427 research outputs found

    Statistical Physics and Representations in Real and Artificial Neural Networks

    Full text link
    This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous, finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed. We then show how spatial representations can be dynamically decoded using an effective Ising model capturing the correlation structure in the neural data, and compare applications to data obtained from hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we focus on the problem of learning data representations in machine learning, in particular with artificial neural networks. We start by introducing data representations through some illustrations. We then analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines, with tools from statistical physics

    Uncovering representations of sleep-associated hippocampal ensemble spike activity

    Get PDF
    Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness.Collaborative Research in Computational Neuroscience (Award IIS-1307645)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-10-1-0936)National Institutes of Health (U.S.) (Grant TR01-GM10498

    Slow Inhibition and Inhibitory Recruitment in the Hippocampal Dentate Gyrus

    Get PDF
    L’hippocampe joue un rĂŽle central dans la navigation spatiale, la mĂ©moire et l’organisation spatio-temporelle des souvenirs. Ces fonctions sont maintenues par la capacitĂ© du gyrus dentĂ© (GD) de sĂ©paration des patrons d'activitĂ© neuronales. Le GD est situĂ© Ă  l’entrĂ©e de la formation hippocampique oĂč il reconnaĂźt la prĂ©sence de nouveaux motifs parmi la densitĂ© de signaux affĂ©rant arrivant par la voie entorhinale (voie perforante). Le codage parcimonieux est la marque distinctive du GD. Ce type de codage est le rĂ©sultat de la faible excitabilitĂ© intrinsĂšque des cellules granulaires (CGs) en combinaison avec une inhibition locale prĂ©dominante. En particulier, l’inhibition de type « feedforward » ou circuit inhibiteur antĂ©rograde, est engagĂ©e par la voie perforante en mĂȘme temps que les CGs. Ainsi les interneurones du circuit antĂ©rograde fournissent des signaux GABAergique aux CGs de maniĂšre presque simultanĂ©e qu’elles reçoivent les signaux glutamatergiques. Cette thĂšse est centrĂ©e sur l’étude des interactions entre ces signaux excitateurs de la voie entorhinale et les signaux inhibiteurs provenant des interneurones rĂ©sidant dans le GD et ceci dans le contexte du codage parcimonieux et le patron de dĂ©charge en rafale caractĂ©ristique des cellules granulaires. Nous avons adressĂ© les relations entre les projections entorhinales et le rĂ©seau inhibitoire antĂ©rograde du GD en faisant des enregistrements Ă©lectrophysiologiques des CG pendant que la voie perforante est stimulĂ©e de maniĂšre Ă©lectrique ou optogĂ©nĂ©tique. Nous avons dĂ©couvert un nouvel mĂ©canisme d’inhibition qui apparait Ă  dĂ©lais dans les CGs suite Ă  une stimulation dans les frĂ©quences gamma. Ce mĂ©canisme induit une hyperpolarisation de longue durĂ©e (HLD) et d’une amplitude prononce. Cette longue hyperpolarisation est particuliĂšrement prolongĂ©e et dĂ©passe la durĂ©e d’autres types d’inhibition transitoire lente dĂ©crits chez les CGs. L’induction de HLD crĂ©e une fenĂȘtre temporaire de faible excitabilitĂ© suite Ă  laquelle le patron de dĂ©charge des CGs et l’intĂ©gration d’autres signaux excitateurs sont altĂ©rĂ©s de maniĂšre transitoire. Nous avons donc conclu que l’activitĂ© inhibitrice antĂ©rograde joue un rĂŽle central dans les processus de codage dans le GD. Cependant, alors qu’il existe une multitude d’études dĂ©crivant les interneurones qui font partie de ce circuit inhibiteur, la question de comment ces cellules sont recrutĂ©es par la voie entorhinale reste quelque peu explorĂ©e. Pour apprendre plus Ă  ce sujet, nous avons enregistrĂ© des interneurones rĂ©sidant iii dans la couche molĂ©culaire du GD tout en stimulant la voie perforante de maniĂšre optogĂ©nĂ©tique. Cette mĂ©thode de stimulation nous a permis d’induire la libĂ©ration de glutamate endogĂšne des terminales entorhinales et ainsi d’observer le recrutement purement synaptique d’interneurones. De maniĂšre surprenante, les rĂ©sultats de cette expĂ©rience dĂ©montrent un faible taux d’activation des interneurones, accompagnĂ© d’un tout aussi faible nombre total de potentiels d’action Ă©mis en rĂ©ponse Ă  la stimulation mĂȘme Ă  haute frĂ©quence. Ce constat semble contre-intuitif Ă©tant donnĂ© qu’en gĂ©nĂ©rale on assume qu’une forte activitĂ© inhibitrice est requise pour le maintien du codage parcimonieux. Tout de mĂȘme, l’analyse des patrons de dĂ©charge des interneurones qui ont Ă©tĂ© activĂ©s a fait ressortir la prĂ©Ă©minence de trois grands types: dĂ©charge prĂ©coce, retardĂ©e ou rĂ©guliĂšre par rapport le dĂ©but des pulses lumineux. Les rĂ©sultats obtenus durant cette thĂšse mettent la lumiĂšre sur l’important consĂ©quences fonctionnelles des interactions synaptique et polysynaptique de nature transitoire dans les rĂ©seaux neuronaux. Nous aimerions aussi souligner l’effet prononcĂ© de l’inhibition Ă  court terme du type prolongĂ©e sur l’excitabilitĂ© des neurones et leurs capacitĂ©s d’émettre des potentiels d’action. De plus que cet effet est encore plus prononcĂ© dans le cas de HLD dont la durĂ©e dĂ©passe souvent la seconde et altĂšre l’intĂ©gration d’autres signaux arrivants simultanĂ©ment. Donc on croit que les effets de HLD se traduisent au niveau du rĂ©seaux neuronal du GD comme une composante cruciale pour le codage parcimonieux. En effet, ce type de codage semble ĂȘtre la marque distinctive de cette rĂ©gion Ă©tant donnĂ© que nous avons aussi observĂ© un faible niveau d’activation chez les interneurones. Cependant, le manque d’activitĂ© accrue du rĂ©seau inhibiteur antĂ©rograde peut ĂȘtre compensĂ© par le maintien d’un gradient GABAergique constant Ă  travers le GD via l’alternance des trois modes de dĂ©charges des interneurones. En conclusion, il semble que le codage parcimonieux dans le GD peut ĂȘtre prĂ©servĂ© mĂȘme en absence d’activitĂ© soutenue du rĂ©seau inhibiteur antĂ©rograde et ceci grĂące Ă  des mĂ©canismes alternatives d’inhibition prolongĂ©e Ă  court terme.The hippocampus is implicated in spatial navigation, the generation and recall of memories, as well as their spatio-temporal organization. These functions are supported by the processes of pattern separation that occurs in the dentate gyrus (DG). Situated at the entry of the hippocampal formation, the DG is well placed to detect and sort novelty patterns amongst the high-density excitatory signals that arrive via the entorhinal cortex (EC). A hallmark of the DG is sparse encoding that is enabled by a combination of low intrinsic excitability of the principal cells and local inhibition. Feedforward inhibition (FFI) is recruited directly by the EC and simultaneously with the granule cells (GCs). Therefore, FFI provides fast GABA release and shapes input integration at the millisecond time scale. This thesis aimed to investigate the interplay of entorhinal excitatory signals with GCs and interneurons, from the FFI in the DG, in the framework of sparse encoding and GC’s characteristic burst firing. We addressed the long-range excitation – local inhibitory network interactions using electrophysiological recordings of GCs – while applying an electrical or optogenetic stimulation of the perforant path (PP) in the DG. We discovered and described a novel delayed-onset inhibitory post synaptic potential (IPSP) in GCs, following PP stimulation in the gamma frequency range. Most importantly, the IPSP was characterized by a large amplitude and prolonged decay, outlasting previously described slow inhibitory events in GCs. The long-lasting hyperpolarization (LLH) caused by the slow IPSPs generates a low excitability time window, alters the GCs firing pattern, and interferes with other stimuli that arrive simultaneously. FFI is therefore a key player in the computational processes that occurs in the DG. However, while many studies have been dedicated to the description of the various types of the interneurons from the FFI, the question of how these cells are synaptically recruited by the EC remains not entirely elucidated. We tackled this problem by recording from interneurons in the DG molecular layer during PP-specific optogenetic stimulation. Light-driven activation of the EC terminals enabled a purely synaptic recruitment of interneurons via endogenous glutamate release. We found that this method of stimulation recruits only a subset of interneurons. In addition, the total number of action potentials (AP) was surprisingly low even at high frequency stimulation. This result is counterintuitive, as strong and persistent inhibitory signals are assumed to restrict GC v activation and maintain sparseness. However, amongst the early firing interneurons, late and regular spiking patterns were clearly distinguishable. Interestingly, some interneurons expressed LLH similar to the GCs, arguing that it could be a commonly used mechanism for regulation of excitability across the hippocampal network. In summary, we show that slow inhibition can result in a prolonged hyperpolarization that significantly alters concurrent input’s integration. We believe that these interactions contribute to important computational processes such as sparse encoding. Interestingly, sparseness seems to be the hallmark of the DG, as we observed a rather low activation of the interneuron network as well. However, the alternating firing of ML-INs could compensate the lack of persistent activity by the continuous GABA release across the DG. Taken together these results offer an insight into a mechanism of feedforward inhibition serving as a sparse neural code generator in the DG

    Deciphering the Firing Patterns of Hippocampal Neurons During Sharp-Wave Ripples

    Get PDF
    The hippocampus is essential for learning and memory. Neurons in the rat hippocampus selectively fire when the animal is at specific locations - place fields - within an environment. Place fields corresponding to such place cells tile the entire environment, forming a stable spatial map supporting navigation and planning. Remarkably, the same place cells reactivate together outside of their place fields and in coincidence with sharp-wave ripples (SWRs) - dominant electrical field oscillations (150-250 Hz) in the hippocampus. These offline SWR events frequently occur during quiet wake periods in the middle of exploration and the follow-up slow-wave sleep and are associated with spatial memory performance and stabilization of spatial maps. Therefore, deciphering the firing patterns during these events is essential to understanding offline memory processing.I provide two novel methods to analyze the SWRs firing patterns in this dissertation project. The first method uses hidden Markov models (HMM), in which I model the dynamics of neural activity during SWRs in terms of transitions between distinct states of neuronal ensemble activity. This method detects consistent temporal structures over many instances of SWRs and, in contrast to standard approaches, relaxes the dependence on positional data during the behavior to interpret temporal patterns during SWRs. To validate this method, I applied the method to quiet wake SWRs. In a simple spatial memory task in which the animal ran on a linear track or in an open arena, the individual states corresponded to the activation of distinct group of neurons with inter-state transitions that resembled the animal’s trajectories during the exploration. In other words, this method enabled us to identify the topology and spatial map of the explored environment by dissecting the firings occurring during the quiescence periods’ SWRs. This result indicated that downstream brain regions may rely only on SWRs to uncover hippocampal code as a substrate for memory processing. I developed a second analysis method based on the principles of Bayesian learning. This method enabled us to track the spatial tunings over the sleep following exploration of an environment by taking neurons’ place fields in the environment as the prior belief and updating it using dynamic ensemble firing patterns unfolding over time. This method introduces a neuronal-ensemble-based approach that calculates tunings to the position encoded by ensemble firings during sleep rather than the animal’s actual position during exploration. When I applied this method to several datasets, I found that during the early slow-wave sleep after an experience, but not during late hours of sleep or sleep before the exploration, the spatial tunings highly resembled the place fields on the track. Furthermore, the fidelity of the spatial tunings to the place fields predicted the place fields’ stability when the animal was re-exposed to the same environment after ~ 9h. Moreover, even for neurons with shifted place fields during re-exposure, the spatial tunings during early sleep were predictive of the place fields during the re-exposure. These results indicated that early sleep actively maintains or retunes the place fields of neurons, explaining the representational drift of place fields across multiple exposures

    Micro-, Meso- and Macro-Dynamics of the Brain

    Get PDF
    Neurosciences, Neurology, Psychiatr

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF
    • 

    corecore