11 research outputs found

    ν›ˆλ ¨ 자료 μžλ™ μΆ”μΆœ μ•Œκ³ λ¦¬μ¦˜κ³Ό 기계 ν•™μŠ΅μ„ ν†΅ν•œ SAR μ˜μƒ 기반의 μ„ λ°• 탐지

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μžμ—°κ³Όν•™λŒ€ν•™ μ§€κ΅¬ν™˜κ²½κ³Όν•™λΆ€, 2021. 2. 김덕진.Detection and surveillance of vessels are regarded as a crucial application of SAR for their contribution to the preservation of marine resources and the assurance on maritime safety. Introduction of machine learning to vessel detection significantly enhanced the performance and efficiency of the detection, but a substantial majority of studies focused on modifying the object detector algorithm. As the fundamental enhancement of the detection performance would be nearly impossible without accurate training data of vessels, this study implemented AIS information containing real-time information of vessel’s movement in order to propose a robust algorithm which acquires the training data of vessels in an automated manner. As AIS information was irregularly and discretely obtained, the exact target interpolation time for each vessel was precisely determined, followed by the implementation of Kalman filter, which mitigates the measurement error of AIS sensor. In addition, as the velocity of each vessel renders an imprint inside the SAR image named as Doppler frequency shift, it was calibrated by restoring the elliptic satellite orbit from the satellite state vector and estimating the distance between the satellite and the target vessel. From the calibrated position of the AIS sensor inside the corresponding SAR image, training data was directly obtained via internal allocation of the AIS sensor in each vessel. For fishing boats, separate information system named as VPASS was applied for the identical procedure of training data retrieval. Training data of vessels obtained via the automated training data procurement algorithm was evaluated by a conventional object detector, for three detection evaluating parameters: precision, recall and F1 score. All three evaluation parameters from the proposed training data acquisition significantly exceeded that from the manual acquisition. The major difference between two training datasets was demonstrated in the inshore regions and in the vicinity of strong scattering vessels in which land artifacts, ships and the ghost signals derived from them were indiscernible by visual inspection. This study additionally introduced a possibility of resolving the unclassified usage of each vessel by comparing AIS information with the accurate vessel detection results.μ „μ²œν›„ 지ꡬ κ΄€μΈ‘ μœ„μ„±μΈ SARλ₯Ό ν†΅ν•œ μ„ λ°• νƒμ§€λŠ” ν•΄μ–‘ μžμ›μ˜ 확보와 해상 μ•ˆμ „ 보μž₯에 맀우 μ€‘μš”ν•œ 역할을 ν•œλ‹€. 기계 ν•™μŠ΅ κΈ°λ²•μ˜ λ„μž…μœΌλ‘œ 인해 선박을 λΉ„λ‘―ν•œ 사물 νƒμ§€μ˜ 정확도 및 νš¨μœ¨μ„±μ΄ ν–₯μƒλ˜μ—ˆμœΌλ‚˜, 이와 κ΄€λ ¨λœ λ‹€μˆ˜μ˜ μ—°κ΅¬λŠ” 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ κ°œλŸ‰μ— μ§‘μ€‘λ˜μ—ˆλ‹€. κ·ΈλŸ¬λ‚˜, 탐지 μ •ν™•λ„μ˜ 근본적인 ν–₯상은 μ •λ°€ν•˜κ²Œ μ·¨λ“λœ λŒ€λŸ‰μ˜ ν›ˆλ ¨μžλ£Œ μ—†μ΄λŠ” λΆˆκ°€λŠ₯ν•˜κΈ°μ—, λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ„ λ°•μ˜ μ‹€μ‹œκ°„ μœ„μΉ˜, 속도 정보인 AIS 자료λ₯Ό μ΄μš©ν•˜μ—¬ 인곡 지λŠ₯ 기반의 μ„ λ°• 탐지 μ•Œκ³ λ¦¬μ¦˜μ— μ‚¬μš©λ  ν›ˆλ ¨μžλ£Œλ₯Ό μžλ™μ μœΌλ‘œ μ·¨λ“ν•˜λŠ” μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ•ˆν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•΄ 이산적인 AIS 자료λ₯Ό SAR μ˜μƒμ˜ μ·¨λ“μ‹œκ°μ— λ§žμΆ”μ–΄ μ •ν™•ν•˜κ²Œ λ³΄κ°„ν•˜κ³ , AIS μ„Όμ„œ μžμ²΄κ°€ κ°€μ§€λŠ” 였차λ₯Ό μ΅œμ†Œν™”ν•˜μ˜€λ‹€. λ˜ν•œ, μ΄λ™ν•˜λŠ” μ‚°λž€μ²΄μ˜ μ‹œμ„  μ†λ„λ‘œ 인해 λ°œμƒν•˜λŠ” λ„ν”ŒλŸ¬ 편이 효과λ₯Ό λ³΄μ •ν•˜κΈ° μœ„ν•΄ SAR μœ„μ„±μ˜ μƒνƒœ 벑터λ₯Ό μ΄μš©ν•˜μ—¬ μœ„μ„±κ³Ό μ‚°λž€μ²΄ μ‚¬μ΄μ˜ 거리λ₯Ό μ •λ°€ν•˜κ²Œ κ³„μ‚°ν•˜μ˜€λ‹€. μ΄λ ‡κ²Œ κ³„μ‚°λœ AIS μ„Όμ„œμ˜ μ˜μƒ λ‚΄μ˜ μœ„μΉ˜λ‘œλΆ€ν„° μ„ λ°• λ‚΄ AIS μ„Όμ„œμ˜ 배치λ₯Ό κ³ λ €ν•˜μ—¬ μ„ λ°• 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ ν›ˆλ ¨μžλ£Œ ν˜•μ‹μ— λ§žμΆ”μ–΄ ν›ˆλ ¨μžλ£Œλ₯Ό μ·¨λ“ν•˜κ³ , 어선에 λŒ€ν•œ μœ„μΉ˜, 속도 정보인 VPASS 자료 μ—­μ‹œ μœ μ‚¬ν•œ λ°©λ²•μœΌλ‘œ κ°€κ³΅ν•˜μ—¬ ν›ˆλ ¨μžλ£Œλ₯Ό μ·¨λ“ν•˜μ˜€λ‹€. AIS μžλ£Œλ‘œλΆ€ν„° μ·¨λ“ν•œ ν›ˆλ ¨μžλ£ŒλŠ” κΈ°μ‘΄ λ°©λ²•λŒ€λ‘œ μˆ˜λ™ μ·¨λ“ν•œ ν›ˆλ ¨μžλ£Œμ™€ ν•¨κ»˜ 인곡 지λŠ₯ 기반 사물 탐지 μ•Œκ³ λ¦¬μ¦˜μ„ 톡해 정확도λ₯Ό ν‰κ°€ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό, μ œμ‹œλœ μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œ μ·¨λ“ν•œ ν›ˆλ ¨ μžλ£ŒλŠ” μˆ˜λ™ μ·¨λ“ν•œ ν›ˆλ ¨ 자료 λŒ€λΉ„ 더 높은 탐지 정확도λ₯Ό λ³΄μ˜€μœΌλ©°, μ΄λŠ” 기쑴의 사물 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ 평가 μ§€ν‘œμΈ 정밀도, μž¬ν˜„μœ¨κ³Ό F1 scoreλ₯Ό 톡해 μ§„ν–‰λ˜μ—ˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆν•œ ν›ˆλ ¨μžλ£Œ μžλ™ 취득 κΈ°λ²•μœΌλ‘œ 얻은 선박에 λŒ€ν•œ ν›ˆλ ¨μžλ£ŒλŠ” 특히 기쑴의 μ„ λ°• 탐지 κΈ°λ²•μœΌλ‘œλŠ” 뢄별이 μ–΄λ €μ› λ˜ ν•­λ§Œμ— μΈμ ‘ν•œ μ„ λ°•κ³Ό μ‚°λž€μ²΄ μ£Όλ³€μ˜ μ‹ ν˜Έμ— λŒ€ν•œ μ •ν™•ν•œ 뢄별 κ²°κ³Όλ₯Ό λ³΄μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” 이와 ν•¨κ»˜, μ„ λ°• 탐지 결과와 ν•΄λ‹Ή 지역에 λŒ€ν•œ AIS 및 VPASS 자료λ₯Ό μ΄μš©ν•˜μ—¬ μ„ λ°•μ˜ 미식별성을 νŒμ •ν•  수 μžˆλŠ” κ°€λŠ₯μ„± λ˜ν•œ μ œμ‹œν•˜μ˜€λ‹€.Chapter 1. Introduction - 1 - 1.1 Research Background - 1 - 1.2 Research Objective - 8 - Chapter 2. Data Acquisition - 10 - 2.1 Acquisition of SAR Image Data - 10 - 2.2 Acquisition of AIS and VPASS Information - 20 - Chapter 3. Methodology on Training Data Procurement - 26 - 3.1 Interpolation of Discrete AIS Data - 29 - 3.1.1 Estimation of Target Interpolation Time for Vessels - 29 - 3.1.2 Application of Kalman Filter to AIS Data - 34 - 3.2 Doppler Frequency Shift Correction - 40 - 3.2.1 Theoretical Basis of Doppler Frequency Shift - 40 - 3.2.2 Mitigation of Doppler Frequency Shift - 48 - 3.3 Retrieval of Training Data of Vessels - 53 - 3.4 Algorithm on Vessel Training Data Acquisition from VPASS Information - 61 - Chapter 4. Methodology on Object Detection Architecture - 66 - Chapter 5. Results - 74 - 5.1 Assessment on Training Data - 74 - 5.2 Assessment on AIS-based Ship Detection - 79 - 5.3 Assessment on VPASS-based Fishing Boat Detection - 91 - Chapter 6. Discussions - 110 - 6.1 Discussion on AIS-Based Ship Detection - 110 - 6.2 Application on Determining Unclassified Vessels - 116 - Chapter 7. Conclusion - 125 - κ΅­λ¬Έ μš”μ•½λ¬Έ - 128 - Bibliography - 130 -Maste

    폴리비닐 μ•Œμ½”μ˜¬κ³„λ₯Ό μ΄μš©ν•œ μ€λ‚˜λ…Έλ³΅ν•©μ²΄μ˜ 제쑰 및 ν™˜κ²½λΆ„μ•Ό μ‘μš©

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 화학생물곡학뢀, 2014. 2. μž₯정식.졜근 λ‚˜λ…Έ 크기의 물질의 μ œμ‘°κ°€ λ§Žμ€ 관심을 λ°›κ³  μžˆλ‹€. λ‚˜λ…Έ λ¬Όμ§ˆμ€ μ΅œμ†Œν•œ ν•œλ³€μ΄ 1 μ—μ„œ 100 λ‚˜λ…Έλ―Έν„°μ˜ μ΄λ‚΄μ˜ 길이λ₯Ό κ°–λŠ” μž‘μ€ λ¬Όμ§ˆμ„ λœ»ν•˜λ©°, μ΄λŸ¬ν•œ μž‘μ€ 크기둜 인해 μƒλŒ€μ μœΌλ‘œ 크기가 큰 λ¬Όμ§ˆμ— λΉ„ν•΄ λ…νŠΉν•œ 화학적, 물리적, 그리고 광학적 νŠΉμ§•μ„ μ§€λ‹ˆκ²Œ λœλ‹€. 초기의 금 λ‚˜λ…Έμž…μžλ‘œλΆ€ν„° 졜근의 κ·Έλž˜ν•€μ— 이λ₯΄κΈ°κΉŒμ§€ λ‹€μ–‘ν•œ λ‚˜λ…Έλ¬Όμ§ˆμ΄ 발견, 개발되고 λ‹€μ–‘ν•œ 뢄야에 걸쳐 μ—°κ΅¬λ˜κ³  μžˆλ‹€. ν•˜μ§€λ§Œ μ—¬μ „νžˆ μΉœν™˜κ²½μ μ΄κ³  κ°„λ‹¨ν•œ 방법을 μ΄μš©ν•΄ λ‚˜λ…Έ λ¬Όμ§ˆμ„ μ œμ‘°ν•˜λŠ” 연ꡬ에 κ΄€ν•œ λ³΄κ³ λŠ” λΆ€μ‘±ν•œ 싀정이닀. λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” μΉœν™˜κ²½μ μ΄κ³  κ°„λ‹¨ν•œ 방법을 톡해 은 μ»΄ν”Œλž™μŠ€ λ‚˜λ…Έκ΅¬μ‘°μ²΄λ₯Ό μ œμ‘°ν•˜λŠ” 연ꡬλ₯Ό κΈ°μˆ ν•˜μ˜€λ‹€. 폴리비닐 μ•Œμ½”μ˜¬μ„ μ•ˆμ •ν™” 물질둜 μ‚¬μš©ν•˜μ—¬ ν• λ‘œκ²ν™”μ€ (염화은, λΈŒλ‘¬ν™”μ€) λ‚˜λ…Έμž…μžλ₯Ό λ¬Όμƒμ—μ„œ μ œμ‘°ν•˜μ˜€λ‹€. λ˜ν•œ λ°˜μ‘ μ˜¨λ„λ₯Ό μ‘°μ ˆν•¨ 으둜써 μ΄λ ‡κ²Œ 제쑰된 λ‚˜λ…Έμž…μžμ˜ 크기λ₯Ό 쑰절 ν•  수 μžˆμ—ˆλ‹€. 이 λ°˜μ‘ λ°©λ²•μ—μ„œ, 폴리비닐 μ•Œμ½”μ˜¬μ€ 은 이온과의 μƒν˜Έμž‘μš©μ„ 톡해 λ‚˜λ…Έ 크기의 ν• λ‘œκ²ν™”μ€ μž…μžλ₯Ό μ œμ‘°ν•˜λŠ” 데에 μžˆμ–΄ μ•ˆμ •μ œ 역할을 ν•˜μ˜€λ‹€. 뢀뢄적인 ν™˜μ›κ³Όμ •μ„ 거쳐 κΈˆμ† 은 λ‚˜λ…Έ μž…μžκ°€ λ°•νžŒ ν• λ‘œκ²ν™”μ€ λ‚˜λ…Έλ³΅ν•©μ²΄λ₯Ό μ œμ‘°ν•  수 μžˆμ—ˆκ³ , μ΄λ ‡κ²Œ μ œμ‘°ν•œ λ‚˜λ…Έλ³΅ν•©μ²΄λŠ” κ°€μ‹œκ΄‘ μ˜μ—­μ˜ 빛을 ν‘μˆ˜ν•˜λŠ” νŠΉμ„±μ„ λ³΄μ˜€λ‹€. λ˜ν•œ, κ°€μ‹œκ΄‘ ν•˜μ—μ„œ μš°μˆ˜ν•œ ν”ŒλΌμŠ€λͺ¬-광촉맀 μ„±λŠ₯을 λ‚˜νƒ€λ‚΄μ—ˆλ‹€. λ³Έ 연ꡬλ₯Ό 톡해 ν• λ‘œκ²ν™”μ€ μ§€μ§€μ²΄μ˜ 크기가 λΉ› 흑수 μ˜μ—­μ— 영ν–₯을 λ―ΈμΉœλ‹€λŠ” 것을 λ°ν˜€λ‚΄μ—ˆλ‹€. λ˜ν•œ, κ°„λ‹¨ν•œ λ¬Ό-μƒμ˜ μ œμ‘°λ°©λ²•μ„ 톡해 은을 ν•¨μœ ν•œ κ³ λΆ„μž λ‚˜λ…Έμ„¬μœ λ₯Ό μ œμ‘°ν•˜μ˜€λ‹€. 은/폴리비닐 μ•Œμ½”μ˜¬ λ‚˜λ…Έμ„¬μœ λ₯Ό μ œμ‘°ν•˜λŠ”λ°μ— μžˆμ–΄μ„œ, AIBN이 은 이온과 μ»΄ν”Œλž™μŠ€λ₯Ό ν˜•μ„±ν•˜λŠ” 것을 λ°ν˜€λ‚΄μ—ˆλ‹€. μ΄λŸ¬ν•œ μ»΄ν”Œλž™μŠ€λŠ” AIBN의 μ‹œμ•ˆκΈ°μ™€ 은 이온 μ‚¬μ΄μ˜ μƒν˜Έμž‘μš©μ— μ˜ν•œκ²ƒμœΌλ‘œ μ‚¬λ£Œλœλ‹€. 라디칼 κ°œμ‹œμ œμ΄κΈ°λ„ ν•œ AIBN은 이 λ°˜μ‘μ—μ„œ 은 이온의 ν™˜μ›μ œλ‘œμ„œμ˜ 역할도 μˆ˜ν–‰ν•˜μ˜€λ‹€. λ˜ν•œ, 폴리비닐 μ•Œμ½”μ˜¬μ€ μ„¬μœ ν˜•νƒœμ˜ λ‚˜λ…Έκ΅¬μ‘°μ²΄λ₯Ό μ œμ‘°ν•˜λŠ”λ°μ— μžˆμ–΄μ„œ κ²”λ ˆμ΄ν„° 및 μ•ˆμ •μ œλ‘œ μ‚¬μš©ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ λ°˜μ‘μ„ 거쳐 λ¬Ό μƒμ—μ„œ μ˜¨ν™”ν•œ μ˜¨λ„ν•˜μ—μ„œ 은/폴리비닐 μ•Œμ½”μ˜¬ λ‚˜λ…Έμ„¬μœ λ₯Ό μ œμ‘°ν•  수 μžˆμ—ˆλ‹€. λ”ν•˜μ—¬, μœ„μ˜ λ°˜μ‘μ— ν•­κ· μ„± κ³ λΆ„μžμ˜ λ‹¨λŸ‰μ²΄λ₯Ό μ²¨κ°€ν•¨μœΌλ‘œμ¨ 은/폴리비닐 μ•Œμ½”μ˜¬/ν•­κ· μ„± κ³ λΆ„μžμ˜ λ‚˜λ…Έμ„¬μœ λ₯Ό μ œμ‘°ν•  수 μžˆμ—ˆλ‹€. 이 λ°©λ²•μ—μ„œλŠ” AIBN이 λΆ„μ‚° μ€‘ν•©μ˜ 라이칼 κ°œμ‹œμ œμ˜ 역할을 μˆ˜ν–‰ν•˜μ˜€λ‹€. μ΄λ ‡κ²Œ μ œμ‘°ν•œ λ‚˜λ…Έμ„¬μœ λŠ” ν•­κ· μ œλ‘œμ„œ μ‘μš©λ˜μ—ˆλ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ—λŠ” κ°„λ‹¨ν•˜κ³  μΉœν™˜κ²½μ μΈ 곡정을 톡해 은을 ν•¨μœ ν•œ λ‚˜λ…Έλ¬Όμ§ˆλ“€μ„ μ œμ‘°ν•˜κ³  κ·Έλ₯Ό μ‘μš©ν•˜λŠ” κ°€λŠ₯성에 λŒ€ν•œ 연ꡬλ₯Ό μˆ˜ν–‰ν•œ λ‚΄μš©μ„ λ‹΄μ•˜λ‹€. 폴리비닐 μ•Œμ½”μ˜¬μ€ 은을 ν•¨μœ ν•œ λ‚˜λ…Έλ³΅ν•©μ²΄λ₯Ό μ œμ‘°ν•˜λŠ”λ°μ— μžˆμ–΄μ„œ μ•ˆμ „μ œ 및 ꡬ쑰 ν˜•μ„± μœ λ„μ²΄λ‘œμ„œμ˜ 역할을 ν•˜μ˜€λ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œ μ œμ‹œν•œ λ‚˜λ…Έ λ¬Όμ§ˆλ“€μ€ ν•­κ· , 광촉맀 λ“±μ˜ ν™˜κ²½λΆ„μ•Όμ— μ‘μš©μ΄ κ°€λŠ₯ν•  것이닀. λ³Έ ν•™μœ„λ…Όλ¬Έμ€ 은이 λ°•νžŒ ν• λ‘œκ²ν™”μ€ λ‚˜λ…Έ-광촉맀와 은/κ³ λΆ„μž λ‚˜λ…Έμ„¬μœ μ˜ κ°„λ‹¨ν•œ 제쑰 방법을 μ œμ‹œν•  뿐 μ•„λ‹ˆλΌ κΈˆμ†μ„ ν•¨μœ ν•œ λ‚˜λ…Έλ³΅ν•©μ²΄μ˜ 제쑰 과정에 λŒ€ν•œ 이해λ₯Ό 증진 μ‹œν‚¬ 수 μžˆμ„ κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€.1. Introduction 1 1.1 Background 1 1.1.1 Nanomaterials 1 1.1.2 Metal nanostructures 2 1.1.2.1 Silver nanoparticles 5 1.1.2.2 Silver halide nanocomposite 5 1.1.3 Metal-polmer nanocomposite 8 1.1.3.1. Electrospun silver-polymer nanofibers 8 1.1.3.2. Solution-phase synthesized silver-polymer nanofibers 10 1.1.4. Application of silver-containing nanocomposites 12 1.1.4.1 Visible light-responsive plasmonic photocatalyst 12 1.1.4.2 Antibacterial agent 13 1.1.4.2.1. Antibacterial silver nanoparticles 14 1.1.4.2.2. Antibacterial polymeric compounds 18 1.2 Objectives and Outlines 22 1.2.1 Objectives 22 1.2.2 Outlines 22 2. Experimental Details 24 2.1 Fabrication of silver halide nanomaterials 24 2.1.1 Fabrication of AgCl nanocubes with PVA stabilizer 24 2.1.2 Partical reduction of AgCl nanoparticles 25 2.1.3 Fabrication of AgBr nanocubes with PVA stabilizer 28 2.1.4 Partical reduction of AgBr nanoparticles 28 2.2 Fabrication of silver-polymer composite nanofibers 30 2.2.1 Fabrication of silver/poly(vinyl alcohol) nanofibers by complex-mediated growth 30 2.2.2 Fabrication of silver/poly(vinyl alcohol)/poly[2-(tert-butyl aminoethyl) methacrylate-co-ethylene glycol dimethacrylate] nanofibers using radical mediated dispersion polymerization 31 2.3 Applications 33 2.3.1 Photocatalytic properties of silver halide nanoparticles 33 2.3.1.1 Materials 33 2.3.1.2. Dye-decomposing test 33 2.3.2. Antibacterial properties of silver-polymer nanofibers 34 2.3.2.1 Materials 34 2.3.2.2 Modified Kirby-Bauer (KB) antimicrobial test 35 2.3.2.3 Antibacterial kinetic test 35 2.3.2.4 Minimum inhibitory concentration (MIC) test 36 2.4 Instrumental anaysis 37 3. Results and Discussions 39 3.1. Fabrication of size-controllable Ag@AgCl plasmonic nanoparticles through aqueous system as visible-light plasmonic photocatalysts 39 3.1.1 Fabrication of AgCl nanoparticles 39 3.1.1.1 Synthetic procedure of AgCl nanocubes using poly(vinyl alcohol) as stabilizer 39 3.1.1.2 Size-control of AgCl by varying reaction temperature 44 3.1.2 Systematic investigation of partial reduction of AgCl nanoparticles 47 3.1.2.1 Characterization of Ag@AgCl nanoparticles 47 3.1.2.2 Time-dependent observation of reduction of AgCl nanoparticles 51 3.1.2.3 The effect of AgCl size in the light absorption properties of Ag@AgCl nanoparticles 59 3.1.3 Visible-light responsive photocatalytic properties of synthesized Ag@AgCl nanoparticles 65 3.2. Fabrication of Ag@AgBr photocatalytic nanoparticles in aqueous system with PVA stabilizer 73 3.2.1 Fabrication procedure and size-control of AgBr nanocubes with poly(vinyl alcohol) stabilizing system 73 3.2.2 Size-control of AgBr nanoparitcles 77 3.2.3 Synthesis and characterization of Ag@AgBr nanocomposite 80 3.2.3.1 Microscopic observation of the Ag@AgBr nanoparticles 80 3.2.3.2 Spectroscopic observation of Ag@AgBr nanoparticles 83 3.2.2.3 The effect of AgBr size in the light absorption properties of Ag@AgBr nanoparticles 87 3.2.4 Visible-light responsive photocatalytic properties of synthesized Ag@AgBr nanoparticles 90 3.3. Fabrication of silver/poly(vinyl alcohol) composite nanofiber in aqueous system 94 3.3.1 Characterization of silver nanoparticles-containing poly(vinyl alcohol) nanofibers 95 3.3.1.1. Microscopic observation of the nanofibers 95 3.3.1.2. Spectroscopic analysis of the nanofibers 98 3.3.2. Systematic investigation of the fabrication of silver/poly(vinyl alcohol) nanofibers 104 3.3.2.1. Control experiments 104 3.3.2.2. Time-dependent observation of growth of the nanofibers 109 3.3.3. Study on synthetic mechanism of the complex-mediated growth of silver/poly(vinyl alcohol) nanofibers 114 3.4. Fabrication of silver/poly(vinyl alcohol)/poly[2-tert-butylaminoethyl] methacrylate] nanofibers through aqueous system as antibacterial agents 120 3.4.1. Fabrication and characterization of silver/poly(vinyl alcohol)/poly[2-(tert-butylaminoethyl) methacrylate] nanofibers 120 3.4.1.1. Synthetic procedure of the silver/cationic polymer nanofibers using a radical mediated dispersion polymerization 120 3.4.1.2. Characterization of the synthesized silver/cationic polymer nanofibers 123 3.4.1.2.1. Microscopic observation of the nanofibers 123 3.4.1.2.2. Spectroscopic observation of the nanofibers 128 3.4.2 Antibacterial properties of the synthesized silver nanoparticles embedded cationic polymer nanofibers 136 3.4.2.1 Modified Kirby-Bauer (KB) antimicrobial test 136 3.4.2.2 Antibacterial kinetic test 139 3.4.2.3 Minimum inhibitory concentration (MIC) test 142 4. Conclusion 145 References 150 ꡭ문초둝 162Docto

    λ₯΄λ„€μƒμŠ€ μ—¬μ„±μ˜ 정체성과 λ₯΄λ„€μƒμŠ€ λ“œλΌλ§ˆ John Webster의 The White Devilκ³Ό The Duchess of Malfi 연ꡬ-

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ˜μ–΄μ˜λ¬Έν•™κ³Ό μ˜λ¬Έν•™μ „κ³΅,1997.Maste

    The analysis for anesthesia cost variation of colorectal cancer patients according to the severity

    No full text
    λ³‘μ›κ²½μ˜ν•™κ³Ό/석사본 μ—°κ΅¬λŠ” 쀑증도에 λ”°λ₯Έ λŒ€μž₯μ•” ν™˜μžμ˜ 마취 μ§„λ£ŒλΉ„ 변이 뢄석을 νŒŒμ•…ν•˜κ³  그에 λ”°λ₯Έ 정책적 μ‹œμ‚¬μ μ„ μ œμ•ˆν•˜κ³ μž μ‹œν–‰λ˜μ—ˆλ‹€. 이λ₯Ό μœ„ν•˜μ—¬ λŒ€μž₯μ•” ν™˜μžμ˜ μ§„λ£ŒλΉ„ ν˜„ν™©μ„ νŒŒμ•…ν•˜μ˜€κ³  쀑증도λ₯Ό ν¬ν•¨ν•œ νŠΉμ„±λ³„ λ³€μˆ˜μ— 따라 μ§„λ£ŒλΉ„μ˜ 변이가 μ‘΄μž¬ν•˜λŠ”μ§€ ν™•μΈν•˜μ˜€λ‹€. λ˜ν•œ 변이λ₯Ό μΌμœΌν‚€λŠ” μš”μΈμ΄ 무엇인지 ν™•μΈν•˜κ³ μž ν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•΄ μˆ˜λ„κΆŒ μ†Œμž¬ 상급쒅합병원 μ„Έ 곳의 ν™˜μž 쀑 κ±΄κ°•λ³΄ν—˜μ‹¬μ‚¬ν‰κ°€μ› λŒ€μž₯μ•” 톡계에 ν¬ν•¨λ˜λŠ” μ½”λ“œ 7가지 쀑 ν•˜λ‚˜λΌλ„ λ³΄μœ ν•˜κ³  μžˆλŠ” ν™˜μžλ₯Ό λŒ€μƒμœΌλ‘œ 정보λ₯Ό μˆ˜μ§‘ν•˜κ³  μ§„λ£ŒλΉ„ 내역을 μ‚¬μš©ν•˜μ˜€λ‹€. 이 μ—°κ΅¬μ˜ μ£Όμš” κ²°κ³Όλ₯Ό μš”μ•½ν•˜λ©΄ λ‹€μŒκ³Ό κ°™λ‹€. ν™˜μžμ˜ 쀑증도λ₯Ό λ°˜μ˜ν•˜μ§€ λͺ»ν•œλ‹€κ³  κ³ λ €λ˜λŠ” 성별, μ—°λ Ή λ“±μ—μ„œλŠ” μ§„λ£ŒλΉ„μ˜ 변이가 μ‘΄μž¬ν•˜μ§€ μ•Šμ•˜μœΌλ‚˜ ν™˜μžμ˜ μœ„κΈ‰λ„λ‚˜ 쀑증도λ₯Ό λ‚˜νƒ€λ‚΄λŠ” ASA Stage λ³€μˆ˜μ—μ„œλŠ” μ§„λ£ŒλΉ„μ˜ 변이가 λ‚˜νƒ€λ‚˜λŠ” κ²ƒμœΌλ‘œ ν™•μΈν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ κ²°κ³Όλ₯Ό λ°”νƒ•μœΌλ‘œ λ™μΌν•œ μ§ˆν™˜μ„ 가진 ν™˜μžκ΅° λ‚΄μ—μ„œλ„ 의료 인λ ₯의 기술, λ§ˆμ·¨μ‹œμˆ  κ΄€λ ¨ 재료 λ“±μ—μ„œ 차이가 μ‘΄μž¬ν•  수 μžˆμŒμ„ ν™•μΈν•˜μ˜€λ‹€. κ·ΈλŸ¬λ‚˜ ν˜„ν–‰ 마취 κ΄€λ ¨ μˆ˜κ°€μ§€λΆˆμ œλ„λŠ” μ΄λŸ¬ν•œ λ§ˆμ·¨λΆ„μ•Όμ˜ νŠΉμˆ˜μ„±μ„ κ°μ•ˆν•˜μ§€ λͺ»ν•˜κ³  μžˆλŠ” 싀정이닀. 이 연ꡬ κ²°κ³Όλ₯Ό ν† λŒ€λ‘œ 보면 λ§ˆμ·¨λΆ„μ•Όμ˜ 보닀 ν˜„μ‹€ν™”λœ μˆ˜κ°€μ§€λΆˆμ²΄κ³„μ— λŒ€ν•œ λ…Όμ˜κ°€ ν•„μš”ν•  κ²ƒμœΌλ‘œ 보이며 이λ₯Ό μœ„ν•΄ 심도 κΉŠμ€ 후속 연ꡬ가 ν•„μš”ν•  κ²ƒμœΌλ‘œ μ‚¬λ£Œλ˜λŠ” 바이닀. The purpose of this study was analyze the variation of anesthesia cost of patients who have colorectal cancer according to severity and to suggest policy implications. For these purpose, the status of the medical expenses of patients with colorectal cancer was analyzed and it was confirmed whether there was a variation in the medical expenses according to the characteristics by the characteristics including the severity. We also tried to identify which factor causes the cost variation in the colorectal cancer patients. For this purpose, we collected information on the patients who have at least one of the seven code included cancer screening statistics of the Health Insurance Review and Assessment Service(HIRAs) among the three superior general hospital in the metropolitan area. The major results of this study are summarized as follows. although there was no variation in the cost of gender and age, which were considered to not reflect the severity of the patient. But, it was confirmed that the ASA stage variable, which represents the emergency or severity of the patient. Depending on these results, it was confirmed that there may be difference in the technology of medical personnel and the anesthesia-related materials among the patients having the same disease. However, current anesthesia payment system does not consider the specificity of this anesthetic field. According to the results of this study, the more realistic debates about payment system of anesthesia field and subsequent studies seem to be necessary.ope

    A Study on the Improvement of Sequential Recommender System through Data Augmentation

    No full text
    ν•™μœ„λ…Όλ¬Έ (석사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μœ΅ν•©κ³Όν•™κΈ°μˆ λŒ€ν•™μ› 지λŠ₯μ •λ³΄μœ΅ν•©ν•™κ³Ό, 2021. 2. μ„œλ΄‰μ›.Recommender systems, which have been developed based on the maturity of the information society, have recently achieved high performance improvement with the development of β€˜Deep Learning’ technology that makes use of artificial deep neural network. Owing to the improved performance, its influence as well as its importance have been increasing today. Generally, it is known that the recommender models based on neural network structure can achieve higher performance than those with traditional approaches, but it premises a large volume of data in order to estimate numerous parameters of the model. However, it is quite expensive to obtain additional data when the size of dataset being in hand is small. Especially, recommender systems have more difficulty in obtaining additional data compared to other areas in that they deal with actual user behavior logs. In the field of Computer Vision, where Deep Learning technology is being actively applied, it has been seeking to improve the performance of the model by greatly increasing the volume of training data using various data augmentation technologies. It is also expected that recommender systems can have significant benefits using these data augmentation technologies, but the research on data augmentation has not been sufficiently progressed yet in the recommender systems, especially in the field of sequential recommendation. Motivated by this situation, we aim to show that various data augmentation techniques can improve the performance of sequential recommender system, especially when the training dataset is small. To this end, we describe how data augmentation changes the performance with the extensive experiment based on the latest sequential recommender model of neural network architecture. Our suggested data augmentation techniques are 1) Noise Injection, 2) Redundancy Injection, 3) Masking, 4) Synonym Substitution, all of which transform original item sequences in the way of direct corruption. Experiments performed with three benchmark datasets - β€˜Movielens-1M’, β€˜Gowalla’ and β€˜Amazon Video Games’ - demonstrate that overall performance improvement can be found when our suggested data augmentation techniques applied. It’s notable that the performance improvement can be large if the size of dataset is relatively small. It can be said that applying data augmentation techniques can be effective to boost the performance, especially when the sequential recommender system doesn’t have enough dataset on the early stage of a service. The contributions of this study can be summarized as follows: 1) it has confirmed with quantitative experiments that data augmentation technology can improve sequential recommendation performance when training dataset is small, 2) it suggests the possibility of further performance improvement of other current SOTA(State-Of-The-Art) models, in that data augmentation is applied in the pre-processing step and does not change the overall model architecture, 3) it has described how the performance changes in different manner according to the extensive application of various data augmentation techniques, and it furthermore verified that data augmentation can work as an universal pre-processing technique in the design of recommender system, 4) it can be referred as a basic research result in the process of developing the research on data augmentation in recommender systems, which has not yet been fully investigated.정보화 μ‹œλŒ€μ˜ μ„±μˆ™μ„ λ°”νƒ•μœΌλ‘œ λ°œλ‹¬ν•΄ 온 μΆ”μ²œ μ‹œμŠ€ν…œμ€ 졜근 심측 인곡신경망(Deep Neural Network) ꡬ쑰λ₯Ό ν•™μŠ΅μ— ν™œμš©ν•˜λŠ” λ”₯λŸ¬λ‹(Deep Learning) 기술의 λ°œλ‹¬κ³Ό ν•¨κ»˜ 높은 μ„±λŠ₯ ν–₯상을 이루어내고 있으며, κ°œμ„ λœ μ„±λŠ₯에 νž˜μž…μ–΄ κ·Έ 영ν–₯λ ₯ 및 μ€‘μš”μ„±μ΄ λ”μš± μ¦κ°€ν•˜κ³  μžˆλ‹€. λ§Žμ€ κ²½μš°μ— 심측 인곡신경망 ꡬ쑰λ₯Ό ν™œμš©ν•œ λͺ¨λΈμ€ 전톡적인 접근법 λŒ€λΉ„ 높은 μ„±λŠ₯을 얻을 수 μžˆλŠ” κ²ƒμœΌλ‘œ μ•Œλ €μ Έ μžˆμœΌλ‚˜, 이λ₯Ό μœ„ν•΄μ„œλŠ” μˆ˜λ§Žμ€ νŒŒλΌλ―Έν„°λ“€μ„ μΆ”μ •ν•˜κΈ° μœ„ν•œ λŒ€κ·œλͺ¨μ˜ 데이터셋이 μ „μ œλœλ‹€. ν•˜μ§€λ§Œ κΈ° ν™•λ³΄λœ λ°μ΄ν„°μ…‹μ˜ 규λͺ¨κ°€ μž‘μ€ μƒν™©μ—μ„œ 데이터λ₯Ό μΆ”κ°€μ μœΌλ‘œ ν™•λ³΄ν•˜λŠ” 것은 높은 λΉ„μš©μ΄ μ†Œμš”λ˜λ©°, 특히 μ‹€μ œ μ‚¬μš©μžμ˜ 행동 둜그λ₯Ό λ‹€λ£¨λŠ” μΆ”μ²œ μ‹œμŠ€ν…œμ€ 타 뢄야에 λΉ„ν•΄ μΆ”κ°€ 데이터 확보가 λ”μš± μ–΄λ €μš΄ νŽΈμ΄λ‹€. λ”₯λŸ¬λ‹ 기술의 적용이 ν™œλ°œν•˜κ²Œ 이루어지고 μžˆλŠ” 컴퓨터 λΉ„μ „(Computer Vision) λΆ„μ•Όμ˜ 경우 λ‹€μ–‘ν•œ 데이터 증강(Data Augmentation) κΈ°μˆ μ„ 톡해 μ ˆλŒ€μ μΈ ν•™μŠ΅ λ°μ΄ν„°μ…‹μ˜ 규λͺ¨λ₯Ό 크게 λŠ˜λ¦¬λŠ” λ°©μ‹μœΌλ‘œ λͺ¨λΈμ˜ μ„±λŠ₯ ν–₯상을 도λͺ¨ν•΄μ˜€κ³  μžˆλ‹€. μΆ”μ²œ μ‹œμŠ€ν…œ μ—­μ‹œ μ΄λŸ¬ν•œ 데이터 증강 κΈ°μˆ μ„ ν™œμš©ν•˜μ—¬ ν•™μŠ΅ 데이터λ₯Ό μΆ”κ°€μ μœΌλ‘œ 확보할 수 μžˆλ‹€λ©΄ μƒλ‹Ήν•œ 효용이 μžˆμ„ κ²ƒμœΌλ‘œ κΈ°λŒ€λ˜λ‚˜, μ•„μ§κΉŒμ§€ μΆ”μ²œ μ‹œμŠ€ν…œ, 특히 순차 μΆ”μ²œ(Sequential recommendation) λΆ„μ•Όμ—μ„œλŠ” 데이터 증강 κ΄€λ ¨ 연ꡬ가 λ―Έν‘ν•œ 싀정이닀. μ΄λŸ¬ν•œ λ¬Έμ œμ˜μ‹μ„ λ°”νƒ•μœΌλ‘œ, λ³Έ λ…Όλ¬Έμ—μ„œλŠ” ν•™μŠ΅ 데이터가 μΆ©λΆ„ν•˜μ§€ μ•Šμ€ μƒν™©μ—μ„œ λ‹€μ–‘ν•œ 데이터 증강 기법을 ν™œμš©ν•¨μœΌλ‘œμ¨ 순차 μΆ”μ²œ μ‹œμŠ€ν…œμ˜ μ„±λŠ₯을 ν–₯μƒμ‹œν‚¬ 수 μžˆμŒμ„ 보이고자 ν•œλ‹€. 이λ₯Ό μœ„ν•΄ 인곡신경망 기반의 μ΅œμ‹  순차 μΆ”μ²œ λͺ¨λΈμ„ 기반으둜 원본 μ•„μ΄ν…œ μ‹œν€€μŠ€λ₯Ό 직접 λ³€ν˜•μ‹œν‚€λŠ”(direct corruption) λ°©μ‹μ˜ 총 4가지 데이터 증강 기법 1) λ…Έμ΄μ¦ˆ μΆ”κ°€(Noise Injection), 2) 쀑볡성 μΆ”κ°€ (Redundancy Injection), 3) μ•„μ΄ν…œ λ§ˆμŠ€ν‚Ή(Masking), 4) μœ μ‚¬ μ•„μ΄ν…œ λŒ€μ²΄(Synonym Substitution) 을 μ μš©ν•˜μ—¬ μΆ”μ²œ μ„±λŠ₯의 λ³€ν™”λ₯Ό ν™•μΈν•˜μ˜€λ‹€. 순차 μΆ”μ²œ λͺ¨λΈμ˜ μ„±λŠ₯ 평가λ₯Ό μœ„ν•œ 벀치마크둜 널리 μ‚¬μš©λ˜λŠ” λ¬΄λΉ„λ Œμ¦ˆ(MovieLens-1M), κ³ μ™ˆλΌ(Gowalla), μ•„λ§ˆμ‘΄ λΉ„λ””μ˜€κ²Œμž„(Amazon Video Games) 의 3개 데이터셋에 λŒ€ν•΄ μ‹€ν—˜μ„ μ§„ν–‰ν•œ κ²°κ³Ό, μ œμ•ˆν•˜λŠ” 데이터 증강 κΈ°μˆ μ„ μ μš©ν•  경우 μ „λ°˜μ μœΌλ‘œ μ„±λŠ₯ κ°œμ„ μ΄ λ‚˜νƒ€λ‚˜λŠ” κ²ƒμœΌλ‘œ ν™•μΈλ˜μ—ˆλ‹€. 특히 λ°μ΄ν„°μ…‹μ˜ 크기가 μž‘μ„ λ•Œμ— 데이터 증강에 μ˜ν•œ μ„±λŠ₯ ν–₯μƒμ˜ 폭이 큰 κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚˜, 순차 μΆ”μ²œ μ‹œμŠ€ν…œμ΄ μ μš©λ˜λŠ” μ„œλΉ„μŠ€ μ΄ˆμ°½κΈ°μ— 데이터λ₯Ό μΆ©λΆ„νžˆ ν™•λ³΄ν•˜μ§€ λͺ»ν–ˆμ„ 경우 μ„±λŠ₯ ν–₯상을 μœ„ν•΄ 데이터 증강이 효과적으둜 ν™œμš©λ  수 μžˆμ„ κ²ƒμœΌλ‘œ 보인닀. λ³Έ μ—°κ΅¬μ˜ κΈ°μ—¬ 뢀뢄은 λ‹€μŒκ³Ό 같이 정리할 수 μžˆλ‹€. 1) 데이터 증강 κΈ°μˆ μ„ ν™œμš©ν•˜μ—¬ ν•™μŠ΅ 데이터가 적은 μƒν™©μ—μ„œ 순차 μΆ”μ²œ μ„±λŠ₯을 κ°œμ„ ν•  수 μžˆμŒμ„ μ •λŸ‰μ μΈ μ‹€ν—˜μ„ 톡해 ν™•μΈν•˜μ˜€λ‹€. 2) 데이터 μ „μ²˜λ¦¬ κ³Όμ •μ—μ„œ μ΄λ£¨μ–΄μ§€λŠ” 데이터 증강은 기본적인 λͺ¨λΈμ˜ μ•„ν‚€ν…μ²˜λ₯Ό λ³€ν™”μ‹œν‚€μ§€ μ•ŠλŠ”λ‹€λŠ” μ μ—μ„œ ν˜„μž¬ μ œμ‹œλ˜μ–΄ μžˆλŠ” λ‹€μ–‘ν•œ SOTA(State-Of-The-Art) λͺ¨λΈμ˜ μ„±λŠ₯을 μΆ”κ°€μ μœΌλ‘œ κ°œμ„ μ‹œν‚¬ 수 μžˆλŠ” κ°€λŠ₯성을 μ œμ‹œν•˜μ˜€λ‹€. 3) λ‹€μ–‘ν•œ 데이터 증강 방식을 ν¬κ΄„μ μœΌλ‘œ μ μš©ν•΄ λ΄„μœΌλ‘œμ¨ 데이터 증강 방식에 λ”°λ₯Έ μ„±λŠ₯ λ³€ν™”μ˜ 차별적 양상을 ν™•μΈν•˜μ˜€μœΌλ©°, 데이터 증강이 μΆ”μ²œ μ‹œμŠ€ν…œ λ””μžμΈμ— μžˆμ–΄ 보편적인 μ „μ²˜λ¦¬ κΈ°λ²•μ˜ ν•˜λ‚˜λ‘œ κΈ°λŠ₯ν•  수 μžˆμ„ κ°€λŠ₯성을 κ²€μ¦ν•˜μ˜€λ‹€. 4) 기쑴의 순차 μΆ”μ²œ λΆ„μ•Όμ—μ„œ 아직 μΆ©λΆ„νžˆ μ—°κ΅¬λ˜μ§€ μ•Šμ€ 데이터 μ¦κ°•μ΄λΌλŠ” 츑면에 μ£Όλͺ©ν•¨μœΌλ‘œμ¨ ν–₯ν›„ κ΄€λ ¨ 연ꡬ듀을 λ°œμ „μ‹œν‚€λŠ” κ³Όμ •μ—μ„œ 기초 자료둜 ν™œμš©λ  수 μžˆλ‹€.제 1 μž₯ μ„œ λ‘  1 제 1 절 μ—°κ΅¬μ˜ λ°°κ²½ 1 제 2 절 μ—°κ΅¬μ˜ λ‚΄μš© 4 제 2 μž₯ μ„ ν–‰ 연ꡬ 8 제 1 절 κ°œμΈν™” μΆ”μ²œ μ‹œμŠ€ν…œ 8 제 2 절 순차 μΆ”μ²œ μ‹œμŠ€ν…œ 14 제 3 절 데이터 증강 24 제 3 μž₯ 연ꡬ 방법 및 섀계 34 제 1 절 데이터 증강 기법 34 제 2 절 뢀뢄집합 데이터셋 생성 44 제 3 절 λͺ¨λΈ ν•™μŠ΅ 45 제 4 μž₯ μ‹€ ν—˜ 53 제 1 절 데이터셋 및 μ‹€ν—˜ μ…‹μ—… 53 제 2 절 μ„±λŠ₯ 평가 μ§€ν‘œ 58 제 3 절 μ‹€ν—˜ κ²°κ³Ό 60 제 5 μž₯ λ…Ό 의 90 제 1 절 각 데이터 증강 κΈ°λ²•μ˜ 효과 해석 90 제 2 절 데이터 증강 효과의 포화(saturation) 93 제 3 절 SOTA λͺ¨λΈμ˜ μΆ”κ°€ κ°œμ„  κ°€λŠ₯μ„± 96 제 4 절 데이터셋 νŠΉμ„±μ— λ”°λ₯Έ 적용 κ°€μ΄λ“œλΌμΈ 98 제 6 μž₯ κ²° λ‘  101 μ°Έκ³ λ¬Έν—Œ 103 Abstract 109Maste

    Exploitation of Dual-polarimetric Index of Sentinel-1 SAR Data inVessel Detection Utilizing Machine Learning

    No full text
    μ „μ²œν›„ 자료 취득이 κ°€λŠ₯ν•œ SAR μ˜μƒμ„ 기반으둜 ν•œ μ„ λ°• 탐지와 인곡지λŠ₯ 기반 탐지 μ•Œκ³ λ¦¬μ¦˜κ³Ό ν•¨κ»˜μ‚¬μš©ν•˜λŠ” 것은 μ•ˆμ •μ μΈ μ„ λ°• λͺ¨λ‹ˆν„°λ§μ— νš¨κ³Όμ μ΄λ‹€. 기쑴의 SAR μ˜μƒμ—μ„œλŠ” 인곡지λŠ₯ 기반 μ„ λ°• 탐지 μ•Œκ³ λ¦¬μ¦˜μ— 진폭 μ˜μƒλ§Œμ„ 주둜 μ‚¬μš©ν•˜μ˜€μœΌλ©°, 물체의 μ‚°λž€ νŠΉμ„±μ„ ꡬ뢄할 수 μžˆλŠ” 닀쀑 편파 SAR μ˜μƒμ˜ 편파 μ§€ν‘œλŠ” μ‚¬μš©λ˜μ§€ μ•Šμ•˜λ‹€. 이에, λ³Έ μ—°κ΅¬μ—μ„œλŠ” 이쀑 편파 Sentinel-1 SAR μ˜μƒμœΌλ‘œλΆ€ν„° κ³ μœ κ°’ λΆ„ν•΄λ₯Ό 톡해 μ·¨λ“ν•œ 4개의 편파 μ§€ν‘œμΈ H, p1, DoP, DPRVI와 방사 보정을 톡해 μ·¨λ“ν•œ 2개 편파의 μ‚°λž€κ³„μˆ˜μΈ Ξ³0, VV, Ξ³0, VHλ₯Ό 이N

    Assessment of Backprojection-based FMCW-SAR Image Restoration by Multiple Implementation of Kalman Filter

    No full text
    SAR SLC μ˜μƒμ„ μ·¨λ“ν•˜κΈ° μœ„ν•΄ μ›μ‹œ μžλ£Œλ‘œλΆ€ν„° BPA 기반 μ˜μƒλ³΅μ›μ„ μˆ˜ν–‰ν•  λ•Œ μ •ν™•ν•œ GNSS-INS μ„Όμ„œμ˜ μœ„μΉ˜ 및 속도 정보λ₯Ό νšλ“ν•˜λŠ” 것은 μ€‘μš”ν•˜λ‹€. BPA 기반 μ˜μƒλ³΅μ›μ„ μˆ˜ν–‰ν•œ μ—°κ΅¬μ—μ„œ κΈ°κΈ° 였차 보정을 μœ„ν•΄ Kalman Filterλ₯Ό μ μš©ν•˜μ˜€μœΌλ‚˜, λŒ€λΆ€λΆ„ 1회 μ μš©ν•˜μ—¬ 효과적으둜 였차λ₯Ό μ œκ±°ν•˜μ˜€λŠ”μ§€ νŒλ‹¨ν•˜κΈ° μ–΄λ ΅λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” GNSS-INS μ„Όμ„œμ˜ μœ„μΉ˜ 및 속도 정보에 Kalman Filterλ₯Ό 볡수회 μ μš©ν•œ λ’€ BPAλ₯Ό μ΄μš©ν•˜μ—¬ μ˜μƒλ³΅μ›μ„ μˆ˜ν–‰ν•˜μ—¬ κΈ°κΈ° 였차 보정에 효과적인 필터링 횟수λ₯Ό ν‰κ°€ν•˜κ³ μž ν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•΄ 2회의 항곡기 μ‹€ν—˜μ„ μ§„ν–‰ν•˜μ—¬ SAR μ›μ‹œ 자료λ₯Ό μ·¨λ“ν•˜μ˜€κ³ , 이듀에 ν•΄λ‹Ήν•˜λŠ” GNSS-INS μ„Όμ„œ 정보에 λŒ€ν•΄ μ‹€μ§ˆμ μ΄κ³  μ—°μ†μ μœΌλ‘œ Kalman Filterλ₯Ό μ μš©ν•˜μ˜€λ‹€. λ³Έ 연ꡬλ₯Ό 톡해 μƒμ΄ν•œ 이동 경둜λ₯Ό κ°€μ§€λŠ” GNSS-INS 정보가 μƒμ‘ν•˜λŠ” FMCW-SAR μ˜μƒμ˜ BPA 기반 졜적 μ˜μƒλ³΅μ›μ— ν•„μš”ν•œ Kalman Filter 적용 νšŸμˆ˜μ— 영ν–₯을 λ―ΈμΉ  수 μžˆλ‹€λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. Acquisition of precise position and velocity information of GNSS-INS (Global Navigation Satellite System; Inertial Navigation System) sensors in obtaining SAR SLC (Single Look Complex) images from raw data using BPA (Backprojection Algorithm) was regarded decisive. Several studies on BPA were accompanied by Kalman Filter for sensor noise oppression, but often implemented once where insufficient information was given to determine whether the filtering was effectively applied. Multiple operation of Kalman Filter on GNSS-INS sensor was presented in order to assess the effective order of sensor noise calibration. FMCW (Frequency Modulated Continuous Wave)-SAR raw data was collected from twice airborne experiments whose GNSS-INS information was practically and repeatedly filtered via Kalman Filter. It was driven that the FMCW-SAR raw data with diverse path information could derive different order of Kalman Filter with optimum operation of BPA image restoration.N
    corecore