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Abstract: A novel statistical model based on texture and shape for fully 
automatic intraretinal layer segmentation of normal retinal tomograms 
obtained by a commercial 800nm optical coherence tomography (OCT) 
system is developed. While existing algorithms often fail dramatically due 
to strong speckle noise, non-optimal imaging conditions, shadows and other 
artefacts, the novel algorithm’s accuracy only slowly deteriorates when 
progressively increasing segmentation task difficulty. Evaluation against a 
large set of manual segmentations shows unprecedented robustness, even in 
the presence of additional strong speckle noise, with dynamic range tested 
down to 12dB, enabling segmentation of almost all intraretinal layers in 
cases previously inaccessible to the existing algorithms. For the first time, 
an error measure is computed from a large, representative manually 
segmented data set (466 B-scans from 17 eyes, segmented twice by different 
operators) and compared to the automatic segmentation with a difference of 
only 2.6% against the inter-observer variability. 
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(100.3008) Image recognition, algorithms and filters; (170.4580) Optical diagnostics for 
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1. Introduction 

Optical Coherence Tomography (OCT) [1] is a biomedical imaging method using infrared 
light that gives high resolution, three-dimensional (3D) sub-surface insight into living tissue 
utilizing white-light interferometry. The simple optical access to the light sensitive retina, 
which is hard to reach by other high resolution methods lead to a wide clinical acceptance of 
this imaging technique. Currently available OCT systems have increased in speed towards 
hundred thousand depth scans per second and axial resolution of less than 3 µm, enabling 
imaging of the retinal microstructure. Result of a typically less than 10 second retinal OCT 
scan is a large volumetric data set consisting of a stack (typically 128-512) of high resolution 
cross-sectional images (B-scans, typically 1024x512 pixels). 

In order to make these large retinal 3D OCT data sets clinically useful it is necessary to 
analyze the structure by segmentation of layers, as they correspond to patches of similar 
cellular components that can be used to establish a potential early disease diagnosis or 
perform therapy monitoring. However, due to the sheer amount of data, it is inconvenient or 
even impossible for a human operator to manually perform the segmentation in a high 
throughput clinical environment. Therefore it is necessary to develop effective computer 
algorithms for automated segmentation of relevant layers of the investigated tissue. 

Existing published approaches to retinal OCT data segmentation vary depending on the 
number of layers to be segmented and on their robustness in the presence of strong speckle 
noise, shadows, irregularities (i.e. vessels, structural changes at the fovea and optic nerve 
head) and pathological changes in the tissue. In general they tend to be very sensitive to noisy 
data or are limited to only segment a small number of layers. 

Fabritius et al. [2] presented a fast, efficient algorithm for finding only the internal limiting 
membrane (ILM) and retinal pigment epithelium (RPE) boundaries that utilizes 3D 
information and performs simple filtering. This rather simple step is typically the first one 
performed before a more detailed analysis of the intraretinal structure. 

Zawadzki et al. [3] used a semi-automatic algorithm for OCT segmentation where the user 
would have to paint the areas of interest in any slice of the volume. For segmentation a 
support vector machine (SVM) was used with a feature vector that contained intensity, 
location, mean of the neighbourhood, standard deviation and gradient magnitude. 

A 3D graph search approach to OCT retinal layer segmentation was presented by Garvin 
et al. [4]. The algorithm first aligned all the slices and straightened the RPE layer. Then the 
optimal graph cut was performed with weights describing both edge and regional information. 
Good results were obtained but only for high quality data. Due to its computational 
complexity this approach is unlikely to be applicable to less ideal foveae because, necessarily, 
more complex constraints would disproportionally increase the computation time. 

Fernandez et al. [5] presented segmentation results using a peak finding algorithm. Since it 
is an iterative thresholding algorithm it is sensitive to noise and deviation from the normal 
retinal data. Extension to any non-typical case might prove to be difficult since the 
algorithm’s parameters are manually selected, rather than learned from a set of segmentation 
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examples. Even though some good results were obtained it is prone to failure and it allows 
detected boundaries to overlap. 

Mujat et al. [6] used the deformable spline algorithm (active contour) to determine nerve 
fibre layer (NFL) thickness only. Blood vessels could be detected by using intensity holes in 
the RPE layer. 

A Markov boundary model was applied to connect the extracted boundary edge primitives 
by Koozekanani et al. [7]. Even though more robust than standard column-wise thresholding 
methods, it still relies on connecting 1D points. That makes it sensitive to noise and thus 
detected layer boundaries can easily drift off from the real ones. Special rules have to be 
applied to correct for such cases which makes the whole approach less general. 

An elegant approach to retinal segmentation based on spectral rounding was introduced by 
Tolliver et al. [8]. It is a graph partitioning algorithm based on the eigenvector calculation to 
determine the oscillation steps that represent the retinal edges. It performed very well since no 
a priori information was available to the algorithm, simply dividing an image iteratively along 
the oscillation boundary - different regions of the image correspond to different modes of 
oscillation. Although the accuracy was good, the number of extracted layers was low and it is 
very unlikely that layers with weaker signal could be extracted without using additional 
structural information. 

Mishra et al. [9] presented a promising two-step algorithm based on a kernel optimization 
scheme. Initially, approximate positions of the boundaries are found, followed by the second, 
refinement step. Very good segmentation results were obtained; however no quantitative 
evaluation on a large data set was given, nor was any result given on the actual dynamic range 
of the presented images. Additionally, it is unclear how the algorithm performs in cases with 
more variability in boundary distances, such as the foveal pit region. Only images of the flat 
part of the retina were shown and the algorithm imposes some fixed constraints on the shape 
of layers. 

Thus, all of the aforementioned methods suffer from one or more of the following 
disadvantages: they distinguish only the most prominent layers, do not exhibit robustness in 
noisy and varied cases and/or require manual intervention of the operator. 

The proposed method of the present paper uses training data obtained from manual 
segmentations by human operators as input to a statistical model which is able to actively 
learn and determine the plausible solutions in a noisy environment. During the learning stage 
parameters of a statistical model are extracted so that it best fits the training data. That 
includes the possible variation of layer boundaries as well as texture information within the 
layers. This approach offers greater flexibility over the fixed constraints on layer smoothness, 
since it learns from the data what amount of variability is possible and in what regions, while 
on the other hand constrains data to a plausible space of states. 

Our model based approach uses the variation obtained from the training set and imposes 
those constraints when segmenting an unseen image. This guarantees that the segmentation 
will be close to the ground truth and less sensitive to noise. However, it is extremely 
important to have a large, representative training set that includes all possible variation. We 
solved this issue by applying a novel approach for obtaining manual segmentations of the 
OCT data via an Amazon service called The Mechanical Turk, designed to offer a large 
international human work force for completion of user defined tasks. 

Overall the novel algorithm segments eight layers: NFL, ganglion cell layer and inner 
plexiform layer (GCL + IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer 
nuclear layer (ONL), connecting cilia (CL), outer segment (OS) and RPE. 

2. Materials and methods 

We have used a three-dimensional OCT system for imaging. It uses a superluminescent light 
source, with 840nm central wavelength and 50nm optical bandwidth. Axial resolution is 5-6 
microns, while transverse resolution is 15-20 microns. Data acquisition speed was  
27 klines/sec. Optical power was 500 µW and SNR was 96dB with a sensitivity roll off 

−6dB/mm. Depth range was 3.5mm and axial sampling 2.3 µm/vx. 
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2.1 The algorithm overview 

As seen in the overview of the algorithm (Fig. 1), one can be observe that the pre-processing 
stage is performed for both the training step and the segmentation of the unseen data. Once the 
variation parameters have been learned from the manually segmented training data, they can 
be used to drive the model to perform segmentation of unseen data. The actual segmentation 
process is essentially an optimization run that changes the model parameters in order to 
minimize the objective function which defines the difference between the model and a given 
unseen image that is to be segmented. 

 

Fig. 1. Algorithm overview: manually segmented data is used as the input to the training phase 
of the algorithm. After passing the pre-processing block a statistical model is constructed that 
captures the variance in the training data, which can be then used to segment unseen data. 

2.2 Pre-processing 

Before the segmentation process, dual-tree complex wavelet (DTCW) denoising is applied to 
the data. The denoising algorithm exhibits very good performance, while being 
computationally efficient [10]. This reduces the speckle noise present and thus makes the 
subsequent segmentation tasks easier. 

Denoising based on quasi-random nonlinear scale space described in [11] and applied to 
OCT speckle reduction in [12] would likely be more effective. It is an effective and fast 
method based on formulating the denoising problem as a general Bayesian least-squares 
estimation problem. A quasi-random density estimation approach is introduced for estimating 
the posterior distribution between consecutive scale space realizations. However, the 
relatively small performance difference (larger speed difference) in not significant for the 
performance of the statistical model, thus we have used a well tested and freely available 
DTCW code. 

After that, registration of the stack and segmentation of the three initial well defined 
boundaries (ILM, connecting cilia (CL) and end of RPE) is performed. Registration and initial 
boundary location finding are currently independent since detection of the initial boundary 
location operates on each B-scan independently. 

A stack registration algorithm has been developed based on B-spline multi-resolution 
pyramid registration approach [13] and [14]. The basic algorithm for translation and rotation 
is used to register source to target image. 

ILM, CL and end of RPE boundaries are found using an adaptive thresholding algorithm 
(auto adjusts to appropriate power) that converges to a close strong edge after the first 
estimate, additionally using constraints on distances between the boundaries. Robust 
polynomial fitting is afterwards used to eliminate outliers, followed by interpolation along the 
remaining points. ILM boundary is found first by starting the thresholding process from the 
top of the image, while RPE boundary is found next by starting from the bottom. The CL 
boundary is determined the last and depends on the positions of the already found ILM and 
RPE boundaries. It is found starting from the top after eliminating the pixels in the 
neighbourhood of the already found ILM boundary and imposing constraints on the distance 
from the RPE boundary. An example with a large shadowed area is shown in Fig. 2. 
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Fig. 2. Initial segmentation step of a despeckled OCT frame (on the left) after adaptive 
thresholding boundary detection demarking (on the right): internal limiting membrane (ILM, 
red), connecting cilia (CL, blue), retinal pigment epithelium (RPE, green). 

Initial boundary detection would also be possible based on a decoupled active contour 
(DAC) approach as presented in [15]. We have tested the level set active contour approach 
and discarded it for its slow convergence. However, DAC is both robust and fast, as it 
decouples the measurement (solved by using Hidden Markov Model (HMM) and Viterbi 
search) and prior active contour energy terms. As we have found our initial boundary 
estimation approach sufficient for the current application we have not experimented with all 
other available methods. For future work, however, algorithms such as DAC could prove 
valuable. 

2.3 Model building 

After the pre-processing stage the statistical model is first trained on a set of manually 
segmented images and can be then applied to the unseen data. Using a statistical model based 
on the training data is a potentially effective tool for both segmentation and registration [16]. 
Its main advantage is that knowledge of the problem can be used to resolve the confusion 
caused by structural complexity, provide tolerance to noisy or missing data, and provide a 
means of labelling the recovered structures. The idea is to perform supervised learning by 
applying knowledge of the expected shapes of structures, their spatial relationships, and their 
textural appearance to restrict the automated system to plausible interpretations. Supervised 
learning is a type of machine learning for learning a function based on training data, which 
consists of pairs of input objects, and desired outputs. The task of the supervised learner is to 
predict the value of the function for any valid input object after having seen a number of 
training examples. To be useful, a model needs to be specific, capable of representing only 
legal examples of the modelled object. 

From the manually segmented images we extract the shape and texture features and for 
each image we put all the extracted shape features into one vector and all the texture features 
into another vector. Separate models for shape and texture are constructed similarly, so only 
the shape model construction will be explained. If we have m training images, for each layer 

(n layers) we get one vector of offsets v  per layer, per image of width w , which stacked 

together for all the layers define x . All of the manual segmentations then comprise the matrix 
X  Eq. (1). 
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Shape features that are used are sparsely sampled distances of the boundaries from the top 
boundary (ILM). Texture features that are currently used are simple, although it is trivial to 
include additional features if needed to further increase performance in case of vessels, large 
shadows and pathological tissue; currently used features are the mean of all the pixels for each 
of the layers in the original image, standard deviation and mean of all the pixels for each of 
the layers in the median filtered image, as well as the multiple-scale (a pyramid of Gaussian 
filtered versions of the image) edges sampled along the boundaries. In practice, for an image 
of width 512, we sampled each boundary at 26 positions. Thus we have 26 spatial features and 
4 texture features per each layer, and for eight layers, we obtain 208 spatial and 32 texture 
features. 

Statistical models can reproduce specific patterns of variability in shape and texture by 
analyzing the variations in shape across the training set. It is difficult to achieve this 
selectivity, whilst allowing for natural variability, without using very large descriptors and 
thus it is essential to select good features from the training set for the model building phase. 
The key step of the statistical model training phase is the dimensionality reduction of the large 
set of features from the training data set. The reason for dimensionality reduction is to reduce 
the computational cost of the optimization method that is used to fit the model to the real data 
later on. The idea behind this concept is to find statistical dependencies between the produced 
features and reduce the dimensionality of the space by identifying only a certain number of 
the most prominent properties in the data set, represented by the most important eigenvectors. 

Principal component analysis (PCA) is the standard vector space transform technique used 
to reduce multidimensional data sets to lower dimensions for analysis. It works by calculating 
the eigenvalue decomposition of a data covariance matrix or singular value decomposition of 
a data matrix. Usually a relatively small number of eigenvectors with greatest eigenvalues can 
describe the original data well. If X  is the original data matrix, as defined in Eq. (1), after the 
decomposition we can select only L principal components and in that way project the data into 
a reduced dimensionality space to get Y Eq. (2). 

 

L

T

T
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=

X W V

Y W X
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However, rather than PCA, we used neural network based dimensionality reduction since it 
offers nonlinear eigenvectors and therefore can reduce the space more compactly if the data is 
nonlinearly distributed than the linear representation obtained by PCA [17]. The shape 
features proved to be nonlinear and thus we obtained a more compact representation using 
nonlinear dimensionality reduction, rather than PCA. A Neural network (NN) is a 
mathematical or computational model based on principles found in biological neural 
networks. It consists of an interconnected group of artificial neurons and processes 
information where each connection between neurons has a weight, with the weights 
modulating the value across the connection. The training phase is performed to modify the 
weights until the network implements a desired function. Once training has completed, the 
network can be applied to data that was not part of the training set. It is useful to note that a 
special type of neural network (inverse) [18] can be used to perform dimensionality reduction 
on the training feature set that is produced which contains missing values. Missing values 
occur when no data value is stored for the variable in the current observation. The generating 
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function is used to produce larger dimensionality data X  from the parameters z  (equivalent 

to 
L

W  in PCA) Eq. (3). The extraction function does the reverse. 
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We encounter the problem of missing data because during the registration process slices are 
moved, and since input to the dimensionality reduction step has to be a rectangular matrix, it 
is necessary to fill the missing values. In practice we can set them as “not a number” (NaN) 
and perform the nonlinear PCA (Fig. 3). After that, we end up with a reduced number of 
variables which can reasonably well describe any variation observed in the training data. We 
reduced dimensionality of the original spatial feature space from 208 to 12, and the texture 
feature space from 32 to 2. This number of eigenvectors allowed for an efficient optimization 
in the subsequent steps, while still preserving the original data variation well. 

 

Fig. 3. Filling the gaps after the registration with NaNs and applying inverse neural network 
nonlinear PCA dimensionality reduction. In the case of the example data shown on the right, 
we can see that already the first eigenvector (e1) captures most of the variance in the original 
data set. This illustrates the idea behind the dimensionality reduction. 

Our approach is based on a similar concept to the Active Appearance Model (AAM). For 
completeness, it will be first explained how the basic AAM model works, followed by an 
explanation of how the proposed statistical model differs from that concept. An Active 
Appearance Model (AAM) manipulates a model capable of synthesising new images of the 
object of interest by finding the model parameters which generate a synthetic image as close 
as possible to the target image [16]. An AAM will, based on learned shape deformation, 
generate a new image with a texture learned from the texture variation and then compute the 
distance between the synthesized and the given image that is to be segmented. x  is the shape 
vector (which is normalized by subtracting the mean shape and rescaling, Eq. (4)) and g  is 

the texture vector obtained from an image I  and the shape vector (it is also normalized) Eq. 
(5). 

 (  - ( ) )/ ( )µ σ→x x x 1 x   (4) 

 ( , )G=g x I   (5) 

Function ( )S s  produces new shape vectors by adding the shape parameters s  multiplied by 

the shape matrix 
s

Q  (a matrix of sorted eigenvectors learned from the training set, usually 

produced by PCA decomposition) to the mean shape vector x  Eq. (6). The same procedure is 
used to generate new texture vectors. 
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However, unlike the AAM which compares pixelwise synthesized images, we use the layer 
boundaries produced by the model during the optimization to compute texture features of the 
bounded area and compare it to the expected texture properties of each layer learned from the 
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training set. This approach is used since unlike the areas in which AAMs are usually applied, 
the texture of retinal OCT scans varies so much within one layer that the direct comparison 
with a synthesized image is unusable. The objective function (Eq. (7)) evaluates how well the 
model matches real data and is minimized during the optimization. 
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b  is the number of boundaries, w  is image width and 
init

b  defines the initial three 

boundaries positions found by the adaptive thresholding algorithm. 1T −  is the inverse of T ; 

T  is defined in Eq. (6). 1T −  returns the model texture parameters t that are most likely to 
generate a given vector of texture features g. The first term of the objective function defines 
the main measure for evaluation of the model fitting, determined by the difference of the 
model texture parameters and the texture parameters extracted from the image regions defined 
by the model shape parameters. The second term penalizes deviations from the initial 
boundary as found by the initial three boundaries algorithm and the one produced by running 
the optimization function for the statistical model. This is an important novelty, when 
compared to the standard AAM, which helps to constrain the optimization process to valid 
solutions. Additionally, we do not start the optimization process from the mean of the model, 
but rather we determine the median distance between ILM and RPE boundaries found by the 
adaptive thresholding algorithm, as well as the ratio of the foveal pit distance to the greatest 
thickness found in the image. Using these values we pick the closest example from the 
training set and use these parameters for the initial model position. This way we ensure a 
faster and more robust convergence. 

Another novelty is introduced in the second stage of the algorithm based on fitting a model 
for each independently used A-scan (depth-scan) to further improve the accuracy. This stage 
starts from the position defined by the result of the first stage B-scan fitting. We have chosen 
to divide the image area into four segments and built an A-scan model for each segment since 
different types of variation can be expected at different offsets from the foveal depression. 
The A-scan model is trained on offsets produced by back projecting the manual segmentation 
data using the main B-scan model and computing the boundary offsets between the back 
projections and the original segmentations Eq. (8) (n is the number of layers and u is the 
number of A-scans from all the images in the given segment). 
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In Fig. 4 it can be seen how the second refinement stage of the algorithm improves precise 
tracking of the layer boundaries. 
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Fig. 4. On the left is the result after the global low-res optimisation followed by, on the right, 
the refined result by the A-scan optimization. 

2.4 The Mechanical Turk 

A large training data set has been efficiently obtained via an Amazon service called the 
Mechanical Turk (AMT), designed to offer a large international work force for completion of 
user defined tasks (Human Intelligence Task or HIT). In principle, the task of segmenting was 
divided to the detailed description of the task by a skilled person, manual delineation of the 
interfaces by a large number of less skilled workers, the comparison of multiple results for the 
same task and the supervision of the whole process by the skilled operator. Two account types 
are used: worker and requester. The worker account type is used for performing the tasks, 
while the requester type is used for submitting them. Submitted tasks are usually simple but it 
is possible to define criteria for the workers and in that way use skilled workers, for larger 
payments, of course. In our case no testing was performed for selection of the workforce apart 
from the general ranking of a worker based on previous performance recorded by the AMT-
system. However, it was necessary to supervise the work relatively often and update the 
instructions based on the input from workers and give bonuses for good work to stimulate 
reliable workers to continue doing the provided tasks. 

The architecture of the whole system is comprised of a web page with JavaScript to handle 
the user input that was designed through the AMT interface and inside we have embedded a 
Java applet through which the workers perform the segmentation. For storage of the B-scans, 
example images and results to be saved, Amazon S3 storage service was used. We have 
submitted 505 B-scans and each image was set to be segmented twice by different workers 
respectively. That way we can compute the inter worker variability, as well as leave out 
inaccurate results, while still having another one which is usually good. Inter worker 
variability was computed only on the images for which both results were deemed to be 
accurate. We have also paid out bonuses for good work, approximately equivalent to the 
initial payment. In case of inaccurate or inappropriate results it is not necessary to pay the 
worker. Since the behaviour of the AMT system can be better described by the rules of 
sociology than simple mathematical relations, the processing speed is nonlinear. It is 
important to note that while we obtained half of the results in just a few days; it usually takes 
significantly longer to get all the tasks completed. That is not a problem since it is possible to 
use results as they are produced without having to wait for the completion of the whole batch. 
One most likely reason for the reduced speed of work completed is that workers use the 
default sorting for viewing the available tasks, which sorts based on the number of available 
tasks. We have also used it for the segmentation of the choroid (four boundaries). It took four 
weeks to complete the segmentation of about 2700 images. Workers seemed to be more 
interested in the task once the purpose of the work was given in the introduction and it was 
pointed out that it serves a valuable medical goal. We included a few questions in the form of 
a web form so that workers can give us feedback on the work that they are doing. 
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3. Results and discussion 

For evaluation purposes we have used 466 manually segmented B-scans, almost (in some 
cases we had to discard the manual segmentation) uniformly sampled from 17 eyes (each 
stack contains 128 B-scans). We have tested the performance of our algorithm on this data set 
using the leave-one-out test; we iteratively left out all data from one person, trained the model 
on the remaining data and then tested the performance on the data from the person left out. 
This procedure is performed for each person in the training set. This way we make sure that 
we are testing the performance of our algorithm on the “unseen” data. 

For evaluation, automatic segmentation results were compared to manual segmentation 
done by the AMT workers. Two types of error measures were used, computed for each 
boundary i separately and from these we compute error measures for an entire B-scan or for 
an individual layer, Eq. (9). 

 2

1 1

, * ( )
j w j w

i i

B ij ij LDEV ij ij

j j

E yAut yRef E w yAut yRef
= =

= =

= − = −∑ ∑   (9) 

B
E  (Basic) is the basic error measure that defines the number of misclassified pixels. 

LDEV
E  

(Layer DEViation) uses the w  term for normalization so that for the special case when the 

two boundaries are equally distant from each other along their whole length 

(
ij ij

yAut yRef d− = for all j), it is equal to 
B

E  (proved in Eq. (10)). 
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For all other cases 
LDEV

E  is larger than 
B

E . Thus 
LDEV

E  will penalize large deviations from 

the reference position of a boundary, unlike 
B

E  which only measures the number of 

misclassified pixels. 
LDEV

E is therefore useful for penalizing specific types of poor algorithm 

performance which could show as, for example, a large jump in a boundary position that 

could be narrow and thus not affect 
B

E  significantly since the misclassified area would be 

relatively small. 

The error for a whole image (this refers to both 
B

E  and 
LDEV

E ) is defined in Eq. (11). 

 1

i b
i

i

E

E
A

=

==
∑

 (11)  

iE  is the error for each boundary and A  is the area between top (ILM) and bottom 

boundaries (RPE/CH). 
In the case when we express error for layer k separately, instead of summing up across all 

boundary errors, only the two boundaries that define a layer are added and divided by the sum 

of the layer area as given by the automatic segmentation (
A

A ) and the layer area as given by 

the reference segmentation (
R

A ), Eq. (12). This is used to normalize for double counting of 

misclassified pixels, as each layer is bounded by two boundaries. 
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A confidence measure could be introduced based on the values returned by the objective 
function after the optimization step. Large values are proportional to the low confidence in the 
boundary positions determined by the model fitting. This would be useful for the operator to 
decide whether the obtained results are reliable. 

In Table 1 the inter-worker variability of the manual segmentations used in training is 
presented for each boundary and in total, while in Table 2 and Table 3 results are presented 
for both the initial segmentation and after the second step refinement. 

Table 1. Variability of manual segmentations on 75 B-scans in percent (the data has been 
previously examined and “bad” results left out) 

Error Type NFL GCL + IPL INL OPL ONL CL OS RPE Total 

B
E  13.6 11.4 22.8 25.0 6.0 28.0 23.3 18.7 16.1 

LDEV
E  17.9 14.4 28.4 31.3 7.4 35.4 28.6 22.5 19.9 

Table 2. Error values on 466 B-scans at various positions from 17 eyes in percent before 
the A-scan optimization 

Error Type NFL GCL + IPL INL OPL ONL CL OS RPE Total 

B
E  23.2 14.3 31.6 41.9 8.6 35.2 32.1 22.1 22.4 

LDEV
E  31.9 17.4 39.7 55.4 10.7 47.3 41.0 27.0 27.8 

Table 3. Error values on 466 B-scans at various positions from 17 eyes in percent after the 
A-scan optimization 

Error Type NFL GCL + IPL INL OPL ONL CL OS RPE Total 

B
E  20.0 10.1 22.1 31.6 7.1 34.9 30.8 21.6 18.7 

LDEV
E  29.2 13.2 30.4 46.4 9.3 47.1 39.5 26.5 24.2 

It can be seen that the total error rates (especially 
B

E  which is the main measure) are close 

to the inter-operator variability (18.2% compared to inter-operator’s 16.1%). 
LDEV

E  difference 

is somewhat larger. Thus, we can conclude that the algorithm performance is almost the same 
as ground truth. 

Our algorithm performs well even when artefacts are present, such as strong shadows, 
which can cause problems for less robust algorithms (Fig. 5). 
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Fig. 5. Robust performance for all the layers is achieved even in presence of shadowing. A 
despeckled image is shown on the left; the segmented image is on the right. 

In Fig. 6 thickness maps are shown for 17 different eyes after registering them and 
computing median and coefficient of variation (expressed as absolute variation in pixels), 
since it would take too much space to present the results for each eye individually. It can be 
seen that despite the data being affected by artefacts, the results are accurate and show larger 
variation only around the foveal pit region, as can be expected. 

 

Fig. 6. Median and coefficient of variation computed on thickness maps of all the individual 
layers (nerve fibre layer (NFL), ganglion cell layer and inner plexiform layer (GCL + IPL), 
inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), connecting 
cilia (CL), outer segment (OS), retinal pigment epithelium (RPE)), as well as the retina, 
obtained from 17 eyes. 
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To evaluate performance of the algorithm in conditions of increased noise (reduced 
dynamic range) that frequently occurs in clinical measurements for a number of reasons 
(opaque cornea of cataract lens, residue in vitreous humour, non optimal imaging conditions, 
etc) background noise (speckle, multiplicative random noise) has been added to tomograms 
(Fig. 7) and results plotted on a graph. The background was generated using a texture 
synthesis approach [19]. This enables us to efficiently produce a different speckle noise 
pattern for each image even though they are all based on the same physical speckle template, 
which is only one image of background noise with the typical spatial frequency distribution. 
Using this approach we can generate an arbitrary number of synthetic, but uncorrelated and 
realistic, images of background noise that we add subsequently to each given image to 
simulate low dynamic range. The algorithm shows robust performance under such conditions 
shown by a gentle rise of the error/dynamic range curve. 

 

Fig. 7. Segmentation in a case of added strong noise. Left original image. Right filtered, 
denoised image with segmentation results superimposed. 

This can be seen in two graphs showing error rates 
B

E  and 
LDEV

E  plotted versus the 

dynamic range for a set of images for all the layers combined and with the confidence interval 
(1.96 std. dev.) plotted as dashed lines (Fig. 8), as well as two graphs showing the error rates 
for each individual layer (Fig. 9). The individual boundaries most affected by decreasing 
dynamic range are those defining INL and OPL, as could be expected since these layers 
exhibit normally significant variation and have weak boundaries which are affected early by 
the noise increase. Also, the boundaries between CL, OS and RPE are difficult to determine. 

 

Fig. 8. Error rates 
B

E  (Basic) and 
LDEV

E  (Layer DEViation) with decreasing dynamic range 

for all the data sets, with confidence interval (1.96 * standard deviation) marked by the dashed 
lines. For both error measures a slow rise in the error values can be observed, which guarantees 
robust performance with noisy data. 
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Fig. 9. Error rates for the individual layers 
B

E  (Basic) and 
LDEV

E  (Layer DEViation) with 

decreasing dynamic range for all the data sets. For all the individual layers (nerve fibre layer 
(NFL), ganglion cell layer and inner plexiform layer (GCL + IPL), inner nuclear layer (INL), 
outer plexiform layer (OPL), outer nuclear layer (ONL), connecting cilia (CL), outer segment 
(OS), retinal pigment epithelium (RPE)) a slow rise in the error values can be observed. Thin 
layers inherently exhibit greater error values, as both errors are normalized by the layer area. 

4. Conclusion 

We have proposed an algorithm for automatically segmenting all major retinal layers based on 
a novel statistical model. We have introduced two important novelties with respect to the 
standard Active Appearance Model (AAM): a second term in the optimization function that 
penalizes large deviations from the three boundaries found by the adaptive thresholding 
algorithm and the second algorithm stage that refines the model fit for each A-scan 
independently, giving increased accuracy. 

It has been thoroughly tested and evaluated against the manually segmented large data set 
from a 800nm OCT system and proved highly robust in full foveal scans even in the presence 
of artefacts and added strong background noise that reduces dynamic range down to 12dB. It 
is the first time that a large, representative data set (466 B-scans from 17 eyes) has been used 
for evaluation of an OCT segmentation algorithm. We have used manual segmentations of 
large data set as ground truth, rather than the frequently used error computed between the 
results of the algorithm on inter-visit measurements, as it is susceptible to underdetermine the 
real error value as it is susceptible to ignore systematic error of the algorithm. Apart from the 
basic error measure that counts the number of the misclassified pixels, we have also used a 
second error measure to penalize large deviations from the ground truth. 

Thus, we can conclude that our algorithm successfully demonstrated reliable performance 
under conditions which prove extremely challenging for the pre-existing methods. 
Additionally, it has the potential of being used in other areas where boundaries are not well 
defined, such as segmentation of choroid layers, which is an important open problem in OCT 
data analysis. It would be also possible to extend the proposed algorithm to segmentation of 
pathological cases, as well as segmentation of ONH (optic nerve head) scans which contain 
discontinuous boundaries. In case that the stack registration is very precise, the initial ILM 
and RPE boundary finding step could be replaced by the algorithm proposed by Fabritius et 
al. [2] that relies on full 3D information present in the stack, since it is very efficient. 
Clinically, fully automated segmentation of all major layers is essential in making medically 
useful the possibilities given by the method of high resolution, high speed OCT of large 
portions of the human retina at microscopic detail. 
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