50,761 research outputs found

    Comparison of three modelling approaches of potential natural forest habitats in Bavaria, Germany

    Get PDF
    In the context of the EU Habitats Directive, which contains the obligation of environmental monitoring, nature conservation authorities face a growing demand for effective and competitive methods to survey protected habitats. Therefore the presented research study compared three modelling approaches (rule-based method with applied Bavarian woodland types, multivariate technique of cluster analysis, and a fuzzy logic approach) for the purpose of detecting potential habitat types. The results can be combined with earth observation data of different geometric resolution (ASTER, SPOT5, aerial photographs or very high resolution satellite data) in order to determine actual forest habitat types. This was carried out at two test sites, situated in the pre-alpine area in Bavaria (southern Germany). The results were subsequently compared to the terrestrial mapped habitat areas of the NATURA 2000 management plans. First results show that these techniques are a valuable support in mapping and monitoring NATURA 2000 forest habitats

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    A Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to Knowledge Acquisition

    Get PDF
    Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to knowledge acquisition is proposed in this paper as a viable solution to the challenges of rule-based unwieldiness and sharp boundary problem in building a fuzzy rule-based expert system. The fuzzy models were based on domain experts’ opinion about the data description. The proposed approach is committed to modelling of a compact Fuzzy Rule-Based Expert Systems. It is also aimed at providing a platform for instant update of the knowledge-base in case new knowledge is discovered. The insight to the new approach strategies and underlining assumptions, the structure of FARME-D and its practical application in medical domain was discussed. Also, the modalities for the validation of the FARME-D approach were discussed

    Modeling and Optimal Design of Machining-Induced Residual Stresses in Aluminium Alloys Using a Fast Hierarchical Multiobjective Optimization Algorithm

    Get PDF
    The residual stresses induced during shaping and machining play an important role in determining the integrity and durability of metal components. An important issue of producing safety critical components is to find the machining parameters that create compressive surface stresses or minimise tensile surface stresses. In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows constructing transparent fuzzy models considering both accuracy and interpretability attributes of fuzzy systems. The new method employs a hierarchical optimisation structure to improve the modelling efficiency, where two learning mechanisms cooperate together: NSGA-II is used to improve the model’s structure while the gradient descent method is used to optimise the numerical parameters. This hybrid approach is then successfully applied to the problem that concerns the prediction of machining induced residual stresses in aerospace aluminium alloys. Based on the developed reliable prediction models, NSGA-II is further applied to the multi-objective optimal design of aluminium alloys in a ‘reverse-engineering’ fashion. It is revealed that the optimal machining regimes to minimise the residual stress and the machining cost simultaneously can be successfully located

    Knowledge discovery for friction stir welding via data driven approaches: Part 2 – multiobjective modelling using fuzzy rule based systems

    Get PDF
    In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ‘Pareto-optimal’ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge

    Model fusion using fuzzy aggregation: Special applications to metal properties

    Get PDF
    To improve the modelling performance, one should either propose a new modelling methodology or make the best of existing models. In this paper, the study is concentrated on the latter solution, where a structure-free modelling paradigm is proposed. It does not rely on a fixed structure and can combine various modelling techniques in ‘symbiosis’ using a ‘master fuzzy system’. This approach is shown to be able to include the advantages of different modelling techniques altogether by requiring less training and by minimising the efforts relating optimisation of the final structure. The proposed approach is then successfully applied to the industrial problems of predicting machining induced residual stresses for aerospace alloy components as well as modelling the mechanical properties of heat-treated alloy steels, both representing complex, non-linear and multi-dimensional environments

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    The application of ANFIS prediction models for thermal error compensation on CNC machine tools

    Get PDF
    Thermal errors can have significant effects on CNC machine tool accuracy. The errors come from thermal deformations of the machine elements caused by heat sources within the machine structure or from ambient temperature change. The effect of temperature can be reduced by error avoidance or numerical compensation. The performance of a thermal error compensation system essentially depends upon the accuracy and robustness of the thermal error model and its input measurements. This paper first reviews different methods of designing thermal error models, before concentrating on employing an adaptive neuro fuzzy inference system (ANFIS) to design two thermal prediction models: ANFIS by dividing the data space into rectangular sub-spaces (ANFIS-Grid model) and ANFIS by using the fuzzy c-means clustering method (ANFIS-FCM model). Grey system theory is used to obtain the influence ranking of all possible temperature sensors on the thermal response of the machine structure. All the influence weightings of the thermal sensors are clustered into groups using the fuzzy c-means (FCM) clustering method, the groups then being further reduced by correlation analysis. A study of a small CNC milling machine is used to provide training data for the proposed models and then to provide independent testing data sets. The results of the study show that the ANFIS-FCM model is superior in terms of the accuracy of its predictive ability with the benefit of fewer rules. The residual value of the proposed model is smaller than ±4 μm. This combined methodology can provide improved accuracy and robustness of a thermal error compensation system

    Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera

    Get PDF
    Thermal errors are often quoted as being the largest contributor to CNC machine tool errors, but they can be effectively reduced using error compensation. The performance of a thermal error compensation system depends on the accuracy and robustness of the thermal error model and the quality of the inputs to the model. The location of temperature measurement must provide a representative measurement of the change in temperature that will affect the machine structure. The number of sensors and their locations are not always intuitive and the time required to identify the optimal locations is often prohibitive, resulting in compromise and poor results. In this paper, a new intelligent compensation system for reducing thermal errors of machine tools using data obtained from a thermal imaging camera is introduced. Different groups of key temperature points were identified from thermal images using a novel schema based on a Grey model GM (0, N) and Fuzzy c-means (FCM) clustering method. An Adaptive Neuro-Fuzzy Inference System with Fuzzy c-means clustering (FCM-ANFIS) was employed to design the thermal prediction model. In order to optimise the approach, a parametric study was carried out by changing the number of inputs and number of membership functions to the FCM-ANFIS model, and comparing the relative robustness of the designs. According to the results, the FCM-ANFIS model with four inputs and six membership functions achieves the best performance in terms of the accuracy of its predictive ability. The residual value of the model is smaller than ± 2 μm, which represents a 95% reduction in the thermally-induced error on the machine. Finally, the proposed method is shown to compare favourably against an Artificial Neural Network (ANN) model

    Automatic construction of rules fuzzy for modelling and prediction of the central nervous system

    Get PDF
    The main goal of this work is to study the performance of CARFIR (Automatic Construction of Rules in Fuzzy Inductive Reasoning) methodology for the modelling and prediction of the human central nervous system (CNS). The CNS controls the hemodynamical system by generating the regulating signals for the blood vessels and the heart. The main idea behind CARFIR is to expand the capacity of the FIR methodology allowing it to work with classical fuzzy rules. CARFIR is able to automatically construct fuzzy rules starting from a set of pattern rules obtained by FIR. The new methodology preserves as much as possible the knowledge of the pattern rules in a compact fuzzy rule base. The prediction results obtained by the fuzzy prediction process of CARFIR methodology are compared with those of other inductive methodologies, i.e. FIR, NARMAX and neural networksPostprint (published version
    corecore