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Abstract� The main goal of this work is to study the performance of
CARFIR �Automatic Construction of Rules in Fuzzy Inductive Reason�
ing� methodology for the modelling and prediction of the human central
nervous system �CNS�� The CNS controls the hemodynamical system by
generating the regulating signals for the blood vessels and the heart� The
main idea behind CARFIR is to expand the capacity of the FIR method�
ology allowing it to work with classical fuzzy rules� CARFIR is able to
automatically construct fuzzy rules starting from a set of pattern rules
obtained by FIR� The new methodology preserves as much as possible
the knowledge of the pattern rules in a compact fuzzy rule base� The
prediction results obtained by the fuzzy prediction process of CARFIR
methodology are compared with those of other inductive methodologies�
i�e� FIR� NARMAX and neural networks�

� Introduction

The Fuzzy Inductive Reasoning �FIR� methodology emerged from the General
Systems Problem Solving �GSPS� developed by Klir ���	 FIR is a data driven
methodology based on systems behavior rather than structural knowledge	 It is
a very useful tool for modelling and simulate those systems from which no pre

vious structural knowledge is available	 FIR is composed of four main processes�
namely� fuzzi�cation� qualitative model identi�cation� fuzzy forecasting� and de�
fuzzi�cation	 The FIR structure box of �gure � describes all the processes of FIR
methodology	
The fuzzi�cation process converts quantitative data stemming from the sys


tem into qualitative data	 The qualitative model identi�cation process is able to
obtain good qualitative relations between the variables that compose the system�
building a pattern rule base that guides the fuzzy forecasting process	 Both the
fuzzi�cation and the qualitative model identi�cation processes are relevant in the
present study and� therefore� are explained in more detail in the next section	
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The fuzzy forecasting process predicts systems
 behavior	 The FIR inference
engine is a specialization of the k
nearest neighbor rule� commonly used in the
pattern recognition �eld	

Defuzzi�cation is the inverse process of fuzzi�cation	 It makes possible to
convert the qualitative predicted output into a quantitative variable that can
then be used as input to an external quantitative model	 For a deeper insight
into FIR methodology the reader is referred to �����	

It has been shown in previous works that FIR methodology is a powerful
tool for the identi�cation and prediction of real systems� specially when poor or
non structural knowledge is available �����	 This is the case of the human central
nervous system that controls the hemodynamical system	 FIR methodology was
used to identify the �ve controllers that compose the central nervous system
obtaining very good results when comparing with other inductive methodologies
such as NARMAX models ��� and time delay neural networks ���	 However� FIR
methodology has an important drawback	 The pattern rule base generated by
the qualitative model identi�cation process can be very large if there exists a big
amount of data available from the system	 As it is explained accurately latter�
the number of generated rules is almost as large as the number of observations
recorded from the system	 Therefore� when a large number of pattern rules exists
in the rule base the prediction of a new output value becomes very slow	

In this paper the methodology of the automatic construction of fuzzy rules
�CARFIR� is used to solve the drawback of FIR methodology	 CARFIR proposes
an alternative for the last two processes of FIR methodology �fuzzy forecasting
and de�uzi�cation� that consists on a fuzzy inference system �FIS� that allows
to compact the pattern rule base in a classical fuzzy rule base and to de�ne a
inference scheme that a�ords the prediction of the future behavior of the system	
This is shown in the FIS structure box of �gure �	 The additional structure does



not pretend to substitute the fuzzy prediction and de�uzi�cation processes but
to increase the e�ciency of FIR methodology	
The extended methodology obtains a fuzzy rule base by means of the fuzzy

rules identi�cation process that preserve as much information as possible con

tained in the pattern rule base	 Therefore� the former can be considered a gener

alization of the latter	 In other words� the fuzzy rule base is a set of compacted
rules that contains the knowledge of the pattern rule base	 In this process some
precision is lost but the robustness is considerably increased	
The fuzzy inference process of CARFIR methodology allows the prediction

of systems behavior by means of two di�erent schemes	 The �rst scheme cor

responds to the classical forecasting process of FIR methodology� i	e	 pattern
prediction scheme	 The second correspond to purely Sugeno fuzzy inference sys

tem� i	e	Sugeno prediction scheme	
In this paper CARFIR performance is studied in the context of a biomedical

application� i	e	 the human central nervous system	 The central nervous system
is part of the cardiovascular system and controls the hemodynamical system�
by generating the regulating signals for the blood vessels and the heart	 These
signals are transmitted through bundles of sympathetic and parasympathetic
nerves� producing stimuli in the corresponding organs and other body parts	 A
simpli�ed diagram of the cardiovascular system is shown in �gure �	
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Fig� �� Simpli�ed diagram of the cardiovascular system model

The CNS control model is composed of �ve separate controllers� the heart rate
controller �HRC�� the peripheric resistance controller �PRC�� the myocardiac



contractility controller �MCC�� the venous tone controller �VTC�� and the coro�
nary resistance controller �CRC�	 All �ve controller models are single�input�single�
output �SISO� models driven by the same input variable� namely the Carotid
Sinus Pressure �see �gure ��	 The �ve output variables of the controller models
are not even amenable to a physiological interpretation� except for the Heart
Rate Controller variable� which is the inverse heart rate� measured in seconds
between beats	
The functioning of the central nervous system is of high complexity and not

yet fully understood	 However� individual di�erential equation models for each of
the hypothesized control mechanisms have been postulated by various authors
������	 These models o�er a considerably low degree of internal validity	 The
use of inductive modelling techniques with their reduced explanatory power but
enhanced �exibility for properly re�ecting the input�output behavior of a system
may o�er an attractive alternative to these di�erential equation models	
In previous works ��� ���� the FIR methodology was used to �nd a qualitative

model of the CNS control that accurately represents the input�output behavioral
patterns of the CNS control that are available from observations	 However� the
pattern rule base obtained was quite large� increasing considerably the time
needed in the prediction process	 It is the aim of this paper to use CARFIR
methodology to identify a set of Sugeno fuzzy rules from the pattern rule base
obtained initially by FIR but preserving� as much as possible� their prediction
capability	
CARFIR methodology is introduced in section �	 In section �� CARFIR is

used to infer a Sugeno rule base for the central nervous system control	 CARFIR
prediction results �pattern and Sugeno prediction schemes� are presented and
discussed from the perspective of the prediction performance and the size of the
rule base	 CARFIR results are compared with those of other inductive mod

elling methodologies� i	e	 NARMAX and time delay neural networks	 Finally�
the conclusions of this research are given	

� The CARFIR Methodology

CARFIR methodology is composed of two parts� a FIR structure and a FIS
structure �see �gure ��	 As mentioned earlier CARFIR is an extension of the FIR
methodology	 Therefore� the �rst part of CARFIR consists on the generation of
the pattern rule base using FIR methodology	 To this end� the next steps are
required�

� Speci�cation of the external parameters
� Qualitative model identi�cation

The second part of CARFIR methodology consists on the identi�cation of
fuzzy rules and on systems
 prediction by means of a fuzzy inference system	 To
this end� it is necessary to follow the next steps�

� Identi�cation of Sugeno fuzzy rules starting from pattern rules
� Prediction by means of two di�erent schemes



These steps are explained in detail next	

External parameters

There is a set of external parameters that need to be speci�ed in CARFIR
methodology� mainly in the fuzzi�cation process	 FIR fuzzi�cation process con

verts quantitative values into qualitative triples	 The �rst element of the triple
is the class value� the second element is the fuzzy membership value� and the
third element is the side value	 The side value indicates whether the quantitative
value is to the left or to the right of the peak value of the associated membership
function	
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Figure � shows an example of fuzzi�cation of the variable Temperature	 For
instance� a quantitative temperature value of ���C is discretized into a quali

tative class value of �normal� with a fuzzy membership function value of �	����
and a side function value of �right� �since �� is to the right of the maximum of
the bell�shaped membership function that characterizes the class �normal
�	

In order to convert quantitative values into qualitative ones� it is necessary to
provide to the fuzzi�cation function the number of classes into which the space is
going to be discretized� the landmarks �limits between classes� and the shape of
the membership function for each input and output variable	 The default value
for the number of classes
 parameter is three	 The equal frequency partition
�EFP� is used as the default method to obtain the landmarks of the classes	
Finally� the gaussian shape is used as the default value for the membership
function parameter	 These default values have been used in di�erent applications
obtaining usually very good results �����	

Qualitative model identi�cation

The result of the fuzzi�cation process� i	e	 the qualitative behavior� is stored
in the qualitative data matrices	 The �rst matrix contains the class values� the
second stores the membership information� and the third records the side values	
Each column represents one of the observed variables� and each row denotes one
time point� i	e	� a recording of all variables� or a recorded state	



The qualitative model identi�cation process of the CARFIR methodology is
responsible of �nding spatial and temporal causal relations between variables
and� therefore� of obtaining the best qualitative model that represents the sys

tem	 A FIR model is composed by a so
called mask and the behavior matrix	
The mask represents the structure of the model� whereas the behavior matrix is
the associated pattern rule base	 An example of mask is shown in equation �	

�tn
x u� u� y

t� ��t � �� �
t� �t � � ��
t �	 � ��

�
���

The negative elements in the mask are referred to as m�inputs �mask inputs�
and denote causal relations with the output	 The sequence in which they are
enumerated is immaterial	 The zero elements are forbidden relations	 The single
positive value denotes the output	 The mask can be described� also� in a position
notation� were the m
inputs and the output are numbered from left to right and
from top to bottom	 The mask of equation � corresponds to ��� �� �� ��� in position
notation	
The qualitative model identi�cation process evaluates the possible masks and

concludes which of them o�ers the highest quality from the point of view of an
entropy reduction measure	 Once the best mask has been identi�ed� it can be
applied to the qualitative data matrices obtained from the system� resulting in
a particular pattern rule base called behavior matrix in FIR nomenclature	 The
process of constructing the pattern rule base from the qualitative data matrices
using the best mask obtained is described in �gure �	
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The mask can be used to ��atten� dynamic relationships into �pseudo�static�
relationships	 The left side of �gure � shows an excerpt of the class qualitative



data matrix� one of the three matrices belonging to the qualitative data model	 In
the example shown in this �gure� the second variables� u�� was discretized into
two classes� whereas the remaining variables� u� and y� have been discretized
into three classes each	 The dashed box symbolizes the mask that is shifted
downwards along the class qualitative data matrix	 The round shaded �holes� in
the mask denote the positions of them�inputs� whereas the square shaded �hole�
indicates the position of the output	 The class values are read out from the class
qualitative data matrix through the �holes� of the mask� and are placed next to
each other in the behavior matrix �pattern rule base� that is shown on the right
side of �gure �	 Each row of the behavior matrix represents one pseudo�static
qualitative state or qualitative rule	 For example� the shaded rule of this �gure
can be read as follows� �If the �rst m�input� i�� has a value of ��
 �corresponding
to �low
�� and the second and third m�inputs� i� and i�� have also a value of ��

�corresponding to �low
� then the output� o� assumes a value of ��
 �corresponding
to �high
�	

Identi�cation of Sugeno fuzzy rules

At this point the pattern rule base representing the system behavior is already
available	 The next step is the generation of fuzzy rules starting from the pattern
rules by adjusting automatically the parameters of the fuzzy system	 Tradition

ally� the development of a fuzzy system requires the collaboration of a human
expert that is the responsible of calibrating and tuning all its parameters manu

ally	 It is well known that this is not an easy task and requires a good knowledge
of the system	

The CARFIR methodology allows the automatic construction of a fuzzy rule
base as a generalization of the previously obtained pattern rule base by means
of the fuzzy rules identi�cation process �refer to �gure ��	 The idea behind the
obtaining of fuzzy rules starting from pattern rules is based on the spatial rep

resentation of both kind of rules	 The pattern rule base can be represented
graphically on the input
output space	 If the model identi�ed by FIR is of high
quality then the pattern rules form a uniform thin surface in the input
output
space	 However� if the model obtained is not so good the spatial representation
looks as a surface where the thickness of some parts is more signi�cant than that
of others	 The thickness of the surface means that for a given input pattern �or
a set of antecedents� the output variable �or consequent� can take di�erent class
values� i	e	 the pattern rule base is not deterministic	 As mentioned before� the
quality of the model is computed by means of an entropy measure that re�ects
the level of determinism of the state transition matrix associated to the mask
and the behavior matrix	 A good model is obtained when it has a high level of
determinism associated in its rules and all the physical behavior patterns are
represented in the model	 The spatial representation of such a situation would
be a uniform thin surface	

A fuzzy inference system generates a unique output value �consequent� for
a set of antecedents	 Therefore� the graphical representation looks always as a
totally uniform surface or mesh in the input
output space	 The tuning process



consists on automatically adjusting the mesh built by the fuzzy inference system
to the surface obtained from the pattern rules	
Figure � shows an example of the tuning process	 This �gure presents a three

dimensional view of the graphic representation of the pattern rule base �circles�
and the fuzzy rule base �squares� of the heart rate controller of the CNS	 The
pattern rule base was constructed by using the best mask inferred by FIR	 The
consequent of a Sugeno fuzzy rule is obtained from the values of the antecedents
using equation �	

y �

P
n

i��
��i �wi�P
n

i��
�i

���

In equation �� �i is the �re of the ith rule� wi is the weight of the ith rule and n
is the total number of rules of the system	 The product is the fuzzy operator used
to obtain the �re of each rule	 The tuning process consists on adjusting the rules
weight� wi� by iterating through the data set using the gradient descent method
����	 The tuning of the ith rule weight is obtained by calculating the derivative
of the cost function E with respect to wi	 The cost function is described in
equation � �quadratic error addition�� where ND is the total number of data
points� y is the value given by the fuzzy system and yr is the real value	

E �
�

�

NDX
k��

�y� yr�� �	�

Prediction schemes

Once the rule base �pattern and�or fuzzy� is available� system prediction can take
place	 CARFIR includes the option of using the FIR fuzzy forecasting process
that use exclusively the pattern rule base	 This option is desirable when the
computational resources allow to keep the pattern rule base or when the Sugeno
fuzzy scheme is not able to obtain an accurate representation of the pattern
rules	 The Sugeno fuzzy inference system makes use of the fuzzy rules obtained
starting from the pattern rule base as explained in the previous section	 The
prediction process is done by means of the classical Sugeno inference system
that have been already mentioned before	

� CNS controller models

In this work the �ve CNS control models presented in �gure �� namely� heart
rate� peripheric resistance� myocardiac contractility� venous tone and coronary
resistance� are inferred for a speci�c patient by means of CARFIR methodology	
As has been mentioned earlier� all the controllers are SISO models driven by

the same input variable� the carotid sinus pressure	 The input and output signals
of the CNS controllers were recorded with a sampling rate of of �	�� seconds
from simulations of the purely di�erential equation model	 The model had been
tuned to represent a speci�c patient su�ering a coronary arterial obstruction� by
making the four di�erent physiological variables �right auricular pressure� aortic



pressure� coronary blood �ow� and heart rate� of the simulation model agree
with the measurement data taken from the real patient	 The CNS control models
obtained were validated by using them to forecast six data sets not employed
in the training process	 Each one of these six test data sets� with a size of
about ��� data points each� contains signals representing speci�c morphologies�
allowing the validation of the model for di�erent system behaviors	

In the modelling process� the normalized mean square error �in percentage�
between the simulated output� �y�t�� and the system output� y�t�� is used to
determine the validity of each of the control models	 The error equation is given
in equation �	

MSE  
E��y�t� � �y�t����

yvar
� ���! ���

where yvar denotes the variance of y�t�	

The quantitative data obtained from the system is converted into qualitative
data by means of the fuzzi�cation process of CARFIR methodology	 Several ex

periments were done with di�erent partitions of the data for the �ve controllers	
Both the input and output variables were classi�ed into �� �� � and � classes using
the equal frequency partition �EFP� method	 The identi�cation of the models
was carried out using ���� samples	 The best masks obtained for the coronary
resistance �CR� and heart rate �HR� controllers are presented in equation �	

t nx CSP CRC t nx CSP HRC
t� ��t
t� �t
t

�
� �

�� ��
� ��

�
t� ��t
t� �t
t

�
�� ��
� �
� ��

�
���

The best mask inferred for the myocardiac contractility� venous tone and
peripheric resistance controllers is shown in in equation �	

�tn
x CSP MC�V T�PR

t� ��t �� �
t� �t � � �
t � � �

�
���

Applying these masks to the qualitative data� a pattern rule base �behavior
matrix � with ���� rules was obtained for each one of the �ve controllers	 Once
the pattern rules are available the fuzzy rules identi�cation procedure can take
place	 From the experiments performed with di�erent number of classes� it was
concluded that the best matching between pattern and fuzzy rules is obtained
when the input and output variables were discretized into � classes� and� there

fore� the Sugeno fuzzy rule base of each controller contain �� rules	 The reduction
of the number of rules is signi�cant �from ���� to ���	 Figure � shows a three
dimensional view of the graphic representation of the pattern rule base �circles�
and the fuzzy rule base �squares� of the heart rate controller of the CNS� ob




tained after the tuning process	 The tuning process has been performed during
�� epochs for all the �ve controllers	
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Fig� �� Pattern and fuzzy rules surfaces for the heart rate controller

As can be seen from �gure �� the mesh that represents the fuzzy rules has
been adapted quite accurately to the pattern rules surface	 This is due to the
fact that the thickness of the pattern rules surface is considerably small making
it possible the approximation by means of a fuzzy rules surface �mesh�	

Once the Sugeno fuzzy rule base is available for each controller� the Sugeno
prediction scheme is performed for each of the � test data sets	 TheMSE errors
of the �ve controller models for each of the test data sets are presented in table
�	 The columns of table � contain the mean square errors obtained when the �
test data sets were predicted using each of the �ve CNS controllers	 The last row
of the table shows the average error of the � tests for each controller	

Table �� MSE prediction errors of the HR� PR� MC� VT� and CR controller models
obtanied using the Sugeno fuzzy prediction scheme of CARFIR methodology

HRC PRC MCC VTC CRC

Data Set � ������ ������ ����� ����� ���	�
Data Set � ������ ����� 
�
	� 
�
�� ��	
�
Data Set � ���� ����� 	���� 	���� �����
Data Set � ��
�� ����� ����� ����� 	����
Data Set � �
�	�� ���	� ����� ����� �����
Data Set � �	��	� �
���� ���
� ���
� 	����
Ave� Error ���	�
 ����
 ��		
 ��	�
 ����




From table � it can be seen that the coronary resistance �CR� model captures
in a reliably way the behavior of this controller� achieving an average error of
����! for the � test data sets	 The largest average error is �����! obtained with
the heart rate �HR� model	 Therefore� the HR model is the one that captures
less accurately the behavior of the controller	 Figures �� �� �� � and �� show the
best and worst prediction results obtained for the heart rate� peripheric resis

tance� myocardiac contractility� venous tone and coronary resistance controllers�
respectively	 The solid line correspond to the prediction performed by the Sugeno
fuzzy inference model� whereas the dashed line is the true measured output	
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Fig� �� Heart rate control� best �data set �
� and worst �data set ��� prediction results

From the plots of �gure �� it can be seen that the predictions obtained by
the Sugeno fuzzy inference system of CARFIR methodology are fairly accurate�
although the forecast signals present high
frequencies that do not appear in the
real data	
The heart rate� peripheric resistance� myocardiac contractility and venous

tone controller data �see �gures �� �� � and ��� exhibit high frequency oscil

lations modulated by a low frequency signal	 The CARFIR models are capa

ble to properly forecast the low
frequencies but do not predict accurately the
high
frequencies behavior of this signals	 However� in this biomedical applica

tion the important information for the doctors are the one contained in the
low
frequencies signals	 Therefore� in spite of the relatively large MSE errors
obtained� the models are able to capture quite reliably the relevant behavior of
the controllers	
The �rst row of table � contains the predictions achieved when the pattern

prediction scheme of CARFIR methodology is used for the �ve controllers	 The
columns of the table specify the average error of the � test sets for each controller	
In this case the inference is performed by using exclusively the pattern rule bases	
As can be seen� the results obtained are very good� with MSE errors lower than
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Fig� �� Peripheric resistance control� best �data set �
� and worst �data set ��� pre�
diction results
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Fig� 
� Myocardiac contractility control� best �data set �
� and worst �data set ���
prediction results
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Fig� �� Venous tone control� best �data set �
� and worst �data set ��� prediction
results
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Fig� �	� Coronary resistance control� best �data set �	� and worst �data set ��� pre�
diction results



���! for all the controllers ���	 The average error obtained for all the controllers
is ����! much lower than the ����! obtained with the Sugeno fuzzy prediction
scheme	 Clearly� the prediction capability of the fuzzy rule base is inferior than
the pattern rule base	 However� the forecasting power of the fuzzy rule base is
still acceptable from the medical point of view	 It is important to notice that the
size of the rule base has been extremely reduced� i	e	 from ���� pattern rules to
�� fuzzy rules	 This is a relevant aspect that should be taken into account in the
context of the CARFIR methodology	

Table �� MSE prediction errors of the HR� PR� MC� VT� and CR controller models
obtained using the pattern prediction scheme of CARFIR �FIR�� NARMAX and TDNN
methodologies

HRC PRC MCC VTC CRC

FIR ��	�� ��
�� ��
�� ��
�� �����
NARMAX ����� �
���� ������ ������ 	�����

TDNN �
���� ������ ������ ����� �����

The second and third rows of table � present the prediction results obtained
when NARMAX and time delay neural networks are used for the same prob

lem	 Both methodologies used the same training and test data sets described
previously	 The errors obtained for all the controllers using NARMAX models
are larger than the ones obtained by the fuzzy prediction scheme of CARFIR
methodology �see table ��	 The average error for all the controllers is �����! in
front of the ����! accomplished by CARFIR �fuzzy rules�	 However� NARMAX
models are much precise than time delay neural networks	 As can be seen in
the last row of table �� the average prediction error computed by TDNNs for
the �ve controllers is �����!� bigger than the �����! obtained by NARMAX
models	 In ��� the results obtained by NARMAX models were considered accept

able from the medical point of view	 In extension also pattern and fuzzy models
of CARFIR methodology should be acceptable� due to their higher prediction
performance	

� Conclusions and Future Work

In this paper a methodology for the automatic construction of rules in fuzzy
inductive reasoning �CARFIR� is presented	 FIR methodology is a powerful
tool for systems identi�cation and prediction	 However� it has an important
drawback� the size of the pattern rule base can be extremely large	
In this paper CARFIR performance is studied in the context of a biomedical

application� i	e	 the human central nervous system �CNS�	 The CNS is composed
of �ve controllers� the heart rate � the peripheric resistance � the myocardiac
contractility � the venous tone� and the coronary resistance	 For each one of



them a Sugeno fuzzy model has been identi�ed starting form its corresponding
pattern rule base	 The fuzzy prediction scheme of the CARFIR methodology has
been used to predict the � test data sets associated to each controller	 The results
show that the fuzzy models are capable of capturing the dynamic behavior of
the system under study more accurately than NARMAX and NN approaches	
A main result of this research is that although the prediction capability of the

fuzzy models is lower than that of the pattern models� the forecasting power of
the fuzzy rule base is still acceptable from the medical point of view	 Moreover�
the size of the rule base has been extremely reduced� i	e	 from ���� pattern
rules to �� fuzzy rules	 This is an important goal in the context of the CARFIR
methodology	
The next step in CARFIR methodology will be the design of a mixed predic


tion scheme that will allow to obtain a better compromise between prediction
performance and size of the rule base	 The mixed scheme should be a combina

tion of the Sugeno fuzzy rules and a reduced set of pattern rules	 The advantage
of the pattern rules is that they are more accurate than the fuzzy rules in those
areas where a large degree of uncertainty exist	 In order to take advantage of this
fact� the mixed scheme will keep a percentage of pattern rules that will allow
the prediction of those system states with a high degree of uncertainty	 A �rst
attempt of this idea has been postulated in ����� however it should be de�ned
more accurately	
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