463 research outputs found

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    A predefined channel coefficients library for vehicle-to-vehicle communications

    Get PDF
    It is noticeable that most of VANETs communications tests are assessed through simulation. In a majority of simulation results, the physical layer is often affected by an apparent lack of realism. Therefore, vehicular channel model has become a critical issue in the field of intelligent transport systems (ITS). To overcome the lack of realism problem, a more robust channel model is needed to reflect the reality. This paper provides an open access, predefined channel coefficients library. The library is based on 2x2 and 4x4 Multiple – Input – Multiple – Output (MIMO) systems in V2V communications, using a spatial channel model extended SCME which will help to reduce the overall simulation time. In addition, it provides a more realistic channel model for V2V communications; considering: over ranges of speeds, distances, multipath signals, sub-path signals, different angle of arrivals, different angle departures, no line of sight and line of sight. An intensive evaluation process has taken place to validate the library and acceptance results are produced. Having an open access predefined library, enables the researcher at relevant communities to test and evaluate several complicated vehicular communications scenarios in a wider manners with less time and efforts

    SIMULATION AND ANALYSIS OF VEHICULAR AD-HOC NETWORKS IN URBAN AND RURAL AREAS

    Get PDF
    According to the American National Highway Traffic Safety Administration, in 2010, there were an estimated 5,419,000 police-reported traffic crashes, in which 32,885 people were killed and 2,239,000 people were injured in the US alone. Vehicular Ad-Hoc Network (VANET) is an emerging technology which promises to decrease car accidents by providing several safety related services such as blind spot, forward collision and sudden braking ahead warnings. Unfortunately, research of VANET is hindered by the extremely high cost and complexity of field testing. Hence it becomes important to simulate VANET protocols and applications thoroughly before attempting to implement them. This thesis studies the feasibility of common mobility and wireless channel models in VANET simulation and provides a general overview of the currently available VANET simulators and their features. Six different simulation scenarios are performed to evaluate the performance of AODV, DSDV, DSR and OLSR Ad-Hoc routing protocols with UDP and TCP packets. Simulation results indicate that reactive protocols are more robust and suitable for the highly dynamic VANET networks. Furthermore, TCP is found to be more suitable for VANET safety applications due to the high delay and packet drop of UDP packets.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Reliable and efficient data dissemination schemein VANET: a review

    Get PDF
    Vehicular ad-hoc network (VANET), identified as a mobile ad hoc network MANETs with several added constraints. Basically, in VANETs, the network is established on the fly based on the availability of vehicles on roads and supporting infrastructures along the roads, such as base stations. Vehicles and road-side infrastructures are required to provide communication facilities, particularly when enough vehicles are not available on the roads for effective communication. VANETs are crucial for providing a wide range of safety and non-safety applications to road users. However, the specific fundamental problem in VANET is the challenge of creating effective communication between two fast-moving vehicles. Therefore, message routing is an issue for many safety and non-safety of VANETs applications. The challenge in designing a robust but reliable message dissemination technique is primarily due to the stringent QoS requirements of the VANETs safety applications. This paper investigated various methods and conducted literature on an idea to develop a model for efficient and reliable message dissemination routing techniques in VANET

    Road-based routing in vehicular ad hoc networks

    Get PDF
    Vehicular ad hoc networks (VANETs) can provide scalable and cost-effective solutions for applications such as traffic safety, dynamic route planning, and context-aware advertisement using short-range wireless communication. To function properly, these applications require efficient routing protocols. However, existing mobile ad hoc network routing and forwarding approaches have limited performance in VANETs. This dissertation shows that routing protocols which account for VANET-specific characteristics in their designs, such as high density and constrained mobility, can provide good performance for a large spectrum of applications. This work proposes a novel class of routing protocols as well as three forwarding optimizations for VANETs. The Road-Based using Vehicular Traffic (RBVT) routing is a novel class of routing protocols for VANETs. RBVT protocols leverage real-time vehicular traffic information to create stable road-based paths consisting of successions of road intersections that have, with high probability, network connectivity among them. Evaluations of RBVT protocols working in conjunction with geographical forwarding show delivery rate increases as much as 40% and delay decreases as much as 85% when compared with existing protocols. Three optimizations are proposed to increase forwarding performance. First, one- hop geographical forwarding is improved using a distributed receiver-based election of next hops, which leads to as much as 3 times higher delivery rates in highly congested networks. Second, theoretical analysis and simulation results demonstrate that the delay in highly congested networks can be reduced by half by switching from traditional FIFO with Taildrop queuing to LIFO with Frontdrop queuing. Third, nodes can determine suitable times to transmit data across RBVT paths or proactively replace routes before they break using analytical models that accurately predict the expected road-based path durations in VANETs

    Contribution to design a communication framework for vehicular ad hoc networks in urban scenarios

    Get PDF
    The constant mobility of people, the growing need to be always connected, the large number of vehicles that nowadays can be found in the roads and the advances in technology make Vehicular Ad hoc Networks (VANETs) be a major area of research. Vehicular Ad hoc Networks are a special type of wireless Mobile Ad hoc Networks (MANETs), which allow a group of mobile nodes configure a temporary network and maintain it without the need of a fixed infrastructure. A vehicular network presents some specific characteristics, as the very high speed of nodes. Due to this high speed the topology changes are frequent and the communication links may last only a few seconds. Smart cities are now a reality and have a direct relationship with vehicular networks. With the help of existing infrastructure such as traffic lights, we propose a scheme to update and analyse traffic density and a warning system to spread alert messages. With this, traffic lights assist vehicular networks to take proper decisions. This would ensure less congested streets. It would also be possible that the routing protocol forwards data packets to vehicles on streets with enough neighbours to increase the possibility of delivering the packets to destination. Sharing updated, reliable and real-time information, about traffic conditions, weather or security alerts, increases the need of algorithms for the dissemination of information that take into account the main beneffits and constraints of these networks. For all this, routing protocols for vehicular networks have the difficult task to select and establish transmission links to send the data packets from source to destination through multiple nodes using intermediate vehicles efficiently. The main objective of this thesis is to provide improvements in the communication framework for vehicular networks to improve decisions to select next hops in the moment to send information, in this way improving the exchange of information to provide suitable communication to minimize accidents, reduce congestion, optimize resources for emergencies, etc. Also, we include intelligence to vehicles at the moment to take routing decisions. Making them map-aware, being conscious of the presence of buildings and other obstacles in urban environments. Furthermore, our proposal considers the decision to store packets for a maximum time until finding other neighbouring nodes to forward the packets before discarding them. For this, we propose a protocol that considers multiple metrics that we call MMMR (A Multimetric, Map-Aware Routing Protocol ). MMMR is a protocol based on geographical knowledge of the environment and vehicle location. The metrics considered are the distance, the density of vehicles in transmission range, the available bandwidth and the future trajectory of the neighbouring nodes. This allows us to have a complete view of the vehicular scenario to anticipate the driver about possible changes that may occur. Thus, a node can select a node among all its neighbours, which is the best option to increase the likelihood of successful packet delivery, minimizing time and offering a level of quality and service. In the same way, being aware of the increase of information in wireless environments, we analyse the possibility of offering anonymity services. We include a mechanism of anonymity in routing protocols based on the Crowd algorithm, which uses the idea of hiding the original source of a packet. This allowed us to add some level of anonymity on VANET routing protocols. The analytical modeling of the available bandwidth between nodes in a VANET, the use of city infrastructure in a smart way, the forwarding selection in data routing byvehicles and the provision of anonymity in communications, are issues that have been addressed in this PhD thesis. In our research work we provide contributions to improve the communication framework for Vehicular Ad hoc Networks obtaining benefits toenhance the everyday of the population.La movilidad constante de las personas y la creciente necesidad de estar conectados en todo momento ha hecho de las redes vehiculares un área cuyo interés ha ido en aumento. La gran cantidad de vehículos que hay en la actualidad, y los avances tecnológicos han hecho de las redes vehiculares (VANETS, Vehicular Ad hoc Networks) un gran campo de investigación. Las redes vehiculares son un tipo especial de redes móviles ad hoc inalámbricas, las cuales, al igual que las redes MANET (Mobile Ad hoc Networks), permiten a un grupo de nodos móviles tanto configurar como mantener una red temporal por si mismos sin la necesidad de una infraestructura fija. Las redes vehiculares presentan algunas características muy representativas, por ejemplo, la alta velocidad que pueden alcanzar los nodos, en este caso vehículos. Debido a esta alta velocidad la topología cambia frecuentemente y la duración de los enlaces de comunicación puede ser de unos pocos segundos. Estas redes tienen una amplia área de aplicación, pudiendo tener comunicación entre los mismos nodos (V2V) o entre los vehículos y una infraestructura fija (V2I). Uno de los principales desafíos existentes en las VANET es la seguridad vial donde el gobierno y fabricantes de automóviles han centrado principalmente sus esfuerzos. Gracias a la rápida evolución de las tecnologías de comunicación inalámbrica los investigadores han logrado introducir las redes vehiculares dentro de las comunicaciones diarias permitiendo una amplia variedad de servicios para ofrecer. Las ciudades inteligentes son ahora una realidad y tienen una relación directa con las redes vehiculares. Con la ayuda de la infraestructura existente, como semáforos, se propone un sistema de análisis de densidad de tráfico y mensajes de alerta. Con esto, los semáforos ayudan a la red vehicular en la toma de decisiones. Así se logrará disponer de calles menos congestionadas para hacer una circulación más fluida (lo cual disminuye la contaminación). Además, sería posible que el protocolo de encaminamiento de datos elija vehículos en calles con suficientes vecinos para incrementar la posibilidad de entregar los paquetes al destino (minimizando pérdidas de información). El compartir información actualizada, confiable y en tiempo real sobre el estado del tráfico, clima o alertas de seguridad, aumenta la necesidad de algoritmos de difusión de la información que consideren los principales beneficios y restricciones de estas redes. Así mismo, considerar servicios críticos que necesiten un nivel de calidad y servicio es otro desafío importante. Por todo esto, un protocolo de encaminamiento para este tipo de redes tiene la difícil tarea de seleccionar y establecer enlaces de transmisión para enviar los datos desde el origen hacia el destino vía múltiples nodos utilizando vehículos intermedios de una manera eficiente. El principal objetivo de esta tesis es ofrecer mejoras en los sistemas de comunicación vehicular que mejoren la toma de decisiones en el momento de realizar el envío de la información, con lo cual se mejora el intercambio de información para poder ofrecer comunicación oportuna que minimice accidentes, reduzca atascos, optimice los recursos destinados a emergencias, etc. Así mismo, incluimos más inteligencia a los coches en el momento de tomar decisiones de encaminamiento de paquetes. Haciéndolos conscientes de la presencia de edificios y otros obstáculos en los entornos urbanos. Así como tomar la decisión de guardar paquetes durante un tiempo máximo de modo que se encuentre otros nodos vecinos para encaminar paquetes de información antes de descartarlo. Para esto, proponemos un protocolo basado en múltiples métricas (MMMR, A Multimetric, Map-aware Routing Protocol ) que es un protocolo geográfio basado en el conocimiento del entorno y localización de los vehículos. Las métricas consideradas son la distancia, la densidad de vehículos en el área de transmisión, el ancho de banda disponible y la trayectoria futura de los nodos vecinos. Esto nos permite tener una visión completa del escenario vehicular y anticiparnos a los posibles cambios que puedan suceder. Así, un nodo podrá seleccionar aquel nodo entre todos sus vecinos posibles que sea la mejor opción para incrementar la posibilidad de entrega exitosa de paquetes, minimizando tiempos y ofreciendo un cierto nivel de calidad y servicio. De la misma manera, conscientes del incremento de información que circula por medios inalámbricos, se analizó la posibilidad de servicios de anonimato. Incluimos pues un mecanismo de anonimato en protocolos de encaminamiento basado en el algoritmo Crowd, que se basa en la idea de ocultar la fuente original de un paquete. Esto nos permitió añadir cierto nivel de anonimato que pueden ofrecer los protocolos de encaminamiento. El modelado analítico del ancho de banda disponible entre nodos de una VANET, el uso de la infraestructura de la ciudad de una manera inteligente, la adecuada toma de decisiones de encaminamiento de datos por parte de los vehículos y la disposición de anonimato en las comunicaciones, son problemas que han sido abordados en este trabajo de tesis doctoral que ofrece contribuciones a la mejora de las comunicaciones en redes vehiculares en entornos urbanos aportando beneficios en el desarrollo de la vida diaria de la población
    corecore