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"What are we doing when we measure silence, and say that this silence has 

lasted as long as that voice lasts? Do we not project our thought to the 

measure of a sound, as if it were then sounding, so that we can say something 

concerning the intervals of silence in a given span of time? For, even when 

both the voice and the tongue are still, we review -- in thought -- poems and 

verses, and discourse of various kinds or various measures of motions, and we 
specify their time spans -- how long this is in relation to that. " 

- Saint Augustine, Confessions XI, Chapter 27, 36 
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RESUMO

Para orientar o comportamento e aprender a partir de suas consequências, o 
cérebro precisa representar o tempo em múltiplas escalas, desde 
milissegundos a dias. Ainda não se conhece que sinal neuronal é usado para 
codificar o tempo na escala de segundos a minutos. O corpus striatum é a 
principal área de entrada de informação para os gânglios da base; ele 
desempenha um papel importante na aprendizagem, controle motor e é 
necessário para o comportamento normal de cronometragem na escala de 
segundos a minutos. Nós investigamos como a atividade de neurônios no 
corpo estriado pode codificar o tempo nesta escala. Para este fim, gravamos a 
atividade elétrica de neurônios do estriado de ratos enquanto estes resolviam 
uma tarefa temporal. Nesta tarefa os animais tiveram que estimar intervalos de 
tempos fixos para obter uma recompensa, e estes intervalos mudavam 
aleatoriamente ao longo da sessão em blocos de ensaios. Embora o tempo de 
início de resposta tenha sido proporcional ao intervalo, a precisão deste tempo 
não caiu linearmente com o tamanho do intervalo. O que sugere uma 
estratégia paralela para otimizar a adaptação à mudanças de contingências 
temporais e consequentemente melhorar a taxa de reforço ao longo da 
sessão. Quanto à atividade neuronal, observamos que neurônios dispararam 
em atrasos que se estenderam por dezenas de segundos e que este padrão 
de resposta refletiu uma interação entre tempo e o estado sensório-motor dos 
animais ao longo da sessão. Surpreendentemente, os neurônios re-escalaram 
suas repostas no tempo em conformidade com as mudanças de intervalo, o 
que indica que a população de neurônios do corpo estriado codifica tempo 
relativo. Ademais, estimativas de tempo descodificadas a partir da atividade 
predisseram ensaio-a-ensaio a estimativa temporal do animal a medida em 
estes animais ajustavam aos novos intervalos, e perturbações no 
funcionamento do corpo estriado, através de injeções locais de muscimol, 
causaram decréscimo na competência de adaptar o comportamento às 
demandas de tempo da tarefa. Diante da limitação prática em testar a 
suficiência de um fenômeno em sistemas biológicos, nós corremos uma 
simulação simples da tarefa. Nesta simulação, nós mostramos que respostas 
neuronais similares às que observamos são teoricamente suficientes para 
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produzir comportamentos adaptados no tempo. Finalmente, para testar a 
hipótese de que os animais poderiam usar sequência de ações para 
representar a passagem do tempo, nós geramos estimativas de tempo a partir 
de vídeos em alta velocidade dos animais desempenhando a tarefa temporal. 
Nós não conseguimos encontrar evidências que expliquem os processos 
temporais exclusivamente a partir do comportamento corrente. Em conjunto, 
estes resultados sugerem que a atividade dos neurônios no corpo estriado 
constitui um código escalonável para o tempo, sendo portanto uma provável 
fonte de informação temporal que animais podem usar para organizar suas 
ações. 
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ABSTRACT

To guide behavior and learn from its consequences, the brain must represent 
time over many scales. Yet, the neural signals used to encode time in the 
seconds to minute range are not known. The striatum is the major input area of 
the basal ganglia; it plays important roles in learning, motor function and 
normal timing behavior in the range of seconds to minutes. We investigated 
how striatal population activity might encode time. To do so, we recorded the 
electrical activity from striatal neurons in rats performing the serial fixed interval 
task, a dynamic version of the fixed Interval schedule of reinforcement. The 
animals performed in conformity with proportional timing, but did not strictly 
conform to scalar timing predictions, which might reflect a parallel strategy to 
optimize the adaptation to changes in temporal contingencies and 
consequently to improve reward rate over the session. Regarding the neural 
activity, we found that neurons fired at delays spanning tens of seconds and 
that this pattern of responding reflected the interaction between time and the 
animals’ ongoing sensorimotor state. Surprisingly, cells rescaled responses in 
time when intervals changed, indicating that striatal populations encoded 
relative time. Moreover, time estimates decoded from activity predicted trial-by-
trial timing behavior as animals adjusted to new intervals, and disrupting 
striatal function with local infusion of muscimol led to a decrease in timing 
performance. Because of practical limitations in testing for sufficiency a 
biological system, we ran a simple simulation of the task; we have shown that 
neural responses similar to those we observe are conceptually sufficient to 
produce temporally adaptive behavior. Furthermore, we attempted to explain 
temporal processes on the basis of ongoing behavior by decoding temporal 
estimates from high-speed videos of the animals performing the task; we could 
not explain the temporal report solely on basis of ongoing behavior. These 
results suggest that striatal activity forms a scalable population firing rate code 
for time, providing timing signals that animals use to guide their actions. 

Key-words: Basal Ganglia, Striatum, Interval Timing, Fixed Interval, Embodied 
Cognition, Bayesian Decoder 
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CHAPTER 1: Introduction 

Animals live in an ever-changing and complex environment. To survive, they 
must not only learn which actions to take, but also the spatial and the temporal 
context in which these actions effectively produce the desired outcome. Hence, 
identifying temporal regularities is extremely important for adaptive behavior. 
Indeed, to guide their behavior, animals operate with temporal information from 
different orders of magnitude, from microseconds to years. For instance, most 
(if not all) organisms exhibit endogenous circadian rhythms in physiological [1], 
metabolic [2,3] and behavioral [4] functions with periods close to 24 h. These 
cycles are synchronized and entrained by external cycles of light and 
darkness. In the opposite extreme, birds and some mammals (including 
humans) are able to use microsecond differences between the times that a 
sound reaches each ear to localize its source [5].  
 Relative to microsecond and circadian timing process, millisecond timing 
and interval timing can be deployed flexibly under animals’ willful control; tasks 
such as coordination of movement (e.g. reaching, walking, dancing, speaking, 
music execution), perception (e.g. speech comprehension, music appreciation) 
and some aspects of learning (e.g. classical conditioning; [6]) all require 
millisecond timing to be properly executed.  
 Finally, interval timing (i.e. the ability to perceive, estimate and 

discriminate intervals between events in the range of seconds to minutes to 
hours) has been identified in organisms as diverse as insects [7], birds [8], fish 
[9], rat pups [10] and adult rodents [11], primates [12], human infants [13] and 
adults [14]. Interval timing is critical for important adaptive behaviors. In 
foraging, animals use temporal estimates to estimate how much reward per 
time (i.e., the rate of return) any given behavioral strategy or area can provide 
[15,16]. Timing is also important for decision making [17]; animals can use time 
as their decision criteria (e.g., decide when to act, or what to do depending on 
how much time has elapsed) or they can take time into account when 
comparing two outcomes that are expected to happen at different times. 
Animals can also easily stretch and contract chains of behaviors. These 
behaviors can keep their temporal characteristics proportional to the whole 
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sequence, showing that temporal control is also relevant to co-ordinate 
movements within a sequence [18]. Additionally, which is perhaps more 
important, timing can provide most of the information needed to derive sense 
of proximity, causality and order, which are necessary to implement operant 
conditioning [19].  
 Uncovering the underpinning of interval timing might help to elucidate 
many important cognitive processes in humans. For instance, it has been 
suggested that interval timing requires rudimentary comparisons and 
estimations of quantities. These operations could be the basis for high 
cognitive faculties, such as arithmetics [20]. Moreover, interval timing is not an 
isolated faculty. It interacts directly with processes such as attention [21,22], 
memory [23], reward expectation [24] and arousal [25], so that variations in 
these processes cause temporal delusions. Therefore, Interval timing is not 
only a primitive ability that is useful to detect relevant patterns from the ever-
changing environment and generate anticipatory behaviors. But might underlie 
most, if not all, high cognitive functions of the human brain. By understanding 
the brain implements interval timing, we can gain insight into the processes 
supported by it, and perhaps identify unifying principles of how the nervous 
systems across species organize information about the environment and 
behavior. 
 In contrast to other sensorial modalities (e.g., visual, tactile, etc), timing 
has no sensorial organ. Hence, the sense of time either emerges from an 
internal clock mechanism, which generates a trackable time varying signal, or 
alternatively, arises from learning the temporal statistics of change in sensory 
and/or motor signals, which vary naturally with time. In either case, the brain 
must perform temporal estimations in the scale of seconds to minutes using 
neuronal activity. The Basal Ganglia (BG), and especially the striatum, are 
necessary for time estimation in the supra-second range [26]. Many models 
have been proposed on how the brain might perform flexible estimations of 
time over one second [27,28,29,30,31], some of them directly implicating the 
BG and the striatum [28,32]. And although some experimental data can 
support these models, the results are somewhat conflicting. Because of that, 
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the means by which the BG might perform temporal computations remains 
elusive. 
 By combining behavioral, electrophysiological and computational 
approaches, this work investigated how the rodent nervous system is able to 
time at supra-second scale and how these estimations are used to generate 
adaptive behavior.  

Psychophysical studies of interval timing 
Much of our knowledge about interval timing is derived from psychophysical 
studies. These studies are based on retrospective and prospective timing 
methodologies to collect time duration judgments from a subject [33]. 
Traditionally, the prospective study of time durations is based on the 
estimation, production, and reproduction of time intervals [34]. Estimation 
protocols require that a subject observes an interval and reports orally how 
much time has elapsed. Production protocols, on contrary, inform the subject 
about a temporal constraints (usually an interval between actions) he/she will 
have in order to perform an action. Usually a symbolic cue is associated with a 
particular interval, a spoken communication (e.g., “five seconds”). Because 
estimation and production protocols require some verbal interaction, most of 
timing research that uses animal models employ the reproduction protocols. In 
this protocol the subject is presented to one interval with a given duration 
criterion, then the subject has to reproduce this interval. Animals are usually 
deprived of either food or water, so that they are motivated to perform an action 
(e.g., pressing a lever, pushing a button) in a programmed schedule of time in 
order to receive a reward (i.e., drop of water, food pellet).  
 The most often studied interval timing schedule is perhaps the fixed 
interval (FI) schedule of reinforcement and its variations. During a FI schedule, 
the behavior is reinforced for the first response (e.g., press of a lever) made 
after elapse of a pre-determined interval since the previous reinforcement. 
When the reinforcer is delivered, the cycle restarts. A wide range of animal 
species (e.g., turtles, fish, cats, primates, humans and bees) trained on the FI 
protocol exhibit very predictable temporally-regulated behavior that scales with 
the FI [35]. First, the subjects consume the reward (as explained, the reward 
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marks the end of the previous and the beginning of the subsequent FI). 
Secondly, the subjects generally engage in grooming or exploratory behaviors. 
Thirdly, the animals gradually orient their position and actions towards the 
response site (e.g., lever). Finally, despite the absence of any external time 
cues, the animals start to respond after a fixed proportion of the interval has 
elapsed. The responses under FI schedule generally are manifested in two 
characteristic patterns. The first one is the scallop performance. This pattern 
describes an increase in the frequency of responses as the end of the FI 
approaches. The second pattern, and more frequently observed in over-trained 
subjects, is the break-and-run. In this pattern, response frequency is kept at a 
fixed rate from the moment responding starts to the moment of the 
reinforcement. This fixed rate of response varies together with the reward rate 
(i.e., magnitude of reward per time in the FI; [36]), and the post reinforcement 
pause (PRP) of responding is proportional to the length of the interval.  
 The PRP is the duration of the interval between the acquisition of the 
reinforcer and the press start time (PST; i.e., the first response) to produce the 
subsequent reinforcer, and because it is sensitive to the length of the estimated 
interval, it is the standard metric of timing performance. It has two important 
features relevant to the interval timing studies: the sensitivity of mean accuracy 
to the FI and the scalar variance (scalar timing). The mean accuracy sensitivity 
describes the observed phenomena that PSTs tend to occur in average around 
one half [35] to two thirds of the length of FI. The scalar variance feature 
characterizes that the dispersion of PST is a linear function of the average 
PST. Consequently, it also predicts that the coefficient of variation (standard 
deviation of PST divided by the average PST) is constant across all FIs. This 
latter feature is considered to be a manifestation of Weber-Fechner’s Law in 
the time domain, also known as Scalar Timing [37]. The Weber-Fechner’s law 
is obeyed by many sensory modalities [38, 39, 40, 41]. It states that the 
threshold to detect changes in magnitudes of stimuli (i.e., the just noticeable 
difference) is proportional to the magnitude. In other words, the just noticeable 
difference is a constant ratio between the measured magnitudes, for all 
magnitudes. Scalar timing affects behavior and neuronal activation by making 
them increasingly less precise as the timed interval lengthens [42].  
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 The Serial Fixed Interval Timing (SFI) task is a variation of FI task used in 
our lab to sample timing performance from a broad range of intervals. In the 

SFI task the reward became available at t seconds after the previous reward, 

provided that the animal has responded. Each reward marked the end of one 

trial and the start of the next one. t varied in a block-wise fashion over intervals 

from 12 seconds to 1 minute. The performance in this task was consistent with 
previous results in dynamic versions of FI task [34, 35, 43, 44, 45, 46] in three 
aspects. Firstly, average PST is a function of the FI. Secondly, the response 
rate is proportional to the reward rate. Finally, rodents seem to adopt strategies 
that take into account for the whole distribution of FIs in the session. So that, 
PST was relatively later in short FI trials than it was within trials with long FIs. 
Because they adapted quickly to the new interval, taking less than 5 trials, this 
violation to the scalar variance property could reflect a strategy to facilitate 
exploration of intervals. The SFI task offers the possibility to analyze steady 
and changing timing conditions, while providing statistical power to infer 
parametric relationships between temporal demands, behavior and neural 
activity. 

Theoretical models of interval timing 
Although the long history of psychophysical experiments of interval timing has 
provided great insight into how temporal perception is manifested through 
behavior, little is known about the nature of temporal information itself. As 
stated before, unlike other sensorial modalities, there is no sensory organ for 
time sensing. Hence, temporal information must be inferred from other sensory 
modalities or produced by the organism. The idea that animals must produce 
their temporal representation (instead of directly sensing it ) motivated a quest 
for the internal clock. 
 In this quest, several models have been suggested to describe animals’ 
performance in timing tasks and explain the mechanisms of interval timing 
[Franois cited in 47, 48]. These models diverge in how well and how generally 
they can predict temporal performance, and what are the underlying 
mechanisms supporting interval timing. Broadly, these models can be grouped 
into at least three categories that vary in assumptions and explanatory power, 
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namely: information-processing models, beat-frequency models and 
sequential-state models.  
 Information-processing models were first formulated by Treisman [49] 
and later developed by Gibbon [50] with the scalar expectancy theory (SET) 
model (Figure 1.1). SET assumes: an internal poisson-variable pacemaker that 
generates pulses, an accumulator, a reference memory, a switch and a 
comparator. When a time marker (cue or reward) is received, the switch allows 
the pulses to be stored in the accumulator. These pulses were accumulated 
until a short time after the reinforcement. The rate by which these pulses were 
generated depended on many other psychological or behavioral variables, 
such: as arousal, reinforcement magnitude, attention and mood [49]. By the 
time of the reinforcement, the value stored in the accumulator is transferred to 
the reference memory and the accumulator is reset to zero. The perceived 
duration was a monotonic function of the total number of pulses transferred 
into the accumulator. The behavioral response is dependent on the ratio 
between the values stored in the accumulator and reference memory. For 
instance, when the difference falls below a threshold (which may also vary) in a 
FI task, responding at a steady rate begins. This feature explains that steady-
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Pacemaker
generate pulses

Switch
start/stop 

accumulation 
process

Accumulator
accumulate 

pulses over time

Memory
store values passed 
by the accumulator

Theshold
sets a criteria for 

action to be taken

Comparator
(memory - accumulator) / 

memory

Stimulus

Response

Figure 1.1 | Schematics of the scalar expectancy theory model. Components of the 
information processing model for time: pacemaker, accumulator, reference memory, switch and 
comparator. The pacemaker generates pulses through a Poisson-variable process. 
Environmental stimuli change the switch state, allowing the pulses to go into the accumulator. If 
the accumulator has a value stored during the moment of the stimulus, this value is passed to 
the memory and the accumulator is reset to zero. Finally the ratio of the difference between the 
values stored in the accumulator and the memory is compared with an established threshold to 
generate a behavioral response. 



state measures of time discrimination, such as wait time (i.e., PST, break point) 
on fixed interval schedules or peak-rate time (on peak procedure), are 
proportional to the to-be-timed interval (i.e., proportional accuracy sensitivity to 
the FI; [35]). Because SET posits that the error generated during the 
accumulation of pulses is proportional to the duration criterion, it presents an 
explanation for scalar variance sensitivity to the interval. More importantly, SET 
incorporates two features that have been supported by experimental data.  
Firstly, the current time estimate (encoding) and the memory for times 
reinforced in the past (decoding) follow independent laws [27]; and secondly, 
the behavior is driven by some sort of comparison between current and 
remembered time of reinforcement [29]. 
 In opposition to information processing models, sequential-state models 
characterize orderly transitions between different states which can be used to 
encode time [51,52,53]. The behavior theory of timing (BeT) formulated by 
Killeen and Fetterman [54] and the learning-to-time (LeT) formulated by 
Machado inspired by BeT [30] are the most prominent of the sequential state 
models. 
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Figure 1.2 | Schematics of 
sequential state timing 
models. (A) Top: Frequency 
of occurrence of different 
activities of two rats over 
time since reinforcement on 
fixed interval schedule of 30 
s. E = eating, D= drinking, 
W= in running wheel, L = 
contact the lever (adapted 
from Roper in Killeen & 
Fetterman [51]). Bottom: 
schematics of the fixed 
interval schedule of reinforcement paradigm used to acquire the data in the top panel. T= time, 
R=responses (each subscript is one different response e.g. Eating, Drinking), S = reinforcer, and 
each vertical line is one occurrence of a response. (B) Schematics of Learn to Time model 
structure (adapted from Machado [30]. After a time marker, a set of states (top circles) is 
activated in series. The states may be coupled to various degrees (associative links) with one or 
more operant responses (bottom squares). The strength of each response is determined by the 
dot product between the vectors of state activation and coupling. Hence, in FI schedules multiple 
responses over time might be elicited with varying degrees of strength. 
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 These models are based on the empirical observation that sequential 
chains of behaviors emerge in tasks where reward delivery is contingent on 
passage of time (e.g., FI, SFI; Figure 1.2A). For instance, in a FI task, behavior 
would transit from consummatory, to post-consummatory, to exploration, to 
reorientation to the source of reinforcer and finally to the reinforced behavior 
across the interval. In BeT, each behavior is associated with a distinct 
underlying state. Transitions between states occur probabilistically driven by a 
poisson-variable pacemaker. The speed of this pacemaker depends on the rate 
of reinforcement, so that increases in reinforcement rate lead to an increase of 
the speed. The successive underlying states take on the role of a clock 
process. Consequently, to perform at a temporal criteria, subjects would learn 
to use their temporally organized behavioral states as discriminative stimuli. 
Thus, instead of reading an internal clock, subjects are assumed to use their 
current sensorimotor states to tell time. LeT extends BeT by positing that each 
underlying state is associated with an operant response, and that association 
strength varies through means of differential reinforcement in the context they 
were learned (Figure 1.2B). Therefore, the strength of the operant response at 
a given moment is the result of the combination between the predominantly 
active state at that moment, and how strong is the association between this 
state and the response.  
 Two major distinctions between information-processing and sequential-
state models may argue for the broader explanatory model of the latter models. 
Firstly, in the former, the decision to respond is made only after the target time 
interval has elapsed, while in BeT it is done in anticipation to that time interval 
[53]. Experimental evidence points that accuracy of choice is higher under the 
prospective conditions than under the retrospective condition. Indeed, under 
retrospective condition, performance returned to baseline levels [55], 
suggesting that animals' approach to timing is prospective. Secondly, previous 
studies have reported contextual effects on timing [56]: having learned the 
discriminations 1 s (red) vs. 4 s (green) and 4 s (blue) vs. 16 s (yellow), 
preference for the green over blue key increases with the signal duration. In 
Information-processing models the memory stores are independent, and 
because of that this type models have no mechanism to accommodate 
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contextual effects. In contrast LeT is sensitive to the errors that occur during 
the learning of the two discriminations; these errors weaken the connection 
between the behavioral states and the associated operant responses. 
Therefore, these errors would bias green keys to be perceived as long and 
blue as short, regardless the fact that both cues relate to the exact same 
interval. 
 The oscillation-based model uses a library of oscillatory pacemaker 
neurons, which could be independently entrained in different rhythms, to 
encode a temporal waveform by forming its Fourier series. Torras [cited in 57] 
said that this combination could be done either by choosing pacemakers with 
appropriate oscillation periods or through plastic changes to the period of 
oscillation of each cell. The beat-frequency model (BF; Figure 1.3A) and its 
updated and more biologically plausible version, the striatal beat-frequency 
model (SBF; Figure 1.3B), uses “beats” (i.e., frequency at which cells spike 
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Figure 1.3 | Schematics of beat-frequency timing models. (A) Schematics of oscillation 
library from a set of units over time (adapted from Miall [57]). On meaningful event at t0, all 
oscillations are synchronized. After that, they start to oscillate freely. By picking a subset of 
oscillations and responding to when they synchronize (star symbol), the model can estimate how 
much time has elapsed. (B) Schematics of striatal beat-frequency model (SBF; adapted from 
Matell [28,58]). Loops involving the cortex (CTX), the basal ganglia (BG) and thalamus 
implement this mechanism. The striatum act as a coincidence detector of the oscillations 
provided by the CTX; dopamine signals from the substantia nigra pars compact (SNc) 
synchronize cortical and thalamic oscillations at every meaningful event (e.g., reward) and serve 
as the reinforcement signal. Once synchronized neurons oscillate at their inherent periods, 
allowing the patterns of activity to become meaningful. Striatal spiny neurons fire when a 
previously reinforced pattern of input is detected, consequently impinging to itself the current 
oscillatory inputs through the striato-thalamic-cortical loop.  
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simultaneously) between pairs or groups of oscillatory cells to store time 
intervals. After resetting the oscillations with a synchronizing event, a specific 
time can be encoded by selectively weighting the activity of oscillatory cells 
that are currently active at the time criterion. This process is equivalent to 
multiplication (e.g., 3 Hz and 5 Hz will first synchronize at 15 Hz), thus 
providing an efficient process to encode long intervals with neuronal 
mechanisms which operate in much shorter timescale. The SBF posits that 
loops involving the cortex (CTX), the basal ganglia and the thalamus 
implement these mechanisms. More specifically, the striatum would act as a 
coincidence detector; the DA signals would synchronize cortical and thalamic 
oscillations at every meaningful event (e.g., reward), hyper-polarizing the 
striatum membrane, and thereby resetting the integration mechanisms. DA 
signals would also serve as reinforcement/teaching cues, strengthening the 
cortico-striatal representation of a particular duration criterion. Once 
synchronized, neurons oscillate at their inherent periods, allowing the patterns 
of activity to become meaningful. Striatal spiny neurons fire when a previously 
reinforced pattern of input is detected, consequently informing that the time 
criterion was reached. The striatum can entrain itself in the current oscillatory 
inputs through the striato-thalamic-cortical loop, allowing for alterations of time 
perception.  
 Data from striatal neurons during the delay period before an anticipated 
reward or movement [59,60,61] can equally support any of these models. 
Hence, it is unclear which model best describes striatal function. 

Neurobiological systems involved in interval timing 
In our current understanding, interval timing is a complex and primitive function 
of the brain which engages multiple areas of the brain depending on 
environmental and behavioral demands. Data from functional magnetic 
resonance imaging (fMRI) show that multiple areas have time dependent 
activity which is also affected by task and context, suggesting that interval 
timing is a distributed and complex process in the brain [62]. But, not all of 
these areas are required for, or modulate, timing performance equally. For 
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instance, the primary motor cortex (M1) processes signals correlated with time 
[63]. Nonetheless, M1’s ablation or manipulations do not influence timing 
reports [64]. The prefrontal cortex (PFC) also has time correlated activity[65]. 
The PFC seems to play a role modulating time perception. Xu et al. [63] 
demonstrated that time reports change when PFC activity is modulated with 
cooling. An other study [66] suggests that lesions in the medial prefrontal 
cortex disrupt the ability to discriminate intervals in the range of seconds. Time 
correlated signals can be found all over the telencephalon from the PFC [65], 
to the parietal cortex [67], and even in early sensory areas [68]. As we saw, 
some models rely on the assumption that the cortex provides the temporal 
basis for time estimation. But timing experiments done in decorticated animals 
[64] call this hypothesis into question. These experiments showed that 
decorticated animals are still able to perform in interval timing tasks.  
 There is a major consensus that subcortical areas are critical to interval 
timing. Hence, much of the recent research has been focused on the 
cerebellum, hippocampus and BG. Data from these researches depict interval 
timing as a distributed process in which each subcortical area contributes to 
interval timing in a different and contextually dependent manner. For instance, 
the cerebellum seems to have a peculiar role in interval timing. Many studies 
that attempted to affect interval timing through means of cerebellar lesions 
have failed [69]. Nonetheless, data from stroke patients [70] with lesion in the 
middle to superior lateral dentate nuclei, especially in the left hemisphere, 
suggest that the cerebellum is necessary for proper interval timing in durations 
lower than 12 seconds. Why and how cerebellum contributes to timing in this 
range is still to be shown. It might coordinate learned actions at a fine 
timescale [71], playing a mediating role between the sub-second timing [72] 
and the supra-second timing. The cerebellum receives input from the PFC 
through the pontine nuclei and connects to the PFC through two paths, both 
starting at the dentate nuclei: a short (mediodorsal/ventrolateral thalamic 
nuclei) and a long one (reticulotegmental nucleus, penduculopontine and 
ventral tegmental). These pathways could be relevant for cerebellum’s role in 
interval timing. 
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 On the other hand, a recent growing body of evidence [73-78] highlights 
the importance of the hippocampus, an area that is usually associated to 
spatial learning [79] and explicit memory [80], for interval timing. Gradual 
changes in hippocampal activity are strongly influenced by time and distance 
[76]. Additionally, lesions in the dorsal or ventral hippocampus produce leftward 
or rightward shifts in time estimation respectively [78]. Curiously, the effects 
that hippocampal inactivations have on time estimation seem to be stronger 
when the time scale estimated is over one minute [81], and the temporal 
discrimination is difficult (i.e., intervals with similar durations). Yet, the same 
group of studies could not provide the evidence that manipulations in the 
hippocampus produce disruptions on timing of intervals above a second and 
below one minute. Anatomically, the hippocampus is highly connected with 
other areas relevant to interval timing such as the nucleus accumbens (Nac; 
[82]) and the PFC [83]. This connectivity pattern strengthens the argument that 
the hippocampus has a relevant role in interval timing. 
 Arguably, the study of interval timing mechanisms in the BG has proven 
to be more prolific regarding unveiling the biological mechanisms of interval 
timing. Evidence from multiples sources implicates the BG, and more 
specifically the striatum, as a locus for the representation of supra-second-
below-one-minute timing. Firstly, activity in the striatum is modulated by timing 
task as shown in studies using ensemble recording techniques in animals 
[84,85], and regional increase in blood flow captured by fMRI in humans during 
interval timing tasks [42,86]. Secondly, striatal lesions [26], diseases that affect 
the BG such as Huntington’s [87] and Attention Deficit Disorder [88], all cause 
interval timing dysfunctions.  
 Furthermore, patients with disorders that involve meso-striatal 
dopaminergic pathways, such as schizophrenia [89,90,91] and Parkinson’s 
disease (PD; [92,93]), display impaired performances during interval timing 
tasks. PD is characterized by a progressive degeneration of nigrostriatal 
dopaminergic projections, leading to low levels of dopamine (DA) in the 
striatum. These low levels of DA cause interval timing deficits which can be 
alleviated by L-dopa (L-3,4-dihydroxyphenylallanine; a precursor of dopamine) 
treatment [94]. Malapani et al. [92,93] leveraged this modulatory effect of DA 
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over interval timing and the therapeutic effect of L-dopa to segregate storage 
from retrieval dysfunction in the temporal memory in PD patients. Malapani’s 
data suggest that DA has the power to increase discrimination between 
intervals on retrieval, to control the speed and the extension of internal 
representation of time during encoding.  
 How directly DA affects time perception might be a difficult question to 
answer, because DA is involved in multiple processes other than timing. For 
instance, although genetic manipulations that affect the DA system in the BG 
[95] cause interval timing dysfunctions, a different source of evidence [96] 
suggests that DA dependent timing deficits might be a cofound of 
manipulations which affect directly animals’ motivation. 
 Altogether, the multiple areas involved in interval timing seem to 
constitute not one but multiple “internal clocks”, which use diverse sources of 
information to implement aspects of interval timing. These areas appear to be 
mutually influenced by each other to generate congruent temporal estimations 
and subsequent adaptive behavior. A very clear example of such coordination 
of multiple clocks derives from the interaction among timing mechanisms of 
different time scales. For instance, the cerebellum exerts an influence in time 
estimation in the second to sub-second range. It is possible that the cerebellum 
exerts its influence to the BG either through modulation of thalamic input or 
through projections to VTA and PFC [97-100]. Conversely, circadian timing 
mechanisms can affect the interval timing indirectly by regulating DA [101]. 
Finally, the hippocampus might have a direct effect on the computations done 
in the striatum, especially in long intervals, in which animals are more likely to 
move (so distance can be an extra source of information about the rate of 
change of the environment), and when information about sequence is relevant 
[74,76].  

Organization of the basal ganglia 
As it should be clear by now, the BG play a central role in interval timing, and 
part of this role is derived from its anatomical position and connectivity. The BG 
are a group of subcortical nuclei localized in the core of the forebrain, ventral to 
motor cortex, posterior, to PFC and, in rats, anterior to hippocampus and 
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thalamus [102,103]. The BG are in a strategic position to receive input from 
most of the areas of the brain and influence both motor and associative 
processing. A variety of processes including reinforcement learning [104-106], 
motor control [107-111], limbic [112,115] and associative functions [116-119] 
depend on the BG. Although it is not yet clear how the BG integrate and 
modulate information from multiple sources, it is agreed that BG’s internal 
connectivity plays a major role in it. 

The BG's internal connectivity is complex as it involves many overlaid 
pathways through which information passes and is processed across the 
multiple nuclei of the BG. These nuclei differ drastically from each other in 
anatomical and histological characteristics. These differences are important 
because they establish constraints and possibilities for the timing mechanisms 
we are interested to explain. The classic anatomical description of the BG in 
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Figure 1.4 | Diagram basal 
ganglia’s connectivity - Diagram 
of inhibitory (A) and excitatory (B) 
inputs and outputs of the BG’s 
nuclei. Striatum (caudate-putamen - 
CPu and nucleus accumbent - 
Nac), receives broad excitatory 
input from the cortical layer 5 and 
thalamus (B). The striatum inhibits 
downstream areas through the 
indirect (from D2 MSN) and direct 
(from D1 MSN) pathways (A). 
Globus pallidus pars externa (GPe) 
and the subthalamic nucleus (STN) 
belong to the indirect pathway. GPe 
sends inhibitory projections to the 
striatum and to the STN (A). STN 
s e n d s f e e d b a c k e x c i t a t o r y 
projections to the GPe and to the 
striatum, and completes the indirect 
pathway by exciting the output area 
of the BG, the entopenducular 
nucleus/substantial nigra pars 
reticulata (EP/SNr; B). In the direct 

pathway, D1 MSNs directly inhibit 
EP/SNr (A). EP/ SNr outputs are fundamentally inhibitory and project to diverse thalamic nuclei 
(e.g. md, vl, pf, vm) depending on whether the input to the striatum was associative, limbic or 
motor. Cortex, thalamus and striatum are connected in loop. 
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rats is organized as follows (Figure 1.4): rostrodorsally to the other BG nuclei 
and most close to the CTX lies the largest division of the BG, the striatum (or 
caudate-putamen); located ventro-medio-posteriorly to the striatum is the 
globus pallidus (GP, external segment of the globus pallidus in primates) and 
the entopeduncular nucleus (EP, internal segment of globus pallidus in 
primates, GPi); the subthalamic nucleus (STN) is located ventroposteriorly to 
the GP and ventrally to the thalamus; and posterior to all structures is the 
substantia nigra (SN). The SN is further divided into two main parts, the dorsal 
pars compacta (SNc) in which the dopaminergic nigrostriatal neurons are 
located, and the more ventral pars reticulata (SNr). In addition to these 
structures which are linked to motor and associative functions, there is a 
ventral division of the BG associated with limbic functions. This limbic division 
is composed by the ventral striatum or nucleus accumbens (Nac), ventral 
pallidum and ventral tegmental area (VTA). 
 As the main input to the BG, the striatum receives glutamatergic input 

from neurons of layers 2 and 5 from nearly the entire CTX [120-122], strong 
glutamatergic afferent projections from the thalamus [124,125], dopaminergic 
input from SNc [126,127] and dense GABAergic input from the GPe [128,129]. 
Cortical inputs to the striatum are topographically segregated according to 
associative, motor, oculomotor and limbic functions. This topographical 
segregation is repeated all over downstream areas of the BG [102], suggesting 
some sort of parallel processing starting at the striatum. Regarding its outputs, 
the striatum sends efferent inhibitory projections to the GPe and to SNr/
EP(GPi; [102,103]). 
 In the other extreme of the BG, the EP (GPi in primates) together with the 
SNr constitute the main output of the BG. Both areas receive direct inhibitory 
projections from the striatum (direct or striato-nigral pathway) and from the 
GPe, in conjunction with glutamatergic excitatory input from the STN. Efferent 
projections of the EP are inhibitory and target mainly the ventral thalamus. 
 The GPe is a nucleus of great clinical importance. It is the site where 
lesions (pallidotomy) and deep-brain stimulation procedures have been applied 
to alleviate PD symptoms [130]. When it comes to the connectivity, the GPe 
has an inhibitory feedback with the striatum [128,129]; also it sends inhibitory 
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projections to the STN and receives glutamatergic excitatory feedback 
projections [128,130]. This sort of connectivity has been argued to promote an 
oscillatory activity [130]. It was thought that the BG modulates cortical activity 
indirectly through inhibitory projections to the thalamus, but a recent study from 
Saunders et al. [131] has demonstrated that the GPe also projects GABAergic/
cholinergic projections to the frontal cortex. The existence of these projections 
suggests that GPe can directly influence the cortex. 
 The STN is the next nucleus in the canonical indirect pathway of the BG 
which has a great clinical relevance. Nowadays it is the favored site for deep-
brain stimulation in the treatment of the PD. It receives excitatory projections 
from the CTX and the thalamus, as well as inhibitory projections from the 
striatum and the GPe. Additionally, the STN receives cholinergic projections 
from the pendunculopontine nucleus, a region involved in the control of arousal 
and alertness. All the output projections that arise from the STN are 
glutamatergic and excitatory. The STN projects to EP (or GPi in primates), 
GPe, SNr and to the pendunculopontine nucleus. Finally, the STN also feeds 
back into the striatum with sparse glutamatergic projections that are poorly 
branched [132,133], and provides en passant excitatory influence over striatal 
cells [103]. 
 Other output nuclei of the BG is the SN and it is subdivided in SNc and 
SNr. The SNc sends broadly dopaminergic projections to the whole BG and to 
other parts of the brain. It has a major modulatory role over the entire brain 
processing, mostly related to the apparent encoding of errors in reward 
prediction, value and saliency of events [134,135]. As discussed before, SNr 
together with EP constitute the main output of the BG. SNr sends inhibitory 
projections to many different regions in the brain, among which are the 

pendunculopontine nucleus (PPN), the superior colliculus and the thalamus 

[136]. Since there is an anatomical segregation of information in all nuclei of 
the BG, depending on the cortical area from where the signal arises, the 
thalamic nuclei targeted by these projections differ [137]. For instance, the 
motor (lateral) circuit, that carries information from motor cortex, outputs to the 
ventrolateral nucleus pars oralis (VLo), the medial part of the ventrolateral 
nucleus (Vlm) and to the parvocellular part of the ventral anterior (VApc), from 
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where projections are sent back to motor areas of the cortex. In associative 
(medial) circuit, that carries information from higher order cortices, the BG 
projects to the VApc, the magnocellular part of the ventral anterior nucleus of 
the thalamus (VAmc), the rostral division of the caudal part of the ventrolateral 
nucleus (VLcr) and finally, to the lateral part of the mediodorsal nucleus of the 
thalamus (MDpl). The thalamo-glutamatergic projections from these regions 
target the lateral orbitofrontal cortex (LOFC) and the dorsolateral prefrontal 
cortex (DLPFC), the same areas that provide input to this BG-thalamocortical 
circuit. 
 Functionally, it has been hypothesized that the BG receive inputs from 
other areas of the brain and act upon these inputs as a filter. According to this 
hypothesis, the BG would select information derived from cortical and thalamic 
activity and send the resulting information back to the cortical source of the 
information. In parallel, it would also send copy of the same information to 
other systems of the brain to implement behavior. Since DA modulates the gain 
of cortico-striatal synapses [138-141], and because reinforcement-based 
plasticity occurs in the BG, it is thought that this plasticity might influence the 
input selection process based on previous experience [142]. The striatum and 
DA are considered to be key components to this filtering process. 
 The way in which information travels through the multiple nuclei of the 
BG might offer clues about their functional role. In the canonical perspective of 
the BG, information from the striatum can pass through the nuclei of the BG by 
two different parallel circuits: the direct and the indirect pathways (Figure 1.4). 
Neurons within the striatum can project directly to the EP/SNr that constitute 
the output nuclei of the BG (direct pathway). Or instead, striatal neurons can 
project first to intermediate nuclei, namely GPe and STN, and then to the 
output nuclei EP/SNr (indirect pathway; [143]).  
 These signaling pathways are regulated by DA in the striatum, and they 
have been the subject of intense study. It is known that driving activity in the 
direct pathway increases motor output (i.e., locomotion; [138,141,123]). On the 
other hand, stimulation of the indirect pathway seems to inhibit behavior [123]. 
For long it has been hypothesized that the direct pathway encodes the set of 
behavior plans available to the animals in a given context [19]. Thus, driving 
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the direct pathway would make these motor plans stronger, and consequently 
increase the motor output. Complementarily to this hypothesis, the indirect 
pathway would map the set of competing behaviors which must be suppressed 
so that the selected behavioral plan can occur with less interference. In this 
perspective, the BG would be responsible for filtering motor, associative and 
limbic information using a center-surround-like receptive field in the pertinent 
space (e.g., behavioral, cognitive) [19]. 

Anatomy, physiology and histochemistry of striatal neurons  
Closer inspection of neuronal population and its characteristics reveals an 
astonishing complexity that has substantial implications to how the striatum 
might implement interval timing and other related processes. Most of the 
neurons with cell bodies within the striatum releases γ-aminobutyric acid 
(GABA). Since they are inhibitory neurons, it becomes clear that activity inside 
the striatum is either spontaneous or driven from extrinsic excitatory inputs. 
 Neurons in the striatum have been characterized anatomically, 
histochemically and physiologically [144,145]. Regarding their anatomic 
characteristics, striatal neurons can be either medium spiny projection neurons 
(MSNs) or aspiny interneurons. MSNs are the most abundant cell type of the 
striatum, constituting ~95% of striatal neurons [146]. MSNs are driven by 
extrinsic excitatory input projections from CTX, thalamus and STN and 
inhibited by interneurons and extrinsic input projections from GPe.  
 The MSNs are the only output neurons of the striatum [144,147], and 
they can be further classified into two subpopulations according to their axonal 
projection targets, the expression of genes for certain peptides, and the 
expression of DA receptors. These two subpopulations have approximately the 
same number of cells and they bring about the canonical direct and indirect 
pathways [143], previously discussed. The first population, striatonigral 
neurons, give rise to the direct pathway of the BG by sending projections 
directly to the output neurons of the BG in the EP and SNr. The second 
population, striatopallidal neurons, are the starting point of the indirect pathway 
by connecting striatum with the EP/SNr indirectly, through the GPe and STN 
consecutively. Again, excitation of the direct pathway facilitates movement and 
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activation of the indirect pathway inhibits movement [143,148]. These 
functional properties of these two pathways have been tested by Kravitz [149] 
and colleagues. They excited bilaterally the striatopallidal MSNs in transgenic 
mice using optogenetic methods and observed that this protocol induced a 
parkinsonian state (identified by increased freezing, decreased locomotor 
initiations and bradykinesia). Conversely, activation of striatonigral MSNs 
caused a decrease in freezing and an increase in locomotion.  
 MSNs show selective expression of certain peptides and receptors for 
DA, depending on whether they belong to the direct or indirect pathway. 
Studies using in situ hybridization histochemistry combined with retrograde 
labeling of striatonigral neurons suggest that striatonigral MSNs express 
substance-P, dynorphin and the DA type 1 (D1, D2) receptor, and therefore they 
are also referred to as D1MSNs. The striatopallidal neurons express enkephalin 
and the D2 type receptor (D2, D3, D4), and for that reason they are also known 
as D2 MSNs [142]. 
 The remaining 3-5% of striatal neurons are anatomically defined as 
aspiny interneurons and include among them cholinergic interneurons and 
several types of GABA-releasing interneurons [150]. Cholinergic interneurons 
constitute 1-2% of the neurons in the striatum [151]; these neurons are 
characterized by a large soma, often >50 µm long. They stain positively for 
choline acetyltransferase (ChAT) and express both D2 and D5 receptors as 
revealed by immunohistochemical analysis [152,153]. The GABAergic 
interneurons appear to express mainly D5 receptors [152] and can be divided 
into at least three groups based on their distinct histochemical and 
physiological properties [150,154]. Histochemically, striatal GABAergic 
interneurons can be subdivided into: parvalbumin (PV)-positive; somatostatin-
positive, neuropeptide Y-positive, and nitric oxide synthase-positive; and 
calretinin-positive [154]. 
 The anatomical and histochemical differences discussed so far have 
physiological consequences in how striatal neurons behave. These three 
groups of striatal GABAergic interneurons can be further divided into at least 
two different types based on the firing patterns that they exhibit [154]. While 
PV-positive neurons display rapid and continued firing rates post current 
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injection, somatostatin-positive interneurons display lower firing rates and 
plateau potentials. Consequently, PV-positive neurons are also known as fast 
spiking (FS) interneurons and somatostatin-positive interneurons are known as 
low-threshold spiking (LTS) interneurons. Calretinin-positive interneurons 
appear to share some characteristics of LTS interneurons, but this similarity 
requires confirmation [155]. Albeit numerically scarce, striatal GABAergic 
interneurons play a major role regulating spike timing in the MSNs, mainly 
through feedforward inhibition [155]. Like MSNs, striatal interneurons receive 
glutamatergic input from cortex, thalamus and STN; and also get GABAergic 
input from the GPe. But on the contrary to MSNs, interneurons’ output is 
directed primarily to MSNs and other interneurons inside the striatum. This sort 
of connectivity can strategically grant to GABAergic interneurons a 
disproportionately strong power to modulate striatal output despite their 
numerical minority.  
 Physiologically, the cholinergic interneurons, also known as tonically 
active neurons (TANs), display almost constant spontaneous activity. TANs are 
considered to be key mediators of dopamine-dependent striatal plasticity [156] 
and learning [157]. They exhibit significant hyperpolarization-activated currents, 
nonetheless TANs display a pause in their tonic firing in the presence of salient 
cues, including reward [144,158] which are usually followed by a rebound in 
the activity. Finally, a recent study [159] has found that TANs display 
fluctuations in their activity that follow changes in behavioral task conditions 
(e.g., context, task rules). Moreover, these fluctuations are inflexible to 
particular events (e.g., stimuli or behavior). These facts lead to the idea that 
TANs encode context-dependent information [159]. Whether these TANs are 
sensitive to temporal context has yet to be shown. 
 MSNs' average firing rates vary from 1 to 5 Hz depending on whether the 
animal is sleeping or awake [160]. Some of MSNs are known to produce spike 
bursts that are locked to behavior or to action sequence initiation [161]. These 
characteristics are especially relevant to the study of time, as it might be 
challenging to separate temporal from behavioral information in MSN’s activity. 
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 Because MSNs are the most abundant neurons in the striatum, easy to 
characterize electrophysiologically and the only output neurons of the striatum, 
our study focused on the activity of the MSNs in the SFI task. 

Decodings and decoders 
The brain faces the same elementary problem of communication when it 
operates on sensorial information and controls its effectors to produce adaptive 
behaviors. In communication, information from an original source must be 
transformed into a code that allows this information to be stored and 
transmitted over space and time in an effective way. This encoded information 
can be later translated back into a format in which it is meaningful for usage. 
Advances in communication technology developed our understanding of how 
to translate information into different codes. We perform these translations 
across different codes through the usage of encoding and decoding algorithms. 
We can use these algorithms to understand how neuronal activity might 
represent environmental events and how animals might use the same 
information encoded in the neuronal activity to produce behavior. In the 
particular scope of this thesis, we can use these algorithms to learn about how 
animals implement interval timing behavior. We can achieve that either by 
observing how neural time signals might emerge in face of task demands, or 
by observing how animals might use these temporal signals to produce 
behavior.  
 We assume that animals use encoding and decoding processes 
themselves. Encoding is the process by which animals generate 
representations of sensorial and behavioral events through the connectivity 
and activity of neurons [162]; this process can be thought as a mapping 
between stimuli and neuronal response. To profit from the encoded information, 
the brain has to be able to infer what is happening in the real world based on 
the activity dynamics of neurons. This process is called decoding and can 
either refer to the process of mapping neural activity back to the original stimuli 
or to behavior [162]. 
 We can use mathematical techniques to exploit responses of one or 
more neurons and identify the stimulus that they derived from. In 
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electrophysiological studies, this approach helps us to answer three 
fundamental questions: What is the stimulus given the neuronal activity? What 
aspects of the stimulus are important for the neuronal response? What 
information is extractable from the stimulus by downstream areas and the 
experimenter (ideal observer analysis)?  
 The Bayes’ theorem is a method to understand how the probability of a 
hypothesis is affected by the evidence that an other event is true. It can be 
used to estimate the probability of an event based on knowledge of conditions 
that might be related to the event. In electrophysiological experiments, we 
know the probability of the stimuli and the distributions of neural responses for 
each stimulus. Because of that, we can use Bayes’ theorem to generate a 
model (i.e., decoding function which maps neural response to stimuli) that is 
able to decode the neural activity. This bayesian decoding procedure usually 
requires cross validation. Typically, it involves dividing the data set in two 
subgroups, using one of them to generate the model and using the other to test 
the predictor. The results of the test data set can be directly compared with the 
actual conditions in the experiment to address the accuracy, reliability and 
informational content of the model. Bayesian decoders have been successfully 
applied to infer discrimination [163] between the values of two different stimuli 
by a single cell, to extract the value of a stimulus parameter from a population 
response (i.e., population decoding), and/or to estimate time-varying stimulus 
from the spike train it evokes (i.e., spike-train decoding; [164]). Thus, these 
decoders have an established value as a valid analysis tool in neuroscience. 
 In electrophysiological research of sensorial modalities, the output of a 
bayesian decoder (the posterior) maps how likely each stimulus is given the 
current neural activity. The assumption is that the brain is performing a similar 
computation to come up with a decision or a behavior. To get one single 
estimate from the posterior distribution, additional assumptions about how to 
use the posterior distribution are necessary. Typically, the assumption is a 
classical central tendency measure such as the median, the mean or the mode 
[165]. This process of estimating the stimulus by observing the most likely one 
is also known as maximum likelihood decoding. 
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Decoding information from ongoing behavior 
A major point of concern in interval timing research is how to control behavioral 
artifacts in the data from timing experiments [61]. Ongoing behavior changes 
over time and their neuronal representations might seem to covary with time 
but not encode time itself. Furthermore, neuronal activity is not the only form 
that animals have to encode information. Proponents of the embodied 
cognition theory state that animals can leverage the idiosyncrasies of their 
sensors and effectors [166,167] to encode relevant environmental information 
in the structure of behavior itself [168]. 

Old methods of behavioral data acquisition are insufficient to address these 
questions because they lack precision and consistency. Direct observation by 
trained psychologists and biologists has been the typical method to quantify 
the topography of behavior [169]. However, this kind of observation has 
constraints of time, resolution and reliability. Furthermore, this method heavily 
relies on subjective accounts of the observation, because the exact record of 
events (i.e., video, raw data) is not usually preserved. 

New technologies can help to solve this problem by means of automation. 
The recent proliferation of high-powered computers, the availability of high 
quality and inexpensive video cameras, and the increasing need for automated 
video analysis have promoted the advancement of object tracking algorithms. 
Tracking, in its simplest form can be defined as estimating the trajectory of an 
object in the image plane as it moves around a scene. Tracking algorithms 
open the possibility to use video data to collect large amounts of highly precise 
and accurate information about the behavior, and then analyze it. This 
approach is especially suitable to laboratory work with rodents because these 
animals are small enough to be completely captured inside the video frame, 
and recording conditions (e.g., lighting, color of the background) can be 
optimized to make the tracking more efficient.  

Every video analysis involves four major steps: digital recording videos of 
behavioral data, detection of interesting moving objects, tracking of such 
objects from frame to frame, and analysis of object tracks to recognize their 
behavior. Each of these steps offers implementation challenges. Constraints on 
the acquisition speed, video processing and storage of digital information limit 
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the spatiotemporal extent of video-based tracking. Detecting that an object 
entered in the field-of-view can be achieved by a process called background 
subtraction. To do so, we need first to build a representation of the scene, 
called the background model, and then to find deviations from the model for 
each incoming frame (i.e., the absolute difference between the current frame 
and the background image). Any significant (magnitude criteria) change within 
the image region from the background model indicates a moving object. The 
pixels constituting the regions undergoing change are marked for further 
processing. Typically, we estimate the position of the animal by obtaining the 
regions of neighboring pixels using a connected-components algorithm. When 
only one animal is in the scene, the largest connected component describes 
the silhouette of the animal. Tracking the position and pose of the animal can 
be complex due to: loss of information caused by projection of the 3D world 
onto a 2D image, noise in images, complex object motion, nonrigid or 
articulated nature of objects, partial or full object occlusions, complex object 
shapes and scene illumination changes [170]. Most of these problems can be 
avoided by controlling the environment to ensure optimal conditions for 
tracking. For instance, one can impose constraints on the motion and/or 
appearance of objects such as, assuming linear smooth trajectories, geometric 
shape or imposing heuristics to decide on ambiguous events data [170]. By 
following these steps we can produce a time series of behavioral descriptors 
(positions and poses) which we can use to decode information about the world. 

Neural and behavioral dynamics code of interval timing 
Animals can support their timing ability either by relying either on neuronal 
activity or on behavioral strategies. We are interested to understand how the 
striatum contributes to time perception in the range of seconds to one minute. 
More specifically, we want to know how striatal activity of rats trained in a 
dynamic timing task, in which they have to report their estimations of multiple 
intervals in the range from 12 to 60s, will account for the passage of time and 
the ongoing behavior that develops in parallel. Thus in this work we aim to: 

• Record activity of the striatum while animals were performing this 
timing task. 
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• Verify if the striatal activity carries information about the task 
performance. 
• Test the necessity of the recording site activity to perform in the timing 
task. 
• Develop methods to disambiguate variance in neuronal activity due to 
time and ongoing behavioral activity.  
• Observe if behavior in this task is structured so that it could embed 
information about the intervals. 

Structure of the thesis 
In the second chapter we investigate the role of the striatal electrical activity in 
the processing of interval timing. We offer a detailed description of the timing 
task, the animals’ performance, the neural activity of the striatal cells during 
task performance and how this activity relates to time and behavior. We will 
also briefly discuss, in light of current timing models, how timing might be 
encoded and propose a timing mechanism that is relative, scalable and 
embeds compounded information about time and behavior. 
 In the third chapter we use simulation as our approach to explore how 
the neuronal activity observed in the chapter two can leverage reinforcement 
learning models in order to generate temporally adaptive behaviors. We 
provide information about how our model reproduces the scalable, multiplexing 
activity of the striatum; the additional assumptions we adopted to make the 
model perform in the timing task; and how the model performs when compared 
with either the experimental data or the timing behavior expected from the 
literature. 
 In the fourth chapter we address the problem of separating behavioral 
information from time information. We describe the computer vision methods to 
track the animals’ behavior with high speed cameras, as well as the decoding 
methods to extract time information from behavior. We conclude the chapter 
discussing the main issues and benefits of our approach. 
 Finally, in the last chapter we discuss our findings in the light of the latest 
theories about timing. We highlight the limitations of our approach, pointing out 
some possible solutions that can lead to future lines of research. 
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CHAPTER 2: A scalable population code 
for time in the striatum 
All data discussed in this chapter was published as the following publication: 
Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A Scalable Population Code 
for Time in the Striatum. Current Biology, 25(9), 1113–1122. http://doi.org/
10.1016/j.cub.2015.02.036 

SUMMARY 

To guide behavior and learn from its consequences, the brain must represent 
time over many scales. Yet, the neural signals used to encode time in the 
seconds to minute range are not known.  The striatum is a major input area of 
the basal ganglia associated with learning and motor function. Previous studies 
have also shown that the striatum is necessary for normal timing behavior. To 
address how striatal signals might be involved in timing, we recorded from 
striatal neurons in rats performing an interval timing task. We found that 
neurons fired at delays spanning tens of seconds and that this pattern of 
responding reflected the interaction between time and the animals’ ongoing 
sensorimotor state. Surprisingly, cells rescaled responses in time when 
intervals changed, indicating that striatal populations encoded relative time. 
Moreover, time estimates decoded from activity predicted timing behavior as 
animals adjusted to new intervals, and disrupting striatal function led to a 
decrease in timing performance. These results suggest that striatal activity 
forms a scalable population code for time, providing timing signals that animals 
use to guide their actions. 

INTRODUCTION 

To behave adaptively in ever-changing environments animals must learn which 
actions to take in a particular context based on their past experience. However, 
to learn about the sometimes delayed consequences of actions and to guide 
future behavior, it is absolutely necessary that the brain represents not only 

!57



actions and consequences, but also temporal information about when those 
actions and consequences occur [1]. 
 Multiple lines of evidence implicate the Basal Ganglia (BG) as a locus for 
the representation of such temporal information. Lesions of the striatum [2], 
disease states that affect the BG such as Parkinson’s [3] and Huntington’s 
disease [4], drugs that affect dopamine (DA) signaling [5] , and genetic 
manipulations that affect the DA system in the BG [6] all cause interval timing 
dysfunction. Furthermore, human functional magnetic resonance imaging 
studies have found that the striatum, a main input area of the BG, is activated 
by tasks that involve the processing of interval information [7,8]. 
 In addition, many theoretical models have been proposed to explain 
timing behavior. These models can be grouped into at least three categories. 
Pacemaker-accumulator models integrate pulses emitted from a central 
pacemaker to measure elapsed time [9,10]. Beat frequency models detect 
patterns of activation across re-settable oscillatory processes at different 
frequencies to encode time delays from some resetting event [11]. Sequential 
state models contain orderly transitions between different activity states that 
can be used to encode time [12-14]. These theories reproduce various aspects 
of timing behavior in many interval timing tasks. However, neural data in 
conflict or in support of the various theories is lacking.  
 To understand how time is encoded in neural circuits, we recorded the 
spiking activity of neurons as rats performed an interval timing task. 
Specifically, given the apparent localization of timing function in striatal tissue, 
we asked whether striatal neural activity could encode elapsed time over 
durations of tens of seconds to one minute while we measured behavior that 
reflected animals’ estimates of time.  
 We found that different striatal neurons fired maximally at different delays 
from reward receipt, and that information about animals’ time estimates could 
be extracted from striatal populations by simply treating neurons as tuned for 
time. Importantly, this tuning for time, while affected by sensorimotor event-
related neural responses, could not be fully explained by ongoing behavior, as 
even cells that displayed responses locked to a specific behavior varied their 
responses depending on when that behavior was executed within a given 
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interval. Strikingly, we found that temporal tuning stretched or contracted, 
rescaling with the interval being timed. Thus, striatal populations encoded 
relative time, flexibly adapting to the immediate demands of the environment. 
These results provide important biological insight into how a major brain 
system encodes time during behavior. 
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Figure 2.1 | The SFI task produces systematic changes in lever pressing start time (PST). 
(A) Task structure. The following color code will be commonly used: blue represents short FIs 
and green represents longer FIs. (B) Example of lever pressing behavior in a single session of 

the SFI task. Grey markers indicate a lever press, red markers indicate the PST. (C) Average 

lever pressing rate in each of the five FIs, aligned with preceding reward. Dashed lines represent 

SEM. (D) Average rate of lever pressing in each block, aligned with PST. Traces are plotted in a 

solid line for the period for which more than half of the trials contribute data, and a dotted line 

after that point. Shaded patches along the horizontal axis represent SEM. Bins of 1 second in 

(C) and (D). (E) Median and interquartile range of PST for each of the five FIs. Smoothed density 
functions depicting the full distributions of PST are shown on the right. See also Figure S2.1.



RESULTS 

Lever pressing start time under fixed interval reinforcement schedules is 
a behavioral measure of rats’ expectation of time until reward  
To elicit robust time-dependent behavior over a broad range of timescales we 
employed operant conditioning procedures under fixed interval (FI) schedules 
of reinforcement (Figure 2.1A). Briefly, rats were placed in a behavioral box 
containing a lever positioned over a liquid delivery port and were trained to 
press the lever to receive water reward.  Reward delivery triggered a timer and 
reward became available again only after the timer exceeded a FI ranging from 
12s to 60s in multiples of 12s.  Lever presses occurring after reward delivery 
but before the FI had elapsed were not reinforced. A FI was maintained for 
between 18 and 40 rewards before changing to another FI, randomly chosen 
from the interval set.  
 On single sessions, rats tended to distribute lever pressing toward the 
latter portion of the FI, shifting when they responded as FI changes occurred 
(Figure 2.1B, S2.1A). This pattern of responding produced ramps in block-wise 
averaged pressing as a function of time that varied in slope in relation to FI 
(Figure 2.1C, S2.1B). However, this did not reflect the pattern of responding on 
single trials. We asked how pressing evolved after pressing onset (pressing 
start times, PST) on each trial by aligning on the PST and averaging lever 
press rates across trials and within blocks of the same FI (Figure 2.1D). Rats 
pressed at a relatively constant rate after the first press on each trial, with a 
rate determined by the experienced reward rate (Figure S2.1C). The ramps in 
the reward-aligned pressing as a function of time largely result from changing 
distributions of PSTs (Figure 2.1E), as these vary systematically with FI, and 
averaging a group of step functions with onset times drawn from these 
distributions will produce ramps of varying slope.  
 This serial fixed interval (SFI) lever pressing task produced systematic 
variation in the distributions of PSTs of bouts of anticipatory pressing, 
consistent with previous timing studies employing FI schedules of 
reinforcement [9]. These bouts were of a relatively constant rate that varied 
with reward rate over time (Figure 2.1D, S2.1C). The PST thus provided a 
behavioral metric that covaried with the animals’ changing expectation about 
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time until the next available reward, which we compared to the activity of 
neurons recorded in the striatum during performance of the task as described 
below.  

Striatal neurons display temporal tuning 
In the SFI task, reward delivery was both the timing cue, and the reinforcer. 
Since animals reported knowledge of time between reward availability by when 
they began to press a lever, we asked whether neuronal responses in the 
striatum aligned with reward might reveal a signal that animals could use to 
guide the decision of when to begin pressing. We recorded broadly in the 
dorsal striatum, so as to sample neurons from regions previously shown to be 
important for interval timing behavior [2] (inset in Figure S2.1D), and the vast 
majority of units we recorded exhibited average firing rates of less than five 
spikes per second, consistent with a population made up of mostly medium 
spiny projection neurons ([15]; Figure S2.1D).  
 Aligned with reward delivery, the population of recorded cells exhibited a 
broad distribution of activity patterns, as reflected in the normalized spike 
density functions (SDF, see Methods for details) shown in Figure 2.2A. Some 
cells fired just after reward delivery, others in the middle of the delay, others 
leading up to the next reward (Figure 2.2A, S2.2 and S2.3).  This produced a 
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Figure 2.2 | Striatal neurons display variable 
responses that tile tens of seconds to one minute. (A) 

SDFs of neurons that maintained their relative ordinal 

position in time within the population across all five FIs, 

aligned with reward. (B) Width of each cell’s response 

within each FI as a function of latency to peak firing. 

Colored lines represent the best linear fit to the data. (C) 
Histogram of relative peak latencies pooled over all FIs, using data shown in (B) See also Figure 

S2.2. 



slow moving “bump” of activity that traversed the population during each FI. In 
theory, reading out the location of this bump in the population could provide an 
estimate of time within the FI. However, a core feature of interval timing 
behavior is that timing accuracy decreases with the magnitude of the interval 
being timed [9]. Two features of the neural data could potentially contribute to 
this phenomenon: an increased spread of each neurons’ response as a 
function of their peak latency, and a decreasing density of neurons displaying 
peak firing rates as time progresses. We found that the widths of responses 
were indeed correlated with their latencies to peak firing within each FI (Figure 
2.2B, linear regression, FI 12s, R = 0.4443, p < 0.001; FI 24s, R = 0.7563, p < 
0.001; FI 36s R = 0.7188, p < 0.001; FI 48s, R = 0.5910, p < 0.001; FI 60s R = 
0.4733, p < 0.001, see Methods). In addition, the density of peak firing rate 
latencies in our population decreased over time within the FI (Figure 2.2C). 
Thus, the bump in activity within the striatum population moved progressively 
slower as the FI wore on. Strikingly, the overall time taken by this bump to 
traverse the population appeared to scale with the FI (Figure 2.2A, S2.4A). To 
begin to assess apparent scaling of response times, we first selected cells that 
we had recorded in all five FIs and that maintained their ordinal position within 
the population when responses within each FI were ordered by firing dynamics 
[16]. Of the 112 neurons recorded in all FIs, we found that 76 neurons (68%) 
maintained their ordinal position in time across the population (see Methods for 
details). The responses of these neurons can be observed in Figure 2.2A, 
wherein the position of cells along the y axis is the same across the panels 
displaying average responses in each of the FIs (for all recorded cells, see 

Figure S2.4A).  
 To quantify to what degree responses rescaled, we computed a scale 
factor for each neuron as the ratio of the center of mass (COM) of the SDF in 
the 12s FI over the COM of the SDF in each of the other four FIs (Figure 2.3A). 
The distributions of these scale factors were sharper than and significantly 
different from null distributions generated by shuffling cell identity across FIs 
and recomputing the scale factors (red distributions in Figure 2.3A, 
Kolmogorov-Smirnov test, p < 0.001 for all pairwise comparisons). The 
medians of these distributions, were the population to have rescaled its 
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responses in direct proportion to the FI, should lie at 1/2, 1/3, 1/4, and 1/5 for 
the scale factors corresponding to 12/24, 12/36, 12/48, and 12/60s FIs, 
respectively. We observed median values of 0.59, 0.39, 0.30, 0.24, for the 
corresponding distributions, indicating near-proportional rescaling of response 
times across the recorded striatal population. A more complete description of 
the relative scale of responses can be seen in Figures 2.3B-E, where the COM 
of each cell’s SDF in the 12s FI against each that of the other FIs are 
displayed. These data demonstrate a strong tendency for rescaling of neural 
responses across the population suggesting that the state of striatal 
populations may convey relative elapsed time information scaled to the 
animal’s estimate of the current behaviorally relevant timescale in the 
environment. We explore this hypothesis in greater detail below. 

Striatal populations encode information about timing behavior  
The above analyses of striatal neural responses indicate a correspondence 
between striatal activity and timing behavior across trial blocks, suggesting that 
striatal activity patterns might guide decisions about when to begin pressing 
the lever during each FI. To test this hypothesis, we applied a decoding 
approach to data collected from single trials near block transitions, wherein 
animals systematically changed the time that they began to press the lever. 
Specifically, we asked three questions. Firstly, we asked whether decoded time 
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Figure 2.3 | Striatal neurons rescale their response time with FI. (A) Distributions of scale 

factors obtained by calculating the ratio of the center of mass (COM) of the SDF between the 

12s FI and Xs FI (24s, 36s, 48s, and 60s, respectively, from blue to green) for each cell. For 
each distribution of scale factors a null distribution was generated by shuffling cell identity across 

FIs and recomputing the scale factors (red). (B, C, D, E) COM of each cell’s SDF in the 12 

second FI against each that of the other FIs. The black dotted line signifies no change in COM 

from block to block. The colored dotted line signifies a change in COM that is proportional to the 

change in FI relative to the 12s FI. See also Figure S2.3.



estimates covaried with true time. Secondly, we asked whether systematic 
errors in estimated time as compared to true time occurred at these block 
transitions. Lastly, we asked whether any observed errors in time encoding 
correlated with timing behavior.  
 We first built a probabilistic decoder to derive an estimate of elapsed time 
from reward on single trials given the observed spiking response of the 
population. We focused on the first trials of the 12s and the 60s FI blocks 
because these blocks were the shortest and longest FIs employed, 
respectively. Thus, animals consistently over- and underestimated the amount 
of time remaining until reward as they entered 12s and 60s blocks. Briefly, our 
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Figure 2.4 | Single trial estimates of elapsed time decoded from the population response 
correlate with true time during initial trials of 12s and 60s FI blocks. (A) Decoded population 

estimates of elapsed time from reward on single trials, for the first 7 trials of the 12s FI block 

plotted against true time. Red traces indicate the mean of the population likelihood function, and 
the underlying heat map indicates the population likelihood function. The last panel shows a 7 

trial average likelihood function using the first 7 trials of the 12s block. (B) Decoded estimates of 

elapsed time for the first 7 trials of the 12s FI block plotted in the same axis. Curves are 

quadratic fits to the mean likelihood function of each individual trial (red lines in first 7 panels). 

Red curves represent early trials and black curves represent later trials. (C) Same description as 

in (A) but for the 60s FI. (D) Same description as in (B) but for the 60s FI. See also Figure S2.4.



decoder was constructed as follows. On each of the first 7 trials of a block, we 
counted spikes within defined time bins and asked how likely we were to have 
observed that number of spikes at each time given the observed distributions 
of spike counts on trials 8 onward of the corresponding block. This generated a 
likelihood function for current time given an observed spike count in each bin, 
for each individual cell. To derive a measure of the population’s estimate of the 
likelihood for current time, we multiplied together the individual cells’ likelihood 
functions. We then took the mean of this likelihood function as our estimate for 
current time [17].  
  In Figure 2.4A and 2.4C we display decoded estimates as a function of 
time for the first 7 trials of 12s and 60s FI blocks. We found that decoded 
estimates tracked true time, but that systematic errors between estimates and 
true time were present in the first few trials of the 12s and 60s FI blocks. This 
feature can be observed more readily when estimates derived from multiple 
trials are plotted on the same axes (Figures 2.4B, 2.4D, quadratic fits). Initial 
estimates are relatively slow and fast on the first trials of the 12s and 60s FI 
blocks respectively, and become more accurate after the first few trials.  
 Next we asked whether such timing signals may be used by animals to 
guide timing behavior. We first asked if errors in decoded time estimates over 
the first trials of blocks were correlated with timing behavior. We found that the 
mean PST was significantly correlated with the errors in time estimates derived 
from the population over the first seven trials of 12s and 60s FI blocks (Figure 
2.5, FI=12 R2 = 0.63, p = 0.03, FI=60, R2 = 0.64, p = 0.03). On the initial trials 
of the 12s FI block, rats began pressing late relative to subsequent trials, and 
likewise the decoded estimate of time relative to reward ran slow (Figures 2.4B 
and 2.5). The first trials of the 60s FI block showed a similar relationship, yet 
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Figure 2.5 | Errors in decoded time predicted timing 
behavior. Mean error between true time and the decoded 

population estimate on the first seven trials of the 12s (blue) and 
60s (green) FI blocks. Contiguous trials are connected by solid 

lines to display the trajectory of the data over trials, and the first 

trial on each block is indicated by the black arrow. Dashed 

horizontal gray line represents zero error average decoding as 

compared to true time. See also Figure S2.5.



opposite in direction: the decoded estimate ran quickly on early trials, and rats 
were early to press (Figures 2.4D and 2.5). We then tested in two control 
animals whether manipulating striatal circuitry via bilateral infusions of the 
GABAa agonist muscimol produced deficits in timing behavior (Figure S2.5). 
Indeed, at a dose that rendered rats able to perform the task, muscimol 
reversibly and significantly diminished the relationship between PST and FI 
(linear regression, likelihood ratio test, significant effect of treatment, p < 
0.001), showing that a normally functioning striatum is critical for normal timing 
behavior. The consistency between time estimates decoded from striatal 
populations, and trial-by-trial variations in timing behavior at block transitions, 
together with observed dependence of a normally functioning striatum for 
normal timing behavior, suggested that the brain used a population code for 
time that samples broadly from striatal neurons to guide decisions about when 
to act.  

Striatal neurons multiplexed information about action and time.  
Based on previous studies [18-20], we expected that striatal neurons would 
display significant modulation by behaviors during the FI. Could behaviors that 
accompany task performance fully explain the sequential neural responses we 
have observed? Several features of the data argued against this possibility. 
Rats consistently licked at the reward port from 0.5s to 5.5s after reward 
delivery (Figure S2.4B), and yet our ability to decode time was unaffected by 
the animal being engaged in a fixed behavior over this time (see initial ~5s of 
decoded time estimates in Figures 2.4A and 2.4C). After departing from the 
reward port, however, it was possible that observed dynamics in neural 
responses were accounted for by ongoing behaviors. If it were the case, 
responses related to a particular behavior should not vary depending on when 
in a trial the rat engaged in that behavior. To identify neurons that were 
significantly modulated by a measured behavior in our task, we focused on a 
2.5 seconds centered on the PST in each trial. We found that of the 76 neurons 
displayed in Figure 2.2A, 31 exhibited significant modulations around the onset 
of lever pressing. Next we asked if spiking observed in time bins aligned with 
the PST was additionally correlated with the time, relative to the FI, that 

!66



pressing onset occurred. More than half of pressing onset modulated neurons 
(16/31, 52%) displayed a significant correlation between spiking around each 
press initiation and the relative time that press onset occurred within the FI 
(Pearson’s linear regression, p < 0.01). Figures 2.6A-D show examples of four 
such neurons from three different animals, all of which vary in their responses 
around the PST, from none at all to robust firing.  

 The regression approach described above is only expected to identify 

neurons that display a monotonic relationship between pressing onset 
response and the relative time of pressing onset. Other cells may have 
displayed significant time-dependent modulations in pressing onset response 
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Figure 2.6 | Pressing onset responsive neurons display sensitivity to the time relative to 
the FIs. (A-D) Four single neuron peri-stimulus time histograms (top) and raster plots (middle) of 

2.5 second periods aligned with pressing onset event (from three animals, the first two columns 

display data from two neurons recorded in the same animal and same session). Trials were 
sorted in ascendent fashion from bottom to top in the vertical axis by the pressing onset time 

relative to the FI (middle) and grouped into quintiles. Here, the colors from grey to red represent 

the 1st to the 5th quintile, respectively (middle and top panels). (A-D bottom) Correlation 

between the firing rate of the respective neuron and the time of the pressing onset relative to FI. 

Each datapoint is color coded from grey to red for the 1st to the 10th decile of the relative 

pressing onset time. Firing rates were extracted from the most modulated 500 ms bin of the 4 
bins surrounding the pressing onset event. 



that were not monotonic (for example, see Figures S2.2B and S2.3A). To 
identify such cells, we asked whether the median of distributions of spikes 
counts, collected around pressing onsets and falling into each of five quintiles 
of relative PSTs, differed from each other. We found that 53 out of 76 neurons 
(70%) displayed in Figure 2.2A exhibited significantly different median spike 
counts across relative time within the FI (p < 0.01, Kruskal-Wallis). Of these, 9 
cells were significantly modulated by the onset of lever pressing and were not 
identified in the linear regression analysis. Overall, only 6 cells that displayed 
response modulation around PST did not exhibit additional modulation by 
relative time in the FI as assessed by linear regression and/or nonparametric 
testing for median difference in spike count. These results suggest that striatal 
neurons multiplex information about time and immediate sensorimotor state of 
the animal, and argue strongly against the possibility that the striatal population 
responses we observed can be explained by purely non time-related 
responses to specific sensory or motor components of ongoing behavior.  

DISCUSSION 
Time is a fundamental dimension of animals’ experience in the world. As such, 
it plays an integral role in many brain processes from perception, to motor 
control, to learning and memory formation. What is the role of temporal 
representation within the BG? A dominant view supported by a wide range of 
neurobiological data posits that the BG implement aspects of reinforcement 
learning (RL) [1,20,22-25], learning how an organism ought to act in order to 
maximize reward. However, to learn about the sometimes delayed 
consequences of actions and to guide future behavior towards rewarding 
outcomes, it is necessary that the brain represent situations and actions 
through time [1,26]. Indeed, temporal relations amongst actions and events 
contain the causal information that learning systems have evolved to detect 
through a process sometimes referred to as credit assignment [27]. Once 
credit for the occurrence of predictable events has been assigned, this 
information must be used to profitably guide the course and timing of action as 
situations arise. This continuous learning-behaving cycle is what RL algorithms 
naturally account for [26]. And yet, it is not known how the BG, the brain 
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system most often associated with RL, represents temporal relationships over 
the durations necessary to explain its role in animal learning and behavior. 
 The sequential neural states that we described in the striatum during 
timing behavior could provide a unifying view of the BG’s role in timing and RL. 
These signals are similar to temporal basis functions proposed in existing 
learning models as more neurally plausible and efficient representations of time 
[21,28,29]. Such models operate by learning a set of weights used in a 
weighted sum of the temporal bases to construct a moment by moment 
prediction about future events such as expected reward. In theory a weighted 
combination of activity patterns in the cortical or thalamic inputs to the striatum 
could act as such temporal bases and modulate the responses of striatal 
neurons that we observed. Despite the similarity between our data and the 
basis functions proposed by RL models discussed, It is not clear that our data 
can be used to generate timing behavior similar to what we observed 
experimentally. Our data suggest that striatal activity multiplexes information 
about behavior and time. It might be the case that behavioral contributions to 
the timing signal disrupt temporal information. This issue can be addressed by 
modeling the striatal signals we observed and integrating them as basis 
functions into a RL model that performs the SFI task.  
 An important question for future studies concerns the mechanism that 
generated the striatal dynamics we observed. Although several modeling 
studies suggest mechanisms for generating sequential activity states using 
striatum-like circuitry over shorter timescales [30]; given the duration of the 
intervals we examined, we find it unlikely that striatal dynamics were purely 
locally generated. Indeed the signals we used to decode time were affected, 
but not fully explained by, the ongoing sensorimotor state of the animal. Thus, 
our decoding approach implicitly endorses a number of prominent interval 
timing theories positing that animals may use behavioral [12,14] or sensory 
state [31] transitions to learn to time events in the environment and their own 
behavior.  
 Our data appears most consistent with theoretical models that suggest 
distributed representations of time encoded by the joint activity of populations 
of neurons [32]. Indeed, the decoder used in the current study assumes that 
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time information might be present in many different neurons. However, we 
cannot rule out that there may exist other forms of temporal representations 
upstream from the population we recorded in the striatum. For instance, an 
accumulating process such as the one contained within pacemaker 
accumulator models Gibbon [9] might act to trigger neurons to become active 
at different delays as the accumulator passes a series of thresholds. 
 We showed that sequential neural activation in the striatum could be 
used to encode time on a scale of tens of seconds up to one minute. These 
results added to a growing list of studies that demonstrate sequential activation 
of neurons over multi-second timescales in other brain areas such as the 
hippocampus [33,34], the cerebellum [32], and the parietal [35] and prefrontal 
cortex [36-38]. Unlike previous studies, we found that many individual striatal 
neurons exhibited responses that dynamically rescaled with the timing of 
events in the environment and that this scaling of responses produced 
changes in time encoding by the population that correlated with timing 
behavior. Combined with previous studies highlighting the importance of a 
normally functioning striatum for timing behavior [2-4,6], the effect of striatal 
inactivation in the current study, and other work that demonstrated time 
encoding by striatal populations over shorter timescales [39], our results 
suggest that information about where in time a subject finds itself relative to 
anticipated events in the environment is present in populations of striatal 
neurons and is used to guide behavior.  
 Similar timing signals observed in areas other than the striatum are 
viewed within the larger context of the functional role of those areas where they 
were recorded. Timing signals in the hippocampus might endow explicit 
memories with accurate information about the order and temporal context of 
events [40], and timing signals in the cerebellum might coordinate learned 
actions at a fine timescale [32], while timing signals in premotor cortex might 
enable accurate timing of movement in general [39]. The striatal neurons we 
observed appear to multiplex temporal information with other, non-temporal 
types of information, such as signals related to the ongoing sensorimotor state 
of the animal, and likely other previously identified striatal signals related to 
actions, motor sequences, or reinforcement [19,23-25]. Such multiplexing of 
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temporal and other information in populations of striatal neurons as observed 
in the current study is likely to be critical to the previously ascribed and often 
studied function of the BG in learning and action selection. 

METHODS

Behavior 
Five male Long-Evans hooded rats were trained in an operant lever pressing 
paradigm reinforced with 0.015mL of water on a fixed interval (FI) 
reinforcement schedule (Figure 2.1A). The FI was varied randomly in blocks of 
>= 18 trials among five intervals ranging in multiples of 12 from 12s to 60s. A 
real-time LINUX state machine directed by custom software in MATLAB 
(bcontrol/mathworks) controlled the task. To remove incidental lever 
depressions that sometimes occurred as animals explored the box, pressing 
start time (PST) was computed as the first press on each trial where the 
interval until the next press fell below the 85th percentile of the inter-press 
interval distribution of the entire session.  

Neurophysiology 
Movable arrays of 32 tungsten microwires (CD neural systems) were implanted 
unilaterally in the striatum under isoflurane anesthesia. Neural signals recorded 
during behavior were amplified and high pass filtered at 100 Hz or 250 Hz 
(i2smicro), and waveforms corresponding to action potentials from single 
neurons were sorted offline using principal components analysis (PCA) (offline 
sorter, Plexon). All isolated units (179 total from 5 rats, 25 R1, 9 R2, 21 R3, 28 
R4, 96 R5) recorded for at least three blocks in sessions in which PSTs 
correlated significantly with FI (p < 0.05) were included in subsequent 
analyses. 
 To construct spike density functions (SDF), spikes were counted in bins 
of 20 ms. This histogram was then divided by the number of trials, smoothed 
with a half gaussian kernel with a standard deviation of 500 ms, and z-scored 
by subtracting the mean and dividing by the standard deviation of the time 
series.  

!71



 We applied principal component analysis (PCA) to the SDFs of all 
recorded neurons within each FI separately (Figure S2.4A), or the 
concatenated SDFs of a subset of neurons across all FIs together (Figure 
2.2A). SDFs were aligned with reward, including activity from reward delivery 
minus one FI to reward delivery plus one FI. As has been done previously, we 
applied an ordering procedure wherein SDFs were ordered by their angular 
position within a plane defined by the contributions made by the first two PCs 
to SDFs, rotating around the origin [16]. This method has the advantage that it 
orders cells with respect to their dynamics while taking into account the full 
firing profile of each neuron over time, as opposed to methods that order by 
peak response time that only take into account one moment in the cell’s 
average firing profile.  

Selection for cells with consistent relative response profiles 
 To identify cells that maintained their position in the population across the 
FIs we performed the following selection. First, The PCA-based ordering 
process was applied to all neurons that were recorded in all five FIs (n = 112). 
Importantly, for this analysis PCA was run separately on data collected in each 
FI so that each cell’s ordered position within the population was free to change 
across FI. Next, each within-FI position was converted to a unit vector, at an 
angle determined by its ordered position. These unit vectors were then 
averaged, and those average vectors with a length of 0.75 or greater (n = 
76/112, 68%) were identified as having consistent ordinal positions within the 
population across FIs.  

Scale factors 
 To quantify the temporal rescaling observed in striatal neurons across the 
different FIs, we computed a scale factor for each neuron in the 24s, 36s, 48s, 
and 60s FIs as the ratio of the center of mass of neural firing in the 12s FI, over 
the center of mass of neural firing in each of the four other FIs (Figure 2.3). We 
then generated null distributions by recomputing scale factors using the same 
data but where scale factors were repeatedly computed across cells instead of 
within single cells (100 repetitions). We then tested for significant differences 
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between the data distributions and the null distributions for each of the four 
sets of ratios using a Kolmogorov-Smirnov test (p < 0.001). 

Latency and width of responses 
 To quantify the latency and the spread of the observed striatal responses 
(Figure 2.2B), we estimated the time of the peak firing rate in each FI and the 
width at its half-height from a smoothed peri-stimulus time histogram (PSTH) 
aligned with reward delivery. 10 ms bins were used to build the PSTH, 
smoothed with a gaussian kernel with a standard deviation that was inversely 
proportional to the median firing rate of the neuron (sd = 11/median firing rate ). 
We selected the firing mode as the time of the peak of the smoothed PSTH, 
and the width of the peak at the half height between the trough (minimum) and 
the peak (maximum) of the smoothed PSTH as our measure of spread. To 
prevent edge effects, peaks occurring later than three quarters of the FI were 
removed from the analysis. We asked whether each cell’s spread was 
correlated with its delay to peak firing by linear regression. (FI 12s, R = 0.4443, 
p < 0.001; FI 24s, R = 0.7563, p < 0.001; FI 36s R = 0.7188, p < 0.001; FI 48s, 
R = 0.5910, p < 0.001; FI 60s R = 0.4733, p < 0.001). 

Decoding methods  
 We built a maximum likelihood (Ml) decoder to estimate current time 
within our task given the pattern of activity across the population. To best 
control for conditions across sessions, we focus on the first seven trials of the 
12s and 60s FI blocks.  
  In 12s FI trials, spikes were counted in 1.5s bins beginning with the 
earlier edge aligned to reward delivery and moved in 100 ms steps until the 
latter edge reached 12s. In 60s FI trials,spikes were counted in 5s bins 
beginning with the earlier edge aligned to reward delivery and moved in 100 
ms steps until the latter edge reached 60s. Time labels were placed at the 
earlier edge of the bins. To build distributions of spikes counts used to generate 

the single cell likelihood functions, ! , meaning the probability of it being 
any moment in time given the observed spike count, we did the following: first 
we counted the number of spikes observed for trials 8 onward since a block 
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switch, and for all time bins. To estimate the underlying probability density we 
smoothed the resulting histograms using local regression within a window of 30 
spikes. We then counted spikes within the same time bins during trials 1 
through 7 since the block switch. For each spike count, we determined the 
likelihood of observing that many spikes in each time bin, given the data from 
the latter trials. These single cell likelihood functions from every cell recorded 
(n = 179) were multiplied together to derive a population estimate of current 
time given the number of spikes observed from each cell in the population. To 
derive a single estimate from this likelihood function derived from the 
population, we took the mean [17].  

Muscimol infusions 
 We implanted 24-gauge stainless steel cannulas bilaterally into the 
striatum of two rats under isoflurane anesthesia. Coordinates: anteroposterior 
(AP) +2.0mm from bregma; mediolateral (ML) ±2.7mm; dorsoventral (DV) −4.0 
mm from the skull surface. After one week of recovery from surgery, rats were 
allowed to perform the SFI task. Once the rats performed well (5 block 
switches with significant regression of PST vs. FI) in the SFI task, we injected 
saline (PBS, 1x), muscimol (GABAa agonist, Sigma™) and saline in three 
successive days. To perform the injections, rats were anesthetized using 
1.5-2.5% isoflurane (v/v). Muscimol or saline solution was delivered using a 1 
µl (Hamilton) syringe attached to an injection pump (Harvard Apparatus™, 
HA11D 702209) through a 24-gauge injector. The injector extended 1.5 mm 
beyond the tip of the guide cannulas. We used a muscimol concentration of 
22.2 ng/µL in saline, injecting 0.6 µL during 2.5 min. The injector was left in 
place for an additional 1.5 min and the rats were placed for a 45 min recovery 
period in a home-cage before starting the test session. Both rats received the 
saline vehicle injections using the same parameters as the muscimol 
treatment. 

Identification of pressing onset related neurons 
 To identify neurons modulated by the onset of lever pressing, we 
compared distributions of “test” spike counts in time bins of 500 ms during two 
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seconds centered on lever pressing onset, to distributions of “baseline” spike 
counts from 500 ms time bins situated between 2.5 and 1s before lever 
pressing onset [19]. Baseline time bins consisted of 3 non-overlapping 500 ms 
time bins, while test time bins consisted of 500 ms bins that were moved in 10 
ms steps starting with the trailing edge at 1s before lever pressing onset, until 
the leading edge met 1s after lever pressing onset. Cells were considered 
significantly modulated around lever press onset if at least 50 consecutive test 
bins were significantly different from a baseline distribution constructed by 
pooling spike counts in the three non-overlapping baseline bins Kruskal-Wallis 
test, p < 0.05).  

Identification of press start time modulated neurons 
 To identify neurons displaying press onset responses that varied 
additionally with time, we compared observed spike counts in four bins of 500 
ms centered on the PST in each trial. Given the observed rescaling in striatal 
neurons during the task, we first normalized PSTs by dividing each PST by the 
FI of the block in which it occurred, resulting in fractional PSTs. We then used 
two methods to identify neurons that exhibited responses aligned with the PST 
that varied with fractional PST. First we performed linear regression, using 
fractional PST to predict spike counts in each time bin. We performed an 
additional analysis to test for differences in median spike count observed 
across trials that had been binned with respect to fractional PST. Fractional 
PSTs were separated into five bins, the edges of which corresponded to 0, 20, 
40, 60, 80 and 100th percentiles. Responses were considered not to be 
uniform with respect to fractional PST if trials in at least one bin displayed a 
median spike count that was significantly different from the rest (Kruskal-Wallis, 
p < 0.01) 

AUTHOR CONTRIBUTIONS
G.M. and J.J.P. designed experiments. G.M. and S.S. carried out experiments. 
G.M., S.S., and J.J.P. analyzed the data and wrote the manuscript. 

!75



ACKNOWLEDGEMENTS
We thank Bassam Atallah, Brian Lau, Kenway Louie, Christian Machens, 
Zachary Mainen, Thiago Gouvêa, Eric DeWitt, Alfonso Renart and Masayoshi 
Murakami for critical comments on versions of the manuscript and discussions. 
We thank the Histopathology and the Vivarium staff from the Champalimaud 
Scientific and Technological Platforms for the support. The work was supported 
by Champalimaud and Gulbenkian Foundations, and fellowships to G.M. and 
S.S from the Portuguese Foundation for Science and Technology.  

REFERENCES 

1. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of 
prediction and reward. Science (New York, N.Y.), 275(5306), 1593–
1599. http://doi.org/10.1126/science.275.5306.1593 

2. Meck, W. H. (2006). Neuroanatomical localization of an internal clock: A 
functional link between mesolimbic, nigrostriatal, and mesocortical 
dopaminergic systems. Brain Research, 1109(1), 93–107. http://doi.org/
10.1016/j.brainres.2006.06.031 

3. Malapani, C., Rakitin, B., Levy, R., Meck, W. H., Deweer, B., Dubois, B., … 
J., G. (1998). Coupled temporal memories in Parkinson’s disease: a 
dopamine-related dysfunction. Journal of Cognitive Neuroscience, 10(3), 
316–331. http://doi.org/10.1162/089892998562762 

4. Rowe, K. C., Paulsen, J. S., Langbehn, D. R., Duff, K., Beglinger, L. J., 
Wang, C., … Moser, D. J. (2010). Self-paced timing detects and tracks 
change in prodromal Huntington disease. Neuropsychology, 24(4), 435–
442. http://doi.org/10.1037/a0018905 

5. Maricq, A. V., & Church, R. M. (1983). The differential effects of haloperidol 
a n d m e t h a m p h e t a m i n e o n t i m e e s t i m a t i o n i n t h e r a t . 
Psychopharmacology, 79(1), 10–15. http://doi.org/10.1007/BF00433008 

6. Ward, R. D., Kellendonk, C., Simpson, E. H., Lipatova, O., Drew, M. R., 
Fairhurst, S., … Balsam, P. D. (2009). Impaired timing precision 
produced by striatal D2 receptor overexpression is mediated by 
cognitive and motivational deficits. Behavioral Neuroscience, 123(4), 
720–730. http://doi.org/10.1037/a0016503 

7. Hinton, S. C., & Meck, W. H. (2004). Frontal-striatal circuitry activated by 
human peak-interval timing in the supra-seconds range. Cognitive Brain 
Research, 21(2), 171–182. http://doi.org/10.1016/j.cogbrainres.
2004.08.005 

8. Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. 
(2004). Prediction of immediate and future rewards differentially recruits 

!76



cortico-basal ganglia loops. Nature Neuroscience, 7(8), 887–893. http://
doi.org/10.1038/nn1279  

9. Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal 
timing. Psychological Review, 84(3), 279–325. http://doi.org/
10.1037/0033-295X.84.3.279 

10.  Simen, P., Balci, F., de Souza, L., Cohen, J. D., & Holmes, P. (2011). A 
model of interval timing by neural integration. The Journal of 
Neuroscience : The Official Journal of the Society for Neuroscience, 
31(25), 9238–9253. http://doi.org/10.1523/JNEUROSCI.3121-10.2011 

11. Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal 
representation of time in animals and humans. Current Opinion in 
Neurobiology, 18(2), 145–152. http://doi.org/10.1016/j.conb.2008.08.002 

12. Killeen, P. R., & Fetterman, J. G. (1988). A behavioral theory of timing. 
P s y c h o l o g i c a l R e v i e w, 9 5 ( 2 ) , 2 7 4 – 2 9 5 . h t t p : / / d o i . o r g /
10.1037/0033-295X.95.2.274 

13. Buonomano, D. V, & Merzenich, M. M. (1995). Temporal information 
transformed into a spatial code by a neural network with realistic 
properties. Science (New York, N.Y.), 267(5200), 1028–1030. http://
doi.org/10.1126/science.7863330 

14. Machado, A., Malheiro, M. T., & Erlhagen, W. (2009). Learning to Time: a 
perspective. Journal of the Experimental Analysis of Behavior, 92(3), 
423–458. http://doi.org/10.1901/jeab.2009.92-423 

15. Gage, G. J., Stoetzner, C. R., Wiltschko, A. B., & Berke, J. D. (2010). 
Selective Activation of Striatal Fast-Spiking Interneurons during Choice 
Execution. Neuron, 67(3), 466–479. http://doi.org/10.1016/j.neuron.
2010.06.034 

16. Geffen, M. N., Broome, B. M., Laurent, G., & Meister, M. (2009). Neural 
Encoding of Rapidly Fluctuating Odors. Neuron, 61(4), 570–586. http://
doi.org/10.1016/j.neuron.2009.01.021 

17. Dayan, P. and Abbott, L. F. (2005). Theoretical neuroscience. Second 
Edition (Cambridge: The MIT Press). 

18. Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of 
competing motor programs. Progress in Neurobiology, 50(4), 381–425. 
http://doi.org/10.1016/S0301-0082(96)00042-1 

19. Jin, X., & Costa, R. M. (2010). Start/stop signals emerge in nigrostriatal 
circuits during sequence learning. Nature, 466(7305), 457–462. http://
doi.org/10.1038/nature09263 

20. Kim, H., Sul, J. H., Huh, N., Lee, D., & Jung, M. W. (2009). Role of striatum 
in updating values of chosen actions. The Journal of Neuroscience : The 
Official Journal of the Society for Neuroscience, 29(47), 14701–14712. 
http://doi.org/10.1523/JNEUROSCI.2728-09.2009 

!77



21. Grossberg, S., & Schmajuk, N. A. (1989). Neural dynamics of adaptive 
timing and temporal discrimination during associative learning. Neural 
Networks, 2(2), 79–102. http://doi.org/10.1016/0893-6080(89)90026-9 

22. Doya, K. (1999). What are the computations of the cerebellum, the basal 
ganglia and the cerebral cortex? Neural Networks, 12(7-8), 961–974. 
http://doi.org/10.1016/S0893-6080(99)00046-5 

23. Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002). A neural 
correlate of response bias in monkey caudate nucleus. Nature, 
418(6896), 413–417. http://doi.org/10.1038/nature00892 

24. Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005). Representation of 
action-specific reward values in the striatum. Science (New York, N.Y.), 
310(5752), 1337–1340. http://doi.org/10.1126/science.1115270 

25. Lau, B., & Glimcher, P. W. (2008). Value Representations in the Primate 
Striatum during Matching Behavior. Neuron, 58(3), 451–463. http://
doi.org/10.1016/j.neuron.2008.02.021 

26. Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An 
Introduction. IEEE Transactions on Neural Networks, 9(5), 1054–1054. 
http://doi.org/10.1109/TNN.1998.712192 

27. Balsam, P. D., & Gallistel, C. R. (2009). Temporal maps and 
informativeness in associative learning. Trends in Neurosciences, 32(2), 
73–78. http://doi.org/10.1016/j.tins.2008.10.004 

28. Suri, R. E., & Schultz, W. (1999). A neural network model with dopamine-
like reinforcement signal that learns a spatial delayed response task. 
N e u r o s c i e n c e , 9 1 ( 3 ) , 8 7 1 – 8 9 0 . h t t p : / / d o i . o r g / 1 0 . 1 0 1 6 /
S0306-4522(98)00697-6  

29. Ludvig, E. a, Sutton, R. S., & Kehoe, E. J. (2008). Stimulus representation 
and the timing of reward-prediction errors in models of the dopamine 
system. Neural Computation, 20(12), 3034–3054. http://doi.org/10.1162/
neco.2008.11-07-654  

30. Ponzi, A., & Wickens, J. (2010). Sequentially switching cell assemblies in 
random inhibitory networks of spiking neurons in the striatum. The 
Journal of Neuroscience : The Official Journal of the Society for 
Neuroscience, 30(17), 5894–5911. http://doi.org/10.1523/JNEUROSCI.
5540-09.2010 

31. Ahrens, M. B., & Sahani, M. (2011). Observers exploit stochastic models of 
sensory change to help judge the passage of time. Current Biology, 
21(3), 200–206. http://doi.org/10.1016/j.cub.2010.12.043 

32. Buonomano, D. V., & Mauk, M. D. (1994). Neural Network Model of the 
Cerebellum: Temporal Discrimination and the Timing of Motor 
Responses. Neural Computation, 6(1), 38–55. http://doi.org/10.1162/
neco.1994.6.1.38  

33. Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). 
Internally generated cell assembly sequences in the rat hippocampus. 

!78



Science (New York, N.Y.), 321(5894), 1322–1327. http://doi.org/10.1126/
science.1159775 

34. MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). 
Hippocampal “time cells” bridge the gap in memory for discontiguous 
events. Neuron, 71(4), 737–749. http://doi.org/10.1016/j.neuron.
2011.07.012 

35. Harvey, C. D., Coen, P., & Tank, D. W. (2012). Choice-specific sequences 
in parietal cortex during a virtual-navigation decision task. Nature, 
484(7392), 62–68. http://doi.org/10.1038/nature10918 

36. Machens, C. K., Romo, R., & Brody, C. D. (2010). Functional, but not 
anatomical, separation of “what” and “when” in prefrontal cortex. The 
Journal of Neuroscience : The Official Journal of the Society for 
Neuroscience, 30(1), 350–360. http://doi.org/10.1523/JNEUROSCI.
3276-09.2010 

37. Shinomoto, S., Omi, T., Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y., & 
Tanji, J. (2011). Deciphering elapsed time and predicting action timing 
from neuronal population signals. Frontiers in Computational 
Neuroscience, 5(June), 29. http://doi.org/10.3389/fncom.2011.00029 

38. Kim, J., Ghim, J.-W., Lee, J. H., & Jung, M. W. (2013). Neural correlates of 
interval timing in rodent prefrontal cortex. The Journal of Neuroscience : 
The Official Journal of the Society for Neuroscience, 33(34), 13834–47. 
http://doi.org/10.1523/JNEUROSCI.1443-13.2013 

39. Merchant, H., Pérez, O., Zarco, W., & Gámez, J. (2013). Interval Tuning in 
the Primate Medial Premotor Cortex as a General Timing Mechanism. 
The Journal of Neuroscience, 33(21), 9082–9096. http://doi.org/10.1523/
JNEUROSCI.5513-12.2013 

40. Howard, M. W., MacDonald, C. J., Tiganj, Z., Shankar, K. H., Du, Q., 
Hasselmo, M. E., & Eichenbaum, H. (2014). A Unified Mathematical 
Framework for Coding Time, Space, and Sequences in the Hippocampal 
Region. Journal of Neuroscience, 34(13), 4692–4707. http://doi.org/
10.1523/JNEUROSCI.5808-12.2014 

!79



!80



Chapter 2  
Appendice A: Supplementary figures  
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Figure S2.1 | Rats adjust their PSTs rapidly after a block switch. In a fixed reward rate 
condition, rats’ constant pressing rate after pressing onset is insensitive to FI. See 
also Figure 2.1. (A) Normalized PST for the first 15 trials after block switch. Solid blue trace 
represents block switches from any FI to the 12s FI block (long to short). The solid red trace 

represents block switches from any FI to the 60s FI (short to long). Dashed lines show the 

SEM. PSTs were normalized by subtracting the mean within-FI PST, and dividing by the 

within-FI standard deviation, across all sessions. (B-C) Conventions as in Figure 2.1C, D. 

Average pressing rate aligned with reward time (B) and on first press (C), for 12 sessions 

from two control animals where reward amount varied in proportion to the current FI, holding 

reward volume over time constant during the session. (D) Distribution of average overall firing 
rates (bin size of 1spike/s), calculated using all recorded spikes from each neuron. Inset 

represents the reconstruction of recording sites in the striatum. Data from all five rats were 

projected onto one coronal silhouette of the striatum. Each data point corresponds to one 

recording site. Black-gray color coding indicates position along the anterior-posterior (AP) 

axis, from black to gray respectively. Coronal slices at the extreme anterior and posterior 

positions are shown for reference at +2.28mm and -1.32 mm AP coordinates measured from 
Bregma. A - Anterior, P - Posterior, D - Dorsal, L - Lateral.  
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Figure S2.2 | Examples of single neurons recorded from the striatum during performance 
of the SFI task reflect neurons with different time courses of response that rescale with FI. 
See also Figure 2.2. (A-B) Top panel depicts single trial peri-stimulus time histograms, aligned 

with reward delivery (green line), with a bin size of 20 ms. Red tick marks indicate the onset of 

pressing and purple tick marks indicate reward delivery. Trials are ordered by FI, and within each 

FI by pressing onset time. Middle panel depicts SDFs for each FI block, aligned with reward 

delivery. Blue trace depicts the shortest FI, 12s, and the green trace depicts the longest FI, 60s 

with intermediate FIs depicted using intermediate colors. Bottom panel shows, using the same 
conventions as in Figure 2.6 A-D top and middle, the peri-event time histogram (top of the panel) 

and the raster plot (bottom of the panel) aligned with pressing onset for the same neuron.  
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Figure S2.3 | Examples of single neurons recorded from the striatum during performance 
of the SFI task reflect neurons with different time courses of response that rescale with FI. 
See also Figure 2.3. (A-B) As in Figure S2.2, top panel depicts single trial peri-stimulus time 

histograms, aligned with reward delivery (green line), with a bin size of 20ms. Red tick marks 

indicate the onset of pressing and purple tick marks indicate reward delivery. Trials are ordered 

by FI, and within each FI by pressing onset time. Middle panel depicts SDFs for each FI block, 

aligned with reward delivery. Blue trace depicts the shortest FI, 12s, and the green trace depicts 
the longest FI, 60s with intermediate FIs depicted by the intermediate colors. Bottom panel 

shows, using the same conventions as in Figure 2.6 A-D top and middle, the peri- event time 

histogram (top of the panel) and the raster plot (bottom of the panel) aligned with pressing onset 

for the same neuron.  
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Figure S2.4 | Neuronal averages display slow moving bump of activity that scales with FI. 
See also Figure 2.4. (A) SDFs of all isolated neurons aligned with reward. (B) Probability of 

licking sequence onset (blue) and licking sequence offset (red) in the first 12s of all five FIs.
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Figure S2.5 | Striatal muscimol infusion diminishes PST relationship to the FI. See also 
Figure 2.5. (A) Pressing start times per FI of three successive sessions (from left to right) and 

their respective regression slopes (black line) for two rats (top and bottom). Muscimol treatment 

session is depicted in red and saline treatment in blue. (B) Regression slopes for the same three 

sessions depicted in (A), same color code is applied.  
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CHAPTER 3: Simulation of timing 
behavior from a multiplexing sequential 
neural state based reinforcement 
learning model 

Part of the data discussed in this chapter was published as the following 
manuscript: Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A Scalable 
Population Code for Time in the Striatum. Current Biology, 25(9), 1113–1122. 
http://doi.org/10.1016/j.cub.2015.02.036 

SUMMARY
In a previous study we found neural signals in the striatum that might be used 
to encode time in the range of seconds to minutes. These striatal neurons fired 
at sequential delays spanning tens of seconds, and reflected the interactions 
between time and sensorimotor state. These cells rescaled their responses in 
time, preserving their sequence when intervals changed, implying relative time 
coding. Nonetheless, It was not clear whether the activity observed was 
sufficient to produce the temporally adaptive behavior performed by the 
animals. Because behavioral contributions to the timing signal might disrupt the 
information about time, it is unknown how behavior would affect temporal 
representations. To address these questions, we built a model to simulate rats’ 
performance in the same task. Our simulation used a set of basis functions 
resembling the striatal activity, a delta learning rule, behavior-locked 
contributions to the neural activity and a reward rate sensitive pressing rate. 
We observed that press-locked contributions caused a slight left shift in 
temporal estimations. The behavior of the simulation manifested both accuracy 
sensitivity and scalar variance sensitivity to the FI, both classically accepted 
features of timing behavior. We also observed that compliance with scalar 
timing is the major distinction between simulation’s and animals’ behavior. This 
work is a proof of principle that neural responses resembling ones we 
observed in the striatum are suitable for being used as a basis for timing 
behavior in the range of seconds to one minute.  
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INTRODUCTION
In order to survive, animals have to maximize positive outcomes while 
minimizing effort. Actions taken too early or too late can change the outcome of 
actions and represent the difference between life and death (e.g., to get caught 
by a predator, to lose an opportunity to get food or a mate, to waste vital 
calories). Hence, animals rely on their ability to estimate intervals in the scale 
of tens of seconds (interval timing) to generate behaviors that are temporally 
adapted.  
 Learning how to act to maximize the outcome and minimize the effort in 
an ever changing environment is called reinforcement learning (RL; [1-3]). 
Multiple sources of evidence have highlighted the importance of the striatum to 
RL [4-10] and interval timing [11-17] processes. Additionally, Gershman [18] 
suggested that a single computational system can support both RL and interval 
timing by incorporating a time-sensitive action selection mechanism into RL 
models. 
 We found evidence that might support Gershman’s claim. In the previous 
research [19], we recorded the activity of striatal neurons of rats as they 
performed a serial fixed interval (SFI) timing task. We identified striatal neurons 
which fired as they had temporal receptive fields that stretched or contracted, 
rescaling accordingly with longer or shorter timed intervals. The activity of 
these neurons combined information about time and behavior, which 
suggested an intimate interplay between action planning/selection/performance 
and timing.  
 Nonetheless, it is not clear how the behavioral contribution to the striatal 
timing signal might affect the temporal estimation. These behavioral 
contributions could improve or disrupt time estimations derived from striatal 
population activity. Indeed, there are many examples showing that timing is 
affected by behavioral [20,21], sensorial states [22], and vice versa [23], so that 
distortions in temporal estimations derived from behavior are expected. We 
want to know if there is a systematic shift in temporal estimation derived from 
behavioral contribution.  
 It has been demonstrated that striatal activity is necessary for interval 
timing performance [11,19], but (to the extent of our knowledge) its sufficiency 
for interval timing has never been investigated. To test whether striatum is 

!88



sufficient to implement interval timing in a living organism would require 
systematical inactivation of all other areas of the brain but the striatum. It  
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Figure 3.1 | Model of timing 
behavior in SFI was inspired by 
mul t ip lex ing and sca lab le 
p o p u l a t i o n a c t i v i t y f r o m 
exper imental data . Str ia ta l 

neurons’ spike times were modeled 

based on receptive fields for the 
height of a decaying trace. This 

decaying trace was reset in every 

trial by the reward delivery (left in 

the top left). This trace could decay 

faster (solid line) or slower (dotted 

line) by adjusting the parameter 

gamma. The gaussian functions 
(right part in the top left drawing) 

represent receptive fields evenly 

spaced along the height of the 

trace function. The trace function 

was multiplied by the receptive 

fields to generate rate functions. 

These rate functions stretched and 
compressed over time accordance with the memory trace function decay rate. Spike counts 

observed within defined time bins were then multiplied by the logarithm of their respective rate 

functions and summed to compute the population log-likelihood function for current time given 

the population response, from t=0 to t=FI (middle left). The maximum of this likelihood function 

was used to derive our estimate for current time relative to reward, for each time bin (bottom 

left). Decoded time estimates can run faster or slower depending on whether the trace function 
decays quickly or slowly. For each trial, when the decoded time estimate reached a given 

threshold (red dotted line in the bottom left), we started a probabilistic pressing process. After the 

fixed interval has elapsed, the very first response produced the reward; at this moment internal 

estimate of current time was compared with the expected time of reward (right panel in the 

purple arrow line). The difference between current estimate and expected time was the 

prediction error that was then used to update the gamma parameter of the memory trace 

function (1). Also a press-locked response (2) was incremented to the rate function (black dotted 
path line in the center) on every press to take behavioral multiplexing into account. And 

additionally (3) a coefficient mapped the pressing rate as a function of reward rate. 



would also require preserving only the areas/functions necessary for the 
performance of the task. As we can see, this endeavor is technically 
challenging with the current technology. Alternatively, we can use a fully known 
artificial systems (i.e., simulations) to explore which assumptions are 
necessary to produce a behavior similar to the one produced by rodents. More 
particularly, we could assess whether this simulation manifests, in the SFI task, 
commonly known properties of interval timing such as mean accuracy and 
variance sensitivity to the FI [24]. If so, we can further know if this sensitivity 
follows the properties of scalar timing (i.e., fixed coefficient of variation of PST 
across FIs, linear relationship between mean/median PST and FI; [25]). Hence, 
through the simulation we could test whether the striatum is conceptually (i.e., 
in principle, given some constraints) sufficient to generate interval timing 
behavior.  
 Figure 3.1 illustrates how we generated simulation to perform under the 
SFI task constraints. The core of this simulation is composed of a set of 
temporal basis functions which were inspired by the diverse single neuron 
responses observed in our striatal data set as well as existing timing and 
learning models [26-28]. We used the method described in Ludvig et al. [29] to 
generate these temporal bases. Each function was used as a rate function for 
generating inhomogeneous poisson spike trains from which time was read out 
during task performance. Whenever this time readout passed a threshold, 
presses were produced at a fixed rate proportional to the reciprocal of the 
interval. In order to adapt to the changing FIs, we implemented a simple 
learning rule to update a temporal scale factor for the basis functions 
depending on the difference between expected time of reward and encoded 
time at the time of reward delivery. Lastly, to account for our observation that 
many striatal neurons multiplexed information about action and time, each 
press produced a response proportional to the product of the original time 
dependent rate function (at the time of the press) and a rate function 
(generated by the press itself). With these elements, we ran the simulation 
under the conditions contained in the SFI task. 
 Even though we observed mean accuracy sensitivity to the FI, variance 
sensitivity was only present when a pressing rate across FI changed as 
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function of reward rate, thus affecting the variability of the reward acquisition 
time. The resulting behavior of the simulation was strictly conformed to scalar 
timing property [25]. By contrast, accuracy and precision of animal 
performance violated scalar timing predictions, and reflected additional 
strategies to optimize reward rate over session. 
 This simulation exemplifies how rescaling temporal receptive fields, that 
multiplex information about action and time, might generate behavior and use 
error signals to adjust to environmental changes. 

RESULTS

Rescaling of temporal receptive fields across population that tiled 
intervals of tens of seconds to one minute was robust to behavioral 
contributions  
We ran a simple simulation to test whether scalable multiplexing activity of 
striatal population observed in Mello et al. [19] could be conceptually sufficient 
to produce adaptive behavior in the SFI task. Our simulation (Figure 3.1 left 
column) employed the method described by Ludvig [29] to generate a set of 
temporal basis functions which were contingent on one single scaling factor 
(the decay rate coefficient of the memory trace). These basis functions were 
designed to mimic the overall responses of neurons observed in our striatal 
data set (Figure 3.2A), as they were used as rate functions to derive the 
spiking activity of each of the 75 neuronal units in our model. 
 We used the maximum of the sum-log-likelihood distribution of the 
activity of these 75 units as our estimate of time. In order to generate behavior 
from this temporal estimate, an arbitrary threshold of time was established. 
Whenever the time readout from the unit population crossed the defined 
threshold, the model produced presses at a fixed rate. We also implemented a 
simple learning rule (Figure 3.1, path 1, purple dashed line) to update the 
temporal scaling factor of the basis functions contingent on the difference 
between expected time of reward and decoded time at the time of reward 
delivery. The resulting population activity can be observed in Figure 3.2B. 
 To account for our previous observation that many striatal neurons 
multiplexed information about action and time, each press produced a rate 
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function response. The contribution of each press to the basis functions (i.e. 
rate function) was proportional to the product of the original time-dependent 
rate function at the time of the press and the rate function generated by the 
press itself (Figure 3.1, path 2, black dashed line). With these elements, we ran 
the simulation under the conditions contained in the SFI task.  
 Potentially, these press-locked contributions to the rate function could 
disrupt temporal representation, and consequently disrupt the simulation’s 
capacity to perform the SFI task appropriately. Nonetheless, the result shows 
that the population activity in the simulation was robust to these behavioral 
contributions. Additionally, unit's activity reproduced the three main features 
that we observed in striatal neurons: temporal tuning, rescaling of neural 
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Figure 3.2 | Models’s slow moving bump signal tiled tens of seconds to one minute as 
experimental data and was robust to behavioral locked contributions. (A) SDFs of striatal 
neurons that maintained their relative ordinal position in time within the population across all five 

FIs, aligned with reward. (B) SDFs of simulated units ordered by response profile within the 

population across all five FIs, and aligned with reward. (C) Same as (B) after adding press-

locked contributions to each unit independently. 



responses (Figure 3.2C), and multiplexing of information about action and time 
(Figures 3.3A bottom and 3B bottom) almost indistinguishable from 
experimental data (Figures 3.3A top and 3.3B top). 

Simulated behavior in SFI exhibited block-wise median accuracy 
sensitivity to the FI but not variance sensitivity property.  
Close inspection of the PSTs (Figure 3.4) produced by the simulation, in 
comparison to the rodents’ PSTs, allowed us to compare them qualitatively. 
The major points of comparison were the PST median sensitivity to the FI shifts 
(median accuracy sensitivity), the gradual adjustment to these FI shifts, and 
the inverse relationship between PST precision and FI (variance sensitivity).  
 PSTs in both data sets presented gradual and systematic shifts following 
the transitions of FI (Figure 3.4B and 3.4C). These shifts were consistent with 
typical interval timing behavior in the SFI task [19]. The number of presses in 
average was higher in 60s trial than in trials within 12s because the pressing 
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Figure 3.3 | Activity Profiles 
i n S i m u l a t i o n ’s U n i t s 
M u l t i p l e x e d T i m e a n d 
Pressing Behaviors. (A,B) 

The graphs were generated 

with experimental data of 

animals in Mello et al. [19] 
and with simulation’s data 

(bottom). (A) Four single unit 

peri-stimulus time histograms 

of 2.5 seconds aligned on 

pressing onset event. Trials 

were grouped by quintiles of 

pressing onset time relative to 
the FI. Here, the colors from 

grey to red represent the 1st 

t o t h e 5 t h q u i n t i l e , 

respectively. (B) Shows the 

correlation between the firing 

rate of the unit ( in the same 

column of panel A), and the PST relative to the FI. Each datapoint is color coded from grey to red 
for the 1st to the 10th decile of the relative PST. 



rate was the same in both conditions. Consequently, rate functions in the 60s 
FI were more influenced by the press-locked contributions. These contributions 
to the rate function seemed to produce a left shift to the average PST; while in 
the 12s the PST happened in average at 10 second ( ~0.8 of the interval), in 
the 60s FI the average PST was around 35s (~0.58 of the interval). Hence, it is 
likely that press-locked contributions to the rate function make time 
representations move faster during decoding. 
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Figure 3.4 | Simulation displays mean accuracy sensitivity to the FI, but lacks variance 
sensitivity. (A) Example of the lever pressing behavior in one session of the SFI task. Grey 

markers indicate a lever press, red markers indicate the PST. Top panel is animals’ behavior, 

bottom one represents the simulated behavior. (B) Mean error (average difference between true 

time and the decoded population estimate) on the first seven trials of the 12s (blue) and 60s 

(green) FI blocks for all sessions plotted against average PST. Contiguous trials are connected 
by solid lines to display the trajectory of the data over trials, and the first trial on each block is 

indicated by the black arrow. Dashed horizontal gray line represents zero error average 

decoding as compared to true time. (C) Median and interquartile range of PST for each of the 

five FIs colors coded by the length of the FI from blue to green for 12s to 60s FI respectively. 



 Regarding the PSTs variance, while experimental data exhibited clear 
inverse relationship between the FI length and precision (Figure 3.4C top), the 
simulation exhibited near-constant precision across all the FIs (Figure 3.4C 
bottom). The constant pressing rate after pressing onset in all FIs, established 
as a feature of the model, was probably the biggest source of PST variation for 
two reasons. Firstly, the random pressing introduced an irreducible difference 
between when the reward was expected and when it was acquired. This 
established a minimum reward prediction-error that affected precision trial-by-
trial. Secondly, the simulation generates presses probabilistically starting from 
the moment it reaches the threshold. Consequently, reliability on which it starts 
pressing is also affected by the pressing rate. 
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Figure 3.5 | Pressing rate sensitivity to reward rate increased dispersion In neural signal. 
SDFs of multiplexing scalable simulated units ordered by response profile within the population 
across all five FIs, and aligned with reward.

Figure 3.6 | Simulation’s behavior was qualitatively similar to rat's behavior. (A) Example of 

simulated lever pressing behavior one session of the SFI task. Colors as in Figure 3.4A. (B) 
Mean-error plotted for the first seven trials after block switch, plotted against average PST. (see 
Figure 4B). (C) Median and interquartile range of PST for each of the five FIs colors as in Figure 

3.4C.



Pressing start time variance sensitivity to the FI emerges from pressing 
rate sensitivity to the reward rate 
In the experimental data of SFI performance, pressing rates were sensitive to 
the reward rate [19]. To mimic this feature we added a coefficient to modulate 
the pressing rate as a linear function of the reward rate (see methods), and ran 
the simulation once with a parameter picked arbitrarily (Figure 3.5 and 3.6).  
 The pressing rate, that depends on the reward rate, did affect the 
population activity (Figure 3.5) by increasing slightly the dispersion of the rate 
functions. Also, changes in pressing rate affected PST variance sensitivity to 
the interval. As intervals became longer and reward rate smaller, pressing rates 
decreased (Figure 3.6 A). Consequently, the variability of PSTs increased 
(Figure 3.6C) interfering with the adjustment of the PSTs to new FIs, especially 
to the longest FI (Figure 3.6B).  

Simulation’s median accuracy grows linearly with the FI 
To compare quantitatively the simulation and experimental data, we optimized 
the parameters of the simulation session-by-session (see methods), so that 
simulation would act as close as possible to experimental data. We optimized 
two parameters, the pressing rate coefficient and the pressing onset threshold 
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Figure 3.7 | Pressing start times 
d is t r ibut ions compar ison 
b e t w e e n s i m u l a t i o n a n d 
experimental data highlighted 
experimental data’s violation of 
scalar timing. (A) Rats’ (left) and 

model’s (right) pressing start 
times distribution plotted against 

time since the reward delivery for 

all the five FIs. (B) Pressing start 

times distribution plotted against 

relative time (time from reward 

divided by the fixed interval) for all 

five FIs (colors as in Figure 3.4C).



relative to FI; both parameters were set to approach the average pressing rate 
and average relative PST within the respective session.  
 Distributions of simulation’s PSTs where right skewed and shown 
progressively growing delays as FIs increases (Figure 3.7A). The PST 
probability densities normalized by the median PST exhibited almost complete 
overlap in simulation data but not in the experimental data (Figure 3.7B). 
Animals were visibly more precise during 12s FI than when estimating other 
intervals. Moreover, rats started to press relatively earlier and with less 
precision as FIs increased. These data suggest that animals’ performance did 
not strictly comply with scalar timing.  
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Figure 3.8 | Block-median PSTs in experimental data were biased toward the center of FIs 
distribution while simulations’ block-median PSTs were a linear function of the FI. (A) 

Rats’ (left) and simulation’s (right) averages of pressing start times of each block in relative time 

separated by the fixed interval (colors as in Figure 3.4C); black line is the exponential decay 

regression. (B,C) Rats’ (black) and simulation’s distribution of PST over FIs linear regression 

slopes; star marks significant difference between the means (alpha =0.01, Fischer exact test : 
p=0.02).



 Scalar timing behavior exhibits both, linear sensitivity of the mean/median 
accuracy to the FI, and scalar variance [24,25,30]. We looked for both features 
in the data. We tested for proportional PST accuracy sensitivity to the FI. We 
took the median PST for each block and regressed against its respective FI. 
Scalar timing predicted a linear relationship. Nonetheless, experimental PST 
data relationship with the FI was best described as a quadratic function of the 
FI (Figure 3.8A left), while the quadratic regression of the same relation for the 
simulation’s data set revealed an almost perfect linear relationship (Figure 3.8A 
right). The nonlinear relationship demonstrated in the animals’ data is one of 
the many known cases where timing behavior violates scalar timing [30,31], 
especially in tasks with multiple intervals such as the SFI.  
 Next, we used linear regressions for each session independently, for 
experimental and simulation data set. We asked whether the distribution of 
regression slopes for the different data set could have been sampled from the 
same underlying distribution (Figure 3.8B). The distributions were not 
significantly different (alpha = 0.01, p = 0.02, Fisher exact test) but barely. A 
more sensible interpretation driven by close examination of slope distributions 
shows that experimental data are more variable (Figure 3.8D) and slopes are 
typically less steep for experimental data than for simulation’s data. Hence, 
experimental data had a lesser median-accuracy sensitivity of the to the FI with 
a bias towards the center of the distribution of FIs presented in the session. 
This result might reflect that rats retain knowledge about the overall distribution 
of intervals in the session, and consequently are using additional strategies to 
improve reward rate within the session, or that timing representations might be 
competing with each other in the same context. 

Simulation’s strict conformity with scalar variance property of interval 
timing highlights experimental data’s violation to scalar variance 
property 
Scalar variance, other classical feature of interval timing, posits that the 
relationship between mean and standard deviation, or between median and 
interquartile range, is linear. This is why the coefficient of variance (CV; 
standard deviation divided by average) is constant across all FIs. To test for 
scalar variance, we first performed a quadratic regression of the relationship 
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between block wise interquartile range and median (Figure 3.9A data points 
and 3.9B regression lines).  
 Experimental data relationship between median PST and interquartile 
were context (FI) dependent. In shorter FIs the relationship was almost 
constant, while as FIs got longer, the coefficient of the relationship increased. 
This result was a clear violation of the predictions derived from scalar timing 
theory, according to which, linear relationships were to be expected with a 

constant coefficient across FIs (Figure 3.9B left). Simulation’s behavior, in other 
hand, matched almost perfectly to scalar timing predictions. 
 The coefficients of variation across FIs grown with the FI in animals’ data, 
while in simulation’s they were held constant (Figure 3.10A). When we 
compared the distributions of CV between simulation and experimental data 
within each FI, we observed that experimental CVs (left) and the simulated 
ones (right) were significantly different in most of the FIs (Fischer exact 
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Figure 3.9 | Half-interquartile range had context (FI) dependent relationship with median 
PSTs in the experimental data set, while it was context independent for the simulation. (A) 

Rats’ (left) and simulation’s (right) standard deviation of pressing responses within each block as 

a function of average PST. (B) Colored lines represent the best quadratic fit to the data in panels 

A. Colors segregate different FIs (see Figure 3.4C)  



test, � 0.01; FI:12, p<0.01; FI:24, p=0.02; FI:36, p=0.26; FI:48, p<0.01; FI:60, 

p<0.01; Figure 3.10B). This result suggests that variance in the shortest and 
the longest intervals are respectively lower and higher than the variance 
expected by scalar timing, a violation typically observed in dynamic timing 
tasks such as SFI [24].  

DISCUSSION
In this study we tested whether multiplexing scalable activity observed in the 
striatum is in principle sufficient to produce temporally adaptive behavior (i.e., 
proportional timing and scalar timing) and how the behavioral contributions to 
the timing signal might affect the time estimates. With these goals, we 
simulated the striatal activity using a model with only one free parameter, the 
decaying memory trace. This parameter was updated on every trial by the 
reward time prediction-error. The simulation also took into consideration the 
multiplexing feature of experimental data. To do so, it employed press-locked 
contributions to the spike rate functions, which subsequently affected the time 
signals. These contributions are the product of a fixed press-locked response 
with the current value of the rate function. Also, we reproduced the reward rate 
dependent pressing rate and assessed how similar the rats’ behavior was to 

↵ =

!100

Figure 3.10 | Simulation’s coefficient of variation (CV) displayed a constant trend which 
contrasted with animal’s FI-dependent CV. (A) Coefficients of variation (standard deviation 
divided by mean) of PSTs from animal’s (left) and simulation (right) data. Each cross is the CV of 

one block of trials, color segregated by FI (colors as in Figure 3.4C). (B) Same data as in A, but 

rearranged to facilitate the comparison between rats’ and simulation data. For every FI (colors) 

there is a set of two columns of CVs. The stars mark significant differences between distributions 

(Fischer exact test, alpha = 0.01; FI:12, p<0.01; FI:24, p=0.02; FI:36, p=0.26; FI:48, p<0.01; FI:

60, p<0.01)



the model’s performance (when model’s parameters were optimized to 
approach animals’ behavior). 
 We found that behavioral contributions to timing signal did not disrupt 
temporal representations. Instead, it caused time estimations to move faster, 
as evidenced by the left-shift in PST in the longest FI relative to the shortest 
one (Figure 3.4B bottom and 3.6B). This result is consistent with temporal 
binding between action and event [20,21,32]. In this phenomenon, perception 
of event time is biased toward the time of the action. This process is 
considered to be important for the sense of agency, and ultimately, to how 
animals learn to control the environment through their actions. But regardless 
the slight temporal distortion, the simulation adjusted gradually its PST to the 
FIs in each block, therefore preserving mean PST accuracy sensitivity to the 
FI.  
 Against to what was expected (discussion in [19]), scalar variance 
property (Figure 3.4C, 3.7, 3.9 and 3.10) was not produced by the dispersion 
increase of the temporal receptive fields for longer times in the interval. The 
strict prediction of scalar timing is that the coefficient of variation is fixed for all 
estimated intervals, which would reflect in a perfect overlap between 
normalized PST probability distributions for all FIs. Instead, our simulation, in 
its first form, manifested a fixed precision for all FIs. The variance sensitivity 
property only emerged when pressing rate became proportional to the reward 
rate (i.e., inverse of memory trace decay rate). This result suggests that the 
scalar property emerges from trial-by-trial variations of reward acquisition time 
relative to the expected time. In our model trial-by-trial variation was introduced 
by behavior itself. Nonetheless, the same result could be obtained by 
introducing constant noise at every time step into the reward time expectation. 
The accumulation over time of small variations into the reward time expectation 
could increase the magnitude and variability of prediction-errors used to update 
the memory trace decay rate. Consequently, this would affect when the 
simulation tend to start pressing. Indeed, it has been suggested before that 
time-scale invariance can emerge from noise [33,34], which can be caused 
either by neural population noise or by trial-by-trial variations in the speed of 
the clock. Our model is more consistent with the latter source of variation. 
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 The major difference between the model and the animal’s behavior was 
how closely they conformed to the scalar variance. Our model strictly followed 
the scalar timing prediction, while rats’ behavior manifested parametrical 
growth of the coefficient of variation following the duration of the FI. Such 
violations in scalar timing have been observed before [24,30,31,35], and they 
are especially frequent in dynamic timing tasks (i.e., tasks where animals 
estimate three or more FIs in a session; [36]), like the SFI task. But little has 
been discussed about the cause of these violations. The fast adjustment of 
PSTs to the new intervals might be the key to answer that question. Increases 
of PST variance in longer intervals provided a larger sampling space of reward 
times. This larger sampling space of times allows the animal to detect quickly 
new intervals on block switches. The same increase in variance during shorter 
intervals would only add effort without any sensible benefit to cease reward 
opportunities. Indeed, within the shortest interval, late PSTs save energy and 
facilitate detection of transitions to longer intervals. Therefore, the increase in 
PST variance was only beneficial in longer intervals while the reduction of 
variance was beneficial in the shorter intervals. We interpret this systematical 
increase in the coefficient of variation as part of exploratory strategies that 
reflected the animals' knowledge about the whole distributions of intervals in 
one session. 
 Some characteristics of our simulation raised interesting questions about 
how information is integrated in the striatum. In our model, multiplication was 
the mean by which temporal and behavioral information were combined. 
Multiplicative rules to connect neurons and integrate information have been 
reported in other brain areas [37] and explored in computational models 
[38-41] before. There are reasons to believe that the same multiplicative rules 
are also present in the striatum [42], and that they are mediated by dopamine 
[43]. Dopamine (DA) plays an important role in motor learning and timing [44]. 
It is possible that dopaminergic manipulations change the basic rules of 
multiplexing, and subsequently affect timing. Malapani et al. [44] demonstrated 
that parkinsonian patients (PKP) display poor temporal discrimination when 
tested off-medication. It is possible that lack of DA may disrupt the 
multiplication rule for multiplexing behavior and time, for instance by making 
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the contribution of behavior to the time fixed for all times. This might turn the 
temporal representation of two events more similar and therefore harder to 
discriminate by downstream neurons. Conversely, it should be expected a gain 
in separability between the estimation of two intervals in PKP trained off-
medication and tested on-medication. 
  Also, it is known that when animals have to take an action upon an event, 
they tend to over-estimate the time when this event happened [20]; how 
exactly this happens, in the context of our model, is a possible direction for 
future research. For instance, if DA controls the gain of behavioral contributions 
to the time basis functions, a right-shift on time estimation is to be expected 
when training without DA and tested with DA. Moreover, the role of DA as the 
key agent for multiplexing has yet to be demonstrated. We could do that by 
manipulating DA in an organism performing the SFI, to attempt to eliminate or 
modulate the multiplicative feature of multiplexing while preserving the slow 
moving bump of activity. 
 Additionally, and perhaps more important, the stretch and contraction of 
temporal representations are directly dependent on the capacity of the system 
to learn using the prediction-errors. For long, DA has been considered to be a 
major teaching signal in the brain, and the activity of dopaminergic cells is 
consistent with the encoding of prediction-errors [2]. Hence, it is likely that non-
pathological fluctuations of DA help to control the scale of striatal receptive 
fields.  
 Our simulation highlighted some variables that could be relevant to 
understand the timing strategies. As said before, behavior locked response 
magnitude covaried with time signal; it could be the case that some non-
temporal features of behavior were affected by time. This influence of time 
estimation over behavioral features was observed before in humans. Droit-
Volet and collaborators [23,45] have demonstrated that three-year-old children 
associate the strength of pressing with its duration, while five-and-half-year-old 
children can dissociate them. In the same fashion, it is possible that rodents 
press stronger for longer intervals and lighter for shorter ones, thus producing 
a time-dependent behavioral feature. This could explain some of the 
differences in magnitude of behavior-locked responses over time, but not 
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completely. Different from what was described by Droit-Volet’s work, the 
behavior-locked contributions we observed did not grow monotonically with the 
interval. This suggests that the nature and genesis of the multiplexed signal are 
still open questions.  
 Finally, the mechanisms and parameters involved in setting the 
thresholds to start pressing remain elusive. As we described in the methods, 
we arbitrarily defined a fix relative point adequate to experimental data as the 
threshold. The striatum is also implicated in action selection and action 
initiation [46], and it is possible that the computations to implement this action 
initiation thresholds are performed within the striatum (perhaps even 
embedded in the signals we observed). But most likely, the computations 
performed to implement the threshold are implemented by the multiple 
feedback loops the striatum has with the downstream areas of the basal 
ganglia. 
 All things considered. This study not only exemplifies how organisms can 
use a series of progressively widening time receptive fields to implement 
behavior. It moves our understanding about interval timing further, by 
highlighting important components of the timing system and putting in evidence 
the complexity of the animal behavior while timing. 

METHODS 

Model description 
We ran a simulation of timing behavior in the SFI task which took into account 
the temporal tuning, rescaling and multiplexing properties of striatal neurons 
recorded in Mello et al. [19]. The firing of striatal neurons was simulated using 
gaussian-shaped receptive fields for the height of a decaying memory trace of 
the reward (Figure 3.1 left top panel; [29]).  

   

 The trace function �  (Equation 1) was reset to the value of 1 at every 

reward delivery. Its exponential decay rate �  was always lower than 1, and on 

yt = �⌧ , (1)

y

�
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every session it was initialized as 0.999. The trace function decayed over an 

arbitrary time unit � , which varied from 0 to 10000. Also important for the 

model, the gaussian-shaped receptive fields �  means �  were equidistant on 

the height of the trace function � , and their standard deviation �  was fixed at 

0.1.  

 
 

  

 Next, we generated 75 temporal basis functions. The basis functions 
were computed as follows:  

    

 The level of the th basis function  out of  total bases at time , was 

determined by the product of the corresponding height of the trace function  

and the receptive field . The result was a set of temporal basis functions that 

became progressively wider, delayed and with a lower peak (Figure 3.1 left 
column second panel from top). Then, we generated spikes for each unit using 
these basis functions as rate functions in an inhomogeneous poisson spiking 
process. To compute internal estimates of time and simulate behavior, we 
counted the number of spikes in bins of 10 ms for each unit. At each time step, 
we multiplied the number of observed spikes per bin by the logarithm of its 
respective basis function (tuning curve for time). This produced the log-
likelihood for time given the observed spikes for each unit. We summed the 
log-likelihood functions [47] of all units together. The maximum of the resulting 
likelihood function was our estimate of current-time relative to reward for each 
time bin.  
 Two thresholds were established to trigger changes in the simulated 
behavior. Crossing the first threshold, placed at three-eighths (3/8) of the 
maximally possible internal time estimate, triggered press initiation. The 
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second threshold, defined at twice the level of the pressing threshold, 
represented the expected reward time.  
 Once the decoded time crossed the pressing threshold, the simulation 
generated presses at a fixed rate until the delivery of the reward at the end of 
the FI. Then, the time of reward receipt was compared to the expected time of 
reward (the second threshold). The difference between the real and the 
expected time generated the prediction error. This prediction error was used to 

update the time constant �  of the exponential trace, which controlled scaling of 

the basis functions. The update proceeded as the equation below: 

  

 It was established that  was the learning rate set to 0.00007,  was the 

current time, and  was the time of the reward. The expected time of 

reward  was fixed as three-fourths of the length of the  vector (  = ~7500) 

and  was the current estimation of time at the reward acquisition time.  

was the current estimation of time in internal representation unit. 
 Information about each press fed back to the temporal basis in the 
following manner. Each unit possessed a press-locked contribution to its rate 
function. This contribution to the firing was a gaussian-shaped rate function 
with a standard deviation of 200 ms, and a mean precedence relative to the 
press that was drawn from another gaussian distribution with a mean of -1500 

ms and a �  of 300 ms. However, the contribution of each press to the firing 

of a given unit was computed as the product of the instantaneous, time 
dependent rate, and the press-locked contribution to firing. 

 This adjustment of the parameter �  in the trace function (Equation 1) led 

encoded time to change faster or slower, allowing the simulation to exhibit an 
adaptive timing of neural and behavioral responses that resembled the 
experimental data. 
 Finally, we included a coefficient that controlled the pressing rate in linear 

proportion to the reward rate (i.e., the reciprocal of �  ) in order to replicate this 
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feature of the data observed in Mello et al. [19]. We opted for a linear 
relationship because it was the simplest assumption, after a constant pressing 
rate. Then, this pressing rate coefficient was optimized (see below), so that 
every simulated session had an average pressing rate for each FI as close as 
possible to the experimental data. 

Model optimization 
To quantify the differences between animal behavior and behavior generated 
from the model, we optimized the parameters of the model, so that model’s and 
animals’ performances were as close as possible. Firstly, we ran a series of 
simulations for every session in the experimental data set. These simulated 
sessions had the same sequence of FIs as the correspondent experimental 
session had. Secondly, we used a gradient descent method to iteratively 
minimize differences in performances between the model and animals, 
regarding two variables: the average pressing rate in each of the FIs, which 
controlled the pressing rate coefficient; and session average PST (in relative 
time), which adjusted the pressing start threshold for the whole session. Thus, 
for every session performed by an animal in our data set we generated one 
parallel simulation session with optimized parameters.  
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CHAPTER 4: Decoding time from 
ongoing behavior 
SUMMARY

To separate the temporal signal from other variables that covary with time is 
one of the most difficult problems faced in the electrophysiological study of 
interval timing. Behavior is the most concerning among these variables 
because it is the mean by which animals report their estimates of time. 
Additionally, defenders of the embodied cognition perspective posit that 
animals can use the structure of their own behavior to purposefully encode 
information about the environment. Nonetheless, researches that attempt to 
extract environmental information from the structure of the ongoing behavior 
are almost inexistent. We wanted to know if animals’ ongoing behavior during 
the serial fixed interval timing (SFI) task embedded information about the 
passage of time. We tested this hypothesis by using a maximum likelihood 
decoder onto high speed videos of rats performing the SFI task. In comparison 
to the behavioral events from the operant chamber, we could predict almost 
perfectly what behavior the animals were engaging using data from the video. 
We observed that although the decoder was sensitive to temporal estimates 
across trials and FI-blocks, it was very poorly sensitive to the passage of time 
within each FI. Consequently, we could not prove that animals use embodied-
cognition-based strategies to perceive the passage of time. Nonetheless, this 
work represents a methodological step toward the understanding on how 
animals might use their behavior to interact with a complex environment. 
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INTRODUCTION
Interval timing is the ability to estimate lapses of time between events in the 
range of seconds to minutes. This ability enables animals to identify patterns 
and regularities from the ever-changing environment, and generate anticipatory 
adaptive behaviors [1]. Hence, understanding of how animals represent time 
can shine light on how the brain represents reality, interact with the world and 
can ultimately help us to develop intelligent artificial agents. But regardless the 
great effort to comprehend interval timing, and the progress made to unveil 
how time is perceived, the biological mechanisms that underlie interval timing 
remain elusive.  

The question of how timing is implemented has motivated a quest for the 
internal clock. Many models about how neural structures could implement this 
internal clock have been proposed. Some of these models use many 
mechanisms such as coincidence detection among oscillations of varying 
frequencies [2-4], integration of the noisy firing of neural populations [5] and 
variable firing dynamics within a population of neurons [6-8]. Nonetheless, 
other class of models bases its assumptions on the widely replicated 
observation that structured behavioral chains emerge in temporally structured 
reinforcement contingencies [9-15]. Indeed, these models posit that time is 
represented as a trajectory progressing through a sequence of behavioral 
states [16,17]. 

Supporting the idea that interval timing is driven by behavioral states, the 
embodied cognition theory posits that animals can leverage the idiosyncrasies 
of their sensors and effectors [18,19] to encode relevant environmental 
information in the structure of their behavior [20,21]. For instance, one can fold 
three fingers and keep them folded to hold information about the number of 
objects in a room, and then retrieve the information later by counting the 
number of folded fingers. To encode time, animals could generate action 
sequences as the temporal representations, and decide correctly about how 
much time has elapsed based on their current sensorimotor state [22]. 

Recently, Gouvêa et al. [23] provided evidence that rats might develop 
embodied strategies to represent the passage of time. In a two-alternative 
forced choice task (TAFC) they trained rats to discriminate the durations of the 
interval between the onset and the offset of sound cues. Rats had to press a 
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lever on the left or on the right for intervals that were shorter or longer than 
1.5s respectively. They observed that some rats displayed a stereotypical 
sequence of behaviors starting at the onset cue. Depending on how long the 
interval was, the offset cue interrupted the animals at different points of their 
behavioral sequences. These rodents seemed to use their sensory-motor state 
(i.e., where they were in this sequence), at the moment of the offset cue, as 
their decision criteria for time. If they were in the earlier steps of the sequence 
they chose left, and right otherwise. Consequently, Gouvêa and colleagues 
could predict the animal’s decision from its behavior at the moment of the offset 
cue.  

The striatum has been implicated in interval timing [24,25], and its activity 
might provide biological plausibility to the embodied cognition’s argument. 
Beyond its role in decision making [26], reinforcement learning [24,27-29] and 
timing [25,30], the dorsolateral striatum contributes to habitual learning (i.e., 
procedural memory; [31,32]). Habitual learning consists in chaining individual 
behaviors into sequences which are resistant to extinction and devaluation 
[33]. Hence, the striatum is especially suitable to generate sequences of 
actions, take decisions based on sensorimotor states and learn from these 
sequences.  

Despite this scenario, very few studies addressed how variations in chains 
of behaviors should correlate with variations in time estimation [23]. Thus the 
amount of information stored in the structure of behavior remains unknown in 
most of interval timing research.  

In the TAFC tasks, such as the one used by Gouvêa et al. [23], there is a 
necessary spatial element that animals can exploit (e.g., pressing left or right). 
However, it is not clear whether this behavioral strategy to time would emerge 
in tasks where the responses to different intervals are the same but at different 
times. In particular, we would like to know if rats were performing sequences of 
actions during the serial fixed interval (SFI; [30]; see Chapter 2) task which 
could be used to support timing.  

In this work we analyzed the ongoing behavior captured using high speed 
videos. We used recent advances in computing power and computer vision 
algorithms to automate the analysis of the behaviors from these videos. Briefly, 
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we adopted the following approach: we first reduced the dimensionality of the 
behavior represented in the video by describing the animal’s body as an ellipsis 
(Figure 4.1A-D). Next, we extracted six continuous behavioral descriptors from 
the elliptical representation of the animal’s body (Figure 4.1E; e.g., horizontal 
and vertical head positions, head linear and angular speeds, body angle, 
major-minor axis ratio). Then, we used these six variables, extracted from 

!116

Figure 4.1 | Rat’s silhouette was simplified 
as an ellipse with similar proportions from 
which six dimensions of behavior were 
extracted. (A) cropped region of interest (ROI) 

of a single frame from the raw video. (B) same 

ROI as in (A) in grayscale; the silhouette of the 

rat’s body is outlined in red and the boundaries 

of the largest connected component in white. 

(C) same ROI as in (A) without background; the 
major and the minor axes of the connected component; dashed gray lines outline the boundaries 

of the largest connected component. (D) Ellipse (gray solid line) created using the major axis 

(blue line), minor axis (green line), angle of the major axis and boundaries (gray dashed line) of 

the major and minor axes as its parameters. (E) Schematics of the behavioral dimensions. The 

first two dimensions were the position of the head extracted in horizontal (x) and vertical (y) 

dimensions of every video frame (red circles with gray outline; here we exemplify two points in 
time, t1 and t2). The third dimension was the angle between the head edge of the major axis and 

the horizontal axis, represented here in blue shaded area and letter “a”. The fourth dimension 

was the ratio between the major and the minor axes lengths. The fifth and the sixth dimensions 

were the linear (depicted by red line and letter “s”) and angular (depicted by blue line and letter 

“w”) speeds calculated at every frame from the difference between the current head position and 

the head position in the previous frame. 



stable timing trials (8th trial onward from FI-block transition) to train a maximum 
likelihood decoder. Finally, we ran the decoder on every trial to generate time 
estimates, and observed how well these estimates corresponded to real time. 

The decoder revealed sensitivity to interval transitions across early trials of 
the shortest and the longest blocks, evidenced by direction and systematic 
reduction of error across trials. Thus, it validates the approach to the problem 
at hand. Nevertheless, temporal estimates derived from behavior within trials 
shown little sensitivity to the passage of time, being almost constant during the 
early seconds of each interval, where the animal was retrieving the reward. 
These results suggest that animals do not organize their behavior in a 
stereotyped trajectory across a chain of actions as in Gouvêa et al. [23] (e.g., 
trajectory), but in a sequence of behavioral states between which the transition 
probabilities are affected by the fixed interval.  

This work, for the first time, validates the use of the established decoding 
approach to answer embodied cognition questions (e.g., what information 
about the environment is embedded in the structure of the behavior), 
leveraging modern computer vision techniques. Further refinement in this 
approach can allow decoders to become sensitive to finer movements and 
provide higher standards to analyze behavioral data.  
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Figure 4.2 | PST adjusts to the new FI in less than 7 trials. (A) Median and interquartile range 

of PST for each of the five FIs (from 12s as blue to 60s as green). (B) Normalized PST for the 

first 15 trials after block switch. Solid blue trace represents block switches from any FI to the 12s 

FI block (long to short). The solid green trace represents block switches from any FI to the 60s FI 

(short to long). Dashed lines show the SEM. PSTs were normalized by subtracting the mean 
within-FI PST, and dividing by the within-FI standard deviation, across all sessions.



RESULTS

Rats manifest typical behavior under serial fixed interval of reinforcement 
Two male rats adjusted their pressing start times (PST) gradually to new 
intervals in the SFI task (Figure 4.2), taking up to 7 trials to reach average 
performance under the new criteria. As in the original experiment [30] pressing 
rate was proportional to reward rate and relatively constant along the FI (Figure 
4.3A). Rates of head entries to the water port following the PST were lower 
than pressing rates and, as theses rates, also differ across FI to the other but 
were constant along each FI (Figure 4.3B). 

Behavioral events estimates derived from video closely map the behavior 
observed by sensors in the operant chamber 
We attempted to derive estimates of which behavior the animal was doing on 
every trial using the video data. Visual inspection of the behavior could classify 
behaviors in four distinct classes, namely: lick before PST, lick after PST, 
pressing and undefined. These behaviors could be easily identified by using 
the operant chamber’s data. When a behavior was emitted in a video frame 
that was away three frames from any one of the other classes of behavior, we 
marked it as an undefined behavior. For every trial we trained the decoder 
using data from all but the current trial. For every behavioral class (i.e., lick 
before PST, lick after PST, pressing, undefined) we generated a distribution of 
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Figure 4.3 | Rats’ pressing and licking behavior is constant after pressing onset. 
Normalized PST for the first 15 trials after block switch. Solid blue trace represents block 

switches from any FI to the 12s FI block (long to short). The solid green trace represents block 
switches from any FI to the 60s FI (short to long). Dashed lines show the SEM. PSTs were 

normalized by subtracting the mean within-FI PST, and dividing by the within-FI standard 

deviation, across all sessions.



behavioral descriptors (6 dimensions) using the data from the three video 
frames surrounding each behavioral event. Then, at every frame of the current 
trial, we extracted the current behavioral descriptors. With both information 
from the distribution of behavior in other trials and the current behavior, we 
asked which one of the four behavioral classes was the most likely, given the 
current behavioral descriptors. We used the most likely (i.e. mode) behavior as 
our estimation of the current behavior and use that estimation to label the 
frame (Figure 4.4 shows a single session comparison between real data, left, 
and estimated data, right). By repeating this process for all sessions, we could 
generate the posterior Figure 4.5.  

 In most of the time, the decoder could estimate which behavior the 
animal was doing. The decoder performed especially well in face of highly 
stereotypical and distinct behaviors such as retrieving water. Conversely, when 
the animal was in an undefined behavior frame, chances of detecting pressing 
and water port checks were higher than when the animal was engaged in a 
particular behavior in the frame (Figure 4.5).  
 In order to be detected by the operant chamber, the behavior must be 
strong enough to activate the sensors. An animal that stands and touches the 
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Figure 4.4 | Comparison between experimental behavioral data and behavior estimated 
from video data. Example of lever pressing behavior (gray), PST (red), pre-PST water port 
entries (blue) and post-PST water port entries (green) in a single session of the SFI task. On the 

left, experimental data, and on the right the estimated behavior derived from video data.



lever without pressing it, or puts its head in 
the head-port without breaking the infra-
red bean would probably have a very 
s imi lar behavior, in the camera’s 
perspective, as the ful ly executed 
behavior. But this difference in magnitude, 
although potentially irrelevant to the 
camera, is the difference that makes the 
operant chamber detects a behavior or 
not. Hence, it is possible that the rats were 
indeed emitting the behaviors estimated by 
the decoder but with lower magnitude.  

Single trial decoding captures behavioral systematic temporal error 
across trials on block switches 
To explore the possibility that the temporal relationship between PST and FI 
might emerge from a chain of behaviors sequentially organized, we asked two 
questions. Firstly, we inquired whether errors in estimated time systematically 
followed the changes in the behavioral report of time at block transitions. 
Secondly, we asked whether the elapsed time estimates decoded from the 
video covaried with true time within the FI. We applied a decoding approach 
[35] to the data collected from single trials near to the block transitions, wherein 
animals systematically changed their pressing start times. We constructed a 
maximum likelihood decoder to derive an estimate of elapsed time from reward 
on single trials given behavioral features (e.g., head position, head linear and 
angular speed, body angle) extracted from the high-speed video. We limited 
our analysis to the first trials of the 12s and the 60s FI blocks because these 
blocks were the shortest and longest FIs employed, respectively. Transitions to 
these blocks were unidirectional (preceding blocks were always of longer FIs 
for 12s and of shorter FIs for 60s); animals reliably started to press later in the 
12s FI and earlier in the 60s FI relative to the average PST in the 8th trial 
onward in the block. Hence, rats over- and underestimated the amount of time 
remaining until reward as they entered the 12s and the 60s blocks.  
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Figure 4 .5 | Behaviora l event 
estimates from video given the 
behavior observed in the operant 
chamber. 



 Briefly, our decoder was constructed as follows: On each of the first 
seven trials of a block, we generated a frequency histogram of the behavior 
where each dimension was a different behavioral parameter. Then we asked 
how likely we were to have observed that behavior at each video frame (time) 
given the observed distributions of behaviors on trials eight and onward of the 
corresponding block. This generated a likelihood function for current time given 
an observed behavior in each video frame. We projected this function onto a 
polar coordinate system, so that one revolution represents a full interval. By 
doing this we prevented estimation biases toward the center of the interval 
when the distribution was skewed toward the edges of the interval and 
multimodal. Then we took the circular average of the posterior function as our 
estimate for current time. The distribution of estimated times for each time point 
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Figure 4.6 | Single trial estimates of elapsed time decoded from ongoing behavior during 
initial trials of 12s and 60s FI blocks. (A) Confusion matrix of video decoded estimates of 

elapsed time from reward on single trials, for the first seven trials of the 12s FI block (top) and 
60s FI block (bottom) plotted against true time (bin size = 0.5s). (B) Circular average estimate 

(red dots) and running average (blue line) of video decoded estimate of elapsed time from 

reward on single trials, for the first seven trials of the 12s FI block (top) and 60s FI block (bottom) 

plotted against true time ( bin size = 0.5s).



can be observed in the confusion matrices in Figures 4.6A for the seven first 
trials (columns) in the 12s (top row) and 60s (bottom row) FIs. 
 Systematic errors between estimates and true time were present in the 
first few trials of the 12s and 60s FI blocks (Figure 4.6B). We could observe 
this feature by plotting the estimates derived from multiple trials on the same 
axes (Figure 4.7, quadratic fits). Initial estimates were relatively slow and fast 
on the first trials of the 12s and 60s FI blocks respectively, and became more 
accurate after the first few trials.  
 The question that follows from these systematic errors is whether the 
errors in decoded time estimates over the first trials of each block were 
correlated with timing behavior. We found that the mean PST was significantly 
correlated with the errors in time estimates derived from the population over 
the first seven trials of the 12s and the 60s FI blocks (Figure 4.8, FI = 12, R2 = 
0.9, p < 0.01, FI = 60, R2 = 0.81, p < 0.01). On the initial trials of the 12s FI 
block, rats began pressing late in comparison to subsequent trials, and likewise 
the decoded estimate of time relative to reward ran slow (Figures 4.7 left and 
4.8 blue trace). Conversely, in the first trials of the 60s FI block the decoded 
estimate ran quickly on early trials, and rats were early to press (Figures 4.7 
right and 4.8 green trace), displaying a similar relationship, yet opposite in 
direction. 
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Figure 4.7 | Elapsed time estimates decoded from video correlate with true time during 
initial trials of 12s and 60s FI blocks. Decoded estimates of elapsed time for the first seven 

trials of the 12s (left) and 60s (right) FI block plotted in the same axis. Curves are quadratic fits to 
the circular mean of the likelihood function of each individual trial (red dots in Figure 4.3B). Red 

curves represent early trials and black curves represent later trials.



Multimodal estimates of time within 
trial might suggest repetitive behavior 
within trials that lack sequential 
trajectory structure 
Some features of the data suggest that 
animals engaged in repetitive behaviors 
within the FI. At the trial start the 
distribution of time estimates tended to be 
multimodal (Figure 4.6A). Consequently, 
the behavioral decoder did not distinguish 
well between the start and the end of the 
trial (Figure 4.6B). Also, time estimates 
were usually flat during the interval from 
~0.5s to ~8s, most likely because during 
this time the rats were engaged in the 
repeti t ive behavior to acquire the 
reinforcer from the water port (i.e., licking; 
Figure 4.9). Additionally, the multimodality 
of decoded times in individual trials can be used as argument against the 
hypothesis that animals employed a stereotyped sequence of actions that 
develops over time within the FI. On the contrary, it suggests that animals 
performed many repetitive ballistic transitions between few behavioral states 
across the interval (i.e., pressing, checking the water port).  
 A further visual inspection of the behavior suggests that animals alternate 
between four classes of behavioral states, namely: licking, press-checking, 
holding still and exploring. The latter two states were very infrequent (3 out of 
100 trials inspected, 20 trials per FI) and only happened in the longest FI. 

DISCUSSION 
In this work we entertained the hypothesis that animals might have used cues 
of their sensorimotor state, in a highly structured sequences of actions that 
covaries with time, to produce judgements about time. To test this hypothesis 
we decoded time estimates from high speed videos of rats performing the SFI 
task. We used computer vision algorithms to reduce the dimensionality of the 

!123

Figure 4.8 | Errors in decoded time 
predicted timing behavior. Mean error 
between true time and the video decoded 

estimate on the first seven trials of the 

12s (blue) and 60s (green) FI blocks. 

Contiguous trials are connected by solid 

lines to display the trajectory of the data 

over trials, and the first trial on each 

block is indicated by the black arrow. 
Dashed horizontal gray line represents 

zero error average decoding as 

compared to true time.



video into six behavioral descriptors, 
and then used these six variables to 
train a maximum likelihood decoder 
to estimate the current time. 
 Although the decoder could 
capture systematic changes in time 
estimated across trials from the start 
of the fixed interval transitions, we 
found that the temporal estimates 
decoded from ongoing behavior 
within the fixed interval correlated 
poorly with true time. The decoder 
sensitivity to the passage of time 

was especially poor when the behavior of the animal was highly invariant and 
repetitive (i.e., licking, pressing). These invariant behaviors clustered together 
at different moments of the interval, thus forming different “behavioral state 
modes”. Because the probability of the animal emitting any given behavioral 
state mode changed over time within the FI, the running average of the 
decoded time could capture this probability change across trials. 

Although our approach represents a methodological step towards the 
understanding of how animals use sensorimotor states to encode information 
about the environment, there were some known limitations. Firstly, concerning 
the method, due to the process we used to reduce the video dimensionality, 
our approach could only capture broad movements and postures. This limited 
the decoder's ability to capture patterns that could emerge from fine 
movements. This issue might be especially problematic if we consider time as 
the encoded variable. But because it is well known that time perception is 
affected by general behavioral features such as motion flow [36,37] and 
movement [38], we are confident that this methodological limitation was not a 
major flaw. Secondly, there are some parameters of behavior that could be 
used to encode information that are not easily accessible from the video. For 
instance, a previous research from Droit-Volet [39] has shown that parameters 
of movements, such as the strength, were correlated with timing in pre-
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F igure 4 .9 | S te reo typed reward 
acquisition behavior around the port 
might explain poor decoding performance 
within a fixed interval until ~7 seconds. 
Probability of licking sequence onset (blue) 

and licking sequence offset (red) in the first 

12s of all five FIs for all the sessions of the 

two rats.  



arithmetical kids. Our approach completely ignored this dimension of behavior. 
Nonetheless, it is possible that these behavioral parameters have 
characteristic signatures in the behavior that might be observable in the video. 
If that was the case, deeper analysis of the video can provide more information 
about the behavior and associates processes. 

We could not find any evidence to support the fact that the striatum 
encodes sequence of actions as a mean to time intervals. In fact, time 
estimates decoded from ongoing behavior were worse during the earlier 
seconds of each FI. This result conflicts directly with the data from Mello et al. 
[30], that shows that time estimates decoded from striatal population are best 
during the same earlier seconds of each FI. To support the claim that striatum 
is encoding time as a sequential action pattern, one could expect behavior to 
be more predictive of ongoing time in the same periods when striatal activity 
encodes it best. Thus this study provided arguments to support the claim 
stated in Mello et al. [30] that striatal activity has a temporal component which, 
although interacts with behavior, cannot be fully explained by it. 

This work validates the decoder’s sensitivity to behavior, by showing that it 
can identify behavioral events and the temporal features of the SFI task which 
could also be extracted through the operant chamber. We believe that future 
advancements in behavior tracking technology will open the possibility to probe 
into finer behavioral structures and extract patterns that may help us to 
understand how the brain represents the environment and implements 
behavior.  

As it is, this work assessed the consistency with previous data in SFI task. 
It also demonstrates an alternative method, that leverages current technology, 
to assess different ways in which animals can encode environmental 
information, as depicted by the embodied cognition theory. 

METHODS
All experiments were approved by the Champalimaud Foundation Bioethics 
Committee and the Portuguese “Direção Geral Veterinária". 
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Behavioral set-up 
Operant chambers consisted of a plastic bucket (rats, IKEA, Alfragide, 
Portugal) containing one operant lever (Med Associates ENV-110M) and one 
custom made acrylic nose port (Island Motion). The lever and the nose port 
were aligned horizontally on the middle of one of the smallest walls of the box; 
the nose port was placed vertically close to the ground level and the lever 
positioned vertically higher so rats had to stand to press. The nose port 
contained one infra-red beam/sensor pair for detecting muzzle entries in the 
port and one visible (white light) LED. In addition, a rubber tube connected a 
30 mL syringe filled with water (reward), a solenoid valve (Lee) and the nose 
port together. These valves were calibrated to deliver ~15 µL of water per 
reward event. Stripes of LEDs illuminated the operant chamber with red light. 
Rats are irresponsive to red light spectrum due to lack of specific red sensitive 
opsin in the eye [41,42]. 
 Except for the video camera, all sensors and effectors in the behavioral 
box were read and controlled by an Arduino Mega 2560 microprocessor 
(additional information and free software available at http://www.arduino.cc/) 
via a custom circuit board. The microprocessor implemented the behavioral 
task, and outputted data to a desktop computer through serial communication. 
A custom software based on Python’s pySerial module (freely available at 
http://pyserial.sourceforge.net/) performed the data acquisition. 

Behavior and subjects 
Two male Long-Evans hooded rats (Rattus novergicus) were trained in the 
Serial Fixed Interval (SFI; see methods in Mello et al.[30]) timing task, where 
the Fixed Intervals varied randomly in blocks of >18 trials among five intervals 
ranging in multiples of 12s from 12s to 60s. A custom Arduino state machine 
software controlled the task and outputted the raw data to the custom data 
acquisition software developed in Python. 

Video acquisition and tracking 
We acquired top view videos of the rats performing the SFI task with a high 
speed camera (Flea3FL3-U3-13S2C-CS, PointGrey Research Inc., Richmond, 
Canada) at 120 frames/s with a resolution of 1280 × 960 pixels in grayscale at 
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8 bits. Video acquisition and online tracking were performed using the in-house 
developed software Bonsai (freely available at http://bitbucket.org/horizongir/
bonsai/downloads). Each frame of the video was background subtracted 
(absolute difference of a frame with the image of the empty box), smoothed 
with a 21 pixels kernel and then thresholded. Standard computer vision 
procedures of erode and dilate were used to eliminate noise and to assure that 
the animal’s body appeared as the largest distinct blob in each frame. Once 
parameters were set for each video, the largest connected component (i.e., 
largest blob of pixels) was automatically tracked, and its properties used for 
further analysis. 
 We used a standard procedure to simplify the rat's shape [43]. By taking 
the major and the minor axes of the connected component, we could represent 
the body of the rat as an ellipse (see Figure 4.1). The major axis matched the 
rostral to caudal axis of the rat’s body and the minor axis the perpendicular 
dimension, or the width of its body (Figure 4.1C). The center of this ellipse was 
the center of the major axis in x (horizontal) and y (vertical) dimensions. We 
assumed that information about fine movements (e.g., pinna, whiskers bauds) 
or body bent was completely removed from the data set after this simplification 
process. 
 Since our simplification of rat’s body had no information about the head 
position, we established the following heuristics to identify it. On every water 
port visit, we defined that extreme of the major axis nearest (euclidean 
distance) to the water port was the head position. We considered this edge of 
the major axis to be the head position in x and y for all tracking purposes until 
the next visit to the water port. We also obtained the linear speed of the head 
movement by calculating the euclidean distance of the head position in two 
consecutive frames. 
 The angle of the major axis, as representative of the direction to which 
the rat is facing. The angular difference in two consecutive frames was 
considered the angular speed.  
 Finally, we performed a visual inspection of the video using ellipse 
properties to help us to identify behavioral patterns. The ratio between the 
lengths of the major and the minor axis seemed to correlate with the rearing 
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and grooming behaviors. The closer the major/minor axis ratio was to one, the 
higher the animal stood or the more curled it was over its own body (data not 
shown). Due to its high face validity, we decided to include the major to minor 
axis ratio as one of the behavioral measures. 

Video maximum likelihood decoder 
We decoded the current time from the ongoing behavior of the animals 
recorded in high speed videos (120 fps). The head position (x,y), linear head 
speed (s), major-minor axis ratio (r), angular position of the body (a) and 
angular speed (w) were the behavioral descriptors we extracted from the video 
data to implement our decoding (Figure 4.1E; see Video Acquisition and 
Tracking in methods section).  
 Once we had the six dimensions of the behavior for each video frame, we 
generated the prior probability for any particular behavior P(x,y,s,r,a,w) by 
generating a probability distribution histogram for each behavioral variable 
independently, except for head position that was calculated as the joint 
probability of x and y. All the dimensions had their values normalized by the 
amplitude (i.e., x = (x-min(X))/(max(X)-min(X)) of values in that dimension, so 
that all dimensions had values from 0 to 1. Each dimension was discretized 
with 40 bins of even sizes. Then, we convolved these histograms with a 

standard gaussian kernel (!  ! ), or a bidimensional gaussian in the 
case of head position. The prior was calculated independently using the data 
from all trials that had the same FI, excluding data from the first seven trials of 
each block. 
 Next, we estimated the distribution of behaviors in a particular frame 
(time), relative to the start of the trial (reward). We used a similar process to the 
one used to generate the prior, but with one difference. We generated the 
behavior distribution histograms using frames that had the same delays 
relative to the start of the trial (in bins of 0.5s). This allowed us to estimate the 
distribution of behavior in a particular time relative to the reward. We calculated 
their probability independently for each delay from block start. Because timing 
behavior was stable in the 8th trial or higher from the block start, only frames 
belonging these trials were used to train our decoder. 

µ = 0 � = 1
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 To decode time from ongoing behavior P(t|x,y,s,r,a,w), we used an 
iterative bayesian inference process. We started by extracting the current 
behavioral state for every time (frame) in the current trial, and then calculating 
the probability of time given the behavioral parameter by seeing how likely this 
particular behavior was for all times divided by the prior. Since we assumed 
independence among behavioral variables we calculated the time estimate 
probability separately for each behavioral parameter, and then we multiplied all 
the posteriors by each other. Since FI transitions to the shortest and longest 
FIs (12s and 60s respectively) were unidirectional, we only used trials from 
these FIs, and from these trials, only the first seven trials from the block start 
were included.  
 To get our time estimate, we circularized time by linking the end of the 
interval to its beginning. We did this by representing the resulting posterior 
distribution of time given behavior in a polar space using time as the angular 
dimension; one revolution was equal to one interval. Then we extracted the 
circular average. This process was especially important to prevent errors in 
multimodal distributions (which composed 2% of the trials). Next, we 
reconverted the average vector back to polar space, and finally restored the 
original time series unit. Thus, the average angle provided the time estimate.  
 Each estimate was then used to generate the confusion matrix (Figures 
4.6A). Finally, due to the high skewness and multimodality of the distribution of 
decoded times for each frame in the confusion matrix, we used the circular 
mean of time estimates to visualize the decoding trend (Figures 4.6B). 
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CHAPTER 5: Conclusion and 
Discussion 

Overview of the empirical findings 
In this thesis we investigated the role of striatal activity in representing time in 
the range of seconds to one minute. We were especially interested in 
investigating three questions: what were the dynamics of striatal population 
activity under interval timing conditions, how these dynamics could account for 
timing and what was the nature of the information contained in these dynamics. 
 We addressed these questions by combining experimental and 
computational approaches. Firstly, we recorded neurons in the striatum while 
the animals were performing the SFI timing task. We observed responses that 
resembled a moving bump of activity across the population. This pattern of 
activity possessed three striking features: different neurons responded at 
different delays spanning the whole timed intervals, most of these responses 
held their relative position in time to each other when the interval to be timed 
changed, suggesting relative coding for time, and responses multiplexed 
information about time and behavior.  
 Secondly, because the striatal population activity continuously evolved in 
a non-repeating manner, it could serve as a representation of time. Indeed, we 
could decode time estimates from these striatal population activity. These 
estimates correlated with the animals' report of perceived time.  
 Thirdly, we tested whether the activity we observed in the striatum could 
be used to generate temporally adaptive behavior. To do so, we built a model 
to simulate animals’ performance during the SFI task. Temporally adaptive 
behavior conforming to the mean accuracy sensitivity to the interval could be 
derived from the simulation. Interestingly, mean accuracy was also sensitive to 
the press-locked contributions. Time estimates in longer intervals, where 
animals pressed more times, had a left shift of their PST relative to the FI when 
compared to the shortest interval. Regarding the precision sensitivity to the 
interval, the dispersion of the PSTs was mainly affected by trial-by-trial 
variations in when the animals acquired the reward relative to the expected 
time. Ultimately, this variation was caused by the rate of pressing. Additionally, 
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we shown that PST precision sensitivity emerges from variations in pressing 
rates. Under the SFI schedule of reinforcement animals’ pressing rate 
correlated with the FI. To approach the simulation's behavior to the FI 
correlated pressing rate displayed by the rodents, we tied the pressing rate to 
the reward rate (inverse of memory trace decay rate); in this condition, the 
precision sensitivity to the interval emerged from the simulation. We 
demonstrated that although the simulation conformed strictly to the criteria for 
scalar timing, by displaying a linear relationship between accuracy/precision to 
the interval, experimental data didn't. 
 Finally, we tested the embodied cognition hypothesis, which states that 
during an interval, the animal would display a structured and non-repeating 
sequence of actions in time that could be used as a representation for time. 
This hypothesis, suggests that the FI dependent dynamics observed in the 
striatal population encode behavioral information over time rather than time per 
se. Consequently, this hypothesis represents a major point of concern in 
interval timing research. To test it, we ran a bayesian decoder on behavioral 
data extracted from videos of animals performing the SFI task. We validated 
the decoder by showing that temporal estimates, derived from the video, 
captured the sign and magnitude of the temporal adjustment, as revealed in 
the behavioral data acquired through the operant chamber. Although the 
decoder captured shifts in temporal estimation across trials, our results failed 
to demonstrate clear temporally structured behavior within trial. Hence, we did 
not find evidence, in the SFI task, that could support the hypothesis that 
animals use chains of behaviors as their representation of time. 

Mechanisms of interval timing and action selection 
Our results have direct implications to the understanding of action selection 
mechanisms. Choosing how to act in order to maximize outcome and minimize 
effort or cost is the problem that RL [1] seeks to solve. To perform RL, animals 
have to establish a causal link between context, behavior and outcome. In 
naturalistic conditions, actions might be separated from their outcomes by long 
delays, or outcomes might depend on a series of actions instead of a single 
behavior (e.g., game of chess, ambushing a prey, or navigating through a 
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labyrinth). Consequently, it is much harder to distinguish the behavior that is 
critical to produce the desired outcome. To identify the critical behavior in a 
naturalistic situation, animals must take into account multiple variables (e.g., 
the value of the outcome, its conditional probability, its expected value) in 
function of time. For this reason, most RL models use some sort of 
representation of time [1,2]. The temporal representation within the striatum we 
found — as a series of progressively widening receptive fields for delays — 
resembled the temporal basis functions of some existing learning models. 
These basis functions are considered to be more biologically plausible, and to 
represent time more efficiently [3-5]. Such representation (as a set of basis 
functions) can incorporate a time-sensitive action selection mechanism into RL 
models [6]. Therefore, the sequential neural states, which we described in the 
striatum during timing behavior, could provide a unifying view of the BG’s role 
in timing and RL. This claim is further supported by a dominant view about the 
BG that sustains its critical role to implement some aspects of RL [7-12]. Also, 
multiple loops within BG nuclei, and with other structures of the brain, can 
generate signals that propagate phasic inputs about environmental or 
behavioral events over time [13]. It is plausible that RL and interval timing may 
indeed be implemented by the same signal within the striatum, and our data 
support this hypothesis. 
 Experimental and theoretical studies suggest that different neural 
mechanisms might underlie interval timing, including: monotonically ramping 
neurons that integrate activity from a pacemaker or tonic input [14,15]; neurons 
that detect the beats of a population of oscillators that fire at different 
frequencies [16,17]; or a population clock [18], where the population of active 
neurons dynamically changes time progresses. Because these models are 
already accurate to predict the behavioral data [19-22], much of their 
attractiveness derives either from their simplicity (for engineering 
implementations) or from their potential to generate predictions about the 
biological underpinnings of the interval timing system, rather than from their 
predictive accuracy. Our data is most consistent with a population clock in 
which a sequential chain of active neurons encodes time.  
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 What are the neural mechanisms driving this sequential state pattern? 
Data from other timing systems in the brain, that share some properties with 
the striatum, might help us to elucidate the matter. In the millisecond timing 
scales, temporal information is represented by an activity that lasts for the 
duration of the whole interval. This lasting activity allegedly arises from the 
dynamics within local recurrent circuits [23,24]. Striatal MSNs are GABAergic 
(i.e., inhibitory) neurons. Consequently, these neurons cannot sequentially 
drive each other in absence of external input. It is unlikely that the dynamics 
necessary to elicit the temporal code in our data are a product of local 
computations occurring within the striatum. One possibility is that this inhibitory 
feedback within the BG could generate a population clock in response to tonic 
input from the cortex. This scenario has been contemplated in cerebellar 
models of timing in which the negative feedback of the Golgi cells generates a 
time-varying neural trajectory in response to tonic input [25]. Nonetheless, this 
model has been used to explain data from trace conditioning experiments, 
where PFC provided this tonic input to the cerebellum during the interval 
between the conditioned and unconditioned stimuli over timescales that are 
around and below one second [26-29].  
 Could the striatum, or more generally the BG, generate a time-varying 
neural trajectory in response to tonic excitatory input from the cortex using 
negative feedback? At least two requirements must be fulfilled for that to 
happen. The first requirement to propagate a signal in time is an excitatory 
input or feedback that could drive and sustain the signal during the whole 
interval [13]. The striatum has three main sources of excitatory inputs that 
could fulfill this requirement, namely the CTX, thalamus and STN. Multiple 
sources of evidence [30-36] have established the critical role of PFC to interval 
timing. During the retention interval of delayed response tasks, the PFC 
manifests sustained patterns of activity that are thought to contribute to 
learning by providing a way to link one action to the next and allow reward 
signals to be combined over time. This persistent activity is often informative 
about the passage of time [35,37]. Nonetheless, in timing tasks, sustained 
activity in the PFC has only been observed to last for up to 5 s [37-39], or up to 
~10 s in phasic activity around reward time [40]; certainly a duration much 
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smaller than the 60s necessary in the longest interval of the SFI. Although 
other cortical areas also carry temporal signals, evidence demonstrating the 
necessary role of these areas for interval timing is yet to be shown [35,41]. 
Thus, the source of excitation to drive the temporal representations in the 
striatum is likely to arise from the PFC or from other subcortical inputs. 
Consistent with the time-varying neural trajectory supported by negative 
feedback hypothesis, the PFC should provide continuous input to the striatum 
for the whole length of the interval. Therefore, if the PFC is the source of the 
excitatory drive to time signals in the striatum, future recordings of the PFC 
under the SFI condition should reveal sustained activity during the length of the 
interval of the FI. The second requirement is that striatum should have some 
sort of negative feedback process similar to the one implemented by Golgi 
cells in the cerebellum. Lateral inhibition between MSNs was once thought to 
have a winner-take-all function of the striatum [4], useful to select between 
possible actions. It has been noted that the reciprocal connections necessary 
for this interpretation are too few and their relative strength is weak [42-44]. But 
a simulation study made by Ponzi and Wickens [45] points otherwise. In this 
study, they have shown that ensembles of striatal neurons fired in sequential 
coherent episodes in the timescales of hundreds of milliseconds even when 
cortical excitation is simply constant or fluctuating noisily; the model used 
physiologically realistic assumptions of sparse random connectivity, weak 
inhibitory synapses, and sufficient cortical excitation to drive firing in some 
cells. Thus, at least for hundreds of milliseconds, the striatum seems to have 
all the requirements needed to generate time-varying neural trajectory.

It is also thought that the striatum might be reproducing a dimensionally 

reduced version of the cortical activity. As far as it is known, the BG segregates 
topographically the cortical inputs by their functions (e.g., associative, limbic, 
motor). This segregation is preserved across the multiple nuclei of the BG. As 
information transverses the BG, it has to be represented with a progressively 
smaller number of neurons. Because the same information is repeatedly 
represented in progressively smaller groups of neurons, we have reasons to 
believe that the information is either compressed or filtered somehow. If that 
was the case, it might be that we can find in the cortical activity series of 
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progressively widening peaks of activity tiling the whole interval, like the ones 
in the striatum. Previous research addressing the cortical input to the striatum 
has reported scaling effect on cortical (i.e., prefrontal, primary motor and 
parietal) population activity that is time sensitive [35,46,47]. But regardless 
efforts, Matell et al. [48] did not find peak activity in CTX that resemble the 
peaked activity in the striatum. Temporally sensitive activity in the CTX seems 
to be either too brief to account for striatal activity or in areas that do not seem 
to have causal interaction with time estimates [35].  
 The output pathways of the striatum pass through the BG output nuclei, 
through the thalamus and return to the same cortical regions that innervated 
the striatal neurons in question [49], thereby making up cortico-basal ganglio-
thalamo-cortical loops. This form or architecture implies that the striatum can 
potentially modify its own inputs dynamically. This is an important feature if we 
consider that continuous cortical input is required to implement temporal 
representations in the inhibitory striatal network, as discussed before. In every 
iteration of the cortico-basal ganglia-thalamic loop, delays could be potentially 
integrated to propagate the signal even further in time. Goldman [50] 
advocated that a feedforward mechanism can perform this integration. In this 
mechanism, activity is passed sequentially through a chain of network stages. 
In each stage of the network, delays are integrated resulting in signals that can 
propagate information over 15 s. Because each synapse in such kind network 
acts as a linear filter adding a time constant, the activity of the neurons in each 
network stage resembles the progressively widening receptive fields we 
observed in the striatum.  
 It has been proposed by Matell et al. [48] that, striatal neurons are either 
at the decision stage output (of an interval time) or downstream from it. This 
proposition is based on the empirical observation that the majority of striatal 
neurons showing a difference in firing rate as a function of time had peak-
shaped activity patterns. This claim assumes that striatal neurons are detecting 
synchrony in cortical oscillations. Hence, striatal activity would implement the 
mechanism to derive temporal estimates in the SBF model. Nonetheless, 
Matell did not provided evidence for these oscillations in the cortex during the 
timing task. On the contrary, Matell points out that cortical oscillations in the 
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appropriate range to support SBF model are most frequently found during 
inactivity or rest states [51,52], rather than when the animal is actively 
behaving. Thus, it is not clear if striatal neurons are detecting synchronies in 
oscillations or that they reflect decisions about time. Although we cannot 
exclude entirely the possibility that oscillation based mechanisms play a 
significant role in timing, our data suggest that the series of peaked activity in 
the striatum represent the passage of time as a fixed sequence of states. In 
this framework, to represent different intervals, the transition probability 
between states should be able to change in accordance with the interval to be 
timed. This transition probability is likely to be controlled by factors external to 
the striatum such as DA. This is consistent with part of what is known about the 
temporal effects of DA and PFC input modulations to the striatum [53,54]. The 
temporal effects of thalamic inputs to the striatum is yet an unexplored territory. 
 This sequence of states also embedded information about action events, 
which might reflect aspects of an action selection mechanism. In our task, 
some neurons displayed press-locked activity. Interestingly, in most of these 
neurons, press-locked activity was also modulated by when the press 
happened within the interval. This modulation was complex. Some neurons 
increased their firing as the pressing onset happened later in the interval, 
others decreased their firing, and there were those that seemed to fire 
maximally at a particular moment in the interval. This result is consistent with 
predictions from the LET model. According to LET, operant responses would be 
associated with underlying sequential states through differential reinforcement 
[21]. Operant responses (allegedly encoded by the cortex) and underlying 
sequential behavioral states (in the striatum) could be associated through 
differential reinforcement to generate time-sensitive-action-value 
representations. This scenario offers important implications for the future study 
of interval timing and action selection in the BG. LET presumes that, by 
strengthening the association between one operant behavior and its underlying 
sequential state, competing operands in the same context are weakened. If 
press-locked contributions to the time signals are reflecting action value in 
time, future experiments in tasks where competing behaviors are investigated 
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over time (e.g., dual bisection task) should be able to capture changes in the 
representation of one behavior in opposition to the competing ones. 

Relevance and mechanism of multiplexing action and time 
The multiplexing of behavioral and temporal information might cause temporal 
distortions that are relevant for implementing learning. Behavior locked 
contributions from the cortex could provide an extra excitatory input to the 
striatal activity. This extra input could affect how quickly the striatal population 
transverse the temporal receptive fields. In this way, behavioral activity of the 
subject would influence the contraction and dilation of temporal 
representations.  
 The temporal binding of stimuli to action is the widely reported 
phenomenon that describes the time perception bias of sensorial events 
toward the closest action [55-60]. Experimental data suggest that if an action 
precedes a timing cue (with some interval between them), the time when the 
cue has happened is usually underestimated [61]. Conversely, this time tend to 
be overestimated if the cue elicits or evokes a behavior [62]. This temporal 
binding of sensorial events to action is allegedly important for the ability to 
assign credit of an outcome to one's action [57,59,63] (a critical component of 
the sense of agency) because it can improve learning. Warping the timing of 
events in a direction that always brings action and environmental cue together 
might reduce the effect of intervenient processes, such as the temporal 
discounting (the rate by which time reduces the perceived value of an action or 
outcome) and improve the chances of the associative learning to take place. 
 These temporal distortions derived from behavior have specific 
characteristics that might help us to dissect its underpinnings in future studies. 
Haggard and colleagues [55,61] suggested that perception of the event time 
should be biased toward the behavior related to the event, not away from it. 
Also, there is a clear asymmetry between conditions in which the action 
precedes in time the environmental event, and in which the action follows in 
time the environmental event. How these different conditions affect the way 
behavioral contributions are integrated in the computations of time, might be a 
relevant part of the timing puzzle. For instance, in the particular case of the SFI 
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task, there is only one timing cue. Given that this cue marks the beginning and 
the end of the trial, how do the animals use the timing cue? Do they respond 
towards the upcoming reward or do they act in response to the previous 
reward? Haggard’s studies suggest that this difference matters because it 
might cause different perception biases in each condition. Perhaps, this 
temporal bias towards behavior, might help to explain the fact that animals 
pressed relatively late in shorter FIs and relatively early in longer FIs. 
 Although the data in our study demonstrate how behavior interacts with 

temporal representation, nothing can be really concluded about how sensorial 

or cognitive contributions can affect the temporal perception. Given that the 
striatum is also implicated in limbic and associative [64-66] processes, and that 
these processes can cause temporal distortions [67-70], it might be the case 
that these other functions (e.g., limbic, associative or mnemonic) affect 
temporal representations in the striatum in a similar manner in which behavior 
does.  
 Another interesting question evoked by our data is how behavioral and 
temporal information are integrated in the striatum. To approach the activity 
profile observed in the multiplexing cells of the striatum, we multiplied the fixed 
press-locked contribution to firing rate by the instantaneous time dependent 
firing rate. Multiplicative rules to connect neurons and integrate information 
have been reported before in the striatum [71] and they are allegedly mediated 
by DA [72]. DA plays an important, but yet poorly understood, role in interval 
timing. To the extent of what is known, DA (or the absence of it) causes 
distortions in the perception of time. In the experiment conducted by Malapani 
and collaborators [73], parkinsonian patients were trained to reproduce two 
intervals (i.e., 6 s and 17 s) by pressing a button. Additionally, participants 
differed on conditions in which they were on- or off-medication, during training 
or testing. Compared to the groups that were on-medication in both training 
and testing phases, individuals that were trained off-medication reproduced the 
interval with larger delays. Participants that were tested off-medication suffered 
a much more drastic effect. They overestimated the shortest interval and 
underestimated the longest one. Scalar timing was also violated in participants 
tested off-medication [73,74]. Is multiplexing a possible mechanism through 
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which DA manifests such effects on timing? One possibility is that without DA, 
the multiplication rule for multiplexing behavior and time information might be 
disrupted. Possible consequences of this disruption are the increase of noise 
and/or complete disarray of the temporal representation. Future studies could 
show evidence for this multiplicative rule or assess how this rule changes as 
DA is manipulated. Given Malapani’s results, it is fair to assume that DA has 
distinct roles in encoding and decoding processes. Hence, multiplexing might 
be critical in one of the processes and not in the other. 
 In our simulation, the precision sensitivity to the FI emerged from the 
trial-by-trial variation derived from the probabilistic pressing, and not from any 
particular feature of the temporal receptive fields of striatal neurons. When the 
pressing rate was proportional to the reward rate, scalar property emerged. DA 
might be a key component to control the mapping between pressing and 
reward rates. As it is now established, unexpected outcomes strongly activate 
midbrain dopaminergic neurons, and the magnitude of this activity is 
proportional to the discrepancies between actual and expected outcomes [75]. 
DA neurons exert a dichotomous and opposite effect on the canonical 
pathways of the BG [76]. DA positively modulates MSNs of the direct pathway, 
which can drive movement when excited. On the other hand, MSNs in the 
indirect pathway are negatively modulated by dopamine. It has been proposed 
that the indirect pathway inhibits undesirable muscular movement [77]. Thus, at 
least hypothetically, DA might be able to adjust the amount of movement output 
as a function of information about reward.  

Interactions between ongoing behavior and time perception 
As with all electrophysiological investigations in behaving animals, it is 
important to be able to dissociate the "cognitive" variable of interest from the 
motor activity that is circumstantial to the task performance. Because animals' 
behaviors evolve as time progresses, a major criticism to any 
electrophysiological study of time is that the neural activity recorded might be 
simply related to the sensory-motor aspects of the task and not in the temporal 
aspects [20].  
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 In this work, much effort was directed to control motor artifacts in our 
data. Firstly, we looked for moments in which behavior was invariable, but 
neural activity could still account for the passage of time. In our task, this 
moment was right after reward delivery. At this moment, animals spent a 
significant amount of time (~5s) engaged in one repeated behavior (i.e., licking 
water from the port). If brain activity in the striatum was locked to time, 
decoding the passage of time from the population activity should display a 
constant estimation for as long as the licking behavior lasted. That was not the 
case. Secondly, we inactivated the striatum using the GABA receptor agonist 
muscimol. Infusions of muscimol produced relative insensitivity of PSTs to the 
lengths of the interval without altering session-average pressing rate. If 
pressing itself was exclusively encoded in the striatum, pressing behavior 
should be disrupted. Thirdly, we used a bayesian decoder to extract temporal 
information about the task from the ongoing behavior captured in high speed 
video. The striatal population signal was very reliable from trial-to-trial. 
Behavior should demonstrate similar reliability from trial-to-trial to be used as a 
source of temporal information. Were this the case, temporal estimates 
decoded from within the trial should be smooth, unimodal and very similar to 
the estimates derived from striatal neurons. Temporal decoding from video was 
actually very consistent with the behavior acquired in the operant box across 
trials, but substantially different from neuronal estimates. Estimates were close 
to constant for the first ~5 s (time spent licking water from the port), and very 
noisy otherwise. The increase in noise was a direct consequence of the 
animals’ tendency to repeat the same actions (e.g., pressing and checking) 
across the interval. Hence, while temporal estimates derived from neural 
activity progressed smoothly within the interval; temporal estimates derived 
from video within interval progressed in steps. This suggests that as time 
elapsed, animals engaged in a sequence of three behavioral states (i.e., 
licking, waiting, press-checking). 
 This view, that temporal representation should be independent of 
behavior, reflects in part the overwhelming influence that information 
processing models have on the interval timing literature so far. Alternative 
views about interval timing admit structured behavior as a valid source for 
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temporal information. BeT and LeT models are examples of these views. 
These models assume an underlying sequential chain of behavioral states, a 
set of operant responses (i.e., overt behaviors) and a vector of associative 
links connecting operant responses to the underlying behavioral states. The 
transitions between states are probabilistic and depend on the rate of 
reinforcement, so that increases in reinforcement rate lead to quick state 
transitions. The succession of underlying states takes on the role of a clock 
process, each state acting as a discriminative stimuli to perform at a different 
temporal criteria. Subjects can act at the right time by identifying their current 
state. The sequence of underlying behavioral states predicted by BeT and LeT 
models maps very closely the chain of progressively widening temporal 
receptive fields we found in the striatum. We believe that these temporal 
receptive fields might represent transitions in underlying behavioral states,  
which makes our data most consistent with the sequential state family of timing 
models. 
 One can argue that we could not show ongoing structured behavior 
because we discarded the relevant information from the videos we used. 
Indeed, when we simplified the shape of the animals, we discarded substantial 
information about the fine behavior of the animals. How much this fine 
behaviors are relevant to timing is open to debate. Allegorical evidence from 
everyday life experience suggest we use subtle actions (e.g., tapping, folding 
fingers, subvocal verbal counting) to represent the passage of time. And 
because animals might use their behavior in the same way we do, we tend to 
agree with this argument. Nonetheless, there is evidence that weakens this 
argument. A recent study, which identified such structured behaviors as 
predictive of temporal judgments [78], showed that neural activity predicts 
earlier (300 ms) and better what decision the animal will take than any 
prediction derived from the ongoing behavior. This result suggests that 
neuronal temporal representations are more relevant to drive behavior, than 
the behavior being a major source of temporal information to the striatum. 
 Derived from the criticism above is the argument that some components 
of the behavior, although measurable, cannot be captured in the video. 
Previous research from Droit-Volet [79] has shown that features of movements 
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such as strength were correlated with timing in pre-arithmetical kids. In other 
words, together with pressing rate, pressing strength would also be affected by 
the reward rate. In our data set, if modulation of behavioral locked contributions 
were derived from strength, and not from time as we said, the relationship of 
the modulation should be linear with time or with the reward rate. Nonetheless, 
the behavior locked contributions revealed rich diversity of relationships with 
the passage of time, sometimes ramping up as time passed, sometimes 
ramping down and in some cases with more complex relationships.  
 Knowing how to extract relevant information from the increasingly dense 
dataset becomes progressively more relevant as new technologies allow us to 

extract richer data sets. Part of this work was to provide a proof of principle for 

how we could use the same decoding approach, widely used in 
electrophysiological studies, to address embodied cognition questions. 
Although we could not find any particular pattern of behavior within the interval, 
we could categorize the behavior of the animal from the video and make 
correct estimations about the overall behavior across trials. We consider these 
results as a positive validation of the approach. Additionally, the major benefits 
of the video-based decoding approach were the speed and the reliability of the 
behavior analysis. Our algorithm could perform, in few hours, the analysis that 
would take days to do manually. We hope that as technology advances and 
tracking algorithms become more sophisticated, this kind of approach becomes  
more popular. 

Future directions: the source of timing signal in the striatum 
Although we could identify temporal signals in the striatum that were necessary 
for interval timing behavior, it is not clear how these signals are used in broader 
contexts (e.g., in relationship to other brain areas, in other behavioral 
contingencies). The interval timing literature points out that the striatum, 
cerebellum [80,81] and hippocampus [82,83] interact to produce the estimation 
of intervals in the range of seconds to minutes. The three structures have 
remarkable functional similarities regarding how they generate signals with the 
required properties to generate reliable representation of intervals. The three 
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are able to produce reliable non-repeating signals that propagate in time, 
starting from an event inputs [13]. Why have three systems to generate 
temporal representations? There are many possible answers. The brain might 
have developed redundant mechanisms to preserve critical functions, such as 
timing, in face of eventual brain damage [84]. An alternative answer is that 
different regions differ regarding their reliability to reproduce signals in specific 
ranges or contexts. For instance, although striatum and cerebellum can 
manifest temporal representations in the range of 1 s to 5 s, the cerebellum 
might be a more reliable source of information in the lower end of this range 
than the striatum. Also, differences in the behavioral demand imposed by the 
task might determinate the preference for encoding time in one area in 
opposition to other. For example, both striatum and hippocampus are deeply 
involved in memory processes. The former is involved in implicit [85-89] and 
the latter in explicit memory [89-91]. To generate a temporal estimation, most of 
retrospective timing tasks require from the subject to recall events in the past 
and reconstruct its history until the present moment. In this context, temporal 
processing would be more likely to engage the hippocampus than the striatum 
[92]. Because it would be very hard to perform this task without episodic 
memory. Further investigations to delineate the functional boundaries of brain 
area engagement in interval timing can provide a valuable source of 
information. This knowledge can help to organize the data from the field and 
lead to more inclusive, general and comprehensive models. 
 Our future studies should concentrate on identifying the mechanism that 
generated the striatal dynamics we observed and on clarifying that striatal 
population response is best explained as a sequence of active neurons. About 
32% of the neurons we recorded did not maintain their ordinal position over the 
different intervals. How these neurons might contribute or interfere to time 
processing remains unknown. Most likely these neurons are processing other 
cortical information (e.g., associative, limbic, sensorial, motor), but because we 
lack information about input areas (downstream and upstream) to the striatum, 
we cannot make any conclusive statement about it. Thus, the next step should 
be to record activity from relevant input areas. Good candidates are the PFC 
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given its know relevance to interval timing, and the GPe or STN given their 
direct and indirect feedback loops with the striatum.  
 Alternatively, another possible direction of research would be to explore 
how striatal population reorganizes its activity across timing tasks with different 
behavioral demands. By chronically recordings neural activity in animals that 
were trained to perform in different tasks, we could observe whether the 
sequential chain of temporal receptive fields is a fixed universal mediator of all 
timing behavior or if these cells reassemble their dynamics depending on the 
context.  
 This study has contributed to the field by being the first one to 
demonstrate evidence for a relative code for time in the striatum in the scale of 
seconds to minutes. We demonstrated that these signals were relevant for the 
animals to derive their estimates of times and we have shown that these 
signals do not derive exclusively from motor programs. Our data is consistent 
with a subset of theoretical timing models, the sequential state models. Hence, 
our data provide to these models a possible biological substrate. In addition, 
our study gave rise to relevant and tangible research hypothesis regarding 
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Figure 5.1 | Schematic of temporal information flow in the striatum. Prefrontal cortex (PFC) 
sends persistent input (a memory trace; gray line) to the striatum through cortical-striatal 
projections which weights are modulated by dopaminergic inputs. The negative feedback 
network within the striatum transforms the input in a temporal receptive fields (gray curves). The 
downstream nuclei of the BG operate on striatal information to implement decision about which 
action sequence to execute. The information that leaves the BG is than sent as a feedback to the 
cortex through the thalamus. This feedback, when excitatory can extend the memory trace (black 
line). Bop I, II and III stand for behavior: operand. Cortical representation of multiple behaviors 
might be differentially reinforced (by Hebbian plasticity) with striatal neurons that represent 
particular delays from the reward. This process would result in a representation of action value 
over time.



what signals should be found in the areas that send projections to the striatum. 
Also, we proposed some ideas about the mechanism by which these signals 
are generated within the striatum. More specifically, we posit (Figure 5.1) that 
in order to generate activity that resemble a temporal receptive field, the 
striatum needs persistent input from thalamic and/or cortical areas, among 
which the PFC is the most likely region, given the reasons already discussed. 
This perseverant input should be transformed into a signal resembling a 
receptive field for few hundreds of milliseconds in the inhibitory network of the 
striatum. This temporal representation could feedback to PFC, extending in 
time its input to the BG, and allowing the striatum to generate multiple 
receptive fields that tile the whole interval. The strength of cortico-striatal 
connections between the PFC and the associative striatum, which is highly 
modulated by DA, is likely to control how narrow or wide these receptive fields 
are. Together with temporal representations, as a series of progressively 
widening receptive fields, the striatum would also receive input from other 
motor, limbic and sensorial areas. Hebbian plasticity could guarantee 
strengthening of sensory-motor input that is concomitant with a currently active 
temporal receptive field. The strength of the connection between behavior and 
temporal receptive field would encode value of the behavior in time. Finally, 
since this behavior-time association can change how striatal neurons represent 
time without changing the rules by which they are decoded by downstream 
neurons, this associative process could cause behaviorally driven changes in 
temporal estimation. 
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