303 research outputs found

    Scientific Kenyon: Neuroscience Edition (Full Issue)

    Get PDF

    The pedunculopontine tegmental nucleus - A functional hypothesis from the comparative literature

    Get PDF
    We present data from animal studies showing that the pedunculopontine tegmental nucleus-conserved through evolution, compartmentalized, and with a complex pattern of inputs and outputs-has functions that involve formation and updates of action-outcome associations, attention, and rapid decision making. This is in contrast to previous hypotheses about pedunculopontine function, which has served as a basis for clinical interest in the pedunculopontine in movement disorders. Current animal literature points to it being neither a specifically motor structure nor a master switch for sleep regulation. The pedunculopontine is connected to basal ganglia circuitry but also has primary sensory input across modalities and descending connections to pontomedullary, cerebellar, and spinal motor and autonomic control systems. Functional and anatomical studies in animals suggest strongly that, in addition to the pedunculopontine being an input and output station for the basal ganglia and key regulator of thalamic (and consequently cortical) activity, an additional major function is participation in the generation of actions on the basis of a first-pass analysis of incoming sensory data. Such a function-rapid decision making-has very high adaptive value for any vertebrate. We argue that in developing clinical strategies for treating basal ganglia disorders, it is necessary to take an account of the normal functions of the pedunculopontine. We believe that it is possible to use our hypothesis to explain why pedunculopontine deep brain stimulation used clinically has had variable outcomes in the treatment of parkinsonism motor symptoms and effects on cognitive processing. © 2016 International Parkinson and Movement Disorder Society

    The pedunculopontine tegmental nucleus - A functional hypothesis from the comparative literature

    Get PDF
    We present data from animal studies showing that the pedunculopontine tegmental nucleus-conserved through evolution, compartmentalized, and with a complex pattern of inputs and outputs-has functions that involve formation and updates of action-outcome associations, attention, and rapid decision making. This is in contrast to previous hypotheses about pedunculopontine function, which has served as a basis for clinical interest in the pedunculopontine in movement disorders. Current animal literature points to it being neither a specifically motor structure nor a master switch for sleep regulation. The pedunculopontine is connected to basal ganglia circuitry but also has primary sensory input across modalities and descending connections to pontomedullary, cerebellar, and spinal motor and autonomic control systems. Functional and anatomical studies in animals suggest strongly that, in addition to the pedunculopontine being an input and output station for the basal ganglia and key regulator of thalamic (and consequently cortical) activity, an additional major function is participation in the generation of actions on the basis of a first-pass analysis of incoming sensory data. Such a function-rapid decision making-has very high adaptive value for any vertebrate. We argue that in developing clinical strategies for treating basal ganglia disorders, it is necessary to take an account of the normal functions of the pedunculopontine. We believe that it is possible to use our hypothesis to explain why pedunculopontine deep brain stimulation used clinically has had variable outcomes in the treatment of parkinsonism motor symptoms and effects on cognitive processing. © 2016 International Parkinson and Movement Disorder Society

    Neuronal correlates of tactile working memory in rat barrel cortex and prefrontal cortex

    Get PDF
    The neuronal mechanisms of parametric working memory \u2013 the short-term storage of graded stimuli to guide behavior \u2013 are not fully elucidated. We have designed a working memory task where rats compare two sequential vibrations, S1 and S2, delivered to their whiskers (Fassihi et al, 2014). Vibrations are a series of velocities sampled from a zero-mean normal distribution. Rats must judge which stimulus had greater velocity standard deviation, \u3c3 (e.g. \u3c31 > \u3c32 turn left, \u3c31 < \u3c32 turn right). A critical operation in this task is to hold S1 information in working memory for subsequent comparison. In an earlier work we uncovered this cognitive capacity in rats (Fassihi et al, 2014), an ability previously ascribed only to primates. Where in the brain is such a memory kept and what is the nature of its representation? To address these questions, we performed simultaneous multi-electrode recordings from barrel cortex \u2013 the entryway of whisker sensory information into neocortex \u2013 and prelimbic area of medial prefrontal cortex (mPFC) which is involved in higher order cognitive functioning in rodents. During the presentation of S1 and S2, a majority of neurons in barrel cortex encoded the ongoing stimulus by monotonically modulating their firing rate as a function of \u3c3; i.e. 42% increased and 11% decreased their firing rate for progressively larger \u3c3 values. During the 2 second delay interval between the two stimuli, neuronal populations in barrel cortex kept a graded representation of S1 in their firing rate; 30% at early delay and 15% at the end. In mPFC, neurons expressed divers coding characteristics yet more than one-fourth of them varied their discharge rate according to the ongoing stimulus. Interestingly, a similar proportion carried the stimulus signal up to early parts of delay period. A smaller but considerable proportion (10%) kept the memory until the end of delay interval. We implemented novel information theoretic measures to quantify the stimulus and decision signals in neuronal responses in different stages of the task. By these measures, a decision signal was present in barrel cortex neurons during the S2 period and during the post stimulus delay, when the animal needed to postpone its action. Medial PFC units also represented animal choice, but later in the trial in comparison to barrel cortex. Decision signals started to build up in this area after the termination of S2. We implemented a regularized linear discriminant algorithm (RDA) to decode stimulus and decision signals in the population activity of barrel cortex and mPFC neurons. The RDA outperformed individual clusters and the standard linear discriminant analysis (LDA). The stimulus and animal\u2019s decision could be extracted from population activity simply by linearly weighting the responses of neuronal clusters. The population signal was present even in epochs of trial where no single cluster was informative. We predicted that coherent oscillations between brain areas might optimize the flow of information within the networks engaged by this task. Therefore, we quantified the phase synchronization of local field potentials in barrel cortex and mPFC. The two signals were coherent at theta range during S1 and S2 and, interestingly, prior to S1. We interpret the pre-stimulus coherence as reflecting top-down preparatory and expectation mechanisms. We showed, for the first time to our knowledge, the neuronal correlates of parametric working memory in rodents. The existence of both positive and negative codes in barrel cortex, besides the representation of stimulus memory and decision signals suggests that multiple functions might be folded into single modules. The mPFC also appears to be part of parametric working memory and decision making network in rats

    Insects have the capacity for subjective experience

    Get PDF
    To what degree are non-human animals conscious? We propose that the most meaningful way to approach this question is from the perspective of functional neurobiology. Here we focus on subjective experience, which is a basic awareness of the world without further reflection on that awareness. This is considered the most basic form of consciousness. Tellingly, this capacity is supported by the integrated midbrain and basal ganglia structures, which are among the oldest and most highly conserved brain systems in vertebrates. A reasonable inference is that the capacity for subjective experience is both widespread and evolutionarily old within the vertebrate lineage. We argue that the insect brain supports functions analogous to those of the vertebrate midbrain and hence that insects may also have a capacity for subjective experience. We discuss the features of neural systems which can and cannot be expected to support this capacity as well as the relationship between our arguments based on neurobiological mechanism and our approach to the “hard problem” of conscious experience

    The inconvenient truth about thinking chickens

    Get PDF
    Original Abstract: Domestic chickens are members of an order, Aves, which has been the focus of a revolution in our understanding of neuroanatomical, cognitive, and social complexity. Some birds are now known to be on a par with many mammals in their intelligence, emotional sophistication, and social interaction. Yet views of chickens have largely remained unrevised in light of this new evidence. In this paper, I examine the data on cognition, emotions, personality, and sociality in chickens, exploring such areas as self-awareness, cognitive bias, social learning and self-control, and comparing their abilities with other birds and other vertebrates, particularly mammals. My overall conclusion is that chickens are just as complex cognitively, emotionally and socially as most other birds and mammals in many areas, and that there is a need for further noninvasive comparative behavioral research with chickens as well as a re-framing of current views about their intelligence

    The inconvenient truth about thinking chickens

    Get PDF
    Original Abstract: Domestic chickens are members of an order, Aves, which has been the focus of a revolution in our understanding of neuroanatomical, cognitive, and social complexity. Some birds are now known to be on a par with many mammals in their intelligence, emotional sophistication, and social interaction. Yet views of chickens have largely remained unrevised in light of this new evidence. In this paper, I examine the data on cognition, emotions, personality, and sociality in chickens, exploring such areas as self-awareness, cognitive bias, social learning and self-control, and comparing their abilities with other birds and other vertebrates, particularly mammals. My overall conclusion is that chickens are just as complex cognitively, emotionally and socially as most other birds and mammals in many areas, and that there is a need for further noninvasive comparative behavioral research with chickens as well as a re-framing of current views about their intelligence

    Neural and Behavioral Mechanisms of Interval Timing in the Striatum

    Get PDF
    To guide behavior and learn from its consequences, the brain must represent time over many scales. Yet, the neural signals used to encode time in the seconds to minute range are not known. The striatum is the major input area of the basal ganglia; it plays important roles in learning, motor function and normal timing behavior in the range of seconds to minutes. We investigated how striatal population activity might encode time. To do so, we recorded the electrical activity from striatal neurons in rats performing the serial fixed interval task, a dynamic version of the fixed Interval schedule of reinforcement. The animals performed in conformity with proportional timing, but did not strictly conform to scalar timing predictions, which might reflect a parallel strategy to optimize the adaptation to changes in temporal contingencies and consequently to improve reward rate over the session. Regarding the neural activity, we found that neurons fired at delays spanning tens of seconds and that this pattern of responding reflected the interaction between time and the animals’ ongoing sensorimotor state. Surprisingly, cells rescaled responses in time when intervals changed, indicating that striatal populations encoded relative time. Moreover, time estimates decoded from activity predicted trial-bytrial timing behavior as animals adjusted to new intervals, and disrupting striatal function with local infusion of muscimol led to a decrease in timing performance. Because of practical limitations in testing for sufficiency a biological system, we ran a simple simulation of the task; we have shown that neural responses similar to those we observe are conceptually sufficient to produce temporally adaptive behavior. Furthermore, we attempted to explain temporal processes on the basis of ongoing behavior by decoding temporal estimates from high-speed videos of the animals performing the task; we could not explain the temporal report solely on basis of ongoing behavior. These results suggest that striatal activity forms a scalable population firing rate code for time, providing timing signals that animals use to guide their actions

    From Biological Synapses to "Intelligent" Robots

    Get PDF
    This selective review explores biologically inspired learning as a model for intelligent robot control and sensing technology on the basis of specific examples. Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence, as explained on the basis of examples from the highly plastic biological neural networks of invertebrates and vertebrates. Its potential for adaptive learning and control without supervision, the generation of functional complexity, and control architectures based on self-organization is brought forward. Learning without prior knowledge based on excitatory and inhibitory neural mechanisms accounts for the process through which survival-relevant or task-relevant representations are either reinforced or suppressed. The basic mechanisms of unsupervised biological learning drive synaptic plasticity and adaptation for behavioral success in living brains with different levels of complexity. The insights collected here point toward the Hebbian model as a choice solution for “intelligent” robotics and sensor systems. Keywords: Hebbian learning; synaptic plasticity; neural networks; self-organization; brain; reinforcement; sensory processing; robot contro
    • …
    corecore