114 research outputs found

    Comparative Analysis of Machine Learning Techniques for Predicting Air Pollution

    Get PDF
    The modern and motorized way of life has cultured air pollution.  Air pollution has become the biggest rival of robust living. This situation is becoming more lethal in developing countries and so in Pakistan.  Hence, this inquiry was carried out to propose an architecture design that could make real-time prediction of air pollution with another purpose of scanning the frequently adopted algorithm in past investigations. In addition, it was also intended to narrate the toxic effects of air pollution on human health. So, this research was carried out on a large dataset of Seoul as an adequate dataset of Pakistan was not attainable. The dataset consisted of three years (2017-2019) including 647,512 instances and 11 attributes. The four distinctive algorithms termed Random Forest, Linear Regression, Decision Tree and XGBoosting were employed. It was inferred that XGB is more promising and feasible in predicting concentration level of NO2, O3, SO2, PM10, PM2.5 and CO with the lowest RMSE and MAE values of 0.0111, 0.0262, 0.0168, 49.64, 41.68 and 0.1856 and 0.0067, 0.0096, 0.0017, 12.28, 7.63 and 0.0982 respectively. Furthermore, it was found out as well that the Random Forest was preferred mostly in the previous studies related to air pollution prophecy while many probes supported that air pollution is very detrimental to human health especially long-lasting exposure causes lung cancer, respiratory and cardiovascular diseases

    Computational Intelligence-based PM2.5 Air Pollution Forecasting

    Get PDF
    Computational intelligence based forecasting approaches proved to be more efficient in real time air pollution forecasting systems than the deterministic ones that are currently applied. Our research main goal is to identify the computational intelligence model that is more proper to real time PM2.5 air pollutant forecasting in urban areas. Starting from the study presented in [27]a, in this paper we first perform a comparative study between the most accurate computational intelligence models that were used for particulate matter (fraction PM2.5) air pollution forecasting: artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS). Based on the obtained experimental results, we make a comprehensive analysis of best ANN architecture identification. The experiments were realized on datasets from the AirBase databases with PM2.5 concentration hourly measurements. The statistical parameters that were computed are mean absolute error, root mean square error, index of agreement and correlation coefficient

    Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China

    Full text link
    © 2018 Elsevier B.V. With atmospheric environmental pollution becoming increasingly serious, developing an early warning system for air quality forecasting is vital to monitoring and controlling air quality. However, considering the large fluctuations in the concentration of pollutants, most previous studies have focused on enhancing accuracy, while few have addressed the stability and uncertainty analysis, which may lead to insufficient results. Therefore, a novel early warning system based on fuzzy time series was successfully developed that includes three modules: deterministic prediction module, uncertainty analysis module, and assessment module. In this system, a hybrid model combining the fuzzy time series forecasting technique and data reprocessing approaches was constructed to forecast the major air pollutants. Moreover, an uncertainty analysis was generated to further analyze and explore the uncertainties involved in future air quality forecasting. Finally, an assessment module proved the effectiveness of the developed model. The experimental results reveal that the proposed model outperforms the comparison models and baselines, and both the accuracy and the stability of the developed system are remarkable. Therefore, fuzzy logic is a better option in air quality forecasting and the developed system will be a useful tool for analyzing and monitoring air pollution

    Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems

    Full text link
    Antipollution legislation in automotive internal combustion engines requires active control and prediction of pollutant formation and emissions. Predictive emission models are of great use in the system calibration phase, and also can be integrated for the engine control and on-board diagnosis tasks. In this paper, fuzzy modelling of the NOx emissions of a diesel engine is investigated, which overcomes some drawbacks of pure engine mapping or analytical physical-oriented models. For building up the fuzzy NOx prediction models, the FLEXFIS approach (short for FLEXible Fuzzy Inference Systems) is applied, which automatically extracts an appropriate number of rules and fuzzy sets by an evolving version of vector quantization (eVQ) and estimates the consequent parameters of Takagi-Sugeno fuzzy systems with the local learning approach in order to optimize the least squares functional. The predictive power of the fuzzy NOx prediction models is compared with that one achieved by physical-oriented models based on high-dimensional engine data recorded during steady-state and dynamic engine states.This work was supported by the Upper Austrian Technology and Research Promotion. This publication reflects only the author's view. Furthermore, we acknowledge PSA for providing the engine and partially supporting our investigation. Special thanks are given to PO Calendini, P Gaillard and C. Bares at the Diesel Engine Control Department.Lughofer, E.; Macian Martinez, V.; Guardiola GarcĂ­a, C.; Klement, EP. (2011). Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems. Applied Soft Computing. 11(2):2487-2500. doi:10.1016/j.asoc.2010.10.004S2487250011

    Optimizing IC engine efficiency: A comprehensive review on biodiesel, nanofluid, and the role of artificial intelligence and machine learning

    Get PDF
    Transportation and power generation have historically relied upon Internal Combustion Engines (ICEs). However, because of environmental impact and inefficiency, considerable research has been devoted to improving their performance. Alternative fuels are necessary because of environmental concerns and the depletion of non-renewable fuel stocks. Biodiesel has the potential to reduce emissions and improve sustainability when compared to diesel fuel. Several researchers have examined using nanofluids to increase biodiesel performance in internal combustion engines. Due to their thermal and physical properties, nanoparticles in a host fluid improve engine combustion and efficiency. This comprehensive review examines three key areas for improving ICE efficiency: biodiesel as an alternative fuel, application of nanofluids, and artificial intelligence (AI)/machine learning (ML) integration. The integration of AI/ML in nanoparticle-infused biodiesel offers exciting possibilities for optimizing production processes, enhancing fuel properties, and improving engine performance. This article first discusses, the benefits of biodiesel concerning the environment and various difficulties associated with its usage. The review then explores the effects and characteristics of nanofluids in IC engines, aiming to know their impact on engine emissions and performance. After that, this review discusses the utilization of AI/ML techniques in enhancing the biodiesel-nanofluid combustion process. This article sheds light on the ongoing efforts to make ICE technology more environmentally friendly and energy-efficient by examining current research and emerging patterns in these fields. Finally, the review presents the challenges and future perspectives of the field, paving the way for future research and improvement

    Data Mining Paradigm in the Study of Air Quality

    Get PDF
    Air pollution is a serious global problem that threatens human life and health, as well as the environment. The most important aspect of a successful air quality management strategy is the measurement analysis, air quality forecasting, and reporting system. A complete insight, an accurate prediction, and a rapid response may provide valuable information for society’s decision-making. The data mining paradigm can assist in the study of air quality by providing a structured work methodology that simplifies data analysis. This study presents a systematic review of the literature from 2014 to 2018 on the use of data mining in the analysis of air pollutant measurements. For this review, a data mining approach to air quality analysis was proposed that was consistent with the 748 articles consulted. The most frequent sources of data have been the measurements of monitoring networks, and other technologies such as remote sensing, low-cost sensors, and social networks which are gaining importance in recent years. Among the topics studied in the literature were the redundancy of the information collected in the monitoring networks, the forecasting of pollutant levels or days of excessive regulation, and the identification of meteorological or land use parameters that have the most substantial impact on air quality. As methods to visualise and present the results, we recovered graphic design, air quality index development, heat mapping, and geographic information systems. We hope that this study will provide anchoring of theoretical-practical development in the field and that it will provide inputs for air quality planning and management.Facultad de Ciencias Exacta

    Mathematical Problems in Rock Mechanics and Rock Engineering

    Get PDF
    With increasing requirements for energy, resources and space, rock engineering projects are being constructed more often and are operated in large-scale environments with complex geology. Meanwhile, rock failures and rock instabilities occur more frequently, and severely threaten the safety and stability of rock engineering projects. It is well-recognized that rock has multi-scale structures and involves multi-scale fracture processes. Meanwhile, rocks are commonly subjected simultaneously to complex static stress and strong dynamic disturbance, providing a hotbed for the occurrence of rock failures. In addition, there are many multi-physics coupling processes in a rock mass. It is still difficult to understand these rock mechanics and characterize rock behavior during complex stress conditions, multi-physics processes, and multi-scale changes. Therefore, our understanding of rock mechanics and the prevention and control of failure and instability in rock engineering needs to be furthered. The primary aim of this Special Issue “Mathematical Problems in Rock Mechanics and Rock Engineering” is to bring together original research discussing innovative efforts regarding in situ observations, laboratory experiments and theoretical, numerical, and big-data-based methods to overcome the mathematical problems related to rock mechanics and rock engineering. It includes 12 manuscripts that illustrate the valuable efforts for addressing mathematical problems in rock mechanics and rock engineering
    • …
    corecore