ResNet [39] for extracting deep features from
source images. Subsequently, ZCA [40] and l1-norm are used in order to project deep features into
sparse domain. The initial weight maps are obtained by l1-norm. Finally, a bicubic interpolation is
used to resize the initial weight maps to source image size. The final weight maps are generated by
soft-max and the fusion image is reconstructed by final weight maps and source images.

4.4. Visual Saliency Map and Weighted Least Square

Visual Saliency Map and Weighted Least Square (VSM-WLS) [32] is a multi-scale fusion method
that is based on WLS optimization and VSM. To perform Multi-Scale Decomposition (MSD), it first
employs the rolling guidance filter [41] and Gaussian filter and decomposes both source IR and
RGB images into base and detail parts. Afterwards, the fusion of base parts is carried by using a
weighted average technique in order to enhance the fused image contrast. For fusing the detail parts,
WLS optimization is used. Finally, inverse MSD is employed on the fused base and details parts to
construct the output fused image.

4.5. Cross Bilateral Filter

Cross Bilateral Filtering (CBF) [42] is a non-iterative and local nonlinear method that combines
an edge-stopping function with a low-pass filter for reducing the filter effect wherever the intensity
between neighbouring pixels is large. It can filter the images while preserving the edges. Initially, CBF is
applied to both RGB and IR source images to extract the base images. Subsequently, the detailed images
are obtained by subtracting the base images from the original IR and RGB images. Finally, the fused
image is obtained by multiplying the weights with input images, followed by a weight normalization.

4.6. Convolutional Sparse Representation

Convolutional Sparse Representation (ConvSR) [35] address the problem of SR-based image
fusion methods by considering a global approach that aims the SR-based image fusion of the whole
image rather than of local image patch windows. The global approach enhances the detail preservation
and model sensitivity regarding mis-registration. ConvSR consists of hierarchical layers, where each
layer includes an image decomposition to divide the input images into base and detail parts. The detail
parts are combined using a choose-max strategy. An averaging strategy is applied in order to fuse the
base parts and built the fused coefficient maps. The output fused image is built by combining the base
and detailed layers.

4.7. Guided Filtering Based Fusion Method

Guided Filtering based Fusion (GFF) [36] method can generate a highly informative fused image
based on a two-scale decomposition strategy. This strategy produces base and detail layers containing
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large scale variations in intensity and small scale details, respectively. Finally, a guided filtering-based
weighted average technique is employed in order to make full use of spatial consistency for fusion of
the base and detail layers.

Input RGB image

Input IR image

Detector1

NMS

O RGB 

O IR

+ O RGB+IR

(A)

(B)

(C)

(D)

Detector2

Output image

BBs, scores, labels

Vessel:0.63
Vessel:0.96

Vessel:0.87

(E)

Figure 3. An overview of the proposed late fusion architecture. (A) The input RGB image and (B) IR
image are feed into the Detector1 and Detector2, respectively. (C) These detectors independently
extract features from the corresponding input image. (D) The architecture concatenates outputs
of detectors (ORGB,OIR), and then a final set of object proposals is obtained after none-maximum
suppression. (E) The final output containing predicted BBs, which are associated with a category label
and a confidence score.

5. The Proposed Late Fusion Architecture

Figure 3 demonstrates the proposed late fusion architecture. The late fusion architecture first
combines the detection results from two detectors. These two detectors have similar architecture.
One detector takes a RGB image as input and the other one takes the corresponding IR image as
input. To be more specific, a separate detector is utilized in order to process each input camera
image independently and extracts feature from the image. This process involves the estimation of the
bounding box proposals, which indicate the objects’ localization in the image. Subsequently, the output
bounding boxes of two detectors (ORGB,OIR) are concatenated to explicitly capture complementary
information of RGB and IR. In this case, fusion happens at the decision level. After that, the following
steps are applied on the all boxes (ORGB + OIR) in order to generate final boxes and remove redundant
detections, as follows:

1. It first discards all those predicted boxes which the score value is lower than 0.6. Subsequently,
it assumes the box with the largest score value among the remaining candidate as the accurate
predicted box bbest (Figure4A).

2. Finally, it removes any remaining boxes that the Intersection over Union (IoU) is lower than α

with bbest (Figure4B). Each box bi is assumed as a final box if it is overlapped by the bbest, according
to the following function:

f (bi, bbest) =

{
0, if IoU < α

1, if IoU >= α
(1)

where α is Intersection of Unit (IoU) threshold between two bounding boxes and it is determined
experimentally. Based on a series of preliminary experiments, we got the best performance with
α = 0.5. IoU is intersection of two boxes divided by their union.
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IoU(bi, bbest) =
Sbi

⋂
Sbbest

Sbi

⋃
Sbbest

(2)

where Sb represents the area of bounding box b.

Ground-truth

Detction by RGB-based detector

Detction by IR-based detector

S=0.86

S=0.62

S=0.86(pbest)

IoU=0.71

S=0.62

IoU=0.12
S=0.22

S=0.16

(A)

S=0.86(pbest)

IoU=0.71

(B)

Figure 4. An example of applying NMS in the proposed late fusion architecture: (A) the predicted BBs
which their score is lower than 0.6 are removed and then (B) each box between the remaining boxes is
assumed as an output box if IoU between ground truth BB and predicted BB is more or equal than 0.5.

6. Experimental Setup

6.1. Datasets

We collect a real marine dataset by a vessel in Finnish archipelago for evaluating our proposed
fusion architectures. The dataset is recorded by two sensors continuously, providing data from various
environmental and geographical scenarios. This sensor system includes RGB (visible spectrum) and IR
(thermal) camera arrays, providing output that can be synchronized and stitched to form panoramic
images. The individual visible cameras have full HD resolution while the thermal cameras have
VGA resolution. Both camera types have a horizontal field of view of approximately 35 degrees.
For image alignment in this sensor set, the registration parameters are manually determined by
finding corresponding features in calibration images and minimizing alignment mismatch. Therefore,
our dataset contains well-aligned IR/RGB images. The images were sampled one frame per second in
and stored in MPEG format. The images show maritime scenarios under different illumination
conditions with various marine vessels. We manually annotated all vessels (passenger vessel,
motorboat, sailboat, or docked vessel) within each RGB sequence with a bounding box as accurately
as possible. However, all of the vessels have a general label “Vessel” in our datatset. The bounding
box should contain all pixels that belong to that object and, at the same time, be as tight as possible.
In addition, two different scenarios are proposed in order to evaluate the proposed architectures in
different light condition, time imaging and location.

Scenario1: the training dataset is collected by two visible and infrared cameras at daytime. In this
scenario, the training dataset consists of 7250 pairs of well-aligned multispectral images captured by
cameras. For evaluation, a separate test dataset is gathered in the same light and weather condition
contains 1750 RGB/IR pair images. Figure 5a demonstrates a sample of RGB images and corresponding
IR in this scenario. The number of vessels in the training and test datasets is determined in Table 1.

Scenario2: RGB and IR images are collected by a vessel operating near the harbour at nigh
time. This data represent a challenging data (dark and oversaturated areas) in marine environment.
The source videos for generating training and test images are different. The training and test datasets
consist of 2250 and 1000 pair RGB/IR images, respectively. Table 1 shows the number of vessels in each
dataset. Furthermore, Figure 5b illustrates an IR/RGB pair of a sample of our data in this scenario.

The original size of all images is 3240 × 944 pixels for both scenarios. To reduce the computation
time, we re-sized the original images into 1200 × 400 pixels.
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Table 1. Number of vessels in our training and testing marine datasets for each Scenario.

Scenario Dataset Number of Vessel

1 (daytime) Training 46,890
Test 15,312

2 (nightime) Training 5000
Test 3500

R
G

B
IR

(a) Day time (b) Night time

Figure 5. Example of RGB and InfRared (IR) pair images in the real maritime dataset at (a) Scenario1
and (b) Scenario2.

6.2. Implementation Details

Here, we give more information regarding the method parameters. The parameter setting of
the proposed (1) image fusion methods in the middle architecture and (2) CNN-based detector in all
architectures are as follows:

Image fusion methods: we selected all parameters of the image fusion methods based on the
existing works which are described in Section 4. VGG-ML fuses the detailes parts by using VGG-19 [37]
with four relu layers. The weight values for pixel in two base part images α1 = 0.5 and α2 = 0.5
in VGG-ML. DenseFuse is pre-trained on MS-COCO [43] and utilizes two methodologies for fusion:
addition and l1-norm. DenseFuse achieves the minimum pixel and structural similarity losses when λ

is 100. For ResNet-ZCA, we used ResNet50 with l1-norm. ResNet50 is pre-trained by ImageNet [44].
In VSM-WLS, the initial spatial weight, σs, is 2. The number of decomposition levels N is 4 and
λ = 0.01. CBF uses the neighborhood kernel with 11 × 11 size, as it can achieve good enough fusion
results [42]. The value of σs and σr are 1.8 and 25, respectively. Moreover, the parameter λ is fixed at
0.01 in ConvSR. In the GFF experiment, the parameters of the guided filter are set as r1 = 45, ε1 = 0.3,
r2 = 7 and ε2 = 10−6. All of the image fusion methods require the grayscale images transformed from
the input RGB images except DenseFuse and VSM-WLS, .

CNN-based detectors: we use Faster R-CNN as a detector in all proposed architectures. The CNN
parameter are chosen based on several experimental results. Faster R-CNN is trained for 900 k
iterations with a learning rate of 0.0003 and then 1200k iterarions with a learning rate of 0.000003.
We use 4 sub-octave scales (0.25, 0.5, 1.0, 2.0) and three aspect ratios [0.5, 1.0, 2.0] mainly motivated by
handling small objects on this dataset.

Since Microsoft COCO dataset [43] consists of 3146 images of marine vessels, the Faster R-CNN
is pre-trained on it to learn more good feature representation. Subsequently, the model is fine-tuned
on our data. We utilize different source videos to train and test architectures. These fixed parameter
setting can obtain good results for our experiments done in this work.
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7. Experimental Results

In this work, three multi-modal architectures were considered for vessel detection: early fusion,
middle fusion, and late fusion. In addition, two uni-modal architectures are proposed, which utilized
RGB or IR camera images. We have done three experiments: (1) evaluation of seven image fusion
methods in the middle fusion architecture, (2) evaluation of all fusion architectures, and (3) a visual
comparison between all architectures in each scenario.

7.1. Comparison of Image Fusion Methods

In the propose middle fusion architecture, an image fusion method is first employed to combine
source RGB and IR images and produce a fused image (see Sections 4.1–4.7). Subsequently, a CNN is
applied on the obtained fused image for detection. Therefore, the image fusion method provides an
essential functionality in our proposed middle fusion architecture. For this reason, we first evaluated
the performance of three DL-based image fusion methods and four traditional methods. The details
of our experiment are introduced in Section 6.2. These methods are compared with six common
assessment metrics to conduct qualitative and quantitative experiments. These metrics include:

1. Structural SIMilarity (SSIM) [45] is an objective image quality metric to obtain contrast, structure,
and illuminates between the source image and fused image.

2. Feature Mutual Information (FMI) [46] is a quality metric for calculating the mutual information
between source and fused images. Here, wavelet (FMIw) and discrete cosine (FMIdct) features
are used for measuring the amount of information conducted from source images to fused image.

3. Entropy (EN) measures the amount of information presented in the fused image on the basis of
information theory [47]. The better fusion results have minimum entropy value.

4. Quality (QAB/F) [48] metric represents the visual information that is associated with the edge
information. It computes the amount of edge preservation from input images (A and B) to the
fused image (F) using edge strength and orientation.

5. Noise (NAB/F) is a fusion artifacts metric introduced by [49] which calculates the amount of
added noise or artifacts in the fused image (F) from two input images (A and B).

6. Sum of the Correlations of Differences (SCD) metric [50] measures the complementary information
transferred from the input images to the fused image.

Figures 6 and 7 demonstrate the average values of performance metrics for whole test dataset
in two scenarios. In Scenario1 (Figure 6), the results show that DL-based fusion methods perform
better than traditional methods with the larger values of FMIw, FMIdct, and SSIM. The reason is these
methods (VGG-ML, DenseFuse, and ResNet-ZCA) can extract more structural and rich features that
are based on their DL architectures. Between these DL-based methods, ResNet-ZCA has the highest
value of FMIw, FMIdct, and SSIM. However, DenseFuse provide more natural results and contain
less artificial noise as it has the minimum values of NAB/F, QAB/F, EN and SCD. Between traditional
methods, GFF can achieve more complementary information in the fused image, since it has the
maximum value of FMIw, FMIdct, and SSIM.

Figure 7 shows the average values of six quality metrics for Scenario2. We can observe that
DL-based method is roughly more natural and less noise than other traditional methods. Furthermore,
the results represent DenseFuse can generate the fused image with less artificial information and noise
as the value of NAB/F is low. However, ResNet-ZCA provide more structural information and features,
as it has the highest value of FMIw, FMIdct, and SSIM. GFF performs betters than other traditional
image fusion methods in terms of FMIw, FMIdct, and SSIM. This is because GFF can effectively keep
the contrast in the fused image.
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Figure 6. The average values of six quality metrics for test images obtained by the deep and traditional
methods in Scenario1.

Figure 7. The average values of six quality metrics for test fused images obtained by the deep and
traditional methods in Scenario2.

Moreover, we performed a visual comparison between all image fusion methods for an example
test image in each scenario. In the scenario1, the obtained fused image by DL-based method contains
more frequency details and edge preservation (Figure 8A–D). The fused image that is generated by
VSM-WLS, CBF, ConvSR, and GFF includes more artificial noise and their saliency features are not clear.
CBF and ConvSR produce the fused images with more artifacts as well. On the contrary, the fused
images obtained by VGG-Ml, DenseFuse, ResNet-ZCA and VSM-WLS look more natural and less
noise. Generally, the obtained results of these DL-based methods are roughly more clear than other
traditional methods in Scenario1.

Figure 9 shows the fused image obtained by DL and traditional image fusion methods in the
Scenario2. From the Figure 9A–E, it is observed that VGG-Ml, DenseFuse, ResNet-ZCA, and VSM-WLS
provide a more pleasing image with clear texture details. From the red box (part of a land), it is observed
the fused image by VGG-Ml contains less noise, and details are more clearer than other image fusion
methods. In contrast, CBF, ConvSR, and GFF (Figure 9F–H) produce results with more noise, color
distortion and contrast loss.
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Figure 8. Qualitative results of the fused image in Scenario1 by (A) VGG-ML, (B) DenseFuse-add,
(C) DenseFuse-l1, (D) ResNet-ZCA, (E) VSM-WLS, (F) CBF, (G) ConvSR, and (H) GFF on the original
RGB and IR images.

Figure 9. Qualitative results of the fused image in Scenario2 by (A) VGG-ML, (B) DenseFuse-add,
(C) DenseFuse-l1, (D) ResNet-ZCA, (E) VSM-WLS, (F) CBF, (G) ConvSR, and (H) GFF on the original
RGB and IR images.

Processing Time: Table 2 shows the running time (second) of all image fusion methods for one
image. The tested system specification is: Intel(R) Core(TM) i7-4702MQ CPU @ 2.20 GHz×8 CPU
with 15.4 GB RAM. The running time for obtaining the fused image by ResNet-ZCA is 4.9 s per image.
ResNet-ZCA has the minimum time between DL-based methods. In addition, GFF can generate a
fused image in 0.4 s that is lower than ResNet-ZCA.
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Table 2. The running time (seconds) of the deep and traditional image fusion methods for one image.

VGG-ML DenseFuse(add,le2) DenseFuse(l1,le2) ResNet-ZCA VSM-WLS CBF ConvSR GFF

10.1 12.4 13.1 4.9 6.6 38.7 175.35 0.4

7.2. Multi-Modal Architectures vs. Vni-Modal Architectures

We compared the fusion architectures for the test dataset in terms of Average Precision (AP) as a
main detection accuracy metrics. For this purpose, we measured the IoU of detected bounding boxes
and matching those from ground truth annotations. A detected bounding box result is counted as a
true positive if the IoU with a ground truth one exceeds 50%. Unmatched detected bounding boxes are
counted as false positives and unmatched ground truth ones are counted as false negatives.

Table 3 shows that AP for the proposed architectures in each scenario. The best results are
highlighted in bold. This results show the effect of the fusion on the object detection performance, as we
compared uni-modal and multi-modal architectures. It is observed from the result, the multi-modal
middle architecture generates reliable detection results (bold font in Table 3) for both scenarios
(scenario1:79.1% and scenario2:61.6%), as it can provide complementary information when compared
with the uni-modal architectures. However, the performance can be improved when the dataset
contains more bigger targets. Our dataset consists of large amount of small targets which occupying
areas lower than 16 by 16 pixels. Detecting very small objects with a few pixels is still challenging
because of less information being associated with them.

In addition, the results show that uni-modal RGB-based architecture can provide higher accuracy
in comparison with uni-modal IR-based architecture. For instance, the accuracy of uni-modal
RGB-based architecture is 9.0% and 9.7% more than the uni-modal IR-based architecture for scenario1
and 2, respectively. This is because it can learn richer features from color images than infrared images.
Moreover, the results show that DenseFuse totally have higher accuracy in comparison with other
middle-fusion architectures.

Table 3. Average Precision (AP) (in %) on the test dataset of two scenarios.

Architecture Input Images Fusion Scenario1 Scenario2

Uni-modal RGB - 63.8 51.5

Uni-modal IR - 54.5 41.8

Multi-modal early fusion RGB + IR 4 channels 66.7 58.4

Multi-modal middle fusion RGB + IR

VGG-ML 75.4 55.9
DenseFuse (add,le2) 77.3 57.8
DenseFuse (l1,le2) 79.1 61.6

ResNet-ZCA 73.1 59.6
VSM-WLS 67.3 55.4

CBF 63.9 49.8
ConvSR 62.7 49.5

GFF 68.4 60.7

Multi-modal late fusion RGB + IR NMS 60.7 57.2

7.3. Qualitative Results

Figure 10 demonstrates an examples of the detection results from the visible-only architecture,
infrared-only architecture and multi-modal architectures in each scenario (day-time and night-time).
We observe that the proposed fusion architectures is better at the detection of objects than the uni-modal
architectures. Note that, because the fusion architectures can integrate information from both color
and infrared images. The fusion architectures successfully detected the size/location of the bounding
boxes. In the third row, our middle- fusion architecture has detected marine vessels that other
architectures have missed. Moreover, the middle-fusion architecture is able to detect small objects
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with a few pixels as shown in Figure 10 and many of them are detected by our framework. It shows
the generalisation capability of the proposed middle-fusion architecture and indicates its potentials in
executing two-dimensional (2D) object detection in real situations beyond a pre-designed dataset.
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Figure 10. Qualitative vessel detection results for (A) Scenario1 and (B) Scenario2 based on uni-modal
based on RGB, uni-modal based on IR, multi-modal early fusion, multi-modal middle fusion,
and multi-modal late fusion architectures. The ground truth bounding boxes are shown as green
rectangles. Predicted boxes by the architectures are depicted as red bounding boxes. Each output box
is associated with a category label and a score value in [0, 1].

8. Conclusions

In this paper, we proposed three image fusion architectures for vessel detection in marine
environments. The architectures can combine the thermal radiation information on infrared images and
the texture detail information on visible images. They also utilized a simple fast CNN, Faster R-CNN,
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in order to carry out the final detection task. The evaluation on our real marine dataset show that the
proposed middle-fusion architecture is able to detect the vessel at the state of the art accuracy.

For future work, we plan to improve the detection network of these architectures in order to
address the detection problem of very small objects (less than 16 by 16 pixels) in our data. We will
investigate the effect of using transfer learning and domain-specific data on the detection performance.
We also plan to extend our fusion framework by considering other common sensors in autonomous
vessels, such as LiDAR and radar, besides IR and RGB cameras.
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Abstract: Availability of domain-specific datasets is an essential problem in object detection. Datasets
of inshore and offshore maritime vessels are no exception, with a limited number of studies addressing
maritime vessel detection on such datasets. For that reason, we collected a dataset consisting of
images of maritime vessels taking into account different factors: background variation, atmospheric
conditions, illumination, visible proportion, occlusion and scale variation. Vessel instances (including
nine types of vessels), seamarks and miscellaneous floaters were precisely annotated: we employed
a first round of labelling and we subsequently used the CSRT tracker to trace inconsistencies and
relabel inadequate label instances. Moreover, we evaluated the out-of-the-box performance of four
prevalent object detection algorithms (Faster R-CNN, R-FCN, SSD and EfficientDet). The algorithms
were previously trained on the Microsoft COCO dataset. We compared their accuracy based on
feature extractor and object size. Our experiments showed that Faster R-CNN with Inception-Resnet
v2 outperforms the other algorithms, except in the large object category where EfficientDet surpasses
the latter.

Keywords: maritime vessel dataset; ship detection; object detection; convolutional neural network;
deep learning; autonomous marine navigation

1. Introduction

Maritime vessel detection from waterborne images is a crucial aspect in various
fields involving maritime traffic supervision and management, marine surveillance and
navigation safety. Prevailing ship detection techniques exploit either remote sensing images
or radar images, which can hinder the performance of real-time applications [1]. Satellites
can provide near real-time information, but satellite image acquisition, however, can be
unpredictable, since it is challenging to determine which satellite sensors can provide the
relevant imagery in a narrow collection window [2]. Hence, seaborne visual imagery can
tremendously help in essential tasks both in civilian and military applications, since it can
be collected in real-time from surveillance videos, for instance.

Ship detection in a traditional setting depends extensively on human monitoring,
which is highly expensive and unproductive. Moreover, the complexity of the maritime
environment makes it difficult for humans to focus on video footage for prolonged periods
of time [3]. Machine vision, however, can take the strain from human resources and provide
solutions for ship detection. Traditional methods based on feature extraction and image
classification, involving background subtraction and foreground detection, as well as
directional gradient histograms, are highly affected by datasets exhibiting challenging
environmental factors (glare, fog, clouds, high waves, rain etc.), background noise or
lighting conditions.

Convolutional neural networks (CNNs) contributed massively to the image classifica-
tion and object detection tasks in the past years [4–8]. They incorporate feature extractors
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and classifiers in multilayer architectures, whose number of layers regulate their selective-
ness and feature invariance. CNNs exploit convolutional and pooling layers extracting local
features, and gradually advancing object representation from simple features to complex
structures, across multiple layers. CNN-based detectors can subtract compelling distin-
guishable features automatically unlike more traditional methods which use predefined
features, manually selected. However, integrating ship features into detection proves to
be challenging even in this context, given the complexity of environmental factors, object
occlusion, ship size variation, occupied pixel area etc. This often leads to unsatisfactory
performance of detectors on ship datasets.

To address ship detection in a range of operating scenarios, including various atmo-
spheric conditions, background variations and illumination, we introduce a new dataset
consisting of 9880 images, and annotations comprising 41, 967 carefully annotated objects.

The paper is organized as follows. Section 2 describes related work, including notable
results in vessel detection and maritime datasets comprising waterborne images. Section 3
describes data acquisition, dataset diversity, dataset design and our relabelling algorithm
along with basic dataset statistics based on the final annotation data. In Section 4, we
discuss evaluation criteria and present experimental results; we investigate four CNN-
based detectors and discuss the feature extractors and object size effect on the performance
of the detectors. Section 5 provides a qualitative overview of the experimental results.
In Section 6, we provide a brief analysis of our dataset specifications in comparison with
other similar datasets. Conclusions are presented in Section 7.

2. Related Work
2.1. Object Detection

Object detection is one of the fundamental visual recognition problems where the
requirement is to predict whether there are any objects from given categories in an image
and provide their location (bounding boxes or pixel-level localization in case of instance
segmentation), if any are found. Generally, this is achieved by extracting features in an
image and matching them against features from trained images. Traditional approaches
use sliding windows to generate proposals, then visual descriptors to generate an em-
bedding, which are subsequently classified (such as SVM, bagging, cascade learning and
AdaBoost). Traditional algorithms with best performance focus on carefully designing the
descriptors for extracting the features (SIFT, Haar, SURF). However, since 2008, more and
more limitations of this approach became evident [7]. We list below the most notable ones:

• Hand-annotated visual descriptors provided large number of proposals, which caused
high rates of false positives.

• Visual descriptors (as mentioned above) extract low-level features, but are unsuitable
for high-level features.

• Each step of a detection pipeline is optimized separately, so global optimization is
difficult to attain.

In the early 2010s, deep learning approaches came to prominence and started replacing
the traditional ones. Object detection networks can be roughly categorized into 2 types: one-
stage detectors and two-stage detectors. The structure of the latter resembles traditional
object detectors in that they generate proposal-regions and then classify the proposals,
while the former considers positions within an image as potential objects and attempts
to classify them immediately. The traditional approach of sliding windows for proposal
generation is still used in CNNs, but other notable advances emerged, which allow for more
efficient proposal generation, such as anchor-based and key-point approaches (CenterNet
being one of the more notable examples of the kind) [7].

However, the key difference between traditional object detection and CNNs stems
from the manner in which visual descriptors are generated. In deep learning, instead
of creating visual descriptors by hand, convolutional layers perform this role. Instead
of defining feature extractors by hand, basic CNNs train multiple convolutional layers
to extract both high- and low-level features, which are then classified with the help of
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fully-connected layers. The resulting network essentially solves all the main limitations of
a traditional approach, but the trade-off is that it requires a significantly larger number of
training images for hyperparameter optimization [7,8].

While the requirement of a large number of training samples can prove to be a large
obstacle, one of the benefits of CNN-based models is that they can be generalized into
other fields with similar characteristics with the help of transfer learning. By training a
model on a specific dataset, the backbone of the model can be later used to extract features
in other tasks with similar features. For this reason, the aim of recent CNN-models was to
be as generic as possible, since with the help of transfer learning, they can be specialized
for the field of interest. The challenge, however, appears when those generic models are
not suitable feature extractors for a new field and there is not enough data to train them [6].
For those specific cases, the only viable solution is creation of new datasets.

2.2. General Object Detection Datasets

The two main reasons for the remarkable progress computer vision made in the past
decades are the availability of large-scale datasets and powerful GPUs that made it possible
for deep learning to take off considerably [9]. Deep learning made notable contributions to
the field of computer vision, the tasks of image classification and object detection being in
the forefront of research areas that benefited from it. International competitions such as
ILSVRC, PASCAL VOC, and Microsoft COCO motivated the community tremendously,
each of their contributions offering large-scale datasets that have been exploited ever since.
These general object detection datasets have been extensively used for object detection
with deep neural networks. They are essential for testing and training computer vision
algorithms. We will discuss below some of the most prominent general-purpose object
detection datasets.

Microsoft COCO [10] provides a selection of 330,000 images with a number of 2.5 mil-
lion of labelled object instances, over 91 object classes. The dataset labeling used per-
instance segmentation to ensure precise object localization. Two crucial aspects of the
dataset are that it exhibits abundant contextual information and images contain multiple
objects per image.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) ran annually
for a number of years and was established as one of the typical benchmarks for object
classification and detection. The Imagenet dataset [4], the foundation of the challenge,
is an image collection based on the WordNet hierarchy [11], which provides on average
1000 manually verified images for every synset (synonym set) in the hierarchy. These
images are subjected to quality-control and are human-annotated. The dataset consists of
over 14 million images, of which over 14 million were annotated to denote what objects are
present in the image and, for over a million of them, bounding boxes are provided too.

Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL) Vi-
sual Object Classes (VOC) is a prominent project in the computer vision community,
which provided publicly available image datasets including ground truth annotations
and standardized evaluation metrics. These datasets were exploited as part of a number
of challenges on various tasks such as: classification, detection, segmentation, etc. The
greater number of scientific publications regarding object detection use the PASCAL VOC
challenges to benchmark their proposed algorithms. The reason is that these challenges in-
troduced a number of evaluation methods: bootstrapping, to decide significant differences
among algorithms, a normalised average precision across classes, etc. The dataset released
by last PASCAL VOC challenge includes 11,530 images with 27,450 annotated objects over
20 classes. Table 1 shows a variety of object detection datasets, with their total number of
images and clasess. We can notice that ImageNet is by far the largest of the ones mentioned
in the table, encompassing the greater number of total images and classes.
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Table 1. Different object detection datasets comprising various object classes, with their correspond-
ing annotations.

General Object Detection Dataset

Dataset Total Images Total Classes Annotations

ImageNet 14,197,122 1000 1,034,908
COCO 330,000 91 2,500,000
OpenImage (V6) 9,000,000 600 16,000,000
PASCAL VOC (2012) 11,530 20 27,450

Of the general-purpose object detection datasets, in Table 1, the total number of
maritime vessels included is limited, only Microsoft COCO comprising a considerable
amount of vessels, 3146. All vessel counts can be found in Table 2.

Table 2. Maritime vessel instances in general object detection datasets.

Maritime Vessel Instances

Dataset Vessel Count

ImageNet 1071
COCO 3146
OpenImage 1000
PASCAL VOC 353

2.3. Maritime Vessel Detection Datasets

Maritime vessel detection from satellite imagery was employed in many studies, over
the past 40 years, a review from 2018, [12], gathering a number of 119 papers regarding
ship detection and classification only from optical satellites. At the same time, the studies
regarding maritime vessel detection from waterborne images are still quite scarce to this
day. Some studies proposed algorithms utilizing the idea of background subtraction and
detection of the foreground in maritime images. This class of techniques is predominantly
used in surveillance applications due to their ability to perform well with unexpected
changes in illumination, frequency or background noise [13]. Other studies proposed
solutions for ship detection based on the Histogram of Oriented Gradients (HOG) and
sliding windows [14].

However, since the bloom of deep learning in the past 15 years, CNNs were employed
in ship detection from waterborne images. Even so, datasets of seaborne images are scarce,
the most notable ones we briefly discuss below.

The Singapore Maritime Dataset, introduced in [15] consists of 80 videos recorded
during daytime and nighttime, and provides ground truth labels for every frame of every
video, comprising bounding-boxes and object classes for the corresponding bounding-
boxes. The annotations for the Singapore Maritime Dataset include 10 object classes,
of which 6 ship types. This dataset is used for ship detection employing the YOLO v.2
algorithm [16].

Another recent ship dataset, SeaShips [3], consists of over 31,455 inshore and offshore
images of ships, comprising 6 ship types. In [3], they employ three object detectors (Faster
R-CNN [17], SSD [18] and YOLO [16]) to detect ships.

One of the most recent datasets published is MCShips [19], comprising a number
of 14,709 images of ships, whose annotations cover 6 warship classes and 7 civilian ship
classes. In [19], they also use the object detection algorithms above (Faster R-CNN [17],
SSD [18] and YOLO [16]) to evaluate the dataset over the 13 ship classes.

We compared our ABOships dataset against other existing ship datasets. Table 3
illustrates the main differences. Our dataset has the smallest number of images (9880)
amongst the four datasets, however it contains a great number of annotations (41, 967)

22



Remote Sens. 2021, 13, 988

given the image total, which shows it represents well real scenarios of maritime imagery,
taking into account the fact that it includes on average more than 4 annotated objects
per image.

Table 3. Comparison of ABOships with other maritime datasets.

Datasets for Ship Detection

Name Total Images Annotations Ship Types Included

SeaShips 31,455 40,077 6
Singapore 17,450 192,980 6
MCShips 14,709 26,529 13
ABOShips 9880 41,967 9

3. Materials and Methods
3.1. Camera System

The dataset was acquired from a set of 135 videos, collected from a sightseeing
watercraft, by a camera with a field of view of 65◦ and stored in FullHD (1920 × 720)
resolution at 15 FPS in MPEG format. The route of the watercraft extended from the city
of Turku to Ruissalo in South-West Finland, the videos comprising the urban area along
the Aura river, the port and the Finnish Archipelago, for a duration of 13 days (26 June
2018–8 July 2018). The watercraft ran each day in a timeframe between 10.15 and 16.45.
The videos were captured into 30-min long periods consisting of footage from the route
that the watercraft took. While the route remained largely the same, the data contains a
variety of typical maritime scenarios in a range of weather conditions.

In addition to camera video data, the platform had a LiDAR attached to it (SICK
LD-MRS, FoV 110 degrees, 2 × 4 planes, up to 300 m detection, at 5 Hz). The data from
the LiDAR was captured alongside the video at a rate of 5 entries of up to 800 points per
0.2 s. Given the utilized LiDAR had a detection range of up to 300 m, it was very useful for
detecting other objects in the harbor environment. Due to having only 2 times 4 lasers in
the height direction however, the provided data was not reliable enough for discerning the
nature of the object (i.e., what object was detected). It was useful however to determine
distances to the objects perceived in the videos. For the purpose of creating the dataset
presented in this paper, we used the LiDAR data to filter out video segments that were
captured in the harbor area (usually the ones that had too many points for a prolonged
period of time).

To evaluate the models, we acquired 9880 image photos from the videos. First, we
annotated all images with 11 categories: seamarks, 9 types of maritime vessels, and
miscellaneous floaters. In a second round, we relabelled all the inconsistencies we found,
using an algorithm based on the CSRT tracker [20].

3.2. Dataset Diversity

Maritime environments are inherently intricate, hence a range of factors have to be
accounted for when desinging a dataset. Dataset design must ensure that the dataset
characterizes well vessels in the environment. Of course, data augmentation methods
can be considered for reproducing certain environmental conditions, however authentic
conditions may be difficult to anticipate.

Background variation. Particular object detection tasks are more prone to be affected by
changes in the background of the picture. For instance, facial recognition is less susceptible
to background variations, because given the similar shape of most faces, it is easier to fit
them into bounding boxes in a congruous manner. However, the shapes of maritime vessels
are highly heterogeneous, making them more difficult to separate from the background
due to a potentially vast background information in the bounding box. The accuracy of
ship detection would be significantly affected if background information were classified
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as ship features. Figure 1 illustrates the background variation of images in our datasets,
including urban landscapes and an open sea environment.

Figure 1. Example image of background variations in the ABOships dataset: (a) View of mar-
itime vessels on Aura river including the urban landscape; (b) View of a maritime vessel in the
Finnish Archipelago.

Atmospheric conditions. Atmospheric conditions were specific to Finnish summers,
with very sunny periods, alternating with rainy intervals and cloudy skies. The dataset
includes a variety of images of different atmospheric conditions throughout a day.

Illumination. Lighting variations can significantly impact image capture. Illumination
throughout the day, in various geographical areas and with specific daylight hours in a
given region can dramatically influence image detection.

Visible proportion. A great number of the images in our dataset consists of moving
ships, with objects being only partially captured in the camera field of view. However,
they still represent objects that were annotated since one has to detect them as well. The
annotation should comprise different visible proportions of the maritime vessels.

Occlusion. Due to the fact that our dataset has been captured in an open sea environ-
ment, in the harbor area and also comprises urban landscapes, there are many occasions
when maritime vessels occlude each other or occlude other objects in the environment
in the harbor area or in the urban landscape. In a subset of pictures especially in the
harbor area, there is significant occlusion due to a high number of maritime vessels in the
proximity of each other. Two examples of occlusion are shown in Figure 2.

Figure 2. Example image of a occlusion: (a) Boat in front of a militaryship; (b) Several sailboats
occluding each other while docked, on the right half of the image.

Scale variation. Detection of small object can prove to be quite difficult, especially in a
complex environment like the sea, ships that occupy a small pixel area in the picture can be
confused with other objects in the background. Maintaining a high level of detection for
ships requires including several scales for ships sizes in the dataset. For more information
regarding the annotation and the size of the bounding boxes, please refer to Section 3.4.

Figure 3 illustrates a sailboat from two different perspectives: a lateral and a frontal
view, which shows a variation in both occupied pixel area, but also the visible proportion.
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Figure 3. Example image of a sailboat, view from two perspectives: (a) Lateral; (b) Frontal.

3.3. Dataset Design

The raw data acquired from the camera on the sightseeing watercraft is captured as
MPEG videos, with 720 p resolution at 15 FPS . The videos include some footage exhibiting
content that is irrelevant for the scope of vessel detection (especially footage captured
when the watercraft was docked, either at the start of its route on the Aura river or at the
Port of Turku) or sensitive content, such as faces of people. To address the latter issue,
we performed face detection on all videos and blurred all detected faces. Addressing the
former issue on the other hand, required additional data from the LiDAR.

In a maritime environment, LiDAR data is relatively sparse, authors of this study
observed that a high number of points detected for a prolonged duration correlates with
the watercraft being docked in the harbor. By setting a point threshold to detect these
(docked/harbor) cases, we were able to filter them out in their majority and extract only the
images regarding mostly the maritime environment. The images were extracted at an inter-
val of 15 s (one image every 225 frames) and still contained some images captured during
docking, but most of them were facing outwards from the harbor, so the images captured
in this manner still contain useful maritime data. As a result we acquired 9880 images in
the maritime environment.

The acquired images were subsequently separated into workpackages in such a
manner that chronologically adjacent pictures were separated into different workpackages.
The workpackages were then manually labelled by different annotators. After the initial
labelling was completed, we used the CSRT tracker [20] to combine labels of the same object
into traces, i.e., a collection of chronologically adjacent images containing a bounding-box
for that object. Due to inaccuracies in the tracking process and discrepancies in labelling,
the produced traces were not always accurate. After viewing the labels in these traces, we
identified the main causes for discrepancies in labelling, which were mainly caused by
different interpretations of label annotations. We refined those annotations to eliminate the
discrepancies and separated the data into a second collection of workpackages that were
provided to annotators, who then relabelled the data, according to refined annotations.
After the relabelling was completed, the images and their refined labels were compiled
into a dataset of maritime images with refined annotations.

3.4. Annotation

To perform the annotation task, we first investigated the captured videos and identified
the vessel types that appeared most often. Due to the fact that the videos were captured
at locations with a significant number of passenger ships, there is a certain level of bias
for labelers towards those types of ships. This is different from the Seaships database, for
instance, which comprises a higher variety of cargo ships. For the purposes of future use in
machine vision, rather than using maritime terminology as such (depicting ship scale and
purpose), we selected labels that had some clearly distinct visual characteristics. A visual
representation of the labels is illustrated in Figure 4. The label categories are discussed
below, with more specific details for every category:

• boat—rowing boats or oval-shaped boats (from a lateral perspective), or small-sized
boats, visual distinction – rowing-like boats even if they possess engine power;
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• cargoship—large-scale ships used for cargo transportation, visual distinction—long
ship with cargo containers or designed with container carrying capacity;

• cruiseship—large ship that transports passengers and/or cars on longer distances
(assumed at least some hundreds of km);

• ferry—medium-sized ship, used to transport people and cars, a.k.a. waterbus/watertaxi,
another appropriate term would be cableferry, visual distinction – it includes entrances
on two opposite sides and a cabin in the middle;

• militaryship—an official ship that is either military or Coast Guard and includes a
special hull with antennas. For Coast Guard fleets, usually the hulls of their ships read
“Coast Guard” and the military ones are dark gray/metallic/black/brown in colour;

• miscboat—miscellaneous maritime vessel, visual distinction – generic boat that does
not include any visual distinction mentioned in the other ship categories;

• miscellaneous—identified floaters (birds, other objects floating in the water) or uniden-
tified/unidentifiable floaters;

• motorboat—primarily a speedboat, visual distinction—sleek, aerodynamic features;
• passengership—medium-sized ship, used to transport people on short distances, ex.

restaurant boat, visual distinction-usually it has multiple noticeable lateral windows;
• sailboat—sails-propelled boat or a boat which exhibits sails, visual distinction—sails;
• seamark—green/red/blue/black/yellow cone-shaped metal/plastic floater or pipe

emerging from the sea.

Figure 4. Example images of annotated objects in the ABOships dataset: (a) boat, (b) cargoship,
(c) cruiseship, (d) ferry, (e) militaryship, (f) miscboat, (g) miscellaneous (floater), (h) motorboat,
(i) passengership, (j) sailboat and (k) seamark.

3.5. Relabelling Algorithm

The labelling was performed by multiple annotators with different backgrounds, hence
some label types were interpreted differently among them. To increase the consistency of
labelling, we used the continuous nature of the raw data by tracking the labels between
frames using the CSRT tracker [20]. For every labelled frame, a tracker instance was
created. The aim was to track an object until the next labelled frame. At that point, the
existing traces would be mapped onto the labels of the new frame, based on the IoU metric.
During this mapping, it was assumed that labellers would not confuse seamarks with
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vessels, hence ship labels were not mapped onto seamarks or vice versa. More importantly,
previous labels were not taken into consideration, so even if annotators gave the same
object conflicting labels in different frames, these labels would still belong to the same
trace as long as the tracker could identify them. For cases where the mapping could not
be found, the trace would assign a new label, <Unlabeled>, to denote that even though
nothing was labeled in that specific case, the tracker indicated that the object should belong
to the trace.

After a certain number of frames, either the tracker would lose the object (the most
common reasons for this being object occlusion, or due to the object being either too far or
exiting the frame altogether) or the tracker would have none of the defined labels mapped
to it enough times (which would mean it most likely drifted onto another object). In both of
those cases, the tracker was stopped and the resulting trace was saved to a file for further
processing as described below.

To reduce the number of errors caused by occlusion and the tracker drifting towards
other objects than the current object of interest, we performed a second tracking in the
backwards direction. By comparing labels identified in the traces acquired from tracking
videos in both directions, one could detect situations where traces could not be mapped
onto each other. Those cases signify that the tracker was either occluded or drifted to
another object, so traces required to be split into smaller sequences still, until no more
conflicts could be detected.

The resulting traces (after the backwards tracking) were provided as batches for
relabelling. Traces containing a single entry were batched together with other singular
traces from the same category. This setup was done with the purpose of preventing
and removing accidental labels (mislabeling), while, at the same time, providing more
information about the objects being annotated. This allowed us to accurately label even
the objects at a longer distance as a consequence of tracking history. Traces obtained
in this manner were then provided for relabelling as a collection of labels belonging to
the same trace and annotators were asked to refine the labels so that labelling would be
consistent with the labelling specifications. Singular entries that did not belong to any
trace were subsequently batched together with other objects of the same category. The
process described above is illustrated in Figure 5, while the relabelling software application
is depicted in Figure 6.

Figure 5. The video collection was separated into 48 workpackages of images (1), which were labelled
in an initial labelling step (2). Using the OpenCV Tracker, the objects were tracked across frames to
produce traces (3) and then relabelled to fix inconsistencies and fill in the labels that might have been
skipped (4). The resulting labels were then compiled into the maritime imagery dataset (5).
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Figure 6. The relabelling process utilized our relabelling software application. Its GUI (graphical user-
interface) shows the annotator traces of tracked images between annotation frames (1). The annotator
is required to either relabel every instance by selecting the correct label from the right panel, or edit
an annotation (by selecting a label that emerged distinct from others (2)) and change the label of
each image individually and possibly fix the bounding box to fit the object more tightly (3). Special
attention was required in certain situations when the tracker would drift onto other objects, in which
case that particular entry of the trace might have had a different label from the rest (4). When all
labels belonging to a trace were verified and steps (1)–(4) were completed (5), the changes were saved
into a new file and the annotator was provided with the next trace.

3.6. Dataset Statistics

Table 4 shows the number of images of each category in our dataset and the number
of annotations. The column Images represents the number of images that contain that
particular object class and then the percentage of images that comprise that class follows.
Then the column Objects represents the number of annotations for that particular class
in the dataset, along with the percentage of objects annotated for that specific class out
of all the annotated objects in the dataset. One can notice from Table 4 that the highest
representation of labels in the images from ABOships dataset is reached by three categories:
motorboats (present in 41.11% of the images), sailboats (present in 38.88% of the images),
and seamarks (present in 37.89% of the images). Conversely, the lowest representation is
registered for cargoships (in 1.58% of the images) and miscellaneous floaters (in 1.30% of
the images).
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Moreover, Figure 7 illustrates the distribution of annotated objects in our dataset based
on occupied pixel area at log2-scale, for every object category, and separates every object
category by size in small, medium and large objects based on the Microsoft COCO variants
(small: log2(area) < 10, medium: 10 < log2(area) < 13.16 and large: log2(area) > 13.16).

Figure 7. Histograms of occupied pixel area at log2-scale for all annotated objects by object category, divided into three
groups for each category: small, medium and large according to Microsoft COCO variants (small: log2(area) < 10, medium:
10 < log2(area) < 13.16 and large: log2(area) > 13.16). The vertical colored lines represent the following values: the red
line—represents the mean of the distribution, the yellow line represents the threshold for small objects and the green vertical
line delineates the threshold for large objects. In each histogram, respectively, entries to the left of the yellow line represent
the small objects group, entries in between the yellow and the green line show the medium-sized objects group and those to
the right of the green line depict the large objects group.

Table 4. The table shows the number of images and annotations in the ABOships dataset for every
object category, along with their overall percentages.

Number of Images and Annotations for Every Object Category

Class Images Percentage Objects Percentage

Seamark 3744 37.89% 7670 18.27%
Boat 2034 20.58% 2913 6.94%
Sailboat 3842 38.88% 8147 19.41%
Motorboat 4062 41.11% 7092 16.89%
Passengership 2639 26.71% 4464 10.63%
Cargoship 157 1.58% 161 0.38%
Ferry 945 9.56% 1046 2.49%
Miscboat 2797 28.30% 4642 11.06%
Miscellaneous 129 1.30% 200 0.47%
Militaryship 2559 25.90% 4128 9.83%
Cruiseship 1347 13.63% 1504 3.58%
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4. Results
4.1. Evaluation Criteria

To evaluate the performance of different object detection algorithms on specific
datasets, one can employ various quantitative indicators. One of the most popular measures
in object detection is the IoU (Intersection of Union ), which defines the extent of overlap of
two bounding boxes as the intersection between the area of the predicted bounding box Bp
and the area of the ground truth bounding box Bgt, over their union [21]:

IoU =
|Bp ∩ Bgt|
|Bp ∪ Bgt|

(1)

Given an overlap threshold t, one can estimate whether a predicted bounding box belongs
to the background (IoU < threshold) or to the given classification system (IoU > threshold).
With this measure, one can proceed to assess the average precision (AP) by calculating the
precision and recall. The precision reflects the capability of a given detector to identify relevant
objects and it is calculated as the proportion of detected bounding-boxes, correctly identified,
over the total number of detected boxes. The recall reflects the capability of a detector to
identify relevant cases and it is calculated as the proportion of correct positive predictions to
all ground truth bounding boxes. Based on these two metrics one can draw a precision-recall
curve, which encloses an area representing the average precision. However, in a majority of
cases, this curve is highly irregular (zigzag pattern) making it challenging to estimate the area
under it, i.e., the AP. To address this, one can approach it as an interpolation problem, either
as an 11-point interpolation or an all-point interpolation [21].

The 11-point interpolation averages the maximum values of precision over 11 recall
levels that are uniformly distributed [21], as depicted below:

AP11 = ∑
R∈{0,0.1,...,0.9,1}

Pi(R), (2)

with
Pi(R) = max

R∗ |R∗≥R
Pi(R∗). (3)

AP11 is calculated using the maximum precision Pi(R), with a recall greater than R.

4.2. Baseline Detection

To explore the performance of CNN-based object detectors on our dataset, we focused
on prevalent detectors: one-stage (SSD [18] and EfficientDet [22]) and two-stage detectors
(Faster R-CNN [17] and R-FCN [23]). The detectors were previously trained on the Mi-
crosoft COCO object detection dataset, which comprises a number of 91 object categories.
The training dataset contains a number of 3146 images of marine vessels. We investigated
the performance of different feature extractors in the aforementioned detectors. We collect
maritime vessel detection results based on SSD over different feature extractors (ResNet101,
MobileNet v1, MobileNet v2). Moreover, we evaluate the performance of a new state-
of-the-art detector, EfficientDet, on our dataset, which used EfficientNet D1 as feature
extractor. We also evaluated two-stage detectors: Faster R-CNN and RFCN with different
feature extractors. Combining all proposed detectors with the feature extractors, a total
of 8 algorithms were investigated. All information regarding the specific configuration of
these detectors can be found in [24].

We estimated the performance of these algorithms in detecting maritime vessels, so
we excluded seamark and miscellaneous labels from our experiments and focused on
detecting vessels. Moreover, we chose images with an occupied pixel area larger than
162 pixels. Based on these experiments, we attained Table 5.

Our experiments indicated that the object size impacts the detection accuracy. To cor-
roborate this observation, we divided all vessel labels (with an occupied pixel area larger
than 162 pixels) in our datasets into three categories, based on Microsoft COCO challenge’s
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variants: small (162 < area < 322), medium (322 < area < 962) and large (area > 962). Out
of the annotated vessels with an occupied pixel area larger than 162 pixels in our dataset,
30.25% of the annotated vessels are small, 49.37% are medium and 20.37% are large.

Analyzing the results from our experiments, we observe that detection accuracy de-
creases with object size. The AP for best-performing detector on the ABOships dataset
(Faster R-CNN with Inception ResNet v2 as feature extractor) with a registered AP of 35.18%
more than doubles in size from small (APS = 23.16%) to large objects (APL = 46.84%).
The second best detector on the whole dataset (EfficientDet with EfficientNet as fea-
ture extractor) however had the best performance on the large-objects category, with an
APL = 55.48%. In general, detecting small objects turns out to be more difficult than
larger objects given that there is less information associated with a smaller occupied pixel
area. For medium-sized objects, the best performance is attained by SSD with ResNet101
as feature extractor (APM = 31.18%). For small objects, the best-performing detector,
Faster R-CNN with Inception ResNet v2, outperforms the other detectors with a registered
APS = 23.16%. Among the SSD configurations, best performing, in general, was the one
having ResNet101 as feature extractor.

Table 5. Average Precision (AP) (in %) of the proposed CNN-based detectors on ABOships dataset,
with different feature extractors and object sizes, for all objects with an occupied pixel area > 162 pixels.

Detection Performance of Different Detectors on the ABOships Dataset

Method Feature extractor APS APM APL AP

Faster RCNN

Inception ResNet V2 23.16 30.86 46.84 35.18

ResNet50 V1 9.76 20.94 41.65 26.49

ResNet101 18.42 25.07 38.17 30.26

SSD

ResNet101 V1 FPN 21.39 31.18 42.07 30.03

MobileNet V1 FPN 12.34 27.61 37.83 28.59

MobileNet V2 3.01 17.05 27.37 17.48

EfficientDet EfficientNet D1 10.94 29.68 55.48 33.83

RFCN ResNet101 18.05 26.20 41.61 32.46

5. Qualitative Results

Figure 8 illustrates an example of detection results for the proposed methods, selecting
for each the combination of feature extractor that scored the highest AP in each category.
We can notice in Figure 8 that Faster R-CNN with a Inception-ResNet-v2 feature extractor
(a) and R-FCN with a ResNet101 feature extractor (c) provide detected regions registering
high scores ranging from 0.91 to 0.99. The other two detectors in Figure 8, EfficientDet
with EfficientNet as feature extractor (b) and SSD with ResNet101 as feature extractor (d),
register satisfying results registering with scores ranging from 0.55 to 0.67.
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Figure 8. Qualitative detection results for the ABOships dataset on (a) Faster R-CNN and Inception-
ResNet-v2 as feature extractor, (b) EfficientDet with EfficientNet as feature extractor, (c) R-FCN with
ResNet101 as feature extractor, and (d) SSD with ResNet101 as feature extractor. The ground truth
bounding-boxes are shown as red rectangles. Predicted boxes by these methods are depicted as green
bounding boxes. Each output box is associated with a class label and a score with a value in the
interval [0, 1].

6. Discussion

Maritime vessel detection of inshore and offshore images is a topical issue in many
areas, such as maritime surveillance and safety, marine and coastal area management,
etc. Many of these fields require intricate management of disparate activities, which in
practice often necessitate real-time monitoring. This implies, among other aspects, real-
time detection of inshore and offshore ships. However, in their majority, ship detection
studies and methodology are mostly concerned with either satellite or radar imagery,
which can prove to be unreliable in a real-time setting. For this very reason, algorithms,
and specifically CNNs, employed on waterborne imagery are especially beneficial either
on their own, or in fusion architectures.

Traditional ship detection methods using either background separation or histograms
of oriented gradients provide satisfactory results under favorable sea conditions. However,
the complexity of the marine environment, including challenging environmental factors
(glare, fog, clouds, high waves, rain etc.), renders the extraction of low-level features
unreliable. Recent studies involving CNNs address this issue, but deep learning requires
domain-specific datasets to produce satisfactory performance. However, public datasets
specifically designed for maritime vessel detection are scarce to this day [1]. We discuss
this in more detail in Section 2.

Performing exploratory analysis on our dataset, in comparison with other recent
maritime object detection datasets (Singapore Maritime Dataset [15], SeaShips [3], MC-
Ships [19]), there are a few aspects that emerge that we discuss as follows. Comparing our
dataset to the Singapore Maritime Dataset, one can notice (from Table 3) that ABOships
registers a higher number of ship types (9 vs. 6). However, considering the number of
annotations per image, the Singapore dataset registers almost 3 times more annotations on
average per image (11.05 vs. 4.2). The SeaShips dataset consists of 31, 455 images, more
than 3 times the image total of our dataset, but ABOships provides more annotations than
the former, with a greater average number of annotations per image (4.2 vs. 1.2). SeaShips
consists mostly of images with one annotation per image. MCShips provides a number
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of 13 ship categories (vs. 9 ship categories in ABOships), but only offers just over 26K
annotations, with an average of 1.8 annotations per image, see Table 3. We note that our
dataset annotations comprise also seamarks and miscellaneous floaters in addition to the 9
ship types.

We tested our relabelling software application on the Singapore Maritime Dataset,
as suggested by our reviewers, and the tracker was able to consistently map object labels
from one frame to another correctly (without drifting from the object of interest to other
objects), which did not always occur when we performed the tracking on the ABOships
dataset. There are a few aspects that can influence the tracker’s performance and those
most probably affected its performance on the ABOships dataset. First, the videos included
in the Singapore Maritime dataset have a higher frame rate (30 FPS), double than those
in our dataset (15 FPS). Moreover, the videos from the Onshore dataset (one part of the
Singapore Maritime Dataset) have higher resolution. Videos in the Onshore dataset do not
have a high density of annotations per video. Furthermore, the environment present in the
images of our dataset is far more complex, including urban landscapes and complicated
background, especially in the port area.

7. Conclusions

This paper provides a solution for addressing the annotation inconsistencies appeared
as a consequence of manual labeling of images, using the CSRT tracker [20]. We build
traces of the images in the videos they originated from and use the CSRT tracker to traverse
these videos in both directions and identify the possible inconsistencies. After this step,
we employed a second round of labeling and obtained a set of 41, 967 carefully annotated
objects, of which 9 types of maritime vessels (boat, miscboat, cargoship, passengership,
militaryship, motorboat, ferry, cruiseship, sailboat), miscellaneous floaters and seamarks.

We ensured the dataset consists of images taking into account the following factors:
background variation, atmospheric conditions, illumination, visible proportion, occlusion
and scale variation. We performed a comparison of the out-of-the-box performances of
four state-of-the-art CNN-based detectors (Faster R-CNN [17], R-FCN [23], SSD [18] and
EfficientDet [22]). These detectors were previously trained on the Microsoft COCO dataset.
We assess the performance of these detectors based on feature extractor and object size.
Our experiments show that Faster R-CNN with Inception-Resnet v2 outperforms the other
algorithms for objects with an occupied pixel area > 162 pixels, except in the large object
category where EfficientDet registers the best performance with an AP = 55.48%.

For future research, we plan to investigate different types of errors in the manual
labelling, for cases where the labels still have inconsistencies, such as: fine-grained recog-
nition (which renders it more difficult for human even to detect objects even when they
are in plain view [25], class unawareness (some annotators become unaware of certain
classes as ground truth options) and insufficient training data (not enough training data
for the annotators).

Moreover, we plan to investigate in more detail the detection of small and very
small objects, including those with an occupied pixel area < 162 pixels. Furthermore,
distinguishing between different vessel types in our datasets will be an essential focus as the
next steps in our experiments. In order to do this, we plan to exploit transfer learning both
in the form of heterogeneous transfer learning, but also homogeneous domain adaptation.

To further our research, we will employ maritime vessel tracking detectors on the orig-
inal videos captured in the Finnish Archipelago and examine the impact on autonomous
navigation and navigational safety.
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Abstract: This article studies the design, modeling, and implementation challenges for a target detection
algorithm using multi-sensor technology of a co-operative autonomous offshore system, formed by
an unmanned surface vehicle (USV) and an autonomous underwater vehicle (AUV). First, the study
develops an accurate mathematical model of the USV to be included as a simulation environment for
testing the guidance, navigation, and control (GNC) algorithm. Then, a guidance system is addressed
based on an underwater coverage path for the AUV, which uses a mechanical imaging sonar as the
primary AUV perception sensor and ultra-short baseline (USBL) as a positioning system. Once the target
is detected, the AUV sends its location to the USV, which creates a straight-line for path following with
obstacle avoidance capabilities, using a LiDAR as the main USV perception sensor. This communication
in the co-operative autonomous offshore system includes a decentralized Robot Operating System (ROS)
framework with a master node at each vehicle. Additionally, each vehicle uses a modular approach
for the GNC architecture, including target detection, path-following, and guidance control modules.
Finally, implementation challenges in a field test scenario involving both AUV and USV are addressed
to validate the target detection algorithm.

Keywords: target detection; co-operative; autonomous; multi-robot; USV; AUV

1. Introduction

In recent years, the use of autonomous offshore vehicles, which includes autonomous underwater
vehicles (AUVs) and unmanned surface vehicles (USVs), for marine interventions has attracted increasing
interest from research scientists, maritime industries, and the military. These interventions include several
activities such as offshore surveillance, offshore target detection, seabed explorations, or search and
rescue (SAR) missions. Additionally, the use of multi-robot platforms can improve the performance in
these activities, as they can include above and below-water characterization. Regarding a multi-robot
platform, Vasilijević et al. [1] presented the co-operative robotic system consisting of an AUV and a USV
for ocean sampling and environmental monitoring. In [2], the study used a heterogeneous collaborative
system of above, surface, and underwater robots to obtain a multi-domain awareness on a floating
target. The heterogeneous system consists of a USV, an AUV, and an unmanned aerial vehicle (UAV).
Additionally, Gu et al. [3] presented a homogeneous study, where a guidance and control law design
method for coordinated path following of networked under-actuated robotic USVs under directed
communication links. In [4], the control scenario simulated a homogeneous AUV fleet to study formation
tracking control and collision-obstacle avoidance.

To accomplish the target detection in the offshore environment, the availability of accurate USV and
AUV mathematical models is crucial for simulation study purposes, controller design, and development.
The theoretical six-degrees-of-freedom (DOFs) dynamic model [5], based on nonlinear equations of
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motion, can be used for the design and modeling of the AUV. Equally, the USV can use the same
dynamic model of the AUV but with reduced order for the three DOFs horizontal plane control
(surge, sway, and yaw motions). Several tools can help to obtain the coefficients of the dynamic model
equations and the necessary transfer functions of each vehicle. These tools can include the parameter
estimation from MATLAB-Simulink [6], and the system identification (SI) [7,8], introduced to develop
the mathematical model using field test data. In [9], SI of the maneuvering data determined the
hydrodynamic coefficients of a USV. Also, the mathematical model of the USV includes the propulsion
and power system. Commonly, the rudder and propeller, or waterjet propulsion systems provide the
heading and the speed control of most existing USVs. In [10], a twin waterjet propelled USV was
modeled based on SI, but it neglects the calculation for the dynamics of the propulsion system.

Target detection in offshore environments is a fundamental activity that combines different perception
sensors. Numerous studies use passive (stereo cameras) or active (LiDAR or radar) perception methods
to obtain situational awareness of a USV. Nonetheless, most of the obstacle detection methods rely on
depth measurements, in which LiDAR sensors are the most reliable method of obtaining depth data.
Correspondingly, sonar devices are still the most convenient option for collecting data on underwater
environments. Mechanical imaging sonar, multibeam, profiler, or sidescan are some of the main sonar
imaging and ranging devices. For the target detection with sonar devices, how detectable is a target
is mainly dependent on the physical characteristics of the target and acoustic signal. Some studies use
sonar devices for target detection capabilities, as in [11], where a profiler sonar was adopted for obstacle
detection. According to [12], a method for underwater obstacle detection (standard buoy) was developed
using forward-looking sonar and a probabilistic local occupancy grid.

Correct localization and navigation are crucial to ensure the accuracy of the gathered data for all these
applications. Above the water surface, most of the autonomous systems rely on radio or global positioning
and spread-spectrum communications, as a GPS-compass installed in the USV platform. However,
those signals propagate only in short distances in an underwater scenario, where acoustic-based
systems perform better. Regarding underwater navigation, the three fundamental methods are dead-
reckoning (DR) and inertial navigation systems (INS), acoustic navigation, and geophysical navigation
techniques [13]. These navigation methods require specific survey and navigation sensors installed
in the AUV. The Girona 500 [14] is an example of AUV that performs the traditional dead-reckoning
navigation utilizing a doppler velocity log (DVL) and a solid-state attitude and heading reference
system (AHRS). Also, the absolute position can be obtained through a GPS when the vehicle is on
the surface and using an ultra-short baseline (USBL) while underwater. The high-accuracy USBL
system allows the localization of the AUV and the communication between the vehicle and the surface
unit. In [15], the study provided a navigation algorithm for an underwater vehicle with a Kalman
filter to estimate the error state via measurement residuals from aiding sensors. These aiding sensors
incorporate an attitude sensor, a DVL, a long-baseline (LBL) system, and a pressure sensor. In acoustic
navigation techniques, acoustic transponders and modems perform localization by measuring the
time-of-flight of signals from acoustic beacons or modems. USBL navigation allows an AUV to localize
itself relative to a USV, and it provides an efficient and reliable acoustic communication network [16].
In [17], the study presented the design and implementation of an USBL-aided navigation approach for
an AUV in a two-parallel extended Kalman filter (EKF). It also includes the measurements provided
by a DVL, a Visual Odometer, an inertial measurement unit (IMU), a pressure sensor, and a GPS.

Safe and adequate control of the offshore vehicles depends notably on proper guidance, navigation,
and control (GNC) systems. This study adopts a path-following as the guidance system for both
offshore platforms. The path-following approach is closer to practical engineering, and it is easier
to implement than trajectory tracking. A generally used method for path-following in autonomous
vehicles is the named line-of-sight (LOS) guidance. LOS guidance is classified as a three-point guidance
scheme, involving a commonly stationary reference point along with the interceptor and the target [5].
In [18], the study developed a guidance-based algorithm for path-following using the LOS algorithm
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in offshore operations. Additionally, in [10], a path-following with obstacle avoidance based on the
safety boundary box approach was implemented in a USV with a LOS-based guidance system.

Due to the co-operative offshore system in this study, it becomes necessary to fuse information
obtained from the individual vehicles. Robot Operating System (ROS) has been an effective tool when
working with multi-robot systems. This tool is a flexible framework for writing robot software and
provides the tools to acquire sensors’ data, process it, and generate the necessary response for the vehicle
actuators [19]. Multi-robot systems can either be centralized with a ROS master node at the ground
control station (GCS) or decentralized with each autonomous vehicle (AV) running an independent
ROS master. In the case of the decentralized control techniques, they are more flexible, profitable,
and generally reduce the communication network requirements compared with centralized control [20].
However, they are also more challenging due to obstacles, uncertainties, and communication constraints,
such as noises, delays, dropouts, or failures. In this case, the multi-master approach provides a solution
where each vehicle keeps its own ROS master and also exchange the necessary information with other
components of the multi-robot system. In [21], they proposed a package that efficiently developed
multi-master architectures.

In the presented manuscript, the mathematical model of the USV consists of the simplified
three DOFs dynamic model [5], where their parameters are obtained from field test data using the
parameter estimation tool. Additionally, the waterjet model has been included in the mathematical
model of the USV using data from the manufacturer and transfer functions based on SI. The AUV
platform considered in this study does not incorporate a DVL, neglecting the velocity feedback of the
vehicle. However, the installed USBL provides an absolute position and a communication link between
the USV and the AUV. Thus, the AUV platform includes a basic setup for underwater localization,
but it is not able to precisely locate the vehicle underwater. The path-following algorithm uses the
LOS approach for heading control to simplify the guidance control of the AUV, keeping a constant
depth and constant surge speed. The target detection algorithm uses a modular ROS architecture to
provide a computationally cheap and simple implementation in both offshore platforms. Furthermore,
the offshore system includes two different perception sensors based on the same target detection
algorithm. Finally, a multi-master architecture is in charge of the interaction between the AUV and
USV, providing an easy plug-and-play solution for the multi-robot system.

In this work, a model-based GNC architecture for a co-operative autonomous offshore system
is proposed for target detection using multi-sensor technology. In Section 2, the USV modeling and
simulation are presented using the parameter estimation tool to define the waterjet and USV maneuvering
model. Furthermore, this section includes an overview of the USV and AUV platforms. Then, in Section 3,
the GNC system for the co-operative tasks is included using the LOS-based guidance system for control.
The target detection algorithm is developed using a mechanical imaging sonar at the AUV and a LiDAR
at the USV as the primary perception sensor for underwater and surface inspection, respectively. Finally,
in Section 4, the implementation of a GNC architecture is described as modular and multilayer for the
multi-robot system. A control scenario in a field test is shown in this section to validate the proposed
target detection algorithm.

2. Modeling and Simulation for the Offshore Vehicles

The co-operative autonomous offshore system consists of two different vehicles: a USV and an
AUV. This section gives an overview of both subsystems, and it describes the simulation model of the
USV, which provides the capability to develop the GNC algorithms.

2.1. Overview of Under-Actuated USV

This article uses an under-actuated USV as the primary vehicle in the co-operative autonomous
offshore system. The USV is an aluminum hull with a thrust vectoring waterjet propulsion system, which
provides optimal maneuverability using a twin waterjet configuration. Figure 1 shows a simplified
model of the vehicle, where the port and starboard (STDB) waterjets produce the necessary thrust forces
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to move forward, backward, sideways or performing turns. Additionally, Figure 1 includes the position
and orientation of the USV in the North-East-Down (NED) coordinate system. The NED coordinate
system is related to planar Cartesian coordinates, so a coordinate transformation is performed from the
GPS-compass output to get the USV’s absolute position. This transformation is between longitude and
latitude (l, µ) from the world geodetic system 84 (WGS84) coordinate system and ETRS-TM35FIN [22],
which displays the NED position (xUSV, yUSV). The Euler angles provide the USV heading or yaw angle
ψ. The motion of the USV has three DOFs, which are surge, sway, and yaw (linear (u, v), and angular r
velocities) while ignoring roll, pitch, and heave motions.
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Figure 1. Simplified model of the unmanned surface vehicle (USV) using the North-East-Down (NED)
coordinate system. USV motion is described by surge u (linear longitudinal motion), sway v (linear
transverse), and yaw motion r (turning rotation about its z-axis).

2.2. USV Modeling

The development of an adequate maneuvering model will simplify the GNC algorithms design
and simulation. The three DOFs horizontal plane model for maneuvering of a USV consists of the
rigid-body kinetics [5]

Mν̇ + C(ν)ν + D(ν)ν = τ + τwind + τwave, (1)

where ν = [u, v, r]T is the velocity vector composed of surge, sway and yaw. τ = [τu, 0, τr] is the
vector forces and moments generated by twin waterjet configuration, while τwind and τwave are the
environmental forces. M, C(ν), and D(ν) are the mass, Coriolis and damping matrices, respectively,
where M and C(ν) combine added and rigid-body terms. The mass matrix M is defined by

M = MRB + MA =




m− Xu̇ 0 0
0 m−Yv̇ mxg −Yṙ

0 mxg −Yṙ Iz − Nṙ


 , (2)

where m is the mass of the vehicle, Iz is the moment of inertia about zb axis, rb
g =
[
xg, yg, zg

]ᵀ is the vector
from origin ob to centre of gravity CG, and Xu̇, Yv̇, Yṙ, and Nṙ represent hydrodynamic added mass.
The moment of inertia Iz at the pivot point has been estimated based on the calculation of the moments
of inertia in the rear Iz,rear and front Iz,front of the USV. These moments of inertia are defined by

Iz,rear = mpt l2
pt +

(
1
3

mhull cg

)
l2
pivot, (3)

Iz,front =
1
3

mhull
(
1− cg

)
κ
(
lUSV − lpivot

)2 , (4)

where mpt is the estimated powertrain mass (engines, waterjets, fuel, etc.), lpt is the estimated location
of the powertrain mass, mhull is the hull weight without powertrain mass, cg is the relative center of
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mass point having one as the front of the USV, lpivot is the pivot point location, κ is a scaling factor as
the mass is not evenly distributed from the pivot point to the front of the USV, and lUSV is the length of
the USV. The total moment of inertia Iz is defined by

Iz =
(

Iz,rear + Iz,front
)

Icor, (5)

where Icor is the tuning factor for the moment of inertia.
The Coriolis-centripetal matrix C(ν) can always be parameterized such that C(ν) = Cᵀ(ν) [23].

However, linearization of the Coriolis and centripetal forces CRB(ν) and CA(ν) about zero angular
velocity (p = q = r = 0) implies that the Coriolis and centripetal terms can be removed from the above
expressions, that is CRB(ν) = CA(ν) = 0 [24]. Additionally, the mathematical model is simplified to
take into account only surge and yaw motions, so Coriolis and centripetal terms have been removed at
the three DOFs dynamic model in this study.

The different damping terms contribute to linear and quadratic damping [5]. Nonetheless, it is
generally difficult to distinguish these effects. The total hydrodynamic damping matrix D(νr) is the
sum of the linear part Dlin and the nonlinear part Dnlin(νr) such that

D(νr) = Dlin + Dnlin(νr), (6)

where Dlin is the linear damping matrix produced by potential damping and possible skin friction,
and Dnlin(νr) is the nonlinear damping matrix as a result of the quadratic damping and higher-order
terms, defined by

Dlin =



−Xu 0 0

0 −Yv −Yr

0 −Yr −Nr


 , (7)

Dnlin(νr) =



−X|u|u 0 0

0 −Y|v|v 0
0 0 −N|r|r


 |νr| . (8)

The USV used in this study includes the AJ245 waterjet units [25]. The nozzle position Pnozzle varies
the direction of the jet flow, which generates the force needed for turning. Thus, the total thrust force
Ftotal combines the engine rpm of the waterjet nrpm and Pnozzle. The variable nrpm is directly gathered
from the waterjet engine, and Pnozzle is a variable from −10,000 to 10,000, with 0 as the neutral position
and equal to forward motion. Table 1 shows the data obtained from the manufacturer Alamarin-Jet Oy
for these waterjet units at a specific operating point. This operating point is selected at 1800 rpm, nozzle
in the neutral position, and bucket in the full up position.

Table 1. Data obtained from manufacturer for an operating point of a single AJ245 waterjet unit.

Surge Speed [kt] Thrust Force [kN]

2 2
4 1.85
6 1.7

The thrust forces and torques for the mathematical model of the USV are defined according to the
manufacturer’s data and an affinity law. Thus, a two-dimensional (2D) lookup table can include the
relation between the shaft rotational speed of the waterjet engine N with the thrust force per waterjet
F. The affinity law used to obtain the thrust force at the waterjet units is defined by

F1

F2
=

(
N1

N2

)2
. (9)
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Figure 2 shows the results for the affinity law with the manufacturer’s data for a waterjet engine
from 600 to 2400 rpm, which match the operational engine speeds of this study.
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Figure 2. Thrust force F generated by the waterjet propulsion system depending on the shaft rotational
speed N.

In the mathematical model, a 2D lookup table provides the engine rpm and the surge speed of the
USV as inputs, and the total thrust generated by the waterjet unit as output. Also, a one-dimensional (1D)
lookup table f (Joyu) obtains the engine rpm depending on the joystick input for surge motion, and a
second-order transfer function adds the waterjet dynamics of the engine rpm into the mathematical
model. This transfer function is obtained using the SI tool from MATLAB and the field test data of the
USV. Thus, the engine rpm is calculated based on the combination of the 1D lookup table and the engine
rpm transfer function, defined by

nrpm(s) =
0.317s2 + 2.793s + 1.828

s2 + 3.499s + 1.828
f (Joyu). (10)

In the case of the heading motion of the USV, the total efficiency ηnozzle for the thrust force depends
on the nozzle position (which refers to the angle of the waterjet thrust force αnozzle). According to the
waterjet manufacturer, if the nozzle position is deviated to a maximum nozzle angle ηnozzle = ±25◦

(related to Pnozzle = ±10,000) , efficiency drops exponentially to 30–40% of the maximum (center).
The exponential function is obtained using the general exponential model.

ηnozzle(Pnozzle) = a exp(b Pnozzle), (11)

where a = 1 and b = −9.163× 10−5.
Similarly to the dynamics of the waterjet calculation for the engine rpm, the nozzle position

includes a 1D lookup table f (Joyr) and a first-order transfer function. This transfer function is obtained
also from the SI tool from MATLAB based on field test data. The nozzle position of each waterjet is
defined by

Pnozzle(s) =
− exp(−0.25s)

0.1s + 1
f (Joyr). (12)

Regarding the behavior of the second-order transfer functions for both engine rpm and nozzle
position, Figure 3 shows the comparison between the SI tool transfer function and field test data for
both nrpm and Pnozzle variables.
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Figure 3. Comparison between the USV field test data and the system identification (SI) transfer
functions: (a) Engine rpm nrpm. (b) Nozzle position Pnozzle.

Additionally, the parameters for the 1D Lookup table are obtained from field test data and are
presented in Table 2.

Table 2. 1D Lookup Table parameters.

Joyu 400 500 600 700 800 900 1000

nrpm 690 920 1110 1300 1480 1650 1820

Joyr 0 50 150 200 250 300 400

Pnozzle 0 1175 3500 4665 5830 7000 9325

Finally, the vector τ = [τu, 0, τr], which represents the forces and moments generated by the two
waterjets, is defined by

{
τu = (FPORT + FSTDB)ηnozzle

τr = lpivot sin(αnozzle)(FPORT + FSTDB)ηnozzle
. (13)

Figure 4 shows the schematic with all the necessary functions for the USV dynamic model,
from the joystick controller input to the vehicle’s position output. The waterjet model includes the
1D lookup table to translate between joystick commands to rpm, the second-order transfer function,
and the 2D lookup table related to the thrust force of each waterjet unit. Furthermore, it also includes
the 1D lookup table to translate between joystick commands to the nozzle position, the first-order
transfer function, the thrust force efficiency depending on the nozzle position, and the calculation of
the total torque. Both thrust force τu and torque τr are the inputs in the mathematical model of the
USV based on the three DOFs dynamic model. The position and orientation of the USV are performed
by integrating the velocity vector ν.
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Figure 4. Schematic of the mathematical model of the USV including both waterjet propulsion system
and USV dynamic models.

2.3. USV Model-Validation Using Parameter Estimation

The matrices M and D(ν) of the three DOFs Dynamic model are estimated with the parameter
estimation tool from MATLAB-Simulink. The matrices are defined in the Simulink model by creating
the matrices from input values. Then, the MATLAB-Simulink tool can estimate the individual
coefficients of the dynamic matrices.

There are two different parameter estimation runs related to surge and yaw motion. Table 3 shows
the constant values shared in both experiments, while Table 4 shows the coefficients obtained from the
parameter estimation tool with their results. Only surge and yaw motion coefficients, Xu, Xu̇, X|u|u
and Nr, Nṙ, N|r|r respectively, have been considered and estimated in this study, as the mathematical
model focuses in these two USV motions.

Table 3. Principal characteristics of the under-actuated USV.

Parameter Value

m 3500 [kg]
mpt 1100 [kg]
mhull 2400 [kg]
lUSV 8 [m]
lpivot 2.40 [m]
lpt 2.16 [m]
κ 0.70
cg 0.30
Icor 0.6
Iz from (5) 11,284.61

[
kg m2

]

xg 0.0425 [m]

Table 4. Parameter estimation results for the surge and yaw motion coefficients.

Parameter Value

Xu −10.586
Xu̇ −3277
X|u|u 315.45
Nr 3907.9
Nṙ −36.555
N|r|r 3459.6

Figure 5 shows the comparison between the field tests, which include raw and filtered USV linear
and angular velocity, the three DOFs dynamic model with the coefficients obtained from the parameter
estimation, and the SI results from [10], for the joystick controller input shown in Figure 3. As shown
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in both linear and angular velocities results, the parameter estimation results improve the previous SI
approach, giving an accurate output of the USV maneuvering compared to the field test results.
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Figure 5. Comparison plot between SI tool, parameter estimation (PE) app, and field test data: (a) Surge
motion. (b) Heading motion.

2.4. Overview of the AUV

This article uses a high configurable AUV platform for different scientific instrumentation.
This vehicle contains basic instrumentation and sensors for localization and target detection, including a
USBL and a depth sensor for underwater localization and navigation, an AHRS from the flight
control for the navigation of the AUV, and a mechanical imaging sonar (Tritech Micron [26]) as main
underwater perception sensor.

Figure 6a shows a simplified model of the AUV. This AUV uses a six-thruster configuration to provide
thrust forces when moving in the surge, sway, heave motions, or performing turns. Also, the position
and velocities of the AUV are illustrated in Figure 6a. The general AUV motion in six DOFs is modeled
by using the NED local coordinate system. AUV position and velocities are considered with the
following vectors

η = [N, E, D, φ, θ, ψ]> , ν = [u, v, w, p, q, r]> , (14)

where N, E, D denote the NED positions in Earth-fixed coordinates, φ, θ, ψ are the Euler angles, u, v, w
are the body-fixed linear velocities, and p, q, r are the body-fixed angular velocities [5].

The design and modeling of the AUV should be studied using a theoretical six DOFs dynamic
model [27]. However, due to the lack of instrumentation, it is not possible to obtain accurate navigation
data. Thus, the AUV is not fully simulated, and just simple control commands are established for
navigation. Once that navigation data is available, it is possible to use the same approach as the USV
mathematical model to obtain the six DOFs dynamic model, using the parameter estimation or SI
tools based on field test data. Regarding the control of the AUV, thrusters are located as it is shown in
Figure 6b, where thrusters T1, T2, T3, and T4 effects in surge, sway, and yawing, and thrusters T5 and
T6 effects in heave and rolling motions.
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Figure 6. Six-thruster configuration in the AUV: (a) Simplified model of the considered vehicle using
the NED coordinate system. (b) Thrust forces with their direction for each thruster.

3. Gnc System for the Co-Operative Tasks

This study has the target detection and the guidance algorithms as main modules of the GNC
architecture of the offshore multi-vehicle system. This section describes both of these algorithms for
each platform and the description of the multi-vehicle guidance system.

3.1. Target Detection System

The mechanical imaging sonar installed at the AUV and the LiDAR at the USV are the primary
perception sensors in the co-operative autonomous offshore system. The target detection algorithm includes
the application in both perception sensors, depending on the position of the objects (underwater or over
the water surface).

For the mechanical imaging sonar, the employed algorithm consists of analyzing the acoustic
intensity at every bin to determine the presence of an underwater vehicle. The Tritech Micron sonar [26]
has an operating frequency chirp centered on 700 kHz, a beamwidth of 35◦ vertical and 3◦ horizontal,
a range from 0.3 to 75 m, a range resolution of approximately 7.5 mm, and a configurable mechanical
resolution of 0.45◦, 0.9◦, 1.8◦, and 3.6◦. In this study, the maximum range used to detect an obstacle is
10 m, a forward field-of-view (FoV) of 90◦, and a mechanical resolution of 1.8◦. If the target is known a
priori to be narrow, the imaging sonar can be configured with a lower resolution to detect the object.

Regarding the data obtained from the mechanical imaging sonar, it contains the heading of the
beam θscan, the location of the specific point in Cartesian coordinates Pscan, and the intensity at every
bin Iscan. The dynamic range of the mechanical imaging sonar is 80 dB. Then, the dynamic range
controls allow to adjust the position of a sampling window within the defined dynamic band range of
the received signal, and it translates the intensity at every bin to an integer value ranging between 0
and 255.

After data acquisition from the mechanical imaging sonar, Algorithm 1 shows the post-processing
steps for target detection. This algorithm includes the position of the highest intensity value for each
bin in polar coordinates, filtering the data in the range of [0,1.5] meters to avoid possible noise from
the AUV structure.

Algorithm 1 provides the post-processing of a single bin of a specific angle. An additional function
forms an array of number of scans nscans, obtained from θscan,min, θscan,max, and θscan,increment parameters
of the mechanical imaging sonar to create the complete array of scans from the sonar. After gathering
the scan array, the position of the targets needs to be calculated. The data from the perception sensors
is obtained in the body-fixed reference frame (BODY), and it requires a translation into an absolute
coordinate system. This translation is defined by

[
xobs
yobs

]
= Rz(ψAV)

[
xscan

yscan

]
, (15)
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where Rz(ψAV) is the rotation matrix around the z-axis using the heading angle ψAV of the selected AV.
This rotation matrix translates between the BODY and the East-North-Up (ENU) coordinate system.
The rotation matrix Rz(ψAV) in 2D is defined by

Rz(ψAV) =

[
cos(ψAV) sin(ψAV)

− sin(ψAV) cos(ψAV)

]
. (16)

Algorithm 1: Post-processing of the mechanical imaging sonar data for target detection.

Input : Intensities Iscan, positions Pscan in Cartesian coordinates [X,Y], and current heading
θscan value obtained from the mechanical imaging sonar.

Output : Position micron of the highest intensity value in polar coordinates.
1 initialization;
/* Remove data in the range from 0 to 1.5 m to avoid possible noise from the

AUV structure. nscan equal to number of scans. */
2 for i = 1 to nscan do
3 calculate distance dscan from Pscan;
4 if dscan(i) < 1.5 then
5 remove intensity Iscan(i);
6 end
7 end
8 find maximum intensity Iscan,max from the Iscan data;
9 calculate value ρscan related to distance in polar coordinates;
/* Return values for intensities greater than integer value of 80. Output in

polar coordinates. */
10 if Iscan,max > 80 then
11 return micron = [θscan, ρscan];
12 else
13 return micron = [θscan, NaN];
14 end

After locating the obstacle by the mechanical imaging sonar in the ENU coordinate system,
the target’s origin position (No, Eo) is defined by

[
No

Eo

]
=

[
NAV

EAV

]
+ Rx(γ)

[ xobs,init+xobs,end
2

yobs,init+yobs,end
2

]
, (17)

where Rx(γ) is the rotation matrix around x-axis with γ = pi [rad]. This matrix is used to translate
between ENU to NED coordinate system used for the offshore navigation. The Rx(γ) rotation matrix
in 2D is defined by

Rx(γ) =

[
1 0
0 cos(γ)

]
. (18)

Algorithm 2 includes the detected target localization for the perception sensor data array. This algorithm
distinguishes between different targets depending on the consecutive elements in the data array, and the
origin position of the targets is sent to the GNC algorithm to proceed with the autonomous navigation
of the offshore system.
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Algorithm 2: Localization of the detected targets.

Input : scan data array in Cartesian coordinates and RobotPose (position and orientation).
Output : Obstacle origin [No, Eo] calculated in absolute NED coordinates.

1 initialization;
2 translate scan data from BODY to ENU according to (15);
3 define consecutive non-NaN elements of the scan data array as same obstacle data;
4 if obstacle data is non-empty then
5 create vector to distinguish between different obstacles;
6 define obstacle.x and obstacle.y for the different obstacles detected by the scan;
7 define number of obstacles nobs as equal to number of columns in obstacle.x;
8 if nobs > 0 then
9 for i = 1 to nobs do

10 calculate the obstacle origin [No(i), Eo(i)] in NED according to (17);
11 end
12 closely spaced obstacles are defined as same obstacle origin [No, Eo];
13 end
14 end

Figure 7 shows the steps from the scan data obtained from the mechanical imaging sonar in the
BODY reference frame to the final origin position of the detected targets. Figure 7a shows the raw
data from the mechanical imaging sonar. Then, Figure 7b shows the post-processing described in
Algorithm 1. Finally, Figure 7c,d represents the origin position of the targets in NED coordinate system,
with relative to origin [0,0] and absolute coordinates respectively.
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Figure 7. Post-processing of the mechanical imaging sonar data in the target detection algorithm:
(a) Scan data acquired from sonar. (b) Post-processing based on Algorithm 1. (c) Relative position in
NED with origin as [0,0] and calculation of target’s origin. (d) Absolute position in NED of the targets.

Regarding the USV platform, the SICK MRS1000 LiDAR [28] is the primary perception sensor.
This LiDAR has four spread-out scan planes and a multi-echo analysis to be used in harsh environment
applications, as it can avoid the noise produced by fog, rain, or dust. Also, this device has a 275◦

aperture angle, and a working range from 0.2 to 64 m. Thus, in case that the target is above the water
surface, it can be detected by the LiDAR sensor.

The algorithm for target detection is similar to the described for the mechanical imaging sonar.
The only difference is that the LiDAR contains four spread-out scan planes, acquiring three-dimensional
(3D) scan data (see Figure 8a). The target detection algorithm is simplified by translating the received
data to 2D by avoiding the z-axis from the sensor data (see Figure 8b). Figure 8c shows the maximum
detection range and aperture angle with the scan data in the BODY reference frame. Finally, Figure 8d
shows the origin’s position of the targets in the NED coordinate system after applying Algorithm 2.
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Figure 8. Post-processing of the LiDAR in the target detection algorithm: (a) LiDAR scan data in 3D.
(b) LiDAR scan data in 2D. (c) Detection area of the USV in BODY including scan data. (d) Absolute
position in NED of the targets.

The same procedure detects obstacles from the LiDAR for the path-following with the obstacle
avoidance algorithm. After obtaining the origin position [No, Eo] from Algorithm 2, the obstacle avoidance
algorithm can define a safety boundary box around the obstacle [10].

3.2. Guidance System for Multi-Vehicle System

The multi-vehicle system aims firstly to detect a target using the AUV in a specific offshore area,
and after that, sends the location to the USV to do further exploration of the target. Thus, a path-
following algorithm is essential for both AUV and USV subsystems. This algorithm intends to reach
every waypoint of a specific path independent of time. A commonly used method for path-following
is the named LOS guidance, which is chosen as a reference trajectory in this study.

3.2.1. Auv Guidance System

The heading control can use a LOS vector from the AUV position to the next waypoint, similar
to [5]. The LOS path-following controller used in this study is the same as the one defined in [10].
However, the AUV movement includes a heave motion, which is avoided by keeping a constant
depth for the path-following algorithm. This controller computes the course angle ψd based on the
path-tangential angle χp and the velocity-path relative angle χr. The lookahead-based steering can be
implemented related to the heading controller applying the transformation defined as

ψd = χp + χr − β, (19)

where the variable sideslip (drift) angle β [5] has been omitted in this study to simplify the steering
law. The velocity-path relative angle χr establishes that the velocity has the direction facing a path
location that is in a lookahead distance ∆(t) > 0 along of the direct projection [29]. The path-tangential
angle χp and the velocity-path relative angle χr are defined as

χp = atan2(Ek+1 − Ek, Nk+1 − Nk), (20)

χr(e) = arctan(−KPe− KI

∫ t

0
e(τ)dτ), (21)

where (Nk, Ek) and (Nk+1, Ek+1) are the positions of the passed and next waypoint, respectively,
the proportional gain is KP = 1/∆(t) > 0, and KI > 0 represents the integral gain. The cross-track
error e(t) is given by

e(t) = −[NAUV(t)− Nk] sin(χp) + [EAUV(t)− Ek] cos(χp). (22)
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The switching mechanism is declared as a sphere of acceptance for AUVs [30]. This mechanism
selects the next waypoint as a lookahead point if the AUV position lies within a sphere with a radius R
around the position (Nk+1, Ek+1, Dk+1). The sphere of acceptance is defined as

[Nk+1 − N(t)]2 + [Ek+1 − E(t)]2 + [Dk+1 − D(t)]2 ≤ R2
k+1, (23)

where, if the time AUV position (N(t), E(t), D(t)) satisfies Equation (23), the next waypoint
(Nk+1, Ek+1, Dk+1) needs to be selected. Radius R is equal to three AUV lengths LAUV (R = 3LAUV),
as the position is only obtained from the USBL system.

After obtaining the course angle from the LOS path-following algorithm, this algorithm sends
the heading commands to the yaw controller to match the aimed path. The main control system of
the AUV is formed by three separate PID controllers for surge, heave, and yaw motions. Apart from
the heading controller, the heave controller keeps the AUV at a constant depth. Their PID parameters
for heading controller are obtained by using rapid control prototyping based on the Ziegler-Nichols
PID tuning [31] during field tests. Both amplitude Kzn and period Tzn are calculated for the AUV at
the water tank, and then, the PID parameters are defined based on Table 5. Furthermore, a simple
proportional controller has been selected in the heave controller. The surge motion is implemented as
a constant PWM value to the thrusters.

Table 5. PID parameters for AUV.

Controller Tzn [s] Kzn KP KI KD

Yaw 2.10 5.80 0.580 0.276 0.812
Heave - - 300 0.0 0.0
LOS - - 0.333 0.0 0.0

3.2.2. USV Guidance System

Same as the AUV guidance system, USV heading control uses a LOS vector from the USV position
to the next waypoint. The LOS path-following controller used in this study is the same as the one
defined in [10], including the obstacle avoidance capabilities with the safety boundary box approach.
The LOS path-following controller of the USV uses the same path-tangential angle χp defined in
Equation (20), the velocity-path relative angle defined in Equation (21), and the total lookahead-based
steering from Equation (19). The switching mechanism is selected as a circle of acceptance for surface
vehicles [5]. It selects the next waypoint as a lookahead point if the position of the USV lies within a
circle with radius R around (Nk+1, Ek+1). This circle of acceptance is defined as

[NUSV(t)− Nk+1]
2 + [EUSV(t)− Ek+1]

2 ≤ R2
k+1, (24)

where, if the time surface vehicle position (NUSV(t), EUSV(t)) satisfies (24), the next waypoint (Nk+1, Ek+1)
needs to be selected. Radius R is equal to two USV lengths LUSV (R = 2LUSV).

3.2.3. Multi-Vehicle Guidance System

At the beginning of the control scenario, the USV keeps its position in dynamic positioning (DP)
mode while the AUV is trying to search for targets in the coverage area. A DP vessel is a vessel that
maintains its position exclusively using active thrusters [24]. This study considers the use of conventional
controllers with cascade with low-pass and notch filters to simplify the implementation. The control
problem is solved by using PID-controllers for surge, sway, and yaw motions.

The AUV in this study aims to detect a target in a specific offshore area. The coverage area is
defined as a set of waypoints to cover a far-reaching range inside. However, this coverage area has
been substituted by a straight-path to simplify the control scenario. After detecting the object by the
target detection system, it sends a stop command to the AUV, and the vehicle stays in its position until
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it received further instructions from the USV. As the AUV does not contain enough instrumentation to
have a precise localization of the subsystem, the AUV in this study stops its thrusters instead of having
a DP control of its final position. Additionally, if the target detection algorithm does not recognize any
target in the coverage area, the AUV stops after reaching the last waypoint of the predefined path.

After receiving the target position by the USV, the path-following algorithm creates the waypoints
with a straight-line trajectory. The first waypoint matches the current position of the USV at the time
that the target position is received, and the last waypoint is the target position itself. With a constant
distance between waypoints of 10 m, the number of waypoints is related to the length of the straight-line
path. These waypoints are sent to the LOS path-following algorithm to calculate the course angle of the
USV. Furthermore, an additional switching mechanism is included using the same principle as the circle
of acceptance defined in (24) to stop the LOS path-following controller once the USV has reached the
last waypoint of the predefined path. Then, the guidance system does not send any heading or surge
commands to the controllers, and there is no output from the target detection algorithm. In this case,
the USV changes to DP internal algorithm keeping its position constant.

Figure 9 shows the priority control level for the multi-vehicle guidance system. First, the AUV
starts the path-following of the coverage area based on predefined waypoints. The vehicle continues
to the next waypoint until the mechanical imaging sonar detects a target. Then, the AUV stops its
operation, and the target position is transmitted to the USV. The USV keeps its position in DP mode
and, when the target position is received, it starts the path-following with obstacle avoidance operation
with the target position as the final waypoint of the USV trajectory. After reaching the last waypoint,
the USV stops and uses the DP mode to keep its position, allowing the GCS to have further inspection
of the detected target. Additionally, the steering wheel and 3-axis joystick, both forming the manual
control of the USV, provides the safety feature in the autonomous algorithm.

CAN-ID equal to 
manual control?

YES

USV moves in 
manual mode

NO
Is target 

detected?

NO

USV DP mode

Target position is 
sent to the USV.

Is target 
detected?

NO

AUV continues to 
next waypoint

AUV moves in 
autonomous mode

YES

YES
Path-following module 

creates path with target 
position as last waypoint.

USV manual 
control

USV moves in 
autonomous mode

AUV stops

Figure 9. Stateflow diagram for priority control level in the multi-vehicle guidance system. The target
detection algorithm at the AUV enables the autonomous operation of the USV.

4. Experimental Validation

4.1. System Implementation

For this particular study, the USV and AUV platforms incorporate multiple mechatronic systems
to implement the target detection algorithm. Both vehicles include high-level control (computers with
ROS), which performs complex computations and processes the data obtained from localization and
perception sensors, and low-level control (sensors and actuators units), that runs as the basic interface
for vehicle operations. Also, an intermediate-level (or mid-level) control is included, which is the main
link between low-level data acquisition and high-level logic operations.

Figure 10 shows the mechatronic systems used in the USV, including also the connection to the
AUV and external MATLAB-Simulink computer through the main network switch. These devices are
the link to the co-operative autonomous offshore system. In general, the USV platform is equipped with
a payload for navigation (high precision GPS-Compass), LiDAR as the main perception sensor, SeaTrac
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acoustic system for USBL localization, and communication with the AUV, and WiFi for communication
with the GCS. The USV system implementation is the same as the one studied in [10]. For the high-level
control, the ROS master includes the necessary stand-alone ROS-nodes for the path-following with
obstacle avoidance. The display computers act as intermediate-level control for translation between
CAN bus and ROS messages. Also, they are in charge of sending joystick commands to the waterjet
control units based upon priority levels.
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computer

ROS-CAN Display 
Computer

GPS
Compass

Omni-directional 
antenna

Water-Jet Port Control unit

Water-Jet STBD Control unit
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Main computer #1
(ROS master)

LiDAR AUV

MATLAB-Simulink 
computer (ROS node)

USBL #1

Figure 10. System overview of the USV platform with high-level (blue boxes),intermediate-level (white
boxes), and low-level control (purple boxes), including the connection to the AUV platform (adapted
from [10]).

Figure 11 shows the mechatronic systems used in the AUV platform. The AUV is connected
to the USV via a neutrally buoyant tether to have a direct connection between the vehicles.
Similarly to the USV platform, the AUV contains high-level control with the ROS computer and an
intermediate-level control as a bridge between the main ROS computer and the companion computer,
which communicates using the MAVLink protocol. The low-level control includes actuators and
sensors, formed by six thrusters and their respective electronic speed controllers (ESCs), a pressure
sensor for depth measurements, a mechanical imaging sonar as the perception sensor, and the USBL
SeaTrac acoustic system for positioning and communication. Finally, the AUV includes a companion
computer with the flight controller and the ROS computer (Linux computer) connected to a network
switch. The ROS computer performs the complex computations for autonomous operation and
target detection.

Network switch

Pixhawk

Network switch

HD 
camera

ESCs

ROS computer #2 
(ROS master)

Companion 
computer

Mechanical 
sonar

Li-Po 
batteries

USBL #2

Pressure 
sensor

Thrusters

ROS computer #1 
(ROS master)

Figure 11. System overview of the AUV: High-level (Robot Operating System (ROS) computers), intermediate-
level (companion computer and Pixhawk flight controller), and low-level control (thrusters, ultra-short
baseline (USBL), pressure sensor, and mechanical imaging sonar).

The approach used in this study for the multi-robot architecture is multimaster-fkie, which provides
simplicity and ROS compatibility [21]. This package is a fully compatible multi-master implementation
for topic and services transactions. Nevertheless, this implementation can cause some drawbacks due
to the continuous master state scanning and the delay between changes in advertising, as well as
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information exchange. As this study requires a total of three ROS topics, this package is useful as an easy
plug-and-play solution.

Figure 12 illustrates the communication between the USV and AUV platforms, including the
nodes for the multimaster-fkie architecture. The exchanged topics are /target, which is the position
of the detected target, /usv_gps obtained from the USV GPS-compass and used to get the absolute
Cartesian coordinates of the AUV position, and /usv_heading which rotates the USBL coordinate
system according to the heading of the USV. The diagram also includes the links between the high-level,
mid-level, and low-level control in both platforms.

roscore

multi-
master fkie

USBL #2

Mechanical 
sonar

bridge

roscore

multi-
master fkie

GPS

LiDAR

rosserial

ThrustersWaterjets

GNC
GNC

Pressure 
sensor

USBL #1

/target

/USVGPS

/USVHeading

Figure 12. Communication of the autonomous offshore system based on the multimaster-fkie architecture.
Each vehicle shows the internal connection between the sensors and actuators with the rest of the system.

4.2. Modular System for Multi-Sensor Technology

The target detection algorithm uses a modular approach to include target detection from each
perception sensor, path-following, and guidance control from both USV and AUV platforms. Each of
these modules runs a separate ROS node in the autonomous offshore system. This approach has
been previously studied and successfully implemented in [10,32]. However, the algorithms of the
mentioned studies did not include co-operative capabilities between multiple autonomous vehicles.

Figure 13 illustrates the modular architecture with all topics involved, defining the subscribers
and publishers of each topic. The only difference between the two vehicles is the path-following model
at the USV for obstacle avoidance, which is in charge of modifying the USV trajectory using the safety
boundary box approach.

The GPS-Compass obtains the absolute position of the USV in global coordinates, while the
USBL collects the position of the AUV in the BODY reference frame of the USBL. The ROS topic
/odometry in the AUV is based on the low-level serial messages accepted and generated by the SeaTrac
USBL beacons [16]. These serial messages are ASCII-Hex characters of the message string, which are
decoded into an array of bytes representing their values. The ROS topic is generated using the Serial
package [33], which translates the RS232 messages to a ROS topic array. After that, PING messages are
sent from the main USBL #1 beacon located at the USV, and the response from the AUV (USBL #2)
produces the necessary serial messages containing the AUV position in the BODY USBL coordinate
system. Finally, the change from this reference frame to the NED coordinate system is defined by the
combination of a translation and a rotation matrix. These matrices use the initial heading of the USBL
and the /heading and /gps variables from the GPS-Compass.
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Figure 13. Schematic of the modular multi-vehicle guidance system with target detection. All different
modules from USV and autonomous underwater vehicle (AUV) were included. ROS topics /gps,
/heading and /target (purple connectors) are the exchange topics in the control scenario.

The predefined path for the AUV is defined as the ROS topic /path_coverage, which includes the
waypoints for the GNC algorithm in the control module. The GNC guidance algorithm generates the
required AUV heading command, sending this parameter to the AUV controller. The controller generates
the required inputs /rc_channel3, /rc_channel4, /rc_channel5, and sends them to the companion
computer for surge, heave, and yaw motions, respectively, based on the BlueRov-ROS-playground
ROS package [34].

Regarding the USV, the exchanged ROS topic /target contains the target’s origin position. Thus,
once this topic is received in the path-following model, it defines the necessary waypoints to perform
the autonomous mission. These waypoints are sent to the GNC model, where the LOS-algorithm
calculates the required course angle for the controller. Finally, the controller generates the required
joystick commands for surge /Joyu and yaw /Joyr to reach the LOS values. These joystick commands
are sent to the low-level control (display computers) to perform the autonomous USV operation,
using the same outputs as a manual three-axis joystick.

4.3. Experimental Results

The control scenario for this study includes target detection, path-planning, and guidance control in
both offshore vehicles. However, even though the modular ROS architecture provides a computationally
cheap and easy implementation in both offshore platforms, the operation of both platforms in an
offshore scenario depends highly on environmental elements such as wind or wave drift forces. As the
guidance control bases its operation on simple PID controllers without the compensation of these
environmental elements, it makes it highly challenging to gather useful field test data from the offshore
system. Thus, the experimental results of this study are shown in a modular way, testing each of
the subsystems separately to validate the target detection algorithm using multi-sensor technology.
Figure 14a illustrates the location for the AUV and USV field tests at the Pyhäjärvi lake in Tampere,
Finland. The water-flow direction from a hydro-power plant is also defined to show the environmental
drift forces. Figure 14b shows the implementation for the AUV path-following, where the USV stays
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stationary at the harbor. Regarding the USV field test, it is demonstrated in a clear obstacle area at
the lake.
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Figure 14. Control scenario: (a) Location of the AUV (red arrow) and USV (green arrow) field tests at the
Pyhäjärvi lake in Tampere, Finland, being affected by the water-flow (blue arrow) from a hydro-power
plant. (b) AUV and USV platforms at the harbor during the AUV field tests.

The first step in the target detection algorithm is the AUV path-following. This module is tested
at the harbor with a set of three waypoints defined in the NED coordinate system. The surge motion
has a constant PWM value to the thrusters, and the yaw and heave motions are implemented using
separate PID controllers. The LOS-based guidance system calculates the necessary course angle to
reach every waypoint of the predefined path. Figure 15 shows the AUV trajectory using the USBL data
for navigation, where the AUV initial position and orientation are defined as random. The AUV moves
slightly to the left side of the path-following due to the environmental drift forces. As it is shown in
Figure 14a, the field tests have been done in an estuary area of a narrow and shallow lake, where the
flow from a hydro-power plant affects considerably. These flow conditions vary depending on the
river discharge rate. During the time of testing, the river discharge was 38 m3/s to the south direction,
and the wind speed was equal to 6 m/s with southwest wind direction.
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Figure 15. AUV Control scenario: AUV trajectory for the path-following algorithm.

Figure 16a shows the comparison between the input control values for the yaw angle and the field
test data, and Figure 16b displays the same comparison for heave motion. In this case, the multi-vehicle
system contributes to the GPS-Compass data at the USV, providing the ROS topics /gps and /heading
to the USBL acoustic system for positioning.

During the implementation of the GNC model, the target detection algorithm processes the
mechanical imaging sonar data to detect and locate any possible obstacle around the AUV. Figure 7
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illustrates the adequate performance of this module, where a static obstacle (buoy) is detected and
located in absolute NED coordinates.
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Figure 16. AUV Control scenario: (a) Comparison of heading angle from the LOS guidance system
with field-test data. (b) Comparison of the constant depth of 1.5 m with field-test data.

Once the AUV detects and locates the target, it sends the target’s position to the USV platform via
multimaster-fkie architecture. The last control scenario in the experimental results demonstrates the
co-operative autonomous offshore system with the path-following with obstacle avoidance capabilities
of the USV. The USV main computer receives the /target ROS topic from the AUV main computer.
Then, the GNC model provides the necessary surge and yaw motions to reach the target’s position
based on the LiDAR and path-following models. Figure 17 shows the USV trajectory once the path
has been defined according to the ROS topic /target. Additionally, Figure 18 shows the comparison
between the LOS guidance system and the field test data for yaw motion, and Figure 19 shows the
corresponding LOS cross-track error e(t), which demonstrates the correct performance of the guidance
control, even though environmental variables are not considered in this study. During the USV field
tests, the river discharge was 30 m3/s to the south direction, and the wind speed was equal to 3.7 m/s
with south-southwest wind direction.

The experimental results of this study indicate the correct performance of the target detection
algorithm using multi-sensor technology. These results are implemented in a modular way, and they
show the appropriate implementation of each model, including target detection, path-following,
and guidance control. The path-following algorithms in the AUV and USV platforms include some
error due to the environmental variables, such as wind and wave drift forces. These variables need
to be considered to increase the accuracy of the system, and they can be removed by improving the
GNC controllers. Furthermore, the AUV navigation includes only the USBL beacons for positioning,
which is not able to locate precisely the vehicle underwater. By improving the navigation system,
the path-following algorithm will enhance its performance.
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Figure 17. USV Control scenario: USV trajectory for the path-following algorithm, where the last
waypoint is equal to the ROS topic /target.
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Figure 18. USV Control scenario: Comparison of heading angle from the LOS guidance system with
field-test data. After reaching the /target position, the yaw angle is equal to the constant velocity-path
relative angle χr for DP mode.
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Figure 19. USV Control scenario: LOS cross-track error e(t) for the lookahead-based steering law
defined in (22). This error is produced by the environmental variables, as the drift angle β is not
included in the LOS-based guidance control.

5. Conclusions and Future Work

This article was concerned with the target detection using multi-sensor technology in a co-operative
autonomous offshore system. The offshore system had a USV and an AUV, and the fundamental purpose
of the algorithm was to detect an underwater target in a preplanned coverage area. The mathematical
model of the USV, including also the waterjet propulsion system model, was presented to verify
the designed GNC architecture. This model included parameter estimation methods to obtain the
dynamic coefficients using field test data for both surge and yaw motions. This study developed a basic
target detection algorithm for any offshore perception sensors, showing the results for a mechanical
imaging sonar at the AUV and a LiDAR at the USV. The guidance system included the LOS model for
path-following on both platforms. After designing the GNC architecture, both vehicles incorporated
a system implementation of the modular approach with high, intermediate, and low-level controls.
The experimental results showed a field test control scenario that presents the capabilities and adequate
performance of the target detection algorithm.

Future work will include an accurate mathematical model of the AUV for simulation, which requires
the complete navigation data (position, velocity, and acceleration feedback) from the vehicle. Additionally,
the coverage path planning can replace the straight-line trajectory of this study, having more coverage
area and increasing the capabilities of the system. The AUV scenario will include the capabilities of
making decisions in the presence of several obstacles, and further navigational sensors will be installed
for more precise localization of the AUV (e.g., DVL). Finally, future work will also include additional
platforms into the system, as it could be other USV or AUV, or even a UAV, which would increase the
capabilities of the system working in the air.
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Abbreviations

The following abbreviations are used in this manuscript:

USV unmanned surface vessel
AUV autonomous underwater vehicle
SAR search and rescue
UAV unmanned aerial vehicle
DOF degree of freedom
SI system identification
DR dead reckoning
INS inertial navigation systems
DVL doppler velocity log
AHRS attitude and heading reference system
USBL ultra-short baseline
LBL long baseline
EKF extended Kalman filter
IMU inertial measurement unit
GNC guidance, navigation, and control
LOS line of sight
ROS robot operating system
GCS ground control station
AV autonomous vehicle
STDB starboard
NED North-East-Down
FoV field of view
ENU East-North-Up
PID proportional-integral-derivative
DP dynamic positioning
ESC electronic speed controller
1D one-dimensional
2D two-dimensional
3D three-dimensional
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Abstract: Observing the vertical dynamic of phytoplankton in the water column is essential to
understand the evolution of the ocean primary productivity under climate change and the efficiency
of the CO2 biological pump. This is usually made through in-situ measurements. In this paper,
we propose a machine learning methodology to infer the vertical distribution of phytoplankton
pigments from surface satellite observations, allowing their global estimation with a high spatial and
temporal resolution. After imputing missing values through iterative completion Self-Organizing
Maps, smoothing and reducing the vertical distributions through principal component analysis,
we used a Self-Organizing Map to cluster the reduced profiles with satellite observations. These
referent vector clusters were then used to invert the vertical profiles of phytoplankton pigments. The
methodology was trained and validated on the MAREDAT dataset and tested on the Tara Oceans
dataset. The different regression coefficients R2 between observed and estimated vertical profiles
of pigment concentration are, on average, greater than 0.7. We could expect to monitor the vertical
distribution of phytoplankton types in the global ocean.

Keywords: machine learning; inversion; ocean colour; phytoplankton; pigment vertical profile; deep
chlorophyll maximum; Tara Oceans; MAREDAT; pigments; ITCOMP-SOM; Self Organizing Maps

1. Introduction

Phytoplankton is a key player in ocean biodiversity with consequences on fish catch
potential, and climate regulation through carbon dioxide storage [1–4]. A decline in total
phytoplankton population has been observed in Northern hemisphere basins over the
last decade [5] and is projected to strengthen over the 21st century over wide oceanic
regions under all global warming scenarios [6]. This decline is one of the most alarming
consequences of anthropogenic climate change, as highlighted by recent policy-relevant
reports [7] and by a scientists’ warning to a humanity consensus statement in Nature
Reviews [8]. However, an important question is how phytoplankton composition responds
to changes in ocean characteristics (temperature, nutrients, currents, stratification, ...) since
phytoplankton diversity constrains the societal impacts on both climate and fisheries.

Methods to observe the phytoplankton diversity from remote sensing data have
greatly progressed during the last two decades [9,10]. New algorithms have been devel-
oped [11,12] that extract phytoplankton pigments and phytoplankton Functional Types
(PFTs) at sea surface from satellite ocean color data. A major limitation of ocean color
observations is that they only provide information on the sea-surface and miss subsurface
peaks of phytoplankton abundance that can represent a large proportion of the total depth-
integrated quantity. In fact, Morel and Berthon [13] classified the vertical variability into
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“trophic categories” following the surface Chlorophyll-A (Chla) concentration, and showed
that there is a relationship between this concentration and the integrated concentration
of Chla in the water column. Subsequently, based on this previous work, Uitz et al. [14]
determined from surface satellite data the variability of different phytoplankton size classes
(PSC) in the water column based on their contribution to the Chla. However, these studies
are constrained by the empirical relationships between Chla and secondary pigments and
by assumptions on the shape of the vertical pigments profiles and cannot predict atypical
associations [15]. Charantonis et al. [16] presented a combined use of a Self-Organizing
Map with the Hidden Markov Models to infer Three-Dimensional Chla fields starting
from Two-Dimensional (2D) imaging of several variables (surface Chla, Sea Surface El-
evation, solar radiation and wind). Furthermore, Cortivo et al. [17] proposed a neural
network methodology to estimate the sub-surface Chla concentration in open waters from
the upwelling radiation. A similar attempt to infer the vertical Chla profile, by using a
Multi-Layer-Perceptron (MLP), was shown in Sauzède et al. [18], in which the output is pre-
dicted from surface ocean-color estimates and depth-resolved physical properties, derived
profiling floats such as SST and salinity. In addition, finally, Sammartino et al. [19] and
Sammartino et al. ( [20] proposed a regional neural network approach to reconstruct the
3D variability of Chla in the Mediterranean sea. All of these works have targeted the Chla
reconstruction as the main proxy of phytoplankton biomass. However, Uitz et al. [14] and
Sauzède et al. [18] pushed their approach one step further to reconstruct phytoplankton
community structure in terms of cell size.

In the present work, we introduce a new machine learning (ML) methodology to
estimate several phytoplankton pigment profiles from ocean-color data, hindering a multi-
dimensional problem based on the co-estimation of six different pigments. The novelty of
this work lies within the ability of observing the 3D variability of phytoplankton functional
types using these pigments.

Indeed, recent developments in artificial intelligence, combined with the availability
of large datasets of satellite observations, provide enormous potential to learn the hidden
structure of geophysical phenomena such as the one faced in this paper. ML methods
have started to allow the intelligent investigation of such multi-dimensional data sets
in oceanography and biogeochemical studies [21–23]. ML algorithms are now used to
exploit spatial and temporal complex data structures, find patterns, and fuse heterogeneous
sources of information efficiently. The survey in Reichstein et al. [24] describes the recent
achievements and research challenges in the field of geophysics. Cross-fertilization of the
ML with physical and biogeochemical contexts should allow the extraction of relevant
knowledge from the dataset encountered in this study. This functioning is crucial for
a better joint exploitation of observational data for understanding the phytoplankton
variability as observed from space.

To achieve this aim, we used a large global database of pigment concentrations mea-
sured by high-performance liquid chromatography (HPLC) at the surface and through
the water column, the Marine Ecosystem Data (MAREDAT) database [25], alongside with
satellite ocean colour daily matchups. After a series of training and validation experiments
on MAREDAT, we will use, as a final test, the HPLC data provided by Tara Oceans Expe-
dition [26], a pan-oceanic expedition that deployed a holistic sampling of phytoplankton
communities, coupled with comprehensive in situ biogeochemical measurements which
provide the detailed environmental contexts necessary for ecological interpretation of the
phytoplankton ecosystem.

2. Materials and Methods
2.1. Data

This section is devoted to the data we used that can be split into two distinct parts:
in-situ observations and remotely sensed signals. Remote sensed data are abundant and
easy to acquire, but the in-situ observations that are gathered during oceanic campaigns all
around the world are sparse and represent a limited dataset. Due to the difficulty inherent

62



Remote Sens. 2021, 13, 1445

to measurements at sea, the in-situ dataset is heterogeneously sampled in both pigments
and depths. Moreover, both datasets are imperfect and have a percentage of missing data
that can be consequent. The challenge is thus to gather the available information (in-situ
and remotely sensed) and to build a limited but robust dataset allowing the use of machine
learning techniques. This requires the fusion of the two datasets.

2.1.1. Pigment Observations

The MAREDAT database contains concentration measurements obtained at differ-
ent depths and different stations at sea and analysed by HPLC for Chla and secondary
pigments. The stations, defined by their longitude, latitude, and date (day/month/year),
come from 136 scientific cruises around the world which have been compiled and quality
controlled [25].

Besides the Chla concentration, we used 5 pigments that provide information on the
main groups of phytoplankton: Divinyl-Chlorophyll-A (DVchla), 19’hexanoyloxyfucoxan-
thin (19hex), fucoxanthin (fucox), peridinin (perid) and zeaxanthin (zeax). These pigments
were chosen based on their ability to distinguish the main groups of phytoplankton de-
termined from the scientific literature [14,27–29]; Fucoxanthin for diatoms [30], Peridinin
for dinoflagellates [30,31], 19’Hexanoyl-Fucoxanthin for Haptophytes [32], Zeaxanthin for
Cyanobacteria [33,34] and Divinyl Chlorophyll-a for Prochlorococcus [33,34].

The measurements corresponding to depths greater than 300 m have been eliminated
due to low pigment concentration and variability in light-limited environments. A quality
control check was performed to filter the data, described in the following paragraph.

First, measurements with Chla concentrations greater than 3 mg m−3 were rejected,
as they correspond to rare and abnormal high concentrations encountered in open wa-
ters [11]. Afterwards, values of secondary pigments above the 95th percentile for each
pigment were considered outliers and were replaced by missing values [11,29]. In addi-
tion, finally, due to specific physical, optical and biogeochemical properties, stations in
the Antarctic below 50 degrees south were excluded [35–37]. The differences are often
explained by the adaptation or acclimation of polar phytoplankton to extreme environmen-
tal characteristics or because of alterations in the relative abundances and characteristics
of other optically-significant constituents resulting from particular geographical settings,
specifically in the Southern Ocean [35,37–45]. In order to promote the greater variability
of the Chla within the sunlit surface layer, a 9-point logarithmic depth grid was defined
between the surface and 300 m to represent the greater near-surface variability: 5 m, 8.34 m,
13.92 m, 23.23 m, 38.75 m, 64.63 m, 107.81 m, 179.84 m and 300 m. For each station, multiple
measurements occurring in a same depth point were averaged. From the initial longitude,
latitude and date of the HPLC measures, 6807 stations were found and then reduced to
3903 stations which are collocated with satellite observations whose resolution is 4 km × 4
km. The stations that contained more than 50% missing pigment values were excluded,
resulting in a final total of 1614 retained stations. The geographical distribution of the
stations is shown in red in Figure 1.

A separated database has been used in the last section of the paper to test the proposed
methodology. The Tara Oceans HPLC pigment concentration database from the Tara
Oceans Expedition [26] contains HPLC measurements for several pigments at different
depths, from which we select the data corresponding to the 6 pigments we are interested
in (Chla, fucox, perid, 19hex and zeax). The measurements are composed of 211 stations
distributed over the globe, which were combined into 143 stations according to the satellite
resolution and excluding Antarctic stations. This dataset has been cleaned in the same way
as MAREDAT, resulting in 66 stations whose geographic distribution is shown in green in
Figure 1.
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Figure 1. Geographical repartition of the stations. Red dots represent the repartition of the 1614 stations from MAREDAT
constituting the training set, green stars represent the repartition of the 66 stations from Tara constituting the test set.
The magenta diamonds represent the Biosope trajectory, a subset of the MAREDAT dataset, and the blue square indicates
the location where satellite data were obtained in order to test the developed method.

2.1.2. Satellite Observations

The ocean colour satellite data originates from the Globcolour project, carried out by
the European Space Agency (ESA), consists of creating and maintaining a long time-series
of ocean color data from satellite measurements (from 1997 till present). This database is
the result of the fusion of data from various satellite sensors: Sea-viewing Wide Field-of-
view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible
Infrared Imaging Radiometer Suite (VIIRS), Medium Resolution Imaging Spectrometer
(MERIS), and Ocean and Land Colour Instrument (OLCI).

The sensors measure the backscatter and spectral absorption coefficients of light by
the ocean, and the reflectance is then calculated from these parameters. The reflectances
are generated by each sensor from level 2 data (data pre-processed according to sensor
and geophysical parameters). The reflectances are then merged by taking a weighted
average of each sensor output. Meanwhile, Sea Surface Temperature (sst) was obtained
from the Advanced Very High-Resolution Radiometer (AVHRR) instruments on board of
the National Oceanic and Atmospheric Administration (NOAA) 5.3 [46,47]. The satellite
data have undergone quality and flag check and are generated with a spatial resolution of
4 km and a temporal resolution of a day.

Eleven satellite measurements were proposed to be used for retrieving the 6 pigment
concentration profiles that constitute the pigment database: Remote sensing reflectances
at 4 wavelengths (RRS412, RRS443, RRS490, and RRS555), satellite Chla (chla_sat), Sea
Surface Temperature (SST), light attenuation coefficient at 490 nm (KD490), depth of the
euphotic layer (ZEU), depth of the warmed layer (ZHL), photosynthesis available radiation
(PAR) and its coefficient of attenuation (KDPAR).
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The choice of the satellite variables is based on the findings of previous studies [13,14].
It has been shown in these studies that surface Chla and the euphotic depth (ZEU) are the
main variables explaining the vertical variability of the Chla in the water column. However,
since we are dealing with several pigments, it is primordial to use the surface reflectance
at different wavelengths rather than only satellite-derived Chla to consider the influence
of other pigments’ variability on the satellite-detected signal. Physical factors are also
investigated to take into account the influence of light (PAR, KDPAR, KD490, ZEU) and
heating (SST, ZHL) on this vertical variability. In order to validate our use of the Satellite
data, we compared the Chla in-situ data (Section 2.1.1) to the Globcolor Chla product.
The calculated regression coefficient and the Spearman correlation were 0.67 and 0.77,
respectively.

The two separate datasets were merged into a final reduced database colocating the
in situ observations with the satellite data. Finally, the database subsequently used for the
construction of the method, noted D, of dimension (1614, 65), where 1614 is the number of
in situ profiles (stations) colocalised with satellite images, noted zi, and 65 the number of
variables, consisting of 54 in-situ HPLC pigment variables (6 pigments, 9 depths each) and
11 satellite variables.

2.1.3. Combined Dataset

The dataset resulting from the merging of the two databases is of high dimension,
due to the inclusion of the concentrations of the six pigments at nine depths, and show
scattered data as it can be seen in Table 1. The omission of localization elements such
as the latitude and longitude in this study is tied to a lack of sufficient data to prevent
over-fitting. Furthermore, since phytoplankton are associated with nonlinear population
dynamics [48], there exist strong nonlinear relationships among the different concentrations
of photosynthetic pigments. We are therefore working on high-dimensional and scattered
pigment data, with strong nonlinear relationships. The development of a method for
in-depth reconstruction then requires the choice of a suitable technique that can manage
these nonlinear relations.

Table 1. Missing data for each pigment (among the 9 depths) and for the satellite variable of the
experimental dataset D.

Pigment Missing Data (%)

Chla 30
DVChla 48

19hex 32
fucox 30
perid 32
zeax 40

Satellite data 70

2.2. Inverse Method: From Satellite Data to Vertical Profiles

In order to infer the vertical distribution from vertical profiles, we need to enchain
different methodological phases that rely on Artificial Neural Networks and dimension
reduction techniques. These methods are briefly outlined in this section, before detailing
the specific implementation.

2.2.1. Algorithms

Neural approaches can be used to study nonlinear interactions within complex self-
adaptive systems, such as marine ecosystems in relation with remote sensing measurements.
Unsupervised approaches make it possible to extract these nonlinear relationships without
any a priori assumptions.
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The Self-Organizing Maps (SOM) [49] are unsupervised neural networks, whose
objective is to cluster a high dimensional dataset D ∈ Rn into a discrete representation in
reduced dimensions, generally on a two-dimensional neural grid called a “map”. This
grid layout allows the introduction of the notion of neurons’ neighborhood during the
clustering so that two clusters that are near on the topological map gather similar data,
thanks to the topological ordering of the map. They have the advantage of having high
interpretability and make it possible to find relationships between the distribution of data
on the map and the main explanatory variables. This is particularly useful in the case of
complex and noisy data—as it is the case with climatology/oceanography data where they
have been used in a large variety of studies [50,51].

After training, each cluster is defined by a referent vector WC, which represents the
mean value of the data assigned to it, and by its position on the topological map, which
indicated the clusters which are close to it. The attribution of a data Z to a class is made
by comparing it to the set of referent vectors {WC; C ∈ SOM} and attributing them to the
nearest referent vector Wc according to the Euclidean distance (C is called Best-Matching
Unit or BMU) (1):

BMU(Z, SOM) = argminC∈SOM

√
n

∑
i=1

(Zi −WCi )
2, (1)

where Z ∈ Rn. The SOM can be used in the context of completing missing data [52] by
considering a modification of this distance. In that case, the projected vectors Z can have
components Zi whose values are missing. Under these conditions, the distance between a
vector Z and the referent vectors Wc of the map is the Euclidean distance that considers
only the existing components (the Truncated Distance or TD hereinafter). The use of the
TD allows for taking into account the information embedded in the incomplete data.

The Iterative Completion SOM (ITCOMPSOM) method is an iterative data completion
method derived from the SOM. When a data vector presents missing values, the method
uses a modified TD, denoted TDs as seen in Equation (2). The modified TD makes use of
the correlations between the missing variables and those present to weight the Euclidean
distance so that the variables most correlated to the missing values will more strongly
influence the attribution to a cluster:

TDc
s(Z, Wc) = ∑

i∈avail.

((
1 + ∑

j∈missing

(
corij

)2
)
×
(
Zi −WCi

)2
)

,

where avail. corresponds to the components of Z without missing values, while missing
to those with missing values. The correlations corij are calculated pairwise between all
variables over the training data set before applying the method.

Furthermore, ITCOMPSOM iteratively completes the dataset, imputing the missing
values of a data vector several times during the iterations, by training successively bigger
topological maps, which combine previously completed data and new data with missing
values at each iteration. This method allows a better data completion than the basic SOM
method, for data with up to 75% missing data. Moreover, it is adapted to the completion of
oceanographic data in which the variables are linked [23,53].

Finally, we also used Principal Component Analysis (PCA) [54], which is an orthogonal
linear transformation of a dataset that projects the values onto new axes that best fit the
data. These new axes are selected to explain a maximum amount of variability of the
initial data. It can also be seen as a filtering tool, the first axes representing most of the
information embedded in the data set, the remaining axes being associated with dataset
noise. The specific number of modes was selected by cross-validation and are presented in
Section 3.1.
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2.2.2. Sat2profile Methodology

The aim of Sat2profile is to retrieve the vertical profile using the satellite data only.
Due to the huge number of missing data and the level of noise occurring in the observation
data, this requires a complete methodology taking each problem into account. Sat2Profile
can be split into three main phases:

1. Selecting an initial set of explanatory variables proposed by an expert.
2. Completing the missing data occurring on the pigment observations using ITCOMP-

SOM.
3. Applying a PCA to filter and compress the vertical profiles to be retrieved by Sat2Profile.

During this phase, two hyper parameters are determined: the number of PCA (naxesi )
and the size of the map.

At the end of these 3 phases, we perform a variable selection. We fix the hyper
parameters naxesi and the size of the map, and we test all the possible combinations
of explanatory variables reiterating the Sat2Profile inversion for each subset. Figure 2
summarizes the methodological process.

Figure 2. Flow diagram of the Sat2Profile. A 500-fold cross-validation was effectuated on the training data.

In our study, the different phases were implemented in the way presented below.

1st Phase: we chose to use the satellite variables RRS412, RRS443, RRS555, KD490, ZEU,
and ZHL that we expected to have the best ability to retrieve the vertical distributions
of the pigment concentrations. As described in Section 2.1.2, the surface reflectance at
different wavelength is used to consider the influence of the pigments’ variability on the
satellite-detected signal. KD490, ZEU and ZHL are also used to take into account the the
sun light and heating effects.

2nd Phase: The learning dataset D has two distinct components: the satellite data that can
have missing data and the pigment profiles. The pigment profiles were completed using
ITCOMPSOM. The most complete part of the dataset (106 observations from the 1640,
across the globe) is set aside as a validation set. Parts of these data were artificially masked.
The ITCOMPSOM method was trained with the rest of the dataset and used to complete the
validation set. The completed data and the corresponding observed data were compared
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computing R2 and RMSE. This process was repeated a large number of times (500 times)
and an average assessment of completion was obtained, shown in Table 2.

3rd Phase: The completed pigment data were collocated with the satellite measurements
and combined into a single dataset. Then, a smoothed version of the pigment dataset
was constituted by using PCAs. For a given number of axes naxes, a learning dataset was
constituted with 1614 lines and 11 + naxes columns corresponding, respectively, to the
satellite and the smoothed PCA profiles. All the variables of the resulting dataset are
centered-reduced and are used as a training set for a SOM. The cross validation (described
in Section 2.2.3) resulting from the 9 experiences (dimension of the profiles) allows the
determination of naxesi .

Finally, after having selected the optimal number of axes to keep, we analyzed the whole
Sat2Profile methodology, testing all the combinations of the 11 satellite variables to be used
as inputs allowing the best retrieval of pigments’ vertical profiles. The exact hyperparam-
eter values are provided in the code (https://github.com/AgathePuissant/SOM_PCA
(accessed on 1 March 2020)). At that time, we found that the 6 selected variables (RRS412,
RRS443, RRS555, KD490, ZEU and ZHL) were the optimal combination of variables to
be used.

Table 2. Validation results for the completion of the data by ITCOMPSOM.

Pigment R2 RMSE (mg m−3)

Chl-A 0.70 0.181
DVChl-A 0.78 0.016

19-Hex 0.64 0.032
Fucox 0.74 0.035
Perid 0.53 0.005
Zeax 0.73 0.014

2.2.3. Methodological Workflow
Training Phase

First, the training dataset was completed using the ITCOMPSOM method. A PCA
was performed on the matrix of in situ data for each pigment of dimension (1614,9). These
PCAs resulted in 9 principal components for each pigment. A certain number naxes of these
principal components were kept (the precise number for each pigment was chosen through
optimization), resulting in 6 pigment datasets of dimensions (1614, naxesi ), with i ∈ [1 . . . 6].
The pigment data were colocated with the satellite measurements and combined in a single
dataset. All the variables of the resulting dataset were centered-reduced and were used as
a training set for a SOM.

Retrieval Phase

After the initial training, the SOM can be used to reconstruct the missing ∑i naxesi

variables of in situ-data from the available nsatvar variables of satellite-derived data. Each
observation was assigned to its Best Matching Unit, the neuron in the map whose referent
vector was the closest in the Euclidean sense (1). The missing data were then replaced
by the values of the corresponding components of the assigned referent vector. The PCA
coordinates of the profiles were retrieved from the satellite data input, and then the profiles
were reconstructed in the data space using the determined PCA parameters.

Cross-Validation of the Model

To assess the performance of the method, a 500-fold cross-validation procedure has
been set up: the preprocessed database used is randomly segmented into 500 blocks.
In each iteration, 499 out of the 500 blocks are used as a validation set. The pigment data
from the validation set is masked, only the satellite variables data are kept and used to
infer the missing values.
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The SOM is trained on the training set, and the retrieval procedure is applied to the
validation set. The estimated pigment data from the validation set is compared to the
corresponding observed data that had been masked beforehand. This process is repeated
on the 500 blocks.

The performance of the retrieval is assessed by computing the R2 (2), Root-Mean
Squared Error (RMSE) (3) and Spearman correlation coefficient (4) between each observed
and estimated profile. They are then averaged for each pigment.

R2(Obsi, Esti) = 1−
∑n

j=1(Obsij − Estij)
2

∑n
i=1(Obsij −Obsi)2

, i ∈ [1, m] (2)

RMSE(Obsi, Esti) =

√
∑n

j=1(Obsij − Estij)2

n
, i ∈ [1, m] (3)

ρSpear(Obsi, Esti) = 1−
6 ∑n

j=1 d2

n(n2 − 1)
, i ∈ [1, m] (4)

where d is the rank difference among the vectors, n the number of components in the vector
(n = 9 because the profiles are composed of 9 depths) and m the number of observations in
D (m = 1614).

The R2 and RMSE are computed from the linear regression between the observed
and estimated values for each profile and allows the quantification of the error committed
during the profile retrieval. The Spearman correlation coefficient accounts for nonlinear
relationships among variables, and thus allows an assessment of the correspondence of the
shapes of the estimated versus observed profile.

2.2.4. Test of Spatial and Temporal Coherence

Once the inversion method has been implemented, the results obtained must be
spatially and temporally consistent. To test the results of the method on spatially varying
data, the inversion method was applied to observations in a particular ocean cruise transect.
The Biosope cruise transect (http://www.obs-vlfr.fr/proof/vt/op/ec/biosope/bio.htm
(accessed on 1 March 2020)) was selected based on the quantity of satellite data available to
invert pigment profiles from. The Biosope transect is composed of 49 stations, 28 of which
contain enough satellite data to perform an inversion. This transect data come from the
training set and therefore was used to verify the spatial consistency of the results from our
inversion method. On the other hand, to validate the consistency over time of the data
obtained by inversion, we selected a station located in a temperate zone (47°N, 8°W) and
therefore where phytoplankton show a well-marked seasonality. The weekly satellite data
(averaged over 8 days) observed during the year 2019 from January to December were
extracted from a 6 × 6 pixel box around the location coordinates. Pigment profiles were
inverted from satellite data and then the profiles were spatially averaged for each week,
resulting in 46 weekly average pigment profiles.

3. Results
3.1. Parameters of the Method

The data were completed using the ITCOMPSOM method with a two-dimensional
hexagonal grid with a final size of 27 × 15 (405 neurons) on the SOM and 10 iterations.
The SOM consists of the same structure of a two-dimensional hexagonal grid with a size
of 27 × 15 (405 neurons), determined heuristically by taking into account the number of
observations in the training set and the number of observations per class, to have a good
distribution of data on the neural map. Cross-validation experiments of the performance of
the method helped to determine the number of PCA coordinates to keep for each pigment.
The first two PCA coordinates were kept for each pigment, corresponding to between 69%
and 82% of the explained variance depending on the pigment. After cross-validating the
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method for every combination of the considered eleven satellite variables, the six selected
variables were RRS412, RRS443, RRS555, KD490, ZEU and ZHL.

3.2. Cross Validation Performance

The results of the cross-validation of the method using the PCA preprocessing with
two axes were compared with the results of the cross-validation of the method without
the smoothing of the profiles by the PCAs given in Table 3. The average R2 and average
Spearman’s correlation coefficient per profile increase with the use of profile smoothing
by PCA, while the average RMSE per profile decreases. As an example, for fucoxanthin,
the average R2 per profile increases from 0.4 to 0.83 with the use of PCA smoothing in the
inversion method. On average, the Spearman’s per profile correlation coefficient increased
by 0.26, the R2 per profile increased by 0.31, and the RMSE per profile was divided by 2.17.
Globally, for the method using a PCA reduction, the average R2 per profile ranges from
0.68 to 0.83, and the average Spearman correlation coefficients per profile range from 0.77
to 0.84.

Table 3. Cross-validation results for the method without PCA preprocessing, and with PCA preprocessing (two axes).

Mean Spearman Correlation Mean R2 Mean RMSE (mg m−3)
Mean RMSE

(% of Mean Concentration) Mean Concentration
(mg m−3)

Without PCA With PCA Without PCA With PCA Without PCA With PCA Without PCA With PCA

Chla 0.65 0.81 0.56 0.81 0.083 0.036 36.4 15.8 0.2280
DVChla 0.475 0.79 0.42 0.68 0.011 0.006 43.5 23.7 0.0253

19hex 0.62 0.82 0.53 0.81 0.02 0.008 35.4 14.2 0.0565
fucox 0.52 0.84 0.4 0.83 0.012 0.005 40.3 16.8 0.0298
perid 0.42 0.78 0.34 0.76 0.002 0.001 45.5 22.7 0.0044
zeax 0.59 0.77 0.57 0.81 0.01 0.005 30.2 15.1 0.0331

To assess the order of magnitude of the information lost by the PCA smoothing,
the initial profiles have been compared before and after the PCA preprocessing with two
axes, using the RMSE averaged over all the observations for each pigment. The results
are presented below in Table 4 along with the RMSE estimates from the cross validation,
and represent the uncertainties associated with each estimated pigment vertical profile.
Clearly, the percentage of errors for the two steps, PCA and SOM, have the same order
of magnitude.

Table 4. Mean RMSE results for the PCA step of the method and the SOM step of the method.

PCA SOM

Mean RMSE
(mg m−3)

Mean RMSE
(% of the Mean Concentration)

Mean RMSE
(mg m−3)

Mean RMSE
(% of the mean Concentration)

Chla 0.046 20.2 0.036 15.8
DVChla 0.006 23.7 0.006 23.7
19hex 0.011 19.5 0.008 14.2
Fucox 0.005 16.8 0.005 16.8
Perid 0.001 22.7 0.001 22.7
Zeax 0.005 15.1 0.005 15.1

3.3. Test Performance

Once the method has been trained on the ITCOMPSOM completed and PCA pre-
processed data, the retrieval procedure was applied to satellite data colocated with the
66 Tara dataset stations. The Tara profiles were completed using ITCOMPSOM to allow
the comparison between observed and estimated profiles. The estimated pigment pro-
files were compared to the completed observed ones. The results are shown in Table 5.
The comparison criteria are in the same order of magnitude as the results of the cross-
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validation experiment. These results suggest a good generalization capability of the method
to exterior data.

Table 5. Results of the inversion of the Tara test set using the method with PCA preprocessing (two axes).

Mean Spearman Coefficient Mean R2 Mean RMSE (mg m−3) Mean RMSE (% of Mean Concentration)

Chla 0.75 0.74 0.042 18.4
DVChla 0.74 0.65 0.012 47.4

19hex 0.78 0.74 0.008 14.2
fucox 0.82 0.79 0.003 10.1
perid 0.72 0.72 0.001 22.7
zeax 0.80 0.86 0.007 21.1

3.4. Spatial and Temporal Coherence

The pigment profiles of the Biosope cruise trajectory were estimated from the daily
satellite data using our method. The results for the main pigment (Chla) and a secondary
pigment (DVChla) are shown in Figures 3 and 4. In these figures, as the cruise trajectory
crosses the Pacific Ocean longitudinally, we chose to represent the pigment concentration
values along the longitude on the x-axis and the depth values on the y-axis. The profiles,
smoothed using PCAs, which are represented in Figures 3a and 4a, are the final profiles
that we aimed at retrieving from satellite data. The inverted profiles are represented in
Figures 3b and 4b, the black areas corresponding to the longitudes where there were no
matched satellite data available for any of the six selected satellite variables. Figures 3c
and 4c show the difference between observed and estimated profiles.

In Figures 3b and 4b, we show the profiles estimated by inversion, which can be
compared with Figures 3a and 4a. Globally, we find the same zones and the same depths
for the concentration maxima. The same pattern of the maximum concentration depth
as a function of longitude is found both in the estimated and observed profiles, i.e., close
to the surface in the west, then reaching deep depths between 107.81 m and 179.85 m at
intermediate longitudes and again close to the surface in the eastern longitudes. However,
some profiles are overestimated, other underestimated, which are respectively shown in
red and blue in Figures 3c and 4c. This test of the inversion method on the Biosope cruise
trajectory satisfactorily accounts for the inter-pigment dynamics along a continuous spatial
observation. The spatial coherence of the trajectory is preserved after the inversion from
satellite data.

The weekly pigment profiles in the ocean area (47°N, 8°W) were inverted from satellite
data by our method for the year 2019. The inversion was performed using satellite data not
included in the training dataset. Only satellite data were available at this location, but the
temporal characteristics of phytoplankton are known: the region corresponds to the North
Atlantic Biogeochemical province, with a temperate climate and a seasonal variation of
phytoplankton. Therefore, a spring bloom of phytoplankton is expected. This inversion
thus allows us to test the method on new data and to verify the temporal coherence
of the results obtained with the environmental characteristics. We show the results for
the estimated Chla, fucox, and zeax profiles with respect to time. The Chla concentration
represents the occurrence of the phytoplankton as a whole, and the fucox and zeax represent
the composition of the phytoplankton community. These two secondary pigments are
indicators of two main groups of phytoplankton, fucox being a diagnostic pigment for the
diatoms [30] and zeax being a diagnostic pigment for the prokaryotes [33,34].

Figure 5 shows Chla profiles as a function of depth and time (in weeks). Between weeks
10 and 18, which corresponds to mid-March to early May, the Chla reaches high concentra-
tions in the water column with a maximum at the surface between 5 and 8 m. Following
that, the surface Chla concentration decreases, showing a DCM between 23 and 64 m.
As seen in Figure 6, there is a concentration peak of fucox at a depth of about forty meter at
the same time as the Chla peak, between weeks 10 and 18. In Figure 7, we observe a different

71



Remote Sens. 2021, 13, 1445

dynamic for the zeax concentration with respect to the two other pigments: the concen-
tration peak occurs later during weeks 19–37 corresponding to the late spring/summer
seasons. The increase of zeax happens at the surface layers (between 5 and 23 m).

(a)

(b)

(c)
Figure 3. Result of the inversion of Chla profiles from the satellite data of the Biosope trajectory.
(a) Smoothed observed Chla profiles; (b) estimated Chla profiles; (c) difference between estimated
and observed.

(a)
Figure 4. Cont.
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(b)

(c)
Figure 4. Result of the inversion of the DVChla profiles from the satellite data of the Biosope
trajectory. (a) Smoothed observed DVChla profiles; (b) estimated DVChla profiles; (c) difference
between estimated and observed.

Figure 5. Chla inverted profiles over time.

Figure 6. Fucox inverted profiles over time.
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Figure 7. zeax inverted profiles over time.

4. Discussion and Conclusions

We presented, in this paper, robust estimations of the vertical variability of six phy-
toplankton pigments (Chla, fucox, 19hex, perid, zeax and DVChla) from the surface to a
depth of 300 m, using satellite surface measurements at high spatial (global, 4 km) and
temporal (daily) resolution. These estimations are derived from a new machine learning
methodology proposed in this paper, Sat2Profile, based on a SOM, and trained and vali-
dated using the fusion of an in situ global HPLC database, MAREDAT, and an ocean colour
satellite database. After a series of cross-validations and checking the coherence of the
results, a validation experiment was performed on a new database introduced as a test set
from Tara Oceans measurements. The different experiments show a satisfying performance.
The different regression coefficients R2 between observed and estimated vertical profiles
of pigment concentration and the Spearman correlation coefficient are greater than 0.7.
The reconstruction of the 3D distribution of phytoplankton pigments is an innovative result
that gives a better understanding of the PFTs distribution in the water column.

Works attempting to predict vertical pigment profiles from surface data targeted the
Chla and were based on the surface Chla and/or assigned with other physical factors such
as SST and currents ([13,14,17–20]). However, during the optimization process of Sat2Profile,
we showed that the problem is more complex when dealing with different pigments at the
same time, each with their own particular variability. SST and Chla surface information
were not enough to estimate the vertical profile of the pigments. Therefore, several bio-
optical parameters, such as remote sensing reflectance at several wavelengths, and the
information about the euphotic layer were essential to infer pigment vertical variability
from surface data. The necessity of having euphotic depth as an input aligns our study with
the reasoning of [13]. In addition, in [55], the authors proved that optical and radiometric
information are effective indicators of the vertical dynamics of pigments. Estimating
phytoplankton pigment variability using a temporal dataset of satellite data within the
North Atlantic biogeochemical province showed that pigments such as Zeaxanthin and
Fucoxanthin exhibit different temporal variability over time. Furthermore, the depth of the
pigment concentration maximum is not the same for each pigment; this was observed in
in-situ studies [56] and have been also observed in the MAREDAT database. These findings
can be related to the community shift in response to seasonal changes and variations of
environmental factors. The fucox peak concentrations indicate a bloom dominated by
diatoms. The overall low zeax concentration highlights that the fraction of prokaryotes
at this time is limited. Later, with the heating of the surface layer at the beginning of
the summer until the end of September, the fucox decreases while the zeax remains the
same. In such events of stratification of the water column in response to higher SST,
prokaryotes are the most favored by these environments [57,58]. This analysis of pigments
dynamics along time is consistent with studies done in the North Atlantic Biogeochemical
region [59,60].

The Biosope experiment to reconstruct the pigment variability along the ship transect
using Sat2Profile showed satisfying concordance. The transect crosses a region characterized
by the presence of the southern sub-tropical gyre, which is known by its ultra-oligotrophic

74



Remote Sens. 2021, 13, 1445

environment. In other terms, this nutrient poor environment is represented by the lowering
of the overall Chla concentration in this gyre and deepening of the DCM as seen in the
in-situ database. Sat2Profile estimation of Chla and DVChla shows an interesting ability of
the method to capture the deep DCM and the variability of pigments using surface satellite
data in that region of the southern Pacific.

Indeed, the inter-pigment relationships are specific to regions and to trophic states ([13]),
and the variability of these pigments is capable to reflect the influence of environmental
factors such as nutrient dependency and water masses on the phytoplankton community
structure ([61,62]).

Uitz et al. and Sauzede et al. [14,18] exploited the data obtained by HPLC to deter-
mine the different phytoplankton size classes occurring in the water column based on
their contribution to the total Chla [14]. The pigment variability seen in our previously
described analysis can be compared to the results of both studies. Indeed, fucox is usually
used to estimate microphytoplankton relative abundance and zeax for picophytoplankton.
The variability of these two size classes is seen to be antagonistic in the work of [14,18];
more microphytoplankton in a Chla-rich water column, and more picophytoplankton in
poor oligotrophic waters. This corresponds also to the variability of fucox and zeax in our
temporal study.

However, the difference brought by the presented method is that PSC estimations
in [14,18] were constrained by the empirical relationships between Chla and secondary pig-
ments and by a priori hypotheses on the shape of the vertical pigments profiles [15]. In order
to avoid biases introduced with these inter-pigment empirical relationships, Sat2Profile
aims to estimate phytoplankton pigments as a first step. In a later stage, Sat2Profile unfolds
the opportunity to observe phytoplankton groups derived from pigments and to assess the
retrieval of these PFTs from empirical relationships.

The method we present is globally applicable (excluding the Southern Ocean) and
generates daily products from 1997–present; this opens the way for multiple new studies.
However, several limitations cannot be denied. There are uncertainties resulting from the
error propagation in the Sat2Profile: through the data completion and the loss of information
during the PCA filtering until the retrieval from satellite data. These errors were quantified
and addressed in this paper. However, the information retrieved using Sat2Profile is one
step toward closing the gap of knowledge in the distribution of phytoplankton groups,
especially below the surface where sampling of phytoplankton diversity measures has
been very scarce.

The existence of direct links between pigment concentrations and phytoplankton
functional types implies that we can use this approach to attempt to study their global
vertical distribution. This would improve the global spatio-temporal monitoring of the
biological pump, crucial in constraining our estimations of the ocean’s absorption capacity
in a changing climate.
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Abbreviations
The following abbreviations are used in this manuscript:

AVHRR Advanced Very High-Resolution Radiometer
Chla Chlorophyll-A
Chla_sat Chlorophylle-A Satellite measured
DVChla Divinyl Chlorophyll-A
ESA European Space Agency
fucox fucoxanthin
HPLC High Performance Liquid Chromatography
ITCOMP-SOM Iterative Completion Self Organizing Map
KDPAR coefficient of attenuation of photosynthesis available radiance
KD490 light coefficient of attenuation at 490 nm
MERIS Medium Resolution Imaging Spectrometer
MODIS Moderate Resolution Imaging Spectroradiometer
NOAA National Oceanic and Atmospheric Administration
OLCI Ocean and Land Colour Instrument
PCA Principal Component Analysis
PAR Photosynthesis available radiance
perid peridinin
PFTs Phytoplankton Functional Types
PSC Phytoplankton Size Classes
RRS412 Remote Sensing Reflectance at 412 nm
RRS443 Remote Sensing Reflectance at 443 nm
RRS490 Remote Sensing Reflectance at 490 nm
RRS555 Remote Sensing Reflectance at 555 nm
SOM Self Organizing Maps
SST Sea Surface Temperature
VIIRS Visible Infrared Imaging Radiometer Suite
zeax zeaxanthin
ZEU Depth of the euphotic layer
ZHL Depth of the warmed layer
19hex 19’hexanoyloxyfucoxanthin
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Abstract: Multispectral polarimetric light field imagery (MSPLFI) contains significant information
about a transparent object’s distribution over spectra, the inherent properties of its surface and its
directional movement, as well as intensity, which all together can distinguish its specular reflection.
Due to multispectral polarimetric signatures being limited to an object’s properties, specular pixel
detection of a transparent object is a difficult task because the object lacks its own texture. In this
work, we propose a two-fold approach for determining the specular reflection detection (SRD) and
the specular reflection inpainting (SRI) in a transparent object. Firstly, we capture and decode 18
different transparent objects with specularity signatures obtained using a light field (LF) camera.
In addition to our image acquisition system, we place different multispectral filters from visible
bands and polarimetric filters at different orientations to capture images from multisensory cues
containing MSPLFI features. Then, we propose a change detection algorithm for detecting specular
reflected pixels from different spectra. A Mahalanobis distance is calculated based on the mean and
the covariance of both polarized and unpolarized images of an object in this connection. Secondly,
an inpainting algorithm that captures pixel movements among sub-aperture images of the LF is
proposed. In this regard, a distance matrix for all the four connected neighboring pixels is computed
from the common pixel intensities of each color channel of both the polarized and the unpolarized
images. The most correlated pixel pattern is selected for the task of inpainting for each sub-aperture
image. This process is repeated for all the sub-aperture images to calculate the final SRI task. The
experimental results demonstrate that the proposed two-fold approach significantly improves the
accuracy of detection and the quality of inpainting. Furthermore, the proposed approach also
improves the SRD metrics (with mean F1-score, G-mean, and accuracy as 0.643, 0.656, and 0.981,
respectively) and SRI metrics (with mean structural similarity index (SSIM), peak signal-to-noise
ratio (PSNR), mean squared error (IMMSE), and mean absolute deviation (MAD) as 0.966, 0.735,
0.073, and 0.226, respectively) for all the sub-apertures of the 18 transparent objects in MSPLFI dataset
as compared with those obtained from the methods in the literature considered in this paper. Future
work will exploit the integration of machine learning for better SRD accuracy and SRI quality.

Keywords: specular reflection detection; specular reflection inpainting; transparent object; multi-
spectral polarimetric imagery; light field

1. Introduction

The emerging significance of specular reflection detection and inpainting (SRDI) has
been actively pursued in the computer vision community over the last few decades. The
presence of specular reflection creates potential difficulties for tasks such as detection,
segmentation, and matching, as it captures significant information about an object’s distri-
bution, shape, texture, and roughness features that cause discontinuity in its omnipresent,
object-determined diffuse part [1]. Once specular reflection is detected, it may be used to
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synthesize a scene [2] or to estimate lighting direction and surface roughness [3,4]. While
passing through the surface of a transparent object, some incoming lights are immediately
reflected back into the space and are called surface or specular reflections, and others
penetrate the surface and then reflect back into the air body or diffuse reflections [5]. Due
to a transparent object lacking its own texture, it is always a difficult and challenging task
to detect its specular reflections and inpainting [6]. The potential application of specular re-
flection detection and inpainting in transparent objects through multispectral polarimetric
light field imagery (MSPLFI) includes 3D shape reconstruction, detection and segmentation,
surface normal generation, and defect analysis.

By integrating advanced communication tools and techniques, multispectral polari-
metric imagery (MSPI) can extract an object’s meaningful information, such as surface
features, shapes, and roughness, in optical sensing images [7]. Potential applications of it
could investigate acquiring an imaging system that performs image denoising [8], image
dehazing [9], and semantic segmentation [10]. Multispectral imaging is a mode commonly
reported in the literature for enhancing color reproduction [11], illuminant estimation [12],
vegetation phenology [13,14], shadow detection [15], and background segmentation [16,17].
Additionally, although a multispectral cue is capable of generating information through
penetrating deeper into an object, it is sometimes infeasible for extracting the object’s
inherent features. Together with a polarimetric cue, where specific photoreceptors are used
for polarized light vision, MSPI is applied in applications such as specular and diffuse
separation [18], material classification [19], shape estimation [20], target detection [21–23],
anomaly detection [24], man-made object separation [25], and camouflaged object separa-
tion [26]. Recently, a light field (LF) cue has gained popularity in the graphics community
for detecting and segmenting some complex tasks, such as transparent object recogni-
tion [27], classification [28], and segmentation [29] from a background, by analyzing the
distortion features of a single shot captured by an LF camera. Each pixel in an LF image
is capable of having six degrees of freedom to extract the hidden information unable to
be captured by MSPI cues. The aim of the proposed research is to use the multisensory
cues of MSPLFI, which can effectively detect the specular reflection and the corresponding
suppression in a transparent object.

Firstly, it is necessary to separate specular reflection from diffuse reflection. Each pixel
in MSPLFI can be defined as the sum of specular and diffuse reflections following the
dichromatic reflection model [30] as

L(λ, ρ, L, θi, θr, g) = LSpec(λ, ρ, L, θi, θr, g) + LDi f f (λ, ρ, L, θi, θr, g), (1)

where Ls(λ, ρ, L, θi, θr, g) is the specular reflection, Ls(λ, ρ, L, θi, θr, g) the diffuse
reflection, λ the wavelength in the multispectral visible band (400 nm–700 nm), ρ the
orientation of the polarimetric filter (rotating at 0◦, 45◦, 90◦, 135◦), L the LF direction in
which the light rays are traveling in space, and θi, θr, g the geometric parameters indicating
incidence, viewing, and phase angles, respectively.

The individual components in Equation (1) can be further decomposed into two
parts, composition and magnitude, as in Equation (2). Composition is a relative spectral
power distribution (cSpec (surface reflection) or cDi f f (body reflection)) that depends on only
wavelength, polarization, and LF but is independent of geometry. Magnitude is a geometric
scale factor (ωSpec or ωDi f f ) which depends on only geometry and is independent of the
wavelength, polarization, and LF.

L(λ, ρ, L, θi, θr, g) = ωSpec(θi, θr, g)cSpec(λ, ρ, L) + ωDi f f (θi, θr, g)cDi f f (λ, ρ, L), (2)

As the appearance of a transparent object is highly biased by its background’s texture
and color, it is a challenging task to detect, segment, and suppress the specular reflections
on it. Through predicting multispectral changes per sub-aperture image in the LF, the
proposed research detects specular reflected pixels. In terms of inpainting, as it can be
predicted that a pixel in a LF image has six degrees of freedom and can appear within
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any surrounding four-connected pixels in a sub-aperture image, a pixel pattern with
maximum acceptability is selected to suppress an SRD pixel. Briefly, the proposed system
firstly describes the significance of the joint utilization of multisensory cues, then captures
an MSPLFI object dataset, proposes a two-fold algorithm for detecting and suppressing
specular reflections, evaluates both detection accuracy and suppression quality in terms
of statistical distinct metrics and, finally, compares performance with those of some other
methods in the existing literature.

The main contribution of this research is two-fold. Firstly, an SRD algorithm that
predicts changes in MSPLFI by calculating mean (µ) and covariance (Σ) of each sub-aperture
index of the LF to predict specular reflections through applying the Mahalanobis distance is
proposed. Then, the predicted changes in unpolarized and polarized images are averaged,
and a threshold is applied to obtain a final SRD pixel mask (SRD-PM). However, due to the
absence of publicly available multisensory 6D datasets to evaluate the performance of the
proposed research, we firstly built an image acquisition system to capture an MSPLFI object
dataset. Secondly, an SRI algorithm which extends the final SRD-PM in an immediately
neighboring pixel using the RGB channels of both polarized and unpolarized sub-apertures
in the LF is proposed. For a pixel in the SRD-PM, all the four-connected neighboring pixel
patterns per sub-apertures of the LF, excluding those already in the SRD-PM, are carefully
selected and a distance matrix is computed based on their intensities. Finally, the pixel
pattern with the minimum distance is chosen for the task of inpainting. The performances
of these approaches are evaluated and compared using a private MSPLFI object dataset to
demonstrate the significance of this research.

This paper is organized as follows. In Section 2, the background to SRD and SRI is
fully described. In Section 3, the details of the private MSPLFI dataset, including image
acquisition setup, multisensory cues, and pixels’ degrees of freedom, are analyzed. In Sec-
tion 4, a complete two-fold SRDI framework and corresponding algorithms are presented
with proper mathematical and logical explanations. In Section 5, the performances of the
proposed SRD and SRI algorithms are evaluated by distinct statistical metrics. Addition-
ally, detection accuracy and suppression quality of the proposed SRDI are visualized and
compared with those of existing approaches. Finally, concluding remarks and suggested
future directions are provided in Section 6.

2. Related Works

SRD techniques usually assume that the intensities of specular pixels vary from those
of diffuse ones in multiple spectra as

P(x, y, c, λ, ρ| i) =

{
1 i f d

(
I(x, y, c, λ, ρ| i), S(x, y, c, λ, ρ| i)

)
> τG

0 otherwise
, (3)

where τG is a global threshold, P(x, y, c, λ, ρ| i) the final SRD-PM at pixel (x, y) of a fused
spectrum (λ) at a polarimetric orientation (ρ) in sub-aperture index i of the LF (L), d the
distance between the pixel of the predicted specular pixel (S) and that of the fused image
in spectrum λ(I) at orientation ρ. In this section, a brief review of the literature related to
SRDI techniques for multisensory cues of MSPLFI is provided.

2.1. Specular Reflection Detection (SRD)

Recent works on SRD are categorized in two major ways, single and multiple image-
based, where the latter depends on specific conditions such as lighting direction and
viewpoint. Based on a single-textured color image, Tan [31] iteratively shifts the maximum
chromaticity of each pixel between two neighboring ones. An iteration stops when the
chromaticity difference satisfies a certain threshold value and generates a specular-free
(SF) image. The final SF image ensures a similar geometrical distribution even though it
contains only diffuse reflections. However, for a large image with more specularity, this
techique may lead to erroneous diffuse reflections with excessive and inaccurate removal
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as well as higher computational complexity. Subtracting the minimum color channel value
from each channel, Yoon [32] obtains an SF two-band image. Capturing images from a
dynamic light source, Sato [33] integrates the dichromatic reflection model for separation
by analyzing color signatures in many images captured by a moving light source. A series
of linear basis functions are introduced by Lin [34], and the lighting direction is changed to
decompose the reflection components.

The modified SF (MSF) technique introduced by Shen [35] ensures robustness to the
influence of noise on chromaticity. It subtracts the minimum RGB value from an input
image and works in an iterative manner by selecting a predefiend offset value using the
least-squares criterion. Nguyen [36] proposes an MSF method that integrates tensor voting
to obtain the dominant color and distribution of diffuse reflections in a region. To improve
the separation performance, Yamamoto [37] applies a high-emphasis filter on individual
reflection components to separate them [35]. However, all these methods suffer from
artifacts and inaccuracy if the brightness of the input image is high.

Recent literature on SRD reveals that the specular reflection of an object’s area has
a stronger polarization signature than its diffuse reflection. Placing a polarization filter
in front of an imaging sensor, Nayar [18] proposes separating the specular reflection
components from an object’s surface with heavy textures. Considering the textures and
the surface colors of neighboring pixels, many authors [31,38,39] could separate specular
reflections through neighboring pixel patterns. Applying a bilateral filter with coefficients,
Yang [39] proposes an extension of Tan’s [31] method in which the diffuse chromaticity is
maximized. Although it provides faster separation and better accuracy, it still suffers from
some problems for separating specular reflections in a transparent object. Akashi [40] also
employs the dichromatic reflection model to separate specular reflections in single images
based on sparse non-negative matrix factorization (NMF) composed of only non-negative
values regulated by parameters such as sparse regularization, pixel color, and convergence.
Although this method demonstrates better separation accuracy than those of Tan [31]
and Yang [39], inaccurate parameter settings may lead to artifacts in the separation of
specular reflections.

An SUV color space for separating specular and diffuse reflections from S and UV
channels, respectively, of a single image or image sequence in an iterative manner is
proposed by Mallick [38]. However, discontinuities in the surface color may lead to
erroneous detection of secular reflections. In [41], Arnold applies image segmentation
based on non-linear filtering and thresholding to separate specular and diffuse reflections in
medical imaging. Saint [42] proposes increasing the gap between two reflection components
and then applying a non-linear filter to isolate spike components in an image histogram.
In [43], Meslouhi integrates the dichromatic reflection model to detect specular reflections.
In our research, we use multisensory cues to detect specular reflections by predicting
changes among multiband data.

2.2. Specular Reflection Inpainting (SRI)

SRI refers to restoring an SRD pixel pattern with semantically and visually believable
content through analyzing neighboring pixel patterns. Recent works in the literature on SRI
depend mainly on patch-based similarity, with similar patch- or diffusion-based inpainting
proposed to fill an SRD pixel pattern by spreading color intensities from its background to
its holes [8,9,44,45]. Traditional inpainting approaches apply an interpolation technique
on the surrounding pixels to restore an SRD pixel pattern [46,47]. Based on temporal
information in an endoscopic video image sequence, Vogt [48] proposes a well-inpainting
method. Cao [49] develops an inpainting technique for averaging the pixels in a sliding
rectangular window and later replacing it with an SRD pixel. Although this method is
simple and relatively fast to compute, it lacks robustness due to varying window sizes
based on the SRD’s connected pixels. In [50], an average intensity of a contour is calculated
to replace the SRD pixels by author Oh but may lead to strong gradients.
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In [41], Arnold proposes a two-level inpainting technique which replaces SRD pix-
els with the centroid color within a certain distance and applies a Gaussian kernel for
smoothing using a binary weight mask. Although the inpainting quality is better than
those of other methods, it may produce some artifacts and blur for large spectral areas
by integrating a partial differential equation with gradient thresholding. In [51], Yang
proposes a convex model for suppressing the reflection from a single input image. In [52],
Criminisi describes an image inpainting method in which an affected region is filled by
some exemplars. As these techniques may produce artifacts and fail to suppress large
reflection areas, our proposed method reconstructs the specular reflected pixels through
analyzing their four-connected neighbors in the sub-apertures of the 4D-LF.

3. Analysis of MSPLFI Transparent Object Dataset

Regarding SRD and SRI, the proposed research uses multisensory cues through cap-
turing different objects in MSPLFI, each of which is defined as a function of 6D as

L6D = L(u, v, s, t, λ, ρ), (4)

where (u, v) is the image plane referring to an image’s spatial dimensions, (s, t) the
viewpoint plane referring to the direction in which the light rays are traveling in space, λ
the wavelength in the multispectral visible band (400 nm–700 nm), and ρ the orientation of
the polarimetric filter (rotating at 0◦, 45◦, 90◦, 135◦).

In this section, acquisition of the MSPLFI object dataset and then its use for detecting
and suppressing specular reflections in a transparent object are described.

3.1. Experimental Setup

As there is no dataset available for the evaluation of SRDI in a transparent object that
integrates multiple cues of MSPLFI, Figure 1 illustrates our setup for image acquisition to
generate a problem-specific object dataset in a constrained environment with a plenoptic
camera, Lytro Illum, used to capture all the LF images. We place different band filters in
front of the camera to capture multispectral images and a linear polarization filter rotating
at 0◦, 45◦, 90◦, and 135◦ to manually obtain different polarimetric images with two light
sources used to obtain accurate spectral reflections. The lighting is similar for different
objects, and we retain the same background for them, which completely matches most of
the objects in most of the area with the purpose of creating a complex environment from
which to segment a whole object. One of the light sources is located beside the camera
lens at 45◦ angle and another is located on the top object’s location. The energy levels of
multiple spectra are not similar; however, individual cues contain a useable amount of
information when capturing MSPLFI.
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3.2. MSPLFI Transparent Object Dataset

In Figure 2, the median specular reflections of the sub-aperture images of 18 transpar-
ent objects (O#1–O#18) captured through MSPLFI are presented with their corresponding
labels. To evaluate the performance of the image inpainting technique, some balls are
placed inside object O#1.
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We consider five different shots for each spectrum of each object. Of them, one cor-
responds to the unpolarized version of the image captured without using a polarization 
filter and the other four to four different polarization filter orientations (0°, 45°, 90°, and 
135°) using a linear polarizer. We consider multiple spectra in the visible range (400 nm–
700 nm) to obtain images in the multispectral environment. Figure 3 shows the center sub-
aperture images of object O#8 in multiple color bands of violet, blue, green, yellow, or-
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We consider five different shots for each spectrum of each object. Of them, one
corresponds to the unpolarized version of the image captured without using a polarization
filter and the other four to four different polarization filter orientations (0◦, 45◦, 90◦, and
135◦) using a linear polarizer. We consider multiple spectra in the visible range (400 nm–
700 nm) to obtain images in the multispectral environment. Figure 3 shows the center
sub-aperture images of object O#8 in multiple color bands of violet, blue, green, yellow,
orange, red, pink, and RGB in polarized and unpolarized versions. As can be seen, due
to the nature of polarization, on average, 50% of the photons get blocked while passing
through a lossless polarizer at different orientations.

The LF images are 4D data obtained from different viewpoints, with each image
presented as a sub-aperture plane (s, t) with its tangent direction (u, v). In our experiments,
we consider 11 × 11 sub-aperture images, including their center viewpoints, with their
spatial representations denoted by (u, v). Figure 4 shows the 4D-LF images of object O#8
in the violet color band, with the center viewpoint image at the cross-section of the S and
the T lines denoted as the (6,6) position in the hyperplane (s, t, u, v).
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3.3. Degrees of Freedom

Figure 5 presents an example of object O#1’s scene flow among its sub-aperture images
and their relative directions. In Figure 5a, the arrow indicates that all the viewpoint images’
motion flows to the center viewpoint image and, in Figure 5b, each pixel has six degrees
of freedom in the LF images, with the region of interest (ROI) regarding the scene flow
indicated by a yellow rectangle. In Figure 5c, the pixel displacements are shown with their
corresponding intensity flow plots, which confirm that the intensity of the ROI varies in
different viewpoints.
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4. Proposed Two-fold SRDI Framework

In this section, the proposed two-fold SRDI framework based on the distinctive
features of MSPLFI cues is discussed and presented in Figure 6. Firstly, a 6D dataset of
different transparent objects is captured, and then Reed-Xiaoli (RX) detector [53] is applied
to obtain the actual specular reflection of an object through predicting changes among
multiband. Secondly, a pixel neighborhood-based inpainting method for suppressing this
reflection is proposed.
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4.1. Specular Reflection Detection (SRD)

The proposed system detects specular reflected pixels in transparent objects through
predictions of multiband changes. Firstly, a raw lenslet (.LFR) image is decoded into a 4D
(s, t, u, v) LF one, where (s, t) denotes the image’s position in the hyperplane and (u, v)
its spatial region. The MSPLF imagery was captured by the Lytro Illum camera, which can
capture 15 × 15 sub-apertures per shot. However, due to the main lens of the camera being
circular, vignetting occurs at its edge. Hence, only the inner 11 × 11 sub-apertures are
retained. It could be argued that few more sub-apertures at the top, the bottom, the left, and
the right could be as good—if not better—than the corner sub-apertures kept in the 11 × 11
array, but excluding them keeps them in a square array for simplicity. As our main purpose
is to detect and suppress specularity in a transparent object, we maximize an object’s area
with a minimum surrounding background. In order to compute the specular reflections
in unpolarized images, we convert all the multiband unpolarized 4D LF ones into their
corresponding grayscale ones. For each sub-aperture index, we store the individual band
images in a column vector, with their mean (µ) and covariance (Σ) calculated for the
Mahalanobis distance as √

(x− µ)T Σ−1 (x− µ), (5)

The 2D distance matrix represents the changes among the multiband images per sub-
aperture index, which is also observed as specular reflection. We also predict the maximum
specularity in unpolarized 4D images. In order to draw specular reflections in polarized
images, we firstly calculate the Stokes parameters (S0−S2) [54], which describe the linear
polarization characteristics using a three-element vector (S), as shown in Equation (6),
where S0 represents the total intensity of light, S1 the difference between the horizontal
and vertical polarizations, and S2 the difference between the linear +45◦ and –45◦ ones.
The I00 , I450 , I900 , and I1350 are the different input images for the system at polarized angles
of 00, 450, 900, and 1350, respectively.

S =




S0
S1
S2


 =




I00 + I900

I00 − I900

I450 − I1350


, (6)

The degree of linear polarization (DoLP) is a measure of the proportion of the linear
polarized light relative to the light’s total intensity, and the angle of linear polarization
(AoLP) is the orientation of the major axis of the polarization ellipse, which represents
the polarizing angle where the intensity should be the strongest. They are derived from
the Stokes vector according to Equations (7) and (8), respectively. To calculate the lin-
ear polarized image, firstly, the polarimetric components are concatenated, as shown in
Equation (9). Then, a concatenated image is generated in the hue, saturation, value (HSV)
color space and converted to the RGB color space, as in Equation (10), where LP stands for
linear polarization.

DoLP =
Ipol

Itot
=

√
S2

1 + S2
2

S0
, (7)

AoLP =
1
2

tan−1
(

S2

S1

)
, (8)

hsv = ((AoLP + π/2)/π) (DoLP× 2) S0, (9)

LP = RGB (hsv), (10)

For each sub-aperture index of DoLP and LP, we store individual band images in
a separate column vector. Then, a similar procedure (unpolarized specular detection)
is followed to calculate the maximum specularity in the LP and the DoLP 4D imagery.
The average of three specularities (RX − NP, RX − LP, RX − DoLP) shows the overall
predicted specularity in an object of MSPLFI, with a threshold (Otsu’s method and in the
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range (0–1)) applied to obtain the SRD pixels in binary form. The complete process for
detecting specular pixels in a transparent object is described in Algorithm 1.

Algorithm 1. SRD in Transparent Object

Input: MSPLFI Object Dataset
Output: SRD Pixel in Binary
1: for all lenslet (.LFR) image do
2: Decode raw lenslet (.LFR) multiband polarized and unpolarized images into 4D (s, t, u, v) LF images
3: Remove and clip unwanted images and pixels
4: end for
5: for all sub-aperture image do
6: for all multiband do
7: Calculate DoLP, LP as in Equations (7)–(10)
8: if type (L(u, v, s, t, λ, ρ) = “unpolarized” then
9: Convert multiband image into corresponding grayscale

Store multiband grayscale image as column vector
10: else if type (L(u, v, s, t, λ, ρ) = “polarized” then
11: Store multiband image as column vector
12: end if
13: end for
14: Calculate mean (µ) and covariance (Σ) per sub-aperture index of LF
15: Calculate Mahalanobis distance as in Equation (5)
16: Reshape distance vector as 2D image which represents SRD per sub-aperture image
17: end for
18: Calculate maximum changes/specularities observed in all sub-aperture indexes for object type “RX−NP”
19: repeat steps 5–18 for object type = “RX−DoLP” and object type= “RX− LP”
20: Calculate mean (µ) specularity of object type: RX−NP, RX−DoLP and RX− LP
21: Apply threshold (τ) to binarize SRD pixels

4.2. Specular Reflection Inpainting (SRI)

In this research, the SRD pixels are suppressed through analyzing the distances among
four connected neighboring pixels. Firstly, four different regions in an image are identified,
as shown in Figure 7. Algorithm 1 predicts region A as an SRD pixel but, for better
inpainting quality, both regions A and B are considered specular reflected pixels. It is to
be noted that region B contains the pixel patterns (color channels) that are the immediate
neighbors of region A. Then, all the connected regions are identified and labeled for the
task of inpainting. The complete process for inpainting the detected specular pixels in
transparent object is described in Algorithm 2.

Algorithm 2. SRI in Transparent Object

Input: MSPLFI Object Dataset, SRD-PM
Output: SRD Pixel Inpainting in RGB
1: Strengthen SRD-PM (output from Algorithm 1) by labeling all neighboring pixels as SRD ones
2: Compute connected components and label them
3: Calculate baseline image per sub-aperture index by taking minimum pixel intensities of both polarized and
unpolarized images

in RGB channels
4: for all common sub-aperture images do
5: for all labels do
6: for all pixel patterns (P(x,y,c | i)) in SRD-PM do
7: if labels (SRD-PMs) exist then
8: Compute distances (d(j,k | x, y )) among 4-connected neighbors not in SRD-PM in each channel, as in

Equation (11), and store them in 2D-matrix (dM(nrow,ncol)), as in Equation (12)
9: Winning pixel pattern is index (IDX) of pixel pattern corresponding to column-wise minimum sum of

dM(nrow,ncol), as in Equations (13) and (14) for inpainting of specular reflections
10: end if
11: end for
12: end for
13: end for
14: repeat steps 4 to 13 to calculate maximum specular reflection in suppressed image of transparent object from already

suppressed sub-apertures
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A baseline image per sub-aperture index is computed by taking the minimum pixel
intensities in both polarized and unpolarized RGB channels. The aim is to suppress
the specular reflected areas in the image, with the distance between two pixel-patterns
calculated by

d(j,k | x,y) =

√
∑

c=R,G,B

(
P(x, y, c, j| i) − P(x, y, c, k| i)

)2
, (11)

where P(x, y, c, j | i) and P(x, y, c, k | i) are the two four-connected neighbors of the pixel pattern
(P(x, y, c | i)) in sub-aperture index i and d(j,k | x,y) the distance between the two pixel patterns
corresponding to P(x, y, c | i) in sub-aperture index i. A 2D matrix [55] of the distances among
the pixel patterns is calculated by Equation (12). The pattern corresponding to the lowest
column-wise sum of the distances is selected as the winning one (P(x, y, c, IDX| i)) for the
task of SRI in Equations (13) and (14).

dM(nrow,ncol) =




d(j−4,k−4 | x,y) . . . d(j+4,k−4 | x,y)
... d(j,k | x,y)

...
d(j−4,k+4 | x,y) . . . d(j+4,k+4 | x,y)


 (12)

IDX =
argmin

k ∑ dM(nrow, k) (13)

P(x, y, c| i) = P(x, y, c, IDX| i) (14)

5. Experimental Results

In this section, performance evaluations and comparisons of the proposed two-fold
SRDI and other approaches using different metrics for specular pixel detection and inpaint-
ing are discussed. Additionally, analyses of their computational times are conducted.

5.1. Selection of Performance Evaluation Metric

Both SRD and SRI are evaluated by commonly used statistical evaluation metrics for
quantifying detection accuracy and inpainting quality.

5.1.1. Selection of SRD Metric

The SRD method is evaluated at the pixel level of a binarized scene in which the
pixels related to the specular and the diffuse reflections are white and black, respectively.
Its performance can be divided into four pixel-wise classification results: true positive
(Tp), which means a correctly detected diffuse pixel; false positive (Fp), that is, a specular
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reflected pixel incorrectly detected as a diffuse reflected one; true negative (Tn), which
indicates a correctly detected pixel with specularity; and false negative (Fn), that is, a diffuse
reflected pixel incorrectly detected as a specular reflected one. The binary classification
metrics used are precision, recall or sensitivity, F1-score, specificity, geometric-mean (G-
mean), and accuracy. Precision is the number of diffuse reflected pixels detected that
are actually diffuse reflected ones, while recall is the number of diffuse reflected pixels
detected from the actual diffuse reflected ones (recall and sensitivity are similar). The
F1-score (a boundary F1 measure) is the harmonic mean of precision and recall values,
which measures how closely the predicted boundary of an object matches its ground-truth
and is an overall indicator of the performance of binary segmentation. Specificity (a Tn
fraction) is the proportion of actual negatives predicted as negatives, sensitivity (a Tp
fraction) the proportion of actual positives predicted as positives, G-mean the root of the
product of specificity and sensitivity, and accuracy the proportion of true results obtained,
either Tn or Tp. The mathematical evaluation measures of the aforementioned metrics are
shown in Equations (15) to (20) [17,56].

Precision (PR) =
Tp

Tp + Fp
, (15)

Recall (RC) or Sensitivity (SN) =
Tp

Tp + Fn
, (16)

F1− Score (F1S) = 2× Precision× Recall
Precision + Recall

, (17)

Speci f icity (SP) =
Tn

Tn + Fp
, (18)

Geometric−Mean (GM) =
√

Speci f icity× Sensitivity, (19)

Accuracy (AC) =
Tp + Tn

Tp + Fn + Tn + Fp
, (20)

5.1.2. Selection of Inpainting Quality Metric

Currently, the quality of a fused image can be quantitively evaluated using the met-
rics [57] structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), mean squared
error (IMMSE), and mean absolute deviation (MAD). The SSIM is an assessment index of
the image quality based on computations of luminance, contrast, and structural compo-
nents of the reference and the reconstructed images, with the overall index a multiplicative
combination of these three components. The PSNR block computes the PSNR between
the reference and the suppressed images in decibels (dB), with higher values of SSIM and
PSNR indicating better quality of the reconstructed or the suppressed image. The IMMSE
computes the average squared error between the reference and the reconstructed images,
while MAD indicates the sum of the absolute differences between the pixel values of these
images divided by the total number of pixels, which is used to measure the standard error
of the reconstructed image. Lower values of IMMSE and MAD indicate better quality of the
reconstructed image. Considering two images (x and y), the aforementioned mathematical
evaluation metrics are shown in Equations (21) to (24).

SSIM(x, y) =
[
l(x, y)α]·

[
c(x, y)β

]
·
[
s(x, y)γ], (21)

where,

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
c(x, y) =

2σxσy + C2

σ2
x + σ2

y + C2
s(x, y) =

σxy + C3

σxσy + C3
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where µx, µy, σx, σy and σxy are local means, standard deviations, and cross-covariances of
images x and y.

PSNR(x, y) = 10.log10

(
MAX2

I
IMMSE(x, y)

)
, (22)

where MAX denotes the range of the image (x or y) datatype

IMMSE(x, y) =
1
n

n

∑
i=1

(xi − yi)
2, (23)

MAD (x, y) =
1
n

n

∑
i=1
|(xi − yi)|, (24)

5.2. Generation of Ground Truth

To evaluate the performance of the proposed two-fold SRDI, we generate two different
ground truths for each object, as shown in Figure 8. The SRD and the SRI ones are created
manually by an expert, with the maximum possible specular reflected area in the MSPLFI
object dataset covered. Figure 8 shows the two-way SRD ground truth generation, where a
pixel with an intensity above a threshold (Otsu’s method and in the range (0–1)) level is
considered a specular reflected pixel. The final column in Figure 13 presents the objects’
SRD binary ground truths, with black and white pixels indicating their diffuse and specular
reflected pixels, respectively. The final column in Figure 18 shows the objects’ SRI ground
truths. Due to the real scene in the MSPLFI object dataset, some pixels in an object may
exhibit amounts of both specular and diffuse reflections but, to measure the performance in
terms of quantity and enable further comparisons, each pixel is classified manually as either
specular or diffuse reflected, and the ground truth is re-named as the quasi-ground truth.
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5.3. Performance Evaluation of SRD
5.3.1. Analysis of SRD Rate

Figure 9 shows the SRD rates in terms of the SRD metrics of precision, recall, F1-score,
G-mean, and accuracy for nine sample objects both separately (Figure 9) and together for
all objects (O#1–O#18) (Figure 10) using the proposed method. For each object, a total of
121 sub-aperture images are used to measure its specularity and box plots to statistically
analyze our experiments. Figure 9 exhibits the SRD metric values obtained for nine sample
objects separately. Remaining objects are presented in Appendix A (Figure A1). Accuracy
has a higher median value than the F1-score and the G-mean for all the objects, with
O#9 and O#3 having superior median values of 0.804, 0.832, and 0.996, and 0.874, 0.882,
and 0.991 for F1-score, G-mean, and accuracy, respectively, compared with those of the
other objects.

Similarly, Figure 10 shows the combined SRD rates for 121 sub-aperture + 1 maximum
images× 18 objects = 2196 images. Accuracy has a better overall median and 75th percentile
values for all the objects combined (0.981 and 0.992, respectively) compared to the F1-score
(0.643 and 0.770, respectively) and the G-mean (0.656 and 0.752, respectively).
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Figure 10. Evaluation results for SRD performances of proposed method for 122 specular reflected
images (121 sub-aperture + 1 maximum) × 18 objects = 2196 images for all objects (O#1–O#18)
combined using different SRD metrics.

5.3.2. Comparison of SRD Rates of Proposed Method and Those in Literature

It is worth mentioning that the performances of the existing SRD methods considered
are not exactly comparable, as each reports its accuracy for a specific image set using
different contexts. Moreover, the accuracy values obtained from them and the color-
mapping techniques used for segmentation may vary.
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In Table 1, the performances of SRD in terms of different evaluation metrics for the
proposed and other methods are compared for the 18 individual objects. For visualization
purposes, short forms of the authors’ names are written in the first column, that is, Ak.,
Sn., Yn., Ym., Ar., St., and Ms. refer to Akashi, Shen, Yang, Yamamoto, Arnold, Saint, and
Meslouhi, respectively. The SRD metric values in the object index columns correspond to
the maiden specular image among the sub-aperture ones. The final column (overall mean
?SA)) corresponds to the mean ± SD values of the 121 sub-aperture + 1 maximum images
× 18 objects = 2196 images together.

Table 1. Performance evaluation of different methods in terms of various SRD metrics for 18 objects (O#1–O#18) in MSPLFI
object dataset and overall means (all sub-aperture images in 4D LF).

Methods Metrics
Object Index (Maximum SRD) Overall

Mean (SA)O#1 O#2 O#3 O#4 O#5 O#6 O#7 O#8 O#9 O#10 O#11 O#12 O#13 O#14 O#15 O#16 O#17 O#18

Ak. [40]

Precision 0.178 0.348 0.686 0.445 0.600 0.354 0.460 0.382 0.655 0.519 0.240 0.311 0.336 0.124 0.522 0.542 0.504 0.123 0.362 ± 0.24
Recall 0.628 0.629 0.662 0.427 0.514 0.345 0.426 0.417 0.771 0.536 0.598 0.866 0.658 0.622 0.466 0.727 0.328 0.747 0.512 ± 0.14

F1-Score 0.277 0.448 0.673 0.436 0.554 0.350 0.443 0.398 0.708 0.528 0.342 0.457 0.445 0.207 0.493 0.621 0.398 0.211 0.377 ± 0.16
G-Mean 0.769 0.781 0.810 0.644 0.710 0.578 0.644 0.634 0.874 0.722 0.749 0.917 0.795 0.754 0.676 0.835 0.567 0.834 0.689 ± 0.10
Accuracy 0.935 0.962 0.981 0.943 0.957 0.939 0.946 0.939 0.986 0.948 0.928 0.970 0.951 0.910 0.960 0.944 0.940 0.929 0.926 ± 0.05

Sn. [35]

Precision 0.220 0.610 0.759 0.509 0.613 0.437 0.527 0.477 0.602 0.579 0.462 0.447 0.574 0.388 0.590 0.642 0.622 0.505 0.655 ± 0.15
Recall 0.667 0.590 0.639 0.392 0.493 0.301 0.411 0.335 0.831 0.546 0.513 0.848 0.457 0.474 0.476 0.647 0.275 0.599 0.483 ± 0.15

F1-Score 0.330 0.600 0.694 0.443 0.546 0.357 0.462 0.393 0.698 0.562 0.486 0.586 0.509 0.426 0.527 0.644 0.381 0.548 0.527 ± 0.13
G-Mean 0.797 0.764 0.797 0.620 0.696 0.543 0.635 0.573 0.906 0.730 0.709 0.913 0.672 0.683 0.685 0.794 0.522 0.771 0.681 ± 0.11
Accuracy 0.946 0.981 0.983 0.949 0.958 0.948 0.952 0.950 0.984 0.954 0.966 0.983 0.974 0.976 0.964 0.955 0.946 0.988 0.969 ± 0.01

Yn. [1]

Precision 0.220 0.396 0.603 0.402 0.476 0.269 0.382 0.364 0.595 0.438 0.274 0.224 0.288 0.166 0.416 0.494 0.448 0.156 0.433 ± 0.19
Recall 0.817 0.638 0.673 0.457 0.562 0.430 0.442 0.475 0.831 0.571 0.630 0.884 0.671 0.652 0.484 0.758 0.383 0.754 0.529 ± 0.16

F1-Score 0.346 0.488 0.636 0.428 0.515 0.331 0.410 0.413 0.694 0.496 0.382 0.358 0.403 0.265 0.447 0.598 0.413 0.258 0.446 ± 0.14
G-Mean 0.877 0.789 0.815 0.664 0.737 0.636 0.652 0.675 0.906 0.739 0.772 0.919 0.798 0.782 0.686 0.848 0.609 0.845 0.707 ± 0.11
Accuracy 0.939 0.968 0.977 0.937 0.946 0.917 0.936 0.935 0.984 0.937 0.936 0.954 0.941 0.931 0.950 0.936 0.934 0.945 0.953 ± 0.02

Ym. [37]

Precision 0.199 0.409 0.657 0.435 0.531 0.282 0.302 0.357 0.631 0.406 0.243 0.222 0.296 0.122 0.403 0.364 0.513 0.143 0.307 ± 0.23
Recall 0.645 0.634 0.665 0.435 0.547 0.384 0.456 0.458 0.778 0.565 0.646 0.875 0.680 0.647 0.492 0.791 0.328 0.755 0.559 ± 0.15

F1-Score 0.304 0.497 0.661 0.435 0.539 0.325 0.363 0.401 0.697 0.472 0.353 0.355 0.412 0.205 0.443 0.499 0.400 0.240 0.346 ± 0.17
G-Mean 0.782 0.787 0.811 0.649 0.730 0.604 0.656 0.663 0.877 0.734 0.777 0.914 0.804 0.767 0.691 0.847 0.567 0.843 0.709 ± 0.10
Accuracy 0.941 0.969 0.980 0.942 0.952 0.924 0.920 0.934 0.985 0.932 0.925 0.954 0.942 0.905 0.948 0.900 0.940 0.939 0.908 ± 0.06

Ar. [41]

Precision 0.189 0.520 0.463 0.471 0.529 0.258 0.436 0.383 0.410 0.468 0.308 0.191 0.287 0.178 0.366 0.496 0.413 0.255 0.561 ± 0.12
Recall 0.594 0.587 0.668 0.394 0.391 0.351 0.422 0.449 0.763 0.526 0.609 0.877 0.353 0.281 0.467 0.727 0.371 0.447 0.434 ± 0.16

F1-Score 0.287 0.552 0.547 0.429 0.450 0.298 0.428 0.414 0.534 0.495 0.409 0.314 0.317 0.218 0.410 0.590 0.391 0.325 0.466 ± 0.10
G-Mean 0.750 0.761 0.808 0.620 0.619 0.577 0.640 0.658 0.863 0.713 0.763 0.910 0.586 0.524 0.671 0.831 0.598 0.663 0.644 ± 0.12
Accuracy 0.941 0.977 0.967 0.946 0.951 0.921 0.943 0.939 0.971 0.942 0.945 0.944 0.955 0.962 0.944 0.936 0.930 0.976 0.966 ± 0.01

St. [42]

Precision 0.461 0.679 0.680 0.597 0.692 0.344 0.609 0.392 0.586 0.616 0.340 0.237 0.491 0.360 0.421 0.631 0.487 0.193 0.702 ± 0.12
Recall 0.592 0.535 0.637 0.357 0.502 0.321 0.400 0.381 0.771 0.462 0.558 0.876 0.457 0.394 0.495 0.567 0.315 0.724 0.422 ± 0.15

F1-Score 0.518 0.598 0.658 0.447 0.582 0.332 0.483 0.387 0.666 0.528 0.423 0.373 0.473 0.376 0.455 0.597 0.383 0.305 0.507 ± 0.11
G-Mean 0.764 0.729 0.795 0.593 0.704 0.558 0.628 0.608 0.873 0.674 0.734 0.916 0.671 0.624 0.693 0.744 0.555 0.834 0.637 ± 0.12
Accuracy 0.978 0.983 0.980 0.954 0.963 0.939 0.957 0.942 0.983 0.955 0.952 0.957 0.970 0.975 0.950 0.952 0.938 0.958 0.971 ± 0.01

Ms. [43]

Precision 0.646 0.878 0.914 0.876 0.765 0.592 0.754 0.585 0.847 0.702 0.557 0.557 0.556 0.348 0.692 0.657 0.729 0.660 0.868 ± 0.09
Recall 0.580 0.367 0.502 0.248 0.485 0.212 0.393 0.307 0.568 0.445 0.507 0.831 0.489 0.572 0.366 0.627 0.240 0.338 0.283 ± 0.11

F1-Score 0.611 0.518 0.648 0.387 0.593 0.312 0.517 0.403 0.680 0.545 0.530 0.667 0.520 0.433 0.479 0.642 0.361 0.447 0.412 ± 0.13
G-Mean 0.759 0.606 0.708 0.498 0.694 0.459 0.625 0.551 0.753 0.664 0.707 0.907 0.695 0.748 0.603 0.783 0.489 0.581 0.520 ± 0.11
Accuracy 0.985 0.983 0.984 0.959 0.966 0.956 0.963 0.956 0.988 0.960 0.972 0.988 0.973 0.971 0.967 0.956 0.949 0.989 0.971 ± 0.01

Proposed

Precision 0.630 0.666 0.728 0.622 0.668 0.643 0.798 0.563 0.756 0.678 0.485 0.624 0.470 0.422 0.665 0.658 0.719 0.614 0.776 ± 0.10
Recall 0.630 0.585 0.737 0.798 0.946 0.281 0.767 0.452 0.808 0.613 0.526 0.720 0.554 0.718 0.553 0.784 0.320 0.578 0.444 ± 0.15

F1-Score 0.630 0.623 0.732 0.699 0.783 0.391 0.782 0.501 0.781 0.644 0.504 0.668 0.509 0.531 0.604 0.715 0.442 0.596 0.546 ± 0.13
G-Mean 0.791 0.762 0.855 0.881 0.960 0.528 0.871 0.666 0.896 0.777 0.718 0.846 0.737 0.839 0.739 0.873 0.563 0.759 0.654 ± 0.11
Accuracy 0.985 0.983 0.984 0.965 0.973 0.958 0.978 0.957 0.990 0.963 0.967 0.990 0.968 0.976 0.970 0.961 0.951 0.990 0.974 ± 0.01

As can be seen, the overall mean SRD different metric values are higher for the
proposed method than the studies discussed in this paper, as shown in the final column
in Table 1. Additionally, considering all the sub-aperture images of the 18 distinct objects,
mean F1-score, G-mean, and accuracy values for the proposed method are 0.546 ± 0.13,
0.654 ± 0.11 and 0.974 ± 0.01, respectively. In Figure 11, the SRD metric values for the
18 individual objects (O#1–O#18) and their maximum specular reflections obtained from
different methods are compared. As can be seen, the proposed method achieves superior
median values for the F1-score, G-mean and accuracy of 0.662, 0.816 and 0.971, respectively.
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Figure 11. Evaluation results for SRD performances of different methods for maximum specular reflected images of 18
objects in terms of precision, recall, F1-score, G-mean and accuracy.

In Figure 12, the SRD metric values for 121 sub-aperture + 1 maximum images × 18
objects = 2196 images with their specular reflections obtained by different methods are
presented. As can be seen, the proposed method has superior median values for F1-score,
G-mean, and accuracy of 0.643, 0.676, and 0.981, respectively, to those of the others.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 30 
 

 

Figure 11. Evaluation results for SRD performances of different methods for maximum specular reflected images of 18 
objects in terms of precision, recall, F1-score, G-mean and accuracy. 

In Figure 12, the SRD metric values for 121 sub-aperture + 1 maximum images × 18 
objects = 2196 images with their specular reflections obtained by different methods are 
presented. As can be seen, the proposed method has superior median values for F1-score, 
G-mean, and accuracy of 0.643, 0.676, and 0.981, respectively, to those of the others. 

 
Figure 12. Evaluation results for SRD performances of different methods for 121 sub-aperture + 1 maximum images × 18 
objects = 2196 images with specular reflections in terms of precision, recall, F1-score, G-mean, and accuracy. 

5.3.3. Visualization of SRD Rates of Different Methods 
In Figure 13, the SRD accuracies obtained by different methods for the maximum 

specular reflected images of sample objects in the MSPLFI object dataset are presented. As 
can be seen, the proposed approach reports fewer SRD errors than the others. Remaining 
objects are presented in Appendix Section (Figure A2). 

  

Figure 12. Evaluation results for SRD performances of different methods for 121 sub-aperture + 1 maximum images × 18
objects = 2196 images with specular reflections in terms of precision, recall, F1-score, G-mean, and accuracy.

5.3.3. Visualization of SRD Rates of Different Methods

In Figure 13, the SRD accuracies obtained by different methods for the maximum
specular reflected images of sample objects in the MSPLFI object dataset are presented. As
can be seen, the proposed approach reports fewer SRD errors than the others. Remaining
objects are presented in Appendix A (Figure A2).
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5.4. Performance Evaluation of SRI
5.4.1. Analysis of SRI Quality

The SRI qualities in terms of the normalized SRI metrics SSIM, PSNR, IMMSE, and
MAD for the nine sample objects using the proposed method are presented separately
in Figure 14 and then together for all objects (O#1–O#18) in Figure 15. For each object,
a total of 121 sub-aperture + 1 maximum images are considered to measure its SRI and
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box plots used to statistically analyze our experiments. It is to be noted that a suppressed
image with high SSIM and PSNR values and low IMMSE and MAD ones is close to the
quasi-ground truth. Figure 14 shows that the SSIM has a higher median value than the
PSNR but the IMMSE a lower one than the MAD for all the objects while object O#1 has
superior median values of 0.966, 0.820, 0.038, and 0.131 for SSIM, PSNR, IMMSE, and MAD,
respectively, to those of the other objects. Remaining objects are presented in Appendix B
(Figure A3). Similarly, Figure 15 shows the normalized SRI qualities of (121 Sub-aperture
+ 1 maximum) × 18 Objects = 2196 images together. The SSIM has better overall median
and 75th percentile values for all the objects combined (0.966 and 0.980, respectively) than
the PSNR (0.735 and 0.778, respectively) and the IMMSE better overall median and 75th
percentile values for all the objects (0.073 and 0.118, respectively) than the MAD (0.226 and
0.273, respectively).
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5.4.2. Comparison of SRI Rates of Proposed Method and Those in Literature

It is worth mentioning that the performances of the existing SRI methods are not
exactly comparable, as each reports its accuracy for a specific image set in a different context.
Additionally, the quality obtained by the methods and the color-mapping techniques used
for inpainting may vary.

In Table 2, the performances of SRI in the proposed and other methods for the 18
individual objects are compared using different evaluation metrics. For visualization, short
forms of the authors’ names written in the first column as Ar., Yg., Cr., St., Ak., Sn., and
Ym. refer to Arnold, Yang, Criminisi, Saint, Akashi, Shen, and Yamamoto, respectively.
The SRI metric values in the object index columns correspond to the maiden image of the
121 sub-aperture specular reflected suppressed ones. The final column (overall mean (SA))
corresponds to the mean ± SD values of the 121 sub-aperture + 1 maximum images × 18
objects = 2196 images together. As can be seen, the SRI metric values are significantly better
for the proposed method than for the others considered, as shown in the final column
in Table 2. For all the sub-aperture images of the 18 distinct objects, the mean SSIM,
PSNR, IMMSE, and MAD values obtained from the proposed method are 0.956 ± 0.02,
24.51 ± 2.11, 257.6 ± 119, and 8.427 ± 2.51, respectively.

Table 2. Performance evaluations of different methods using different SRI metrics for 18 objects (O#1–O#18) and overall
mean (all sub-aperture images in 4D LF) in MSPLFI object dataset.

Methods Metrics
Object Index (Maximum SRI) Overall

Mean (SA)O#1 O#2 O#3 O#4 O#5 O#6 O#7 O#8 O#9 O#10 O#11 O#12 O#13 O#14 O#15 O#16 O#17 O#18

Ar. [41]

SSIM 0.942 0.967 0.966 0.965 0.940 0.961 0.940 0.959 0.965 0.929 0.940 0.946 0.968 0.958 0.925 0.943 0.963 0.955 0.941 ± 0.02
PSNR 21.25 20.42 21.26 20.96 19.99 20.95 19.22 20.25 20.74 19.03 18.33 18.53 20.83 18.58 18.42 19.56 20.98 19.65 19.80 ± 0.99

IMMSE 487.6 590.1 486.2 520.9 651.4 522.7 778.0 613.9 548.7 813.4 954.8 911.5 537.6 901.9 935.8 720.2 519.3 705.4 698.9 ± 162
MAD 12.53 16.20 16.26 15.26 13.49 14.89 19.94 15.12 15.79 18.51 18.87 19.80 12.74 17.97 19.63 18.27 13.55 15.52 16.46 ± 2.36

Yg. [51]

SSIM 0.887 0.956 0.943 0.951 0.926 0.951 0.910 0.952 0.954 0.922 0.944 0.943 0.960 0.948 0.911 0.915 0.958 0.957 0.926 ± 0.02
PSNR 18.31 19.74 20.16 21.42 18.44 20.53 19.29 20.12 20.43 18.72 18.95 19.06 21.36 18.98 17.68 18.78 22.01 20.45 19.53 ± 1.14

IMMSE 958.6 690.6 626.5 468.5 931.3 574.9 766.7 632.8 589.2 872.9 828.4 807.7 475.5 822.3 1110 861.8 408.9 586.0 749.8 ± 190
MAD 18.05 16.36 17.15 13.68 16.01 14.88 19.06 14.88 15.52 18.68 17.16 18.36 11.26 16.34 20.98 19.36 11.58 13.77 16.48 ± 2.58

Cr. [52]

SSIM 0.956 0.968 0.964 0.948 0.924 0.963 0.922 0.961 0.965 0.927 0.944 0.947 0.962 0.956 0.925 0.940 0.962 0.955 0.935 ± 0.02
PSNR 22.50 20.60 21.40 20.48 19.52 21.31 19.06 20.64 20.84 19.16 18.68 18.90 20.97 18.63 18.60 19.65 21.23 19.74 19.89 ± 1.04

IMMSE 365.8 566.9 471.8 582.8 726.3 480.6 807.4 561.7 536.1 789.5 881.6 838.4 519.9 891.1 897.0 704.5 489.6 690.5 685.5 ± 161
MAD 11.41 15.90 16.09 16.04 14.36 14.31 20.33 14.56 15.69 18.23 18.12 19.08 12.45 17.78 19.25 18.03 13.24 15.34 16.27 ± 2.36

St. [42]

SSIM 0.956 0.968 0.967 0.966 0.945 0.967 0.943 0.966 0.966 0.933 0.948 0.952 0.970 0.957 0.929 0.939 0.967 0.957 0.941 ± 0.02
PSNR 22.49 20.59 21.41 21.11 20.07 21.30 19.54 20.61 20.88 19.23 18.60 18.90 21.10 18.66 18.54 19.83 21.42 19.70 20.01 ± 1.05

IMMSE 366.4 567.2 469.7 504.1 639.7 482.0 722.3 565.5 531.5 776.6 896.9 837.2 505.1 886.4 910.4 676.7 469.1 696.4 667.6 ± 162
MAD 11.54 15.89 16.06 14.91 13.39 14.35 19.04 14.68 15.59 18.13 18.32 19.00 12.29 17.73 19.41 17.48 12.99 15.40 16.04 ± 2.31

Ak. [40]

SSIM 0.918 0.979 0.938 0.941 0.913 0.928 0.900 0.929 0.943 0.899 0.907 0.912 0.942 0.933 0.889 0.914 0.931 0.928 0.899 ± 0.03
PSNR 19.36 24.30 18.49 18.93 17.00 17.89 16.82 17.17 18.41 16.27 15.49 16.00 17.80 16.09 15.84 16.48 17.89 17.29 17.08 ± 1.12

IMMSE 753.7 241.5 921.2 831.6 1296 1057 1351 1248 936.8 1536 1838 1631 1080 1598 1694 1464 1057 1215 1315 ± 334
MAD 16.45 6.36 21.45 18.77 19.43 21.19 25.70 21.51 19.96 25.54 26.17 26.52 17.80 23.90 26.31 25.87 19.20 20.28 22.23 ± 3.24

Sn. [35]

SSIM 0.936 0.961 0.957 0.952 0.923 0.959 0.922 0.956 0.951 0.917 0.937 0.941 0.964 0.952 0.915 0.934 0.961 0.954 0.929 ± 0.02
PSNR 19.32 19.99 20.78 19.94 18.23 20.78 18.17 19.97 19.13 17.73 18.09 18.42 20.41 18.23 17.80 19.09 21.01 19.57 19.06 ± 1.05

IMMSE 760.9 652.2 543.6 659.6 976.7 543.1 992.1 654.8 795.4 1101 1009 934.8 591.4 976.5 1079 802.5 515.3 717.4 830.7 ± 197
MAD 14.60 16.80 16.93 16.37 15.95 15.05 21.35 15.56 17.49 20.55 19.31 20.04 13.20 18.55 20.66 18.99 13.48 15.61 17.43 ± 2.43

Ym. [37]

SSIM 0.906 0.952 0.945 0.949 0.917 0.934 0.897 0.933 0.950 0.894 0.911 0.912 0.938 0.920 0.890 0.880 0.944 0.938 0.902 ± 0.03
PSNR 18.37 18.83 19.11 19.46 17.72 18.69 16.37 17.72 19.11 16.01 15.97 16.23 17.87 15.57 15.86 14.84 19.34 18.20 17.27 ± 1.44

IMMSE 946.5 852.3 798.1 737.0 1100 879.5 1500 1098 797.6 1631 1643 1550 1061 1804 1686 2134 756.5 985.2 1289 ± 439
MAD 17.89 18.57 19.20 17.36 17.35 18.92 25.95 19.38 17.99 25.54 23.94 25.24 16.79 24.04 25.59 29.90 15.81 18.03 21.27 ± 4.11

Proposed

SSIM 0.992 0.990 0.989 0.972 0.941 0.984 0.961 0.973 0.991 0.947 0.964 0.977 0.978 0.982 0.950 0.953 0.983 0.983 0.956 ± 0.02
PSNR 33.43 26.16 29.24 22.79 22.26 29.85 25.60 25.06 29.27 23.84 22.76 24.62 26.52 24.91 21.76 22.37 27.64 25.36 24.51 ± 2.11

IMMSE 29.54 157.4 77.50 341.9 386.7 67.34 179.2 202.9 76.95 268.6 344.8 224.2 145.1 209.9 433.9 376.7 112.1 189.2 257.6 ± 119
MAD 1.172 7.903 5.205 7.680 8.536 4.529 8.723 8.277 4.959 10.07 11.07 8.888 5.257 7.880 13.26 12.97 5.545 7.665 8.427 ± 2.51

SSIM: structural similarity index; PSNR: peak signal-to-noise ratio; IMMSE: mean squared error; MAD: mean absolute deviation.

In Figure 16, comparisons of the SRI metric values of individual methods in terms of
SSIM, PSNR, IMMSE, and MAD of 18 individual objects (O#1–O#18) with their maiden
specular inpainting is presented. It can be seen that the proposed method has superior
median values for SSIM and PSNR of 0.985 and 0.754 and the lowest median values for
IMMSE and MAD of 0.063 and 0.217, respectively.
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Figure 17 shows the SRI metric values of individual methods in terms of SSIM, PSNR,
IMMSE, and MAD of 121 sub-aperture + 1 maiden images × 18 objects = 2196 images. As
can be seen, the proposed method has superior median values for SSIM and PSNR of 0.966
and 0.735, respectively, and the lowest median values for IMMSE and MAD of 0.073 and
0.226, respectively, compared with those of the other methods.
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5.4.3. Visualization of SRI Quality Assessment

Figure 18 presents the SRI qualities obtained by different methods for the maiden
specular reflected images of sample scenes in the MSPLFI object dataset. Remaining
objects are presented in Appendix B (Figure A4). As can be seen, the proposed approach
demonstrates better SRI quality than the others.
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6. Conclusions

In this paper, a two-fold SRDI framework is proposed. As transparent objects lack
their own textures, combining multisensory imagery cues improves their levels of specular
detection and inpainting. Based on the private MSPLFI object dataset, the proposed
SRD and SRI algorithms demonstrate better detection accuracy and suppression quality,
respectively, than other techniques. In SRD, predictions of multiband changes in the sub-
apertures in both polarized and unpolarized images are calculated and combined to obtain
the overall specularity in transparent objects. In SRI, firstly, a distance matrix based on four-
connected neighboring pixel patterns is calculated, and then the most similar one is selected
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to replace the specular pixel. The proposed algorithms predict better detection accuracy
and inpainting quality in terms of F1-score, G-mean, accuracy, SSIM, PSNR, IMMSE, and
MAD than other techniques reported in this paper. The experimental results illustrate
the validity and the efficiency of the proposed method based on diverse performance
evaluation metrics. They also demonstrate that it significantly improves the SRD metrics
(with mean F1-score, G-mean, and accuracy 0.643, 0.656, and 0.981, respectively) and
SRI ones (with the mean SSIM, PSNR, IMMSE, and MAD 0.966, 0.735, 0.073, and 0.226,
respectively) for 18 transparent objects, each with 121 sub-apertures, in MSPLFI compared
with those in the existing literature referenced in this paper.

As an extension of this work, we will investigate a machine learning technique for
feature extraction and learning and testing of SRD and SRI performances on the MSPLFI
object dataset. As it is known that a transparent object contains the same texture as its
background, developing an automatic algorithm for segmenting it from its background in
multisensory imagery will also be explored.
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Evaluation results for SRD performances of proposed method for 122 specular re-
flected images (121 sub-apertures + 1 maximum) of 9 sample objects separately using
different SRD metrics.
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Abstract: In this paper, an EKF (Extended Kalman Filter)-based algorithm is proposed to estimate
3D position and velocity components of different cars in a scene by fusing the semantic information
and car model, extracted from successive frames with camera motion parameters. First, a 2D virtual
image of the scene is made using a prior knowledge of the 3D Computer Aided Design (CAD) models
of the detected cars and their predicted positions. Then, a discrepancy, i.e., distance, between the
actual image and the virtual image is calculated. The 3D position and the velocity components
are recursively estimated by minimizing the discrepancy using EKF. The experiments on the KiTTi
dataset show a good performance of the proposed algorithm with a position estimation error up to
3–5% at 30 m and velocity estimation error up to 1 m/s.

Keywords: semantic SLAM; object detection; YOLOv3; object based map; EKF

1. Introduction

In recent years, significant progress has been made in vision-based Simultaneous
Localization and Mapping (SLAM) to allow a robot to map its unknown environment
and localize itself in it [1]. Many works have been dedicated to the use of geometric
entities such as corners and edges to produce a dense feature map in the form of a 3D
point cloud. A robot then uses this point cloud to localize itself. The geometric aspect of
SLAM has reached a level of maturity allowing it to be implemented in real time with high
accuracy [2,3] and with an outcome consisting of a camera pose and sparse map in the
form of a point cloud.

Despite the maturity and accuracy of geometric SLAM, it is inadequate when it comes
to any interaction between a robot and its environment. To interact with an environment,
a robot should have a meaningful map with object-based entities instead of geometric
ones. The robot should also reach a level of semantic understanding allowing it not only to
distinguish between different objects and their properties but also to distinguish between
different instances of the same object.

The required granularity of semantic understanding, i.e., object or place identity,
depends on the task. For collision avoidance, it is important to distinguish between
different objects while distinguishing between different instances of the same object may
not be required. In contrast, robots manipulating different instances of the same object, like
in warehouses, should have a deeper level of understanding allowing them to distinguish
between different instances of the same object and their geometric characteristics. Semantic
understanding can sometimes be considered as place understanding instead of object
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understanding: A robot that moves among different kinds of places (room, corridor,
elevator, etc.) should be able to distinguish between them.

In autonomous driving, traffic scene analysis is a crucial task. An autonomous vehicle
should not only understand the position of different objects but should also be able to
predict their trajectory, even in the case of occlusion. Over the last years, traffic scene
analysis has leveraged the maturity of deep learning approaches to detect different objects
in the scene. The improvements in deep learning-based 2D object detection algorithms [4,5]
enable a better understanding of scene content. However, they do not allow us to have a 3D
description of the scene. Therefore, recently, many works have been devoted to augment
the results of 2D object detectors to obtain a 3D representation of the scene in the form of
3D coordinates of the cars in the scene.

A number of recent works in 3D representation of cars in a scene [6–13] utilize prior
information about 3D Computer Aided Design (CAD) models of the cars. After the cars
in a scene are detected using a 2D detector, they are matched against a set of 3D CAD
models to choose the corresponding models. Then, a virtual (calculated) image for the
scene is generated using the 3D CAD models of the detected cars. After that, the virtual
image is compared with the actual image captured by the camera and the discrepancy
between the two images is calculated. The cars’ poses are estimated by minimizing the
discrepancy between the virtual and actual image. These works can be divided into two
groups depending on the way they compute the discrepancy between virtual and actual
images. One group computes the discrepancy as the difference between two contours
space [7,10]. The first contour represents the virtual images generated using the 3D CAD
model while the other contour represents the corresponding detected car in the scene.
The second group computes the discrepancy as the difference between some key points
(such as window points, wheels, etc.) in the virtual and actual image [6,11–14]. It was
found that this approach led to more accurate results than the contour approach [9].

Regardless of the approach used to compute the discrepancy, such works have two
drawbacks. The first drawback is that they estimate the pose of the detected cars only
and do not give information on velocities. The second drawback is that they produce
a one-shot estimate that infers each frame separately and does not take into account
the temporal dynamic behavior of the objects between successive frames. The dynamic
behavior of different objects is important for trajectory prediction, especially in the case of
full occlusion.

The previous drawbacks inspired us to introduce an approach that has the follow-
ing contributions:

• Unlike previous approaches that are end-to-end data driven solutions, we introduce
a hybrid solution that, on one hand, leverages deep learning algorithms to detect
different cars in the scene and, on the other hand, describes the dynamic motion of
these cars in an analytical way that can be used within the framework of a Bayesian
filter where we fuse the discrepancy between the virtual image, obtained using a
3D CAD model, and the actual image, with camera motion parameters measured by
the sensors on board. In this way we estimate not only car positions but also their
velocities, which is important for safe navigation;

• Our approach will be able to keep predicting the motion parameters of the cars even
in the case of full occlusion because we involve the dynamics of their motion in the
estimation process. Previous approaches cannot predict the position of the car in the
case of full occlusion.

The rest of the paper is organized as follows. Some important related works are
discussed in Section 2. In Section 3, we go through the proposed approach describing its
main components. Section 3.2 introduces the mathematical problem statement used in our
approach and its solution using EKF (Extended Kalman Filter). Sections 4 and 5 present
experiment results and a discussion about the proposed algorithm, respectively. Finally,
we present our conclusions in Section 5.

110



Remote Sens. 2021, 13, 388

2. Related Work

In the following lines, some works related to 2D object detection, semantic SLAM
without using a 3D CAD model, and image-based 3D object detection using a 3D CAD
model will be discussed.

2.1. 2D Object Detection

Identifying objects is a crucial step in the semantic SLAM pipeline. Therefore, we
use the state-of-art in deep learning to detect and identify the objects. There is a trade-off
between the speed and accuracy of Convolution Neural Networks (CNN) used in object
detection. On the one hand, techniques such as R-CNN [15], Fast R-CNN [16], and Faster
R-CNN [17] are accurate. They are region-based techniques that first produce candidate
regions containing some potential objects and then classify these objects. Although accurate,
they are computationally expensive and are not suitable for real time application. On the
other hand, bounding boxes-based techniques such as You Only Look Once (YOLO) [4,18]
and Single Shot Multibox Detector (SSD) [5] are less accurate but are suitable to real-time
applications. In this paper, we will use YOLOv3 [18] as an object detector because it is
considered as the-state-of-art in bounding boxes techniques and it supports both CPU and
GPU implementations.

2.2. Semantic SLAM without Using 3D CAD Model

In recent years, a few works have been dedicated to semantic SLAM without using
a prior 3D CAD model. Bowman et al. [19] used an Expectation Maximization algo-
rithm to optimize the joint distribution of camera pose and detected objects locations.
Doherty et al. [20,21] addressed the problem of data association in semantic SLAM. In [20],
the authors decomposed the problem into a discrete inference problem to estimate the
object category and a continuous inference problem to estimate camera and object location.
In [21], the authors proposed a proactive max-marginalization procedure for the data
association problem in semantic SLAM. Unlike the previous works which did not benefit
from a prior knowledge of some objects, in our approach we use prior known models of
the objects.

2.3. Image Based 3D Object Detection Using 3D CAD Models

In [22], Davison argued that 3D object model fitting is an active choice to produce high
level semantic mapping. Many works have been dedicated to utilize prior information
about the 3D model of the object. Chabot et al. introduced one of the pioneering works
for 3D object detection from monocular camera images [6]. Their approach consists of two
phases. In the first phase, they used a cascade Faster R-CNN to regress 2D key points of
the detected car and produce a template similarity. In phase 2, they selected the matching
3D CAD model from the database based on the template similarity obtained in the first
phase. Having a 3D CAD model and the corresponding 2D key points, they used Efficient
Perspective-n-Point (EPnP) [23] algorithm to compute the discrepancy and estimate the
poses of the detected cars. Kundu et al. estimated the shape and the pose of the cars using
“Render-and-compare” loss components [7]. They rendered each potential 3D CAD model
with OpenGL and compared it with the images of the detected cars to find the most similar
model. However, this approach is computationally heavy. In [12], Qin et al. regressed 3D
bounding box’s center from a 2D image using sparse supervision. They did not use any
prior 3D CAD models. Barabanau et al. improved the previous approach by using a 3D
CAD model to infer the depth to the detected cars [13]. Wu et al. [8] extended Mask R-CNN
by adding customized heads, i.e., additional output layers, for predicting the vehicle’s finer
class, rotation, and translation. None of the previous approaches take into account the
dynamic nature of the moving cars from frame to frame. Therefore, in our approach, we
extend their works by fusing the output of the object detector with the motion parameters
to estimate the position and velocity of different cars in the scene.
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3. Proposed Approach

Our proposed approach aims to have a 3D semantic representation of the traffic scene
by estimating the 3D position and velocity components of different cars in the scene. It
leverages the advances in deep learning-based algorithms to detect the semantic class
and different important key points of different cars in the scene. Then, the detected key
points are fused with the motion parameters of the camera, i.e., linear velocity and angular
velocity, measured by sensors on board to get a 3D representation of the scene with respect
to the ego car frame. This section will introduce, first, the proposed pipeline. Then,
the mathematical problem statement and its solution will be presented.

3.1. Proposed Pipeline

Figure 1 illustrates different stages of the proposed approach. In the following lines,
we discuss the main steps of the proposed pipeline.

Figure 1. The algorithm pipeline focusing on an ego lane car. It is divided into two parts: Extracting the semantic information
(in red) and temporal fusing (in blue). (1) The car is detected in the scene using an object detection algorithm like Yolov3. (2)
The key points of the car are extracted and matched against several 3D CAD models to select the corresponding model [6–8].
(3) The extracted semantic information is converted to 3D coordinates using the 3D CAD model. (4) The car position is
predicted using the ego motion parameters of the camera. (5) Virtual 2D key points are created using the predicted car
position and the 3D coordinates of the key points obtained from the CAD model. (6) The distance between actual 2D key
points and their corresponding 2D virtual key points is computed. (7) The filter is updated using the computed discrepancy.

3.1.1. Object Detection

Yolov3 can be used for object detection [18]. Yolov3 is much faster in comparison to
other object detection algorithms while achieving comparable accuracy, which makes it
very suitable for real time implementation. The output of the object detection algorithm is
a number of bounding boxes, each of which contains a detected car.

112



Remote Sens. 2021, 13, 388

3.1.2. Key Points Detection and 3D CAD Model Matching

Having a car inside a bounding box, a number of 2D key points can be detected. These
key points can be: Rear and front windshield corners, centers of the wheels, the corners
of the doors windows, etc. These key points and shape of the car are used to match the
car with a corresponding 3D CAD model stored in the database [9]. The 3D CAD model
consists of the 3D coordinates of the key points resolved in the car coordinate frame. Once
the detected car is matched correctly with its corresponding 3D CAD model, we have a
number of 2D key points and their corresponding 3D points resolved in the car coordinate
frame. There are some works that utilized neural networks to do key points detection
and 3D CAD model matching [6,7]. However, the configurations and the weights of their
implementations are not open sourced. Therefore, in order to use these approaches, one
has to reproduce their results and retrain the networks from scratch, which is a time and
resources consuming process. In addition, the paper contribution is not related to this part.
Our main contribution is the temporal fusing of the detected key points with the motion
parameters of the car. Therefore, we decided to get the results of this stage in a manual way.

3.1.3. Semantic to Metric Information Conversion

The detected key points with their associated IDs are matched against their 3D CAD
model to get their corresponding 3D coordinates resolved in their car coordinate frame.
By doing so, we convert the semantic information (object class, car model, and the identity
of the detected 2D key points) to a metric information in the form of a set of 3D coordinates.

3.1.4. State Prediction

At this stage, the motion parameters of the ego car measured by GPS and IMU sensors
on board are used to predict the 3D position and velocity components of the detected cars
with respect to the car coordinate frame. For state prediction, we have used a motion model
presented in (Section 3.2.1).

3.1.5. Forming Virtual 2D Key Points

The key points obtained previously in step Section 3.1.3 are projected on the image
plane to get 2D virtual key points. To do so, the 3D key points are represented in the camera
frame instead of the body frame. Then, the points are projected into the image plane using
the pinhole camera model (see Section 3.2.2).

3.1.6. Discrepancy Formulation

Having a number of true key points from Section 3.1.2 and their corresponding virtual
key points from Section 3.1.5, the distance between them can be computed. This distance is
called the discrepancy between the true image and virtual image.

3.1.7. Temporal Fusing of the Discrepancy with the Motion Parameters of the Camera
(Filter Update)

The detected car 3D position and velocities can be estimated by minimizing this
discrepancy. An Extended Kalman Filter (EKF) is used to recursively fuse the discrepancy
calculated in Section 3.1.6 with the predicted 3D position and velocity components obtained
in Section 3.1.4. In the following section the mathematical problem statement will be
discussed in detail.

3.2. Problem Statement and Its Solution

Consider a car equipped with a monocular camera and motion sensors moving on a
road, capturing successive images for the scene. The cars in the scene are detected using a
2D object detection algorithm like Yolov3. The goal is to estimate the 3D position and the
velocity components of each detected car with respect to the ego car (camera) coordinate
frame. By doing so, a 3D object-based map for the scene, with respect to the ego car frame,
can be created and updated over time.
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3.2.1. Motion Model

Suppose X = [Pcar, Vcar]T is the state vector of a detected car (object). It consists
of two subvectors: Pcar = [Pcar

x , Pcar
y , Pcar

z ]T is the 3D position of a detected car and
Vcar = [Vcar

x , Vcar
y , Vcar

z ]T is the 3D velocity vector. Both vectors are resolved with respect
to the ego car coordinate frame and they can be described using Singer’s model as fol-
lows [24,25],

Ṗcar
x = Vcar

x − Ṽego
x + vx,

Ṗcar
y = Vcar

y − Ṽego
y + vy,

Ṗcar
z = Vcar

z − Ṽego
z + vz,

V̇car
x = wx,

V̇car
y = wy,

V̇car
z = wz, (1)

where Ṽego is the ego car velocity measured by the motion sensors on-board and used as
an input to the model in (1) [26]. vi and wi, where i ∈ [x, y, z], are uncorrelated random
white noise components. v represents the measurement error of the ego car velocity and
the process white noise related to Pcar while w represents the process white noise related to
Vcar. The model in (1) can be written at any time step (t) in a discrete form as follows,

Xt = AXt−1 − BṼego
t−1 + q(t), (2)

where

A =




1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(3)

and

B =




∆t 0 0
0 ∆t 0
0 0 ∆t
0 0 0
0 0 0
0 0 0




. (4)

Ṽego
t−1 is measured by motion sensors at time step (t − 1). qt ∼ N(06×1, Q6×6) is a

random vector that models the process noise; it has a Gaussian distribution with zero mean
and covariance matrix Q . The predicted state using this model will be updated using the
semantic and metric information extracted from camera images.

3.2.2. Observation Model and Semantic Information Fusing

The semantic information, i.e., the car model, is used to obtain metric information that
can be fused with the motion parameters. The semantic information involves three parts:
Object category (car or not a car), model category (what is the corresponding 3D CAD
model of a detected car), and the identity of the detected key points (which part of the car is
represented by a specific keypoint). For each camera frame, the object detection algorithm
is used to detect different cars in the scene which is the first part of the semantic information.
Once a car is detected, it is matched against the 3D CAD models in the database. This can be
done using any of the approaches described in Section 3.1.2. This will address the last two
parts in the semantic information, i.e., the 3D CAD model and the identity of the detected
key points. The identity of the detected key points is the semantic information that should
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be converted to metric information so that it can be used in the observation model. To do so,
the 3D CAD model will be used to determine the 3D coordinate position of each detected
point resolved in the detected car coordinate frame. Suppose Pkp = [Pkp

x , Pkp
y , Pkp

z ]T is the
3D position of a detected key point resolved in the detected car coordinate frame. Pkp can
be found using the 3D CAD model of the detected car. However, to get an image point from
Pkp, it should be presented in the camera coordinate frame. Let Pkp

ego = [Pkp
ego,x, Pkp

ego,y, Pkp
ego,z]

T

denote the key point resolved in the camera frame and can be obtained as follows,

Pkp
ego(t) = Pcar(t) + Rcar

ego(t)Pkp, (5)

where Rcar
ego is the rotation matrix from the detected car coordinate frame to the camera

frame. Using 2D detected key points and their corresponded 3D key points from the 3D
CAD model, Rcar

ego can be found using the EPnP algorithm [23]. Having a real camera image
with a detected 2D keypoint, the observation model can be formulated as follows,

Z2d(t) =




f
Pkp

ego,x(t)

Pkp
ego,z(t)

+ cx

f
Pkp

ego,y(t)

Pkp
ego,z(t)

+ cy



+ ε(t), (6)

where f and (cx, cy) are camera focal length and principal point, respectively. These
parameters are assumed to be known from prior camera calibration. ε(t) ∼ N(0, R)
describes the measurement error. R = σ2I2x2 is the covariance matrix of a pixel point
where σ = 5 pixels. The model in (6) depends on Pcar(t) as Pkp

ego depends on Pcar(t). Since
Pcar(t) ⊂ Xt, the model in (6) can be written as:

Z2d(t) = π(Xt, Rcar
ego(t), Pkp) + ε(t), (7)

where π(.) is the measurement model that describes the relation between the current
measurement and the state vector at a specific time step.

3.2.3. Solution Using EKF

The state vector Xt can be found by minimizing the discrepancy between the detected
key points and 2D virtual key points that can be obtained using the model in (7) and the 3D
CAD model of the detected car. Taking into account the dynamic constraints provided by
the motion model in (2), the state vector Xt can be estimated by finding X̂t that minimizes
the following cost function,

X̂t = argmin
Xt

N

∑
i=1
‖Z2d(t)− π(Xt, Rcar

ego(t), Pkp
i )‖2 (8)

where N is the number of detected key points. The term π(Xt, Rcar
ego(t), Pkp) describes a 2D

virtual key point pkp
2d calculated using the predicted position (Pcar)t|t−1 from the motion

model in (2) as follows,

Pkp
ego(t|t− 1) = (Pcar)t|t−1 + Rcar

ego(t)Pkp. (9)
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After that, the model in (6) is used to get the virtual point as follows,

pkp
2d(t) =




f
(Pkp

ego,x)t|t−1

(Pkp
ego,z)t|t−1

+ cx

f
(Pkp

ego,y)t|t−1

(Pkp
ego,z)t|t−1

+ cy




. (10)

EKF can be used to minimize the cost function in (8) using the motion model presented
in (2).

The prediction and update steps of the (first order) EKF are [27]:

• Prediction

X−t = AX̂t−1 − BṼego
t−1, (11)

P−t = APt−1 AT + Q. (12)

• Update

Kt = P−t Ht

(
HtP−t HT

t + R
)−1

, (13)

X̂t = X−t + Kt

(
Z2d(t)− pkp

2d(t)
)

, (14)

Pt = (I − KtHt)P−t , (15)

where

Ht =
∂Z2d
∂X X=X−t

=




f

Pkp
ego,z(t)

0
− f Pkp

ego,x(t)

Pkp
ego,z(t)2

0 0 0

0
f

Pkp
ego,z(t)

− f Pkp
ego,y(t)

Pkp
ego,z(t)2

0 0 0




X=X−t

.

Here, the discrepancy between the real image point Z2d and the virtual image point pkp
2d is

represented as an innovation term in the update step as illustrated in (14).
The steps of the pipeline are summarized in (Algorithm 1). The proposed algorithm

should be implemented for each detected car. Therefore, the whole pipeline will be a
bank of the same algorithm where a copy of the algorithm is attached to each detected
car, separately.
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Algorithm 1: Temporal semantic fusion.

Result: X̂t, t = 1, . . . , K
Initialize X0;
for t = 1, . . . , K do

if Measurements from motion sensor (Ṽego
t−1) then

Xt|t−1 = AX̂t−1 − BṼego
t−1.

end
if Camera image then

Extract semantic information:
• Detect a car in the scene,
• Extract N key points and match them with the 3D CAD models to get a number of key points and their

associated identity numbers,
• Convert the semantic information to metric information to get 3D coordinates of the key points

resolved in the body frame.

Fusing the semantic information with the motion parameters: for each point in N key points do:

• Make a 2D virtual key point using the 3D point coordinates and the predicted car position Pcar
t|t−1

using (10),
• Calculate the discrepancy between the virtual key point and the true key point extracted from

the image,
• Update Xt|t−1 to get X̂t using the computed discrepancy.

end
end

4. Results

In this paper, we have used some scenarios from the KiTTi dataset [28,29]. According
to [28], the motion parameters of the camera are measured by an OXTS RT GNSS-aided in-
ertial measurement system which has 0.1 Km/h RMS of velocity error [30]. This value was
used for vi. wi was tuned to be equal to 0.1 m/s2. The sensors on-board are synchronized
with a data rate of 10 Hz. In this paper, we focused on a detected car in the ego lane as a
proof of concept. To start the pipeline, the filter can be initialized by a direct 3D position
measurement from a stereo camera or from a monocular camera [31,32] depending on
the distance of the object [33]. To continue the pipeline, a body coordinate frame should
be attached to the detected car. The geometry configuration of the detected car frame is
presented in Figure 2. The 3D coordinates of the four corners of the rear windshield are
given unique identity numbers and their 3D positions are represented with respect to the
detected car body frame and saved to be used as a database in the pipeline. After that,
the four corners are detected manually in each frame and fed to the pipeline. For infor-
mation fusing, EKF is used. In this section, we present some qualitative and quantitative
results. For the quantitative results, the ground truth is obtained using a 3D HDL-64E
Velodyne LiDAR on board [28].

Figure 3 presents the results of the proposed algorithm. After estimating the position
of the detected car, the four corners of the windshield are calculated using the estimated
position and the 3D CAD model. Then, the estimated corners are superimposed on the
image against the ground truth. It can be seen that they are co-aligned well, which indicates
a good performance of the proposed algorithm. We can also notice that at far distances,
more than 25 m, the proposed algorithm still works. It means that the algorithm can
cope with the uncertainties in the 3D car models and the measurement errors even at far
distances. Figure 4 presents the estimated 3D coordinates of the detected car with respect
to the camera. Figure 5 presents the estimation error in the detected car position. It shows
a good performance of the proposed algorithm in estimating the car’s 3D position as the
proposed algorithms has an error of 3–5% at 30 m distance. To examine the behavior of
the algorithm during occlusion, the camera is switched off for some time. As presented
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in Figure 6, the error in estimation increases in the case of occlusion. However, once
the camera measurements became available again, the error decreases and the algorithm
converges quickly to the correct estimation.

Figure 7 presents the estimation error in Pcar
z and Vcar

z . It indicates a good performance
of the algorithm in velocity estimation even at far distances with an estimation error up to
1 m/s.

Figure 2. The used coordinate systems for the camera (in black) and the detected car (in blue).

Figure 3. The results of the algorithm pipeline focusing on an ego lane car. The estimated 3D position of the rear windshield
corners (in blue) are superimposed on the image against the ground truth position (in green).
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Figure 4. The estimated 3D coordinates of the detected car using the proposed algorithm.
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Figure 5. Estimation error in the car position presented as error bars around the estimated value.
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Figure 6. Estimation error in car coordinates in the case of occlusion. The period of occlusion is
highlighted with a red oval.

Figure 7. Estimation error in Pcar
z and the longitudinal velocity Vcar

z .
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5. Discussion

Based on the proposed algorithm and the obtained results, the following points need
to be emphasized.

• Unlike one shot estimation using only a camera in [6,7], the proposed algorithm fuses
the motion parameters with the camera images to get an estimate for the position and
velocity of the detected cars;

• This fusion allows the algorithm to work even in the case of full occlusion as shown
in Figure 6. During occlusion, the estimation error grows. However, after the image
comes back, the algorithm converges quickly;

• In this paper, we used the Kitti dataset which has real driving scenarios. The results
of the proposed algorithm are compared with the ground truth values obtained by
the 2 cm accuracy 3D LiDAR to evaluate estimation error. Figure 4 presents the
estimated 3D position using the proposed approach and its corresponding ground
truth using the 3D LiDAR. Figures 5 and 7 present estimation errors in 3D position
and longitudinal velocity, respectively. These results show that the proposed approach
can work in real driving scenarios;

• To the best of our knowledge, the existing works use 3D CAD models to estimate the
position using one shot estimation [6,7,23]. The proposed approach has an advantage
over the existing ones in the following aspects:

– Other approaches do not take into account the dynamic motion constraints of the
detected cars while the proposed approach fuses these motion constraints with
semantic information to increase estimation accuracy;

– Other approaches do not depend on temporal fusing. They depend on one shot
estimation which does not work in the case of occlusion. In contrast, our approach
depends on temporal fusing which allows it to predict car position and velocity
in the case of occlusion;

– Unlike other approaches which estimate the 3D position of a detected car only,
the proposed approach estimates the velocity as well. Including car velocity in
the state vector increases the accuracy of the estimation process due to the natural
correlation between position and velocity of a detected car.

• A comparison between the proposed algorithm and the EPnP algorithm to estimate
a detected car position using the KiTTi dataset is presented in Figure 8. The EPnP
algorithm is one of the algorithms that depend on one shot estimation [23]. It estimates
object position by minimizing the discrepancy between a virtual and a real image
using the Levenberg–Marquardt method and is used in many other one-shot based
algorithms [6]. From Figure 8, we can notice that the proposed approach slightly
outperforms EPnP for distances up to 17 m. However, for distances greater than 17 m,
the proposed approach has a better accuracy compared to EPnP algorithm. In addition,
it is worth mentioning that EPnP, as well as other one shot-based approaches, will not
work in the case of occlusion while the proposed approach can still predict the car
position as presented in Figure 6;

• The experiments show that the algorithm can be used for short ranges and long ranges
to get an idea of the traffic scene;

• According to Figure 9, the proposed algorithm is robust against different levels of
measurement noise for distances up to 17 m. However, for distances greater than
17 m, the increase in measurements uncertainties will affect the estimation accuracy;

• The proposed algorithm depends on an object detection algorithm and a 3D CAD
model matching algorithm to get a class ID and a matched 3D CAD model ID, respec-
tively. In this paper, we assumed that the results of the object detection algorithm and
the matching algorithm are correct. However, in real life, the results may be wrong.
This introduces a limitation to the proposed approach as any errors in the class ID
and/or the model ID will affect the estimation accuracy. It is possible to overcome
this limitation by taking into account the uncertainties in class and model IDs during
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the estimation process. This can be done by augmenting the state vector to include,
in addition to position and velocity variables, a class ID and a model ID and consider
them as random variables to be estimated. The implementation of this point is out of
the scope of the current paper and will be considered in future work;

• In this paper, Singer’s model (constant velocity model) was used to describe the
dynamic motion of the detected car. This model is not enough to describe the motion
in some cases, as it leads to incorrect results when the constant velocity condition is
violated like in the case of turns. A more robust solution can be achieved by using
Interacting Multiple Model filter (IMM filter) [25] where several motion models can
be used to describe different types of motion scenarios. This point will be investigated
in future work.

Figure 8. Distance estimation using the proposed algorithm and EPnP algorithm [23].

Figure 9. Distance estimation with different levels of image point noise.
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6. Conclusions

In this paper, we proposed an algorithm to estimate 3D position and velocity compo-
nents of different cars in a scene. The algorithm fuses semantic information extracted from
object detection algorithm with camera motion parameters measured by sensors on-board.
The algorithm uses a prior known 3D CAD model to convert semantic information to metric
information, which can be used in EKF. The experiments on the KiTTi dataset confirmed
the proof of concept. It showed that the proposed algorithm works well and had an error of
3–5% at 30 m distance and a velocity estimation error up to 1 m/s. This percentage is small
and allows the algorithm to produce a rough idea about the traffic scene at far distances.
In addition, the results showed that the algorithm was able to converge quickly after a
period of occlusion.

For future work, we plan to use the IMM filter to describe different motion models of
the detected cars. In addition, more experiments with automated key points detection on
several numbers of detected cars will be done to gain more insight into the performance of
the proposed approach in different driving scenarios.
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Abstract: Target detection in remote sensing imagery, mapping of sparsely distributed materials,
has vital applications in defense security and surveillance, mineral exploration, agriculture,
environmental monitoring, etc. The detection probability and the quality of retrievals are functions of
various parameters of the sensor, platform, target–background dynamics, targets’ spectral contrast,
and atmospheric influence. Generally, target detection in remote sensing imagery has been approached
using various statistical detection algorithms with an assumption of linearity in the image formation
process. Knowledge on the image acquisition geometry, and spectral features and their stability
across different imaging platforms is vital for designing a spectral target detection system. We carried
out an integrated target detection experiment for the detection of various artificial target materials.
As part of this work, we acquired a benchmark multi-platform hyperspectral and multispectral
remote sensing dataset named as ‘Gudalur Spectral Target Detection (GST-D)’ dataset. Positioning
artificial targets on different surface backgrounds, we acquired remote sensing data by terrestrial,
airborne, and space-borne sensors on 20th March 2018. Various statistical and subspace detection
algorithms were applied on the benchmark dataset for the detection of targets, considering the
different sources of reference target spectra, background, and the spectral continuity across the
platforms. We validated the detection results using the receiver operation curve (ROC) for different
cases of detection algorithms and imaging platforms. Results indicate, for some combinations of
algorithms and imaging platforms, consistent detection of specific material targets with a detection
rate of about 80% at a false alarm rate between 10−2 to 10−3. Target detection in satellite imagery
using reference target spectra from airborne hyperspectral imagery match closely with the satellite
imagery derived reference spectra. The ground-based in-situ reference spectra offer a quantifiable
detection in airborne or satellite imagery. However, ground-based hyperspectral imagery has also
provided an equivalent target detection in the airborne and satellite imagery paving the way for rapid
acquisition of reference target spectra. The benchmark dataset generated in this work is a valuable
resourcefor addressing intriguing questions in target detection using hyperspectral imagery from a
realistic landscape perspective.

Keywords: target detection; multi-platform imaging; spectral matching; terrestrial-hyperspectral
imagery; automated image analysis; spectral library

1. Introduction

Technological advancements in remote sensing systems have led to the availability of compact
and high-resolution imaging sensors deployable on the ground, airborne, and space-borne platforms.
As a result thatspectral reflective signatures of different materials are distinct in the optical range of the
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electromagnetic spectrum (EM), remote sensing data have been used for land surface characterization
from local to a global level. Building upon the broader application domain of hyperspectral remote
sensing, various organizations have developed spectral libraries of reference spectral signatures
for thousands of natural and human-made materials [1–3]. Target detection is one of the general
approaches of remote sensing, which has a broader application perspective. Detecting targets—specific
material objects (natural or engineered) of interest, with a sparse spatial distribution in remote sensing
imagery has been an active area of research. Various mapping and surveillance requirements in defense,
mineralogy, and precision agriculture can be addressed quickly from a target detection perspective
in remote sensing imagery. In principle, target pixels are sparse (about 10 pixels in a million), thus
making their detection challenging. Target detection is influenced by choice of the detection algorithm,
sensor, target–background dynamics, and atmospheric perturbance [4–6]. From a target detection
perspective, high-resolution multispectral imagery has been used for identifying common land use
objects such as buildings, roads, vehicles, and ships [7,8]. Hyperspectral imagery offers appropriate
baseline spectral data with finer spectral bandwidth required for typical target detection problems.

There are some attempts on using hyperspectral data for target detection for military
infrastructure [9], surveillance [10], and mineral mapping [11–13]. However, a comprehensive
evaluation of the target detection in remote sensing data, particularly from the perspective of the
vertical continuum of target spectral footprints in remote sensing imagery acquired from multiple
platforms (ground, airborne, and space-borne) has not been explored. In addition, most of the reported
works have approached the target detection problem from the general classification theory wherein
a target object is one among the other multiple land use categories mapped. In addition to using
a single source of remote sensing imagery, the land cover category considered as “target” to be
detected has abundant spatial distribution and extent, which in theory does not qualify it to be called
a target. One of the major impediments in this direction has been the lack of benchmark datasets
in the public domain. Most of the recent works on target detection have used the Cooke City, USA,
made available by Rochester Institute of Technology (RIT), NY, USA [14] for the evaluation of existing
and in-development target detection algorithms. Especially, reference remote sensing imagery on
multi-platform based target detection has not been reported so far. Further, most of the experimental
data on target detection available for the research community is from a single platform, either airborne
or space-borne. A multi-platform target detection experimental data that encompass remote sensing
data from different sensors will enhance our understanding of the potential of target detection per se
and the dynamics involved in a composite framework.

We have carried out a comprehensive experiment for the acquisition of multispectral (only from a
space-borne platform), and hyperspectral imagery from ground, airborne, and space-borne platforms
on several engineered/artificial target materials in a complex urban neighborhood. The objective
of this research is to explore the target detection problem from various platforms of imaging and
detection of targets in optical remote sensing data. The key research questions of this research are:
How does the detection performance vary as a function of the imaging platform? What is the impact
of local background–target interaction on detection rate? Is the detection rate reproducible for two
identical targets? Multi-platform remote sensing datasets were experimentally evaluated for target
detections under various scenarios, and the results were validated, computing various statistical
measures, and the graphical receiver operating curves (ROC), since it is one of the most robust target
detection metrics and is used ubiquitously [4,15,16].

2. Materials and Methods

2.1. Experimental Design

The conceptual design of the experimental setup is shown in Figure 1.
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this study in Table 1. The third letter in the name of a target indicates the color of the target (G: green,
R: red, W: white, Y: yellow, B: black).Remote Sens. 2020, 12, 2145 4 of 30 

 

 

Figure 2. (a) True color composite of the AVIRIS-NG hyperspectral imagery with the locations of the 
artificial targets earmarked; (b) location of targets—N3Y and N4B; (c) location of targets—C1W, N1G, 
and N2R; (d) ground truth map, and (e–f) enlarged view of the ground truth map for different targets. 
Field photographs (g–k) showing the artificial targets placed in the study area for imagery acquisition. 

2.2. Data pre-processing 

2.2.1. Reference Spectral Data Sources and Pre-Processing 

On 20th March 2018, we acquired multi-platform remote sensing data: ground-based terrestrial 
hyperspectral imager (THI), airborne hyperspectral imager (AVIRIS-NG) [17], and the space-borne 
multispectral sensor (Sentinel-2). The THI is a push-broom hyperspectral imager (Headwall 
Photonics Inc., USA) mounted on a movable tripod-kind of the platform. The THI acquires 
hyperspectral imagery in the VNIR region (40–1000 nm) at about 1nm spectral resolution. In the 
present setup, a nominal spatial resolution of 1cm further approximated to 20cm across the targeted 
area was acquired in a nadir to oblique view. The AVIRIS-NG hyperspectral sensor was operated to 
acquire imagery with 4m spatial resolution and 5nm spectral resolution in the 400–2500 nm spectral 
range. The airborne hyperspectral data acquisition was part of the NASA and ISRO research 
collaboration for the HYPSIRI hyperspectral satellite [18]. The satellite imagery was acquired about 
one hour before the acquisition of airborne hyperspectral imagery. Apart from the spectral imagery, 
we collected point-based in-situ hyperspectral reflectance measurements using a field 
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Figure 2. (a) True color composite of the AVIRIS-NG hyperspectral imagery with the locations of the
artificial targets earmarked; (b) location of targets—N3Y and N4B; (c) location of targets—C1W, N1G,
and N2R; (d) ground truth map, and (e–f) enlarged view of the ground truth map for different targets.
Field photographs (g–k) showing the artificial targets placed in the study area for imagery acquisition.
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Table 1. Target materials and naming convention used in the paper.

Target Material Target Name

Green nylon sheet N1G
Red nylon sheet N2R

White cotton sheet C1W
Yellow nylon sheet N3Y
Black nylon sheet N4B

Out of the five different target materials, we positioned three on natural grass and vegetation
features as the background, and two on reflective soil background. To introduce a moderate degree of
background resemblance to natural camouflage in the visible spectral range of the electromagnetic
spectrum, we positioned two targets (N1G and N3Y) on the grass and soil background. To assess
the target detection of materials with broadly similar spectral reflectance characteristics, we chose
multiple targets with a single base material but in different colors. Ensuring an overlapping areal
extent of the imagery from both the airborne and space-borne platforms, we extracted a subset of the
data acquired. The datasets maintain SNR ratio close to one in a million for different scene elements
under the different spatial-spectral variabilities of materials in the scene. A true color composite of the
airborne hyperspectral imagery marked with footprints of the targets and the corresponding ground
truth imagery are shown in Figure 2.

2.2. Data Pre-Processing

2.2.1. Reference Spectral Data Sources and Pre-Processing

On 20th March 2018, we acquired multi-platform remote sensing data: ground-based terrestrial
hyperspectral imager (THI), airborne hyperspectral imager (AVIRIS-NG) [17], and the space-borne
multispectral sensor (Sentinel-2). The THI is a push-broom hyperspectral imager (Headwall Photonics
Inc., USA) mounted on a movable tripod-kind of the platform. The THI acquires hyperspectral imagery
in the VNIR region (40–1000 nm) at about 1 nm spectral resolution. In the present setup, a nominal
spatial resolution of 1 cm further approximated to 20 cm across the targeted area was acquired in a nadir
to oblique view. The AVIRIS-NG hyperspectral sensor was operated to acquire imagery with 4 m spatial
resolution and 5 nm spectral resolution in the 400–2500 nm spectral range. The airborne hyperspectral
data acquisition was part of the NASA and ISRO research collaboration for the HYPSIRI hyperspectral
satellite [18]. The satellite imagery was acquired about one hour before the acquisition of airborne
hyperspectral imagery. Apart from the spectral imagery, we collected point-based in-situ hyperspectral
reflectance measurements using a field spectroradiometer (Spectra Vista Corporation, HR-1024i, USA)
on the target materials as per the standard procedures [19]. The in-situ measurements are considered
pure spectral signatures of the target materials, free of atmosphere, and target–surface–neighborhood
interactions. Plots of in-situ reference spectral signatures of the target materials are shown in Figure 3.
There are two sources of ground-based target reference spectra, ground-based hyperspectral imagery
(THI) (reference in-situ pixels), and the point-based in-situ spectral reflectance from spectroradiometer.
Since the THI collects hyperspectral imagery at a finer spatial resolution, we generated the reference
target spectra by sampling target pixels corresponding to different places on the target materials. As the
THI imager is sensitive to sensor noise beyond 900 nm, we used the THI data acquired in the spectral
range 400 nm to 900 nm. After the initial pre-processing, which included the calibration using the
concurrent measurements acquired on white reference panels, all the spectral data were convolved
and resampled using the sensor response function (SRF) of the respective sensor for analysis across
the datasets.
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Figure 3. Reference spectral signatures of the artificial target materials acquired from in-situ
reflectance measurements.

2.2.2. Pre-Processing of Airborne and Spaceborne Imagery

The airborne AVIRIS-NG hyperspectral imagery was corrected for atmospheric distortions
using the radiative transfer based Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) model [20] and removed the noisy and uncalibrated spectral bands between 1348–1443 nm,
1804–1954 nm, 2485–2500 nm thus resulting in effective imagery with 370 spectral bands. The Sentinel-2
satellite acquires multispectral imagery at different spatial resolutions, 10 m, 20 m, and 60 m. We used
the imagery acquired at 10 m and 20 m resolution corresponding to blue (490 nm), green (560 nm), red
(665 nm), NIR(842 nm), and vegetation red edge (705 nm, 740 nm, 783 nm, 865 nm), SWIR(1610 nm,
2190 nm) bands of the sentinel-2 product respectively centered at the given wavelengths. Generating a
vertically conforming surface reflectance data, we corrected the Sentinel-2 imagery for atmospheric
distortions using the same model and sensor-surface hyper-parameters used for airborne imagery.
The imagery acquired at 20 m spatial resolution was resampled to 10 m resolution to conform to other
imagery datasets.

2.3. Experimental Implementation of Target Detection

An outline of the methodological process flow adopted for the study is shown in Figure 4.
The ground position of the targets was recorded using a GPS device. Since the targets used in the
experiments were considerably large, we designated the target footprint for the airborne imagery as a
16-pixel region of interest (ROI) and a 4-pixel ROI for space-borne imagery on similar basis as suggested
in [15]. It must be noted that, due to different sensor resolutions (4 m and 10 m for airborne and
space-borne sensor respectively) and imaging geometry, target ROI for airborne imagery contains both
full pixel as well as sub-pixel targets, while, target ROI for space-borne imagery contains predominantly
sub-pixel targets. Since part of our aim was to evaluate the target detection possibility from multiple
platforms, the input signal sources for the detector algorithms were collected from various sensors,
as shown in Figure 4. We visualize three different scenarios: (i) the use of ground-based target spectra
for detection from airborne and space-borne imagery, (ii) the use of ground-based hyperspectral
imager target spectra for detection from airborne and space-borne imagery, and (iii) the use of airborne
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based target spectra for detection from space-borne imagery which can represent the essence of target
detection problem from multiple civil and defense application perspectives.
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Figure 4. Methodological framework adopted for the target detection in multi-platform remote
sensing imagery.

Target Detection Algorithms

Apart from the target’s optical-spectral features and environmental settings, the target detection
problem has two other primary perspectives—appropriate spectral imagery and detection algorithms.
Given the applicable nature of spectral imagery, target recognition and identification are substantially
controlled by the nature of algorithms used for target detection. While the development of advanced
target detection algorithms is not within the purview of this study, it would be valuable to analyze the
variations of target detections as a function of the detection algorithm. We, therefore, studied the target
detection in the datasets with popular detection algorithms available in the literature, evaluating the
quality and sensitivity of the target detections based on the algorithms used.

We considered six different detection algorithms: spectral angle mapper (SAM), matched filter
(MF), adaptive cosine estimator (ACE), constrained energy minimization (CEM), orthogonal subspace
projection (OSP), and transformed constrained interference minimization filter (TCIMF) for evaluating
the target detections on the experimental dataset. The SAM, MF, ACE, and CEM are spectral detectors
and hence do not require any prior knowledge of the background. However, OSP and TCIMF
require prior scene background characterization. Typically, this is approached heuristically estimating
the number of distinct background materials or endmembers. The number of distinct background
materials represents the complexity of the scene and hence is a scene dependent parameter. We used
the SMACC algorithm [21] for the background endmembers estimation. The detection performance
of the OSP and TCIMF was evaluated for three different numbers (5, 10, and 15 endmembers) of
background endmembers. We present a summary of the mathematical aspects of target detection and
the formulation of different target detection algorithms used in this study.

2.4. Quantitative Description of Target Detection Algorithms

The taxonomy of detection algorithms depends on various factors such as target-pixel occupancy
(full pixel vs. sub-pixel target), considerations for spectral variability (either for target or background),
and modeling the combination of pixel and sub-pixel targets [22]. Given an image χ(m,n) having k
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spectral channels and m× n pixels such that each pixel xi = {x1, x2, x3, x4 . . . xk}t ∈ Xk,mn, target detection
is formulated as a hypothesis testing problem. Mathematically, target detection can be expressed as a
binary hypothesis testing problem:

H0(Null Hypothesis)xi : noise (Target absent),

H1(Alternate Hypothesis)xi : Target.

Assuming a multivariate normal distribution for target and background, the target detection is
represented as a hypothesis testing:

H0 : x = n

H1 : x = s + n
(1)

where s is the known target spectrum and n is the noise or background with mean vector ‘m’ and
covariance matrix C such that n ∼ N(m, C). Since the target and background are assumed to follow a
multivariate normal distribution, the probability density function p(x, θ) for a k-dimensional Gaussian
vector x is given by:

p(x, θ) =
1

(2π)k/2|C|1/2
exp

{
−1

2
[x−m]TC−1[x−m]

}
. (2)

At a given false alarm rate (Neyman–Pearson criterion), the probability of detection is maximized
by using a likelihood ratio (LR) type of detectors [23] expressed as:

l(x) =
p(x|H 1)

p(x|H 0)

H1

≷
H0

η (3)

where η is the threshold. If l(x) is greater than η, then alternate hypothesis (target-present) is declared
true. Equation (1) describes the basic statistical model in case of a full pixel under the ideal assumption
of the same covariance estimate for both target and background. However, at times target pixel gets
mixed up due to the targets being spatially unresolved. In such cases the appropriate statistical model
(also known as replacement model) is:

H0 : x = n

H1 : x = αs + βn
(4)

where x ∼ N(0, C) under H0 and x ∼ N
(
αs, β2C

)
; α refers to the fraction fill of the target or

abundances if s represents a matrix containing endmembers.
Our experimental study involved both kinds of the detection problem, full pixel and sub-pixel

targets. Several full and sub-pixel target detection algorithms such as spectral angle mapper (SAM) [24],
matched filter (MF) [25], constrained energy minimization (CEM) [26], adaptive cosine estimator
(ACE) [27], orthogonal subspace projection (OSP) [28], and target constrained interference minimization
filter (TCIMF) [29] were implemented for the detection of targets in this experiment.

Spectral Angle Mapper (SAM):
Modifying the signal model given by Equation (1), we have the hypothesis testing:

H0 : x = n

H1 : x = αs + n
(5)
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where α represents the strength of the target signal in the acquired imagery, n ∼ N
(
0, σ2I

)
with σ2

being variance. We estimated α using the maximum likelihood estimate (MLE) under the modified
signal model as:

∂p(x|H 1)

∂α
=

∂
∂α

{
exp

(−1
2
(x − αs)T (x − αs)

)}
. (6)

Solving Equation (5), we obtained the MLE estimate of α as follows:

α̂ =
sTx
sTs

. (7)

It is usual to estimate the variance (σ2) from the image pixel, i.e., pixel under test given by
σ̂2 = xTx. Substituting the estimated parameters in Equation (3) and taking the log-likelihood of the

distribution functions, the test statistic is given by:

r(x)= ln
(

p(x|H 1)

p(x|H 0)

)
=

(sT x)2

(sTs)(xTx)
. (8)

We reframed the Equation (5) to represent the test statistic known as spectral angle mapper
(SAM) as:

rSAM(x) = cos−1




sTx√
(sTs)(xTx)


 . (9)

SAM is one of the widely used algorithms in hyperspectral remote sensing for solving spectral
classification and matching problems and works on the assumption of a zero-mean and white
background. Geometrically, SAM measures the similarity between two n-dimensional vectors based
on the cosine of the angle between two vectors.

Matched Filter (MF):
The assumption of a zero-mean and white background is unrealistic for target detection in a

world scenario. Allowing a moderate degree of flexibility in this aspect, the MF allows background
representation with a normal distribution with finite mean and covariance. The signal model
then becomes:

H0 : x = n

H1 : x = αs + n
(10)

where n ∼ N(m, C), and α are the unknown parameters. For the given model, we have:

p(x|H0 ) =
1

(2π)k/2∣∣∣Ĉ
∣∣∣1/2

exp
{
−1

2
[x− m̂]TĈ

−1
[x − m̂]

}
(11)

p(x|H1 ) =
1

(2π)k/2∣∣∣Ĉ
∣∣∣1/2

exp
{
−1

2
[x− α̂s−m ]TĈ

−1
[x − α̂s− m̂]

}
(12)

Applying the MLE estimation technique similar to Equation (6) we get:

α̂ =
sTĈ

−1
(x− m̂)

sTĈ
−1

s
, m̂ =

1
N

N∑

i=1

xi , Ĉ =
1
N

N∑

i=1

[xi − m̂][xi − m̂]T . (13)

Since the detector assumes an additive model, for α = 1 under the null hypothesis, we have
x = s + m, which is incorrect. In addition, α, by definition, is not constrained to be positive and may
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cause negative test statistics (Eismann et al., 2009). Correcting for these two problems and using the
estimates from Equation (13), we can express MF score r as:

rMF(x) =
(s− m̂ )TĈ

−1
(x− m̂)√

(s− m̂)TĈ
−1
(s− m̂)

. (14)

Adaptive Cosine Estimator (ACE):
Modifying the Equation (4) to include a scale factor β yields the following replacement model:

H0 : x = βn

H1 : x = x = αs + βn
(15)

where n ∼ N(0, C) and α, β are the unknown parameters. The above model is similar to Kelly’s
detector (Kelly, 1986), except for the introduction of an unknown parameter β in the null hypothesis.
The ACE detector was derived based on the assumption of different covariance estimates (Ĉ0, Ĉ1) under
the null and alternate hypotheses. It is assumed that the data under the null hypothesis correspond to
training data for noise/background estimation and pixel under test (under the alternative hypothesis)
is the testing data. Maximizing the joint probability density function of the training and test data yields
the following estimates:

α̂ =
sTĈ

−1
x

sTĈ
−1

s
, β̂2

0 =
N− k + 1

Nk
xTĈ

−1
x, β̂2

1 =
N− k + 1

Nk
(x − α̂s)TĈ

−1
(x − α̂s),

and

Ĉ0 =
1

N + 1




1
β2

0

xxT + NĈ


, Ĉ1 =

1
N + 1




1
β2

1

(x−αs)(x−αs)T + N Ĉ


 (16)

where β̂0, Ĉ0, β̂1, Ĉ1 are the estimates under the null and alternate hypothesis, respectively. Plugging
the derived estimates in the general form of log-likelihood ratio test detector (Equation (3)), we get the
ACE score r as:

rACE(x) =
(sTĈ

−1
x)2

(sTĈ
−1

s)(xTĈ
−1

x)
. (17)

Constrained Energy Minimization (CEM):
The aforementioned spectral detectors assume the target and background subspace to follow a

particular statistical distribution. Based on the assumed distribution function, we usually derive the
parameters of the distribution function. The assumption of background conformity to a statistical
distribution may lead to ambiguous results if the target or background is different from the assumed
statistical function. In such situations, it is desirable to design a detector that does depend upon the
target–background distribution function and eliminates the interferer from the target signal. The
CEM is one such detector and is functionally equivalent to a finite impulse response (FIR) filter that
minimizes the detector output for the background pixels.

Given an image χ(m,n) with k spectral channel and N pixels such that each pixel
xi= {x1, x2, x3, x4 . . . xk}t ∈ Xk×N, the average energy of the FIR filter output can be written as:

1
(N)

{∑N

i=1
φi

2
}
=

1
(N)

{∑N

i=1
(xi

TW)
T
(xi

TW)
}
,

= WT
{ 1

N

∑N

i=1
xixi

T
}
W = WTRW

(18)

where φ = (xi
TW) is the filter output for the pixel vector xi, W = (w1, w2, w3, w4 . . .wk)

T is the weight
vector for the designed filter, and R is the k-dimensional background correlation matrix. The CEM
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problem statement then becomes a constraint optimization problem, i.e., min
w

(
WTRk×kW

)
subject to

sTW = 1. The detection problem is solved using the Lagrange’s multiplier method to solve the
constrained optimization problem to get the CEM score r as:

rCEM(x) =
(sTR−1s)

(R−1s)Tx
. (19)

Orthogonal subspace projection (OSP):
In most of the practical hyperspectral target detection problems, the target size is less than a full

pixel. In such cases, spectral mixture models are useful to estimate the material abundances. The OSP
assumes a linear mixture model expressed as:

x = Mα+ n (20)

where M is a matrix of target/known spectral signatures, α is abundance, and n is the noise. The OSP
begins by first separating the desired target and unknown target and then projecting desired targets
orthogonally to undesired/interferer target space. Mathematically OSP is given by:

rOSP = dTP⊥Ux (21)

where d is the desired target, P⊥U is the projection operator which projects the image pixel to space
orthogonal to U (undesired targets/interferer) given as P⊥U = Ik×k −UU#, U# is the pseudo inverse of U
and given as (UTU)−1UT, and Ik×k is the identity matrix.

Target constrained interference minimization filter (TCIMF):
In this approach, the image is assumed to be a combination of three signal components, i.e.,

desired (targets), undesired (unwanted/background), and interferer component. Like the CEM, the
desired component is accentuated while suppressing the interference signal. The TCIMF is a theoretical
superset of CEM and capable of detecting multiple targets at once, unlike CEM and OSP. Mathematically,
TCIMF score is given as:

rTCIMF(x) =


R−1

k×k[DU]
(
[DU]T R−1

k×k[DU]
)
[

1p×1

0q×1

]

T

x (22)

where D =
[
d1, d2, . . . , dp

]
is the set of desired/known target signals, U =

[
u1, u2, . . . , uq

]
is the known

background/unwanted signals in the image.

2.5. Validation, and Quantitative Spectral Analysis

The detection results from the different detection algorithms were compared against the
ground truth map prepared for each case. Graph-based measures have been increasingly used
for quantifying accuracy in various pattern recognition applications, especially in the cases of skewed
class distributions [30]. By the rarity of occurrence, target detection is an approximation ofskewed
class distribution [31]. We adopted the widely used ROC graphical measure for accuracy assessment.
Based on the verified labels of the detections, ROC curves were drawn between the probability of false
alarm (PFA) and the probability of detection (PD) expressed as:

PD =
Number of correctly identified target pixels

Total number of actual target pixels

PFA =
Number of pixels identified as false targets

Total number of non− target pixels
.

(23)
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The possibility and quality of target detections from multi-platform remote sensing imagery
depend upon the existence and quantification of inherent spectral matching between target spectra from
different platforms. Quantitative analysis of the spectral matching between the various combinations
of reference target spectra and imaging platform deciphers the basis of target detections by detection
algorithms. For each of the possible scenarios considered, we applied multiple spectral matching
metrics: spectral angle (SA) [24], spectral information divergence (SID) [32], and spectral gradient angle
(SGA) [33] on the spectral data extracted from the ground reference (ground hyperspectral imagery,
and point-based spectral measurements) and the airborne and space-borne imagery. We present a brief
description of the spectral matching metrics considered.

Consider any two n-dimensional vectors P =
{
p1, p2, p3, p4 . . . pn

}t, and Q =
{
q1, q2, q3, q4 . . . qn

}t.
The quantity’s spectral matching metrics SA, SID, and SGA are defined as:

SA (P, Q) =cos−1
( 〈P, Q〉
‖ P ‖2‖ Q ‖2

)
(24)

where, 〈〉 denotes the dot product of two vectors and ‖ . ‖2 denotes the Euclidean norm of a vector.

SID (P, Q) = D(P|| Q) + D(Q|| P)

= Σn
i=1




pi

Σn
j=1p j

− qi

Σn
j=1q j





log (

pi

Σn
j=1p j

) − log(
qi

Σn
j=1q j

)


,

(25)

where D (P ‖ Q) and D(Q ‖ P) are called the relative entropy of Q with respect to P and relative entropy
of P with respect to Q, respectively.

SID is a probabilistic approach to measure the spectral similarity between two spectra. Each pixel
is represented in the probabilistic space defined by their spectral histogram. Thus, the SID score is
an indication of the behavioral difference in the probability distribution function of any two pixels.
A score close to zero from the SA and SID indicates that the spectra are similar [26,34]. The spectral
gradient angle can be expressed as:

SGA (P, Q) = SA (abs(SG(P)), abs(SG(Q))) and

SG (P) = (p2 − p1, p3 − p2, . . . , pn − pn−1),
(26)

where SG (.) is the spectral gradient of a given vector. The SGA computes the change of slope of
the pixel vectors and is thus invariant to illumination condition similar to SA; a lower value of SGA
suggests closer matching of the spectra compared.

3. Results

Our experimental research set up was aimed at examining three critical perspectives in remote
sensing-based target detection: (i) platform—the probability and consistency of target detection vis-à-vis
platforms, (ii) reference target spectra—the relevance and level of acquiescence of cross-platform target
reference spectra, and (iii) detection algorithm—the variation of detection due to detection algorithms.
The first component was approached by quantifying the magnitude and patterns of variation of PD

with the three levels of platforms considered. The second component was addressed by comparing
the levels of target detection rates between two sets of reference target spectra generated: from the
same dataset and the cross-platform dataset. The third perspective, the influence of algorithms on
the detection results, was assessed by measuring the change in patterns and detection rates from
the different detection algorithms considered. As different detection algorithms characterize scene
background at varying levels of land cover composition, the sensitivity of detection rates relative to the
scene complexity (characterized by the number of endmembers) and the contrast between the target
and its neighborhood was also carried out. The spectral analysis assessing the matching or lack of it in
the multi-platform target spectra, quantitative comparison of the ground-based target reference spectra
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with the image-based target spectra, was also performed using three different spectral matching metrics.
We present the results organized based on the source of the target reference spectra. We considered
target detection successful at detection probabilities of (PD) of 100%, and 75%, recognizing the fact that
the datasets encompass a wider range of spectral variability. The detection and false alarm rates from
different combinations of the platforms and algorithms are described in detail.

3.1. In-Situ Measurements as Reference Target Spectra

In this section, we present the results of target detection experiments when the in-situ reflectance
measurements were used as the reference target spectra for target detection in airborne and
space-borne imagery.

3.1.1. Target Detection in Airborne Hyperspectral Imagery

Results of the target detection in airborne hyperspectral imagery are summarized in Figure 5 and
the corresponding representative detection score image in Figure 6. The detection score image is a
raster image which contains a scalar value also known as score, corresponding to each pixel. The value
represents the likelihood of the pixel for being flagged as target/non-target. Results indicate successful
target detections for the different types of target materials, meeting the threshold detection rate at
100% threshold of PD for some materials. Overall, the detection rate is consistent across the types of
materials. Except for SAM, all the detectors produced an average detection rate of 75% at nearly zero
false alarm rate.
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Figure 5. Target detection performance comparison in airborne imagery for the in-situ target reference
spectra. Receiver operation curves (ROC) for the detection from spectral angle mapper (SAM), adaptive
cosine estimator (ACE), constrained energy minimization (CEM), and matched filter (MF) for the
(a) N1G, (b) N2R, (c) C1W, (d) N3Y, and (e) N4B targets. ROC curves for the detection from orthogonal
subspace projection (OSP) and transformed constrained interference minimization filter (TCIMF) for
the N1G, N2R, C1W, N3Y, and N4B targets for (f–j) 5, (k–o) 10, and (p–t) 15 background materials.
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Figure 6. Target detection score image from (a) airborne imagery using in-situ reference target spectra,
and the enlarged detection score footprint for (b) N3Y, (c) N4B, (d) N1G, (e) N2R, and (f) C1W target
(In all the target detection score images, a brighter pixel indicates a higher target detection score and
thus a higher probability for it to be declared as a target).

Detection rate vs. scene complexity: In contrast to the generally acceptable levels of detection
rates for a broader approximation of scene-background, detection rates are substantially variable by
the scene complexity, and target–neighborhood contrast. The detection rates are consistent and satisfy
the lower threshold when the scene complexity was represented by five endmembers. When the scene
complexity increased to represent 15 endmembers, the false alarm rate increased steeply, indicating
substantial performance degradation in some detection algorithms. The rise in the false alarm rate was
not uniform and varied by different classes of detection algorithms.

Identical materials vs. background contrast: It is expected that targets of identical material, even if
of a different color or background, are recognizable ina hyperspectral imagery. Results indicate that the
possibility of an identical base material target in a different color or on different background introduces
substantial ambiguity in the quality of target detection. For example, at PD of 75%, the PFA from
the CEM method is 0.0685, and 1.02 × 10−4 respectively for the targets N2R and N1G placed on the
same background. Similarly, the PFA for the ACE method is 0.017, and 2× 10−6 respectively for the
N4B and N1G targets placed on different backgrounds. During the detection of the N2R, the N1G
was also flagged as a potential target and vice-versa (see Figure 6d,e). The failure of the suppression
of targets of identical color but of physically different materials is one of the challenging problems
encountered for spectrally close materials. Apparently, by the absolute value, PFA is relatively low
for considering the relevant target detections as ambiguous. However, when the corresponding PFA
estimates are converted into actual pixel count, the certainty of detection seems to be far from the ideal
case. For instance, for the N1G target, the CEM flags a false alarm of ~70 pixels distributed across the
imagery. If the confidence of the detection rate is increased to 100% (i.e., PD = 100%), almost all the
detectors show substantially lower detection results in terms of completeness of the targets. Overall,
results suggest that, apart from the target–background interaction, the spectral contrast of targets play
a substantial role in the detectability.

3.1.2. Target Detection in Spaceborne Remote Sensing Imagery

Results of the target detection in airborne hyperspectral imagery are summarized in Figure 7 and
the corresponding representative detection score image in Figure 8. Due to coarse spectral and spatial
resolutions and the substantially higher level of atmospheric influences, target detection in space-borne
multispectral imagery is challenging compared to airborne hyperspectral imagery. Use of the in-situ
reflectance measurements, considered a pure form of reference spectra, as target reference spectra,
elicited no quantifiable spectral discrimination of target pixels in the satellite imagery. As evident from
Figure 8, the detection scores and surrounding pixels are similar for targets N1G, N2R resulting in
higher false alarm rates across all the algorithms (Figure 7). While the detection results included the
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pixels of targets, the apparent gross overestimation indicates the detection results to be unreliable.
The detection algorithms either fail to detect or the respective false alarm rates are higher due to the
relatively lesser number of estimated background endmembers. However, when the probability of
detection was set at 75% and the scene complexity increased by representing with a large number of
endmembers (10 or more), the sub-pixel target detection algorithms (e.g., CEM, TCIMF, Figure 7p)
resulted in stable detection results. It is interesting to note that unlike target detection in airborne
imagery, there was no change in the false alarm rate when the probability of detection was increased
from 75% to 100%.Remote Sens. 2020, 12, 2145 14 of 30 

 

 

Figure 7. Target detection performance comparison from space-borne imagery for the in-situ target 
reference spectra. ROC curves for the detection from SAM, ACE, CEM, and MF for the (a) N1G, (b) 
N2R, (c) N3Y, (d) C1W, and (e) N4B targets. ROC curves for the subspace-based detector OSP and 
TCIMF for the N1G, N2R, N3Y, C1W, and N4B targets for (f–j) 5, (k–o) 10, and (p–t) 15 
endmember/background materials. 

 
Figure 8. Target detection score image (a) from space-borne imagery using in-situ target reference 
spectrum and the enlarged detection score footprint for (b) N3Y, (c) N4B, (d) N1G, (e) N2R, and (f) 
C1W targets. 

3.2. Ground-Based Hyperspectral Imagery (THI) as Reference Target Spectra 

In remote sensing, in-situ or laboratory-based measurement of spectral reflectance is considered 
to be the pure form of the spectral signature of a material. While the relevance of the purity of spectral 
signature seems on a theoretically sound basis, the results presented in this section indicate that a 
pixel-based reference spectrum is a viable substitute to the in-situ spectra. 

3.2.1. Target Detection in Airborne Hyperspectral Imagery 

The results of target detection in airborne hyperspectral imagery and a representative detection 
score image are shown in Figures 9 and 10. Results indicate the possibility of target detection, 

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA
P

D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

SAM ACE CEM MF OSP TCIMF

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (n) (o)(m)

(p) (q) (r) (s) (t)

Figure 7. Target detection performance comparison from space-borne imagery for the in-situ
target reference spectra. ROC curves for the detection from SAM, ACE, CEM, and MF for the
(a) N1G, (b) N2R, (c) N3Y, (d) C1W, and (e) N4B targets. ROC curves for the subspace-based
detector OSP and TCIMF for the N1G, N2R, N3Y, C1W, and N4B targets for (f–j) 5, (k–o) 10, and
(p–t) 15 endmember/background materials.
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Figure 8. Target detection score image (a) from space-borne imagery using in-situ target reference
spectrum and the enlarged detection score footprint for (b) N3Y, (c) N4B, (d) N1G, (e) N2R, and
(f) C1W targets.
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3.2. Ground-Based Hyperspectral Imagery (THI) as Reference Target Spectra

In remote sensing, in-situ or laboratory-based measurement of spectral reflectance is considered
to be the pure form of the spectral signature of a material. While the relevance of the purity of spectral
signature seems on a theoretically sound basis, the results presented in this section indicate that a
pixel-based reference spectrum is a viable substitute to the in-situ spectra.

3.2.1. Target Detection in Airborne Hyperspectral Imagery

The results of target detection in airborne hyperspectral imagery and a representative detection
score image are shown in Figures 9 and 10. Results indicate the possibility of target detection, suggesting
the existence of a spatially distinct spectral matching between the ground hyperspectral imagery
and the airborne hyperspectral imagery. As shown in Figure 10e, in the case of the THI reference
spectrum, suppression of similar but different targets (NIG suppressed when N2R was detected and
vice-versa) is superior compared to the results from in-situ reference spectra (see Figure 6). However,
the false alarm rate is higher compared to the extent and spatial distribution of the target pixels in the
airborne hyperspectral imagery. This may be due to the limited in the spectral coverage (400–1000 nm),
compared to the full optical spectrum of the airborne hyperspectral imagery (400–2500 nm). As the
targets considered are inorganic artificial materials, spectral reflectance in the shortwave infrared
region (1000–2500 nm) may provide characteristic spectral discrimination. Compared to the case of
using in-situ reference target spectra, spectral matching based detection algorithms showed relatively
better detection rate, consistent across the targets. In addition, contextually camouflaged targets were
also detected, as indicated by the relatively higher scores of PD and negligible scores of PFA.

The detection rate of the targets by background-characterization based algorithms is ambiguous.
In-scene estimation of background material spectra was poor. For e.g., for the N3Y target, detection
by TCIMF improved when the estimated number of background material increased from 5 to 15 but
degraded at the same time for the N2R target. As observed, if the PD rate is required to be high
(PD = 100%), detection rate from all the detectors is unacceptable for any practical system.

Remote Sens. 2020, 12, 2145 15 of 30 

 

suggesting the existence of a spatially distinct spectral matching between the ground hyperspectral 
imagery and the airborne hyperspectral imagery. As shown in Figure 10e, in the case of the THI 
reference spectrum, suppression of similar but different targets (NIG suppressed when N2R was 
detected and vice-versa) is superior compared to the results from in-situ reference spectra (see Figure 
6). However, the false alarm rate is higher compared to the extent and spatial distribution of the target 
pixels in the airborne hyperspectral imagery. This may be due to the limited in the spectral coverage 
(400–1000 nm), compared to the full optical spectrum of the airborne hyperspectral imagery (400–
2500 nm). As the targets considered are inorganic artificial materials, spectral reflectance in the 
shortwave infrared region (1000–2500 nm) may provide characteristic spectral discrimination. 
Compared to the case of using in-situ reference target spectra, spectral matching based detection 
algorithms showed relatively better detection rate, consistent across the targets. In addition, 
contextually camouflaged targets were also detected, as indicated by the relatively higher scores of  
and negligible scores of . 

The detection rate of the targets by background-characterization based algorithms is ambiguous. 
In-scene estimation of background material spectra was poor. For e.g., for the N3Y target, detection 
by TCIMF improved when the estimated number of background material increased from 5 to 15 but 
degraded at the same time for the N2R target. As observed, if the  rate is required to be high ( 	= 
100%), detection rate from all the detectors is unacceptable for any practical system. 

 
Figure 9. Target detection performance comparison in airborne imagery for the terrestrial 
hyperspectral imager (THI) target reference spectra. ROC curves for the detection from SAM, ACE, 
CEM, and MF for the (a) N1G, (b) N2R, (c) N3Y, and (d) N4B targets. ROC curves for the subspace-
based detector OSP and TCIMF for the N1G, N2R, N3Y, and N4B targets for (e–h) 5, (i-l) 10, and (m–
p) 15 endmember/background materials. 

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

0.25 0.50 0.750 1

0.25

0.50

0.75

1

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

P
D

PFA

SAM ACE CEM MF OSP TCIMF

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (l)(k)

(m) (n) (o) (p)

Figure 9. Target detection performance comparison in airborne imagery for the terrestrial hyperspectral
imager (THI) target reference spectra. ROC curves for the detection from SAM, ACE, CEM, and
MF for the (a) N1G, (b) N2R, (c) N3Y, and (d) N4B targets. ROC curves for the subspace-based
detector OSP and TCIMF for the N1G, N2R, N3Y, and N4B targets for (e–h) 5, (i-l) 10, and
(m–p) 15 endmember/background materials.
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Figure 10. Target detection score image from (a) airborne imagery using THI target reference spectrum
and the enlarged detection score footprint for (b) N3Y, (c) N4B, (d) N1G, and (e) N2Rtarget.

3.2.2. Target Detection in Spaceborne Remote Sensing Imagery

With the consideration of THI pixel spectra as target reference spectra, the results of target detection
in space-borne multispectral imagery and a representative detection score image in Figures 11 and 12,
respectively. Similar to the results obtained with the point-based in-situ target reference spectra,
the target detection in space-borne multispectral imagery is ambiguous across the types of targets.
A couple of detection algorithms (e.g., CEM, OSP) produced detection scores meeting the threshold
limit. However, the corresponding disproportionately high false alarm rate indicates that the detection
is by chance.
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Figure 11. Target detection performance comparison in space-borne imagery for the THI target reference
spectra. ROC curves for the detection from SAM, ACE, CEM, and MF for the (a) N1G, (b) N2R, (c) N3Y,
and (d) N4B targets. ROC curves for the subspace-based detector OSP and TCIMF for the N1G, N2R,
N3Y, C1W, and N4B targets for (e–h) 5, (i–l) 10, and (m–p) 15 endmember/background materials.
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Figure 12. Target detection score image from (a) space-borne imagery using THI target reference spectra
and the enlarged detection score footprint for (b) N3Y, (c) N4B, (d) N1G, and (e) N2R target.

3.3. Target Reference Spectra from the Airborne Hyperspectral Imagery

3.3.1. Target Detection in Airborne Hyperspectral Imagery

Target detection experiments were carried out on the airborne hyperspectral imagery and
space-borne multispectral imagery using considering pixel-based spectra extracted from the airborne
hyperspectral imagery as target reference spectra.

Figure 13 shows the target detection scores for the different types of targets in the airborne
hyperspectral imagery. Targets were detected with detection scores exceeding 90% with negligible
false alarm rates. The accurate detection of the lowest false alarm rates across the target types and
detection algorithms indicate the possibility of consistent target detections in airborne hyperspectral
imagery. However, the relatively higher rate of false positives for the contextually camouflaged
targets suggests the dominance of local background–target interactions (as evident in Figure 14) on
the radiance measurements. The limitations of the present suite of detection algorithms in discerning
complex background–target interactions might also be a reason higher false alarm rate for detecting
contextually camouflaged targets.
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Figure 13. Target detection performance comparison in airborne imagery for the airborne target reference
spectra. ROC curves for the detection from SAM, ACE, CEM, and MF for the (a) N1G, (b) N2R, (c) N3Y,
(d) C1W, and (e) N4B targets. ROC curves for the subspace-based detector OSP and TCIMF for the N1G,
N2R, N3Y, C1W, and N4B targets for (f–j) 5, (k–o) 10, and (p–t) 15 endmember/background materials.
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3.3.2. Target Detection in Spaceborne Multispectral Imagery

The target reference spectra extracted from the airborne hyperspectral imagery were transferred
and convolved to space-borne level for target detection in the space-borne multispectral imagery.
The detection results are summarized in Figure 15 and a representative detection score image
in Figure 16. Most of the detection results are ambiguous with a higher rate of false alarms.
However, when compared to the detection results from using in-situ target reference spectra, detection
in satellite imagery increased substantially across the targets and algorithms. For instance, in the case
of MF and ACE, the rate of false positives at PD of 75% is very low (10−2 to 10−5). Further, contrary to
the influence of background types observed in the airborne imagery, target detection in space-borne
imagery seems not sensitive to the local background. For example, for the two different targets
(e.g., N1G and N2R) placed against the same background, the difference in false alarm rate is relatively
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low. However, this sensitivity is not stable across the detection algorithms. The subspace detectors
continued to yield ambiguous detection results for most of the targets. The differences in the spatial
and spectral resolutions, coupled with acquisition geometry and enhanced atmospheric effects may
have led to the relatively weaker target localization in the space-borne imagery.Remote Sens. 2020, 12, 2145 19 of 30 
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Figure 15. Target detection performance comparison in space-borne imagery for the airborne
target reference spectra. ROC curves for the detection from SAM, ACE, CEM, and MF for the
(a) N1G, (b) N2R, (c) N3Y, (d) C1W, and (e) N4B targets. ROC curves for the subspace-based
detector OSP and TCIMF for the N1G, N2R, N3Y, C1W, and N4B targets for (f–j) 5, (k–o) 10, and
(p–t) 15 endmember/background materials.
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Figure 16. Target detection score image from (a) space-borne imagery using airborne target reference
spectrum and the enlarged detection score footprint for (b) N3Y, (c) N4B, (d) N1G, (e) N2R, and
(f) C1W target.

3.4. Target Reference Spectra from the Spaceborne Multispectral Imagery

The results of target detection in space-borne imagery obtained from using in-scene target
reference spectra are shown in Figure 17 and a detection score image for the best case detection in
Figure 18. Results indicate improved detection scores and low false alarms compared to the detection
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performance obtained from using the target reference spectra from in-situ spectral measurements
or airborne hyperspectral pixel spectra. The performance of all the statistical detectors is similar,
and detection rates meet the 75% level of probability. However, detection performance from the
subspace target detectors is random and unreliable. The overall detection results show substantial
viability in the detection of the engineered targets using the in-scene multispectral target spectra from
the space-borne imagery.
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Figure 17. Target detection performance comparison in space-borne imagery for the airborne
target reference spectra. ROC curves for the detection from SAM, ACE, CEM, and MF for the
(a) N1G, (b) N2R, (c) N3Y, (d) C1W, and (e) N4B targets. ROC curves for the subspace-based
detector OSP and TCIMF for the N1G, N2R, N3Y, C1W, and N4B targets for (f–j) 5, (k–o) 10, and
(p–t) 15 endmember/background materials.
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Figure 18. Target detection score image from (a) space-borne imagery using space-borne target
reference spectrum and the enlarged detection score footprint for (b) N3Y, (c) N4B, (d) N1G, (e) N2R,
and (f) C1W target.
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3.5. Quantitative Spectral Similarity Analysis

Results of the spectral similarity assessment between the possible pairs of ground, airborne, and
space-borne target reference spectra are presented in Tables 2–4. For visual comparison, spectral
signatures of the targets from imagery and reference sources are shown in Figure 19. We found
considerable spectral variability in the in-scene target spectra, particularly the case of in-situ reference
spectra compared to the airborne image spectra (Figure 19a–e (I)).

Table 2. Spectral similarity measures between the point-based in-situ target reference spectra and the
corresponding airborne, and space-borne target image spectra (spectral angle (SA) is measured in
degrees and spectral gradient angle (SGA) in radians) Values in bold are statistically significant.

In-Situ Reference Spectra
vs.

Airborne Image Spectra

In-Situ Reference Spectra
vs.

Satellite Imagery Spectra

Metric N1G N2R C1W N3Y N4B N1G N2R C1W N3Y N4B

SA 7.623 10.386 12.273 8.503 11.617 8.338 14.111 15.246 8.008 19.219
SID 0.031 0.050 0.050 0.028 0.105 0.045 0.126 0.074 0.019 0.306
SGA 0.650 0.839 0.523 0.678 0.744 0.688 1.040 0.904 0.667 0.887

Table 3. Spectral similarity between the THI target reference spectra and the corresponding airborne,
and space-borne target image spectra (SA is measured in degrees and SGA in radians). Values in bold
are statistically significant.

THI Reference Spectra
vs.

Airborne Image Spectra

THI Reference Spectra
vs.

Satellite Imagery Spectra

Metric N1G N2R N3Y N4B N1G N2R N3Y N4B

SA 15.444 15.762 20.916 14.268 13.459 18.181 16.290
SID 0.143 0.101 0.179 0.172 0.087 0.136 0.134 0.176
SGA 0.775 0.821 0.943 0.754 0.898 1.282 0.288 0.836

Table 4. Spectral similarity between the airborne target reference spectra and the space-borne target
image spectra (SA is measured in degrees and SGA in radians). Values in bold are statistically significant.

Airborne Reference Spectra
vs.

Satellite Imagery Spectra

Metric N1G N2R C1W N3Y N4B

SA 4.169 4.431 13.008 1.406 6.045
SID 0.011 0.016 0.073 0.001 0.018
SGA 0.336 0.391 0.378 0.096 0.309

The relatively higher accuracy of target detections observed in the airborne imagery (Section 3.1.1)
while using the in-situ spectral measurement as reference target spectra can be attributed to the inherent
spectral similarity between in situ reference spectra and airborne image spectra (Table 2; lower SID
and SGA value across all target materials). Further, the score for the in-situ target reference spectra and
space-borne target image spectra shows stark dissimilarities across the targets explaining the apparent
unsatisfactory detection performance across the algorithms (Section 3.1.2). Similarly, the detection
performance observed in Section 3.2 conforms to the similarity measure seen in Table 3. Comparing
the similarity scores from Tables 2 and 4, we found a close similarity between the airborne reference
spectra and space-borne image spectra compared to that of the in-situ to the space-borne image
spectra. This matching reflected aptly in the detection performance observed in Section 3.3. It may be
noted that the similarity measures employed for quantifying spectral matching are designed mainly
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for hyperspectral resolution data. Use of these measures for the quantitative spectral matching in
multispectral data may not be optimal. Therefore, we recommend caution while arriving at conclusions
on detection performance based on similarity measures alone.
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Figure 19. Spectral comparison of the reference target spectra with the corresponding image target
spectra for: (I) in-situ measurements of (a,f) N1G, (b,g) N2R, (c,h) C1W, (d,i) N3Y, and (e,j) N4B
compared to airborne and space-borne image spectra respectively; (II) THI measurements of (a,e) N1G,
(b,f) N2R,(c,g) N3Y, and (d,h) N4B compared to airborne and space-borne image spectra respectively;and
(III) airborne measurements of (a) N1G, (b) N2R, (c) C1W, (d) N3Y, and (e) N4B compared to space-borne
image spectra.

4. Discussion

Having the spectral profiling a priori, targeted detection of artificial/engineering materials using
remote sensing is emerging as a data paradigm for a host of civil and strategic applications. Among the
recent developments in hyperspectral remote sensing, target detection has the potential to deploy on
a broader application base. There have been a few seminal efforts on acquiring and making them
freely available benchmark airborne hyperspectral datasets (Cooke City, and ‘Viareggio 2013 trial’ [16]),
which have further attempted detecting specific information class/materials of interest. There have
also been a few studies on target detection in synthetic or simulated hyperspectral imagery [35].
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While these datasets and experiments provide a solid base for classification-oriented exploration,
targets and their landscape-neighborhoods in these datasets are set in a relatively controlled
environment. They may not represent typical landscapes and target conditions. Apart from that,
the criteria used for labeling a pixel detection as ‘true’ or ‘false’ has a substantial bearing on the
magnitude of detection accuracy. For example, the best accuracy estimates for the case of airborne
imagery in this study are equal or slightly lesser compared to the accuracy reported in the state-of-the-art
literature [14,36]. The potential target detection performance in our experiments, considering only
from the pixel labelling perspective would be substantially higher than the values presented in this
paper, and the values reported in the literature. From the state-of-the-art in accuracy estimates in
target detection, the difference between our potential accuracy and reported accuracy is due to the
relatively liberal criterion used for accuracy estimation in the literature. The past studies define a
target guard window—representing a neighborhood region at three different levels and proximity to
the core ‘target pixel’ for labeling a detection true or false. The detection of even a single pixel within
any of these three levels is considered 100% correct detection of the whole target, which may lead to
overestimation of detection performance. Avoiding the possibility of this uncertainty, we used the
stringent pixel-for-pixel matching based count of target pixels for computing the performance metrics
PD and PFA.

Furthering the experimental landscapes and the benchmark reference datasets for target
detection, the goal of our research is the acquisition and exploration of a multi-platform—ground,
airborne, and space-borne remote sensing dataset for target detection of artificial/engineered materials.
Our experiments were aimed at assessing the dynamics of target detection in terms of (i) spectral
attribute conformity of reference target spectra from the ground to space-borne, (ii) target–background
interaction: identical target material on similar, and different backgrounds, and (iii) the relevance of
detection algorithms and their functional categorization. We present in the following sub-sections the
relevance and importance of the results organized according to the three perspectives mentioned above.

4.1. Spectral Conformity of the Reference Target Spectra from the Ground to Spaceborne Platform

The continued detections of the engineered material targets in the ground to space-borne imagery,
though at different levels of confidence, preserving the location adherence and material-specific
identifications indicates the presence of material-specific spectral features. Results from the airborne
hyperspectral imagery exhibit successful target detections from both the point-based in-situ and
pixel-based THI reference target spectra. However, target detections using the in-situ target reference
spectra are valid only for ground and airborne imagery. As evident from Figure 7, the target detections
in the space-borne imagery drop to that of a random process. Contrasting to this trend, detection results
from the pixel-based reference target spectra indicate patterns in the target detection in both the
airborne and space-borne imagery. However, point-based in-situ, and the pixel-based THI reference
target spectra yield comparable levels of target detections in the airborne hyperspectral imagery.

Target detection and the quantitative spectral assessment of the pixel-based THI reference target
spectra with the airborne (AVIRIS-NG imagery) and the space-borne (Sentinel-2 imagery) spectra
suggests stable spectral conformity of material spectra at the ground, airborne, and space-borne
platforms. The pixel-based THI spectral conformity leads to two practical implications: (i) a new source
of in-situ reference spectra, and (ii) potential syllogism that impure contextual spectrum is better than
the laboratory-grade pure spectrum. Ground-based hyperspectral image acquisitions can replace the
spectroradiometer based in-situ or laboratory spectral measurements. Image-based reference spectra
acquisition is particularly advantageous in surveying inaccessible terrain or to acquire rapid reference
measurements for the dynamic image-based target detection systems. The concept of spectral purity,
considered to be inherent in the spectral endmembers of reference spectral library based databases
needs to be revisited to consider for infusing some degree of spectral-contextual-impurity for further
usage in the image-based detection systems. Compared to point measurement, a pixel has the inherent
structure to infuse geometrical, illumination and micro-environmental settings of material-energy
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interactions in the reflectance spectra. The pixel spectra may help represent the dynamics of material
target spectra acquired at different platforms.

Target detection in space-borne imagery using the reference target spectra from airborne imagery
helps evaluate detection possibilities over a wider geographical region. Successful target detections for
targets in the space-borne imagery using the reference target spectra from airborne imagery suggests
the existence of a spectral continuum between airborne and space-borne imagery. Compared to the
results from in-situ or pixel-based THI spectra, the airborne image-based reference spectra produced
relatively lesser false alarms in space-borne imagery. For example, in the case of the lowest target
detection scenario (N2R; algorithm: CEM), the false alarms reduced from 5624 to 1712 when the
confidence of the detection rate is set at 75%. Target detections in the airborne imagery using the
reference target spectra from the airborne imagery itself are accurate and unambiguous across all
the detection algorithms at the 100% probability of detection rate. However, the target detections
in space-borne imagery using the reference target spectra from the space-borne imagery itself are
comparable with the results obtained from using the pixel-based THI reference target spectra. At the
75% probability of detection rate, the target detections are erroneous mainly by overestimation—most
of the targets are detected albeit with substantial proportions of false alarm. Overall, the results confirm
that the strength of spectral conformity of the input reference target spectra determines the quality of
the target detection in imagery acquired from different platforms.

4.2. Target–Background Interaction—Role of Context

To test the impact of contextual background–target spectral interactions on the repeatability of the
target detections, we placed targets of identical material in different colors on different backgrounds.
Considering the background–target spectral interactions, the detection of identical materials on
identical background vary from being systematic and successful to random and fail. With marginal to
moderate variations in the false alarm rate (PFA), our results suggest unambiguous target detection
of identical materials on an identical background in both the airborne and space-borne imagery
(see Figure 20). Compared to the case of identical materials on identical background, detection rates
of identical material targets positioned on different backgrounds vary mainly on the local contrast
between target material and background. Accordingly, the detection rates vary from being chance
matching to consistent detection. A similar observation has been reported by [6], confirming the
substantial effect of scene parameters on the target detection accuracy. In addition, we find that the
potential of background interference for altering the detection scores depends substantially on the
source of reference target spectra and the detection algorithm.

The variability in the detection rate of identical materials poses a plausible question: How do we
standardize the detection rate and ensure detection reproducibility under different environmental,
background, and other geometrical factors? The inconsistency in the detection performance needs
to be addressed from an algorithmic design perspective, modeling and incorporating the source of
uncertainties in the reference target reflectance spectra as observed by different sensors. One of the
primary causes for the different detection rates is the non-linearity in the contextual background
reflectance recorded by sensors at different platforms, as shown in Figure 21a. Modeling the reference
target spectra with possible background mixtures and developing contextual-background sensitive
algorithms may enhance target detections across platforms and sensors. Overall, we observe that
targets placed on a comparatively reflective local background are detected with lower false alarms(
PFA ∼ 10−4

)
by all the algorithms. Although a detailed analysis of the role of background is not in the

purview of this paper, our results support the theoretical perspectives of different target-background
outlined by [37], and we suggest maintaining a balance between model sophistication and its
real-time applicability.
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case, and (d) worst-case detection performance. 
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for all the targets used in at a false alarm rate of 10  for the in-situ target reference spectra. 

4.3. Detection Algorithms and Their Functional Categorization. 

Apart from the spectral-geometrical-imaging platform dynamics of the target materials, 
detection algorithms play a key role in recognizing and identifying material targets. Given the 

0.00 0.25 0.50 0.75 1.00

0.00

0.02

0.05

0.07

0.10

0.12

0.14

PD

P F
A

0.00

0.01

0.02

0.03

0.04

0.05

P F
A

0.00 0.25 0.50 0.75 1.00

0.00

0.03

0.05

0.08

0.11

0.14

0.16

PD

P F
A

0.00

0.01

0.02

0.03

0.04

0.05

P F
A

0.00 0.25 0.50 0.75 1.00

0.00

0.02

0.05

0.07

0.10

0.12

0.14

PD

P F
A

0.00

0.01

0.02

0.03

0.04

0.05

P F
A

0.00

0.20

0.40

0.60

0.80

P F
A

0.00 0.25 0.50 0.75 1.00

0.00

0.01

0.02

0.03

0.04

0.05

PD

P F
A

N2R N1G N3Y

(a) (b)

(c) (d)

(I)

(II)

Figure 20. False alarms at different levels of PD for (I) identical target material (N1G and N2R) in the
same context (vegetative) for the (a) best case, and (b) worst-case detection performance; (II) identical
target material (N1G and N3Y) in a different context (vegetation and soil respectively) for (c) best case,
and (d) worst-case detection performance.
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Figure 21. (a) Visualization of the non-linear interaction of background signal with the target spectrum
for the N2R and N1G targets, and (b) best case target detection continuum results of detection
performance across imagery from all the platforms (G-ground, A-airborne, S-space-borne) for all the
targets used in at a false alarm rate of 10−3 for the in-situ target reference spectra.

4.3. Detection Algorithms and Their Functional Categorization

Apart from the spectral-geometrical-imaging platform dynamics of the target materials, detection
algorithms play a key role in recognizing and identifying material targets. Given the acquisition
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of appropriate spectral imagery and meeting the minimum dimension of the target material, the
detection algorithm employed determines the possibility and quality of target detections. For the
given target reference spectra, the functional characterization expected from a potential detection
algorithm is the ability to deal with target–background interactions and spectral pattern discrimination
in imagery. Based on the functional characteristics, we used three types of detection algorithms,
belonging to categories of geometric approach, spectral matching, and background characterization.
Target detection of materials in the airborne imagery, with target reference spectra extracted from the
same imagery, is accurate and complete (at PD = 75%) by most of the detection algorithms and the
material targets. However, major performance missings of the detection algorithms can be attributed
to the sensitivity to backgrounds. The detection rate of an identical material target positioned on two
different backgrounds varied substantially by the detection algorithm. Among the spectral matching
based detectors, CEM consistently detected material targets across the source of reference target spectra
and imagery platform. Yet, the average number of false alarms is ~50, predominantly in the urban
areas (see Figure 5), which may not meet the practical target detection purposes. The performance
of subspace-based detectors is determined by the quality of extracted endmembers, which in turn
depends upon the endmember extraction algorithm used. For example, OSP and TCIMF yielded the
lowest false alarms for some materials (PFA ∼ 10−5 for N1G and C1W), but high false alarms for other
materials (N4B, N3Y with PFA ∼ 10−2 to 10−4) (see results in Section 3.1.1). However, for the two
similar materials placed on a different contextual background, the detection rate varied drastically
between the spectral and subspace-based detectors. For example, for the MF the difference in the
detection rate between N4B and N1G is ~20 times; whereas, for ACE, it is about 10,000 times.

The adaptability ofthe sub-pixel detection algorithms, such as CEM, TCIMF, ACE, and OSP, for the
detection of engineered materials from space-borne imagery is fraught with a large number of false
alarms. While the pixels of target materials are detected, the number of false alarms outweighs the
detection rate PD at 75%. For instance, when the PD is 75, CEM yielded 3260 false alarms for the
detection of the N1G from the space-borne imagery. In addition, the effect of target–background
interaction(due to mixed pixels) on algorithms’ performance seems pronounced in space-borne imagery
(Figure 7). However, when the confidence of the detection rate PD is reduced to 50%, the results from
the space-borne imagery (Sentinel-2 at 10 m resolution) are consistent, indicating the potential utility of
space-borne imagery for target reconnaissance. We find that the state of the art target detectors needs
substantial refinements for target detection problems. A couple of studies suggest the use of local
mean and covariance estimation, and quantification of interaction effects for improved detection [4,36].
Algorithms with adaptive target–background signal modeling with incorporations of non-linear signal
mixing models for sub-pixel/mixed pixel targets can provide better results compared to the traditional
statistical detectors.

4.4. Key Elements of Influence in Target Detection

Based on our analyses of the extensive target detections observed under different combinations of
background, material, and detection algorithms, we present an empirical estimation of the relative
contributions of the three key elements of a remote sensing-based target detection system—ground
(including local background), sensor (spectral properties), and target (types and positioning) as vertices
of an isosceles triangle. As illustrated in Figure 22, the target detection space represents the possibility
of detecting material targets under the full detection possibility (area of the triangle) considering
the possible levels of the three key elements. The quality of detections depends upon finding the
optimal range in each of the key elements and modeling the appropriate weights. Background contrast
(as defined from the target spectral attributes), and sophistication of detection algorithm (ability to
localize the target–background spectral attributes) have major contribution compared to the spectral
dimensionality of imagery. The spectral features and detection algorithms have equal participation
(about 35% each) in the detection as represented by sides of the triangle (Figure 22). The base of
the triangle, the target-background, has about 30% contribution in the detection and is a landscape
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driven parameter, not amenable for prior human intervention. Improvement in the precision and
detection scores, representing the height of the triangle, is the sophistication of detection algorithms
with reference to optimal spectral dimensionality. A stable target detection system will be the weighted
combination of the three key elements and will have its detection scores in the triangle represented by
‘realistic detection space’. Reaching the most optimized combination of the key elements (indicated by
the green circular dot) is the theoretical upper limit of the target detection system.
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4.5. Experimental Dataset

The multi-source multi-platform dataset for target detection will be a valuable resource for
the ongoing efforts on target detection using hyperspectral and multispectral remote sensing data.
The high-quality in-situ reference spectral data, acquired both in point and pixel mode, will be helpful to
test the nuances of detection related problems and assessment of detection algorithms. Since the present
dataset was acquired from an urban neighborhood, the complexity of the imagery would provide
a rigorous test to the existing theories about the detection problems. The detection of engineered
material at pixel level from satellite data is vital for strategic purposes, and the dataset acquired in this
research can be used for validating such endeavor. For all the practical purposes, we propose that the
detection metric (PD) of target detectors should be relaxed and re-evaluated according to the imaging
complexity of the scene. Target detection can be undertaken in both the reflectance and radiance modes.
However, for the present work, we have only tested the detection performance in the reflectance
domain. Radiance domain target detection will be pursued as future work. The experimental dataset
used in this study will be made available on an appropriate freely accessible public platform.

5. Conclusions

Detection of a specific material of interest/target has been one of the promising applications
of remote sensing. Contributing to the public availability of benchmark and comprehensive
datasets for target detection studies, we have acquired a benchmark multi-platform remote sensing
dataset for exploring the various perspectives target detections and algorithms development and
evaluation. We have carried out experiments on target detections as a function of sensor, platform,
target–background, and the source of reference target spectra. We observe unambiguous detection of
targets in the airborne imagery. The false alarm rate is substantially low if the probability of detection
(PD) is reduced to 75%.The continuity and the quality of target detections are found to be influenced
by the source of reference target spectra. While the target–background interaction is one of the key
components determining the quality of detection, it is not a decisive constraint on the overall detection
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of targets. Target detection results from the ground-level hyperspectral imagery based target reference
spectra are at par with point-based in-situ target reference spectra. The ground-based hyperspectral
imaging sensor is a viable source for rapid acquisition of target reference spectra. A non-imaging
spectroradiometer generated in situ reference spectrum may not conform to the landscape area
element based target pixel spectrum in spectralimagery. The continuity of target detections from
the ground to space, though with different proportions of false positives, suggests the viability of
satellite imagery-based target detection. However, further experiments are required to generalize
this observation.

Notwithstanding the quality spectral data sources, detection algorithm determines the quality of
target detections. The false positives rate is substantial in most of the detection algorithms evaluated,
calling for the development of multi-resolution spectral dimensionality invariant target detection
algorithms. Since remote sensing-based target detection finds applications in various strategic and
civilian applications, the dataset generated in our experiment will help the research community to
validate detection algorithms.
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