452 research outputs found

    Harris function based active contour external force for image segmentation

    Get PDF
    Deformable active contour (snake) models are efficient tools for object boundary detection. Existing alterations of the traditional gradient vector flow (GVF) model have reduced sensitivity to noise, parameters and initial location, but high curvatures and noisy, weakly contrasted boundaries cause difficulties for them. This paper introduces two Harris based parametric snake models, Harris based gradient vector flow (HGVF) and Harris based vector field convolution (HVFC), which use the curvature-sensitive Harris matrix to achieve a balanced, twin-functionality (corner and edge) feature map. To avoid initial location sensitivity, starting contour is defined as the convex hull of the most attractive points of the map. In the experimental part we compared our methods to the traditional external energy-inspired state-of-the-art GVF and VFC; the recently published parametric decoupled active contour (DAC) and the non-parametric Chan–Vese (ACWE) techniques. Results show that our methods outperform the classical approaches, when tested on images with high curvature, noisy boundaries

    Decoupled Deformable Model For 2D/3D Boundary Identification

    Get PDF
    The accurate detection of static object boundaries such as contours or surfaces and dynamic tunnels of moving objects via deformable models is an ongoing research topic in computer vision. Most deformable models attempt to converge towards a desired solution by minimizing the sum of internal (prior) and external (measurement) energy terms. Such an approach is elegant, but frequently mis-converges in the presence of noise or complex boundaries and typically requires careful semi-dependent parameter tuning and initialization. Furthermore, current deformable model based approaches are computationally demanding which precludes real-time use. To address these limitations, a decoupled deformable model (DDM) is developed which optimizes the two energy terms separately. Essentially, the DDM consists of a measurement update step, employing a Hidden Markov Model (HMM) and Maximum Likelihood (ML) estimator, followed by a separate prior step, which modifies the updated deformable model based on the relative strengths of the measurement uncertainty and the non-stationary prior. The non-stationary prior is generated by using a curvature guided importance sampling method to capture high curvature regions. By separating the measurement and prior steps, the algorithm is less likely to mis-converge; furthermore, the use of a non-iterative ML estimator allows the method to converge more rapidly than energy-based iterative solvers. The full functionality of the DDM is developed in three phases. First, a DDM in 2D called the decoupled active contour (DAC) is developed to accurately identify the boundary of a 2D object in the presence of noise and background clutter. To carry out this task, the DAC employs the Viterbi algorithm as a truncated ML estimator, curvature guided importance sampling as a non-stationary prior generator, and a linear Bayesian estimator to fuse the non-stationary prior with the measurements. Experimental results clearly demonstrate that the DAC is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to three other published methods and across many images, the DAC is found to be faster and to offer consistently accurate boundary identification. Second, a fast decoupled active contour (FDAC) is proposed to accelerate the convergence rate and the scalability of the DAC without sacrificing the accuracy by employing computationally efficient and scalable techniques to solve the three primary steps of DAC. The computational advantage of the FDAC is demonstrated both experimentally and analytically compared to three computationally efficient methods using illustrative examples. Finally, an extension of the FDAC from 2D to 3D called a decoupled active surface (DAS) is developed to precisely identify the surface of a volumetric 3D image and the tunnel of a moving 2D object. To achieve the objectives of the DAS, the concepts of the FDAC are extended to 3D by using a specialized 3D deformable model representation scheme and a computationally and storage efficient estimation scheme. The performance of the DAS is demonstrated using several natural and synthetic volumetric images and a sequence of moving objects

    Direction Selective Contour Detection for Salient Objects

    Get PDF
    The active contour model is a widely used technique for automatic object contour extraction. Existing methods based on this model can perform with high accuracy even in case of complex contours, but challenging issues remain, like the need for precise contour initialization for high curvature boundary segments or the handling of cluttered backgrounds. To deal with such issues, this paper presents a salient object extraction method, the first step of which is the introduction of an improved edge map that incorporates edge direction as a feature. The direction information in the small neighborhoods of image feature points are extracted, and the images’ prominent orientations are defined for direction-selective edge extraction. Using such improved edge information, we provide a highly accurate shape contour representation, which we also combine with texture features. The principle of the paper is to interpret an object as the fusion of its components: its extracted contour and its inner texture. Our goal in fusing textural and structural information is twofold: it is applied for automatic contour initialization, and it is also used to establish an improved external force field. This fusion then produces highly accurate salient object extractions. We performed extensive evaluations which confirm that the presented object extraction method outperforms parametric active contour models and achieves higher efficiency than the majority of the evaluated automatic saliency methods

    Asymmetric Geodesic Distance Propagation for Active Contours

    Get PDF
    This is the final version. Available from British Machine Vision Association (BMVA) via the link in this record. The dual-front scheme is a powerful curve evolution tool for active contours and image segmentation, which has proven its capability in dealing with various segmentation tasks. In its basic formulation, a contour is represented by the interface of two adjacent Voronoi regions derived from the geodesic distance map which is the solution to an Eikonal equation. The original dual-front model [17] is based on isotropic metrics, and thus cannot take into account the asymmetric enhancements during curve evolution. In this paper, we propose a new asymmetric dual-front curve evolution model through an asymmetric Finsler geodesic metric, which is constructed in terms of the extended normal vector field of the current contour and the image data. The experimental results demonstrate the advantages of the proposed method in computational efficiency, robustness and accuracy when compared to the original isotropic dual-front model.Roche pharmaAgence Nationale de la Recherch

    PEMILIHAN METODE SEGMENTASI PADA CITRA ULTRASONOGRAFI OVARIUM

    Get PDF
    Penelitian ini membandingkan metode segmentasi untuk mengenali folikel pada citra ultrasonografi ovarium, metode segmentasi yang paling baik akan digunakan untuk proses perhitungan jumlah folikel. Penilaian kinerja metode segmentasi active contour dan active contour without edge dievaluasi menggunakan Probabilistic Rand Index (PRI) dan Global Consistency Error (GCE). Hasil penelitian ini menunjukkan metode segmentasi yang terbaikadalah active contour without edge karena memiliki nilai PRI lebih tinggi dan pada nilai GCE lebih rendah dari pada hasil metode segmentasi active contour

    Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis

    Get PDF
    A novel statistical model based on texture and shape for fully automatic intraretinal layer segmentation of normal retinal tomograms obtained by a commercial 800nm optical coherence tomography (OCT) system is developed. While existing algorithms often fail dramatically due to strong speckle noise, non-optimal imaging conditions, shadows and other artefacts, the novel algorithm’s accuracy only slowly deteriorates when progressively increasing segmentation task difficulty. Evaluation against a large set of manual segmentations shows unprecedented robustness, even in the presence of additional strong speckle noise, with dynamic range tested down to 12dB, enabling segmentation of almost all intraretinal layers in cases previously inaccessible to the existing algorithms. For the first time, an error measure is computed from a large, representative manually segmented data set (466 B-scans from 17 eyes, segmented twice by different operators) and compared to the automatic segmentation with a difference of only 2.6% against the inter-observer variability

    Automatic Identification and Representation of the Cornea–Contact Lens Relationship Using AS-OCT Images

    Get PDF
    [Abstract] The clinical study of the cornea–contact lens relationship is widely used in the process of adaptation of the scleral contact lens (SCL) to the ocular morphology of patients. In that sense, the measurement of the adjustment between the SCL and the cornea can be used to study the comfort or potential damage that the lens may produce in the eye. The current analysis procedure implies the manual inspection of optical coherence tomography of the anterior segment images (AS-OCT) by the clinical experts. This process presents several limitations such as the inability to obtain complex metrics, the inaccuracies of the manual measurements or the requirement of a time-consuming process by the expert in a tedious process, among others. This work proposes a fully-automatic methodology for the extraction of the areas of interest in the study of the cornea–contact lens relationship and the measurement of representative metrics that allow the clinicians to measure quantitatively the adjustment between the lens and the eye. In particular, three distance metrics are herein proposed: Vertical, normal to the tangent of the region of interest and by the nearest point. Moreover, the images are classified to characterize the analysis as belonging to the central cornea, peripheral cornea, limbus or sclera (regions where the inner layer of the lens has already joined the cornea). Finally, the methodology graphically presents the results of the identified segmentations using an intuitive visualization that facilitates the analysis and diagnosis of the patients by the clinical experts.This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the DTS18/00136 research projects and by the Ministerio de Ciencia, Innovación y Universidades, Government of Spain through the DPI2015-69948-R and RTI2018-095894-B-I00 research projects. Moreover, this work has received financial support from the European Union (European Regional Development Fund—ERDF) and the Xunta de Galicia, Grupos de Referencia Competitiva, Ref. ED431C 2016-047.Xunta de Galicia; ED431C 2016-047

    Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model

    Get PDF
    A two stage statistical model based on texture and shape for fully automatic choroidal segmentation of normal and pathologic eyes obtained by a 1060 nm optical coherence tomography (OCT) system is developed. A novel dynamic programming approach is implemented to determine location of the retinal pigment epithelium/ Bruch’s membrane /choriocapillaris (RBC) boundary. The choroid–sclera interface (CSI) is segmented using a statistical model. The algorithm is robust even in presence of speckle noise, low signal (thick choroid), retinal pigment epithelium (RPE) detachments and atrophy, drusen, shadowing and other artifacts. Evaluation against a set of 871 manually segmented cross-sectional scans from 12 eyes achieves an average error rate of 13%, computed per tomogram as a ratio of incorrectly classified pixels and the total layer surface. For the first time a fully automatic choroidal segmentation algorithm is successfully applied to a wide range of clinical volumetric OCT data
    • …
    corecore