
A Methodology for improved, Data-Oriented, 

Air Quality Forecasting  

Ioannis Kyriakidis 

PhD 

Faculty of Computing, Engineering and Science 

University of South Wales 

A submission presented in partial fulfilment of the requirements of the 

University of South Wales/Prifysgol De Cymru 

for the degree of Doctor of Philosophy 

[June 2018] 

 

 



List of Figures | ii 

  



List of Figures | iii 

Table of Contents 

List of Figures ...................................................................................................................... vii 

List of Tables ........................................................................................................................ ix 

Abbreviations .................................................................................................................... xiii 

Abstract…… ........................................................................................................................ xv 

Declaration…...................................................................................................................... xvi 

Acknowledgements ........................................................................................................... xvii 

Chapter 1. Introduction ...................................................................................................... 1 

1.1 Motivation ........................................................................................................ 1 
1.2 Research Statement .......................................................................................... 3 
1.3 Summary of Research Work and Contributions .............................................. 5 
1.4 Thesis Outline .................................................................................................. 6 

Chapter 2. Background and Methodology ......................................................................... 9 

2.1 Air Quality Forecasting .................................................................................... 9 

2.1.1 Processes Affecting Pollution Levels ............................................................. 10 
2.1.2 Sources of Air Pollutants ................................................................................ 12 

2.1.3 Air Quality Management and Forecasting ..................................................... 14 
2.1.4 Air Quality Modelling .................................................................................... 15 

2.1.5 Forecasting Aspects Classification ................................................................. 20 
2.1.6 Selecting the Forecasting Model .................................................................... 21 

2.2 Forecast Verification and Variable Types ...................................................... 23 
2.3 Related Work .................................................................................................. 24 

2.3.1 Computational Intelligence AQ Forecasting Models ..................................... 24 

2.3.2 Operational AQ Forecasting Systems ............................................................ 32 
2.3.3 Discussion ...................................................................................................... 35 

2.4 The Study Areas ............................................................................................. 37 
2.5 Employed Methods ........................................................................................ 39 

2.5.1 Covariance ...................................................................................................... 39 

2.5.2 Lagrange Interpolating Polynomial ................................................................ 39 
2.5.3 Periodicity Analysis ....................................................................................... 40 
2.5.4 Forecasting Methods used in Investigation Experiments ............................... 40 

2.5.5 Validation Procedure ...................................................................................... 42 
2.5.6 Sensitivity Analysis ........................................................................................ 43 
2.5.7 Fuzzy Logic .................................................................................................... 44 
2.5.8 Confidence Intervals ...................................................................................... 50 

2.6 Optimization Algorithms ................................................................................ 51 

2.6.1 Introduction to Optimization Problems .......................................................... 51 
2.6.2 Evolutionary Algorithms ................................................................................ 52 
2.6.3 Genetic Algorithms ........................................................................................ 61 

2.6.4 Swarm Intelligence ......................................................................................... 66 
2.6.5 Ant Colony Optimization ............................................................................... 67 

2.7 Summary ........................................................................................................ 71 



List of Figures | iv 

Chapter 3. Investigation and Forecasting of Environmental Parameters ......................... 73 

3.1 Introduction .................................................................................................... 73 
3.2 Data Presentation ............................................................................................ 75 
3.3 Data Pre-Processing ....................................................................................... 79 
3.4 Performing Periodicity Analysis .................................................................... 83 

3.5 Performing Cross-Validation ......................................................................... 84 
3.6 Forecasting Hourly Benzene Concentration Values ...................................... 85 
3.7 Forecasting Daily 8-HRA Concentration Values of Ozone ........................... 89 
3.8 Forecasting Hourly and Daily CAQI ............................................................. 91 

3.8.1 Forecasting CAQI Values (Numerical) with the Aid of Regression Models . 91 

3.8.2 Calculate CAQI Levels based on Forecasted CAQI Values .......................... 91 

3.8.3 Calculate Daily CAQI Levels based on Forecasted Numerical 24-Hourly 

values .............................................................................................................. 93 

3.8.4 Calculate Daily CAQI Levels based on 24-h Forecasted values with 

Weighting Factors .......................................................................................... 94 
3.8.5 Forecasting CAQI Levels with the aid of ANNs and DTs ............................. 94 
3.8.6 Comparing the Results of the Best CAQI Forecasting Methods ................. 102 

3.9 Results and Discussion ................................................................................. 103 

3.10 Summary ...................................................................................................... 105 

Chapter 4. New Forecasting Performance Indices ......................................................... 107 

4.1 Statistical Measures Selection ...................................................................... 107 
4.2 Penalize Forecasting Performance ............................................................... 111 

4.3 Building the Fuzzy Inference System .......................................................... 114 

4.3.1 Specify the Inputs and Outputs .................................................................... 114 
4.3.2 Determine the Membership function for each input and output .................. 115 
4.3.3 FIS Rules ...................................................................................................... 117 

4.4 New Indices Evaluation ............................................................................... 119 
4.4.1 Area of Interest and Datasets Used .............................................................. 120 

4.4.2 Population of Forecasting Models ................................................................ 120 
4.5 Results and Discussion ................................................................................. 121 

4.6 Summary ...................................................................................................... 128 

Chapter 5. Daphne Optimization Methodology ............................................................. 131 

5.1 Introduction .................................................................................................. 131 
5.1.1 The Distance between Different Methods .................................................... 135 

5.2 DOM Phases ................................................................................................. 137 
5.3 Arsenal of Methods ...................................................................................... 138 
5.4 DOM for Genetic Algorithms ...................................................................... 140 

5.4.1 Type-1 crossover: Exchange the “bad” genes .............................................. 140 
5.4.2 Type-2 crossover: Pass the “good” genes to the first child .......................... 141 
5.4.3 Type-3 crossover: A combination of Type 1 and Type 2 ............................ 141 

5.5 DOM for Ant Colony Optimization ............................................................. 142 
5.6 DOM Evaluation .......................................................................................... 143 

5.6.1 The Optimization Performance Score .......................................................... 146 
5.6.2 Data Presentation .......................................................................................... 147 

5.6.3 Data Separation ............................................................................................ 149 
5.7 Results and Discussion ................................................................................. 150 
5.8 Summary ...................................................................................................... 156 



List of Figures | v 

Chapter 6. Discussion and Conclusions ......................................................................... 159 

6.1 Introduction .................................................................................................. 159 
6.2 Research Question 1: Forecasting of Environmental Parameters ................ 160 
6.3 Research Question 2: Forecasting Performance Indices .............................. 162 
6.4 Research Question 3: Daphne Optimization Methodology .......................... 163 

6.5 Contribution Summary ................................................................................. 164 
6.6 Final Note ..................................................................................................... 166 

Index………. ..................................................................................................................... 167 

References… ..................................................................................................................... 168 

Appendix I. Abstracts of Publications .............................................................................. 183 

Appendix II. Forecasting Verification Indices .................................................................. 191 

Bias……… .................................................................................................................... 191 
Normalized Bias ............................................................................................................ 192 

Mean Fractional Bias ..................................................................................................... 193 
Mean Percentage Error .................................................................................................. 193 
Mean Absolute Error ..................................................................................................... 194 
Mean Absolute Percentage Error ................................................................................... 194 

Symmetric Mean Absolute Percentage Error ................................................................ 194 
Mean Squared Error ....................................................................................................... 195 

Normalized Mean Squared Error ................................................................................... 195 

Root Mean Squared Error .............................................................................................. 196 

RMSE, Systematic and Unsystematic ........................................................................... 196 
Linear Correlation Coefficient ....................................................................................... 197 

Coefficient of Determination ......................................................................................... 197 
Spearman’s Rank Correlation Coefficient ..................................................................... 198 
Coefficient of Efficiency ............................................................................................... 198 

Index of Agreement ....................................................................................................... 199 
Legates and McCabe ...................................................................................................... 201 

Berry and Mielke ........................................................................................................... 202 
Watterson.. ..................................................................................................................... 203 

Factor of Exceedance ..................................................................................................... 203 
Theil’s Inequality Coefficient ........................................................................................ 204 

Appendix III. Categorical Verification Scores ............................................................... 207 

Percentage of Agreement ............................................................................................... 207 
Critical Success Index .................................................................................................... 207 
Cohen’s Kappa Index ..................................................................................................... 208 

Appendix IV. Major Air Pollutants and the AQI ........................................................ 211 

Benzene and Ozone ....................................................................................................... 211 
The Common Air Quality Index .................................................................................... 212 

Appendix V. Arsenal of Methods used by the DOM......................................................... 215 

Methods of Step 1 (Remove Outliers) ........................................................................... 215 

Standard Deviation Criterion ..................................................................................... 217 
Robust Functions ........................................................................................................ 218 
Median Absolute Deviation ....................................................................................... 219 

Methods of Step 2 (Missing Data) ................................................................................. 220 



List of Figures | vi 

Interpolation algorithms ............................................................................................. 220 
Methods of Step 3 (Smoothing Data) ............................................................................ 221 
Methods of Step 4 (Detrending Data) ............................................................................ 222 

Constant and Straight (linear) detrending .................................................................. 223 
Fit and remove a 2

nd
 degree of polynomial curve ...................................................... 223 

Hodrick-Prescott filter ................................................................................................ 223 
Methods of Step 5 (Feature Selection / Extraction) ....................................................... 224 

Factor Analysis ........................................................................................................... 225 
Covariance Feature Selection ..................................................................................... 226 
Principal Components Analysis ................................................................................. 227 

Methods of Step 6 (Forecasting) .................................................................................... 228 

Multiple Linear Regression ........................................................................................ 228 
Feed-forward Backpropagation Artificial Neural Networks ...................................... 228 

Linear Neural Networks ............................................................................................. 230 
Generalized Regression Neural Networks ................................................................. 231 
Generalized linear model regression .......................................................................... 232 
Multivariate adaptive regression splines (MARS) ..................................................... 233 

 



List of Figures | vii 

List of Figures 

Figure 1-1: The data processing chain in knowledge discovery in databases (Gibert, et al., 2008) .. 4 

Figure 2-1: Production, growth, and removal of atmospheric aerosols (Jacob, 1999) ..................... 12 

Figure 2-2: A classification scheme of different forecasting aspects ............................................... 20 

Figure 2-3: The two air quality monitoring stations in Athens at Patisia and Liosia ....................... 38 

Figure 2-4: The four air quality monitoring stations in greater Thessaloniki area at Agia Sofia, 

Panorama, Sindos, and Kordelio ................................................................................. 38 

Figure 2-5: How the data was divided and used by the forecasting methods .................................. 43 

Figure 2-6: Precision and Significance in the real world (Chennakesava, 2008)............................. 45 

Figure 2-7: Graphical Mamdani (max–min) inference method with crisp inputs (Timothy, 2010). 48 

Figure 2-8: A Sugeno fuzzy model (Timothy, 2010) ....................................................................... 49 

Figure 2-9: A simple evolutionary algorithm ................................................................................... 53 

Figure 2-10: An example of single-point crossover (Cox, 2005) ..................................................... 59 

Figure 2-11: An example of double -point crossover (Cox, 2005) .................................................. 60 

Figure 2-12: An example of uniform crossover (Cox, 2005) ........................................................... 61 

Figure 2-13: Bridges have different lengths (Goss, et al., 1989) (Goss, et al., 1990) ...................... 68 

Figure 2-14: Bridges have equal lengths (Deneubourg, et al., 1990) (Goss, et al., 1990) ............... 68 

Figure 2-15: The Ant Colony Optimization Metaheuristic (Dorigo, et al., 2006) ........................... 71 

Figure 3-1: The aims in order to develop knowledge on data-oriented air quality forecasting ....... 75 

Figure 3-2: An example of using a 6
th
 degree Lagrange interpolating polynomial .......................... 80 

Figure 3-3: The periodogram of Benzene from Patisia station. The numbering indicates the four 

periodicities with maximum strength .......................................................................... 84 

Figure 3-4: An example of the first configuration of the neural network of hourly Benzene 

concentrations .............................................................................................................. 87 

Figure 4-1: Forecasting Performance calculation .......................................................................... 112 

Figure 4-2: The influence of the Penalty Cancel Level in the penalty effect, depending on the 

distance size of the Confidence Intervals bounds ...................................................... 113 

Figure 4-3: The membership function for the inputs (dr, E1 and  ), as also of the output .......... 116 

Figure 4-4: The membership function for the Theil’s Inequality Coefficient input (U2) ............... 116 

Figure 4-5: The developed Fuzzy Inference System by using the Mamdani method .................... 116 

Figure 4-6: The developed Fuzzy Inference System by using the Sugeno method ....................... 116 

Figure 4-7: The surface view of the three-dimensional view of the relationship between the inputs 

and the output for both Mamdani (on the left) and Sugeno (on the right) Fuzzy 

Inference Systems ...................................................................................................... 119 



List of Figures | viii 

Figure 4-8: The percentages of the cases, in which each model has been identified to be the best, 

without penalizing the forecasting performance ........................................................ 124 

Figure 4-9: The percentages of the cases, in which each model has been identified to be the best, by 

using a Penalty Cancel Level of 0.5 .......................................................................... 124 

Figure 4-10: The percentages of the cases, in which each model has been identified to be the best, 

by using a Penalty Cancel Level of 1 ........................................................................ 125 

Figure 4-11: The percentages of the cases, in which each model has been identified to be the best, 

by using a Penalty Cancel Level of 1.5 ..................................................................... 125 

Figure 4-12: The mean values of each measure in the cases, for which each forecasting model was 

identified as best when no penalty cancel levels were applied .................................. 126 

Figure 4-13: The percentages of the cases, in which each model has been identified to be the best 

or the second best, without penalizing the forecasting performance ......................... 126 

Figure 4-14: The percentages of the cases, in which each model has been identified to be the best 

or the second best, by using a Penalty Cancel Level of 0.5 ....................................... 127 

Figure 4-15: The percentages of the cases, in which each model has been identified to be the best 

or the second best, by using a Penalty Cancel Level of 1 .......................................... 127 

Figure 4-16: The percentages of the cases, in which each model has been identified to be the best 

or the second best, by using a Penalty Cancel Level of 1.5 ....................................... 128 

Figure 5-1: A graphical example of the Daphne Optimization Procedure ..................................... 134 

Figure 5-2: Distance calculation in Daphne Optimization Procedure graph .................................. 135 

Figure 5-3: Example of a Daphne Optimization Procedure graph, a) with forecasting performance 

(on the top) and b) the calculated distance (on the bottom) ....................................... 136 

Figure 5-4: Data separation in the evaluation procedure ............................................................... 150 

Figure 5-5: The percentage of the models for each forecasting performance group ...................... 151 

Figure 5-6: The best models of each optimization type ................................................................. 155 

Figure 5-7: Example of the execution of an optimization method ................................................. 156 

Figure IV-1: The Common Air Quality Index five categorical levels ........................................... 213 

Figure V-1: Illustration of the way that outliers affect the fitted function (Engelbrecht, 2007) .... 216 

Figure V-2: Example of a Box plot for Temperature (at Ag. Sofia’s monitoring station) 

(Kyriakidis, et al., 2009) ............................................................................................ 217 

Figure V-3: Example of Temperature standard deviations (at Ag. Sofia’s monitoring station) 

(Kyriakidis, et al., 2009) ............................................................................................ 218 

Figure V-4: Typical feature selection and extraction application areas ......................................... 225 

Figure V-5: Feed-forward neural network example ....................................................................... 229 

Figure V-6: The hyperbolic tangent sigmoid transfer function ...................................................... 230 

Figure V-7: The linear transfer function ........................................................................................ 230 

 



List of Tables | ix 

List of Tables 

Table 2-1: The sources of the seven European Union regulated pollutants ..................................... 13 

Table 2-2: A summary of the factors that contribute to the selection of a forecasting model ......... 22 

Table 2-3: The different scalar attributes that describe the forecast quality. ................................... 23 

Table 2-4: The basic terminologies of the biological evolution that are used in evolutionary 

algorithms .................................................................................................................... 54 

Table 3-1: Parameters under investigation when forecasting Benzene concentrations (Datasets P1, 

P2 and P1&2) ............................................................................................................... 77 

Table 3-2: Parameters under investigation when forecasting 8-hour running average ozone values 

(Datasets L1, L2, L1&2, P3, P4, P3&4) ...................................................................... 77 

Table 3-3: The number (and the corresponding percentage) of hourly and daily Common Air 

Quality Index values, for each Common Air Quality Index level and station ............. 78 

Table 3-4: Parameters under investigation when forecasting hourly and daily Common Air Quality 

Index ............................................................................................................................ 79 

Table 3-5: Eigenvalues and variances of the computed principal components ................................ 81 

Table 3-6: The overall covariance of hourly Benzene concentrations with regard to the other 

parameters of work ...................................................................................................... 81 

Table 3-7: Conversion table from Common Air Quality Index levels (nominal values) to Common 

Air Quality Index numerical values ............................................................................. 82 

Table 3-8: Conversion table from Common Air Quality Index numerical values to Common Air 

Quality Index levels (nominal values) ......................................................................... 82 

Table 3-9: The four maximum strength values and their corresponding periodicities for Benzene 

concentrations at Patisia station ................................................................................... 83 

Table 3-10: The four maximum strength values and their corresponding periodicities for daily 

Ozone 8-hour running average concentration values at Patisia and Liosia monitoring 

stations. ........................................................................................................................ 84 

Table 3-11: Performance results table of hourly Benzene concentrations for three different datasets 

for the Patisia station by using Artificial Neural Networks ......................................... 87 

Table 3-12: Performance results table of hourly Benzene concentrations for three different datasets 

for the Patisia station by using Linear Regression Models .......................................... 88 

Table 3-13: Results by using statistical indicators to evaluate the best Artificial Neural Network 

model configurations on the basis of their performance on three datasets for Patisia 

station and for Benzene. .............................................................................................. 88 



List of Tables | x 

Table 3-14: Artificial Neural Network model forecasting performance for the prediction of two 

different exceedance-levels events for Patisia. ............................................................ 88 

Table 3-15: Performance results table of daily 8-hour running average Ozone concentrations for 

two different monitoring stations and datasets by using Artificial Neural Networks. . 90 

Table 3-16: Performance results table of daily 8-hour running average Ozone concentrations for 

two different monitoring stations and the available datasets, by using Linear 

Regression. .................................................................................................................. 90 

Table 3-17: Results by using statistical indicators to present the best forecasting models on the 

basis of their performance on the three datasets for Patisia and Liosia stations. ......... 91 

Table 3-18: Observed and predicted frequencies of Hourly Common Air Quality Index levels for 

Agia Sofia (by using linear regression models) ........................................................... 92 

Table 3-19: Observed and predicted frequencies of Daily Common Air Quality Index levels for 

Agia Sofia (by using linear regression models) ........................................................... 93 

Table 3-20: Results of the nominal hourly and daily Common Air Quality Index level predictions 

using linear regression ................................................................................................. 93 

Table 3-21: The Index of agreement for the forecasted numerical daily Common Air Quality Index 

using linear regression ................................................................................................. 94 

Table 3-22: “Factor4” weighting of hourly values at Agia Sofia. .................................................... 94 

Table 3-23: Comparison of the best forecasting performances of the forecasting models of the first 

step of this work for Daily and Hourly Common Air Quality Index Levels ............... 96 

Table 3-24: Construction of the 15 different architectures .............................................................. 98 

Table 3-25: An example of the 15 different architectures with 5-input (parameters) ...................... 99 

Table 3-26: Comparison of the best forecasting performance of the Artificial Neural Network 

forecasting models of the second step of this work for Daily Common Air Quality 

Index levels ................................................................................................................ 100 

Table 3-27: Comparison of the best forecasting performance of the Artificial Neural Network 

forecasting models of the second step of this work for Hourly Common Air Quality 

Index levels ................................................................................................................ 100 

Table 3-28: Comparison of the best forecasting performance of the Decision Trees forecasting 

models of the second step of this work for daily and hourly Common Air Quality 

Index levels ................................................................................................................ 101 

Table 3-29: The 559 models that were tested for daily and hourly data in the second part of this 

work ........................................................................................................................... 101 

Table 3-30: The average performance of the Artificial Neural Network Forecasting Models for 

daily and hourly Common Air Quality Index levels for each different ANN 

architecture ................................................................................................................ 101 



List of Tables | xi 

Table 3-31: The average performance of the Decision Trees forecasting models for daily and 

hourly Common Air Quality Index levels for each different number of trees ........... 102 

Table 3-32: Detailed information for the best forecasting methods (of the two steps of the 

investigation experiments) when forecasting daily and hourly Common Air Quality 

Index levels ................................................................................................................ 103 

Table 4-1: Summarize description and disadvantage(s) or each measure ...................................... 108 

Table 4-2: The selected Forecasting Performance Indices and the corresponding scalar attributes.

 ................................................................................................................................... 111 

Table 4-3: Landis and Koch Benchmark Scale .............................................................................. 114 

Table 4-4: Fleiss’s Benchmark Scale ............................................................................................. 115 

Table 4-5: Altman’s Benchmark Scale .......................................................................................... 115 

Table 4-6: The constructed Fuzzy Inference System rules ............................................................ 117 

Table 4-7: The eight forecasting models used in the current research ........................................... 121 

Table 5-1: The Daphne Optimization Procedure computational steps ........................................... 134 

Table 5-2: The methods used for each computational step of the Daphne Optimization Procedure

 ................................................................................................................................... 139 

Table 5-3: The methods that have been used for each step of the Genetic Algorithms and the design 

parameters .................................................................................................................. 145 

Table 5-4: The investigated Genetic Algorithms models ............................................................... 146 

Table 5-5: The investigated Ant Colony Optimization algorithm models ..................................... 146 

Table 5-6: The execution parameters of the optimization algorithms models ............................... 146 

Table 5-7: The ten best Genetic Algorithms Models in terms of the Performance Score .............. 154 

Table 5-8: The ten best Ant Colony Optimization Models in terms of the Performance Score .... 154 

Table 5-9: The average time and performance of the ten best models of each optimization type. 155 

Table 5-10: The execution methods and parameters that lead to the best forecasting performance in 

minimum execution time ........................................................................................... 155 

Table 5-11: The average time and performance for each optimization algorithms models and 

locations by using large datasets. ............................................................................... 156 

Table I-1: Publications produced during the thesis ........................................................................ 183 

Table II-1: Summarize description of notations ............................................................................. 191 

Table II-2: Examples of Mean Fractional Bias values and their interpretation.............................. 193 

Table II-3: Examples of dr values and their interpretation ............................................................. 200 

Table II-4: Examples of Ej values and their interpretation ............................................................. 201 

Table II-5: Examples of Factor of Exceedance values and their interpretation ............................. 204 

Table II-6: Examples of values from the two Theil's equations and their interpretation ............... 205 

Table III-1: The meaning of parameters a, b, c and d of the Critical Success Index formula ........ 208 

Table III-2: A square (g×g) contingency table ............................................................................... 208 



List of Tables | xii 

Table IV-1: The two types of Common Air Quality Index (a background index and a traffic index) 

proposed by the European Environment Agency (Elshout, et al., 2012) ................... 213 

Table V-1: The nine robust regression weight functions ............................................................... 219 

Table V-2: The used MATLAB Interpolation and Extrapolation methods ................................... 221 

Table V-3: The six supported smoothing methods of MATLAB .................................................. 222 

Table V-4: Suggested smoothing values per periodicity ................................................................ 224 

Table V-5: The commonly employed link functions and their corresponding distribution and link 

parameter in MATLAB ............................................................................................. 233 

 



Abbreviations | xiii 

Abbreviations 

ACO Ant Colony Optimization 

AI Artificial Intelligence 

AQ Air Quality 

ANNs Artificial Neural Networks 

AOFS Automated Online Forecasting System 

AS Ant System 

BCO Bee Colony Optimization 

CAQI Common Air Quality Index 

CI Computational Intelligence 

CV Cross Validation 

d Index of Agreement 

DOM Daphne Optimization Methodology 

DOP Daphne Optimization Procedure 

DP  Data Pre-processing 

DTs  Decision Trees 

DUC Daphne Uniform Crossover 

E Coefficient of Efficiency 

EA Evolutionary Algorithm 

EEA European Environment Agency 

EF Modelling Efficiency 

FB Fractional Bias 

FISs Fuzzy Inference Systems 

FNNs Feed-Forward Neural Networks 

FOEX Factor Of Exceedance 

FPI  Forecasting Performance Indices 

GA Genetic Algorithm 

GLMs  Generalized Linear Models 

GRNNs  Generalized Regression Neural Networks 

GTA Greater Thessaloniki Area 

GUI Graphic User Interface 

IAS Intelligent Automated System 



Abbreviations | xiv 

LNNs Linear Neural Networks 

LR Linear Regression 

MAD Median Absolute Deviation 

MAE Mean Absolute Error 

MAPE Mean Absolute Percent Error 

MARS Multivariate Adaptive Regression Splines 

MFB Mean Fractional Bias 

MLE Maximum Likelihood Estimate 

MLR Multiple Linear Regression 

MPE Mean Percentage Error 

MSE Mean Squared Error 

NB Normalized Bias 

NMSE  Normalized Mean Square Error 

PA Percentage of Agreement 

PCA Principal Component Analysis 

PCL Penalty Cancel Level 

PGAs Production Genetic Algorithms 

PSO Particle Swarm Optimization 

r Linear Correlation Coefficient 

r
2
 Coefficient of Determination 

RMSE  Root Mean Squared Error 

RMSEs  Systematic RMSE 

RMSEu Unsystematic RMSE 

rs Spearman’s Rank Correlation Coefficient 

SI Swarm Intelligence 

sMAPE 
Symmetric Mean Absolute Percentage 

Error 

SOM Self-Organizing Maps 

STD Standard Deviations 

TIC or U Theil’s Inequality Coefficient 

TSP Travelling Salesman Problem 

TSS Tournament Selection Size 

WCF Windows Communication Foundation 



Abstract | xv 

Abstract 

Air quality has emerged as an acute environmental problem, especially in densely populated areas, 

causing amongst other things negative effects on health. Air quality forecasting system can 

potentially facilitate amelioration of the situation by providing alerts regarding potential high air 

pollution levels to the public (to enable them to minimise their personal air pollution exposure) and 

to the authorities (supporting the decision making process and allowing them to take emergency 

measures). 

 

Creating an Air Quality (AQ) forecasting system with the aid of data-driven models presupposes 

the availability of historical data, which has to be appropriately pre-processed before it can be 

used. This pre-processing is required because environmental datasets often include measurement 

errors, noise, outliers and missing data. Moreover, it is important that the efficacy of any 

forecasting model be determined. This can be achieved by using appropriate indices to compare the 

model’s forecasts with the actual situational values that transpire.  

 

This thesis documents the research undertaken to: 

 

1) Investigate the process for developing computational intelligence and statistical methods to 

perform forecasting of environmental parameters;  

2) Develop a methodology that identifies the optimum data pre-processing methods and model 

characteristics that leads to the highest forecasting accuracy (i.e. the best combination of 

methods);  

3) Identify an optimum methodology to evaluate the forecasting performance of the data-driven 

models on an operational basis. 

 

The models developed to achieve the first aim are able to predict the values of the environmental 

parameters with a superior forecasting accuracy in comparison to previously published results. 

Moreover, a semi-automatic procedure was created to perform forecasting via data-driven models, 

which can be generalized and applied to other locations and is thus expected to be useful in 

developing and implementing operational air quality management and forecasting systems for 

environmental parameters. 

 

To address the second aim, the Daphne Optimization Methodology was introduced for optimising 

the selection of data pre-processing methods and data modelling algorithms in a comparatively 

shorter time than with the traditional use of the optimization algorithms. The Daphne Optimization 

Methodology can be applied at each stage of the process; from selecting the input as well as the 

target dataset (e.g. air quality and meteorological parameters) to the forecasting of the target 

parameter, taking into account specific performance optimization criteria. Such a holistic 

optimisation procedure appears in the literature for the first time as a result of this thesis. 

 

In order to achieve the third aim, two new forecasting performance indices were developed, which 

combine the characteristics of existing indices. The new indices are suitable for use in an 

automated operational forecasting system. In addition, a methodology to increase the confidence in 

the estimation of the forecasting performance of different indices by using confidence intervals 

was introduced, which use relative weights referred to as "penalties". When the new forecasting 

performance indices are combined with the use of penalties, the confidence for the estimation of 

the forecasting performance of a model is higher than any studied single measure. 

 

The proposed new forecasting performance indices and the Daphne Optimization Methodology 

provide the necessary framework to support the creation of an automated online air quality 

forecasting system. 
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Chapter 1. Introduction 

Chapter 1 

Introduction 

1.1 Motivation 

Pollution is a term commonly used to describe the existence of substances or forms of 

energy in the environment which are usually not found in its ambient state and have 

negative effects on humans, the ecosystem and materials. There are several types of 

pollution with one of the most well-known forms being air pollution. Breathed air is a 

mixture of gases and aerosol particles, air pollution may thus be defined as the presence of 

pollutants (i.e. any substance introduced directly or indirectly by humans or natural 

activities) in the ambient air, in quantities that can have negative effects in the short or 

long term (EUR-Lex, 1999). There are many contributing factors to the quality of air but 

increasingly industrial activities and the modern way of life (e.g. traffic loads and urban 

activities) can have a negative impact (Sydow, 2010). 

The motivation for the research articulated in this thesis was to develop an air quality 

forecasting system “fuelled” solely by air quality monitoring data, in order to provide early 

warning to the general public and the authorities regarding high air pollution levels. 
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The exposure to air pollution has been associated with a wide range of health effects 

including increased respiratory symptoms, hospitalization for heart or lung diseases, and 

even premature death. Hazardous air pollutants may cause cancer or other serious health 

effects (such as reproductive effects or birth defects) (Health Canada, 1997) (US EPA, 

2017b). 

Air pollution has emerged as the deadliest form of pollution and the fourth leading risk 

factor for premature deaths worldwide. According to The World Bank & Institute for 

Health Metrics and Evaluation (2016), in 2013, 5.5 million premature deaths worldwide 

were attributable to air pollution. From the economic perspective, those deaths cost the 

global economy $225 billion (United States dollars) in lost labour income in 2013 (The 

World Bank & Institute for Health Metrics and Evaluation, 2016). This perspective is 

important in order to strengthen the business case for governments to act ambitiously in 

managing and reducing air pollution. 

Most air pollutants are emitted into the atmosphere via anthropogenic activities, including 

mobile sources (such as cars, buses and planes) and stationary sources (such as factories 

and power plants). Air pollutants can also have natural sources such as volcanic eruptions 

and forest fires (Richards, et al., 2006) (US EPA, 2017a). People can be exposed to air 

pollutants in two distinct ways. Either by directly breathing polluted air or indirectly by 

other means, such as (US EPA, 2017a): 

 Eating contaminated food products including those from animals (meat, milk, or 

eggs) fed on contaminated plants, and fruits and vegetables grown in contaminated 

soil (on which air pollutants have been deposited); 

 Drinking contaminated water; 

 Having a direct (skin) contact with contaminated soil, dust, or water. 

In order to manage air pollution and to minimize its impact on humans and the ecosystem, 

a set of regulations has been established that require AQ monitoring and modelling, for 

measuring the current status of the environment and forecasting its state one day in 

advance, thus enabling the necessary information to be provided to decision makers and 

the general public in order that they may take any appropriate action. 

The provision of future AQ forecasts would be valuable to the public (especially for the 

sensitive groups, such as the elderly and children) in order that they might have time to 
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take measures that would help minimise their personal air pollution exposure. Moreover, 

the authorities could use this information in order to take emergency measures (such as 

temporarily shutting off major emission sources, motivating car-pooling and the use of 

public transportation) to reduce air pollution and to avoid or limit the exposures to 

unhealthy levels (Zhang, et al., 2012) (Jiang, et al., 2015). 

1.2 Research Statement 

Air quality modelling is the simulation of the ambient concentration of criteria pollutants 

(see Section 2.1.2) found within the atmosphere (Collett & Oduyemi, 1997), and air 

quality forecasting is the application of AQ modelling for foretelling air pollution levels. 

Different mathematical approaches can be used in air quality modelling, such as data-

driven and deterministic models. In this work, the mathematical approach of data-driven 

models is selected in order to forecast AQ parameters. Additional information regarding 

the different mathematical approaches and the reasons that the data-driven models were 

selected is provided in Section 2.1. 

Building a forecasting system with the aid of data-driven models (Solomatine, et al., 2009) 

requires historical data (input data and targeted forecasting parameters), which has to be 

pre-processed appropriately before it can be used by the data-driven models. The produced 

results (forecasted values) of the data-driven model are evaluated by comparing them with 

the actual values (i.e. by computing the forecasting accuracy with the aid of appropriate 

indices). 

In this study the term "data-driven models" is used to describe the use of statistical 

methods and computational intelligence methods. Data-driven models uncover hidden 

insights through learning from relationships and patterns in data. It is also important to 

note that the used data-driven models do not directly employ physical and chemical 

characteristics of air pollution, but follow robust mathematical rules (different per 

algorithm employed) which “imitate” the data and thus indirectly depict the basic 

relationships and mechanisms of dependency and correlation. 

Several data-driven algorithms can be used as the basis for AQ forecasts, while algorithm 

characteristics and parameterisation may vary and greatly affect the modelling outcome. 

The forecasting accuracy of the data-driven models is critically dependent on the quality of 
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the data. Wrong or poor data pre-processing may lead to incorrect results. The data 

processing chain in Knowledge Discovery in Data (KDD) (see Figure 1-1) is important for 

detecting and handling errors, and for correctly pre-processing the data for the selected 

data-driven models. For example, data-driven models do not always improve their 

performance by including as many input parameter as available (due to the noise and 

quality problems that aforementioned data may carry), but in many cases a parameter 

prioritization and selection step may improve the overall model performance. The KDD 

steps should be taken into consideration and should be included in any methodology that 

aims to improve the overall model results by embracing data pre-processing in the 

optimization loop. In the case of environmental data, it is common to include errors, such 

as measurement errors (from automatic monitoring, sensors, etc.), noise, outliers and 

missing data, which result in low-quality data (Gibert, et al., 2008), and thus reinforces the 

necessity to use the KDD steps.  

In this work, the term "forecasting model" is used for the combination of different input 

data and targeted forecasting parameters, pre-processing methods, data-driven algorithms 

and parameterization-configurations, in order to perform forecasts. Each forecasting model 

is evaluated for its forecasting accuracy, on the basis of one or more forecasting 

verification indices. The forecasting model that achieves the highest forecasting accuracy 

is characterised as the "best forecasting model". In addition, the term “forecasting method” 

is used as a general reference to a data-driven model used to perform forecasts. 

 

 

Figure 1-1: The data processing chain in knowledge discovery in databases (Gibert, et al., 2008) 
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The work documented in this thesis focuses on the optimization of the environmental 

forecasting workflow (from data pre-processing to algorithm selection and 

parameterisation) by using data-driven models, where the forecasting accuracy is the 

optimization criterion used. For that purpose, the research questions of this work were: 

1. Given a set of continuously updated time series data (air quality and meteorological 

data), is it possible to develop data-driven models that will predict the future 

value(s) of some of these parameter(s) (i.e. future concentration levels)? If yes, are 

these models better than existing ones (if any), and why? 

2. If such models are developed, which are the best ways to evaluate their 

performance on an operational basis? Are the existing measures sufficient? 

3. Is there a methodology available that can allow for the "automatic" selection of 

data pre-processing methods and data-driven models and their characteristics that 

lead to "best" forecasting accuracy? 

1.3 Summary of Research Work and Contributions 

The research plan of this work was organized on the basis of the relevant research 

questions and produced results contributing to the scientific field of data-driven 

environmental modelling (see Section 1.2) as follows: 

1. Experiments were performed to investigate the effectiveness of data-driven models 

in order to forecast environmental parameters. 

 Results indicate the importance of data pre-processing, due to its influence 

in the forecasting performance of the data-driven models. 

 New forecasting models were developed for the selected AQ parameters 

(Ozone concentrations, Benzene concentrations and Common Air Quality 

Index) for the cities of Thessaloniki and Athens of Greece. The forecasting 

performance of the developed data-driven models is at the highest level in 

comparison to the relevant literature. 

 The described semi-automatic procedure to perform forecasting via data-

driven models can be generalized to other locations and is expected to be 

useful for the implementation of operational forecasting systems for 

environmental parameters. 
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2. A literature review was undertaken which summarizes the most frequently used 

statistical measures of forecasting performance evaluation and their main 

characteristics and disadvantages. It was evident that existing measures have 

limitations in their ability to estimate AQ model forecasting performance. On this 

basis: 

 A new method was introduced in order to increase the confidence in the 

estimation (in terms of consistency) of the forecasting performance of 

different measures by using relative weights (referred to as penalties) based 

on the bounds of the confidence intervals. 

 Two new forecasting performance indices (FPIs) were introduced, which 

combine the characteristics of existing measures and do not suffer from the 

same degree of inconsistencies and disadvantages, and can thus be used in 

an automated operational forecasting system. The confidence in the 

estimation of the forecasting performance of a model is higher when the 

new forecasting performance indices were used in comparison to any 

examined single measure. 

3. An optimization methodology was developed for the whole air quality forecasting 

chain in order to improve data pre-processing and data-driven models, in terms of 

the performance of various forecasting algorithms: 

 The Daphne Optimization Methodology was introduced which 

automatically converges towards a “solution” (combination of data pre-

processing methods and data-driven models) which is “close to the 

optimum”. In addition, this is achieved in comparatively shorter time than 

with the traditional use of the optimization algorithms. Such an optimisation 

methodology has not been described in literature previously. 

1.4 Thesis Outline 

The rest of this thesis is structured as follows. Chapter 2 provides the necessary knowledge 

background concerning the research described: It includes an introduction and discussion 

on air quality forecasting, a comparison of the characteristics of the available forecasting 

models categories and the criteria considered in order to select the forecasting model 

category of this work. Chapter 2 also reviews the main existing approaches in the research 

area referring to the air quality forecasting by using data-driven models and presents some 
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of the developed operational air quality forecasting systems. Moreover, it describes the 

variable types and model verification, the optimization algorithms, the pre-processing and 

forecasting methods employed, and the study areas and their characteristics. 

Chapter 3 describes the experiments performed in order to investigate the use of data-

driven models in order to forecast AQ parameters. 

Chapter 4 documents the capabilities and limitations of existing forecasting performance 

indices. By evaluating the selected indices, latent characteristics were revealed that led to 

the selection of FPIs to be used in the construction of new statistical forecasting indices. 

Thereafter, Chapter 4 presents a) an explanation of how the new indices were built, b) the 

evaluation results, c) the performance of the new indices compared to existing indices, and 

d) the conclusions reached. The outcome of this effort is tested by evaluating the 

forecasting performance by using a) the existing evaluation indices and b) the new indices, 

for a set of different forecasting data-driven models. In order to increase the confidence in 

the estimation of the forecasting performance, a new methodology was introduced, which 

is based on the bounds of the confidence intervals. 

Chapter 5 describes the development of the data-driven AQ forecasting optimization 

methodology, and more specifically it details: 

 The phases of the optimization methodology; 

 The steps within the optimization problem and its division into discrete 

computational steps (that formulate a general procedure); 

 The methods that were used to deal with the problem of each computational step; 

 How the optimization methodology is employed by the selected optimization 

algorithms; 

 The evaluated models and the procedure that is performed in order to evaluate 

them; 

 The results of this part of the research and discussion of the findings. 

Finally, Chapter 6 reviews how the research questions that motivated the research were 

addressed, draws conclusions about what has been found, and articulates the contribution 

that the work has made. 
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Chapter 2. Background and Methodology 

Chapter 2 

Background and Methodology 

2.1 Air Quality Forecasting 

Urban air quality has emerged as an acute environmental problem, especially for densely 

populated areas, causing negative effects on health, ecosystems and materials (including 

historic and cultural heritage monuments) (Doytchinov, 2012). Health effects may range 

from difficulty in breathing to an aggravation of existing cardiac and respiratory 

conditions. These effects may result in visits to a doctor or an emergency room, increase 

use of medications, admission to hospital or even premature death (Health Canada, 1997). 

According to the World Health Organization (WHO) (2005) more than two million 

premature deaths, each year can be attributed to the effects of air pollution. 

Air Quality (AQ) is defined (Collett & Oduyemi, 1997) as a "measure of the degree of 

ambient atmospheric pollution, relative to the potential to inflict harm on the 

environment". Moreover, the European Union (EU) has developed an extensive body of 

legislation which establishes health based standards and objectives for a number of 

pollutants in ambient air (European Commission, 2017). These standards prescribe, among 

other things, the limit values of different air pollutants, the permitted exceedances (margin 
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of tolerance) and the threshold levels used to inform and alert authorities. Air pollutants 

can be in the form of solid particles, liquid droplets, or gases (SEPA, 2017) and can have 

local, regional, and global impacts. Their limit value is defined in the Clean Air for Europe 

(CAFE) directive (EUR-Lex, 2008) as a level to be attained within a given period and not 

to be exceeded once attained, which is based on scientific knowledge, with the aim of 

avoiding, preventing or reducing harmful effects on human health and/or the environment 

as a whole. The percentage by which limit values may be exceeded (subject to the 

conditions established in the (EUR-Lex, 2008)) is referred to as the margin of tolerance. 

The threshold to alert authorities is a level, which when exceeded there is a risk to human 

health from brief exposure and at which immediate steps are to be taken. 

2.1.1 Processes Affecting Pollution Levels 

There are various processes that affect AQ levels (Seinfeld & Pandis, 2006): 

The term atmospheric dispersion refers to a series of processes that result in the transport 

and diffusion of substances in the atmosphere. These processes are influenced by several 

factors, such as: wind direction and wind speed, the geographical area, and atmospheric 

heating effects. Thus, air pollution concentration varies spatially and temporarily causing 

the air pollution pattern to vary according to location and time, due to difference in 

meteorological and topographical conditions (WHO, 2008). 

Pollutants can be carried thousands of kilometres from their original source, sometimes 

from urban areas to less populated areas (Health Canada, 1997). Advection refers to the 

transport (usually horizontal movement) of pollutants by means of wind fields, whereas 

diffusion involves small-scale turbulent mixing of pollutants. By definition, advection 

transports the pollutants without a significant change in their concentrations, whereas 

diffusion involves dilution which leads to lowering of pollutant concentrations (Kukkonen, 

et al., 2012). 

As wind speed increases, the volume of moving air in a period of time also increases. 

Thus, if the emission rate is relatively constant and the wind speed is doubled then the 

pollutant concentration will be halved (meaning that the concentration is an inverse 

function of the wind speed). In the case of wind direction, when it is relatively constant, 

the same area is continuously exposed to high pollutant concentration. If the wind 
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direction is constantly shifting, pollutants are dispersed over a larger area, and thus 

concentrations are lower over any exposed area (Liu & Liptak, 1999). 

Air pollution concentration can also be effected by air temperature inversions, in which 

vertical air movement is impeded. In air temperature inversions, a layer of warm air is 

above a layer of relatively cooler air, which prevents the normal vertical mixing (Dye, et 

al., 2003) (Phalen & Phalen, 2013). Inversions can trap dangerous concentrations of 

pollutants in the cool air below, sometimes causing dense smog over urban areas. This is 

because inversions may occur at altitudes less than 100 m (WHO, 2008) (Phalen & Phalen, 

2013). 

Air pollution is also influenced by chemical and physical processes in the atmosphere: 

Physical and chemical processes transform and/or remove chemical compounds emitted 

into the atmosphere and thus affect the concentration of pollutants (Atkinson, 1988). Such 

processes include emissions, nucleation, coagulation, condensation, evaporation and dry 

deposition (Jacobson, 1997). 

Figure 2-1 illustrates the different processes involved in the production, growth, and 

eventual removal of atmospheric aerosol particles (Jacob, 1999). The typical size range of 

gas molecules is 10
-4

-10
-3

 μm and when the gases are converted to small liquid droplets 

(ultrafine particles) their size range is 10
-3

-10
-2

 μm. This transition phase is called 

nucleation. These ultrafine aerosols grow rapidly to the 0.01-1 μm fine aerosol size range 

by condensation of gases (i.e. gases condense into a small solid particle to form a liquid 

droplet) and by coagulation (i.e. collisions between particles during their random motions). 

Further growth (beyond 1 μm) is much slower because in this state the particles are too 

large to grow rapidly by condensation of gases, and because large particles have a slower 

random motion and thus lower coagulation rate. Aerosol particles originating from 

condensation of gases tend therefore to accumulate in the 0.01-1 μm size range, often 

called the accumulation mode. These particles are too small to sediment at a significant 

rate and are removed from the atmosphere mainly by scavenging by cloud droplets and 

subsequent rainout (or direct scavenging by raindrops) (Jacob, 1999). 
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Figure 2-1: Production, growth, and removal of atmospheric aerosols (Jacob, 1999) 

2.1.2 Sources of Air Pollutants 

Air pollutants can be categorized either as primary (those emitted directly into the 

atmosphere), or secondary (those forming in the atmosphere as a result of the reactions 

among other chemicals) (Kumar, et al., 2016) (Health Canada, 1997). In general, there are 

two types of air pollutant emission sources, point and nonpoint (Kumar, et al., 2016). Point 

sources are those released at a single point (such as a smokestack of a factory), while 

nonpoint sources are those not released at discrete points and are not easily attributed to a 

single source. Nonpoint sources can often be categorised as wide area or line sources; 

examples of a wide area source are dust blown by the wind or wildfires, while an example 

of a line source is road traffic pollution. 

Air pollutants are emitted into the atmosphere from anthropogenic (human) activities, but 

also from natural sources, such as windblown dust, wildfires and sea drops. The 

anthropogenic sources can be categories as: stationary sources (such as factories, power 

plants, and smelters); area sources (which are smaller sources such as dry cleaners, 

degreasing operations, housing developments); and mobile sources (such as cars, buses 

and planes) (Richards, et al., 2006). The stationary sources are also referred to as point 

sources. The area sources and mobile sources can be considered either as a point or 

nonpoint sources, depending on the case study. 
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Concerning the protection of human health, six air pollutants have been selected by the 

U.S. Environmental Protection Agency (EPA) when setting the National Ambient Air 

Quality Standards (NAAQSs) (2018). These pollutants are sulphur dioxide (SO2), nitrogen 

dioxide (NO2), carbon monoxide (CO), ozone (O3), lead (Pb), and particulate matter with 

mean aerodynamic diameters less than or equal to 2.5 mm (PM2.5) and 10 mm (PM10). In 

the European Union (EU) regulated pollutants include the six pollutants regulated in the 

U.S. plus benzene (C6H6), which is a volatile organic compound (VOC) with known 

carcinogenic health effects (Richards, et al., 2006) (Zhang, et al., 2012) (McIntosh & 

Pontius, 2017). These air pollutants are commonly known as criteria pollutants because 

numerical standards have been set for them to establish safe environmental levels. Table 

2-1 presents the main sources of the seven EU regulated pollutants (WHO, 2008) 

(Richards, et al., 2006) (McIntosh & Pontius, 2017) (Kumar, et al., 2016), (see Appendix 

IV for additional information regarding some of the major air pollutants). 

Table 2-1: The sources of the seven European Union regulated pollutants 

Pollutant Anthropogenic Sources Natural Sources Health Effects 

Sulphur 

Dioxide 

Industrial sites and their raw 

materials such as: power plants, 

burning of fossil fuels, crude oil 

and coal 

Volcanic eruptions 

Irritation to the eyes and 

respiratory system, asthma 

hospitalization, chronic 

bronchitis and emphysema 

Nitrogen 

Dioxide 

Fossil fuel combustion and 

atmospheric reactions such as 

power plants and vehicle tailpipes 

Lightning, plants and 

soil 

Irritation to the respiratory 

system (increase the symptoms 

in asthmatics, decrease the lung 

growth) 

Carbon 

Monoxide 

Emitted mostly from motor 

vehicles (when carbon-containing 

fuel is not burned completely) 

Wildfires 

Increase the asthma 

hospitalization, reducing 

oxygen delivery in the body 

and causing death at high 

concentrations 

Ozone 

A secondary pollutant formed at 

ground level (also known as bad 

ozone) by reactions involving 

nitrogen oxides (vehicle 

emissions), volatile organic 

compounds (VOCs) in the 

presence of heat and sunlight. 

Ozone exists in the 

stratosphere (also 

known as good 

ozone), which 

provides protection 

from harmful 

ultraviolet radiation. 

Increase the respiratory and 

asthma hospitalization, 

decreases in lung function and 

increased respiratory symptoms 

such as chest pains and 

coughing 

Lead 

Once a major pollutant present in 

motor vehicles. These days lead 

comes mostly from ore smelters 

and metal processing operations 

- 

Damage the brain and central 

nervous system to cause coma, 

convulsions and even death 

Particulate 

Matter 

Combustion engines, fuel burning 

(wood stoves, fireplaces), 

industry, construction 

Agricultural activities 

(soil and dust), traffic 

on unpaved roads, 

sand from deserts, 

smoke from fires 

Penetrate deeply into the lungs 

(decrease lung growth and 

function), increase the infant 

respiratory mortality, increase 

the symptoms in asthmatics 

Benzene 
Produced as fuel by-products in a 

combustion process 
- 

Carcinogen, involved in the 

production of ground level 

ozone, because is the most 

common VOC 
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2.1.3 Air Quality Management and Forecasting 

Air quality management refers to the activities that a regulatory authority performs in order 

to protect human health and the environment from the adverse effects of air pollution. 

Authorities have two options in order to reduce the effects of air pollution: improving air 

quality and preventing exposure (Honoré, et al., 2008). In Europe, over the past 40 years, a 

broad range of environmental legislation has been implemented. This has helped to address 

some of the most serious environmental concerns of citizens and businesses in the EU. 

Emissions of air pollutants (as well of water and soil) have been reduced significantly over 

the past decades (EUR-Lex, 2013). 

Despite all efforts, there are still exceedances of the limit values, which can cause serious 

health problems. In order to minimise the exposure to high concentrations of air pollutants, 

it is important to provide early warning to both authorities and the general public, 

particularly the most sensitive groups (elderly, children and asthmatics) (Honoré, et al., 

2008) (Jiang, et al., 2015). The CAFE directive (EUR-Lex, 2008) in Europe clearly states 

that information to be provided to the public should include: 

 Information on observed exceedance(s) 

 Forecast for the following afternoon/day(s) 

 Information on the type of population concerned, possible health effects and 

recommended behaviour 

Air quality forecasting is the tool that can help to meet the early warning objectives 

(Honoré, et al., 2008). The inclusion of AQ forecasting models to an Air Quality 

Management System cannot by itself solve the described problems, it is only one 

component of the overall air quality management picture (CENR, 2001) (San José, et al., 

2006) (Sunil, et al., 2015). Air quality forecasts are generally classified into the following 

broad areas on the basis of their goal (Dye, et al., 2003) (Dabberdt, et al., 2004): 

 Health Alerts: Several cities inform the public when air pollution levels exceed 

the specified levels. The warnings are directed to inform specific parts of the 

population (that are particularly sensitive to air pollution) in order to plan and take 

preventative actions to minimise their personal air pollution exposure during high-

pollution episodes (Jiang, et al., 2015). For example, a growing number of states in 
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the U.S. are using summertime ozone forecasts to alert sensitive populations 

(CENR, 2001). 

 Emergency Control Measures: Authorities can use air quality forecasts (e.g. the 

forecasting of next day's air pollution levels) to take efficient emergency control 

measures (such as temporarily shutting off major emission sources, motivating car-

pooling and the use of public transportation) to reduce air pollution and to avoid or 

limit the exposures to unhealthy levels (Zhang, et al., 2012). For example, many 

cities in the U.S. offer free access to public transportation to reduce automobile 

emissions on days with high ozone concentrations (CENR, 2001). 

 Control Strategy: In air quality, a control strategy is a set of specific techniques 

and measures, which have been identified and implemented in order to achieve air 

pollution reduction and formulate an air quality standard or goal. For example, 

Kumar, et al., (2016) study the formulation of an air quality management 

framework for industrial air pollution, based on the impact of different control 

scenarios. These scenarios evaluate the increment of stack height and fuel change 

(from high emission fuel to low emission fuel). The best scenario provides 79% 

reduction for SO2 and 69% reduction for PM. 

 Emergency response: Smoke from wildfires affects the air quality and the 

visibility in the area that can cause accidents and increase traffic. An erupting 

volcano will release ash and gases that can be harmful to health. Reliable forecasts 

can offer rerouting options, for automobiles and air traffic, to reduce the possibility 

of accidents. 

2.1.4 Air Quality Modelling 

According to Collett & Oduyemi, (1997) air quality modelling (also known as air pollution 

modelling) can be viewed as the attempt to simulate and thus predict the ambient 

concentration of criteria pollutants found within the atmosphere. In general, AQ 

forecasting models can be categorised according to the following three mathematical 

approaches (Collett & Oduyemi, 1997) (Jiang, et al., 2015): 

 Data-driven models 

 Deterministic models 

 Hybrid models 
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Data-driven modelling is based on the fact that meteorological and air pollutant 

concentrations are statistically related (Zhang, et al., 2012). Data-driven models usually 

require a large quantity of (historical) measured data, including a variety of atmospheric 

and meteorological variables. Generally, data-driven models express complex relations 

between meteorological conditions, concentrations of air pollutants and potential 

predictors (criteria pollutants) (Zhang, et al., 2012), and are thus applicable when the 

primary goal is to forecast specific AQ parameters (Konovalov, 2009). These models are 

extremely powerful in designing early warning systems, but cannot be used to study what-

if scenarios (control strategies). 

In data-driven modelling, there is a continuous process of learning, modelling and 

prediction. When new measured data are available they are fed into the data-driven model 

in order to facilitate training (learning process) and thus a new refined model is produced 

(Konovalov, 2009). The goal is to find a model which produces maximum forecasting 

performance (the best forecasting model) with a test dataset (data that were not used in the 

training phase) to simulate an operational system. In practice (e.g. in an operational 

forecasting system), the trained best model is used as an analytical tool to produce 

forecasts by using other input data. For example, in order to produce tomorrow's forecast, 

the data observed today may be used an input to the model. Data-driven modelling can be 

achieved with the aid of computational intelligence (CI) and statistical methods. The most 

common methods include classification and regression trees (CART), linear regression 

(LR), artificial neural networks (ANNs) and fuzzy logic (FL) (Zhang, et al., 2012). These 

models are described in detail in Section 2.5. 

Strengths of Data-driven models (Dye, et al., 2003) (Zhang, et al., 2012): 

 They are commonly used and easy to operate; 

 They generally produce good forecasts; 

 Once the model is developed (e.g. an ANN model), the forecaster does not need 

specific expertise to operate it; 

 Generally they are more suitable for the description of complex site-specific 

relations between concentrations of air pollutants and potential predictors. Some 

methods (such as ANNs and FL) can detect non-linear relationships between 

variables. 
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Limitations of Data-driven models (Zhang, et al., 2012): 

 Usually they are limited to the area and conditions for which measurements were 

collected and cannot be generalized to other regions with different chemical and 

meteorological conditions; 

 Usually requires a large quantity of measurement data; 

 They cannot predict concentrations during periods of unusual emissions and/or 

meteorological conditions that deviate significantly from the historical record; 

 The nature of data-driven modelling does not enable better understanding of 

chemical and physical processes. 

Deterministic air quality models (also known as 3-D numerical air quality models) attempt 

to employ physical laws, chemical reactions and simplifying assumptions to 

mathematically represent the important processes that affect ambient air quality (Collett & 

Oduyemi, 1997) (Dye, et al., 2003) (CENR, 2001). Deterministic AQ models are capable 

of forecasting temporally and spatially resolved, concentrations under both typical and 

atypical conditions and in areas that are not monitored (Jiang, et al., 2015). These models 

can be used for operational AQ information provision to decision makers and the general 

public and in case study analyses to understand air pollution processes and to estimate the 

effects of emissions changes on pollutant concentrations during episodic conditions (Dye, 

et al., 2003). Deterministic AQ models consist of other sub-models, in particular by a 

meteorological model, an emissions model, and a chemical model (San José, et al., 2006) 

(Dye, et al., 2003) (CENR, 2001). 

 Meteorological models: simulate the conditions that determine transport and 

mixing and influence chemistry (solar intensity, temperature, humidity, etc.), 

emissions (e.g. temperature), and deposition. 

 Emissions models: simulate the temporal, spatial, and chemical distribution of 

emissions of a selected group of pollutants, and/or its precursors (in the case of 

secondary pollutants), from both anthropogenic and natural sources. 

 Chemical models: use the output (i.e. forecasts) of the meteorological and 

emissions models as inputs, in order to simulate the transformation by chemical 

reaction (e.g. the transformation of primary pollutants into secondary pollutants), 

and removal of air pollution. 
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Deterministic AQ models are classified as being either Lagrangian or Eulerian depending 

on the method used to simulate the time-varying distribution of pollution concentrations 

(Dye, et al., 2003) (CENR, 2001) (National Research Council, 1999). 

 Lagrangian (trajectory) models follow individual air parcels over time using the 

meteorological data to transport and disperse the pollutants. The model's air parcel 

is allowed to move over the air basin, following a trajectory calculated from the 

wind fields (i.e. a Lagrangian simulation) (National Research Council, 1999). This 

approach is computationally efficient when treating a limited number of emission 

sources. However, it is difficult to properly characterise the interaction of a large 

number of individual sources when nonlinear chemistry is involved and, 

additionally, these models have limited usefulness in forecasting secondary 

pollutants. For these reasons, the Eulerian models are often preferred to forecast air 

quality (Dye, et al., 2003). 

 Eulerian models (also called 3-D Eulerian models or grid models) use a grid of 

cells (vertical and horizontal) where the chemical transformation equations are 

solved in each cell and pollutants are exchanged between cells. Eulerian models 

can produce three-dimensional concentration fields for several pollutants but 

require significant computational power and storage (disk space), and expertise 

(Dye, et al., 2003) (CENR, 2001). For that reason, these modelling analyses may 

take years to set up, evaluate, and complete (Dye, et al., 2003). 

The computational cost is related to the model's resolution (i.e. the grid cell size). 

Smaller grid cells will result in higher resolution and generally greater model 

accuracy but at a higher computational cost.  

For example, the System for Integrated modeLling of Atmospheric coMposition (SILAM, 

2014) has a minimum requirement of an Intel® Xeon® CPU with 16 or 8 dual-core 

processors (64-bit processor) with 24 GB RAM memory in order to perform forecasting. 

In addition, the simulations of the CALIOPE Air Quality Forecast System (CALIOPE-

AQFS) are run on the MareNostrum supercomputer (Intel Xeon E5-2670, 16 CPUs and 64 

GB RAM memory per node) at the Barcelona Supercomputing Center (Pay, et al., 2014). 

By using parallelization of meteorological and air quality models, MareNostrum uses up to 

256 CPUs. As an example of computational costs, the most computationally demanding 

domain was in Andalusia, Spain, where in order to provide 48-hour forecast at 1 km 

resolution (666 × 358 cells), 256 CPU max and 5 hours required. 
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Strengths of Deterministic Models (Zhang, et al., 2012) (Konovalov, 2009) (Dye, et al., 

2003): 

 They are capable of forecasting temporally and spatially resolved concentrations. 

The model forecasts can be presented as maps of air quality to show how predicted 

air quality varies over a region per hour (or per day); 

 They provide scientific understanding of pollutant processes that control air 

pollution in a specific area; 

 They can be used for the analysis of hypothetical scenarios (such as for control 

strategy); 

 They can predict air pollution in areas where there are no air quality measurements. 

Limitations of Deterministic models (Zhang, et al., 2012) (Konovalov, 2009) (Dye, et al., 

2003): 

 The insufficient knowledge of pollutant sources, the required approximations and 

simplifications, and the inaccuracies in description of physicochemical processes 

can lead to biases in forecasted concentrations; 

 The inaccuracies and uncertainties in inputs variables that contribute to pollution; 

 The accuracy of these models depends on the accuracy of meteorological 

predictions and emission estimates; 

 They are “expensive” in terms of the investment and time required to acquire all 

the necessary input data (topography, emission inventory, etc.) 

 They are computationally expensive and require a high-speed computer system 

with a large memory and disk storage. 

Hybrid models are used in order to generate forecasts with improved accuracy, either by 

combining deterministic and data-driven models or by combining two or more methods of 

the described models. For example, deterministic models can be combined with bias 

correction techniques (such as statistical adaptation and/or data assimilation). Another 

common approach is to generate an ensemble of forecasts from different methods (either 

from deterministic or data-driven models) and used to identify the "mean" or "probable" 

forecast. It worthies mentioning that the ensemble-based forecasting is also applied in 

data-driven modelling (Breiman, 1996)  and has been implemented in this thesis also (see 

Section 2.5.4) 
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2.1.5 Forecasting Aspects Classification 

There are various ways described in the literature to classify forecasts, depending on the 

forecasting techniques, time horizon, methods, and models. Figure 2-2 presents a way to 

classify the different forecasting aspects. 

 

Figure 2-2: A classification scheme of different forecasting aspects 

The forecasting techniques are classified into two types, qualitative and quantitative. 

1. Qualitative forecasting techniques are subjective and require the judgment of 

experts (by experience). Qualitative forecasts are often used in situations where 

there is little or no historical data. 

2. Quantitative forecasting techniques make formal use of historical data and a 

forecasting model. Quantitative forecasting analyses large amounts of historical 

data in order to summarize patterns in the data and expresses a statistical 

relationship between previous and current values of the variable. Thus, the 

quantitative forecasting relies on the identification of repeated patterns in the data. 

A forecasting problem can be classified depending on the forecasting time horizon as 

short-term, medium-term, and long-term. As Montgomery, et al. (2015) explain, the short-

term and medium-term forecasting is typically based on identifying, modelling, and 

extrapolating the patterns found in historical data. These historical data usually exhibit 
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inertia and do not change dramatically very quickly, and thus, data-driven methods are 

very useful. 

 In short-term forecasting, the forecasts are made for short time periods (such as 

days, weeks, and months) and used for operating decisions; 

 Medium-term forecasts are made for a time period from 1 to 2 years and used for 

tactical decisions; 

 Long-term forecasts are made for a time period greater than two years, and thus, 

used for strategic decisions.  

In terms of the number of features (independent variables) used, modelling methods may 

be classified into two groups, univariate and multivariate (Kasabov, 1998). In practice, a 

combination of these methods may be used (Chatfield, 2003). 

 In univariate methods, the forecasts are based only on present or past observations 

of one independent variable; 

 In multivariate methods, the forecasts are based on more than one independent 

variable. 

The forecasting models categories have been described in Section 2.1.4, along with their 

strengths and limitations. The forecasting approach used is also determined from the need 

to either categorise (classify) AQ levels in terms of categorical values (like “low”, 

“medium”, “high” and “very high”) or to model (and thus predict) the numerical value of 

the concentration of a pollutant. The former approach is generally called classification 

modelling, while the latter is called regression modelling (Ethem, 2010). 

2.1.6 Selecting the Forecasting Model 

The selection of the forecasting method/model depends primarily on the forecasting 

requirements, the available resources (in terms of historical data and computational power) 

and experience (Dye, et al., 2003). The overall cost of a particular model is associated with 

both development and operation of the model. Table 2-2 presents a summary of the factors 

that contribute to the selection of a forecasting model. 

The selection of the forecasting model takes into consideration the factors articulated in 

Table 2-2 and the different aspects of forecasting (see Section 2.1.5). Thus, in this thesis 
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the main requirement of forecasting was to be able to model and foretell the numerical 

values (regression modelling) of air pollutants concentrations in a short-term time horizon 

by using data-driven models. Classification models were used as part of the investigation 

experiments performed in Chapter 3. For this reason a combination of univariate and 

multivariate methods were employed. Data-driven models were selected against 

deterministic for the following reasons: 

1. They were part of the research questions (see Section 1.2) 

2. They did not require sound knowledge of pollution sources and processes. 

3. They require significantly less development and operational effort. Thus, it would 

be easier to maintain an operational system with lower cost. 

4. They require only a personal computer for the development. 

5. Concerning data availability and testing, historical data are available through 

utilizing the European air quality database (AirBase-V8, 2014) (AQ e-Reporting, 

2017). 

6. They can directly lead to health alerts and support emergency control measures 

(which is the aim of this work). 

Table 2-2: A summary of the factors that contribute to the selection of a forecasting model 
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2.2 Forecast Verification and Variable Types 

Forecast verification is an essential component of a forecasting system since it provides 

with a “measure” of the quality of forecasts (Murphy & Winkler, 1987) (Doswell III, 

1996). In the forecast verification process, forecasts are compared to relevant observations 

with the aid of various statistical measures, commonly referred to as indices. Those 

measures depict various aspects of the differences between forecasted and observed values 

of the parameters of interest. This process is also referred to in the literature as Forecast 

Evaluation (West, 2006) (Diebold & Lopez, 1996) (Laurent & Violante, 2011) (Clark & 

McCracken, 2011). 

Jolliffe & Stephenson (2012) define forecast quality as a multidimensional concept 

described by several different scalar attributes, as presented in Table 2-3. All of these 

attributes provide useful information about the performance of a forecasting system. Thus, 

no single index is sufficient for forecast evaluation, i.e. for judging and comparing forecast 

quality (Jolliffe & Stephenson, 2012) (Morse, et al., 2005) (Briggs & Levine, 1997) 

(Mason & Stephenson, 2008). 

Table 2-3: The different scalar attributes that describe the forecast quality. 

Scalar 

Attribute 
Description 

Overall Bias 
The total difference between the expectation of the forecasts and the observations (Jolliffe 

& Stephenson, 2012). 

Reliability (or 

Calibration) 

Refers to the degree of correspondence between a forecaster’s subjective probabilities and 

the observed relative frequency of event occurrences (Mandel & Barnes, 2014). 

Uncertainty 

The natural variability of the observable variable. For example, in the Brier Score (Brier, 

1950) decomposition, uncertainty is the variance of the binary observable variable. It is an 

important aspect in the performance of a forecasting system, over which the forecaster has 

no control (Jolliffe & Stephenson, 2012). 

Sharpness (or 

Refinement) 

How much the forecasts deviate from the mean for forecasts, or from the mean 

probabilities for probabilistic forecasts (Jolliffe & Stephenson, 2012). 

Accuracy 
The average distance/error between forecasts and observations that depends on bias, 

resolution and uncertainty attributes (Jolliffe & Stephenson, 2012). 

Association 

The overall strength of the statistical relationship/dependency between forecasts and 

observations that is independent of the marginal distributions. Linear association is often 

measured using the correlation coefficient (Jolliffe & Stephenson, 2012). 

Resolution (or 

Discrimination) 

Refers to how well a forecaster separates occurrences from non-occurrences (Mandel & 

Barnes, 2014). 

 

The forecast verification process and, in consequence, the provided measures can be used 

in order to compare the forecast quality of different forecasting models and different 

forecasting parameterizations.  
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The type of variable being verified is an important factor when choosing verification 

method. One way of addressing forecasting problems it is depending on its type. Thus, 

forecasting variables can be categorized as (a) Continuous (numerical) variables 

(regression problem) and (b) as Categorical variables (classification problem). 

In forecasting of continuous variables, the forecast is given as a real value (Gorunescu, 

2011), in the units of the variable, for example, the temperature in degrees Celsius. The 

forecast and the verifying observation may take any value of the variable.  

In forecasting of categorical variables, the forecast can be considered as discrete value 

(Gorunescu, 2011); this means that a pre-determined range of values of the variable is 

used. Some variables are inherently categorical while others may be redefined as 

categorical variables by selection of threshold values to delineate the categories. 

2.3 Related Work 

Data-driven modelling can be achieved with the aid of computational intelligence and 

statistical methods. Computational Intelligence is the study of adaptive mechanisms to 

enable or facilitate intelligent behaviour in complex and changing environments. These 

mechanisms exhibit an ability to learn or adapt to new situations, to generalize, abstract, 

discover and associate (Engelbrecht, 2007). Statistical methods are mathematical formulas, 

models, and techniques that are used in statistical analysis of data to extract information 

and provide different ways to assess the robustness of outputs (NIST/SEMATECH, 2003). 

The following sections present some of the numerous CI-fuelled AQ forecasting models 

and operational AQ forecasting systems. 

2.3.1 Computational Intelligence AQ Forecasting Models 

Kalapanidas & Avouris, (2001) presented a prototype (named NEMO) for the short-term 

prediction of NO2 maximum concentration levels in Athens, Greece. NEMO is based on a 

case-based-reasoning approach combining heuristic and statistical techniques. Results 

showed that the overall performance of NEMO makes it a good candidate to support air 

pollution experts in operational conditions. 

Slini, et al., (2002) developed a stochastic autoregressive integrated moving average 

(ARIMA) models to forecast the maximum O3 concentration in Athens, Greece. Nine 
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years long data (1990-1998) were used by the forecasting models. The results are 

satisfactory concerning the statistical analysis of the index of agreement (which ranges 

from 0.83 to 0.97) and the coefficient of determination (which ranges from 0.50 to 0.89). 

Chaloulakou, et al., (2003) demonstrate the use of artificial neural networks and linear 

regression techniques for predicting one day in advance the hourly maximum O3 levels at 

several monitoring sites (Liosia, Maroussi, Likovrissi and N.Smirni) in Athens, Greece, by 

using eight years long data (1992-1999). The proposed artificial neural networks provide a 

considerable improvement (the index of agreement, d2 ranges from 0.80 to 0.91, and the 

coefficient of determination ranges from 0.37 to 0.66) in the forecasting of summertime O3 

concentrations over multiple linear regression models (the index of agreement, d2 ranges 

from 0.74 to 0.91, and the coefficient of determination ranges from 0.26 to 0.55) based on 

the same set of input variables. 

Zolghadri, et al., (2004) proposed a new strategy which combines an adaptive nonlinear 

state space-based prediction mechanism, a gain scheduling strategy and neural network 

techniques to develop an integrated operational warning system. This was achieved by 

forecasting the daily maximum O3 concentrations in Bordeaux, France, by using four years 

long data (1998-2001). Zolghadri, et al., (2004) states that the advantage of their proposed 

system is the reliable estimates that can be obtained (with index of agreement of d1=0.78 

and d=0.95), while their implementation of the overall method is simple and the 

computational effort is rationally low (for instance, in contrast to deterministic models). 

Barrero, et al., (2006) presented a multiple linear regression with forward stepwise method 

for the prediction of the daily maximum O3 concentrations in Errenteria, Spain. Four years 

long data (1997-2000) were used by the forecasting models, which are based on the day of 

the year, the relations between O3, sunlight and NOx, and previous day O3 levels. Results 

showed that the proposed models have an acceptable performance (the index of agreement 

ranges from 0.86 to 0.89, and the coefficient of determination ranges from 0.60 to 0.67). 

Grivas & Chaloulakou, (2006) evaluated the potential of various developed neural network 

models to provide reliable predictions of PM10 hourly concentrations, in Athens, Greece. 

In addition, a genetic algorithm optimization procedure was used to evaluate the selection 

of the input variables. The forecasting models used two years long data (2001–2002). The 

results of the neural network models were considered satisfactory (the index of agreement 

ranges from 0.80 to 0.89, and the coefficient of determination ranges from 0.50 to 0.67). 
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For comparison, the multiple linear regression models were developed but were not as 

good as the neural network models (their coefficient of determination ranges from 0.29 to 

0.35). This shows the superiority of the examined neural network models in this study. 

Shiva & Khare, (2006) described a step-by-step procedure to forecast the daily average 

NO2 concentrations by using artificial neural networks, in Delhi, India. Three years long 

data (1997-1999) were used by the forecasting models for training, testing and evaluation 

purposes. The results show satisfactory performance of the artificial neural network 

models with an index of agreement (d) ranges from 0.59 to 0.76. 

Tzima, et al., (2007) developed a multi-algorithm data-driven AQ forecasting system that 

was actually used in Thessaloniki, Greece for supporting information provision to citizens 

in the frame of the www.airthess.gr project (which ceased operation in 2011).  

Sousa, et al., (2007) used a new methodology based on feedforward artificial neural 

networks which use principal components as inputs, to forecast the hourly O3 

concentrations of the next day. The developed model was compared with multiple linear 

regression models, feedforward artificial neural network models based on the original data 

and also with principal component regression models. Results showed that the use of 

principal components as inputs did not improve the models prediction. The performance of 

the feedforward artificial neural networks based on the original data were the same when 

principal components were used as inputs (index of agreement d=0.84 and coefficient of 

determination R
2
=0.61). The feedforward artificial neural networks provide better 

forecasting performance, in comparison to the multiple linear regression model (d=0.81 

and R
2
=0.49) and to the principal component regression model (d=0.82 and R

2
=0.61). 

Coman, et al., (2008) attempted to verify the presence of non-linear dynamics in the ozone 

time series by testing a "dynamic" model, evaluated in comparison to a "static" one, in the 

context of predicting hourly O3 concentrations (one-day ahead), in Paris, France. The 

"dynamic" model uses a recursive structure involving a cascade of 24 multilayer 

perceptron (MLP) neural networks arranged so that each MLP feeds the next one. The 

"static" model is a classical single multilayer perceptron neural network. Three years long 

data (2000-2002) were used by the neural networks. Results indicate a rather good 

applicability of these models for a short-term prediction of O3, with an index of agreement 

(d
2
) ranges from 0.83 to 0.98 and a coefficient of determination ranges from 0.53 to 0.92. 

Coman, et al., (2008) conclude that for their study data, there was no evidence of non-

http://www.airthess.gr/


Background and Methodology | 27 

linear dynamics in the O3 because the results of the recursive model were similar with 

those obtained via the "static" model. 

Kurt, et al., (2008) developed an online air pollution forecasting system for Istanbul, 

Turkey. The system predicts three air pollution indicator (SO2, PM10 and CO) levels for 

three days ahead by using artificial neural networks. The experiments presented by Kurt, et 

al., (2008) were conducted by using almost one year long data (August 2005 to July 2006). 

Results show that quite accurate predictions of air pollutant indicator levels are possible 

with a simple neural network (with relative error ranges from 20% to 5%). 

Solaiman, et al., (2008) investigated three CI methods to address the complex non-linear 

relationships between O3 and meteorological variables in Hamilton, Canada. Three 

dynamic neural networks with different structures were investigated: 1) a time-lagged 

feedforward network, 2) a recurrent neural network, and 3) a Bayesian neural network 

model. Four years long data (2001-2004) were used by the forecasting methods. Results 

suggest that these models are effective forecasting tools and outperform the commonly 

used multilayer perceptron and hence can be applicable for short-term forecasting of O3 

level. Although the overall performances of these models were satisfactory (with a 

coefficient of determination of 0.85), none of them was able to predict with accuracy the 

low and extremely high levels of concentrations.  

Neto, et al., (2009) applied statistical models based on multiple regression analysis and 

classification and regression trees analysis, in order to forecast the average daily 

concentrations of particulate matter and the maximum daily ozone levels. Four years long 

data (2000-2003) were used by the forecasting models (for training and validation), in 

Lisbon, Portugal. Results show the statistical models were very successful in forecasting 

the average daily concentrations of particulate matter (coefficient of determination ranges 

from 0.93 to 0.97) and the maximum daily O3 levels (coefficient of determination ranges 

from 0.97 to 0.99). 

Li, (2010) used artificial neural networks to forecast hourly concentrations of O3, PM10 and 

SO2 in Yinchuan of Ningxia Hui, China. Four years long data (2005-2008) were used by 

the forecasting method. The artificial neural networks produced good results (low mean 

square error) in the middle and long term forecasting of almost all the pollutants. Li, 

(2010) conclude that the proposed methodology appears to be very useful for local 

administrations and health and environmental protection institutions, which are usually 



Background and Methodology | 28 

more interested in catching the future pollutant trend rather than the precise concentration 

value. 

Moustris, et al., (2010) used artificial neural networks in order to forecast the maximum 

daily value (three days ahead) of the Regional Pollution Index based on the European 

thresholds of NO2, CO, SO2 and O3. Five years long data (2001–2005) were used by the 

forecasting method, in Athens, Greece. Results of forecasting three days in advance, show 

a very good agreement between prediction and observation values, with an index of 

agreement from 0.59 to 0.94 and a coefficient of determination from 0.19 to 0.83. 

Roohollah, et al., (2010) developed proper prediction models by using artificial neural 

networks and adaptive neuro-fuzzy inference system (ANFIS) models, to forecast daily 

carbon monoxide (CO) concentrations in Tehran, Iran. Since input selection is a significant 

step in statistical models, forward selection (FS) and gamma test (GT) methods were used 

for selecting input variables and developing hybrid models with ANN and ANFIS. A total 

of six models (ANN, FS-ANN, GT-ANN, ANFIS, FS-ANFIS and GT-ANFIS) were 

developed by using two years long data (2004-2005). FS-ANN and FS-ANFIS models 

were selected as the best models considering their coefficient of determination of 0.9 and 

0.91, and index of agreement (d) 0.97 and 0.97 respectively. Finally, uncertainty analysis 

based on Monte-Carlo simulation was carried out for FS-ANN and FS-ANFIS models 

which show that FS-ANN model has less uncertainty. Thus, FS-ANN was the best model 

which forecasts satisfactorily the trends in daily CO concentration levels. 

Moustris, et al., (2012) examine the one-day forecast of the daily maximum surface O3 

concentration in Athens, Greece, by developing predictive models based on the method of 

multiple regression analysis (MLR) against artificial neural network (ANN) approach. Five 

years long data (2001-2005) were used by the forecasting models, which indicated that 

ANN models forecasting ability (with index of agreement of 0.892 and coefficient of 

determination of 0.666) does present a limited precedence against MLR models (with 

index of agreement of 0.887 and coefficient of determination of 0.653). Moustris, et al., 

(2012) states that in order to improve the predictive ability of the constructed ANN model, 

additional input parameters could be used, such as the nitrogen oxides concentrations, the 

intensity of solar radiation, and the sunlight duration. 

Russo, et al., (2013) used stochastic data analysis to discover a set of stochastic variables 

that represent the relevant information on a multivariate stochastic system. These variables 
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were used as input to artificial neural network models to forecast hourly NO2 

concentrations in Lisbon, Portugal. Five years long data (2002-2006) were used by the 

forecasting method with a coefficient of determination ranging from 0.15 to 0.85. Results 

show that by using stochastic variables as input data for training the ANN model, it is 

possible to significantly reduce the number of input variables and preserve the predictive 

power of the model. 

Azid, et al., (2014) used principal component analysis to identify the sources of pollution 

in Peninsular, Malaysia. The identified sources were used as inputs to artificial neural 

networks to determine the predictive ability of an air pollutant index set up by the 

Malaysian Department of Environment to recover and maintain air quality and protect 

public health. The combination of principal component analysis and artificial neural 

networks showed better predictive ability in the determination of air pollutant index, when 

fewer variables were used (following feature selection) with a coefficient of determination 

of 0.62. 

Elangasinghe, et al., (2014) proposed a methodology to extract the key information from 

routinely available data (meteorological and air pollutant variables) to build a reliable 

artificial neural network model. The methodology was tested by forecasting NO2 

concentrations using two years long data (2010-2011) in Auckland, New Zealand. Three 

input optimization techniques were explored, namely a genetic algorithm, forward 

selection, and backward elimination. The genetic algorithm technique gave predictions 

resulting in the smallest mean absolute error. The developed artificial neural network 

model was found to outperform a linear regression model based on the same input 

parameters. The index of agreement (dr) of developed artificial neural network models 

ranges from 0.65 to 0.79 and the coefficient of determination ranges from 0.48 to 0.80. In 

the case of the linear regression models the range values of the respective measures were 

0.53 to 0.70, and 0.17 to 0.60. 

Mishra & Goyal, (2015) used a novel approach based on regression models and principal 

component analysis to find the correlations of different predictor variables between 

meteorology and air pollutants. The significant variables were used as the input parameters 

to the artificial neural network models to forecast hourly NO2 concentrations in Agra, 

India. In addition, multiple linear regression models were used for comparison. The 

forecasting models use a one year long data (2013). Results show that the combination of 
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principal component analysis and artificial neural networks provide better forecasting 

performance (with a coefficient of determination of 0.83) in comparison to the multiple 

linear regression models (coefficient of determination of 0.48). 

Feng, et al., (2015) used a novel hybrid model by combining air mass trajectory analysis 

and wavelet transformation to improve the artificial neural network forecast accuracy of 

daily average concentrations of PM2.5 (two days in advance). The trajectory based 

geographic parameter was used as an extra input predictor to the artificial neural network 

model, in order to recognize distinct corridors for transport of "dirty" and "clean" air to 

selected stations. The forecasting models used one year long data (September 2013 to 

October 2014) from Beijing, Tianjin and Hebei, China. It was found that the trajectory 

based geographic model and wavelet transformation can be effective tools to improve the 

PM2.5 forecasting accuracy (with an index of agreement (d) from 0.90 to 0.98). 

Prasad, et al., (2016) developed an adaptive neuro-fuzzy inference system (ANFIS) to 

forecast daily air pollution concentrations of five air pollutants - sulphur dioxide, nitrogen 

dioxide, carbon monoxide, ozone and particular matters (PM10) - in Howrah, India. The 

forecasting models used three years long data (2009-2011). Collinearity tests were 

conducted to eliminate the redundant input variables. In addition, a forward selection 

method was used for selecting different subsets of input variables. Results show that 

forward selection techniques reduce not only the output error but also computational cost 

due to less number of inputs. In the forecasting models developed for the pollutants CO, 

SO2, PM10, and Ozone, the index of agreement ranges from 0.75 to 0.95, indicating a good 

model, and closer to the ideal value, whereas for NO2 the index of agreement was around 

0.60 indicating a satisfactory forecasting. 

Durao, et al., (2016) developed a two-step methodology to forecast hourly ozone 

concentration levels (1 to 24 hours ahead) for Sines, Portugal. Firstly, classification and 

regression trees (CART) techniques were used to identify the best O3 concentration 

predictors. In the second step, multilayer perceptron models were adopted to forecast O3 

levels by using five years long data (2006-2009). The CART analysis results revealed that 

O3 concentrations are mainly dependent on meteorological variables, industrial emissions 

and air quality variables. The obtained generalisation model performances are very good to 

classify in advance the expected class of O3 concentration level. Performance results to 
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forecast O3 level above a specific threshold vary from 70% of success (to forecast the next 

24 hour in advance) up to 99% (to forecast the next hour in advance). 

Bai, et al., (2016) developed a wavelet technique and back propagation neural networks 

(W-BPNN) to forecast daily air pollutants (PM10, SO2, and NO2) concentrations in 

Chongqing, China. The proposed method was compared with the simple back propagation 

neural networks model. Firstly, stationary wavelet transform (SWT) was applied to 

decompose historical time series of daily air pollutants concentrations into different scales, 

of which the information represents wavelet coefficients of air pollutant concentration. 

Secondly, the wavelet coefficients were used to train a back propagation neural network 

model at each scale. The input data (one year long, 2011) contain the wavelet coefficients 

of the air pollutants concentrations 1-day in advance and local meteorological data. Results 

show that the proposed approach exhibits a better forecasting performance (with a 

coefficient of determination ranges from 0.86 to 0.95) in comparison to the simple back 

propagation neural networks (with a coefficient of determination ranges from 0.60 to 

0.86). 

Biancofiore, et al., (2017) used a multiple linear regression model and a neural network 

model, with and without recursive architecture, to forecast daily averaged particulate 

matters (PM2.5 and PM10) in Pescara, Italy. Results show that the neural network with 

recursive architecture has better performances (with a coefficient of determination ranges 

from 0.69 to 0.83) compared to both the multiple linear regression model (with a 

coefficient of determination ranges from 0.46 to 0.81) and the neural network model 

without the recursive architecture (with a coefficient of determination ranges from 0.64 to 

0.72). Biancofiore, et al., (2017) concluded that the recursive artificial neural network 

model could be a powerful operational tool to obtain real time information on PM10 and 

PM2.5 and support stakeholders in the development of cost effective control strategies to 

alert and protect the population. 

In the studies quoted, it is clear that researchers use different inputs variables and different 

combinations of methods (in the KDD steps) to report the best combinations of methods 

(in terms of the selected measures). In addition, researchers use different measures, such as 

the coefficient of determination, different versions of the index of agreement, mean square 

error, etc. This makes it difficult to compare the error of different studies and different 

forecasting parameters. The main progress of the AQ forecasting by using data-driven (in 
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the recent years) is the use of different or/and new methods of the KDD steps (performed 

in different locations) and in some cases optimize the parameters of the forecasting 

methods, but not the optimization of the whole process. 

2.3.2 Operational AQ Forecasting Systems 

Numerous countries have developed air quality forecasting systems to forecast the 

concentrations of criteria pollutants (i.e. pollutants with special health concerns, see 

Section 2.1.2). In many cases, the spatial scale of the forecasting system differs but it is 

common to start with a mesoscale model implementation before focusing on an urban 

scale as discussed by Moussiopoulos, et al., (2003). Forecasts can be used to issue early air 

quality alerts that allow government and people to take precautionary measures (such as 

temporarily shutting off major emission sources, motivating car-pooling and the use of 

public transportation) to reduce air pollution and to avoid or limit the exposures to 

unhealthy levels (Zhang, et al., 2012). The air quality conditions and forecasts can be 

disseminated to the public via the internet or other media. 

The U.S. Environmental Protection Agency (EPA) developed in 1997 the AIRNow 

platform, in order to communicate real-time air quality conditions and forecasts to the 

public (https://airnow.gov/) (Zhang, et al., 2012) (CENR, 2001). The AIRNow platform 

receives real-time O3 and PM pollution data from more than 115 U.S. and Canadian 

agencies as well as real-time air quality forecasts (RT-AQFs) from about 400 U.S. cities 

and represents a centralised, nationwide, governmental repository for real-time data 

(Zhang, et al., 2012). The U.S. EPA use an Air Quality Index (AQI) to include a simple 

colour scheme to link air quality concentrations and associated health effects to a simple 

colour coded index that can be easily and consistently reported to the public (Zhang, et al., 

2012). AIRNow has been expanded to include real-time data from other countries such as 

China (Zhang, et al., 2012). 

In 2004 the National Oceanic and Atmospheric Administration (NOAA) and the U.S. EPA 

developed a national air quality forecasting system that is based on numerical models for 

meteorology, emissions, and chemistry (Otte, et al., 2005) (CENR, 2001). The air quality 

forecasting generates gridded model forecasts of ground-level ozone (O3) that can alert the 

public of the onset, severity, and duration of poor air quality conditions 

(https://ready.arl.noaa.gov/) (Otte, et al., 2005). Currently (accessed in March 2018), the 

https://airnow.gov/
https://ready.arl.noaa.gov/
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website informs the visitors that it is not maintained in an "operational" environment and 

should not be relied upon for 24/7 access. 

The CALIOPE Air Quality Forecast System (CALIOPE-AQFS) provides a 48-hour 

forecast of NO2, O3, SO2, PM10, PM2.5, CO, and benzene (C6H6) at a 4 km horizontal 

resolution over all of Spain, and at a 1 km horizontal resolution over the most populated 

areas of Spain with complex terrains (Pay, et al., 2014). The CALIOPE system provides 

forecasts to the public via their website (http://www.bsc.es/caliope) or via apps for mobile 

devices and tablets. 

The air quality agency of the Paris region in France (AIRPARIF), provides real-time 

forecasts available on its website (https://www.airparif.asso.fr). A near-real-time 

observation database (named as BASTER) gathers all hourly measurements by the local 

air quality networks every three hours in France, Germany, Italy, Finland, Austria, and the 

U.K (Zhang, et al., 2012). The AIRPARIF system uses also the Common Air Quality 

Index (CAQI), which is suggested by the European Environment Agency (EEA). The 

CAQI has five categorical levels from very low to very high, in order to be easily 

interpreted by the public (see Appendix IV). 

Prev’Air is the French operational air quality forecasting and monitoring system (Debry & 

Mallet, 2014) (Honoré, et al., 2008). It became operational in 2003 from an initiative of the 

French Ministry of Environment. Prev’Air system aims to inform the public and 

professionals (via the web site http://www2.prevair.org/) about the forecasted pollutant 

concentrations. On a daily basis, it provides forecasts up to three days ahead for O3, NO2 

and particulate matter (PM10 and PM2.5) over France and Europe. 

The Office of Environment and Heritage (OEH) is responsible for providing information 

to local communities on air quality as a priority action in the New South Wales (NSW) 

Government’s strategic plan NSW 2021 (Jiang, et al., 2015). The OEH currently provides 

daily air quality forecasts for Sydney, Australia. The forecasts are issued as Air Quality 

Index (AQI) on their website (http://www.environment.nsw.gov.au/AQMS/aqi.htm). The 

existing system has limited capability for forecasting pollution events. Hence, OEH plans 

to progressively advance its capability for forecasting air quality by implementing a multi-

level architecture approach (which involve tools and systems of different types) within the 

Greater Metropolitan Region and key regional areas in NSW (Jiang, et al., 2015). 

http://www.bsc.es/caliope
https://www.airparif.asso.fr/
http://www2.prevair.org/
http://www.environment.nsw.gov.au/AQMS/aqi.htm
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The Department for Environment, Food and Rural Affairs (DEFRA) in the UK, operate the 

official air quality forecast system for public information. The UK-AIR (Air Information 

Resource) web site (https://uk-air.defra.gov.uk/) provides information for the latest 

pollution levels, pollution forecast information, a data archive, and details of the various 

monitoring networks. The forecasts use the Daily Air Quality Index (DAQI) that is 

designed to show complex air quality information on a simple 10 point scale.  The DAQI 

uses a combination of numbers (1-10), words (low, moderate, high and very high) and 

colours (green/yellow/orange/red/purple) to communicate the levels of pollution expected. 

Forecasts are produced early in the morning for the current day as well as for the next 4 

days. 

The National Centre for Atmospheric Science (NCAS) Air Quality Forecast (AQF) system 

is aimed at the scientific community interested in the prediction of air quality related 

pollutant species over the UK. The NCAS AQF system is operated by the Centre of 

Atmospheric and Instrumentation Research, University of Hertfordshire. The AQF system 

employs an integrated modelling framework for producing operational air quality forecasts 

based on the Weather Research and Forecasting (WRF) model and the Community 

Multiscale Air Quality (CMAQ) (Wong, et al., 2012). Forecasts are daily (up to three 

days) for Europe and UK domains at a grid resolution of 50km and 10km respectively 

(https://sci.ncas.ac.uk/airquality/). 

Athens, Greece, has developed an air quality forecasting system (CAMx-AMWFG) for the 

Mediterranean Region. The CAMx-AMWFG system produces 48-hour operational 

forecasts of O3, NO2, SO2, and particulate sulphate (PSO4) fields for the Mediterranean 

region and Europe. The 48-hour forecasts (i.e. 16 hourly forecasts, with a 3 hours interval) 

are produced once per day (http://forecast.uoa.gr/camxindx.php). Additionally, CAMx-

AMWFG can provide the concentration and deposition of sodium and chloride (from sea-

salt production), sulphate produced on dust (DSO4), and nitrate produced on dust (DNO3). 

In the past, additional operational systems were available in Greece for the cities of Athens 

and Thessaloniki. The PASODOBLE (Promote Air Quality Services integrating 

Observations - Development of Basic Localised Information for Europe) which provided 

three-day air quality forecasts of O3, NO2, NO, CO, SO2, PM2.5 and PM10 concentrations 

(http://lap.physics.auth.gr/pasodoble.asp). The forecasts were performed at two spatial 

scales: 1) Regional scale (Balkan) and 2) Urban scale (Athens and Thessaloniki). The 

https://uk-air.defra.gov.uk/
https://sci.ncas.ac.uk/airquality/
http://forecast.uoa.gr/camxindx.php
http://lap.physics.auth.gr/pasodoble.asp
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AIRTHESS was an operational air quality information and early warning system (until 

2011), which was developed for the city of Thessaloniki, Greece. Computational 

intelligence methods were used for the forecasting of concentration levels. The 

information was presented, either on a daily basis or on the basis of alerts on forecasted 

incidents (for example via SMS). 

2.3.3 Discussion 

After reviewing the academic literature relating to the use of data-driven models for air 

pollutants forecasting, it is clear that researchers use different inputs variables, different 

feature selection and transformation methods (e.g. principal component analysis, wavelet 

transformation, etc.), different data-driven models (e.g. multiple linear regression models, 

several types of artificial neural networks, classification and regression trees, etc.), in order 

to achieve the desired forecast. It is important to investigate different data-driven models, 

because, for example, in some cases simple data-driven models can provide better 

forecasting performance than more complex models. In the studies quoted, several 

combinations of methods are used in each and, for that reason, their forecasting 

performances have been presented as ranges of values and the best combinations of the 

methods (in terms of the selected measures) are reported. Even though the pre-processing 

and feature selection and transformation methods can influence the forecasting accuracy of 

the data-driven models these aspects are not usually reported in the literature. 

The most common forecasted pollutants in the studied literature were: O3, NO2, SO2, CO, 

PM10, PM2.5, and some air pollutant index. This was not a surprise since these pollutants 

are among the regulated major pollutants by the U.S. EPA and by the EU. However, some 

regulated major pollutants (lead and benzene) were not very common in the literature. This 

is understandable in the case of lead because following the introduction of unleaded fuels 

in many countries, the amount of lead in the air has decreased. 

Some authors of the studied literature performed statistical analysis by taking into account 

several forecasting performance measures. The most common reported measures were the 

coefficient of determination and a version of the index of agreement. In the case of the 

index of agreement, researchers used one of the three different definitions (d, d2 and dr) 

proposed by Willmott (Willmott, 1981) (Willmott, et al., 1985) (Willmott, et al., 2011). 

This is a problem because the results of these studies are not comparable. These measures 



Background and Methodology | 36 

can be used in an automated operational forecasting system, which will evaluate data-

driven models to find the models with the highest forecasting performance (best models). 

But for that purpose, a procedure to combine the measures should be developed. A small 

number of authors report the forecasting performance by calculating the difference 

between the observed and forecasted values (i.e. calculating measures such as the mean 

square error and the mean average error). The problem with these measures is the relative 

size of the error with the forecasting parameter. Thus, it is difficult to distinguish a big 

error from a small error and the error is not comparable with the error of a different 

forecasting parameter. In addition, in the majority of the studies, a resampling method for 

model validation (such as cross-validation or bootstrapping) was not used. These methods 

can measure the predictive performance of the data-driven models and thus, are essential 

to test and evaluate the data-driven models. All of these problems (corresponding to the 

second research question, in Section 1.2) were addressed by developing two new 

forecasting performance indices which combine the characteristics of existing measures 

and do not suffer from the same degree of inconsistencies and disadvantages. 

All reviewed studies contribute to the forecasting of their selected pollutants, locations and 

data. However, if one of those parameters changes, the investigation to find the best model 

must be repeated. This highlights the need for a methodology to optimise the selection of 

data pre-processing methods and data-driven models, which find the models with the 

highest forecasting accuracy (best models), which reflects the third research question (see 

Section 1.2). 

Numerous operational air quality forecasting systems are presented, such as the AIRNow 

platform, the CALIOPE system, the AIRPARIF system, etc. The presented air quality 

forecasting systems provide forecasts either for important air pollutants or for an air 

quality index. The latter is important in order to be easily interpreted by the public. Even 

though deterministic models are commonly used in the studied operational air quality 

forecasting systems, it usually requires several years of implementation. Jiang, et al., 

(2015) proposed a multi-level architecture approach for an air quality forecasting system 

by involving tools and systems of different types (empirical, data-driven and 

deterministic). In their proposal, the data-driven models will be developed to provide daily 

forecasts for an air quality index and/or for pollutants concentration of specific sub-regions 

or monitoring sites. Data-driven models can be easily implemented, require less 

implementation time (than deterministic models) and thus are ideal to provide alerts (for 
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the public and authorities) for specific locations, especially to those that do not have an 

operational air quality forecasting system. For example, in the case of Greece, the CAMx-

AMWFG (deterministic) system produces 48-hour operational forecasts of several 

pollutants, but the information is difficult to be interpreted by the public. 

2.4 The Study Areas 

The research documented in this thesis makes use of data from two separate geographical 

areas of Greece, these being Athens and Thessaloniki. 

Athens is the capital of Greece, located in a basin of approximately 430 km
2
 (Figure 2-3) 

and surrounded by fairly high mountains (Mt. Parnis, Mt. Pendeli, Mt. Hymettus). The 

area is open to the sea from the S-SW and affected by sea-land breeze circulations. 

Industrial activities take place both in the Athens basin and in the neighbouring Mesogia 

plain, the latter hosting the international airport Eleftherios Velizelos. The Athens basin is 

characterised by a high concentration of population (about 50% of the Greek population, 

i.e. approximately 5 million people), accumulation of industry (about 50% of the Greek 

industrial activities), and high usage of cars: more than two million cars are congested in 

the roads of Athens each day. Anthropogenic emissions in conjunction with unfavourable 

topographical and meteorological conditions are responsible for the high air pollution 

levels in the area (Karatzas, et al., 2008). Figure 2-3 indicates the two air quality 

monitoring stations in Athens (at Liosia – a suburb area and Patisia – a city centre area) 

that were used in this research. 

Thessaloniki is the second largest city in Greece and the capital of the administrative 

Region of Central Macedonia. The greater Thessaloniki area (GTA) has a population of 

over a million people with more than 400,000 vehicles being used daily. The city is 

characterized by high air pollution levels, especially in terms of PM10, (Voukantsis, et al., 

2011). AQ data (pollutant concentrations) as well as meteorological data resulted from the 

operation of four monitoring stations (Figure 2-4) which are situated in the areas-locations 

described next. 
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Figure 2-3: The two air quality monitoring stations in Athens at Patisia and Liosia 
A) Liosia (a suburb area of the city, mostly used as a residential and industrial area). B) Patisia (city centre area, 

characterized by traffic and a mixture of household and commercial activities). 

 

Figure 2-4: The four air quality monitoring stations in greater Thessaloniki area at Agia Sofia, 

Panorama, Sindos, and Kordelio 
A) Agia Sofia (city centre area, characterized by traffic and a mixture of household and commercial activities). B) 

Panorama (a suburb in the hilly area of the city, mostly used as a residential area). C) Sindos (industrial-

suburban area in the west of the city influenced by traffic). D) Kordelio (a densely populated area close to the 

industrial area of the city, influenced by traffic). 
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2.5 Employed Methods 

The following sections describe the methods employed in the experimental aspects of this 

research (such as the forecasting methods used in investigation experiments, sensitivity 

analysis, fuzzy logic, etc.). 

2.5.1 Covariance 

Covariance is a measure of the strength of how two random variables (X and Y) vary 

together (i.e. the correlation between these variables) (Weisstein, 2017). A positive 

covariance would indicate that the variables are moving in the same direction (i.e. a 

positive linear relationship between the variables), while a negative covariance would 

indicate that the variables are moving in the opposite direction (i.e. a negative linear 

relationship between the variables). If there is no correlation between the variables, then 

covariance would be zero. The covariance of two random variables (X and Y) is computed 

be using Equation (2-1). 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥, 𝑦) = ∑
(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝑁

𝑁

𝑖=1

 (2-1) 

Where:  

𝑥̅ is the mean of the random variable 𝑥 

𝑦̅ is the mean of the random variable 𝑦 
 

2.5.2 Lagrange Interpolating Polynomial 

The polynomial interpolation problem is the problem of constructing a polynomial that 

passes through or interpolates (n+1) data points. The Lagrange interpolating polynomial is 

the polynomial P(x) of degree <=(n-1) that passes through the n points (Archer & 

Weisstein, 2017) and is given by Equation (2-2). 
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𝑃(𝑥) = ∑ 𝑃𝑗(𝑥)

𝑛

𝑗=1

 (2-2) 

Where  

𝑃𝑗(𝑥) = 𝑦𝑗 ∏
𝑥 − 𝑥𝑘

𝑥𝑗 − 𝑥𝑘

𝑛

𝑘=1
𝑘≠𝑗

 (2-3) 

2.5.3 Periodicity Analysis 

Urban air quality systems are influenced by natural (usually chaotic) as well as 

anthropogenic signals (generally related to city activities resulting in emissions), and thus 

they may include periodic components, that influence their behaviour. For this reason, it is 

important to investigate if there is any periodicity in the studied system. In order to 

perform periodicity estimation, the Fast Fourier Transformation (FFT) (Rader & Brenner, 

1976) (Karatzas, et al., 2009) was utilised. The discrete Fourier transformation of a 

stationary discrete time series x(n) is a set of N- discrete harmonics X(k) where: 


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(2-4) 

 

and it represents the frequency response of X(k), where X(k) is complex. The magnitude 

of X(k) squared (a real value), is called strength, and a diagram of all the strength 

harmonics is called periodogram. When x(n) is real then the periodogram is symmetric, 

and only half of the harmonics are needed. To transform the data from non-stationary to 

stationary, the moving average must be subtracted from the time series. 

2.5.4 Forecasting Methods used in Investigation Experiments 

The forecasting methods presented in this section are used to investigate the use of 

computational intelligence and statistical methods to perform forecasting of environmental 

parameters of interest. These methods have been selected because they have been used 

previously in related studies and in order to use methods with different characteristics in 

terms of their algorithms. 
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Multilayer perceptron ANNs were utilised using the backpropagation training algorithm, 

due to its successful performance in similar air quality related applications (Voukantsis, et 

al., 2010). This algorithm was implemented using the MATLAB Neural Network Toolbox. 

Data to be imported to the ANN were firstly normalised, by applying the hyperbolic 

tangent sigmoid transfer function (see Appendix V), which was also applied to the hidden 

layers (receives values between -1 and 1). In the output layer, the linear transfer function 

(see Appendix V) was used, which also receives values between -1 and 1. This is a 

common structure for function approximation (or regression) problems (Mathworks, 

2008), but has also shown good results in similar studies (Slini, et al., 2003). For the 

training phase, the Levenberg-Marquardt Backpropagation algorithm (Grivas & 

Chaloulakou, 2006) was implemented. An additional transfer function exists, the log 

sigmoid transfer function (Mathworks, 2008) which was not used due to its limited range 

of values (between 0 and 1). The hyperbolic tangent sigmoid transfer function gives an 

equal weight to the high and low (normalized) values. 

A Decision Tree (DT) is a hierarchical data structure implementing the divide-and-conquer 

strategy (Ethem, 2010). It is an efficient nonparametric method, which can be used for 

both classification and regression. DTs are essentially a map of the reasoning process in 

which a tree-like graph is constructed to explore options and investigate the possible 

outcomes of choosing the options. The reasoning process starts from a root node, 

transverses along the branches tagged with decision nodes and terminates in a leaf node on 

the basis of criteria such as Information Gain (Lim & Jain, 2009). In the investigation 

experiments an ensemble of DTs were used, by employing the Bootstrap aggregation 

(bagging) meta-algorithm, in order to improve the performance of the models (Breiman, 

1996). An ensemble aims at leveraging the performance of a set of models to achieve 

better prediction accuracy than that of the individual models. For this purpose, every 

model (tree) in the ensemble is developed by using an independently drawn bootstrap 

replica of the input data. This means that from the initial training set (consisting of n 

observations), a number of m new training sets (replicas) is created by randomly sampling 

the initial training set with replacement (this is called "bagging"). As a result, some 

observations are sampled (and thus included in the replicas) more than once, and others 

may not be selected at all. The rows that were not included in the replica are called the 

“out of the bag” data. In the investigation experiments, a DT model is developed on the 
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basis of each one of the replicas, and the overall prediction performance is estimated on 

the basis of an ensemble of DTs. 

For comparison and analysis of the two CI methods above, Linear Regression (LR) models 

were developed. LR models may take into account the persistence of the air quality 

system, and have been proven successful especially if their input data includes lagged 

values, i.e., values determined before the time at which the forecast is made (Voukantsis, 

et al., 2011). 

2.5.5 Validation Procedure 

The model validation-evaluation procedure follows the Cross-Validation (CV) approach. 

This is a popular method applied in order to measure the predictive performance of a data-

driven model (Refaeilzadeh, et al., 2009). In CV, the available dataset is divided into two 

segments, one is used to teach or train a model, and the other is used to validate the 

performance of the model. There are several types of cross-validation methods like the 

Holdout method, k-fold cross-validation, and leave-one-out cross-validation (Arlot & 

Celisse, 2010). 

K-fold CV divides the dataset into k (equal) subsets. Each time, one of the k subsets is 

used as the test set (i.e. the set against which the model performance is estimated), and the 

other k-1 subsets are used as a training set. The k results from the folds (k times) are 

averaged for producing a single estimation. In this way, an ensemble of models is actually 

produced. For example, in the case of ANNs, although the same ANN architecture is 

employed for each subset, its weights are calculated separately each time. The advantage 

of this method is that the results are not influenced by the way the data are divided. 

In this work the 10-fold cross-validation is used because it is the one most commonly 

applied (Kohavi, 1995) (Borra & Di Ciaccio, 2010), and proved to provide with better 

results than other similar techniques like bootstrapping (Kohavi, 1995) (Braga-Neto & 

Dougherty, 2004) (Borra & Di Ciaccio, 2010). 
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Figure 2-5 shows how the data was divided and used by the forecasting methods. The 10-

fold CV is used in order to: 

 Measure the predictive performance of the models being developed, and 

 Compute the CIs of the selected measures to be studied. 

 
Figure 2-5: How the data was divided and used by the forecasting methods 

2.5.6 Sensitivity Analysis 

The model predictions can be highly dependent upon model characteristics, as well as 

uncertainties in the input data. Such model behaviour can be investigated through 

sensitivity analysis, which seeks to determine the variation in model output as a function of 

variations in input variables and parameters (i.e., forward sensitivity analysis). Sensitivity 

analysis could provide information on the input factors that are mainly responsible for the 

output uncertainties and thus for the model performance (Kukkonen, et al., 2012). There 

are generally two types of sensitivity analysis: statistical sensitivity analysis and 

deterministic sensitivity analysis. In statistical sensitivity analysis (Kukkonen, et al., 2012), 

the model is executed several times, each time with slightly different inputs (or input 

parameters) and the sensitivity is estimated from the statistical properties of the multiple 

output variability. In deterministic sensitivity analysis (Kukkonen, et al., 2012), the model 

output equations are differentiated with respect to its inputs, and the sensitivity is 

calculated for each different input through an auxiliary set of equations (depending on the 

uncertainty estimation of the parameters of interest). 

The simplest statistical approach of (forward) sensitivity analysis is to vary one input or 

parameter value in the model by a given amount and examine the impact on the 

predictions. This is known as one-way (or one-at-a-time) sensitivity analysis since only 
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one parameter is changed at one time. The analysis could be repeated by varying different 

parameters at different times. 

2.5.7 Fuzzy Logic 

2.5.7.1 Introduction 

According to cognitive scientists humans base their thinking primarily on conceptual 

patterns and mental images rather than on any numerical quantities (Timothy, 2010). 

People in their everyday life use concepts such as “many”, “tall”, “much larger than”, 

“young”, etc. which are accurate only to some degree. These concepts (facts) can be called 

fuzzy or grey (vague) concepts. They form part of a human’s natural language, thus, 

human brains work with them (Sivanandam, et al., 2007). 

Logic for humans is a way to quantitatively develop a reasoning process that can be 

replicated and handled with mathematical precepts. The interest in logic is the study of 

truth in logical propositions; in traditional logic this truth is binary (a proposition is either 

true or false) (Timothy, 2010) and this is the case for classic algebraic calculations (a result 

is either equal to x or not equal to x). 

The traditional notion of set membership and logic has its origins in ancient Greek 

philosophy. The precision of mathematics owes its success in large part to Aristotle and 

the philosophers who preceded him. In their efforts to devise a concise theory of logic, and 

later mathematics, the so-called “Laws of Thought” were posited. One of these, the “Law 

of the Excluded Middle”, states that every proposition must either be True of False. Even 

when Parmenides proposed the first version of his law (around 400 B.C.), there were 

strong and immediate objections. For example, Heraclitus proposed that things could be 

simultaneously true and not true. It was Plato who laid the foundation for what would 

become fuzzy logic, indicating that there was a third region (beyond True and False) where 

these opposites “tumbled about” (Chennakesava, 2008). 

The concept Fuzzy Logic was introduced (in 1965) by Lotfi A. Zadeh (a professor at the 

University of California at Berkley) as a mathematical tool for dealing with uncertainty. 

Fuzzy Logic is a way of processing data by allowing partial set membership rather than 

crisp events (events that either do or do not occur). Thus, Fuzzy Logic provides an 

inference structure that enables appropriate human reasoning capabilities. 
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Fuzzy logic is a fascinating area of research that involves a trade-off between significance 

and precision, something that humans have been managing for a very long time (Figure 

2-6). Fuzzy logic is also a convenient way to map an input space to an output space 

(Chennakesava, 2008). 

 

Figure 2-6: Precision and Significance in the real world (Chennakesava, 2008) 

In the second part of the research documented in this thesis, Fuzzy logic was used in order 

to map the different forecasting performance indices (input space) into significance 

information about the forecasting performance (output space). Fuzzy Logic was selected as 

an appropriate method to compile the new statistical indices because: 

a) It allows rapid prototyping (thus appropriate as in this research, there was no prior 

knowledge of the new indices is available); 

b) The rules applied can be easily modified (thus supporting the study of different 

approaches to the construction of the new indices); 

c) It can encompass great complexity; 

d) It relates input to output in linguistic terms (i.e. terms easily understood by 

humans); 

e) It has already been used in the past to describe air pollution (Karatzas, 2003) 

(Yadav, et al., 2011) which is the application domain of this research’s forecasting 

models. 

2.5.7.2 Fuzzy Set 

A fuzzy set is a set containing elements that have varying degrees of membership of the set 

(Sivanandam, et al., 2007). Elements in a fuzzy set can also be members of other fuzzy 
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sets in the same universe because their membership does not have to be complete. Fuzzy 

sets are denoted by a set symbol with a tilde under strike. Fuzzy sets are mapped to a real 

numbered value in the interval 0 to 1. If an element of universe, say x, is a member of the 

fuzzy set 
~
A  then the mapping is given by    1,0

~




x . 

2.5.7.3 Fuzzy Rules 

The Achilles’ heel of a fuzzy system is its rules, thus good rules will result in smart 

systems but  unfortunately the number of rules increases exponentially with the dimension 

of the input space (number of system variables). This rule explosion is called the principle 

of dimensionality and is a general problem for mathematical models (Sivanandam, et al., 

2007). 

Fuzzy sets form the building blocks for fuzzy conditional rules which have the general 

form “IF X is A THEN Y is B,” where A and B are fuzzy sets. The “IF” part of an 

implication is called the antecedent whereas the “THEN” part is a consequent, as can be 

seen in Equation (2-5). A fuzzy system is a set of fuzzy rules that converts inputs to 

outputs (Sivanandam, et al., 2007). 

IF premise (antecedent), THEN conclusion (consequent) (2-5) 

2.5.7.4 Fuzzy Inference System 

Fuzzy inference systems (FISs) are systems that use fuzzy set theory to map inputs 

(features in the case of fuzzy classification) to outputs (classes in the case of fuzzy 

classification) (Cook, 2008). The FIS formulates suitable rules and based upon the rules 

the decision is made. This is mainly based on the concepts of the fuzzy set theory, fuzzy 

conditional rules, and fuzzy reasoning. FIS uses “IF...THEN...” statements, and the 

connectors present in the rule statement are “OR” or “AND” to make the necessary 

decision rules. The basic FIS can take either fuzzy inputs or crisp inputs, but the outputs it 

produces are almost always fuzzy sets (Sivanandam, et al., 2007). In the research 

documented in this thesis, the Fuzzy Logic Toolbox of MATLAB was uses in order to 

build the FISs. The most common types of FISs that have been introduced in the literature 

and applied to different applications are Mamdani and Sugeno type fuzzy models 
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(Alshalaa & Issmail, 2013) (Kansal & Kaur, 2013) (Mansi & Gajanan, 2013) (Kaur & 

Kaur, 2012). 

Mamdani’s FIS is the most commonly used fuzzy methodology. It was proposed by 

Mamdani and Assilian (1975) as an attempt to control a steam engine and boiler 

combination by synthesizing a set of linguistic control rules obtained from experienced 

human operators. In Mamdani’s fuzzy inference method, the fuzzy sets from the 

consequent of each rule are combined through the aggregation operator and the resulting 

fuzzy set is defuzzified to yield the output of the system. Aggregation operations on fuzzy 

sets are operations that can combine several fuzzy sets to produce a single fuzzy set, by 

using the fuzzy union and intersection (most commonly used). A fuzzy system with two 

non-interactive inputs x1 and x2 (antecedents) and a single output y (consequent) is 

described by a collection of r linguistic IF–THEN propositions in the Mamdani form 

(Timothy, 2010), as shown in Equation (2-6). The aggregated output for the r rules will be 

given from Equation (2-7). 

IF 𝑥1 is 𝐴1
𝑘 and  𝑥2 is 𝐴2

𝑘 THEN 𝑦𝑘 is 𝐵𝑘,    for 𝑘 = 1, 2, … , 𝑟 

 

Where: 

𝐴1
𝑘 and 𝐴2

𝑘 are the fuzzy sets representing the kth antecedent pairs 

and 𝐵𝑘 is the fuzzy set representing the kth consequent. 

(2-6) 

𝜇𝐵𝑘(𝑦) = max
𝑘

[min [𝜇𝐴1
𝑘(𝑖𝑛𝑝𝑢𝑡(𝑖)), 𝜇𝐴2

𝑘(𝑖𝑛𝑝𝑢𝑡(𝑗))]] ,   𝑘 = 1, 2, … , 𝑟 (2-7) 

 

Figure 2-7 shows the graphical analysis of two rules, where the symbols A11 and A12 refer 

to the first and second fuzzy antecedents of the first rule, and the symbol B1 refers to the 

fuzzy consequent of the first rule. The symbols A21 and A22 refer to the first and second 

fuzzy antecedents of the second rule, and the symbol B2 refers to the fuzzy consequent of 

the second rule. 
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Figure 2-7: Graphical Mamdani (max–min) inference method with crisp inputs (Timothy, 2010) 

 

The Sugeno or Takagi-Sugeno-Kang FIS was introduced by Sugeno (in 1985). The first 

two parts of the fuzzy inference process, fuzzifying the inputs and applying the fuzzy 

operator, are exactly the same with the Mamdani method, but it does not involve a 

defuzzification process. The output membership functions of the Sugeno FIS are either 

linear or constant. The consequent of each rule is a linear combination of the inputs, and 

the output is a weighted linear combination of the consequents. A typical rule in a Sugeno 

model, which has two inputs 𝑥 and 𝑦 and output 𝑧, has the form of Equation (2-8) 

(Timothy, 2010). 

𝐼𝐹 𝑥 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵, 𝑇𝐻𝐸𝑁 𝑧 𝑖𝑠 𝑧 = 𝑓(𝑥, 𝑦) 
 

Where: 

z = f(x, y) can be a constant or a linear function in the consequent. 

(2-8) 

 

In a Sugeno model, each rule has a crisp output, given by a function. Because of this the 

overall output is obtained via a weighted average defuzzification, as shown in Figure 2-8.  
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Figure 2-8: A Sugeno fuzzy model (Timothy, 2010) 

 

Below are listed the main characteristics and advantages of each type of fuzzy inference 

method (Sivanandam, et al., 2007). Whereas Mamdani model uses defuzzification process 

to yield the output, Sugeno’s method uses a weighted linear combination of the 

consequents to compute the crisp output. For that reason, the Sugeno method is more 

compact, is computationally efficient and works better with optimization and adaptive 

techniques than the Mamdani method. Blej & Azizi (2016) show that the performance of 

Sugeno’s method is better than the Mamdani method for the same fuzzy technique, 

however, this cannot be asserted in general. In the research documented in this thesis, both 

methods were used for comparison. 

Advantages of the Sugeno Method: 

 It is computationally efficient; 

 It works well with linear techniques (e.g., Proportional-Integral-Derivative 

controller); 

 It works well with optimization and adaptive techniques; 

 It has guaranteed continuity of the output surface; 

 It is well suited to mathematical analysis. 

Advantages of the Mamdani Method: 

 It is intuitive; 

 It has widespread acceptance; 

 It is well suited to human input. 
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2.5.8 Confidence Intervals 

A confidence interval is a standard way of describing the precision of a measurement of 

some parameter. Confidence intervals provide a range of the observed effect size. This 

range is constructed in such a way in order to know how likely it is to capture the true, but 

unknown, effect size (Davies & Crombie, 2009). There are two common forms for stating 

confidence intervals both of which provide exactly the same information, for example: 

 The measurement is 10 ± 3, with 95% confidence. 

 The measurement will be between 7 and 13, with 95% confidence. 

The confidence level shows the confidence percentage that the true value of a parameter 

lies between the upper and lower bounds. While confidence intervals computed using a 

smaller confidence level will be smaller than those computed with a larger confidence 

level, it is not possible directly to compare two confidence intervals made at differing 

confidence levels (Kaplan, 1999). The most commonly used confidence levels are 90%, 

95% and 99% depending on the application of use. While 95% confidence level is 

arbitrary, it is traditionally used in applied practice (Rees, 1987) (Altman, et al., 2000). In 

the research documented in this thesis, a confidence level of 95% was used to calculate the 

CIs. 

A resampling method like bootstrapping or cross-validation can be used to generate the 

sample used for computing the CIs. With the advent of bootstrapping and computers, it has 

become possible, and even easy, to compute confidence intervals on all sorts of statistics, 

even ones that are made for a particular purpose (Kaplan, 1999). 

In the current research, cross-validation is used as a resampling method in order to 

compute CIs for the forecasting performance indices. In order to compute the CIs with 

95% confidence level, the bounds (lower and upper) were set to 2.5% and 97.5% 

percentiles, as described by Kaplan (1999). Depending on the values of the upper and 

lower bounds of a CI applied in the evaluation procedure, a forecasting model can be 

characterized as: 
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1. Having a relatively high effectiveness (i.e. smaller distance between the CI bounds) 

to detect the variation of a parameter (in this work the value of the FPIs and thus the 

forecasting performance), or  

2. Having a relatively low effectiveness (i.e. larger distance between the CI bounds). In 

that case, it can be considered as providing less information (in terms of forecasting 

ability). 

2.6 Optimization Algorithms 

2.6.1 Introduction to Optimization Problems 

In optimization problems, the goal is to find the optimal (or best) solutions from all 

feasible solutions. The terminology "best" solution implies that there is more than one 

solution, and the solutions are not of equal value. The definition of best is relative to the 

problem at hand. Thus, the optimal solution depends on the problem's goal. 

Optimization consists of trying variations on an initial concept-idea (input) and using the 

information gained to improve the output or result. A simple case of optimization problem 

consists of maximizing or minimizing a real function. A computer is a perfect tool for 

optimization as long as the idea or variable can be represented in electronic format (Haupt 

& Haupt, 2004). 

The simplest optimization method is the exhaustive search in which all feasible solutions – 

in what is referred to as the search space - are tested in order to find the optimal solution. 

The exhaustive search can take an extremely long time to find the optimal solution and 

thus they are only practical for problems where the search space is not too large.  

For larger search spaces, other methods have been developed. These include: genetic 

algorithm (Holland, 1975), simulated annealing (Kirkpatrick, et al., 1983), and ant colony 

optimization (Haupt & Haupt, 2004) (Dorigo & Gambardella, 1997). These methods find 

an acceptably good solution (near the global optimum) in a fixed amount of time, rather 

than the best possible solution of a problem. A global optimum is a point in the search 

space whose value exceeds that of any other value (or is exceeded by every other value in 

case of minimizing). A local optimum is a point whose value exceeds (or is exceeded in 

case of minimizing) that of any other value in a subset of the search space. 
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In the current research, genetic algorithms (this is an evolutionary type algorithm) 

(Schwefel, 1995) and ant colony optimization (this is a particle swarm type optimization), 

are used as optimization methods. Each optimization method has specific mechanisms and 

representational components. In genetic algorithms, it is the crossover and mutation of the 

possible solutions (population). In ant colony optimization, it is the indirect 

communication (stigmergy) of homogeneous simple agents. It is difficult to directly 

compare the two optimization methods in a general sense as depending on the problem, 

one optimization method may perform better than the other. For that reason, both 

optimization methods are presented (in this chapter), and used and evaluated (in the 

following chapters). 

2.6.2 Evolutionary Algorithms 

2.6.2.1 Introduction to Evolutionary Computation 

Evolutionary computation is based on the theory of evolution, for this reason, the key 

points that compose it should be initially studied. The theory of evolution proposed by 

Charles Darwin (1859) can be summarized in the next four key points: 

1. An offspring inherits many of the characteristics of its parents; 

2. There are variations in characteristics between individuals that can be passed from 

one generation to the next; 

3. Only a small percentage of the offspring produced survive to adulthood (survival of 

the fittest); 

4. The offspring that will survive depends on their inherited characteristics. 

The theory of natural selection is the combination of these four rules. The ability to 

produce new forms, in essence, to innovate without outside direction other than the 

imperative to have children that live long enough to have children of their own is the key 

feature that is desired to reproduce in software (Ashlock, 2005). The ultimate proof of the 

utility of this approach possibly lies with the demonstrated success of life on Earth (Coley, 

1999). 

Evolutionary computation emulates the natural selection to solve highly complex 

optimization and search problems (Cox, 2005). Evolutionary computation operates on a 

collection (population) of data structures (creatures) to solve a problem. Each of these 
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creatures will have explicitly computed fitness that will be used to decide which of them 

will be partially or completely copied to the next generation (offspring) (Ashlock, 2005). 

2.6.2.2 Introduction to Evolutionary Algorithms 

Evolution can be described in terms of an algorithm that can be used to solve difficult 

engineering optimization problems (Fogel, 1997). An Evolutionary algorithm is any 

computer program that uses the concept of biological evolution to solve optimization 

problems (Haupt & Haupt, 2004). Figure 2-9 shows a simple evolutionary algorithm. 

 

Figure 2-9: A simple evolutionary algorithm 

In an evolutionary algorithm, the first step is to create a population of data structures 

(solutions). These solutions may be filled in at random, designed to some standard, or be 

the output of some other algorithm. A fitness function is applied to each solution of the 

population to decide which solutions deserve further attention. 

In the main loop of the algorithm, the solutions that are on average fitter (than the other 

solutions of the population) are selected to be parents (selection process). The least fit 

solutions are not selected as parents and die (survival of the fittest). The selected parents 

exchange material between them (sexual reproduction) and generate their children 

(offspring). This process is called crossover. The resulting children are mutated with a 

small probability. 

Generate the initial population 

Evaluation 

Selection 

Are termination 

criteria met? 

Stop 

Generate children 

by crossover and 

mutation 

Yes 

No 
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In Table 2-4 and in the following sections, the terminologies (which are inspired by 

biology) that are used in evolutionary algorithms are explained. In addition, the processes 

that are involved with the evolutionary algorithms are presented in detail. 

Table 2-4: The basic terminologies of the biological evolution that are used in evolutionary algorithms 

Term Description 

Gene 

A gene is a unit of heredity and is a sequence of DNA (deoxyribonucleic acid) that 

influences a particular characteristic (trait) in an organism. An example of a gene is 

the eye colour or the ability to metabolize alcohol (Ashlock, 2005). 

Genome 

A genome is an organism’s complete set of DNA, including all of its genes. For bit 

(or binary) representations, the genome is a series of bits. For a real number 

representation, the genome is an integer or floating-point number (Cox, 2005). 

Allele 

An allele is a value of a trait at a particular locus (position) in the genome. For 

example, the eye colour gene could have a blue allele or a brown allele in different 

people (Ashlock, 2005) (Eshelman, 1997). 

Genotype 
The genotype expresses the overall properties of an organism by defining the nature 

of the chromosome (Cox, 2005). 

Phenotype 
The phenotype represents an individual expression of the genotype (i.e. The actual 

values of a genotype) (Cox, 2005). 

Chromosome 

A chromosome is a collection of genomes that represents a potential solution to the 

problem (Cox, 2005). The evaluation routine decodes these structures into some 

phenotypical structure and assigns a fitness value. Typically, but not necessarily, the 

chromosomes are bit-strings (Eshelman, 1997). 

Variation 

Genetic variation describes naturally occurring genetic differences among individuals 

of the same species. It is the process that produces new alleles, and more slowly 

genes, through DNA mutation, and sexual reproduction. In addition, genetic variation 

increases diversity and keeps the gene pool healthy (Ashlock, 2005). 

2.6.2.3 Fitness Function 

The fitness function is the method of assigning a numerical estimate of the quality of a 

particular chromosome (or the phenotype) in terms of the desired solution (Ashlock, 2005) 

(Cox, 2005). Fitness evaluation provides feedback to the learning algorithm regarding 

which individuals should have a higher probability of being allowed to multiply and 

reproduce and which individuals should have a higher probability of being removed from 

the population (Banzhaf, et al., 1998). For minimization problems, the fitness function 

usually approaches zero as the optimal value. For maximization problems, the fitness 

function usually approaches some upper boundary threshold as its optimal value (Cox, 

2005). 

2.6.2.4 Representation 

In evolutionary algorithms, representation is the way to encode parameters into 

chromosomes. Traditionally, chromosomes have been encoded as bit-strings, although an 

increasing number of evolutionary algorithms use real-valued encodings (i.e. base-10), or 
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encodings that have been chosen to mimic in some manner the natural data structure of the 

problem (Coley, 1999) (Yoon & Kim, 2013) (Mokhade & Kakde, 2014). 

2.6.2.5 Selection 

Selection attempts to apply pressure to the population in a manner similar to that of natural 

selection found in biological systems. Depending on the performance of each individual 

(indicated by the fitness function), the fitter (better) individuals have a greater than average 

chance to pass their characteristics to the next generation (Coley, 1999). 

There are several methodologies for selection, but roulette wheel and tournament selection 

are standard for most genetic algorithms. In general, it is very difficult to choose which 

selection methodology works best (Haupt & Haupt, 2004). 

Single Tournament Selection 

The tournament selection (Goldberg & Deb, 1991) is a popular selection method 

(Eshelman, 1997). In single tournament selection, the population is divided randomly into 

small groups (subsets). The two fittest individuals in each subset are chosen to be parents. 

These parents will be used in the next steps to be crossed over in order to produce two 

offspring. These offspring will replace the two least fit members of the small group 

(Ashlock, 2005) (Eshelman, 1997). Selection pressure is adjusted by changing the subset’s 

size (also known as tournament size). If the tournament size is larger, weak individuals 

have a smaller chance to be selected. 

Single tournament selection has two advantages (Ashlock, 2005). First, for small groups of 

size n, the best n−2 creatures in the group are guaranteed to survive. This ensures that the 

maximum fitness of a group (with a deterministic fitness function) cannot decline as 

evolution proceeds. Second, no matter how fit a creature is compared to the rest of the 

population, it can have at most one child in each generation. 

Double Tournament Selection 

In double tournament selection (with tournament size n), a subset of n creatures is used 

from the population and the fittest creature of this subset is selected as a parent, and then 

this process is repeated with a new subset of n creatures to choose a second parent. Double 

tournament selection can be used with replacement (the same parent can be picked twice) 
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or without replacement (the same parent cannot be picked twice, i.e., the first parent is 

excluded during the selection of the second parent) (Ashlock, 2005). 

Roulette Wheel Selection 

In roulette wheel selection (also called roulette selection, or fitness-proportional selection) 

parents are chosen in direct proportion to their fitness, i.e., the selection is biased toward 

chromosomes with best fitness values (Ashlock, 2005) (Cox, 2005) (Coley, 1999). If 

creature i has fitness fi, then the probability of being picked as a parent is fi/F, where F is 

the sum of the fitness values of the entire population (Ashlock, 2005). To implement 

roulette wheel selection, the following algorithm can be used (Coley, 1999). 

1. Sum the fitness values of the entire population (F); 

2. Choose a random number (R) between 0 and F; 

3. Add together the fitness values of the population (one at a time), and stopping 

immediately when the sum is greater than R. The last creature added is selected as 

a parent; 

4. Selection is continued (from Step 2) until N (the population size, assumed to be 

even) individuals have been selected. 

Roulette wheel selection suffers from the problem of high selection pressure. In that case, 

if an individual is found which is much better than any other, the probability of selecting 

this individual may become quite high. Thus, there is the danger that many copies of this 

individual will be placed in the mating process, and this individual (and its similar 

offspring) will rapidly take over the population (premature convergence) (Eshelman, 

1997). 

Rank Selection 

Rank selection can be used to deal with the problem of high selection pressure of roulette 

wheel selection (Whitley, 1989). Rank selection works similarly to roulette wheel selection 

except that the creatures are ordered (descending) by fitness and then selected by their rank 

instead of their fitness. If creature i has rank fi, then the probability of being picked as a 

parent is fi/F, where F is the sum of the ranks of the entire population. The least fit creature 

is given a rank of 1 so as to give it the smallest chance of being picked (Ashlock, 2005) 

(Cox, 2005) (Eshelman, 1997). 
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2.6.2.6 Elitism 

For many applications, the search speed can be greatly improved by not losing the best, or 

elite, members between generations (Coley, 1999). When in an evolutionary algorithm, the 

members of a population with the highest fitness are guaranteed to survive (maintain a 

copy of them) in the next generation, that algorithm is said to exhibit elitism (Ashlock, 

2005) (Cox, 2005) (Eshelman, 1997). Those members of the population guaranteed to 

survive without any change are called the elite. 

In many cases, an elitist technique is used in combination with other selection methods to 

ensure that some of the strongest chromosomes always make it into successive 

generations, causing their genes to dominate the population (Ashlock, 2005) (Cox, 2005). 

A good compromise is to have a small number of elite members (Ashlock, 2005) (Rani, et 

al., 2013). 

2.6.2.7 Mutation 

In nature, duplicating DNA can sometimes result in errors (e.g. a fault in chromosome 

transcription during biological reproduction). In addition, DNA is prone to damage in day-

to-day existence which also results in errors. These errors or mutations can sometimes 

result in good features. These features can then come together during reproduction and 

eventually lead to new species. Therefore, errors in DNA perform a vital role in natural 

evolution (Cox, 2005) (Banzhaf, et al., 1998) (Green, 1999). 

Evolutionary algorithms imitate mutation by generating errors in the offspring, except of 

the elite member (if elitism is being applied) (Haupt & Haupt, 2004) (Coley, 1999). 

Mutation enriches the pool of phenotypes in the population, addresses the problem of local 

minimum and maximum regions, and ensures that new potential solutions, independent of 

the current set of chromosomes, will emerge in the population (Cox, 2005). 

The mutation rate determines the probability that a chromosome will have one of its genes 

changed through a mutation technique. Mutation operators must be applied carefully and 

sparingly to the population. Too much mutation and the genome lose its ability to retain 

any pattern (Cox, 2005). A “good” mutation is one that increases the fitness of a data 

structure. A “bad” mutation is one that reduces the fitness of a data structure (Ashlock, 

2005). 
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In general, mutation rates should be very low, in order to sustain genetic diversity but not 

overwhelm the population with too much noise. In the literature the formula (2-9) is 

proposed as a good default mutation probability rate (Cox, 2005) (Chakrabarti, et al., 

2009). 

𝑚𝑟 = 𝑚𝑎𝑥 (. 01,
1

𝑁
) 

 

Where: 

mr is the current probability of mutation 

N is the population size 

(2-9) 

Binary (Bit) Inversion 

For binary (bit) strings represented genomes, the binary inversion operator simply flips the 

value of a randomly chosen bit. A 1-bit becomes zero, and a 0-bit becomes one. Due to the 

nature of binary chromosomes, this is the primary and often principal mutation operator 

used in classical (binary-represented) genetic algorithms (Cox, 2005). 

Uniform Replacement 

Uniform mutation replaces a randomly selected gene (locus) with a value chosen from a 

uniform random distribution between the upper and lower domain bounds for the gene. 

This is the most frequently used mutation operator because it requires only the range of 

allowed values for the gene. The uniform replacement is an excellent default mutation type 

for genomes that are represented in real numbers (Cox, 2005). 

Distribution-based Replacement 

Instead of a value uniformly drawn from the domain of the gene, this operator updates the 

gene position with a statistical value drawn from some probability distribution. Normally, 

a Gaussian distribution is used (and the value is truncated or regenerated if it lies outside 

the allowable range for the gene) (Cox, 2005). 

2.6.2.8 Crossover 

Crossover is the equivalent of sexual reproduction in biology, in which two parents (see 

the selection, in Section 2.6.2.5) exchange genetic material (“mating”) to produce one or 

more offspring. The goal is to combine the best features of each parent to produce children 

that have genetics with an elevated degree of fitness. Sometimes crossover will combine 
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the worst features from the two parents, in which case these children will not survive for 

long. But sometimes it will recombine the best features from two good individuals, 

creating even better individuals (Cox, 2005) (Coley, 1999) (Eshelman, 1997). 

There are several techniques for combining the genetic material (genomes), such as one-

point, two-point, and uniform crossover. Holland (1975) proposed that a single locus has 

to be chosen at random, and all bits after that point be swapped. This is known as one-

point crossover. In two-point crossover, two points are selected at random, and the 

corresponding segments from the two parents are swapped. Uniform crossover randomly 

swaps individual bits between the two parents (i.e. exchanges between the parent’s values 

at randomly chosen loci). 

Single-Point Crossover 

In single-point crossover, a single point is selected at random along the genome. From the 

selection operation, two parent chromosomes have been selected from the population. The 

genome segments to the right (or left) of the point are swapped, creating two new 

chromosomes (the children). Figure 2-10 shows schematically an example of the 

procedure of single-point crossover. 

 

Figure 2-10: An example of single-point crossover (Cox, 2005) 

Double-Point Crossover 

In double-point crossover, two points are selected at random along the genome. The 

genome segment to the left of the rightmost point is swapped with the genome to the right 

of the leftmost point, creating two new children. Figure 2-11 shows schematically an 

example of the procedure of double-point crossover. The advantage of the double-point 
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crossover is its inherent ability to introduce a higher degree of variability (randomness) 

into the selection of genetic material (Cox, 2005). 

 

Figure 2-11: An example of double -point crossover (Cox, 2005) 

Uniform Crossover 

Uniform crossover involves working with individual genes rather than segments. The loci 

positions of the genes to be exchanged are selected at random. Figure 2-12 shows 

schematically an example of the procedure of uniform crossover. The probability of 

selecting a locus for exchange, is called the mixing rate, and can be range from low to 

high. 

As Cox (2005) describes, the uniform crossover has the advantage of precisely controlling 

the amount of genetic variability in the population, it also has two significant 

disadvantages. First, because the crossover is done at the individual gene (locus) level 

rather than with sets or patterns of genes, behaviour that evolves as patterns in the 

population will not normally be preserved. Second, if the mix rate is too high, too much 

genetic diversity (that is, noise) emerges in each successive population and the search 

mechanism cannot find an accurate solution. On the other hand, if the mix rate is too low 

not enough genetic diversity will emerge and the search mechanism cannot efficiently 

spread over the solution terrain. 
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Figure 2-12: An example of uniform crossover (Cox, 2005) 

2.6.3 Genetic Algorithms 

2.6.3.1 Introduction 

One of the best known evolutionary algorithm (EA) is the genetic algorithm (GA), first 

proposed and analysed by John Holland (Banzhaf, et al., 1998) (Coley, 1999) (Eshelman, 

1997). Holland formalized the concepts underlying the genetic algorithms and provided 

the mathematical foundations for incrementally and formally improving their search 

techniques (Cox, 2005). 

The genetic algorithm is an optimization and search technique inspired by the theory of 

evolution and an understanding of biology and natural evolution (Banzhaf, et al., 1998) 

(Green, 1999) (Haupt & Haupt, 2004) (Coley, 1999). GAs uses a heuristic rather than an 

analytical approach, and thus their solutions are not always exact, and their ability to find a 

solution is often dependent on a proper specification of the problem representation and the 

parameters that drive them. The GA starts with a large population of potential (or feasible) 

solutions and through the application of crossover (also called recombination) and 

mutation evolves a solution that is better than any previous solution over the lifetime of the 

genetic analysis (Cox, 2005). GAs have proved useful in a broad range of real-world 

problems (Banzhaf, et al., 1998) (Coley, 1999) (Blum, et al., 2012). 

Much of the terminology used by the GA community is based, via analogy, on that used by 

biologists (Coley, 1999). In nature, every living organism has a unique set of 

chromosomes which describes how to build the organism, in GA every chromosome 

represents a possible solution (as a binary or other string) (Cox, 2005) (Green, 1999) 
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(Coley, 1999). The values of a chromosome are the parameters of a solution. In order to 

evaluate the solutions, a fitness function is used. 

The traditional GA has two main characteristics: a) operate on fixed length binary strings, 

and b) uses crossover as the primary method for producing variations (Ashlock, 2005) 

(Banzhaf, et al., 1998) (Eshelman, 1997). The most common approach to representing 

individuals is a fixed length string of zeros and ones (binary encoding). Although, recently 

many researchers have focused on real-number coding and integer encoding, and reported 

that for some problems real-number coding outperform the binary representation (Arora, 

2012) (Yoon & Kim, 2013). 

2.6.3.2 Advantages and Disadvantages of GA 

Genetic Algorithms have proved themselves capable of solving many large complex 

problems where other methods have experienced difficulties. Of course, the GA is not the 

best way to solve every problem. For instance, the traditional methods have been tuned to 

find quickly the solution of a well-behaved convex analytical function of only a few 

variables (Coley, 1999). Below are listed some of the advantages and disadvantages of 

GAs. 

Some of the advantages of a GA include that it: 

 Optimizes with continuous or discrete variables; 

 Does not require derivative information; 

 Simultaneously searches from a wide sampling of the search space; 

 Deals with a large number of variables; 

 Is well suited for parallel computers; 

 Optimizes variables with extremely complex search space (they can jump out of a 

local minimum); 

 Provides a list of optimum variables, not just a single solution; 

 May encode the variables so that the optimization is done with the encoded 

variables; 

 Works with numerically generated data, experimental data, or analytical functions; 

 Has the ability to solve nonlinear, noisy, and discontinuous problems. 
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Some of the disadvantages of a GA include that it: 

 Has a complete dependence on the fitness function. If a fitness function cannot be 

defined, a genetic algorithm cannot be used to solve the problem; 

 Is sensitive to the genetic algorithm parameters. The stability, coherence, and 

convergence of genetic algorithms depend on the rate of mutation and the 

crossover frequency; 

 Is sensitive to the genome encoding (in traditional GA). Traditional genome coding 

has been done through a bit-string so that mutations can work in a way similar to 

random genetic miscoding in biological systems. 

2.6.3.3 General GA procedure 

The GA works by creating an initial population of N possible solutions in the form of 

candidate chromosomes (or simply, individuals). Each potential solution must be a feasible 

solution. Feasibility means that the solution obeys all hard constraints on the solution. In 

addition, each potential solution must be a unique solution (Cox, 2005). 

By using the fitness function (or objective function), the goodness of fit of the individuals 

is measured. After all individuals in the population have been evaluated for their goodness 

of fit, the terminating conditions are evaluated. 

Until at least one of the terminating conditions is met, a new population is created and 

evaluated. To create the new population several steps must be taken: 

a) Selecting the best individuals and removing other individuals, 

b) Merging the parameters of the top best-performing individuals (crossover), and 

c) Mutating the parameters in a few of the existing individuals.  

2.6.3.4 Convergence 

The process of breeding a genetic algorithm’s population over a series of generations to 

arrive at the chromosome with the best fitness value (calculated by the fitness function) is 

known as convergence. Thus, the population converges to a solution (Cox, 2005). 
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2.6.3.5 Population Diversity 

Diversity is a measure of the robustness of chromosome representations, i.e. it shows how 

well the chromosomes (solutions) are distributed over the possible search space (richness 

of the gene pool). 

Population diversity is a critical factor that shows the performance of a genetic algorithm. 

It helps estimate the chances that continuing the run of the GA would have some prospect 

of discovering a solution to the problem. High diversity would give an indication that it is 

profitable to extend the run, but low diversity would indicate the opposite (Banzhaf, et al., 

1998) (Morales-Reyes & Erdogan, 2012). Diversity can be assessed in several ways, but 

there are two common methods that are suggested in the literature (Cox, 2005) 

(Chakrabarti, et al., 2009). 

 By computing the variation in the fitness values over a population, i.e. the standard 

errors of the fitness function. A large variance indicates a robust degree of variation 

in the fitness functions, whereas a small variance indicates a more compact and less 

varied population of fitness functions. 

𝑓𝑣 =
1

𝑁
∑ √(𝑓𝑎 − 𝑓𝑖)2

𝑁

𝑖=1

 

 

Where: 

𝑓𝑣 is the average variance of the population chromosomes as 

measured by the variance of their fitness value. 

𝑁 is the total number of chromosomes in the population. 

𝑓𝑎 is the average population fitness. 

𝑓𝑖 is fitness of the i
th

 chromosome. 

(2-10) 

 By computing the average change of the fitness between successive generations. 

Diversity in the population can be examined by computing the change in average 

fitness from one generation to the next. Equation (2-11) shows a simple method of 

tracking this change. Plotting the change in the average population fitness from one 

generation to the next is a key indicator of convergence. As new and better 

solutions are created, the difference between the average fitness in each successive 

generation should move toward zero. 
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𝑓𝛥 =
1

𝐾
∑ 𝑓𝑛̅ − 𝑓𝑛̅−1

𝐾

𝑛=2

 

 

Where: 

𝑓𝛥 is the average change of the fitness from one generation to the 

next; 

𝐾 is the total number of generations elapsed in the genetic search; 

𝑓𝑛̅ is the average fitness of the n
th

 generation. 

(2-11) 

2.6.3.6 Population Size 

Recommendations in the literature suggest that the size of the initial population is 

connected to the size of the problem space (Cox, 2005) (Henley, 2015). For example, Cox 

(2005) suggests that an initial population should be at least as large as five times the 

number of variables or about half the maximum number of possible states, whichever is 

smaller. However, the problem to find a good initial population and the optimal population 

size is a hard problem and a general rule cannot be applied to every type of problem or 

function to be evaluated (Diaz-Gomez & Hougen, 2007). 

2.6.3.7 Termination Conditions 

A genetic algorithm must have termination conditions so it can stop creating new 

generations. These termination conditions are often used in combination. The termination 

conditions can include: 

 When the maximum number of generations has been reached; 

 When the amount of computer time has been reached; 

 When a particular average fitness has been achieved; 

 When the fitness function does not change after a specific number of generations. 

The number of generations that evolve depends on whether an acceptable solution is 

reached or a set number of iterations are exceeded (Haupt & Haupt, 2004). Most GAs 

keeps track of the population statistics in the form of the population mean and minimum 

cost (Haupt & Haupt, 2004). 
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2.6.4 Swarm Intelligence 

2.6.4.1 Introduction 

Nature not only provides life but also knowledge and inspiration, as Albert Einstein stated 

“Look deep into nature, and then you will understand everything better”. One source of 

such inspiration attracted a lot of researchers’ attention is the way in which gregarious 

insects and other animals behave when they are in groups. If the group itself is considered 

as an individual (referred to as a swarm), in some ways, it seems to be more intelligent 

than any of the individuals (agents) within it (Corne, et al., 2012). A swarm can be viewed 

as a group of agents cooperating with a certain behavioural pattern to achieve some goal 

(Lim & Jain, 2009). 

Swarm Intelligence (SI), which can be considered as a branch of Artificial Intelligence 

(AI) techniques, deals with modelling of the collective behaviours of simple agents 

interacting locally among themselves, and their environment, which leads to the 

emergence of a coherent functional global pattern (Lim & Jain, 2009) (Chu, et al., 2011) 

(Venayagamoorthy & Harley, 2007). 

The interaction of simple agents within their environment (indirect communication) is a 

ubiquitous characteristic of swarms. This characteristic is called Stigmergy, which is the 

communication via signs or cues placed in the environment by one entity, which affect the 

behaviour of other entities who encounter them (Corne, et al., 2012). The term Stigmergy 

was introduced by Pierre-Paul Grassé (1959) in his research on the construction of termite 

nests. 

2.6.4.2 Swarm Intelligence Models 

Swarm Intelligence models are largely stochastic search algorithms. They are useful for 

undertaking distributed and multimodal optimization problems. The fundamental principle 

of swarm intelligence hinges on probabilistic-based search algorithms (Lim & Jain, 2009). 

All swarm intelligence models exhibit a number of general properties (Corne, et al., 2012) 

(Bai & Zhao, 2006). The following list shows the properties that make swarm intelligence 

models easy to be realized and extended, such that a high degree of robustness can be 

achieved (Lim & Jain, 2009). 
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 Each entity of the swarm is made of a homogeneous simple agent; 

 The individual entities-agents act asynchronously in parallel; 

 Communication among agents is generally indirect and short; 

 Cooperation among agents is realized in a distributed manner (by some form of 

stigmergy) without a centralized control mechanism. 

Some swarm intelligence algorithms use a forgetting mechanism to explore the solution 

space in a comprehensive manner. These algorithms are able to avoid convergence to a 

locally optimal solution and of finding a global optimal solution with a high probability. 

Several different swarm intelligence models have been proposed and applied successfully 

to solve many real-world problems. Besides their applications to conventional optimization 

problems, SI can be used for controlling robots and unmanned vehicles, predicting social 

behaviours, enhancing the telecommunication and computer networks (Chu, et al., 2011). 

Among the most commonly used swarm intelligence models are: Ant Colony Optimization 

(ACO) (Dorigo & Caro, 1999), Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 

1995) and Bee Colony Optimization (BCO) (Karaboga, 2005). 

2.6.5 Ant Colony Optimization 

2.6.5.1 Biological Inspiration 

Deneubourg et al. (1990) (Goss, et al., 1990) designed the biological double bridge 

experiment to investigate the pheromone trail laying with regard to the behaviour of 

Argentine ants (Linepithema humile). 

In the first scenario of the experiment, a double bridge of different lengths was used to 

connect the ant’s nest with a food source (Figure 2-13). The long bridge was twice as long 

as the shorter bridge. In most runs of this experiment, it was found that after a few minutes 

nearly all ants use the shorter bridge. This is interesting because Argentine ants cannot see 

very well. The explanation of this behaviour has to do with the fact that the ants lay 

pheromone along their path. It is likely that ants which randomly choose the shorter branch 

arrive earlier at the food source. When they go back to the nest, they smell some 

pheromone on the shorter branch and, therefore, prefer this branch. The pheromone on the 

shorter branch will accumulate faster than on the longer branch so that after some time the 
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concentration of pheromone on the former is much higher, and nearly all ants take the 

shorter branch (Merkle & Middendorf, 2005). 

In the second scenario of the experiment, the bridges have the same length (Figure 2-14). 

After some minutes, nearly all ants use the same branch, but in several repetitions it is a 

random process which of the two branches will be chosen. The explanation is that when 

one branch has got a slightly higher pheromone concentration due to random fluctuations 

this branch will be preferred by the ants so that the difference in pheromone concentration 

will increase and after some time all ants take this branch (Dorigo, et al., 2006) (Merkle & 

Middendorf, 2005). 

 

Figure 2-13: Bridges have different lengths (Goss, et al., 1989) (Goss, et al., 1990) 

 

 

Figure 2-14: Bridges have equal lengths (Deneubourg, et al., 1990) (Goss, et al., 1990) 

 

From those experiments, it is clear that the navigation of ants to food sources depends on 

the deposition of pheromone by individual ants. Biological ants initially wander randomly 

around their environment to search for food. When they find a suitable food source, they 

return to their colony while laying a trail of pheromone along their path. When other ants 

search for food they will sense the pheromone trail (of their precursors); that will influence 

the path they choose to follow. In the process, the strength of pheromone will increase 

along the paths. Given time, the faster or safer path to a food source will have the higher 

amount of pheromone. This is possible because the pheromone trails evaporate over time. 

Therefore, the longer time ants take to travel from the food source to the colony, the more 
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pheromone will have evaporated. Eventually, all ants will follow the same path to the food 

source (Lim & Jain, 2009) (Corne, et al., 2012). 

2.6.5.2 Introduction 

Dorigo et al. (Dorigo, 1992) (Dorigo, et al., 1996) were inspired by the double bridge 

experiment to design the first ACO system, with an algorithm called Ant System (AS), 

which initially applied to the travelling salesman problem. An essential aspect of ACO is 

the indirect communication of the ants via pheromone (stigmergy). Ants deposit 

pheromone on the ground (environment) to mark their paths to the food sources. The 

pheromone traces can be smelled by other ants and lead them to the food source. ACO 

exploits a similar mechanism for solving optimization problems (Dorigo, et al., 2006) 

(Merkle & Middendorf, 2005). 

ACO proved to be successfully applied to a wide range of different discrete optimization 

problems. The majority of these problems are NP-hard, which it is unlikely to have an 

efficient algorithm to compute their exact optimal solution. ACO algorithms can be useful 

for quickly finding high-quality solutions (Dorigo, et al., 2006). Application areas of ACO 

based models include: the travelling salesman problem, network routing, graph colouring, 

quadratic assignment, scheduling problems, vehicle routing, frequency assignment, as well 

as sequential ordering (Bonabeau, et al., 2000) (Ostfeld, 2011) (Barbosa, 2013) (Câmara, 

2015). 

2.6.5.3 The Ant Colony Optimization Metaheuristic 

ACO has been formalized into a metaheuristic for combinatorial optimization problems 

(Dorigo & Caro, 1999) (Dorigo & Caro, 1999). A metaheuristic is a set of algorithmic 

concepts that can be used to define heuristic methods applicable to a wide set of different 

problems. In other words, a metaheuristic is a general-purpose algorithmic framework that 

can be applied to various optimization problems with relatively few modifications (Dorigo, 

et al., 2006). 

The idea of ACO metaheuristic is to let artificial ants construct solutions for a given 

combinatorial optimization problem. A solution can be viewed as a path through a 

corresponding decision graph (also called construction graph). The aim is to let the 

artificial ants find paths through the decision graph that correspond to good solutions. 
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Ants construct feasible solutions based on the current pheromone trail strengths (initially, 

the pheromone is randomly distributed). To construct a solution, each ant steps through the 

decision graph choosing among feasible paths. At each point, the ant chooses among 

available arcs according to a function of the pheromone strength on each arc, and of the 

local heuristic values of each arc (Corne, et al., 2012). To tune the level at which the 

algorithm relies on exploration (pheromone trail) and heuristic value, two parameters α 

(alpha) and β (beta) are used. If α = 0, then the closest the arcs are more likely to be 

selected. If β = 0, then only pheromone amplification is at work. 

Formula (2-12) was used by Dorigo & Caro (in 1999) for the travelling salesman problem 

(TSP), in order to compute the ant-routing table. When the ants complete their paths, their 

corresponding solutions are evaluated, and pheromone is laid on each arc travelled in 

proportion to the overall solution quality. Each ant 𝑘 deposits a quantity of pheromone 

𝛥𝜏𝑘(𝑡) = 1 ⁄ 𝐽𝜓
𝑘  (𝑡) on each connection 𝑙𝑖𝑗 that it has used, where 𝐽𝜓

𝑘  (𝑡) is the length of 

the tour 𝜓𝑘(𝑡) done by ant 𝑘 in iteration 𝑡, as shows in formula (2-15). 

This pheromone and the local heuristic value guide the following ants of the next iteration 

(by using formula (2-12)) so that they search near paths to good solutions. For the TSP, the 

local heuristic value of formula (2-13) is used, where 𝐽𝑐𝑖𝑐𝑗
 is the distance between cities i 

and j. The shorter the distance between two cities i and j, the higher the local heuristic 

value. The probability 𝑝𝑖𝑗
𝑘 (𝑡) with which at the t-th algorithm iteration an ant 𝑘 located in 

city 𝑖 chooses the city 𝑗 ∈ 𝑁𝑖
𝑘 to move to, is given by formula (2-14). 

𝐴𝑖𝑗 =
[𝜏𝑖𝑗(𝑡)]

𝑎𝑙𝑝ℎ𝑎
[𝜂𝑖𝑗]

𝑏𝑒𝑡𝑎

∑ [𝜏𝑖𝑙(𝑡)]𝑎𝑙𝑝ℎ𝑎[𝜂𝑖𝑙]𝑏𝑒𝑡𝑎
𝑙∈𝑁𝑖

 

 

(2-12) 

𝜂𝑖𝑗 = 1
𝐽𝑐𝑖𝑐𝑗

⁄  

 

(2-13) 

Where: 

𝑁𝑖 is the set of all the neighbor nodes of node i 

𝜏𝑖𝑗(𝑡) is the functional composition of the pheromone trail 

𝜂𝑖𝑗  is the local heuristic values. 

𝐽𝑐𝑖𝑐𝑗
 is the distance between cities i and j 
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𝑝𝑖𝑗
𝑘 (𝑡) =

𝑎𝑖𝑗(𝑡)

∑ 𝑎𝑖𝑙(𝑡)𝑙∈𝑁𝑖
𝑘

 
(2-14) 

Where: 

𝑁𝑖
𝑘 ⊆ 𝑁𝑖 is the feasible neighborhood of node 𝑖 for ant 𝑘. 

 

In order to avoid convergence to a locally optimal solution, pheromone evaporation is 

performed. Pheromone evaporation is a useful mechanism allowing the solution space to 

be explored in a comprehensive manner (Lim & Jain, 2009). In pheromone evaporation, 

the arc’s pheromone strength is updated as follows: 𝜏𝑛𝑒𝑤 = (1 − 𝜌)𝜏𝑜𝑙𝑑, where 𝜌 ∈ (0, 1] 

controls the speed of pheromone decay (Corne, et al., 2012). The process continues until 

some stopping criterion is met, for example, a certain number of iterations have been 

performed or a solution of a given quality has been found (Merkle & Middendorf, 2005). 

The ACO metaheuristic is shown in Figure 2-15. 

𝜏𝑖𝑗(𝑡) ← 𝜏𝑖𝑗(𝑡) + 𝛥𝜏𝑘(𝑡), ∀ 𝑙𝑖𝑗 ∈ 𝜓𝑘(𝑡), 𝑘 = 1, ⋯ , 𝑚 

 
Where: 

𝑚 is the number of ants (for each iteration it remains constant) 

(2-15) 

 

Set parameters, initialize pheromone trails 

while termination condition not met do 

        ConstructAntSolutions 

        ApplyLocalSearch (optional) 

        UpdatePheromones 

end while 

Figure 2-15: The Ant Colony Optimization Metaheuristic (Dorigo, et al., 2006) 

2.7 Summary 

This chapter provides the necessary knowledge background that forms the bedrock of the 

research documented in this thesis. It includes an appraisal of previous work that has been 

undertaken to both measure and predicting air quality and articulates the techniques and 

rationale for choosing the techniques utilised in this research. 

The following chapter presents the performed investigation experiments in air quality 

forecasting by using the described methods (such as cross-validation, sensitivity analysis, 

etc.), forecasting methods, and forecasting verification process for the presented study 

areas. 
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Chapter 3. Investigation and Forecasting of Environmental Parameters 

Chapter 3 

Investigation and Forecasting of 

Environmental Parameters 

3.1 Introduction 

This chapter presents the experiments performed to facilitate the development of effective 

computational intelligence (CI) and statistical methods capable of forecasting the selected 

environmental parameters of interest (Figure 3-1). These environmental parameters 

include two criteria pollutants (O3 and Benzene) and the Common Air Quality Index 

(CAQI) which is based on criteria pollutants (Kumar & Goyal, 2013). Additional 

information regarding the selected parameters can be found in Appendix IV. The 

aforementioned environmental parameters were selected to be forecasted for the following 

reasons: 

 O3 was selected because it is the most commonly forecasted pollutant in the 

studied literature and in operational forecasting systems, and to investigate the 

forecasting of a secondary pollutant. 
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 Benzene was selected to investigate the forecasting of a pollutant that is not 

commonly forecasted (in the studied literature) but is addressed by existing 

operational forecasting systems (such as the CALIOPE operational forecasting 

system) as well as by the relevant EU legal framework. An additional reason for 

its selection is that it was found to have the strongest association with respiratory 

diseases when compared to other criteria pollutants, such as PM10, NO2, SO2, O3, 

etc. (Oftedal, et al., 2003). 

 The CAQI was selected to investigate the forecasting of an air quality index. In 

general, there are scarce research results concerning the performance of air quality 

forecasting models in terms of combined environmental pressure indicators 

(Kumar & Goyal, 2013). 

The following two main steps are considered in this chapter. 

Step 1. Construct operational forecasting models for the aforementioned environmental 

parameters of interest, with the aid of CI methods that include Artificial Neural 

Networks (ANNs) and Decision Trees (DT), as well as the statistical method of 

Linear Regression (LR). 

Step 2. Employ cross-validation, sensitivity analysis, and an additional forecasting 

method in an effort to investigate the model’s performance, to provide with 

reliable and accurate results and finally to increase the forecasting performance. 

AQ data coming from monitoring stations of the two largest cities of Greece (Athens and 

Thessaloniki) were studied. In the case of Athens, Benzene and Ozone were the pollutants 

selected for the study as they are influenced directly or indirectly by traffic (a major 

environmental pressure in many EU cities). More specifically, the forecasting investigation 

focused on: 

1. The hourly concentration levels of Benzene, in order to investigate the forecasting 

of detailed variation (as the CALIOPE operational forecasting system that provides 

with hourly benzene forecasts). 

2. The highest daily 8-hour running average (8-HRA) of Ozone concentration levels. 

The 8-HRA parameter was selected because it is regulated by the EU as a standard 

to measure exceedances for ozone. 
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In the case of Thessaloniki, the aim was to investigate an air quality index and not 

individual pollutants as in the case of Athens. For this purpose, the CAQI was used, which 

is suggested by the European Environment Agency (EEA), as the parameter of interest that 

needs to be forecasted (in an hourly and daily horizon) in order to provide health related 

warnings and information to the general public. For that purpose, the following general 

scenarios were investigated: 

1. The estimation of the CAQI levels by forecasting the CAQI values, 

2. The estimation of the CAQI levels by forecasting individual pollutant levels, and 

3. The direct forecasting of the CAQI levels. 

 

Figure 3-1: The aims in order to develop knowledge on data-oriented air quality forecasting 

3.2 Data Presentation 

The air quality and meteorological data, came from a total of six monitoring stations, two 

in Athens (Patisia and Liosia) from a total of fifteen, and four in Thessaloniki (Agia Sofia, 

Panorama, Sindos, and Kordelio) from a total of seven. In the case of Thessaloniki, the 

aforementioned four stations were studied (for their CAQI Levels) but the Agia Sofia 

station was selected for the development of the forecasting models (because it 

demonstrates the high percentage of “high” and “very high” CAQI levels). These 

Step 2 

Step 1 

  Develop Knowledge on Data-
Oriented Air Quality Forecasting  

Location: Thessaloniki 

Forecast: Hourly & Daily 
CAQI 

Methods: ANNs, DTs & LR 

Try to improve by using: 

 - Cross-Validation 

 - Sensitivity Analysis 

Location: Athens 

Forecast: Hourly Benzene & 
Daily 8-HRA of Ozone 

Methods: ANNs 

Try to improve by using: 

 - Cross-Validation 

 - LR Method 
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particular monitoring stations were chosen because of the availability of their data and in 

order to evaluate different location types (see Section 2.4). The measurement technique 

used by the monitoring station of Patisia for Benzene is the Gas chromatography with a 

photoionization detector (GC-PID) by using equipment of the Synspec Company 

(AirBase-V8, 2014). In the case of Ozone both monitoring stations (Patisia and Liosia) use 

the UV absorption measurement technique by using the “HORIBA APOA 360” equipment 

(AirBase-V8, 2014). 

Table 3-1 presents the parameters under investigation when forecasting Benzene 

concentrations for the monitoring station of Patisia in Athens. The next three input datasets 

were used for that purpose. 

 Dataset P1: A two-year-long record of hourly air quality and meteorological data, 

for the years 2004 and 2005, 

 Dataset P2: A dataset for the years 2006 and 2007 which was used for evaluation 

purposes and, 

 Dataset P1&2: An overall dataset, for the years 2004-2007. 

When forecasting 8-HRA of ozone, six input datasets were used in total, three for each 

monitoring station (Patisia and Liosia, in Athens). The first three datasets of the following 

list were used for the monitoring station of Liosia, and the remaining three for the 

monitoring station of Patisia. Table 3-2 presents the parameters that were included in these 

datasets. It should be noted that the parameter of wind speed at 9 am was included in the 

data because relative studies found that, that influences the ozone forecasting in Athens 

(Ziomas, et al., 1995). 

 Dataset L1: A four-year long record of hourly measurements for the time period 

2002-2005, 

 Dataset L2: A dataset for the year 2007 for evaluation purposes (data for the year 

2006 were not available) and, 

 Dataset L1&2: An overall dataset that contains the previous datasets L1 and L2. 

 Dataset P3: A three-year long dataset for the years 2002, 2003 and 2005 was used 

together with 

 Dataset P4: An additional dataset for evaluation purposes for the year 2007 (again, 

data for the years 2004 and 2006 were not available) and also, 

 Dataset P3&4: A dataset that contains the previous datasets P3 and P4. 
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Table 3-1: Parameters under investigation when forecasting Benzene concentrations (Datasets P1, P2 

and P1&2) 

 Parameter Unit Abbreviation 
1 Benzene μg/m

3
 BE 

2 Carbon Monoxide mg/m
3
 CO 

3 Sulphur Dioxide μg/m
3
 SO2 

4 Relative Humidity % RH 

5 Air Temperature C
o
 Ta 

6 Wind Speed m/s WS 

7 Wind Direction deg WD 

 

Table 3-2: Parameters under investigation when forecasting 8-hour running average ozone values 

(Datasets L1, L2, L1&2, P3, P4, P3&4) 

 Parameter Unit Abbreviation 
1 Ozone μg/m

3
 O3 

2 Nitrogen Dioxide μg/m
3
 NO2 

3 Sulphur Dioxide μg/m
3
 SO2 

4 Nitric Oxide μg/m
3
 NO 

5 Relative Humidity % RH 

6 Air Temperature C
o
 Ta 

7 Wind Speed m/s WS 

8 Wind Speed at 9:00am m/s WS9 

9 Wind Direction deg WD 

 

The CAQI has been computed for each of the four locations of Thessaloniki, both using 

hourly and daily concentration values. The traffic CAQI was applied for Agia Sofia, 

Kordelio and Sindos while the urban background CAQI for the Panorama station. Table 

3-3 presents the number (and the corresponding percentage) of hourly and daily CAQI 

values, for each CAQI level and station. From Table 3-3 it is evident that Agia Sofia and 

Kordelio are the stations that demonstrate the highest percentage of values in the CAQI 

classes “High” and “Very High”. The monitoring station of Agia Sofia was selected for the 

development of CAQI forecasting models because more data are available on this station. 

Thus, air quality and meteorological data used for the ANNs and DT models described 

hereafter, originate from this monitoring station of Thessaloniki. 
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Table 3-3: The number (and the corresponding percentage) of hourly and daily Common Air Quality 

Index values, for each Common Air Quality Index level and station 

CAQI 

Level 

Agia Sofia 

(2001-2003) 

Sindos 

(2001) 

Kordelio 

(2001-2002) 

Panorama  

(2001-2002) 
Hourly Daily Hourly Daily Hourly Daily Hourly Daily 

Very high 
3510 

(14%) 

127 

(12%) 

591 

(7%) 

0 

(0%) 

2538 

(17%) 

95 

(15%) 

243 

(1%) 

1 

(0%) 

High 
3706 

(15%) 

168 

(16%) 

618 

(8%) 

0 

(0%) 

1958 

(13%) 

112 

(18%) 

613 

(4%) 

12 

(2%) 

Medium 
7414 

(30%) 

438 

(42%) 

1917 

(24%) 

3 

(1%) 

3866 

(26%) 

225 

(36%) 

5569 

(33%) 

306 

(43%) 

Low 
8264 

(34%) 

304 

(29%) 

3558 

(45%) 

361 

(99%) 

5056 

(34%) 

183 

(29%) 

9427 

(56%) 

377 

(53%) 

Very low 
1666 

(7%) 

18 

(2%) 

1309 

(16%) 

1 

(0%) 

1514 

(10%) 

17 

(3%) 

885 

(5%) 

21 

(3%) 

In order to forecast hourly and daily CAQIs for the Agia Sofia monitoring station of 

Thessaloniki the following three input datasets were used. Table 3-4 presents the 

parameters that were included in the data, which correspond to the years 2001-2003. This 

period was selected based on its low percentage of problematic or missing data. 

 Dataset 1 (lagged index values) includes only hourly or daily lagged CAQI values 

determined during the previous day (day T-1, T-2, … , T-10), or the previous hours 

(hours T-1, T-2, … , T-10). The CAQI values were thus forecasted with the aid of 

one up to 10 lagged CAQI values, leading to 10 different model results for hourly 

and daily values. Dataset 1 consists of 1,042 daily records and 23,671 hourly 

records. 

 Dataset 2 (concentration and meteorological values at time T) includes 

concentration values of CO, SO2, and O3 and six meteorological values, as follows: 

(1) temperature, (2) dew point, (3) humidity, (4) sea level pressure, (5) wind 

direction and (6) wind speed. Dataset 2 consists of 1,043 daily records and 23,672 

hourly records (plus one record in comparison to Dataset 1, as the latter includes 

only lagged values). 

 Dataset 3 (lagged index values and Dataset 2) includes hourly or daily lagged 

(previous) CAQI values determined during the previous day (day T-1, T-2, … , T-

5), or the previous hours (hours T-1, T-2, … , T-5), separately for the two types of 

index, and the above-mentioned air quality and meteorological values (Dataset 2). 

The CAQI values were thus forecasted with the aid of one up to five lagged CAQI 

values, leading to 5 different model results for hourly and daily values. Dataset 3 

consists of 1,042 daily records and 23,671 hourly records. 
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Table 3-4: Parameters under investigation when forecasting hourly and daily Common Air Quality 

Index 

 Parameter Unit Abbreviation 
1 Carbon Monoxide mg/m

3
 CO 

2 Nitrogen Dioxide μg/m
3
 NO2 

3 Nitrogen Monoxide μg/m
3
 NO 

4 Ozone μg/m
3
 O3 

5 Respirable Particles μg/m
3
 PM10 

6 Sulphur Dioxide μg/m
3
 SO2 

7 Air Temperature C
o
 Ta 

8 Dew Point C
o
 DP 

9 Relative Humidity % RH 

10 Sea Level Pressure hPa SLP 

11 Wind Speed m/s WS 

12 Wind Direction deg WD 

3.3 Data Pre-Processing 

Every environmental dataset may contain missing values and outliers. Some data-driven 

forecasting methods (e.g. artificial neural networks) cannot adequately deal with missing 

values thus, when using these methods, records with missing values must either be 

excluded from the data or missing values inferred. While records removal solves the 

missing values problem, valuable information may be lost and the available information 

for training (the forecasting methods) reduced, which may be a real issue if the data is 

already limited. 

The data available for the investigative experiments were already limited, thus, the 

Lagrange interpolating polynomial (see Section 2.5.2) and the linear interpolation method 

(see Appendix V) were used to infer the missing values in the case of Athens and 

Thessaloniki respectively. It should be noted that no outliers were detected in the 

investigated data for either location. In addition, the wind direction values were encoded in 

all datasets by using the formula WD=1+sin(θ+π/4), in order to replace the cyclic nature 

of this variable with a linear one. Afterwards, a dimensionality reduction (i.e. minimise the 

parameters to be included in the development of the forecasting models, and identify the 

most important and influential parameters in the studied datasets) was performed. It is 

worth mentioning that all the available pollutants and meteorological variables in the data 

were used in order to perform the selection by only using feature selection methods. This 

was performed in order to simulate the use of the models as if there is no prior experience 

in air quality forecasting. The rest of this section presents in detail the aforementioned pre-

processing procedure applied to data from each monitoring station and pollutant. 
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In the datasets of Patisia and Liosia (Athens’ monitoring stations) for both Benzene and 8-

HRA of ozone forecasting, if missing values corresponded to more than 30% of the hourly 

data records in one day, the whole daily record was excluded from further analysis. In all 

other cases, the Lagrange interpolating polynomial (Burden & Faires, 2011) was applied 

for filling in missing values. For each missing value, a polynomial of 6
th

 degree was 

constructed, by using three data points before and after the missing value (as shown in 

Figure 3-2). 

 

Figure 3-2: An example of using a 6
th

 degree Lagrange interpolating polynomial 

In order to perform dimensionality reduction in the datasets used to forecast Benzene 

(Dataset P1, P2 & P1&2), the Principal Component Analysis (PCA) was used (see 

Appendix V). Table 3-5 presents the eigenvalues and variances of the computed principal 

components. One way to select the principal components of interest is the Kaiser rule, 

which keeps all eigenvalues greater than one (Lance, et al., 2006). Table 3-6 presents the 

overall covariance of hourly Benzene concentrations with regard to the investigation 

parameters. It is clear that the highest covariance to Benzene is demonstrated by Sulphur 

Dioxide (SO2), Relative Humidity (RH) and Carbon Monoxide (CO). The principal 

component analysis suggests (by applying the Kaiser rule) to eliminate one parameter. In 

addition, the results of Table 3-6 indicate that the wind direction has no covariance to 

Benzene. For that reasons, the PC6 (assuming to be the wind direction) was eliminated 

from the Benzene datasets. The remaining data (PC1 to PC5) accounted for 99.95% of the 

variation of both Dataset (P1 and P2), which were used as input to the ANNs. 

t 

P6(x) 



Investigation and Forecasting of Environmental Parameters | 81 

Table 3-5: Eigenvalues and variances of the computed principal components 

Principal 

Component 

Data (04-05) Data (06-07) 

Eigenvalues 
Variance 

(%) 

Cumulative 

Variance 
Eigenvalues 

Variance 

(%) 

Cumulative 

Variance 

PC1 672,62 68,52 68,52 583,68 60,42 60,42 

PC2 275,81 28,10 96,61 315,39 32,65 93,06 

PC3 27,93 2,85 99,46 43,34 4,49 97,55 

PC4 3,35 0,34 99,80 21,82 2,26 99,81 

PC5 1,44 0,15 99,95 1,41 0,15 99,95 

PC6 0,50 0,05 100,00 0,46 0,05 100,00 

 

Table 3-6: The overall covariance of hourly Benzene concentrations with regard to the other 

parameters of work 

Covariance of 

Benzene to: 
2004 (%) 2005 (%) 2006 (%) 2007 (%) 

General 

(%) 
SO2 59 29 62 58 52.1 

RH 20 20 12 14 16.3 

CO 11 34 6 7 14.4 

WS 5 18 13 16 13.0 

Ta 4 0 6 5 4.0 

WD 0 0 0 1 0.2 

 

In the case of forecasting ozone in Athens, for each day of the available dataset, the 

highest 8-hour mean running average (HRA) of ozone was calculated, as the purpose of 

this work was to forecast this particular parameter. Moreover, the (i) mean value, (ii) the 

max value and (iii) the highest 8-hour mean values were calculated for all the remaining 

parameters (1. Nitrogen Dioxide, 2. Sulphur Dioxide, 3. Nitric Oxide, 4. Relative 

Humidity, 5. Air Temperature, 6. Wind Speed and 7. Wind Direction), with the exception 

of the wind speed at 9:00 am, resulting in (7*3) + 1 = 22 input parameters per day per 

station, to be used for the construction of the forecasting models. In addition, PCA was 

used on the data (when ANNs were applied) in order to change their dimensionality and 

thus, help the ANNs to find patterns into the data. The modified data (i.e. after the use of 

PCA) were used as input to the ANNs. It should be noted that none of the features (input 

parameters) were excluded from the training phase. 

In the case of forecasting the CAQI in Thessaloniki, the first step of the pre-processing 

procedure was to select the records that include all the required input values. Specifically, 

for Datasets 1 and 3 (of Section 3.2), the records that include CAQI values were selected. 

In the case of Dataset 2 (of Section 3.2) the records that include all target values (CO, SO2 
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and O3) were selected. The next step was to use the linear interpolation method (see 

Appendix V) to calculate all missing values.  

Moreover, as ANNs require numerical inputs, the CAQI nominal values were converted to 

CAQI numerical values, as described in Table 3-7. The specific numerical values were 

selected, because of the hyperbolic tangent sigmoid transfer function (htstf), which was 

used to normalize the input data in the case of ANNs and DTs. This function receives 

values between -1 and +1, and because the full range of these values must be covered, the 

mapping of the five nominal values is done by assigning to the lower and higher nominal 

values the relevant lower and higher values of the htstf, and by assigning equidistant 

numerical values (i.e. -0.5, 0, and 0.5) to the three other nominal values of the CAQI. 

Table 3-8 presents the way that the continuous numerical values produced by the 

forecasting models (output) are mapped back to nominal CAQI values. For this mapping, 

the numerical values were divided in to five equal in range groups, in order to properly 

map back the CAQI numerical value to the nominal CAQI value. In addition, PCA was 

used to the data (when ANNs were applied) in order to change their dimensionality and 

thus, help the ANNs to find patterns into the data (as in the case of forecasting 8-HRA of 

ozone). The modified data were used as input to the ANNs without excluding input 

parameters. 

Table 3-7: Conversion table from Common Air Quality Index levels (nominal values) to Common Air 

Quality Index numerical values 

CAQI Level Nominal Value CAQI Numerical Value 

Very Low -1 

Low -0.5 

Medium 0 

High 0.5 

Very High 1 

Table 3-8: Conversion table from Common Air Quality Index numerical values to Common Air 

Quality Index levels (nominal values) 

CAQI Numerical Value (n) CAQI Level Nominal Value 

n<=-0.6 Very Low 

n>-0.6 AND n<=-0.2 Low 

n>-0.2 AND n<0.2 Medium 

n>=0.2 AND n<0.6 High 

n>=0.6 Very High 
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3.4 Performing Periodicity Analysis 

Periodicity analysis was performed for the two target features of the Athens monitoring 

stations (hourly Benzene and daily 8-HRA concentration values), with the aid of 

MATLAB. The highest values of strength in the periodogram determine the periodicity of 

the specific parameter within the time series. Table 3-9 presents the maximum strength 

values and their corresponding periodicities for Benzene at Patisia station for Datasets P1 

and P2. Figure 3-3 illustrates the periodogram of Benzene concentrations from Patisia 

station and indicates the four periodicities with maximum strength. These findings support 

the hypothesis that the basic source of Benzene is traffic: this is indicated from the 

periodicity of traffic per week (7-days: highest traffic on working days and less on 

weekends), accompanied by a periodicity of 8 hours and 24 hours, which closely 

correlated to the daily traffic patterns. Overall, Benzene hourly concentrations seem to 

follow the life cycle of the city operation and especially mobility patterns.  

Table 3-10 presents the four maximum strength values and their corresponding 

periodicities for Ozone 8-HRA concentration values, at Patisia and Liosia stations. It is 

clear that both monitoring stations have a difference between the periodicities of the two 

datasets. The periodicity of 175-days is very pronounced in the 2007 data for Patisia, 

indicating a shift in the behaviour of the pollutant between the cold and the warm period of 

the year, while there are even stronger periodicities, all indicating a periodicity close to 

monthly, especially for the Liosia area (i.e. an area indirectly influenced by traffic). It is 

also worth noting that for both locations, there is a strong 24-day periodicity, indicating a 

monthly cycle of the phenomenon. 

Table 3-9: The four maximum strength values and their corresponding periodicities for Benzene 

concentrations at Patisia station 

# 
Hourly Benzene Patisia Data (04-05) Hourly Benzene Patisia Data (06-07) 

Strength 
Cycles 

/Hour 
Periodicity Strength 

Cycles / 

Hour 
Periodicity 

1 2.36x10
7
 0.0059844 7 days 1.11x10

7
 0.0061 6.8 days 

2 1.92x10
7
 0.125 8 hours 9.14x10

6
 0.0066 6.3 days 

3 1.35x10
7
 0.041667 24 hours 8.74x10

6
 0.0067 6.2 days 

4 8.30x10
6
 0.16667 6 hours 8.36x10

6
 0.0069 6.1 days 

 



Investigation and Forecasting of Environmental Parameters | 84 

 

Figure 3-3: The periodogram of Benzene from Patisia station. The numbering indicates the four 

periodicities with maximum strength 

 

Table 3-10: The four maximum strength values and their corresponding periodicities for daily Ozone 

8-hour running average concentration values at Patisia and Liosia monitoring stations. 

Station # 
8-HRA Ozone  

(Datasets P3 and L1) 

8-HRA Ozone 

(Datasets P4 and L2) 
Strength Cycles /Day Periodicity Strength Cycles /Day Periodicity 

P
a

ti
si

a
 1 7.71x10

6
 0.0035 286 days 4.40x10

8
 0.0057 175 days 

2 2.92x10
6
 0.0255 39 days 3.02x10

8
 0.0419 24 days 

3 1.64x10
6
 0.029 34 days 2.00x10

8
 0.0421 24 days 

4 1.27x10
6
 0.1485 1 days 1.85x10

8
 0.0418 24 days 

L
io

si
a

 1 9.47x10
7
 0.0033 303 days 4.48x10

9
 0.0418 24 days 

2 3.21x10
7
 0.0041 244 days 3.08x10

9
 0.042 24 days 

3 1.70x10
7
 0.0025 400 days 1.05x10

9
 0.0417 24 days 

4 1.24x10
7
 0.0074 135 days 2.38x10

8
 0.013 77 days 

3.5 Performing Cross-Validation 

Cross-validation is used in the second step of the experiments to investigate how the data-

driven methods will generalize to an independent data and thus provide more reliable and 

accurate results. 

For the application of the ANN backpropagation algorithm, the following procedure was 

used: For each one of the input datasets (of the investigation experiments), the 10-fold 

Cross-Validation method was employed. Every dataset was thus divided into 10 subsets, 

each one of the 10-1 subsets was used for training, and the last subset was used for 
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validation and testing (in practice, half was used for the validation and half for the final 

testing and evaluation). The error on the validation subset was monitored during the 

training process: when the network begins to overfit the data, the error on the validation 

subset typically begins to rise (Gencay & Qi, 2001). On this basis, when the validation 

error increases, training can be stopped, and the weights and biases at the minimum of the 

validation error are retained. The error of the test subset was not used during the training 

but was used for computing the performance of the different models.  

In the case of the DT models, the 10-fold cross-validation was also used, where the 10-1 

subsets were involved in the training phase, and the remaining subset was used for testing. 

The bootstrap aggregation meta-algorithm was used for each input subset, in order to grow 

a different number of trees. 

In the case of the Linear Regression Models, the 10-fold cross-validation was again used, 

where the 10-1 subsets were involved in the training phase, and the remaining subset was 

used for testing. 

3.6 Forecasting Hourly Benzene Concentration Values 

For the development of the ANN forecasting model for Benzene, twelve network 

configurations were implemented and tested during the training phase, for all Benzene 

datasets. In the first step of the investigation experiments (when CV was not used), 50% of 

the data was used for training, 25% for validation and 25% for testing. In the second step 

CV was used to split the data into training, testing and validation subsets, as described in 

Section 3.5. Figure 3-4 illustrates the architecture of the first configuration of the neural 

network. Table 3-11 presents the performance results by using ANNs for the different 

model configurations, for the three different datasets, i.e. the dataset for the period 2004-

2005 (P1), the dataset for the years 2006 and 2007 (P2) and the dataset for the years 2004-

2007 (P1&2) in comparison with the performance results when CV was used, with the aid 

of the coefficient of determination (R
2
) and the index of agreement (d or IA). Additional 

information regarding these indices can be found in Appendix II. Table 3-12 presents the 

forecasting performance of hourly Benzene concentrations by using Linear Regression 

models for the three different datasets. Table 3-13 presents the model results with the aid 

of all statistical indicators involved, in order to evaluate the best configurations concerning 

their forecasting performance upon the three datasets. Table 3-14 presents the model 
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performance for two different criteria defining the events of interest (exceedances): 5μg/m
3
 

and 10μg/m
3
 in order to evaluate also the influence of the event definition criteria in the 

event forecasting ability.  In particular, Table 3-14 presents the calculated Critical Success 

Index (CSI) values and the number of the observed alarms and predicted alarms per dataset 

and per exceedance value. Information regarding the CSI calculation is available at 

Appendix III. In addition, it shows the numbers and rates of the alarms that either 

predicted correctly (a: true positives) or not (c: false negatives). The values of Table 3-14 

are presented as real numbers because the 10-fold cross-validation procedure is used 

(consequently the results are averaged), although they refer to discrete values. 

From the results presented in Tables 3-11 and 3-13, it is evident that configurations 

numbered as 7 and 5 have the best results concerning Benzene forecasting, for the dataset 

for the years 2004-05. Configuration number 7 was chosen as the best configuration as it 

performs better and has a simpler architecture (less neuron). From the same tables, it is 

clear that configuration number 5 produces the best results for the dataset of the years 

2006-07 and configuration numbered as 8 produce the best results for the joined dataset for 

the years 2004-2007. 

From Tables 3-11 and 3-12 it is clear that the ANNs have better forecasting performance 

in comparison with the Linear Regression models, for hourly Benzene concentrations in 

Patisia monitoring station for the data periods 2004-2005 and 2006-2007, on the basis of 

the IA criterion. In addition, ANNs provide better results (IA=0.92) with less data (dataset 

06-07) in comparison with Linear Regression (IA= 0.89). In contrary, when the complete 

dataset (for the period 2004-2007) was used, the Linear Regression model provides better 

forecasting performance (IA=0.91) in comparison with the best ANN model (IA=0.89). 

The decrease of the forecasting performance of the ANN models by using the complete 

dataset may have attributed to the different statistical characteristics of data periods 2004-

2005 and 2006-2007. 

From Table 3-11 it is evident that when CV is used, the forecasting performance was 

increased. Overall it can be concluded that the proposed methodology provides good 

forecasting performance for hourly Benzene concentrations for the Patisia monitoring 

station and has a high forecasting ability. 

Moreover, and on the basis of the results presented in Table 3-14, it is clear from the CSI 

values that for the 5μg/m
3
 maximum Benzene limit value the proposed methodology 
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provides a better event forecasting in comparison to the 10μg/m
3
 limit value. The 

configurations numbered as 5 (with Dataset 06-07) and 7 (with Dataset 04-05) result in the 

highest CSI, highest correct-alarm rate and lower false-alarm rate for the 5μg/m
3
 and 

10μg/m
3
 maximum Benzene limit value respectively. 

 

Figure 3-4: An example of the first configuration of the neural network of hourly Benzene 

concentrations 

 

Table 3-11: Performance results table of hourly Benzene concentrations for three different datasets for 

the Patisia station by using Artificial Neural Networks 

Config. 

Number 

Number of 

neurons, per 

Hidden Layer 

Data 

(04-05) 

Data 

(04-05) 

without CV 

Data 

(06-07) 

Data 

(06-07) 

without CV 

All Data 

(04-07) 

1 2 3 R
2
 IA R

2
 IA R

2
 IA R

2
 IA R

2
 IA 

1 5 - - 0.68 0.90 0.58 0.76 0.75 0.90 0.61 0.72 0.42 0.70 

2 5 5 - 0.70 0.90 0.60 0.77 0.74 0.90 0.64 0.76 0.49 0.75 

3 5 5 5 0.59 0.84 0.60 0.77 0.66 0.85 0.63 0.76 0.41 0.68 

4 10 - - 0.70 0.90 0.60 0.77 0.76 0.91 0.63 0.76 0.60 0.83 

5 10 10 - 0.71 0.91 0.61 0.78 0.78 0.92 0.62 0.75 0.65 0.88 

6 10 10 10 0.71 0.91 0.61 0.78 0.77 0.92 0.64 0.76 0.66 0.88 

7 15 - - 0.72 0.91 0.62 0.78 0.77 0.92 0.61 0.73 0.64 0.87 

8 15 15 - 0.71 0.91 0.60 0.76 0.76 0.91 0.64 0.77 0.67 0.89 

9 15 15 15 0.70 0.90 0.61 0.78 0.77 0.92 0.63 0.76 0.67 0.89 

10 20 - - 0.72 0.91 0.62 0.78 0.77 0.92 0.61 0.72 0.65 0.88 

11 20 20 - 0.72 0.91 0.61 0.78 0.78 0.92 0.62 0.75 0.67 0.89 

12 20 20 20 0.71 0.91 0.61 0.78 0.77 0.92 0.63 0.77 0.67 0.89 
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Table 3-12: Performance results table of hourly Benzene concentrations for three different datasets for 

the Patisia station by using Linear Regression Models 

Data (04-05) Data (06-07) Data (04-07) 
R

2
 IA R

2
 IA R

2
 IA 

0.68 0.90 0.69 0.89 0.71 0.91 

 

Table 3-13: Results by using statistical indicators to evaluate the best Artificial Neural Network model 

configurations on the basis of their performance on three datasets for Patisia station and for Benzene. 

Patisia Station (Benzene) 
Config. 7, 

Dataset (04-05) 

Config. 5, 

Dataset (06-07) 

Config. 8, 

Dataset (04-07) 
Observed mean 6.699 5.442 5.262 

Predicted mean 6.799 5.261 5.286 

Observed standard deviation 4.597 3.696 3.569 

Predicted standard deviation 3.939 2.830 2.779 

Correlation of determination (R
2
) 0.723 0.781 0.666 

Index of agreement (IA) 0.913 0.919 0.886 

Normalised mean difference (NMD) 0.020 0.033 0.015 

Root mean square error (RMSE) 2.423 1.799 2.069 

RMSE systematic 0.094 0.068 0.056 

RMSE unsystematic 0.174 0.140 0.096 

Mean absolute error (MAE) 1.605 1.185 1.417 

Mean bias error (MBE) -0.01 0.180 -0.024 

 

Table 3-14: Artificial Neural Network model forecasting performance for the prediction of two 

different exceedance-levels events for Patisia. 

Patisia Station 

Benzene exceedance value: 

5 μg/m
3
 

Benzene exceedance value: 

10 μg/m
3
 

Config. 7, 

Dataset 

(04-05) 

Config. 5, 

Dataset 

(06-07) 

Config. 8, 

Dataset 

(04-07) 

Config. 7, 

Dataset 

(04-05) 

Config. 5, 

Dataset 

(06-07) 

Config. 8, 

Dataset 

(04-07) 

Critical Success Index (CSI) 0.78 0.80 0.73 0.60 0.44 0.36 

Number of observed alarms 379.4 333.7 611.5 130 71.5 126.8 

Number of predicted alarms 391.5 326.7 625.9 128 46.9 92.5 

Number of hours with 

correct predicted alarms (A) 
336.9 293.7 520.5 97 36.2 58.6 

Correct Alarm Rate (%) 86% 90% 83.2% 76% 77.7% 63.5% 

Number of hours with false 

predicted alarms (C) 
54.6 33 105.4 31 10.7 33.9 

False Alarm Rate (%) 14% 10% 16.8% 24% 22.3% 36.5% 
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3.7 Forecasting Daily 8-HRA Concentration Values of Ozone 

The initial configuration consisted of 22 input parameters, leading to 22 neurons in the 

input layer and one neuron in the output layer per ANN model since the objective was to 

forecast one characteristic (the highest daily 8-HRA of Ozone for Patisia and Liosia 

stations). A total of five network configurations were implemented and tested during the 

training phase in order to avoid local minima. Table 3-15 presents the forecasting 

performance results by using ANNs for the different model configurations, for the 

different datasets and for the two different monitoring stations in comparison when CV 

was not used. The number of neurons per hidden layer was not further increased, because 

of the high delay during the training phase.  

Table 3-16 presents the forecasting performance of the Linear Regression Models while 

Table 3-17 presents the performance results of the best forecasting models for the three 

different datasets of Patisia and Liosia for daily 8-HRA values of Ozone. 

From Table 3-15 it is clear that the configuration with one hidden layer had the best results 

for all monitoring stations (both locations) and for all datasets, when CV was used for the 

forecasting of the 8-HRA of Ozone concentrations. From the same table, it is evident that 

the forecasting performance for daily 8-HRA values of Ozone is slightly lower when using 

data for only one year (2007, Dataset P4 and L2). This indicates that the applied 

methodology requires more than one year of data to produce better results. However, it 

should be noted that the difference between the best forecasting performances of the two 

datasets of both monitoring stations (Patisia and Liosia) are very low in terms of the IA 

(approx. 0.09 and 0.08 respectively). This suggests that even with one year of data, such 

models may be developed and effectively applied. 

From Table 3-17 it is evident that Linear Regression models provide better forecasting 

ability in comparison to ANNs, in two out of three datasets in both monitoring station 

locations. This confirms the conclusion of Makridakis and Hibon (2000) that simple 

methods developed by practicing forecasters do as well or in many cases better than 

computationally sophisticated models. In addition, the results presented in Table 3-15 

suggest that the forecasting performance achieved by using CV is better in comparison (by 

using the IA) with the results without using CV for both stations and for the Dataset P3 

and L1, while the situation is the opposite for the Dataset P4 and L2. According to Table 
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3-17 at Patisia station the Linear Regression provides the best forecasting performance for 

8-HRA of Ozone concentrations (IA=0.94) when all data were used (Dataset P3&4). On 

the other hand, at Liosia station the configuration numbered as 1 of the ANN models 

provides the best forecasting performance when all data were used (Dataset L3&4) even 

when Linear Regression provides better forecasting results in the separate datasets (Dataset 

L1). From Table 3-17 it is clear that the mean value of the observations (daily 8-HRA of 

Ozone) reveal the different nature of the two monitoring stations: Patisia is a traffic related 

station, heavily influenced by nitrogen oxide emissions, and thus with low mean ozone 

concentration values; Liosia is a station that well represents the “nomadic” nature of 

ozone, not heavily influenced by traffic, thus posing higher (than in Patisia) mean O3 

concentration values. 

Table 3-15: Performance results table of daily 8-hour running average Ozone concentrations for two 

different monitoring stations and datasets by using Artificial Neural Networks. 

Config. 

per 

Station 

Hidden 

Layers 

Dataset P3 / 

Dataset L1 

 Dataset P3 / 

Dataset L1 

without CV 

Dataset P4 / 

Dataset L2 

Dataset P4 / 

Dataset L2 

without CV 

Dataset 

P3&4 / 

Dataset 

L1&2 
1 2 3 R

2
 IA R

2
 IA R

2
 IA R

2
 IA R

2
 IA 

P
a

ti
si

a
 

S
ta

ti
o

n
 

1 22 - - 0.77 0.93 0.73 0.84 0.59 0.84 0.65 0.88 0.77 0.93 

2 22 10 - 0.58 0.83 0.73 0.84 0.56 0.77 0.65 0.84 0.43 0.73 

3 22 10 5 0.41 0.74 0.76 0.83 0.29 0.56 0.68 0.86 0.30 0.64 

4 22 22 - 0.52 0.81 0.72 0.88 0.47 0.79 0.64 0.85 0.48 0.79 

5 22 22 22 0.50 0.82 0.70 0.86 0.39 0.71 0.67 0.85 0.40 0.75 

L
io

si
a

 

S
ta

ti
o

n
 

1 22 - - 0.69 0.90 0.73 0.87 0.61 0.82 0.53 0.83 0.59 0.86 

2 22 10 - 0.52 0.81 0.77 0.88 0.43 0.73 0.59 0.84 0.22 0.61 

3 22 10 5 0.19 0.58 0.74 0.85 0.21 0.55 0.61 0.85 0.20 0.58 

4 22 22 - 0.51 0.82 0.72 0.85 0.49 0.77 0.57 0.84 0.40 0.75 

5 22 22 22 0.40 0.76 0.77 0.89 0.32 0.67 0.51 0.81 0.26 0.65 

 

Table 3-16: Performance results table of daily 8-hour running average Ozone concentrations for two 

different monitoring stations and the available datasets, by using Linear Regression. 

Station 

 Dataset P3 / 

Dataset L1 

Dataset P4 / 

Dataset L2 

Dataset P3&4 / 

Dataset L1&2 
R

2
 IA R

2
 IA R

2
 IA 

Patisia 0.71 0.91 0.82 0.94 0.78 0.94 

Liosia 0.73 0.92 0.55 0.84 0.41 0.79 
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Table 3-17: Results by using statistical indicators to present the best forecasting models on the basis of 

their performance on the three datasets for Patisia and Liosia stations. 

8-HRA of Ozone 

Patisia Station Liosia Station 

Config. 1 

Dataset P3 

LR 

Dataset P4 

LR 

Dataset 

P3&4 

LR 

Dataset L1 

LR 

Dataset 

L2 

Config. 1 

Dataset 

L3&4 

Observed mean 20.897 35.142 21.828 67.209 71.260 68.123 

Predicted mean 20.095 35.819 22.279 68.184 77.980 72.344 

Observed standard 

deviation 
18.740 25.865 21.253 36.268 31.057 35.089 

Predicted standard 

deviation 
16.498 22.349 20.613 31.998 27.024 30.067 

Correlation of 

determination (R
2
) 

0.766 0.817 0.785 0.729 0.551 0.581 

Index of agreement (IA) 0.927 0.944 0.940 0.919 0.844 0.857 

Normalised mean 

difference (NMD) 
0.050 0.019 0.020 0.014 0.086 0.062 

Root mean square error 

(RMSE) 
9.018 10.990 9.966 18.820 21.943 22.968 

RMSE systematic 1.375 1.832 0.898 1.711 3.657 2.595 

RMSE unsystematic 2.390 4.558 1.735 4.280 6.639 4.832 

Mean absolute error 

(MAE) 
6.518 8.777 7.609 13.882 18.488 17.008 

Mean bias error (MBE) 0.801 -0.677 -0.450 -0.974 -6.720 -4.220 

3.8 Forecasting Hourly and Daily CAQI 

3.8.1 Forecasting CAQI Values (Numerical) with the Aid of Regression Models 

Linear regression (LR) models were used as the reference method for the development of 

the CAQI forecasting models. Lagged values of the CAQI (a total of up to 10 values, 

Dataset 1) were used in order to forecast hourly and daily CAQI numerical values. Results 

indicate that the hourly CAQI numerical values for Agia Sofia can be forecasted by a LR 

model when employing only one lagged hourly value (IA = 0.92). The daily CAQI 

numerical values were not as successfully forecasted (IA = 0.76). The Cohen’s Kappa 

Index is not applied in this case; as such an index makes sense only in categorical forecasts 

(nominal values). It should also be noted that the numerical values forecasted here ranged 

between 0 and up to over 100, according to Figure IV-1. 

3.8.2 Calculate CAQI Levels based on Forecasted CAQI Values 

Based on the forecasted CAQI values (of the previous section), the CAQI levels (nominal 

values) were calculated and evaluated. Tables 3-18 and 3-19 shows the observed and 

predicted frequencies of the hourly and daily CAQI levels for Agia Sofia station, 
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respectively. For example, 74.74% of the low observed hourly CAQI cases (i.e. 6625 low 

observed cases from a total of 8864) were predicted as low-level cases (correct 

predictions) while 1.18% were predicted as high-level cases (false predictions). Both 

hourly and daily CAQI levels are not forecasted in a satisfactory manner with the aid of 

LR models, one possible reason being the mapping of the CAQI between arithmetic and 

nominal values. This is evident from Tables 3-18 and 3-19, where the percentages of the 

correct predictions per level (bold values) are low, especially in the prediction of daily 

CAQI levels. This can also be seen via their lower IA (reaching 0.5 for daily values) as 

well as via their low Cohen’s Kappa Index (Table 3-20), which calculated on the basis of 

the numerical values of the contingency Tables 3-18 and 3-19 (as described in Appendix 

III). 

Table 3-18: Observed and predicted frequencies of Hourly Common Air Quality Index levels for Agia 

Sofia (by using linear regression models) 

Observed 

Hourly CAQI 

Levels 

Predicted AQI Levels   

Very 

Low 
Low Medium High Very High 

Total Observed 

Cases 

Very low 
1186 579 20 13 18 

1816 (100%) 
65,31% 31,88% 1,10% 0,72% 0,99% 

Low 
633 6625 1462 105 39 

8864 (100%) 
7,14% 74,74% 16,49% 1,18% 0,44% 

Medium 
18 1844 4906 987 186 

7941 (100%) 
0,23% 23,22% 61,78% 12,43% 2,34% 

High 
7 166 1354 1895 614 

4036 (100%) 
0,17% 4,11% 33,55% 46,95% 15,21% 

Very High 
1 47 244 833 2496 

3621 (100%) 
0,03% 1,30% 6,74% 23,00% 68,93% 
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Table 3-19: Observed and predicted frequencies of Daily Common Air Quality Index levels for Agia 

Sofia (by using linear regression models) 

Observed Daily 

CAQI Levels 

Predicted AQI Levels 
Total Observed 

Cases Very 

Low 
Low Medium High Very High 

Very low 
4 6 7 0 0 

17 (100%) 
23,53% 35,29% 41,18% 0,00% 0,00% 

Low 
18 197 74 19 5 

313 (100%) 
5,75% 62,94% 23,64% 6,07% 1,60% 

Medium 
3 155 244 45 19 

466 (100%) 
0,64% 33,26% 52,36% 9,66% 4,08% 

High 
0 22 82 44 23 

171 (100%) 
0,00% 12,87% 47,95% 25,73% 13,45% 

Very High 
0 5 31 38 53 

127 (100%) 
0,00% 3,94% 24,41% 29,92% 41,73% 

 

Table 3-20: Results of the nominal hourly and daily Common Air Quality Index level predictions using 

linear regression 

 Index of agreement (IA) Cohen’s Kappa Index 
Hourly CAQI levels 0.65 0.53 

Daily CAQI levels 0.50 0.28 

3.8.3 Calculate Daily CAQI Levels based on Forecasted Numerical 24-Hourly 

values 

The forecasting of the daily CAQI levels on the basis of the forecasted 24 hourly values of 

the next day was investigated because of the fact that the forecast of the numerical hourly 

CAQI values reached an IA equal to 0.92. For this purpose, the hourly CAQI values of the 

previous day were used in the following manner: for the forecasting of the first hourly 

CAQI value for the next day, the 24 hourly values of CAQI of the previous day (observed) 

were used. For the forecasting of the second hourly CAQI value of the next day, the value 

of the previous hour (forecasted), as well as the 23 hourly values of the previous day 

(observed) were used, and so forth. Via this procedure, the hourly CAQI values were 

forecasted and then the daily average CAQI value was calculated, based on these values. 

Table 3-21 presents the comparison of daily CAQI forecasting performance using LR 

models at the station of Agia Sofia, by using lagged observed numerical values and by 

(equally) using 24 hourly forecasted values. The hourly CAQI numerical values for the 

Agia Sofia station achieved an IA = 0.70, on the basis of LR models. The performance was 
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decreased in comparison to the performance of the model that uses ten observed lagged 

values, which reached an IA = 0.92. On the other hand, the performance concerning the 

forecasting of daily CAQI levels was slightly increased when using 24 forecasted lagged 

values with an IA=0.51 (in comparison to 0.50). This slight difference in the performance 

may be attributed to the use of a higher percentage of observations for the forecasting of 

the hourly CAQI values for the first hours of the next day, thus allowing information of the 

previous day to “penetrate” the target day of the forecast. 

Table 3-21: The Index of agreement for the forecasted numerical daily Common Air Quality Index 

using linear regression 

Forecast by using: 
Index of agreement (IA) 

Hourly CAQI Values Daily CAQI levels 

10 observed lagged values 0.92 0.50 

24 predicted lagged values 0.70 0.51 

3.8.4 Calculate Daily CAQI Levels based on 24-h Forecasted values with 

Weighting Factors 

In order to further investigate the influence of input values to the performance of the 

forecasting models, additional daily CAQIs were calculated by using weighted factors. 

These weighted factors dictated that the first forecasted values of each day (values at 

midnight, 1 a.m., 2 a.m., etc.) will contribute more than the last forecasted values. Table 

3-22 presents one of the weighting methods tested, named "Factor4", which provides the 

best forecasting performance, in comparison to others. When using the hourly forecasted 

CAQI values to calculate the daily CAQI, the results are slightly better (IA= 0.5105, i.e. an 

improvement of 1.51%) than those when forecasting directly the daily CAQI. 

Table 3-22: “Factor4” weighting of hourly values at Agia Sofia. 

Hourly Values Contribution to daily value 
1-6 46.25% 

7-12 28.75% 

13-18 18.75% 

19-24 6.25% 

3.8.5 Forecasting CAQI Levels with the aid of ANNs and DTs 

In the first step of the investigation experiments (when CV was not used), all ANN models 

had one hidden layer, and the number of neurons (of the hidden layer) was the same as the 

number of the input parameters. The basic experiments (indicated as models) and the 
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different datasets that were used for each model are the ones presented in points 1 to 4 

listed below. The “S” denotes the step number of the investigation experiment. 

 1. Hourly and daily CAQI numerical values (which range from 0 to 100+) were 

forecasted using ANNs, in order to calculate the hourly and daily CAQI levels 

(according to Figure IV-1). Tables 3-23, 3-26 and 3-27 present the forecasting 

results for the different datasets for daily and hourly CAQI levels respectively 

indicated as Model S.3 (when Dataset 1 was used), Model S.4 (when Dataset 2 was 

used) and Model S.5 (when Dataset 3 was used). The values at columns H.L.x in 

Tables 3-26 and 3-27 indicate the number of neurons in the hidden layer x. 

 2. Hourly and daily NO2 and PM10 numerical values were forecasted using ANNs, in 

order to calculate the hourly and daily CAQI levels by using the formulas of Table 

IV-1. As input to the ANN, Dataset 2 was used. Tables 3-23, 3-26 and 3-27 present 

the forecasting results of different datasets for daily and hourly CAQI levels 

(indicated as Model S.6).  

 3. Hourly and daily CAQI levels were forecasted using ANNs. In order to match the 

forecasted numerical values to the CAQI levels (nominal values), the logical 

expressions of Table 3-8 were used. The output of the ANNs are numerical values 

which (in this case) range between -1 and +1. Tables 3-23, 3-26 and 3-27 present 

the forecasting results of different datasets for daily and hourly CAQI levels 

indicated as Model S.7 (when Dataset 1 was used), Model S.8 (when Dataset 2 was 

used) and Model S.9 (when Dataset 3 was used). 

 4. The hourly and daily CAQI levels were forecasted with the aid of DTs. Table 3-28 

presents the forecasting results of different datasets for daily and hourly CAQI 

levels, indicated as Model S.10 (when Dataset 1 was used), Model S.11 when 

Dataset 2 was used) and Model S.12 (when Dataset 3 was used). 

 

Table 3-23 presents the overall best results of the first step of the investigation 

experiments. On the basis of these findings, the forecasting performances of each daily and 

hourly model that were used can be evaluated by using the “Percentage Agreement” (PA) 

and the Cohen's Kappa Index (κ) (see Appendix III). The best forecasting performance of 

daily CAQI Levels (PA=61% and κ=0.43), was achieved when Model 1.9 (Forecast 

Directly the CAQI Levels with Dataset 3) was used with the aid of ANNs, with an increase 

of forecasting performance of 10% PA and 12% κ compared to the best forecasting 
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performance when LR models were used, and with an increase of 4% PA and 7% κ 

compared to the best forecasting performance when DTs were used. The best forecasting 

performance of hourly CAQI Levels (PA=65% and κ=0.53), was achieved when LR 

models were used, with an increase of 5% PA and 8% κ compared to the best forecasting 

performance when ANNs were used, and with an increase of 2% PA and κ compared to 

the best forecasting performance when DTs were used. 

Table 3-23: Comparison of the best forecasting performances of the forecasting models of the first step 

of this work for Daily and Hourly Common Air Quality Index Levels 

Model Sub Model 
Daily CAQI Levels  Hourly CAQI Levels  

Percentage 

Agreement 

Cohen's 

Kappa 

Percentage 

Agreement 

Cohen's 

Kappa 

1.1  - 49.54% 0.28 65.10% 0.53 

1.2 Forecasted CAQI - Factor4 51.05% 0.31 - - 

1.3 
2 lagged values 45.00% 0.14 57.00% 0.41 

8 lagged values 49.00% 0.22 55.00% 0.39 

1.4  - 53.00% 0.30 46.00% 0.25 

1.5 
1 lagged value 58.00% 0.37 57.00% 0.41 

4 lagged values 55.00% 0.32 60.00% 0.45 

1.6  - 53.00% 0.30 44.00% 0.23 

1.7 
1 lagged value 41.00% 0.11 54.00% 0.37 

10 lagged values 52.00% 0.28 53.00% 0.34 

1.8  - 54.00% 0.32 46.00% 0.25 

1.9 
1 lagged value 60.00% 0.41 55.00% 0.37 

2 lagged values 61.00% 0.43 54.00% 0.37 

1.10 1 lagged value 50.00% 0.23 63.00% 0.51 

1.11  - 54,00% 0,32 46,00% 0,26 

1.12 
4 lagged values 57,00% 0,36 62,00% 0,47 

5 lagged values 57,00% 0,36 62,00% 0,48 

Model Details: 

1.1. Calculate the CAQI Levels from forecasted Daily/Hourly CAQI values by using regression models 

1.2. Calculate the CAQI Levels from forecasted Hourly CAQI values by using regression models 

1.3. Calculate the CAQI Levels by forecasting the CAQI values using ANNs, with Dataset 1 

1.4. Calculate the CAQI Levels by forecasting the CAQI values using ANNs, with Dataset 2 

1.5. Calculate the CAQI Levels by forecasting the CAQI values using ANNs, with Dataset 3 

1.6. Calculate the CAQI Levels by forecasting NO2 and PM10 using ANNs, with Dataset 2. 

1.7. Forecast Directly the CAQI Levels using ANNs, with Dataset 1 

1.8. Forecast Directly the CAQI Levels using ANNs, with Dataset 2 

1.9. Forecast Directly the CAQI Levels using ANNs, with Dataset 3 

1.10. Forecast Directly the CAQI Levels using Decision Trees, with Dataset 1 

1.11. Forecast Directly the CAQI Levels using Decision Trees, with Dataset 2 

1.12. Forecast Directly the CAQI Levels by using Decision Trees, with Dataset 3 

 

The investigation experiments of the first step were repeated in order to evaluate the use of 

a) CV, and b) sensitivity analysis. The 10-fold cross-validation was used in ANN and DT 

models in order to measure the predictive performance of the models, as described in 

previous section (3.5). In addition, the one-way sensitivity analysis was used in order to 
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examine different: a) ANN model architectures and, b) numbers of decision trees grown 

independently. 

In order to perform one-way sensitivity analysis on the ANN model architectures, two 

important topology parameters were examined: the increase of the hidden layers and the 

increase of the neurons per layer. Two different empirical methods were used in order to 

generate the different architectures (neurons per layer), having as a “starting point” the 

number of the input parameters (N-Input). The number of the hidden layers was used as 

one of the parameters of the ANN architecture, and the number of neurons per hidden 

layer as an additional parameter. Thus, in Method 1 (Equation (3-1)), the number of 

neurons was the same in all hidden layers. In Method 2 (Equation (3-2)), the number of 

neurons was different for each hidden layer, and more specifically it increased as the 

number of hidden layers also increased. Both methods were designed in order to generate 

multiple architectures, where they will be different in one parameter at a time (in order to 

perform one-way sensitivity analysis).  

Method 1: 

Number of neurons 

(same for all hidden 

layers) 

= 
N-Input + ((N-Input /2) × Neuron 

Multiplier) 
(3-1) 

Method 2: 
Number of neurons in 

every hidden layer 
= 

N-Input + ((N-Input /2) × Hidden Layer 

Number × Neuron Multiplier) 
(3-2) 

 

The “Neuron Multiplier” was an additional parameter that was used in order to increase 

the number of neurons and to thus generate different ANN architectures. The “Hidden 

Layer Number” was used in order to increase the number of neurons per hidden layer. For 

example, the number of neurons of the third hidden layer when Method 2 is used with five 

(5) input parameters and with Neuron Multiplier equalled two (2), should be: 5 + ((5/2) × 3 

× 2) = 20 neurons. It should be noted that the calculated number of neurons (by using 

Method 1 and 2) was rounded up. 

By combining the results of the two methods, with maximum three hidden layers and with 

a Neuron Multiplier ranging from 2 to 4 (increased by one), 15 different ANN 

architectures per input parameter set (N-input) were generated in order to perform the 
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sensitivity analysis. The majority of these models can be characterized as deep neural 

networks because their architecture includes two or more hidden layers (Nielsen, 2015). 

Additional hidden layers would increase significantly the requirements in computational 

time and physical memory of the machine (RAM), and thus, were not used. Deep learning 

techniques that are based on stochastic gradient descent and backpropagation can use 

much deeper (e.g. 5 to 10 hidden layers) networks to be trained, but were not examined in 

this work. (Nielsen, 2015) (Schmidhuber, 2015). Table 3-24 summarizes the construction 

parameters used for the 15 different architectures, while Table 3-25 presents an example of 

the different architectures generated on the basis of 5 input parameters, with maximum 

three hidden layers and with a neuron multiplier ranging from 2 to 4 (increased by one). 

The hidden layer columns in Table 3-25 report the number of neurons per layer. 

In the case of DT models, four different numbers of trees were used (50, 100, 150 and 200) 

in order to perform one-way sensitivity analysis. The initial number of trees (50) was 

chosen on the basis of previously published studies (Vens & Costa, 2011). An increase in 

the number of trees was not investigated, due to the requirements in computational time 

and physical memory of the machine (RAM). 

As a result of the second step of this work, a total 1118 different models (i.e. different 

scenarios of ANN model architectures and numbers of decision trees) were developed and 

trained for daily and hourly data (559 for each one respectively). Table 3-29 presents in 

detail the 559 models that were tested for daily and hourly data (thus leading to a total of 

1118 models). It should be noted that the computational (CPU) time required to train the 

aforementioned 1118 models was approximately 64 days, while the investigation 

experiments required at least 4GB of RAM in order to be completed (on a machine with 

Intel(R) i3 Core (2.1 GHz) processor and 4GB of RAM). 

Table 3-24: Construction of the 15 different architectures 

Parameter From To 
Number of Hidden Layers 1 3 

Neuron Multiplier 2 4 

Methods 1 2 
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Table 3-25: An example of the 15 different architectures with 5-input (parameters) 

Architecture 

ID 
N-Input(s) 

Neuron 

Multiplier 

Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 

Generated 

by Method 

1 

5 

2 

10 - - 1 and 2 

2 10 10 - 1 

3 10 15 - 2 

4 10 10 10 1 

5 10 15 20 2 

6 

3 

13 - - 1 and 2 

7 13 13 - 1 

8 13 20 - 2 

9 13 13 13 1 

10 13 20 28 2 

11 

4 

15 - - 1 and 2 

12 15 15 - 1 

13 15 25 - 2 

14 15 15 15 1 

15 15 25 35 2 

 

The forecasting performance of the daily and hourly NO2 and PM10 numerical values (15 

developments of Model 6, Table 3-29), were in average 0.44 R
2
 and 0.78 IA for daily 

numerical values and 0.56 R
2
 and 0.84 IA for hourly numerical values.  

The daily and hourly CAQI levels were calculated from the forecasted NO2 and PM10 

numerical values. The models with the highest forecasting performance (in terms of PA 

and Cohen's Kappa) of the CAQI levels (daily and hourly) of Model 6 are presented in 

Tables 3-26 and 3-27 as Model 2.6. The forecasting performances of the numerical values 

(NO2 and PM10) of these models were 0.41 R
2
 and 0.77 IA for daily values and 0.57 R

2
 

and 0.85 IA for hourly values. In both cases of the best daily and hourly Model 2.6, the 

forecasting performance of the numerical values (R
2
 and IA) is lower or near the average, 

which means that models with higher or equal forecasting performance (of the numerical 

values) exists, but resulting in a lower forecasting performance (PA and Cohen's Kappa) of 

the CAQI levels. Thus, a good forecasting performance of the NO2 and PM10 values does 

not necessarily lead to good forecasting performance of the CAQI levels. 

Table 3-30 presents the average performance of the ANN forecasting Models for daily and 

hourly CAQI levels and for each different ANN architecture. Each of these architectures 

has a unique ID and is characterized by a different parameter distinguishing it from other 

architectures. The results reported in Table 3-30 support the finding of Section 3.7 that 



Investigation and Forecasting of Environmental Parameters | 100 

simple ANN architectures (with one hidden layer) can achieve better forecasting 

performance (in this case for the daily CAQI levels). Contrary to this finding, the results 

for the hourly CAQI levels suggest that more complex architectures lead to better 

forecasting performances.  

Table 3-31 presents the average performance of the DT Forecasting Models for daily and 

hourly CAQI levels for each different number of trees. Results indicate that an increment 

in the number of the trees will not affect considerably the forecasting performance, but it 

may improve the accuracy and the confidence in the forecasting results. It worthies 

mentioning that the best forecasting performance (Table 3-28) was achieved with 200 trees 

(the maximum number of trees being investigated) in the case of the daily CAQI levels and 

with 100 trees in the case of the hourly CAQI levels. 

Table 3-26: Comparison of the best forecasting performance of the Artificial Neural Network 

forecasting models of the second step of this work for Daily Common Air Quality Index levels 

Daily CAQI levels 

Model 

Number of 

Input 

parameters 

Architecture ID H.L.1 H.L.2 H.L.3 

Architecture 

Generated by 

Method 

PA 
Cohen's 

Kappa 

2.3 1 1 2  -  - 1 and 2 0.50 0.23 

2.4 9 6 23  -  - 1 and 2 0.56 0.35 

2.5 10 1 20  -  - 1 and 2 0.48 0.22 

2.6 9 5 18 27 36 2 0.54 0.33 

2.7 3 8 8 12  - 2 0.50 0.26 

2.8 9 1 18  -  - 1 and 2 0.55 0.36 

2.9 11 6 28  -  - 1 and 2 0.48 0.23 

 

Table 3-27: Comparison of the best forecasting performance of the Artificial Neural Network 

forecasting models of the second step of this work for Hourly Common Air Quality Index levels 

Hourly CAQI levels 

Basic 

Model 

Number of 

Input 

parameters 

Architecture 

ID 
H.L.1 H.L.2 H.L.3 

Architecture 

Generated by 

Method 

PA 
Cohen's 

Kappa 

2.3 2 13 6 10  - 2 0.63 0.50 

2.4 9 7 23 23  - 1 0.50 0.31 

2.5 12 1 24  -  - 1 and 2 0.62 0.49 

2.6 9 4 18 18 18 1 0.50 0.31 

2.7 1 10 3 4 6 2 0.62 0.50 

2.8 9 2 18 18  - 1 0.50 0.32 

2.9 12 1 24  -  - 1 and 2 0.62 0.49 
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Table 3-28: Comparison of the best forecasting performance of the Decision Trees forecasting models 

of the second step of this work for daily and hourly Common Air Quality Index levels 

Basic 

Model 

Daily CAQI levels Hourly CAQI levels 

Number 

of Trees 

Number of 

Input 

parameters 

PA 
Cohen's 

Kappa 

Number 

of Trees 

Number of 

Inputs 
PA 

Cohen's 

Kappa 

2.10 150 9 0.56 0.32 150 9 0.64 0.51 

2.11 200 9 0.69 0.51 100 9 0.60 0.45 

2.12 50 14 0.59 0.37 100 12 0.65 0.53 

 

Table 3-29: The 559 models that were tested for daily and hourly data in the second part of this work 

 
Data Used by 

Number of Models 

Developed and Trained 

15 ANN 

Architectures 

Dataset 1 (1 to 10 lagged values) Model 3 150 

Dataset 2 Model 4 15 

Dataset 3 (1 to 5 lagged values) Model 5 75 

Dataset 2 Model 6 15 

Dataset 1 (1 to 10 lagged values) Model 7 150 

Dataset 2 Model 8 15 

Dataset 3 (1 to 5 lagged values) Model 9 75 

4 different 

number of 

decision trees 

Dataset 1 (1 to 10 lagged values) Model 10 40 

Dataset 2 Model 11 20 

Dataset 3 (1 to 5 lagged values) Model 12 4 

Total 559 

 

Table 3-30: The average performance of the Artificial Neural Network Forecasting Models for daily 

and hourly Common Air Quality Index levels for each different ANN architecture 

Architecture 

ID 

Architecture 

Generated 

by Method: 

Daily CAQI levels Hourly CAQI levels 

PA Average 

Cohen's 

Kappa 

Average 

PA Average 

Cohen's 

Kappa 

Average 

1 1 and 2 0.46 0.20 0.59 0.45 

2 1 0.43 0.16 0.59 0.45 

3 2 0.43 0.16 0.59 0.45 

4 1 0.43 0.15 0.59 0.44 

5 2 0.43 0.16 0.59 0.45 

6 1 and 2 0.45 0.19 0.60 0.46 

7 1 0.44 0.16 0.60 0.45 

8 2 0.42 0.15 0.59 0.45 

9 1 0.42 0.15 0.59 0.45 

10 2 0.40 0.14 0.59 0.45 

11 1 and 2 0.45 0.19 0.59 0.45 

12 1 0.43 0.16 0.59 0.45 

13 2 0.41 0.15 0.59 0.45 

14 1 0.42 0.15 0.59 0.45 

15 2 0.38 0.13 0.58 0.44 

 

Method 1: Increase the number of Hidden Layers from the previous topology. 

Method 2: Increase the Number of Neurons from the previous topology. 

Method 1 and 2: Increase the Number of Neurons from the previous “1 and 2” Topology. 
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Table 3-31: The average performance of the Decision Trees forecasting models for daily and hourly 

Common Air Quality Index levels for each different number of trees 

Number 

of Trees 

Daily CAQI levels Hourly CAQI levels 
Percentage Agreement 

Average 

Cohen's Kappa 

Average 

Percentage Agreement 

Average 

Cohen's Kappa 

Average 

50 0.500 0.255 0.618 0.479 

100 0.484 0.230 0.619 0.481 

150 0.495 0.256 0.620 0.483 

200 0.505 0.249 0.621 0.484 

3.8.6 Comparing the Results of the Best CAQI Forecasting Methods 

Table 3-32 presents detailed information for the best forecasting methods (of the two steps 

of the investigation experiments) when forecasting daily and hourly CAQI levels. In basic 

Model 1.9 (of Table 3-32), the CAQI levels (which are encoded to values that range from -

1 to 1) were forecasted directly. In basic models 1.1, 2.3 and 2.4 (of the same Table) the 

CAQI levels are calculated from the forecasted CAQI values (which ranges from 0 to 

higher than 100). It is, therefore, evident that when CV was used at the model with the best 

forecasting performance for daily data (resulting from the first step of this work), the 

performance decreased from 61% PA and 43% κ (Model 1.9) to 44% PA and 18% κ 

(Model 1.9
*1

). On the other hand, when CV was used in the model with the best 

forecasting performance for hourly data (Model 1.1, that resulted from the first step of this 

work) the performance did not change. The fact that the performance was decreased for the 

forecasting of the daily CAQI and not for the hourly one suggests that the results for the 

daily data of the first step of this work were not as accurate as expected. Thus, CV should 

be used at all times, in order to increase the credibility and validity of the forecasting 

models.  

From Table 3-32 it can be seen that the models are very different. For example, basic 

Model 2.4 has an observed mean value of 65.32, because the CAQI levels were calculated 

from the forecasted CAQI values (which range from 0 to higher than 100 as shown in 

Figure IV-1 and in Equation IV-8). On the other hand, Model 1.9
*1

 has an Observed Mean 

value of 0.03, because (a) the CAQI levels (which are encoded to values that range from -1 

to 1 as shown in Table 3-7) were directly forecasted, and (b) the tangent sigmoid transfer 

function was used. 
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Table 3-32: Detailed information for the best forecasting methods (of the two steps of the investigation 

experiments) when forecasting daily and hourly Common Air Quality Index levels 

CAQI levels Daily  Hourly 
Computational Intelligence Method ANN DT ANN ANN ANN DT LR LR 

Basic Model 2.4 2.11 1.9
*1

 1.9 2.3 2.12 1.1
*1

 1.1 

Observed mean 65,32 - 0,03 0,03 65,47 - 66,11 66,10 

Predicted mean 65,61 - 0,05 0,00 65,66 - 64,87 63,47 

Observed standard deviation 28,28 - 0,48 0,50 39,82 - 39,93 29,64 

Predicted standard deviation 23,74 - 0,28 0,28 32,62 - 36,61 14,43 

Normalized mean difference (NMD) 0,04 - 1,30 0,97 0,01 - 0,02 0,04 

Root mean square error (RMSE) 22,22 - 0,47 0,33 21,93 - 20,45 24,54 

RMSE systematic 3,08 - 0,06 0,01 0,64 - 0,40 0,76 

RMSE unsystematic 5,24 - 0,03 0,01 1,20 - 0,87 1,14 

Mean absolute error (MAE) 15,11 - 0,37 0,26 13,39 - 12,53 16,69 

Mean absolute percentage error (MAPE) 0,25 - Inf. Inf. 0,23 - 0,20 0,27 

Mean bias error (MBE) -0,28 - -0,03 0,03 -0,19 - 1,24 2,63 

Coefficient of determination (R
2
) 0,44 - 0,14 0,61 0,69 - 0,74 0,32 

Index of agreement (IA) 0,79 - 0,58 0,81 0,90 - 0,92 0,65 

Percentage Agreement 0,56 0,69 0,44 0,61 0,63 0,65 0,65 0,65 

Cohen's Kappa 0,35 0,51 0,18 0,43 0,50 0,53 0,53 0,53 

*1
: The basic model of the first step of this work, when CV was applied. 

3.9 Results and Discussion 

For the AQ investigations in Athens, two regulated major pollutants were used, Benzene 

and Ozone. The forecasting of the former has to deal with the way that the event of interest 

(exceedance of a limit value) is defined while the forecasting of the latter deals with an 8-

Hour Running Average (HRA) parameter as the basis for the definition of the event of 

interest. Both pollutants demonstrate differences in nature as well as in the way they 

should be handled. For this reason, alternative architecture and model setups concerning 

ANNs as the basis for the development of the forecasting capability as well as classical 

techniques such as Linear Regression (LR) were investigated. Overall, the methodology 

applied for the data analysis and for the forecasting of the selected pollutants was proven 

to be successful, leading to good forecasting results (Hourly Benzene: 0.70 - 0.92 IA and 

0.41 – 0.78 R
2
, and 8-HRA of Ozone: 0.55 – 0.94 IA and 0.19 – 0.90 R

2
).  

For the investigations in Thessaloniki, the CAQI was selected as the parameter of interest 

that needs to be forecasted (in an hourly and daily temporal horizon). On the basis of the 

results, the Agia Sofia station was chosen as the one for which forecasting models were 

developed and tested. The performance of a wide variety of ANNs, DTs, and statistical 

regression models were evaluated and inter-compared on the basis of the following 

scenarios: 
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a) The estimation of the CAQI levels by forecasting the CAQI values, 

b) The estimation of the CAQI levels by forecasting individual pollutant levels 

participating in the calculation of the overall CAQI and, 

c) The direct forecasting of the CAQI levels. 

In order to investigate these scenarios, three different datasets were employed for daily and 

hourly data. For the various datasets and the different scenarios, 15 ANN architectures and 

4 different DT model ensembles were used, indicated as different models. Overall, a total 

of 1118 different models were developed and trained for daily and hourly data (559 for 

each one respectively) in order to perform one-way sensitivity analysis. 

Results show that when the daily CAQI value was forecasted on the basis of the forecasted 

hourly CAQI values, the performance was better in comparison to the one achieved via the 

direct forecast of the daily CAQI values. Moreover, if weighting factors were used in order 

to calculate the daily CAQI values, the forecasting performance improved further. It was 

also found that the DT models outperform the ANN models with respect to their 

forecasting ability of the CAQI. When hourly CAQI levels were forecasted the best 

performance was achieved by a DT model (Percentage Agreement = 65% and Cohen's 

Kappa Index = 53%, equal to the performance of a LR model). The presented results 

suggest that the performance of various ANN and DT models depends both on their 

internal structure and on the methods used for their training. 

The sensitivity analysis results show that in order to predict daily CAQI levels, simple 

ANN architectures (with one hidden layer) should be used. On the other hand, in order to 

predict hourly CAQI levels, more complex architectures (with more than one hidden layer) 

should be employed. It is estimated that the reasons for these differences lie in the 

aggregated nature of the daily CAQI levels, which smoothes out any short term 

perturbations associated with the temporal profile of air pollutants, thus allowing for 

simpler ANN architectures to map any “knowledge” interwoven in the dataset under 

investigation that is related to the daily CAQI. In the case of DTs, sensitivity analysis 

results indicate that an increment in the number of the trees (from the initial 50 trees) will 

not affect considerably the forecasting performance. Even though the best forecasting 

performance in the case of the daily CAQI levels was achieved with the maximum number 

of trees being investigated (200 trees) and in the case of the hourly CAQI levels with 100 
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trees. It worth mentioning that in order to train the aforementioned 1118 models, 

approximately 64 days of a computational time were needed. 

Using model ensembles obtained by a k-fold CV resulted in more accurate forecasts than 

using individual models. Thus, it became evident that CV should be used in order to 

increase the credibility and validity of the results. The models developed for the CAQI 

forecasting are able to predict the values of these parameters with acceptable accuracy 

(0.92 IA, 0.86 R
2
 and 0.53 κ). 

3.10 Summary 

This chapter presents the experiments performed in an effort to investigate the process to 

develop CI and statistical methods to forecast several environmental parameters. The 

experiments consist of the investigation of forecasting environmental parameters for the 

two largest cities of Greece (Athens and Thessaloniki). For the two AQ monitoring 

stations of Athens, Benzene and Ozone were the pollutants selected towards episode 

forecasting, and for the four AQ monitoring stations of Thessaloniki, the CAQI was 

chosen as the parameter of interest. In addition, cross-validation and sensitivity analysis 

were used in order to perform a number of investigation experiments and test the 

performance of different model architectures (a total of 1118 different models), with the 

aim of evaluating their applicability and reliability concerning the parameters of interest. 

The sensitivity analysis results show that in order to predict daily CAQI levels, simple 

ANN architectures (with one hidden layer) should be used. In contrary, in order to predict 

hourly CAQI levels, more complex architectures (with more than one hidden layer) should 

be employed. In the case of DTs, sensitivity analysis results indicate that an increment in 

the number of the trees (from the initial 50 trees) will not affect considerably the 

forecasting performance. The time required to train the aforementioned 1118 models, was 

approximately 64 days of computational time. The overall results show that the forecasting 

accuracy of the developed data-driven models is at the highest level in comparison to the 

literature, thus, fulfilling the first research question of this work (see Section 1.2). In 

addition, the described semi-automatic procedure to perform forecasting via data-driven 

models can be generalized to other locations and is expected to be useful for the 

implementation of operational forecasting systems for environmental parameters. 
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This chapter highlights the needs in air quality forecasting by using data-driven models 

(listed below), which reflects the second and third research questions. The next chapters 

describe how these needs were addressed in the frame of this work. 

a) A more comprehensive forecasting verification method, which combine forecasting 

performance measures in order to be used in an automated operational forecasting 

system (Chapter 4). 

b) An automated methodology to optimize the whole AQ forecasting chain, in order 

to find one of best forecasting models more easily (Chapter 5). The investigation to 

find one of the best forecasting models is depending on the selected pollutants, 

locations and data, thus it is clear that this process will have to be repeated many 

times. In addition, it was evident from the investigation experiments that even 

though sensitivity analysis is important to investigate the performance of different 

model architectures/parameters, the computational time required was 

approximately 64 days, thus it becomes difficult to be used many times. 
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Chapter 4. New Forecasting Performance Indices 

Chapter 4 

New Forecasting Performance Indices 

The performance of any data-driven forecasting model (like the ones used for air quality) 

is commonly evaluated with the aid of several forecasting performance measures 

(statistical indices). On this basis, models can be compared and the best model selected. As 

there is no formal procedure to follow, this means that for the same model results, different 

researchers may select different model(s) as the best in terms of forecasting, depending on 

(a) the employed statistical indices and (b) the criteria used for interpreting the values of 

these indices. In an effort to overcome this problem, two new forecasting performance 

indices were developed (denoted as FPIm and FPIs for Mamdani-type and Sugeno-type FIS 

respectively) to provide a combination of several measures (which define the forecast 

quality by different scalar attributes), that increases the confidence in the estimation of the 

forecasting performance and standardize the interpretation.  

4.1 Statistical Measures Selection 

To address the second research question, the best ways of evaluating the forecasting 

performance of the data-driven models on an operational basis must be found. In addition, 

the results of the investigation experiments highlighted the need for a more comprehensive 
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forecasting verification method, which combine forecasting performance measures in 

order to be used in an automated operational forecasting system. For that reasons, this 

chapter details the research undertaken to improve forecasting verification through the 

development and application of new indices, based on an analysis of existing indices and 

their characteristics. 

The current work concentrates on continuous variables forecasting and, more specifically, 

on the forecasting of the concentration levels of atmospheric pollutants in the urban 

atmosphere. Thus, categorical verification indices were not examined. Twenty-four (24) 

statistical measures commonly used to evaluate the performance of models that produce 

forecasts of continuous (numerical) variables were selected. In order to identify the 

characteristics of each index, a literature review was undertaken, resulting in Table 4-1 

which summarizes the most frequently used indices and their main characteristics and 

disadvantages. Details of each statistical measure can be found in Appendix II. 

The next step was to select the suitable indices and create the new indices based on the 

aforementioned analysis. The “raw material” of this synthesis includes characteristics that 

cannot be described merely with the aid of straightforward algebraic equations, but require 

the combination and synthesis of existing index characteristics. For this reason, a fuzzy 

logic approach was chosen as the most appropriate calculation methodology. 

Table 4-1: Summarize description and disadvantage(s) or each measure 

Measure 

(abbreviation) 
Short Description Disadvantage(s) Authors/Reference 

Bias 
Indicates the average 

direction of error 
 It provides no measure of 

the error variance. 
Armstrong (1985) 

Normalized Bias 

(NB) 

A measure of the over or 

under-prediction of a 

variable. 

 Possible division by zero. 

 Cancel each other out. 
 

Mean Fractional 

Bias (MBF) 

Represents the difference 

between the forecasted 

average and the actual 

average. 

 Possible division by zero. 

 Cancel each other out. 

 The predicted 

concentration is found in 

both the numerator and 

denominator 

Ying, et al. (2007) 

Mean Percentage 

Error (MPE) 

Average of percentage 

errors. 

 Cancel each other out. 

 Possible division by zero. 
 

Mean Absolute 

Error (MAE) 

Average of the magnitude 

of the errors. 
 Sensitive to outlier errors  

Mean Absolute 

Percentage Error 

(MAPE) 

Mean Absolute Percent 

Error 

 Possible division by zero. 

 When the predicted and 

observed values are the 

same (having a perfect fit), 

MAPE is zero. 
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Symmetric Mean 

Absolute 

Percentage Error 

(sMAPE) 

Symmetric Mean Absolute 

Percentage Error 
 Involve division by a 

number close to zero 

Armstrong (1985), 

Makridakis & Hibon 

(2000), Andrawis & 

Atiya (2009) 

Mean Squared 

Error (MSE) 

Average of the squared of 

the errors. 

 It is sensitive to large 

errors, to large variance of 

errors and on outlier errors 

Jolliffe & Stephenson 

(2012) 

Normalized Mean 

Squared Error 

(NMSE) 

Estimator of the overall 

deviations between 

forecasted and actual 

values. 

 Sensitive to extreme 

values. 
 

Root Mean Squared 

Error (RMSE) 

Indicates the magnitude of 

the error and retains the 

variable’s unit. 

 Sensitive to large errors, to 

large variance of errors 

and on outlier errors 

Willmott (1981) 

Linear Correlation 

Coefficient (r) 

Measures the strength and 

the direction of a linear 

relationship between two 

variables. 

 Measures the linear 

relationship. Therefore, a 

correlation of 0 does not 

mean zero relationship 

between two variables. 

 

Coefficient of 

Determination (r
2
) 

Measures the percent of 

the data that is the closest 

to the line of best fit. 

 Based on the linear fit. 

 Sensitive to extreme 

values. 

 

Spearman’s rank 

correlation 

coefficient (rs) 

Measure of statistical 

dependence between two 

variables. 

 Simply places the values 

in numerical order; it pays 

no regard to the magnitude 

of the differences between 

the values. 

Thornes (2006) 

Coefficient of 

Efficiency (E) 
Coefficient of Efficiency 

 Sensitive to extreme 

values. 

Nash & Sutcliffe, 

1970 (1970) 

Index of Agreement 

(d) 

Measures the degree to 

which a model's 

predictions are error free. 

 Large errors are squared, 

and thus the influence on 

the sum-of-squared errors 

is over-weighted. 

Willmott (1981) 

Index of Agreement 

(d1) 

Sums of the absolute 

values of the errors. 

 The overall range of d1 

remained somewhat 

narrow to resolve 

adequately the great 

variety of ways that F can 

differ from A. 

Willmott, et al. 

(1985) 

Index of Agreement 

(dr) 

Sum of the magnitudes of 

the differences between 

the model-predicted and 

observed deviations about 

the observed mean relative 

to the sum of the 

magnitudes of the perfect 

model and observed 

deviations about the 

observed mean. 

 
Willmott, et al. 

(2011) 

Legates and 

McCabe’s (E1) 
Coefficient of efficiency.  

Legates & McCabe 

(1999) 

Legates and 

McCabe’s (E’1) 

Coefficient of efficiency 

(baseline adjusted). 

 Can be used for special 

cases when season or 

another time period is 

available to provide a 

more appropriate baseline 

Legates & McCabe 

(1999) 
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Berry and Mielke’s 

( ) 

For the analysis of a 

nominal independent 

variable with any number 

or combination of 

nominal, ordinal, or 

interval dependent 

variables. 

 
Berry & Mielke 

(1992) 

Watterson’s (M) 

Symmetric measure that 

converges linearly to 1 as 

errors diminish to zero. 

 The upper and lower 

bounds it is not well 

defined. 

Watterson (1996) 

Factor of 

Exceedance 

(FOEX) 

Measure to indicate if the 

forecasting results are over 

or under-predicted. 

 Cannot distinguish an 

under-prediction than a 

perfect fit 

Sokhi, et al. (2006) 

Theil’s Inequality 

Coefficient (U1) 

Measure of forecast 

quality 

 It has a little or no value as 

a forecasting accuracy 

index. 

Theil (1958) 

Theil’s Inequality 

Coefficient (U2) 

Measure of forecast 

quality 
 Thiel (1966) 

 

The purpose of the new indices is to combine the characteristics of existing indices 

(without human interaction) in order to facilitate their use in an automated operational 

forecasting system (with standard interpretation). The problem with the traditional indices 

which are based on the mean error (such as mean percentage error, mean absolute error, 

root mean square error) is the relative size of the error with the forecasting parameter. 

Thus, it is difficult to distinguish a big error from a small error and the error is not 

comparable with the error of a different forecasting parameter. For that reasons, these 

measures were not included in the new indices. 

The most commonly used forecasting verification indices when forecasting air quality 

using data-driven models (in the studied literature of Section 2.3.1) are the coefficient of 

determination and a version of the index of agreement. From Table 4-1 it is clear that one 

of most common disadvantages of the studied statistical measures (as reported in the 

literature) is their sensitivity to outliers or large errors. The coefficient of determination 

has this problem, because it is based on the linear fit. Outliers can have a very large effect 

on the line of best fit, which can lead to very different conclusions regarding the 

forecasting performance. For this reason, the indices (including the coefficient of 

determination) which are sensitive to outliers or large errors were not selected. 

The second most common disadvantages of the studied statistical measures (Table 4-1) are 

a possible division by zero that may occur and cases where negative and the positive errors 

cancel out each other. Thus, these measures can be very small (indicating good 
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performance) even when there have been large errors. For that reason, these indices were 

not selected. 

In addition, the Spearman’s rank correlation coefficient (rs) and the Theil’s Inequality 

Coefficient (U1) are not providing a forecasting accuracy index, the Watterson’s (M) upper 

and lower bounds it is not well defined and thus, it is difficult to use in an automated 

process, and finally, the Legates and McCabe’s (E’1) can be used for special cases, when 

season or another time period is available. For the aforementioned reasons, these indices 

were not selected. 

Considering these findings, four existing FPIs were selected as the basis for the generation 

of the new indices. Table 4-2 presents the selected FPIs and the corresponding scalar 

attributes depending on Table 2-3. 

Table 4-2: The selected Forecasting Performance Indices and the corresponding scalar attributes. 

 Selected FPI Scalar Attribute(s) 
1 Index of Agreement (dr) Accuracy 

2 Legates and McCabe’s (E1) Accuracy & Sharpness 

3 Theil’s Inequality Coefficient (U2) Accuracy & Sharpness 

4 Berry and Mielke’s ( ) Association 

4.2 Penalize Forecasting Performance 

The overall forecasting performance for each FPI is the average of the forecasting 

performances that were calculated for each CV subset (see Section 2.5.5), as can be seen in 

Figure 4-1. The FPIs are not a set of fixed values but a population of parameters 

characterizing the population of forecasted values. This is due to the stochastic nature of 

the data-driven models and on the inherent difference between real and forecasted values, 

on each model’s application. For this reason, it is important to characterize not only the 

performance of a model but also its effectiveness. The latter may be defined as the range of 

values that contain the FPIs, thus introducing the notion of Confidence Intervals (CIs) in 

the approach taken in this current research (see Section 2.5.8). 

In order to increase the confidence in the estimation of the forecasting performance, 

relative weights were assigned for each FPI. These weights aimed at “penalizing” models 

with relatively low effectiveness, and thus their calculation in based on the bounds of the 

CIs. 
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Figure 4-1: Forecasting Performance calculation 

Those relative weights were referred to as "penalties" because they are calculated so as to 

decrease the forecasting performance of a model, but not to affect (reward) the forecasting 

models with relatively high effectiveness. The penalties are defined in Equation (4-1) 

where the "Penalty Cancel Level" defines the decrement size of the penalty effect. A small 

value of Penalty Cancel Level (PCL) will provide a large penalty effect while a large value 

of the PCL will provide small penalty effect. 

)DistanceNormalized(1 celLevelPenaltyCanpenalty 
 

 

Where, 

distance = (CI upper bound – CI lower bound) 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = {
1, 𝑤ℎ𝑒𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑤ℎ𝑒𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1
 

 

(4-1) 

In Equation (4-1) the distance was normalized to a maximum value of +1. The range 

between 0 and +1 was used for the following two reasons: 

a) Some of the selected FPIs converge to infinite values, and 

b) This value range is more appropriate for comparing performances and drawing 

conclusions. 

Figure 4-2 presents the influence of the PCL in the penalty effect, depending on the 

distance size of the CI bounds. From this figure, it is clear that a penalty level of 0.5 or +1 

will impose a high penalty depending on the CI distance, for the current work. A penalty 

level of 1.5 seems to be a preferable value for this kind of work, but this does not prevent 
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the use of a smaller value. For that reason in the current research, three different PCLs 

were applied (0.5, 1 and 1.5) for comparison. 

 

Figure 4-2: The influence of the Penalty Cancel Level in the penalty effect, depending on the distance 

size of the Confidence Intervals bounds 

Equations (4-2) and (4-3) show how the penalty was assigned in the forecasting 

performance depending on the FPI’s nature. Equation (4-2) is used in (dr, E1 and  ) 

measures, in which a low value indicates low forecasting performance and a high value 

indicates high forecasting performance. On the other hand, Equation (4-3) is used in (U2) 

measure, in which a low value indicates high forecasting performance and a high value 

indicates low forecasting performance. 

penaltyiableariablePenalizedV *var1   
(4-2) 

penaltyiableariablePenalizedV /var2   
(4-3) 
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4.3 Building the Fuzzy Inference System 

A basic FIS can be built using the following three steps: 

1. Specify the Inputs and Outputs; 

2. Determine the Membership function for each input and output; 

3. Determine the rules. 

4.3.1 Specify the Inputs and Outputs 

The four measures selected as inputs (input space) for the FIS are the ones indicated in 

Section 4.1, i.e. the Index of Agreement (dr), the Legates and McCabe’s (E1), the Theil’s 

Inequality Coefficient (U2) and Berry and Mielke’s ( ). 

The output of the FIS will be the Forecasting Performance of the model scaled in five 

levels. This scale is selected from an existing benchmarking model. Benchmarking is 

essential for presenting the results of a study to a wide audience, in addition to providing 

guidelines to help practitioners with the use of agreement statistics (Kilem, 2012). Three 

benchmarking models are proposed in the literature, a) Landis and Koch's (1977), b) 

Fleiss's (1981) and c) Altman's (1991). Although most of these benchmarking models were 

initially developed to be used with the Kappa index (see Appendix III), they are often used 

in practice with other agreement coefficients as well (Kilem, 2012). It is worth mentioning 

that the Kappa index was not used in the computation of the forecasting performance. 

Table 4-3, Table 4-4 and Table 4-5 describe the benchmark scales of each benchmarking 

model. 

Table 4-3: Landis and Koch Benchmark Scale 

Benchmark Range Strength of Agreement 
< 0.0 Poor 

0.0 to 0.20 Slight 

0.21 to 0.40 Fair 

0.41 to 0.60 Moderate 

0.61 to 0.80 Substantial 

0.81 to 1.00 Almost Perfect 
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Table 4-4: Fleiss’s Benchmark Scale 

Benchmark Range Strength of Agreement 
< 0.40 Poor 

0.40 to 0.75 Intermediate to Good 

More than 0.75 Excellent 

 

Table 4-5: Altman’s Benchmark Scale 

Benchmark Range Strength of Agreement 
< 0.20 Poor 

0.21 to 0.40 Fair 

0.41 to 0.60 Moderate 

0.61 to 0.80 Good 

0.81 to 1.00 Very Good 

 

The only noticeable difference between the Landis-Koch’s and the Altman's benchmarking 

methods is that the first two ranges of values were collapsed by Altman into a single 

category labelled as "Poor". In the research documented in this thesis, the forecasting 

performance cannot have values less than zero. Thus, the Altman's benchmarking method 

was selected for the output of the FIS. 

4.3.2 Determine the Membership function for each input and output 

As a next step, the membership functions associated with each of the inputs and variables 

(scale of the output) were defined. Figure 4-3 shows the membership function for the 

inputs dr, E1 and  , in which the Gaussian curve membership function was used with the 

five Altman’s Kappa levels ranges from 0 (as Poor) to +1 (Very Good). In addition, Figure 

4-4 shows the membership function for the input U2 in which the same membership 

function was used but with level ranges from 0 (as Very Good) to +1 (Poor). The selected 

statistical indices can receive values outside the range [0, 1], that were mapped to the 

minimum (zero) and the maximum (one) values in an appropriate way. Figure 4-5 and 

Figure 4-6 shows the Mamdani and Sugeno FIS developed during this research. 



New Forecasting Performance Indices | 116 

 

Figure 4-3: The membership function for the inputs (dr, E1 and  ), as also of the output 

 

Figure 4-4: The membership function for the Theil’s Inequality Coefficient input (U2) 

 

Figure 4-5: The developed Fuzzy Inference System by using the Mamdani method 

 

Figure 4-6: The developed Fuzzy Inference System by using the Sugeno method 
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4.3.3 FIS Rules 

In the last step, the rules of the FIS (presented hereafter) were constructed. The basic idea 

behind these rules is to support the mapping process between the input and the output 

space. Thus, the FIS rules were defined to relate each input (forecasting performance 

index) with the output (forecasting performance). One of the reasons why this solution was 

chosen was that there are no generally accepted rules to relate the selected measures, a) 

with each other, and b) with the forecasting performance. An additional reason for 

choosing the aforementioned solution was that it was not possible to create a rule for each 

combination of input-output. In that case a very large number of rules would be created (a 

total of 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙𝑠𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 54 = 625), and also it would be difficult 

to select the appropriate output for each input. The FIS rules are the result of the four 

indices compared with the five levels of performance (a total of 20 rules), as detailed 

below (Table 4-6). 

Table 4-6: The constructed Fuzzy Inference System rules 

 Rule Weight 

1 If (  is Poor) then (Forecasting Performance is Poor) 1 

2 If (  is Fair) then (Forecasting Performance is Fair) 1 

3 If (  is Moderate) then (Forecasting Performance is Moderate) 1 

4 If (  is Good) then (Forecasting Performance is Good) 1 

5 If (  is Very Good) then (Forecasting Performance is Very Good) 1 

6 If (U2 is Poor) then (Forecasting Performance is Poor) 1 

7 If (U2 is Fair) then (Forecasting Performance is Fair) 1 

8 If (U2 is Moderate) then (Forecasting Performance is Moderate) 1 

9 If (U2 is Good) then (Forecasting Performance is Good) 1 

10 If (U2 is Very Good) then (Forecasting Performance is Very Good) 1 

11 If (E1 is Poor) then (Forecasting Performance is Poor) 1 

12 If (E1 is Fair) then (Forecasting Performance is Fair) 1 

13 If (E1 is Moderate) then (Forecasting Performance is Moderate) 1 

14 If (E1 is Good) then (Forecasting Performance is Good) 1 

15 If (E1 is Very Good) then (Forecasting Performance is Very Good) 1 

16 If (dr is Poor) then (Forecasting Performance is Poor) 1 

17 If (dr is Fair) then (Forecasting Performance is Fair) 1 

18 If (dr is Moderate) then (Forecasting Performance is Moderate) 1 

19 If (dr is Good) then (Forecasting Performance is Good) 1 

20 If (dr is Very Good) then (Forecasting Performance is Very Good) 1 

 

Every rule has a weight (a number between 0 and +1), which is applied to the number 

given by the antecedent. In these rules, the weight has a value of one (has no effect at all 

on the mapping process). 
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Figure 4-7 shows the surface view of the three-dimensional view of the relationship 

between the inputs (dr, E1, U2 and  ) and the output (Forecasting Performance) for both 

Mamdani and Sugeno FIS. 
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Figure 4-7: The surface view of the three-dimensional view of the relationship between the inputs and 

the output for both Mamdani (on the left) and Sugeno (on the right) Fuzzy Inference Systems 

4.4 New Indices Evaluation 

The new FPIs (FPIm and FPIs) were used in a population of models with varying 

forecasting performances, for evaluation purposes. In these models, the aim was to forecast 

the CAQI numerical values (dependent variable). For the sake of this part of the research, a 

population of model results was generated by initiating and running eight ANN-based 

forecasting models 1,000 times each. Subsequently, the output values of the four selected 

FPIs, as well as the output values of the two new indices, were computed, in order to study 

the consistency of their behaviours. This computation is repeated for each one of the PCL 

used (0.5, 1 and 1.5) in order to study its influence on the evaluation of the forecasting 

performance. 

The forecasting performance was calculated based on each one of the indices under study. 

Subsequently, the percentage where each one of the eight forecasting models has been 

identified as a) best forecasting model or b) best or second best forecasting model, was 

calculated. The "best" forecasting model is the one with the highest forecasting 

performance for each one of the FPIs. The "second best forecasting model" is the one with 

the next higher forecasting performance for each one of the studied indices. 
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4.4.1 Area of Interest and Datasets Used 

Air quality concentrations as well as meteorological data resulting from the monitoring 

station of Agia Sofia in Thessaloniki-Greece, for the years 2001–2003, were used. In order 

to forecast daily CAQIs, the three input datasets (Dataset 1, Dataset 2 and Dataset 3) 

detailed in Section 3.2 were used. 

4.4.2 Population of Forecasting Models 

A total of eight different forecasting models were developed which have a different 

number of inputs (depending on the Dataset) and a different number of neurons in the 

hidden layer. In all cases, only one hidden layer was used. 

The reason to use one hidden layer and a specific number of inputs was that those models 

had the best forecasting performance (Section 3.9). In the work reported in Section 3.8.5, 

the models are named as Basic Model 3 (when Dataset 1 was used), Basic Model 4 (when 

Dataset 2 was used) and Basic Model 5 (when Dataset 3 was used). 

In Section 3.8 two different empirical methods were presented in order to generate the 

different architectures (neurons per layer), having as a "starting point" the number of the 

input parameters (N-Input). In Method 1, as shown in Equation (3-1), the number of 

neurons was the same in all hidden layers. In Method 2, as shown in Equation (3-2), the 

number of neurons was different for each hidden layer, and more specifically, it increased 

as the number of hidden layers also increased. The "Neuron Multiplier" was an additional 

parameter used in order to increase the number of neurons and to thus generate different 

ANN architectures. The "Hidden Layer Number" was used in order to increase the number 

of neurons per hidden layer. 

In the current research, Method 1 was used to generate the different architectures (neurons 

per layer) because only one hidden layer was used, with "Neuron Multiplier" ranges from 

2 to 4. Table 4-7 shows the eight models used in the current research. 
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Table 4-7: The eight forecasting models used in the current research 

Model 

Number 

Dataset 

Number 

Basic Model 

Number in Section 

3.8.5 

Number 

of inputs 

Hidden 

Layer 

Neurons 
1 1 3 1 2 

2 1 3 1 3 

3 2 4 9 18 

4 2 4 9 23 

5 2 4 9 27 

6 3 5 10 20 

7 3 5 10 25 

8 3 5 10 30 

4.5 Results and Discussion 

Figure 4-8, 4-9, 4-10 and 4-11 presents the percentages of the cases in which each model 

was evaluated as being best, using different PCLs (none, 0.5, 1 and 1.5 respectively). 

These percentages are different, depending on which FPI (dr, E1, U2, etc.) was used for 

selecting the best model. Figure 4-12 presents the mean values of each index in the cases 

where each forecasting model was identified as being the best when no PCLs were applied. 

In Figure 4-8, 4-11 and 4-12, the models 6-8 have zero values because they were not 

identified as best in any of the cases. From Figure 4-8 and 4-12 it is clear that dr and E1 

FPIs lead to the same models being identified as best, even when their mean performance 

values are different. This does not come as a surprise as, according to Willmott, et al. 

(2011), these two measures are related. From Figure 4-8 it is evident that Model 3 is the 

best forecasting model based on all FPIs under study. 

From Figure 4-8, 4-9, 4-10 and 4-11 it can be observed that, if no “penalties” are used, 

Model 3 is identified as the best model by all FPIs, whereas, when penalties are employed 

(with PCL of 0.5), the U2 and dr measures lead to a different model being identified as 

best. This suggests that CI’s distance is influenced not only by the forecasting model but 

also by the FPI that was selected. Thus, it is crucial to choose a reliable forecasting 

performance measure. Note that measures E1,   and the new FPIs (FPIm and FPIs) 

identified Model 3 as the best model in all cases (with different PCLs). This demonstrates 

that those measures are more stable (in terms of consistency in the results when using 

penalties) in comparison with measures U2 and dr. 

It is clear that when penalties are employed, the high performance of some models 

deteriorates because of their CI’s in comparison to the other models. This suggests that 
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there is no confidence in the evaluation of the forecasting performance of a model, even 

when it is accompanied by high FPIs. This indicates the necessity of using CI in order to 

penalize the forecasting performance measures and increase the confidence in the 

estimation of the forecasting performance. 

Figure 4-8 and 4-9, indicates whether a FPI is stable, if the percentages of the cases, in 

which each model has been evaluated to be the best (by not using a PCL), are the same as 

in the case where a PCL is used. In this manner, Equation (4-4) is used to calculate the 

stable percentage of a FPI. 

𝑆𝑡𝑎𝑏𝑙𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
∑ (100 − |𝑚𝑖(0) − 𝑚𝑖(0.5)|)𝑁

𝑖=1

𝑁
 (4-4) 

Where: 

𝑚𝑖(𝑥) is the percentage of the cases in which each model has been 

evaluated to be the best, by using a FPI (m) for model i, with PCL 

equal to x. 

N is the total number of models (in this work N = 8) 

 

 

It is useful to identify also the second best model, to recommend an alternative solution. 

For that purpose, Figure 4-13, 4-14, 4-15 and 4-16 were created in order to present the 

percentages of the cases in which each model has been evaluated to be the best or the 

second best, by using different PCLs. The stable percentages of each FPI are: 

   = 98% 

 E1 = 93.7% 

 FPIs = 91% 

 FPIm = 90% 

 dr = 87.7% 

 U2 = 80.6% 

From Figure 4-13, 4-14, 4-15 and 4-16 and from the aforementioned stable percentages, it 

is clear that measure   is the most stable FPI (98%) in terms of varying penalty in 

comparison to the other FPIs, because its results are not affected by the increase of the 

penalty in comparison with the other indices. 



New Forecasting Performance Indices | 123 

The new FPIs (both FPIm and FPIs) were designed in such a way that they take into 

account all selected measures in a balanced way (by using the same weight value in the 

fuzzy rules). These indices are better compared to single measures, in respect of 

confidence in the estimation of the forecasting performance, because they: 

1. Use a combination of measures, which define the forecast quality by different scalar 

attributes (while it has been shown that there is no confidence in any single 

measure's estimation); 

2. Use the CI in order to penalize the forecasting performance (and thus increase the 

confidence in the obtained results); 

3. Are stable to an acceptable level 90% - 91%, which is better than dr (87.7%) and U2 

(80.6%), but worse than   (98%) and E1 (93.7%); 

4. Can potentially make the evaluation process of forecasting models more 

straightforward and robust; 

5. Can be used in a forecasting system, for automatically selecting and switching to a 

different operational forecasting model. 

By comparing the results obtained for the two new FPIs, Mamdani-type (FPIm) and 

Sugeno-type (FPIs), it is evident that both demonstrate similar behaviour, with Sugeno-

type FIS being slightly more stable (by 1%). This is because, Sugeno-type FIS is not 

affected by the increase of the penalty in comparison with the Mamdani-type FIS. 
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Figure 4-8: The percentages of the cases, in which each model has been identified to be the best, 

without penalizing the forecasting performance 

 
Figure 4-9: The percentages of the cases, in which each model has been identified to be the best, by 

using a Penalty Cancel Level of 0.5 
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Figure 4-10: The percentages of the cases, in which each model has been identified to be the best, by 

using a Penalty Cancel Level of 1 

 

 
Figure 4-11: The percentages of the cases, in which each model has been identified to be the best, by 

using a Penalty Cancel Level of 1.5 
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Figure 4-12: The mean values of each measure in the cases, for which each forecasting model was 

identified as best when no penalty cancel levels were applied 

 

 

Figure 4-13: The percentages of the cases, in which each model has been identified to be the best or the 

second best, without penalizing the forecasting performance 
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Figure 4-14: The percentages of the cases, in which each model has been identified to be the best or the 

second best, by using a Penalty Cancel Level of 0.5 

 

Figure 4-15: The percentages of the cases, in which each model has been identified to be the best or the 

second best, by using a Penalty Cancel Level of 1 
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Figure 4-16: The percentages of the cases, in which each model has been identified to be the best or the 

second best, by using a Penalty Cancel Level of 1.5 

4.6 Summary 

This chapter summarises the literature review carried out to facilitate the selection of 

suitable indices used as the basis for the generation of new indices. The four existing 

indices that were selected are the Index of Agreement (dr), the Legates and McCabe’s (E1), 

the Theil’s Inequality Coefficient (U2) and Berry and Mielke’s ( ). Furthermore, a 

method developed to increase the confidence in the estimation of the forecasting 

performance using relative weights (penalties) is detailed. 

This chapter also describes the steps performed in order to build the FIS. These steps 

included a) the specification of the inputs and outputs, b) the selection of the membership 

functions, and c) the construction of the FIS rules. From this procedure, two new FPIs 

were developed denoted as FPIm and FPIs for Mamdani-type and Sugeno-type FIS 

respectively. The new FPIs were evaluated using a population of forecasting models with 

varying forecasting performances by repeating parts of the CAQI forecasting (see Section 

3.8). Results show that the new FPIs were better when compared to single indices in 

respect of confidence in the estimation of the forecasting performance. In addition, the new 

FPIs define the forecast quality by different scalar attributes (without human interaction), 

are consistent (stable) in forecasting verification and with a standardized interpretation. 
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Thus, the new FPIs satisfy the second research question for a more comprehensive 

forecasting verification (for an automated operational forecasting system). 

The next chapter describes how the methodology to optimize the whole AQ forecasting 

chain of actions was constructed using the new FPIs. 
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Chapter 5. Daphne Optimization Methodology 

Chapter 5 

Daphne Optimization Methodology 

5.1 Introduction 

"Daphne" was selected from the Greek mythology as the name for the optimization 

methodology developed. Pythia (also known as the oracle of Delphi) was the name of any 

priestess of the temple of Apollo at Delphi, located on the slopes of mount Parnassus. 

Pythia chew laurel leaves (also named as daphne leaves) to deliver oracles inspired by 

Apollo. Thus, daphne leaves were one of the means to produce oracles; in the research 

reported in this thesis, the proposed optimization methodology is a mean to produce 

forecasts. 

The Daphne Optimization Methodology (DOM) was built to improve the pre-processing 

computational steps using air quality dataset, in terms of the performance of various 

forecasting algorithms applied to the output of the DOM. The order of the computational 

steps prior to the application of forecasting models, which define the optimization 

problem, are described in the Daphne Optimization Procedure (DOP). 

DOM was created to address the third research question: Given a specific dataset with time 

stamped feature records, a set of data pre-processing algorithms and a set of forecasting 
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algorithms, which combination of these algorithms leads to the best performance of the 

forecasting algorithms? 

The DOM was evaluated in comparison to the traditional use of the optimization 

algorithms, GAs, and ACO. The next four optimization algorithms have been used and 

evaluated for their optimization performance: 

1) Traditional GA, 

2) Traditional ACO, 

3) Daphne-GA, and 

4) Daphne-ACO. 

Each optimization algorithm was used to find solutions that lead to the best performances 

of the forecasting methods when forecasting the concentrations of: 

1) Daily mean respirable particles (PM10) in Thessaloniki, and 

2) Hourly nitrogen dioxide (NO2) in Athens. 

These optimization algorithms were executed with different predefined execution 

parameters in order to evaluate their performance. The performance of the optimization 

algorithms was calculated in terms of best forecasting performance in minimum execution 

time. In addition, for comparison, an exhaustive search of all solutions has been 

performed. 

Although various approaches to data pre-processing (DP) can be found in the relevant 

literature, it is generally accepted to include the following computational steps when 

applied prior to the application of forecasting models (Pyle, 1999) (Han, et al., 2011): 

1. Identification and removal of outliers 

2. Dealing with the missing value problem 

3. Denoising-Smoothing of data 

4. Detrending 

5. Feature selection 

6. Forecasting 

 

It should be noted that the forecasting step mentioned here is actually the testing step that 

evaluates the effectiveness of all previous pre-processing computational steps. 
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On this basis, the DOP describes the order in which to use the six aforementioned 

computational steps and define the optimization problem. Table 5-1 presents the 

computational steps, while Figure 5-1 demonstrates the structure of the DOP as a graph. In 

graph theory, a graph is a representation of a set of objects where some pairs of objects are 

connected by links. The interconnected objects are represented by mathematical 

abstractions called vertices (also called nodes or points), and the links that connect some 

pairs of vertices are called edges (also called arcs) (Trudeau, 1993). Typically, a graph is 

depicted in diagrammatic form as a set of dots (or circles) for the vertices, joined by lines 

or curves for the edges. The edges may be directed or undirected. A directed graph (or 

digraph) is a graph, or set of nodes connected by edges, where the edges have a direction 

associated with them, in contrast with the undirected graph in which there are no directions 

associated with the edges. 

Each computational step in DOP consists of a number of computational methods 

(presented as vertices in Figure 5-1) that can be applied to the data. At each computational 

step, only one computational method is applied to the input data, to avoid redundancy. 

Steps 1, 3, 4 and 5 also include the option not to use any computational method (skip the 

step). In the current research, the computational methods of the computational steps, prior 

to the forecasting step, are referred to as pre-processing methods. 

There are no algorithms that can select the computational method per step that optimizes 

the overall DP procedure, apart from the exhaustive search of all combinations of available 

computational methods. The current optimization problem has the form of a longest path 

problem (Björklund, et al., 2004), with the following characteristics: 

(a) The paths between DP methods are directed and simple (weighted edges), and  

(b) Only one method can be used per computational step. 

 

The longest path problem is an NP-complete problem, which finds a simple path of 

maximum length in a given graph. A path is called simple if it does not have any repeated 

vertices. The length of a path is measured in terms of the number of edges it has or, in 

weighted graphs, by the sum of the weights of its edges. 

A decision problem L is NP-complete (Papadimitriou, 1994) if it is in the set of NP 

problems and also in the set of NP-hard problems. The abbreviation NP refers to 
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"nondeterministic polynomial time". Although any given solution to an NP-complete 

problem can be verified quickly (in polynomial time), there is no known efficient, fast 

solution. This also applies to the current optimization problem where no technique solves 

it with significantly better performance than the exhausting search. 

The aim of the current optimization problem is to find the path with the best forecasting 

performance. Nevertheless, in order to accomplish this, the distance (weights of the edges 

of the graph representing the optimization path) between the methods of the different 

computational steps, must be computed, an issue addressed in the following section. 

Table 5-1: The Daphne Optimization Procedure computational steps 

Computational 

Step 
Name Description 

1 Remove Outliers 
The outliers will be identified and removed from the data (will 

be treated as missing values) 

2 Replace Missing Data All missing values will be replaced by an estimated value 

3 Smooth Data A smoothing function will be applied to remove noise 

4 Detrend Data Trends will be identified and removed from data 

5 
Feature Selection / 

Extraction 

Input data will be reduced, either by selecting a subset of 

relevant features or by reducing their dimensionality 

6 Forecasting 
A forecasting method will be used as the criterion to evaluate 

previous computational steps and thus lead to the final dataset 

 

 

Figure 5-1: A graphical example of the Daphne Optimization Procedure 
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5.1.1 The Distance between Different Methods 

To calculate the distance (D) or edge’s weights of the DOP graph (between different pre-

processing methods), each pre-processing method should be applied (one method for each 

computational step) to the input data in the first computational step, and to the output data 

of the previous pre-processing method in the other computational steps, always 

accompanied by the calculation of the forecasting performance. 

The basic idea of the weights is thus to represent the effect of each method on the 

forecasting performance. Figure 5-2 presents an example of a distance calculation in the 

DOP graph. In this example, in order to calculate the distance D (1.2), method 1.2 (means: 

computational step 1, computational method of aforementioned step= 2) must be applied 

to the input data. 

𝐷(𝑚𝑎.𝑐) = 𝑃(𝑚𝑎.𝑐) − min (𝑃(𝑚𝑎)) 

Where, 

𝑃(𝑚𝑎.𝑐), is the forecasting performance, by using data which are 

pre-processed by method c of step a. 

𝑃(𝑚𝑎), is the vector of forecasting performances for all 

computational methods of step a. 

(5-1) 

𝐷(𝑚𝑎.𝑐, 𝑚𝑏.𝑑) = 𝑃(𝑚𝑎.𝑐, 𝑚𝑏.𝑑) − 𝑃(𝑚𝑎.𝑐) 

Where, 

𝑃(𝑚𝑎.𝑐, 𝑚𝑏.𝑑), is the forecasting performance, by using data which 

are pre-processed by method c of step a and then by method d of 

step b 

(5-2) 

 

Figure 5-2: Distance calculation in Daphne Optimization Procedure graph 
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The example presented in Figure 5-3 demonstrates the calculation of the distance of the 

various computational methods in the DOP graph. In this example, methods 2.1 and 2.2 

lead to a better forecasting performance provided that method 1.1 was used in the previous 

computational step. In addition, method 2.1 has a negative effect on the forecasting 

performance in the case that method 1.2 was employed in the previous step, while method 

2.2 has no effect on the processing forecasting performance when following on from 

method 1.2. 

D(1.1) = P(1.1) – min(P(1)) = 0.90 – 0.90 = 0 

D(1.2) = P(1.2) – min(P(1)) = 0.91 – 0.90 = 0.1 

D(1.1, 2.1) = P(1.1, 2.1) – P(1.1) = 0.93 – 0.90 = 0.03 

D(1.1, 2.2) = P(1.1, 2.2) – P(1.1) = 0.92 – 0.90 = 0.02 

D(1.2, 2.1) = P(1.2, 2.1) – P(1.2) = 0.85 – 0.91 = -0.06 

D(1.2, 2.2) = P(1.2, 2.2) – P(1.2) = 0.91 – 0.91 = 0 

 

For the case where the methods are skipped from the evaluation procedure, their distances 

have been set to zero (i.e. no effect on the forecasting performance). 

 
 

 

 
Figure 5-3: Example of a Daphne Optimization Procedure graph, a) with forecasting performance (on 

the top) and b) the calculated distance (on the bottom) 



Daphne Optimization Methodology | 137 

5.2 DOM Phases 

The DOM describes the phases in order to solve the current optimization problem as 

follows. 

Phase 1. The performance of each one of the forecasting methods is calculated without 

using any data pre-processing method. (In cases where the forecasting methods 

have special requirements, certain computational steps are followed: for 

example, ANNs cannot interpret missing values. Thus, a pre-processing method 

to deal with missing values must be used.) 

Phase 2. Calculate the performance of each one of the forecasting methods by using only 

one data pre-processing method for all computational steps. This is an optional 

phase, as it can be part of the optimization algorithm that can be used for the 

final selection of the best possible combination of optimization steps. In the 

current work, this phase was included in the two optimization algorithms 

employed, i.e. GA and ACO. 

Phase 3. Get the next feasible combination of computational methods to evaluate, by 

taking into consideration the distance-effect of each method. The formulation of 

the next feasible combination depends on the optimization algorithm employed. 

Sections 5.4 and 5.5 describe the modifications necessary for GA and ACO to 

be applied in the frame of the DOM. 

Phase 4. Apply the combination of computational methods to the input data and calculate 

the distances. For the intermediate computational steps of the DOP (Step 1 to 

Step 5, of Figure 5-1), the Linear Regression method can be used to calculate the 

forecasting performance for the distance calculations. Linear Regression can be 

used for this purpose in order to have a quick estimation of the forecasting 

performance. The output of each pre-processing method of the combination can 

be stored temporally (as cache) in order to be reused in different combinations 

of pre-processing methods. This will reduce the processing time but will 

increase the necessary disk space and memory. If this mechanism is used, a 

search to reuse existing cached output data should be carried out and any 

unsaved pre-processed output data should be saved temporary (cached). 
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Phase 5. If the terminal conditions are reached the process stops, otherwise Phases 3 to 5 

are repeated. The following three terminal condition were used in all 

optimization algorithms: 

1. The maximum number of 20 iterations (in GA named as generations) has 

been reached;  

2. A minimum number of five iterations were guaranteed; 

3. The fitness function does not change over successive iterations. For that 

purpose, the average changes in fitness between successive iterations of 

formula (2-11) must be calculated. When the three-iterations moving 

average of |𝑓𝛥| is equal or lower to a pre-set change tolerance threshold, the 

optimization procedure stops. In the research reported here, the change 

tolerance threshold has been set to 0.015. 

5.3 Arsenal of Methods 

The DOP requires an arsenal of methods for each computational step. In this research, a 

total of 40 methods were available for the DOP. Table 5-2 presents the methods used for 

each computational step of the DOP. The reasons that lead to the selection of these 

methods are: 

 They are Included in Matlab’s libraries or were included in widely used toolboxes 

for MATLAB. This was an assurance that the implementations of these methods 

were tested; 

 Well-known. In most cases, researchers did not report the methods that they used 

for data pre-processing (Leys, et al., 2013).  

Additional methods could be used for each step but it would increase the search space of 

the optimization problem significantly. This would make it impossible to use the 

exhaustive search as part of the evaluation procedure (described in detail in Section 5.6). 
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Table 5-2: The methods used for each computational step of the Daphne Optimization Procedure 

Computational 

Step 
Methods References 

Step 1: 

Remove Outliers 

(Total: 11 

methods) 

Standard Deviation Criterion (i.e. removing all values 

that are more than 2 STD away from the mean) 
Lipowsky, et al. (2009) 

Robust Function Bisquare (Tukey's biweight) Huber & Ronchetti (2009) 

Robust Function Andrews Huber & Ronchetti (2009) 

Robust Function Cauchy Huber & Ronchetti (2009) 

Robust Function Fair Huber & Ronchetti (2009) 

Robust Function Huber Huber & Ronchetti (2009) 

Robust Function Logistic Huber & Ronchetti (2009) 

Robust Function Ols (Ordinary least squares) Huber & Ronchetti (2009) 

Robust Function Talwar Hinich & Talwar (1975) 

Robust Function Welsch 
Huber & Ronchetti (2009), 

Holland & Welsch (1977) 

Median Absolute Deviation (MAD) Leys, et al. (2013) 

Step 2: 

Handling of 

Missing Data 

(Total: 10 

methods) 

Interpolation algorithm Linear  

Interpolation algorithm Linear with extrapolation  

Interpolation algorithm Piecewise Boor (2001) 

Interpolation algorithm Piecewise with extrapolation  

Interpolation algorithm Cubic Boor (2001) 

Interpolation algorithm Cubic with extrapolation  

Interpolation algorithm Spline Boor (2001) 

Interpolation algorithm Spline with extrapolation  

Interpolation algorithm Nearest Rukundo & Cao (2012) 

Interpolation algorithm Nearest with extrapolation  

Step 3: 

Smoothing Data 

(Total: 6 

methods) 

Moving Average  

Local regression 1st degree polynomial model (lowess) 
Cleveland (1979), Cleveland 

& Devlin (1988) 

Local regression 2
nd

-degree polynomial model (loess) Cleveland (1981) 

Savitzky-Golay filter Savitzky & Golay (1964) 

A robust version of 'lowess' Cleveland (1979) 

A robust version of 'loess' Cleveland (1979) 

Step 4: 

Detrending Data 

(Total: 4 

methods): 

Constant detrending Kyriakidis, et al. (2009) 

Straight (linear) detrending Kyriakidis, et al. (2009) 

Fit and remove a 2nd degree of polynomial curve Weisstein (2015) 

Hodrick-Prescott filter Hodrick & Prescott (1997) 

Step 5: 

Feature Selection 

/ Extraction 

(Total: 3 

methods): 

Factor Analysis 
Harman (1976), The 

MathWorks (2015) 

A simple feature selection based on the Covariance. 

Which selects the features with the highest covariance 

(between the target variable) 

 

Principal Components Analysis (PCA), with variable 

explained criteria 
Jolliffe (2002) 

Step 6: 

Forecasting 

(Total: 6 

methods): 

Linear Regression  

Artificial Neural Networks, Feed Forward Back 

Propagation (FFBP) 
Graupe (2007) 

Linear Neural Networks Baldi & Hornik (1995) 

Generalized Regression Neural Networks Wasserman (1993) 

Generalized linear model regression Dobson (2002) 

Multivariate adaptive regression splines (MARS) Gints (2013) 
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5.4 DOM for Genetic Algorithms 

In order to use GAs for the materialization of the DOM, an initial population of solutions 

must be generated, which, in this case, are possible combinations of methods for the 

computational steps. In addition, the crossover mechanism must be defined in order to 

combine GA solutions and produce the (better) solutions of the next generation. For this 

reason, two parts of the “traditional” GAs have been modified. 

In the first modification, a function that generates initial populations with a) feasible and b) 

unique solutions was created. In this optimization problem, a solution is a combination of 

methods (one for each DOP step). The initial solutions did not include any pre-processing 

technique; except for a method to replace the missing values (the method used was 

selected at random from the ten available methods presented in Section 5.3). This function 

was used to apply the Phase 1 of the DOM. 

In the second modification, the Daphne Uniform Crossover (DUC) method was created in 

order to use the calculated distance-effect of each method and perform targeted genome 

crossovers. This method is a modified version of the Uniform crossover which uses the 

distance between the different methods to perform crossover. The advantage of DUC 

method is that it swaps the genomes based on a probability depending on the distance-

effect of each method, and not at random by using a constant probability (mixing rate). 

In the traditional uniform crossover (see Section 2.6.2.8), the loci positions in the genome 

are selected at random (by using a constant probability referred to as the mixing rate) and 

the specific genes are exchanged. The DUC selects the loci positions in the genome from a 

variable probability depending on the distance-effect of each method. In this way, the 

DUC controls the genetic diversity. 

The DUC can be used in many different ways, in order to compute the exchange rate for 

each gene. In the research reported here, three different ways to compute the exchange rate 

for each gene from the distance-effect have been presented. 

5.4.1 Type-1 crossover: Exchange the “bad” genes 

In this type of exchange, the loci positions with “bad” genes (i.e. the genes with lower 

distance) have a higher probability of being exchanged. The idea is to keep the “good” 
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genes, which will probably be consecutive, and thus, the behaviour that evolves as patterns 

in the population will be preserved. This is not possible in the traditional uniform 

crossover. In addition, by exchanging the loci positions of the “bad” genes of both parents, 

it is expected that the fitness of the offspring will increase. The exchange probability of 

each loci position varies around a constant mixing rate, as can be seen in formula (5-3). 

The exchange rate is calculated using formula (5-3) for each parent, and the maximum 

value is kept for each loci position. 

 

𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒𝑖 = 𝑀𝑖𝑥𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 ∗ (1 − (𝐷(𝑙𝑜𝑐𝑖𝑖) 𝑆𝑢𝑚(|𝐷|)⁄ ))  

Where, 

𝑖, is the 𝑖th loci position 

𝐷, in the distance for each loci position in the genome 

(5-3) 

5.4.2 Type-2 crossover: Pass the “good” genes to the first child 

Zajonc formulated (Zajonc, 1975) and applied (Zajonc & Bargh, 1980) the confluence 

theory to explain the relationships between birth order and intellectual development. He 

argues that later-born children tend to be less intelligent than earlier-born children. In his 

work, he shows that the IQ declines with increasing number of children in the family. In an 

explanation of his results, he states that there are two significant changes assumed to occur 

in the process of intellectual development of the older child. First, the intellectual 

environment of the family is diluted by the addition of immature siblings. Second, the 

older child acquires a teaching function.  

In Type-2 crossover, the loci positions are exchanged, when the second child’s distance is 

greater than the first’s (inspired by Zajonc’s research). The exchange rate in these cases 

has value 1, and in all others have value 0. In this way, the first child will get all the 

“good” genes and expected to increase its fitness. It has to be mentioned that in this type a 

constant mixing rate is not needed. 

5.4.3 Type-3 crossover: A combination of Type 1 and Type 2 

This type combines the previous two Types in order to exchange the parent’s genes. First, 

Type-2 is used in order for the first child to get all the “good” genes; in the cases where the 



Daphne Optimization Methodology | 142 

second child’s distance is greater than the first’s. In the cases, in which the first child has 

already all the good genes (and no exchange will be performed by Type-2), the Type-1 

was used. By using Type-1 in these cases, it will prevent premature convergence in the 

GA. 

5.5 DOM for Ant Colony Optimization 

The ACO is very close to the DOM because the ants travel through a path towards their 

destination (food source). The application of the ACO meta-heuristic to the TSP (Section 

2.6.5.3) is similar to the current optimization problem. The main differences are a) the 

current optimization problem finds the longest path (not the minimum), and b) the path in 

the current optimization problem is not a Hamiltonian circuit. 

In order to compute the ant-routing table, formula (5-4) was used, where 𝐷(𝑚𝑎.𝑐, 𝑚𝑏.𝑑) is 

the distance between methods c (of step a) and d (of step b), as shows in formula (5-5). 

The distance of each edge (methods c and d) of the path has been calculated with formulas 

(5-1) and (5-2), with a value range of [-1, 1]. In formula (5-5), the value 1 was added, in 

order to result in a positive heuristic value in a range of [0, 2]. Thus, the longer the 

distance between two methods, the higher the local heuristic value. 

𝐴𝑎.𝑐,𝑏.𝑑 =
[𝜏𝑎.𝑐,𝑏.𝑑]

𝑎𝑙𝑝ℎ𝑎
[𝜂𝑎.𝑐,𝑏.𝑑]

𝑏𝑒𝑡𝑎

∑ [𝜏𝑎.𝑐,𝑏.𝑑]
𝑎𝑙𝑝ℎ𝑎

[𝜂𝑎.𝑐,𝑏.𝑑]
𝑏𝑒𝑡𝑎

𝑙∈𝑁𝑖

 

(5-4) 

Where, 

𝜏𝑎.𝑐,𝑏.𝑑 is the strength of the pheromone,  

𝜂𝑎.𝑐,𝑏.𝑑 is visibility, i.e. a simple heuristic used in deciding which edge is 

the most attractive to be visited next  

𝑎𝑙𝑝ℎ𝑎 is a constant affecting the strength of the pheromone 

𝑏𝑒𝑡𝑎: a constant affecting visibility 

 

 

𝜂𝑎.𝑐,𝑏.𝑑 = 𝐷(𝑚𝑎.𝑐, 𝑚𝑏.𝑑) + 1 (5-5) 

Where, 

𝑁𝑖 is the set of all the neighbor nodes of node i 
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Each ant 𝑘 deposits a quantity of pheromone 𝛥𝜏𝑘(𝑡) on each connection that it has used. 

The 𝛥𝜏𝑘(𝑡) is the forecasting performance of the model, by ant 𝑘 in iteration 𝑡, as shows 

in formula (5-6). 

𝜏𝑎.𝑐,𝑏.𝑑(𝑡) ← 𝜏𝑎.𝑐,𝑏.𝑑(𝑡) + 𝛥𝜏𝑘(𝑡),  𝑘 = 1, ⋯ , 𝑚 

Where, 

𝑚 is the number of ants (is maintained constant in all iterations) 

(5-6) 

In order to avoid convergence to a locally optimal solution, pheromone evaporation is 

performed. In pheromone evaporation, the arc’s pheromone strength is updated as follows: 

𝜏𝑛𝑒𝑤 = (1 − 𝜌)𝜏𝑜𝑙𝑑, where 𝜌 ∈ (0, 1] controls the speed of pheromone decay (Corne, et 

al., 2012). 

The probability 𝑝𝑎.𝑐,𝑏.𝑑
𝑘 (𝑡) where in the t-th algorithm iteration, an ant 𝑘 used method 𝑐 (of 

step 𝑎) chooses to use method 𝑑 ∈ 𝑁𝑖
𝑘 (of step 𝑏), is given by formula (5-7). Without 

using the DOM, which calculates the distance between methods, this probability uses only 

the pheromone deposition (τ) of formula (5-4). In these cases, the β (beta) parameter has 

been set to zero. 

𝑝𝑎.𝑐,𝑏.𝑑
𝑘 (𝑡) =

𝐴𝑎.𝑐,𝑏.𝑑(𝑡)

∑ 𝐴𝑎.𝑐,𝑏.𝑑(𝑡)𝑙∈𝑁𝑖
𝑘

 
(5-7) 

Where, 

𝑁𝑖
𝑘 ⊆ 𝑁𝑖 is the feasible neighborhood of node 𝑖 for ant 𝑘. 

 

5.6 DOM Evaluation 

The DOM was applied together with two optimization algorithms (GA and ACO). As a 

result the next four optimization algorithms have been used and evaluated for their 

optimization performance: 

1. Traditional GA, 

2. Traditional ACO, 

3. Daphne GA, and 

4. Daphne ACO. 

The evaluation was performed in terms of best forecasting performance in minimum 

execution time. The term “traditional” is referred to the use of the optimization algorithms 
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in their original form. In the earliest genetic algorithms (traditional), the related research 

on Holland’s original GA (1975) usually maintains a single population of potential 

solutions to a problem and uses a single crossover operator and a single mutation operator 

to produce successive generations (Baluja, 1993) (Hong, et al., 2002) (Hutt & Warwick, 

2003). For the case of the traditional ACO the Dorigo & Caro (1999) meta-heuristic was 

used, which models the behaviour of an ant colony to find rapidly the shortest path 

between food sources and nest (Chen, et al., 2013). 

For comparison, several (existing) methods for each step of the GA were used. Table 5-3 

shows a) the methods that have been used for each step of the GA, and b) the design 

parameters of the GAs. This table includes the important decisions that factor into the 

design of the GAs (Ashlock, 2005). 

In addition, in order to have accurate evaluation results an exhaustive search of all 

combinations of data pre-processing methods and forecasting methods (solutions) has been 

performed, for comparison. For the selected number of methods per computational step 

(Table 5-2), the exhaustive search equates to the execution of 100.800 different solutions 

(all possible combinations). The number of methods per computational step was selected 

in such a manner that would result in a limited search space where the exhaustive search 

could be used. In addition, two dataset sizes are used a) a relatively small dataset (3-years 

of daily values) was selected for the aforementioned purpose and b) two large datasets (14-

years of daily values and 13-years of hourly values) are used to evaluate the optimization 

algorithms. Additional information regarding these datasets is presented in Section 5.6.2. 

A number of trial runs of the optimizations algorithms were performed in order to 

configure their terminal conditions parameters (number of iterations, change tolerance 

threshold and minimum iterations) for the current problem (dataset, forecasting 

parameters, etc.). The change tolerance threshold value 0.015 was selected in order to stop 

the optimization procedure when a) the change in fitness was very low, and b) further 

improvement was not possible. The minimum number of 5 iterations was used to prevent 

early stopping of the optimization algorithm in a case of small changes in fitness on the 

first iterations. The number of maximum iterations (20) was selected to allow the 

optimization algorithm search for better solutions and to stop the optimization algorithm in 

a relatively short time. 
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Table 5-4 and Table 5-5 show the investigated optimization algorithms models, for GA 

and ACO respectively. These optimization algorithms models can be used with different 

predefined execution parameters, which will affect their results (in performance and 

execution time). In this work, the optimization algorithms models have been executed with 

the predefined execution parameters of Table 5-6. Each execution, for the combination of 

optimization algorithms and different parameters, was repeated 10-times and the 

performance criteria was calculated from the average of those repeated executions. This 

was performed in order to produce reliable results, because of the stochastic and heuristic 

nature of the optimization algorithms. This procedure was performed by using the 

relatively small dataset. 

Subsequently, the optimization algorithms models with the execution parameters that lead 

to the best forecasting performance in minimum execution time (from the aforementioned 

procedure) are re-executed by using two large datasets. The first large dataset (consists of 

14-years of daily values) is used to forecast PM10 concentrations in Thessaloniki and the 

other large dataset (consists of 13-years of hourly values) is used to forecast NO2 

concentrations in Athens. 

Table 5-3: The methods that have been used for each step of the Genetic Algorithms and the design 

parameters 

 Method or Parameter 

Selection (of parents) 

Double Tournament Selection, without replacement (the 

same parent cannot be selected twice) 

Roulette Wheel Selection 

Rank Selection 

Crossover Parents (produce 

offspring) 

Uniform Crossover 

Double Point Crossover 

Daphne Uniform Crossover 

Mutation Uniform Mutation 

Elite offspring One elite offspring 

Data structure (representation) Real values 

Fitness Function Sugeno Forecasting Performance Index (FPIs) 
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Table 5-4: The investigated Genetic Algorithms models 

# GA Model Name Crossover Selection 
1 DDO (Traditional GA) Double-Point Double Tournament 

2 DRA (Traditional GA) Double-Point Rank 

3 DRO (Traditional GA) Double-Point Roulette Wheel 

4 UDO (Traditional GA) Uniform Double Tournament 

5 URA (Traditional GA) Uniform Rank 

6 URO (Traditional GA) Uniform Roulette Wheel 

7 D-UDO (Daphne-GA) DUC Double Tournament 

8 D-URA (Daphne-GA) DUC Rank 

9 D-URO (Daphne-GA) DUC Roulette Wheel 

 

Table 5-5: The investigated Ant Colony Optimization algorithm models 

# ACO algorithm Model Description 
1 Traditional ACO Using only the pheromone trails to guide the ants. 

2 Daphne ACO 
Using a local heuristic value depending on the calculated 

distance, and the pheromone trails to guide the ants. 

 

Table 5-6: The execution parameters of the optimization algorithms models 

Optimization 

Algorithm 
Parameter Value(s) 

GA 

Crossover Rate 0.2, 0.3, 0.5 

Mutation Rate 0.05, 0.1, 0.2 

Tournament Selection Size (TSS) 3, 5, 8 

Exchange Type Type-1, Type-2,Type-3 

ACO 

Alpha (α) 0.5, 0.75, 1 

Beta (β) 1, 2.5, 5, 7.5, 10 

rho (ρ) 0.25, 0.5, 0.75 

5.6.1 The Optimization Performance Score 

The criteria to compare the performance of each optimization algorithm’s execution were 

a) the best forecasting performance, and b) the execution time (speed). The goal of the 

optimization algorithms was to find a forecasting performance (that is close to the best) in 

a relatively short time period. In order to compare the performance of an optimization 

algorithm's execution (𝑒) with the performance of the other optimization algorithms 

executions, the Performance Score (𝑃𝑆𝑐𝑜𝑟𝑒) of formula 5-8 was used. The performance 

criteria were firstly normalized by using feature scaling to standardize their range. The 

simplest method of feature scaling is to rescale the range of the variables to the range [0, 1] 

(Formulas 5-9 and 5-11). The lower the 𝑃𝑆𝑐𝑜𝑟𝑒 value, the higher the overall performance 

of the optimization algorithm. 
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𝑃𝑆𝑐𝑜𝑟𝑒(𝑒) = (𝑃𝑒𝑟𝑓𝐸𝑟𝑟𝑜𝑟𝑁𝑜𝑟𝑚(𝑒) 2⁄ ) + (𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑁𝑜𝑟𝑚(𝑒) 2⁄ ) 
 

(5-8) 

Where, 

𝑒, is an optimization algorithm's execution 
 

𝑃𝑒𝑟𝑓𝐸𝑟𝑟𝑜𝑟𝑁𝑜𝑟𝑚(𝑒) =
𝑃𝑒𝑟𝑓𝐸𝑟𝑟𝑜𝑟(𝑒) − 𝑀𝑖𝑛(𝑃𝑒𝑟𝑓𝐸𝑟𝑟𝑜𝑟)

𝑀𝑎𝑥(𝑃𝑒𝑟𝑓𝐸𝑟𝑟𝑜𝑟) − 𝑀𝑖𝑛(𝑃𝑒𝑟𝑓𝐸𝑟𝑟𝑜𝑟)
 

 

(5-9) 

𝑃𝑒𝑟𝑓𝐸𝑟𝑟𝑜𝑟(𝑒) = 1 − 𝐵𝑒𝑠𝑡𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑒) 
 

(5-10) 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑁𝑜𝑟𝑚(𝑒)

=
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑒) − 𝑀𝑖𝑛(𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒)

𝑀𝑎𝑥(𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒) − 𝑀𝑖𝑛(𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒)
 

 

(5-11) 

The forecasting performance (the fitness function in GA) was calculated by using the 

Sugeno Forecasting Performance Index (FPIs) as proposed in Chapter 4. DOM is not 

restricted in the use of the FPIs as a forecasting performance method, but it can be used 

with other methods such as Index of Agreement (dr) (Willmott, et al., 1985) (Willmott, et 

al., 2011) or Coefficient of Determination (r
2
). 

5.6.2 Data Presentation 

The data used in this work consist of air quality observations made at the Agia Sofia 

monitoring station in Thessaloniki, Greece and at the Patisia monitoring station in Athens, 

Greece. Thessaloniki is the second largest city in Greece and is characterized by a 

pronounced problem of air pollution, especially in terms of Particulate Matter (PM) and 

more specifically of respirable particles (PM10, i.e. particles of aerodynamic diameter 

smaller than 10μm). For this reason, the selected forecasting parameter of this work was 

the daily mean concentration of PM10. Athens is the capital of Greece, which is 

characterised by a high concentration of population and consequently with high usage of 

cars. For this reason, the selected forecasting parameter of this work was the hourly 

concentration of NO2. 

Two dataset sizes are used to evaluate the optimization algorithms for the aforementioned 

locations: 
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 A relatively small dataset (that consists of 3-years of daily values) and a large 

datasets (that consists of 14-years of daily values) are used to forecast PM10 

concentrations in Thessaloniki. 

 A large dataset (that consists of 13-years of hourly values) is used to forecast NO2 

concentrations in Athens. 

The relatively small dataset (used to forecast daily PM10 concentrations) consists of 1010 

daily records for the years 2010 to 2012 (3 years) and includes a total of 12 parameters: 8 

air pollutant parameters and 4 meteorological parameters. The available air pollutant 

parameters were daily values of: 

1) Mean concentration of Particulate Matter (PM10), 

2) Maximum eight-hour running average concentration of Ozone, 

3) Mean concentration of Ozone (O3), 

4) Mean concentration of Nitrogen dioxide (NO2), 

5) Mean concentration of Nitrogen oxides (NOX), 

6) Mean concentration of Carbon monoxide (CO), 

7) Maximum eight-hour running average concentration of CO, and 

8) Mean concentration of Nitrogen monoxide (NO). 

The available meteorological parameters were daily mean values of: 

1) Relative Humidity (%), 

2) Air Temperature (C), 

3) Wind Speed (Km/h), and 

4) Wind Direction (Degrees). 

The large dataset that is used to forecast daily PM10 concentrations consists of 2739 daily 

records for the years 2001 to 2014 (14 years) and includes a total of 16 parameters: 4 air 

pollutant parameters and 12 meteorological parameters. The available air pollutant 

parameters were daily values of: 

1) Mean concentration of Particulate Matter (PM10), 

2) Mean concentration of Ozone (O3), 

3) Mean concentration of Nitrogen dioxide (NO2), and 

4) Mean concentration of Carbon monoxide (CO) 
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The available meteorological parameters were daily values of: 

1) Maximum, minimum and mean Relative Humidity (%), 

2) Maximum, minimum and mean Air Temperature (C), 

3) Maximum, minimum and mean Dew Point (C), 

4) Maximum and mean Wind Speed (Km/h), and 

5) Mean Wind Direction (Degrees). 

The large dataset that is used to forecast hourly NO2 concentrations consists of 88188 

hourly records for the years 2003 to 2015 (13 years) and includes a total of 8 parameters: 4 

air pollutant parameters and 4 meteorological parameters. The available air pollutant 

parameters were hourly concentration values of: 

1) Nitrogen dioxide (NO2), 

2) Sulphur Dioxide (SO2), 

3) Ozone (O3) 

4) Carbon monoxide (CO) 

The available meteorological parameters were hourly values of: 

1) Relative Humidity (%), 

2) Air Temperature (C), 

3) Wind Speed (Km/h), and 

4) Dew Point (C). 

The air pollutants data until the year 2012 were obtained from the European air quality 

database (AirBase-V8, 2014). The air pollutants data from the year 2013 onwards were 

obtained from the European “Air Quality e-Reporting” database (AQ e-Reporting, 2017). 

The meteorological data were obtained from the weather underground website (Weather 

Underground, 2014). 

5.6.3 Data Separation 

One of the most important parts of evaluating computational intelligence is to train the 

models on a training set that is separate and distinct from the test set, for which their 

modelling accuracy will be evaluated. If this part is not performed, it can result in models 

that do not generalize to unseen data. 
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The data in this work were separated into two datasets. The first 70% of the data 

(approximately, 2 years of daily records) were used in the training set, and the remaining 

30% of the data (approximately, 1 year of daily records) were used in the test set. As an 

exception, in the ANN models, the aforementioned 30% of the data was divided into two 

parts; the first 15% of the data were used in the test set, and the remaining 15% of the data 

were used for the validation set. The validation set is employed by the ANNs to monitor 

the error during the training process, in order to stop the training when the network begins 

to overfit the data (Caruana, et al., 2000). 

In addition the 10-Fold CV was used in order to measure the predictive performance of a 

data-driven model. Figure 5-4 shows a) how the data was separated and b) how the CV 

was performed in the data. The test set (and the validation set in the case of ANNs) was 

not included in the pre-processing steps in order to evaluate their contribution to the 

forecasting performance and simulate an operational forecasting system. As an exception, 

the replacement of missing values was performed on the test set (and validation set), for 

the cases where some forecasting methods cannot interpret them. 

 
Figure 5-4: Data separation in the evaluation procedure 

5.7 Results and Discussion 

The exhaustive search equates to the execution of 100.800 different models (all possible 

combinations). The time needed to execute all possible models was approximately 13 days 

when using a personal computer, with an Intel(R) Core(TM)2 Quad CPU Q6600 @ 

2.40GHz CPU (with Average CPU Mark: 2991 (PassMark Software, 2015)), and 4GByte 

RAM. The use of the exhaustive search helped, a) to evaluate the results of the 

optimization accurately, and b) enables to study the search space of the problem. 
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Figure 5-5 shows the percentage of the models for each forecasting performance group. 

From Figure 5-5 it is clear that the highest performance (FPIs) of all models is 0.5. In 

general, this is not a very good forecasting performance, but it has to be noted that this 

forecasting performance is penalized and its improvement was not a goal of this work. In 

addition, 0.3% of these models provide the best possible results (for the studied models), 

i.e. a performance between 0.45 and 0.5. The optimization algorithms tried to find the 

models corresponding to this 0.3%. 

 

 
Figure 5-5: The percentage of the models for each forecasting performance group 

 

Table 5-7 shows the ten best GA Models (from a total of 72 models), and Table 5-8 shows 

the ten best ACO Models (from a total of 48 models), both in terms of 𝑃𝑆𝑐𝑜𝑟𝑒. From these 

tables, it is clear that the optimization methods find the best solutions (i.e. solutions with a 

forecasting performance (FPIs) greater than 0.45) which correspond to 0.3% of the total 

search space. In addition, Table 5-9 shows the average time and performance of the ten 

best models of each optimization type. 

 By comparing the average results (Table 5-9) of the Daphne models with the 

Traditional models, it is clear that the Daphne models converge to solutions with 

greater forecasting performance. One reason to this is because the Traditional 

models converge faster to solutions that are not good in comparison to the Daphne 

models. 
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 By comparing the average results (Table 5-9) of the Daphne GA and the Daphne 

ACO, it is clear that the Daphne ACO models converged to solutions with greater 

forecasting performance but required in average 5 additional minutes. 

In addition, it is clear that in the best ten models of each optimization type, the Daphne 

models have the lowest 𝑃𝑆𝑐𝑜𝑟𝑒 values, 50% of the ten best models in case of GA (Table 

5-7) and 70% of the ten best models in case of ACO (Table 5-8). 

In the case of GAs, the 90% of the ten best models used the Double Tournament Selection 

(DTS) method, with a TSS value 8 (Table 5-7). This shows the superiority of the DTS in 

comparison to the other selection types in the current work. In addition, 70% of those 

models use a mutation rate value 0.1. From Table 5-7, it can be seen that the different 

crossover rates did not affect the Daphne GA models, which is not surprising because the 

DUC use a variable probability depending on the distance-effect of each method. In the 

case of the Traditional GA models, the crossover rates of 0.3 and 0.5 provide the best 

results. Moreover, from Table 5-7 it is evident that the best exchange types of the DUC are 

the Type-3 and Type-2. This shows that it is a better practice to pass the "good" genes to 

the first child, than to exchange the “bad” genes. 

In the case of ACO, a) 60% of those models use an Alpha (α) value 0.5, and b) 60% use 

rho (ρ) value 0.5 (Table 5-8). This shows that a balanced configuration between the 

pheromone’s strength and the pheromone’s decay provide the best results. From Table 5-8 

it is clear that the Traditional ACO models have a Beta (β) parameter of 0. This is normal 

because these models do not use the distance-effect as a heuristic value. In addition, from 

Table 5-8 it can be seen that the Daphne ACO models with the highest β values, provide 

the best result in terms of 𝑃𝑆𝑐𝑜𝑟𝑒. This indicates the importance and the contribution of 

the heuristic value (i.e. the use of DOM) in the optimization process in order to converge 

to better solutions. 

 

Table 5-10 presents the execution methods and parameters that lead to the best forecasting 

performance in minimum execution time (from Table 5-7 and Table 5-9). By using these 

methods and parameters the optimization algorithms were re-executed by using the two 

large datasets (described in Section 5.6.2). Table 5-11 presents the average time and 

performances for each optimization algorithms model and location by using large datasets. 
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By comparing only the best Daphne GA model and the best Traditional GA model in 

Figure 5-6 (e.g. the 1
st
 and 4

th
 GA Model of Table 5-7), it is clear that their performance is 

equal, but the Traditional GA Model has higher 𝑃𝑆𝑐𝑜𝑟𝑒 by 2%. This is because the latter 

required approximately 1 more minute to converge to a solution with the same forecasting 

performance. In addition, by comparing the GA models (Daphne and Traditional) of Table 

5-11 it is clear that the Daphne GA models converge to solutions with higher performance 

(2% FPIs and 1% dr for Thessaloniki and 6% FPIs and 4% dr for Athens) in comparison to 

the Traditional GA, but required additional time. This shows that the Daphne GA models 

can better explore the search space and converge to solutions with higher performance in 

comparison to the Traditional GA models but may require additional time. 

By comparing only the best Daphne ACO model and the best Traditional ACO model in 

Figure 5-6 (e.g. the 1
st
 and 5

th
 ACO Model of Table 5-8), it is clear that the latter converge 

to a solution with lower performance. The Daphne model required approximately 5 more 

minutes to converge to a solution with higher performance (2% FPIs higher), and still has 

6% lower 𝑃𝑆𝑐𝑜𝑟𝑒 value. In addition, by comparing the ACO models of Table 5-11 it is 

clear that the Daphne ACO models converge to solutions with higher performance (1% 

FPIs for Thessaloniki and 2% FPIs for Athens) in less execution time (1 minute less for 

Thessaloniki and 35 minutes less for Athens) in comparison to the Traditional ACO. This 

shows the limitation of the Traditional ACO to explore the search space, and thus, 

converge to a local optimum solution. Thus, the Daphne ACO models can better explore 

the search space and converge to better solutions in comparison to the Traditional ACO 

models but may require additional time. 

From Table 5-11 it is clear that a forecasting performance of 0.48 FPIs and 0.65 dr can be 

achieved by simply importing all the available data (air quality and meteorological 

parameters) and using the DOM, without concerning about errors in the data and without 

the scientific knowledge for selecting the appropriate input parameters beforehand. 
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By comparing the results of the exhaustive search with the outcome of the optimization 

algorithms (Table 5-9), it is evident the superiority of the optimization algorithms over the 

exhaustive search. The optimization algorithms needed approximately 0.1% of the total 

time that was necessary for the exhaustive search, in order to find a near optimal solution 

(in terms of performance). The termination conditions contribute in order to stop the 

optimization procedure when there was no prospect of discovering a solution to the 

problem. By using formula (2-11), the optimization executions stopped on average in 17 

iterations, which saved 3 minutes (approximately 20% of the average execution time) in 

each execution. Figure 5-7 shows an example where the execution of the optimization 

method converged to a solution with 0.49 FPIs performance in 18 iterations. 

 

Table 5-7: The ten best Genetic Algorithms Models in terms of the Performance Score 

 
GA 

Model 
Crossover Mutation TSS 

Exchange 

Type 

Time 

(mm:ss) 

Performance 

(FPIs) 
dr 

Best 

𝑷𝑺𝒄𝒐𝒓𝒆 
1 D-UDO 0.2 0.1 8 Type-3 14:29 0,47 0.63 0,36 

2 D-UDO 0.5 0.05 8 Type-2 08:27 0,45 0.61 0,37 

3 D-UDO 0.2 0.1 8 Type-3 15:06 0,47 0.62 0,38 

4 UDO 0.3 0.1 8 - 15:27 0,47 0.62 0,38 

5 DDO 0.5 0.05 8 - 09:09 0,45 0.61 0,39 

6 DDO 0.3 0.1 8 - 12:51 0,46 0.61 0,40 

7 D-UDO 0.5 0.1 8 Type-3 16:05 0,47 0.63 0,40 

8 DDO 0.5 0.1 8 - 16:08 0,47 0.62 0,40 

9 URO 0.5 0.05 8 - 13:21 0,46 0.61 0,41 

10 D-UDO 0.5 0.1 8 Type-2 16:41 0,47 0.63 0,42 

 

Table 5-8: The ten best Ant Colony Optimization Models in terms of the Performance Score 

 ACO Model 
Alpha 

(α) 

Beta 

(β) 

rho 

(ρ) 

Time 

(mm:ss) 

Performance 

(FPIs) 
dr 

Best 

𝑷𝑺𝒄𝒐𝒓𝒆 
1 Daphne ACO 0,5 7,5 0,5 20:23 0,49 0.64 0,41 

2 Daphne ACO 0,5 10 0,5 21:20 0,49 0.64 0,43 

3 Daphne ACO 0,75 5 0,5 21:26 0,49 0.63 0,43 

4 Daphne ACO 1 2,5 0,5 22:46 0,49 0.64 0,47 

5 Traditional ACO 0,5 0 0,25 15:12 0,47 0.63 0,47 

6 Daphne ACO 0,5 5 0,5 19:21 0,48 0.64 0,48 

7 Daphne ACO 0,5 1 0,25 19:42 0,48 0.64 0,49 

8 Traditional ACO 0,75 0 0,5 08:29 0,45 0.61 0,50 

9 Daphne ACO 0,5 7,5 0,25 20:04 0,48 0.63 0,50 

10 Traditional ACO 1 0 0,75 04:50 0,44 0.60 0,50 
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Table 5-9: The average time and performance of the ten best models of each optimization type. 

Models 
Average 

Performance (FPIs) 

Average Index of 

Agreement (dr) 

Average Time 

(mm:ss) 
Daphne GA 0.47 0.62 14:10 

Traditional GA 0.46 0.61 13:23 

Daphne ACO 0.49 0.64 20:43 

Traditional ACO 0.45 0.61 09:30 

 

 

Figure 5-6: The best models of each optimization type 

 

Table 5-10: The execution methods and parameters that lead to the best forecasting performance in 

minimum execution time 

Optimization 

Algorithm 
Method or Parameter Value 

Traditional GA 

Crossover Parents Uniform Crossover 

Selection Type Double Tournament 

Crossover Rate 0.3 

Mutation Rate 0.1 

Tournament Selection Size (TSS) 8 

Daphne GA 

Crossover Parents Daphne Uniform Crossover 

Selection Type Double Tournament 

Crossover Rate 0.2 

Mutation Rate 0.1 

Tournament Selection Size (TSS) 8 

Exchange Type Type-3 

Traditional 

ACO 

Alpha (α) 0.5 

Beta (β) 0 

rho (ρ) 0.5 

Daphne ACO 

Alpha (α) 0.5 

Beta (β) 7.5 

rho (ρ) 0.5 
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Table 5-11: The average time and performance for each optimization algorithms models and locations 

by using large datasets. 

Models 

Thessaloniki (PM10) Athens (NO2) 

Performance 

(FPIs) 

Index of 

Agreement 

(dr) 

Time 

(hh:mm:ss) 

Performance 

(FPIs) 

Index of 

Agreement 

(dr) 

Time 

(hh:mm:ss) 

Traditional GA 0.46 0.64 00:06:41 0.43 0.58 01:55:57 

Daphne GA 0.48 0.65 00:07:21 0.49 0.62 02:23:40 

Traditional ACO 0.47 0.65 00:08:01 0.41 0.57 02:57:05 

Daphne ACO 0.48 0.65 00:06:54 0.43 0.57 02:22:15 

 

 

Figure 5-7: Example of the execution of an optimization method 

 

5.8 Summary 

This chapter presents the Daphne Optimization Methodology (DOM) built to optimize the 

whole AQ forecasting chain that includes the data pre-processing and forecasting. In 

addition, this chapter demonstrated how the DOP was divided into six computational steps 
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that define the optimization problem of this work. The DOM describe in detail the phases 

to solve the aforementioned optimization problem. Moreover, it is described how the GAs 

and the ACO was modified to materialize the DOM. 

To evaluate the DOM, the traditional optimization algorithms, and the exhaustive search 

was used for comparison. Two dataset sizes are used to evaluate the optimization 

algorithms, a relatively small dataset (three-years of daily values) and two large datasets 

(14-years of daily values and 13-years of hourly values). The criterion for comparing the 

performance of each optimization algorithm’s execution was the Performance Score. 

Results show that the DOM converge to better solutions faster than the traditional 

optimization algorithms, which satisfy the third research question for a methodology to 

optimize the whole AQ forecasting chain. 

The next chapter presents the results for each research question of this work, the 

contribution to knowledge, and the scope of future work. 
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Chapter 6. Discussion and Conclusions 

Chapter 6 

Discussion and Conclusions 

6.1 Introduction 

The motivation for the research articulated in this thesis was the development of an air 

quality forecasting system "fuelled" solely with air quality and meteorology monitoring 

data, in order to provide a means of early warning to the public and the authorities 

regarding high air pollution levels. The mathematical approach of data-driven models was 

selected in order to perform the air quality forecasting. As explained, Data-driven models 

require historical data (input data and targeted forecasting parameters) which has to be 

appropriately pre-processed. There are several data-driven algorithms that can be used as 

the basis for air quality forecasts, while algorithm characteristics and parameterisation may 

vary and greatly affect the modelling outcome. The performed research was focused on the 

optimization of the environmental forecasting workflow (from data pre-processing to 

algorithm selection and parameterisation) using data-driven models, where the forecasting 

accuracy is the optimization criterion used. 

The work articulated in this thesis was organised by research questions (see Sections 1.2) 

and the way in which each was addressed is discussed below. 
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While the research presented in this thesis has achieved the desired goals, it has also 

highlighted avenues of activity for future development and study. In particular, with regard 

to the new forecasting performance indices, further work to improve their stability would 

be useful. More generally, additional work can also be performed for the DOM, as 

follows:- 

 Increase the arsenal of methods for each computational step. This will improve the 

ability and efficiency of the DOM. For example, additional methods could be 

added to remove outliers or to produce forecasts (e.g. deep learning techniques); 

 Use ensemble forecasting by combining the results (e.g. average) of different 

forecasting models as part of the optimization procedure; 

 Parallel processing could be used in order to increase the performance of the DOM; 

 The DOM has the potential to evolve to an Automated Online Forecasting System 

(AOFS), in which, researchers could: 

a) Upload and analyse their data; 

b) Find the optimal combination of forecasting and data pre-processing 

methods; 

c) Use the best solutions to provide forecasts to the public. 

This AOFS could offer forecasters the opportunity to disseminate their results and thus 

inform the public about the forecasts. The AOFS could be given the ability to integrate 

new data via web-services in order to ensure that its models were adjusted along with 

changing circumstances.  

6.2 Research Question 1: Forecasting of Environmental Parameters 

Data produced by monitoring stations provide a good basis for the analysis and forecasting 

of air quality parameters. In this research, AQ monitoring stations from the two largest 

cities of Greece (Athens and Thessaloniki) were studied. Cross-validation (CV) and 

sensitivity analysis were used in order to perform a number of investigation experiments to 

test the performance of different ANN and DTs model architectures, with the aim of 

evaluating their applicability and reliability concerning the parameters of interest. 

For the AQ monitoring stations of Athens, two important parameters of quality of life were 

selected, Benzene and Ozone pollutants. The forecasting of the former has to deal with the 
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way that the event of interest (exceedance of a limit value) is defined while the forecasting 

of the latter deals with an 8-Hour Running Average (HRA) parameter as the basis for the 

definition of the event of interest. Overall, the methodology applied for the data analysis 

and for the forecasting of parameters that directly affect the quality of life (Benzene and 

Ozone concentration levels) was proven to be successful, leading to good forecasting 

results (reaching an index of agreement of 0.94). 

For the AQ monitoring stations of Thessaloniki, the CAQI was selected as the parameter 

of interest that needs to be forecasted (in an hourly and daily horizon), as it is suggested by 

the European Environment Agency (EEA). For the different datasets and for the different 

scenarios, 15 ANN architectures and 4 different DT model ensembles were used (indicated 

as different forecasting models). Overall, a total of 1118 different models were developed 

and trained for daily and hourly data (559 for each one respectively). The list below 

summarizes the results and conclusions of the CAQI forecasting work: 

 When the forecasted daily CAQI value was calculated on the basis of the 

forecasted hourly CAQI values, the performance was better in comparison to the 

one achieved via the direct forecast of the daily CAQI values. 

 When weighting factors were used in order to calculate the daily CAQI values, the 

forecasting performance improved. 

 In order to predict daily CAQI levels, simple ANN architectures (with one hidden 

layer) should be used. 

 In order to predict hourly CAQI levels, more complex architectures (with more 

than one hidden layer) should be employed. 

 The performance of various ANN and DT models depends both on their internal 

structure and on the methods used for their training. 

 The DT models outperformed the ANN models with respect to their forecasting 

ability. 

 When hourly CAQI levels were forecasted the best performance was achieved by a 

DT model (Percentage Agreement = 65% and Cohen's Kappa Index = 53%, equal 

to the performance of a LR model). 
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6.3 Research Question 2: Forecasting Performance Indices  

This work introduces two new forecasting performance indices, which combine the 

characteristics of several statistical performance measures. The relative difference between 

the construction of the new indices (FPIm and FPIs) is the type of fuzzy inference system 

employed for the construction of each index (Mamdani and Sugeno, respectively). In 

addition, in order to increase the confidence in the estimation of the forecasting 

performance of each forecasting model, relative weights (referred to as penalties), based 

on the bounds of the confidence intervals were assigned to the forecasting performance of 

each model. 

In order to evaluate the new forecasting performance indices, numerical simulations have 

been performed using artificial neural network models for air quality forecasting. Results 

show that when penalties are employed the high performance of some models deteriorates, 

suggesting that there is no confidence in the evaluation of the forecasting performance of a 

model, even when it is accompanied by high FPIs. Thus, it is important to make use of a 

confidence interval in order to penalize the forecasting performance measures and thus 

increase the confidence in the estimation of the forecasting performance. 

The proposed new forecasting performance indices: 

a) Are stable to an acceptable level (90% - 91%), 

b) Provide a combination of several measures (which define the forecast quality by 

different scalar attributes), that increases the confidence in the estimation of the 

forecasting performance and standardize the interpretation, 

c) Are comparable with the results of other studies (because it is a percentage value), 

and 

d) Use a scale of five levels (as an additional representation) so that the results can be 

easier interpreted. 

Thus, by using the proposed new forecasting performance indices (both FPIm and FPIs) in 

combination with the use of confidence intervals for penalizing the forecasting 

performance, the confidence for the estimation of the forecasting performance of a model 

is higher than when using any single measure. Consequently, it can be considered that the 

new forecasting performance indices are appropriate for automated operational forecasting 

systems. 
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6.4 Research Question 3: Daphne Optimization Methodology  

In order to perform forecasts using air quality data, a combination (chain) of computational 

methods is employed (including the forecasting method). The selection of these methods is 

a very difficult but important task because it influences the forecasting performance. In 

this research, a general optimization methodology (referred to as Daphne) was developed 

in order to select the appropriate combination of methods to forecast future air quality 

levels. 

The Daphne Optimization Methodology (DOM) is based on the idea of measuring the 

effect of each method (pre-processing and forecasting) on the forecasting performance and 

using it as a measure of distance in a directed graph. This graph represents all possible 

combinations of methods, which are grouped in six steps. Each step deals with a particular 

problem (e.g. remove outliers) and consists of a number of methods that are potential 

solutions. In addition, two paradigmatic implementations of DOM together with Genetic 

Algorithms (GAs) and Ant Colony Optimization (ACO) were described. The DOM could 

be applied in the selected optimization algorithms (GA and ACO) in a different manner. 

For example, in the case of GAs, it could be used to create a driven mutation by the 

distance-effect of each method.  

The DOM was applied and evaluated in the two aforementioned optimization algorithms: 

GAs and ACO. The evaluation procedure included comparisons with the traditional use of 

the optimization algorithms and comparison with an exhaustive search. The criteria for 

comparing the performance of each optimization algorithm’s execution were a) the  

forecasting performance, and b) the execution time (speed), which are formulated in to a 

single value referred to as Performance Score (𝑃𝑆𝑐𝑜𝑟𝑒). 

Results show that the DOM converges to better solutions faster than the traditional 

optimization algorithms. In addition, the DOM has a 2% and 6% better 𝑃𝑆𝑐𝑜𝑟𝑒, compared 

to the traditional use of the optimization algorithms, when using GA and ACO 

respectively. In addition, when large datasets were used, DOM models converge to 

solutions with (up to 6% FPIs) higher performance and in some cases in (up to 35 minutes) 

less execution time, in comparison to the traditional models. Moreover, results indicate the 

importance and the contribution of the DOM in the optimization process in order to 

converge to better solutions, and also the limitation of the traditional models to explore the 
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search space, and thus, converge to a local optimum solution. Finally, results show that a 

forecasting performance of 0.48 FPIs and 0.65 dr can be achieved by simply importing all 

the available data (air quality and meteorological parameters) and using the DOM, without 

concern about errors in the data and without the scientific knowledge for selecting the 

appropriate input parameters beforehand. The aforementioned forecasting performances 

could be improved by using additional and more complex forecasting methods in DOM. 

Thus, the DOM finds a solution (combination of pre-processing and forecasting methods) 

which is near optimal, in comparatively shorter time than with the traditional use of the 

optimization algorithms.  

6.5 Contribution Summary 

The work plan for the research documented in this thesis was organized in to steps in order 

to address each of the research questions documented at its outset (see Section 1.2). These 

steps are listed below together with a statement regarding the contribution they have made 

to the research.   

 

1. Investigate the forecasting performance of various algorithms having as targets various 

environmental parameters of interest with several experiments. 

  The investigated experiments provide a good understanding of the problem of 

maximizing the forecasting performance. In addition, the performed studies 

resulted in new forecasting models for the selected pollution parameters (8-hour 

running average Ozone concentrations, hourly Benzene concentrations, and hourly 

and daily Common Air Quality Index) for the cities of Thessaloniki and Athens of 

Greece.  

 A semi-automatic procedure is developed to perform forecasting via data-driven 

models, which can be generalized to other geographical locations. 
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2. Develop new indices for the evaluation of the forecasting performance of data-driven 

models. 

 Following an analysis of the relative merits of the most frequently used indices, a 

methodology to increase the confidence in the estimation of the forecasting 

performance was developed. 

 Due to the stochastic nature of the data-driven models, it is important to 

characterize not only the performance of a model but also its effectiveness. The 

effectiveness can be shown from the bounds of the confidence intervals, which 

were used to calculate relative weights referred to as "penalties", aimed at 

"penalizing" the forecasting performance of data-driven models with relatively low 

effectiveness. In addition, the importance of penalizing the forecasting performance 

measures was shown. 

 Two new forecasting performance indices (FPIm and FPIs) were introduced, which 

combine the characteristics of several statistical performance measures. When the 

new forecasting performance indices are combined with the use of penalties, the 

confidence for the estimation of the forecasting performance of a model is higher 

than when using any single measure. 

 

3. Develop an optimization methodology for the whole air quality forecasting chain in 

order to improve the pre-processing computational steps over air quality dataset, in 

terms of the performance of various forecasting algorithms. 

 The Daphne Optimization Methodology (DOM) was developed, which covers the 

steps from input data selection (e.g. air quality and meteorological parameters) to 

the forecasting of the target parameter in an optimal way. 

 The DOM finds a “solution” (combination of pre-processing and forecasting 

methods) which is “close to the optimum”. This is achieved in comparatively 

shorter time than with the traditional use of the optimization algorithms. 

 The DOM can be generalized to other locations because it is created as an 

optimization methodology. 

 An alternative methodology that solves this problem has not been described 

previously in the academic literature. 
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6.6 Final Note 

Using the Daphne Optimization Methodology and the new forecasting performance 

indices, reliable air quality forecasting can be performed with a forecasting performance 

which is close to the optimum, with automated selection of the appropriate pre-processing 

and forecasting methods, without concern about errors in the data or the usual prerequisite 

scientific knowledge for selecting the appropriate input parameters. 

It is hoped that the combination of techniques presented in this thesis will help facilitate an 

improvement in actual air quality prediction and thus lead to better interventions both by 

the general public and authorities that will ameliorate poor air quality and its impact. 
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Appendix I. Abstracts of Publications 

Appendix I 

Abstracts of Publications 

This appendix documents the titles, authors involved, status and abstracts of the 

publications that were produced during this thesis. Table I-1 summarizes the 

aforementioned publications. 

Table I-1: Publications produced during the thesis 

Year Status Title 

2009 Published (Conference) 
Using Preprocessing Techniques in Air Quality forecasting with 

Artificial Neural Networks 

2010 Published (Conference) 
Predicting QoL Parameters for the Atmospheric Environment in 

Athens, Greece 

2012a Published (Conference) 
Investigation and Forecasting of the Common Air Quality Index in 

Thessaloniki, Greece 

2012b Published (Journal) 
Using artificial intelligence methods to understand and forecast 

atmospheric quality parameters 

2013 Published (Journal) 
Evaluation and analysis of artificial neural networks and decision trees 

in forecasting of common air quality index in Thessaloniki, Greece 

2015 Published (Conference) New Statistical Indices for Evaluating Model Forecasting Performance 

2016 Published (Journal) 
A Generic Preprocessing Optimization Methodology when Predicting 

Time-Series Data 
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Using Preprocessing Techniques in 

Air Quality forecasting with Artificial Neural Networks 

 

Ioannis Kyriakidis, Kostas D. Karatzas and George Papadourakis 

 

Abstract: Data quality is one of the fundamental issues influencing the performance of 

any data investigation algorithm. Poor data quality always leads to poor quality results. In 

the investigation chain, the data selection phase is followed by the preprocessing phase, 

which results in increased data quality, while in parallel it demands the highest time 

resources of the overall data investigation chain. The preprocessing phase includes the 

handling of missing data, handling of the outliers, data de-trending and data smoothing. 

The methods that are used in the preprocessing phase are usually not sufficiently reported 

in the literature of environmental data analysis and knowledge extraction. The current 

paper investigates the performance of several methods in all phases of the preprocessing 

chain of environmental data, by emphasizing in the use of ICT (Information & 

Communication Technology) methods for the materialization of such preprocessing tasks, 

and by making use of the air quality as the environmental domain paradigm. 

 

 

Bibliographic Reference: 

Kyriakidis, I., Karatzas, K. & Papadourakis, G., 2009. Using Preprocessing Techniques in 

Air Quality forecasting with Artificial Neural Networks. Thessaloniki, Proceedings of the 

Fourth International ICSC Symposium on Information Technologies in Environmental 

Engineering, pp. 357-372. 
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Predicting QoL Parameters for the 

Atmospheric Environment in Athens, Greece 

 

Ioannis Kyriakidis, Kostas Karatzas, and George Papadourakis 

 

Abstract: Air quality has a direct impact on the quality of life and on the general 

environment. Understanding and managing urban air quality is a suitable problem domain 

for the application of artificial intelligence (AI) methods towards knowledge discovery for 

the purposes of modelling and forecasting. In the present paper Artificial Neural Networks 

are supplemented by a set of mathematical tools including statistical analysis and Fast 

Fourier Transformations for the investigation and forecasting of hourly benzene 

concentrations and highest daily 8 hour mean of (8-HRA) ozone concentrations for two 

locations in Athens, Greece. The methodology is tested for its forecasting ability. Results 

verify the approach that has been applied, and the ability to analyze and model the specific 

knowledge domain and to forecast key parameters that provide direct input to the 

environmental decision making process. 

 

 

Bibliographic Reference: 

Kyriakidis, I., Karatzas, K. & Papadourakis, G., 2010. Predicting QoL parameters for the 

Atmospheric Environment in Athens, Greece. Thessaloniki, Springer Academic 

Publishers, Lecture Notes in Computer Science Series, pp. 457-463. 
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Investigation and Forecasting of the  

Common Air Quality Index in Thessaloniki, Greece 

 

Ioannis Kyriakidis, Kostas Karatzas, George Papadourakis, Andrew Ware, 

and Jaakko Kukkonen 

 

Abstract: Air pollution can affect health and well-being of people and ecosystems. Due to 

the health risk posed for sensitive population groups, it is important to provide with hourly 

and daily forecasts of air pollution. One way to assess air pollution is to make use of the 

Common Air Quality Index (CAQI) of the European Environment Agency (EEA). In this 

paper we employ a number of Computational Intelligence algorithms to study the 

forecasting of the hourly and daily CAQI. These algorithms include artificial neural 

networks, decision trees and regression models combined with different datasets. The 

results provide with a satisfactory CAQI forecasting performance that may be the basis of 

an operational forecasting system. 

 

 

Bibliographic Reference: 

Kyriakidis, I. et al., 2012a. Investigation and Forecasting of the Common Air Quality 

Index in Thessaloniki, Greece. Halkidiki, Greece, Artificial Intelligence Applications and 

Innovations, pp. 390-400. 
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Using Artificial Intelligence Methods to Understand and 

Forecast Atmospheric Quality Parameters 

 

Ioannis Kyriakidis, Kostas Karatzas, George Papadourakis, J Andrew Ware 

 

Abstract: Quality of life is strongly affected by the quality of the environment. 

Understanding and managing urban air quality is one of the main concerns of city 

authorities. For this purpose, it is important to extract knowledge and to be able to model 

the problem under investigation (air pollution), in order to be able to forecasts parameters 

of interest (pollutant concentrations). In this paper Artificial Neural Networks and Linear 

Regression models are used together with a set of mathematical tools that include Principal 

Component Analysis and Fast Fourier Transformations for the investigation and 

forecasting of hourly Benzene concentrations and highest daily eight hour mean of ozone 

concentrations for two locations in Athens, Greece. The methodology is evaluated for its 

forecasting ability. Results verify the suitability of the computational approach employed 

and the improvement of results in comparison to previous approaches. 

 

 

Bibliographic Reference: 

Kyriakidis, I., Karatzas, K., Papadourakis, G. & Ware, A., 2012b. Using Artificial 

Intelligence Methods to Understand and Forecast Atmospheric Quality Parameters. 

Engineering Intelligent Systems, 20(1/2), pp. 137-149. 
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Evaluation and Analysis of Artificial Neural Networks and 

Decision Trees in Forecasting of Common Air Quality 

Index in Thessaloniki, Greece 

Ioannis Kyriakidis, Kostas Karatzas, Jaakko Kukkonen, George Papadourakis 

and Andrew Ware 

Abstract: Air quality management in urban areas requires reliable and accurate 

computational methods for the forecasting of the concentration levels of pollutants. The 

Common Air Quality Index (CAQI) has been used by the European Environment Agency 

for assessing air quality in a harmonized way. We have evaluated the values of this index 

in Thessaloniki, Greece, in 2001–2003, using a wide range of Computational Intelligence 

(CI) models. We have applied Artificial Neural Networks (ANN) and Decision Trees (DT) 

for the forecasting of the CAQI, and we compared the results with those obtained via 

statistical regression models. An extensive number of computational experiments were 

performed, in which we evaluated the influences of (i) different model architectures, (ii) 

various input datasets, and (iii) the training methods of these models. Model sensitivity 

was analyzed, in terms of various modelling options. In total, the performance of 1118 

different modelling options was investigated. The best of the evaluated models performed 

well in forecasting both the hourly and daily values of the CAQI. The use of model 

ensembles (based on the same algorithms and structures), obtained by a k-fold cross-

validation, resulted in more accurate forecasts than using individual models. However, the 

performance of various ANN and DT models was found to be dependent both on their 

internal structure and on the methods used for their training. The presented results are 

expected to be useful in developing and implementing operational air quality management 

and forecasting systems. 

Bibliographic Reference: 

Kyriakidis, I. et al., 2013. Evaluation and analysis of artificial neural networks and 

decision trees in forecasting of common air quality index in Thessaloniki, Greece. 

Engineering Intelligent Systems, 21(2/3), pp. 111-124. 
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New Statistical Indices for Evaluating 

Model Forecasting Performance 

 

Ioannis Kyriakidis, Jaakko Kukkonen, Kostas Karatzas, George Papadourakis 

and Andrew Ware 

 

Abstract: A large number of statistical measures have been presented in the literature for 

the statistical analysis of the agreement of the measured and predicted time-series. The 

goal of this study was to develop new indices that combine the information contained in 

several existing measures, making it possible to assess more effectively the quality of the 

forecasting. The capabilities and limitations of 24 measures that have previously been 

presented in the literature were studied. The upper and lower bounds of the Confidence 

Interval were used, in order to include forecasting penalties (relative weights). Results 

show that by using the proposed new forecasting performance indices we can be more 

confident in the estimation of the forecasting performance than using a single measure. 

The proposed new indices would be ideal for a forecasting automated system, because no 

human interaction is needed to combine the information of other measures. 

 

 

Bibliographic Reference: 

Kyriakidis, I. et al., 2015. New Statistical Indices for Evaluating Model Forecasting 

Performance. Skiathos Island, Greece, 9
th

 International Conference in New Horizons in 

Industry, Business and Education, pp. 104-118. 
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A Generic Preprocessing Optimization Methodology when 

Predicting Time-Series Data 

 

Ioannis Kyriakidis, Kostas Karatzas, Andrew Ware and George Papadourakis 

 

Abstract: A general Methodology referred to as Daphne is introduced which is used to 

find optimum combinations of methods to preprocess and forecast for time-series datasets. 

The Daphne Optimization Methodology (DOM) is based on the idea of quantifying the 

effect of each method on the forecasting performance, and using this information as a 

distance in a directed graph. Two optimization algorithms, Genetic Algorithms and Ant 

Colony Optimization were used for the materialization of the DOM. Results shown that 

the DOM finds a solution which is near the best possible solution in relatively less time 

than using the traditional optimization algorithms. 

 

 

Bibliographic Reference: 

Kyriakidis, I. et al., 2016. A Generic Preprocessing Optimization Methodology when 

Predicting Time-Series Data. International Journal of Computational Intelligence Systems, 

9(4), pp. 638-651. 
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Appendix II. Forecasting Verification Indices 

Appendix II 

Forecasting Verification Indices 

This appendix documents the literature review for the twenty-four selected statistical 

measures, which have commonly been used to evaluate the performance of models that 

produce forecasts of continuous (numerical) variables. Table II-1 summarizes the notations 

that were used in the equations of this chapter. 

Table II-1: Summarize description of notations 

Notation Description 

iA  The i
th

 actual (observed) value 

iF  The i
th

 forecasted value 

A  The mean of the actual values 

F  The mean of the forecasted values 

As  The standard deviation of the actual values 

Fs  The standard deviation of the forecasted values 

Bias 

The Bias indicates the average direction of error. Bias is referred to by several names, for 

example as Mean Error, Forecast Error, or as Systematic Error. There are two ways to 

express the error of each actual (A) and forecasted (F) values pair. One way is A minus F 
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(Equation II-1) or alternatively F minus A (Equation II-2). Green & Tashman (2008) 

survey shows that researchers (of the International Institute of Forecasters) argue in this 

manner. The researchers who preferred F - A all reasoned that: 

“It was more intuitive that a positive error represented an over-forecast and a negative 

error an under-forecast. F - A is also more consistent with concepts of bias.” 

 

And the researchers who preferred the A - F formulation argued that: 

“Statistical convention, ease of statistical calculation, investment in software that adhered 

to statistical convention and plain pragmatism provided justification. Two advocates of A - 

F also suggested that this version is intuitive when assessing performance against a 

budget or plan, because a positive value indicates that a budget has been exceeded or a 

plan has been surpassed.” 

 

In both cases Bias it should not be used by itself because it provides no measure of the 

error variance (Armstrong, 1985). 
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Normalized Bias 

The Normalized Bias (NB) (Equation (II-3)) is a measure of the over or under-prediction 

of a variable and is often expressed as a percentage. Positive values indicate over-

prediction and negative values indicate under-prediction. 
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Mean Fractional Bias 

Fractional bias (FB) (Ying, et al., 2007) is a non-linear measure which is used to represent 

the difference between the forecasted average and the actual average. FB can be used as a 

substitute of Normalized Bias because Normalized Bias becomes very large when a 

minimum threshold is not used. However, its non-linear nature means that the statistics of 

FB, such as the variance, can only be determined by using sampling methods (e.g. 

bootstrap). Mean Fractional bias (MFB) varies between +2 (extreme over-prediction) and -

2 (extreme under-prediction), where a value of 0 indicates an excellent model in terms of 

the average values. The MFB is a useful indicator because it has the advantage of equally 

weighting positive and negative bias estimates. It has also the advantage of not considering 

observations as the true value. MFB in shown in Equation (II-4), in addition, Table II-2 

shows examples of MFB values and their interpretation. 
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Table II-2: Examples of Mean Fractional Bias values and their interpretation 

MFB Value Interpretation 
0.60 Indicates 30% over-prediction (the maximum value is 2) 

-0.60 Indicates 30% under-prediction (the minimum value is -2) 

Mean Percentage Error 

The mean percentage error (MPE) is the computed average of percentage errors by which 

estimated forecasts differ from actual values of the quantity being forecast. This average 

allows positive and negative percentage errors to cancel one another. Therefore, it is 

sometimes used as a measure of bias in the application of a forecasting method. Because 

the Bias can be defined in two different ways, the MPE can be defined by Equation (II-5) 

for researchers who preferred F – A, or can be defined by Equation (II-6) for researchers 

who preferred A - F. 
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Mean Absolute Error 

The Mean Absolute Error (MAE) as shown in Equation (II-7) indicates the average of the 

magnitude of the errors. It is the mean of the absolute differences between the forecasts 

and observations. MAE can be referred as a Linear Measure because each error has the 

same weight. In contrary to Bias, MAE does not indicate the direction of the error, but 

only the magnitude. It has to be noticed that MAE is sensitive to outlier errors. 
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Mean Absolute Percentage Error 

The Mean Absolute Percent Error (MAPE) is a very popular measure, that corrects the 

“cancelling out” effects of MPE measure and also because it is a percentage error, it can be 

used to compare the error of time series that differ in level. MAPE has two major 

disadvantages in practical application, as it can be easily seen in Equation (II-8). The first 

one is when there are zero observed values (in the denominator) there will be a division by 

zero and second, when the predicted and observed values are the same (having a perfect 

fit), MAPE is zero. Furthermore, when the Actual value is not zero, but quite small, the 

MAPE will often take on extreme values. Thus, MAPE is scale sensitive and should not be 

used when working with low-volume data. 
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Symmetric Mean Absolute Percentage Error 

The Symmetric Mean Absolute Percentage Error (sMAPE) is a variation on the MAPE 

measure. The sMAPE is defined in different ways in the literature. Two examples of 

sMAPE can be seen in Equation (II-9) and Equation (II-10). 
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Symmetric MAPE of Equation (II-9) as defined by Armstrong (1985) and Makridakis & 

Hibon (2000) solves (a) the problem of large errors when the actual (observed) values are 

close to zero and (b) the large difference between the absolute percentage errors when the 

actual (observed) values are greater than forecasted (predicted) and vice versa. However, if 

the actual value Ai is zero, the forecast Fi is likely to be close to zero. Thus, the 

measurement will still involve division by a number close to zero. 

Mean Squared Error 

The Mean Squared Error (MSE) indicates the average of the squared of the errors. It is a 

widely-used measure of forecast accuracy that depends on bias, resolution, and uncertainty 

(Jolliffe & Stephenson, 2012). MSE is a quadratic function; therefore, it is sensitive to 

large errors, to large variance of errors and on outlier errors. MSE can be seen in Equation 

(II-11). 
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Normalized Mean Squared Error 

The Normalized Mean Square Error (NMSE) is an estimator of the overall deviations 

between forecasted and actual values. If the NMSE is greater than 1, then the forecasts are 

worse than the mean of the actual values. If the NMSE is less than 1, then the forecasts are 

better than the mean of the actual values. Because of the squared differences, NMSE is 

sensitive to extreme values. NMSE can be seen in Equation (II-12). 
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Root Mean Squared Error 

The Root Mean Squared Error (RMSE) indicates the magnitude of the error and retains the 

variable’s unit. It is the squared root of the MSE. RMSE has similar properties with MSE; 

therefore, it is sensitive to large errors, to large variance of errors and on outlier errors. 

RMSE can be seen in Equation (II-13). 
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RMSE, Systematic and Unsystematic 

Willmott (1981) suggests the decomposition of the RMSE in the systematic RMSE 

component, which is due to the model performance and the predictors included, and 

unsystematic RMSE component that is due to residuals, factors that cannot be controlled. 

The Systematic RMSE (RMSEs) as shown in Equation (II-14) measures the linear (or 

systematic) bias of prediction, which is the difference between the regression line of the 

observed and predicted observations. This error can usually be corrected by parameter 

adjustment. 

The Unsystematic RMSE (RMSEu) as shown in Equation (II-15) measures the model's 

unsystematic bias, which is the random error about the regression line of the predicted 

observations. 

A "good" model is considered to have low all RMSE values and a higher unsystematic 

RMSE than the systematic RMSE. 
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Where: 

ii bAaF ˆ  ,where "a" and "b" are parameters according to the least squares linear 

regression between A and F. 

 

Equation (II-16) shows the relationship between RMSE and its components. 

222

us RMSERMSERMSE   (II-16) 

Linear Correlation Coefficient 

The Linear Correlation Coefficient (r) measures the strength and the direction of a linear 

relationship between two variables, and receives a value between -1 and 1. The linear 

correlation coefficient only measures linear relationships. Therefore, a correlation of 0 

does not mean zero relationship between two variables, but it means zero linear 

relationship. The greater the absolute value of linear correlation coefficient, the stronger 

the linear relationship. The linear correlation coefficient is sometimes denoted as ρ or R, 

also sometimes referred to as Pearson’s r, in honour of its developer Karl Pearson. The r 

can be seen in Equation (II-17). 
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Coefficient of Determination 

The Coefficient of Determination (r
2
) measures the percent of the data that is the closest to 

the line of best fit and receives a value between 0 and 1. Therefore, a Coefficient of 

Determination r
2
 = 0.80 means that 80% of the total variation in A (actual data) can be 

explained by the linear relationship between A and F. 
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Spearman’s Rank Correlation Coefficient 

Spearman’s rank correlation coefficient or Spearman’s rho was proposed by Charles 

Spearman (in 1904) as a measure of statistical dependence between two variables, as 

presented in Equation (II-18). Spearman’s rank correlation coefficient is denoted as rs or 

by the Greek letter ρ (rho). rs indicates how well the relationship between two variables 

can be described using a monotonic function. Spearman correlation of +1 (positive 

correlation) or -1 (negative correlation) occurs when each of the variables is a perfectly 

described by a monotone function of the other. 
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Where: 

The rank values (for each 𝑟𝑎𝑛𝑘𝐹 and 𝑟𝑎𝑛𝑘𝐴) are calculated by giving a rank of 1 in the 

lowest value (e.g. the lowest value of the forecasted values, for 𝑟𝑎𝑛𝑘𝐹), a rank of 2 in 

the next lowest value, and so on. When two or more values are the same, the ranks of 

those values are changed by calculating the mean of the existing ranks (as if those 

values have been ranked normally). These are called tied ranks. 

The main limitation of Spearman’s Rank Correlation Coefficient is due to the ranking of 

the two data sets (Thornes, 2006): it simply places the values in numerical order; it pays no 

regard to the magnitude of the differences between the values. 

Coefficient of Efficiency 

The Coefficient of Efficiency (E) defined by Nash & Sutcliffe (1970) which ranges from 

minus infinity to 1.0, the higher values indicating better agreement. An efficiency of zero 

(E = 0) indicates that the model predictions are as accurate as the mean of the observed 

data, whereas an efficiency less than zero (E < 0) occurs when the observed mean is a 

better predictor than the model. This measure is also referred to in the literature as 

Modelling Efficiency (EF) (Mukherjee, et al., 2012) (Alexandris, et al., 2008), and can be 

seen in Equation (II-19). 
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The coefficient of efficiency represents an improvement over the coefficient of 

determination (r
2
) for model evaluation purposes, in that it is sensitive to differences in the 

observed and predicted means and variances. However, because of the squared differences, 

E is overly sensitive to extreme values, as is r
2
 (Legates & McCabe, 1999). 
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Index of Agreement 

The Index of Agreement (d) developed by Willmott (1981) measures the degree to which a 

model's predictions are error free and not the correlation or association in the formal sense. 

The d of Equation (II-20) varies between 0 and 1, where a value of 1 indicates a perfect 

match, and 0 indicates no agreement at all. Willmott (1981) mentions that d is a 

standardized measure in order that (1) it may be easily interpreted and (2) cross-

comparisons of its magnitudes for a variety of models, regardless of units, can readily be 

made. The relationships described by d tend to complement the information contained in 

RMSE, RMSEs, and RMSEu, because of its dimensionless nature. 
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Willmott, et al. (1985) suspect that squaring the errors prior to summing them was a 

problem. This is because when larger errors are squared, their influence on the sum-of-

squared errors is very strong. Legates & McCabe (1999) also mention that d is overly 

sensitive to extreme values due to the squared differences. Willmott, et al. (1985) develop 

a version of d that was based upon sums of the absolute values of the errors (d1), and he 

preferred to use d1 than d. Nevertheless, the overall range of d1 remained somewhat narrow 

to resolve adequately the great variety of ways that F can differ from A (Willmott, et al., 

2011), as can be seen in Equation (II-21). 
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Willmott, et al. (2011) recently develop a refined index of agreement (dr) that receives a 

value between -1 and 1, which can be seen in Equation (II-22). This new index is double 

the range of d or d1. The refined index of agreement (dr) indicates the sum of the 

magnitudes of the differences between the model-predicted and observed deviations about 

the observed mean relative to the sum of the magnitudes of the perfect model and observed 

deviations about the observed mean. Table II-3 shows examples of dr values and their 

interpretation. 

Table II-3: Examples of dr values and their interpretation 

dr Value Interpretation 

0.5 
Indicates that the sum of the error-magnitudes is one-half of the sum of the perfect-model-

deviation and observed-deviation magnitudes. 

0.0 
Signifies that the sum of the magnitudes of the errors and the sum of the perfect-model-

deviation and observed-deviation magnitudes are equivalent. 

-0.5 
Indicates that the sum of the error-magnitudes is twice the sum of the perfect-model-

deviation and observed-deviation magnitudes. 

 

Willmott, et al. (2011) mention that Legates and McCabe’s measure (E1) is monotonically 

and functionally related to the dr index, and also when E1 is positive it is equivalent to dr 

with c = 1. Willmott, et al. (2011) suggests that c = 2 is a better scaling, because it 

balances the number of deviations evaluated within the numerator and within the 

denominator of the fractional part. Legates & McCabe (2013) argues that the refined index 

of agreement, dr, proposed by Willmott, et al. (2011) exhibits several distinct flaws that 

make its utility less favourable. 
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(II-22) 

Legates and McCabe 

Legates & McCabe (1999) present a generic form of the coefficient of efficiency, Ej 

(Equation (II-23)). The original equation developed by Nash and Sutcliffe (1970) 

(Equation (II-19)) with j = 2. Legates and McCabe suggested that j = 1 was a better 

scaling, because the absolute values are preferable to squared terms since they do not give 

undue weight to outliers. All the different Ej measures share same characteristics when 

their value is equal or lower than zero. When the Ej value is zero (Ej = 0), it means that 

such a model has no more ability to predict the observed values than does the observed 

mean. Ej has no lower bound; the negative values indicate that the model is less effective 

than the observed mean in predicting the variation in the observations. When Ej values are 

greater than zero, the interpretation of the results is different for each j. Table II-4 shows 

examples of Ej values and their interpretation. 

Table II-4: Examples of Ej values and their interpretation 

Ej Value Interpretation 
E2 = 0.75 Indicates that the model can explain three-quarters of the variance in the observed values. 

E1 = 0.75 
Indicates that the model can explain three-quarters of the absolute-valued differences 

between the observations and model predictions. 
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Legates and McCabe (1999) mention that better methods exist than the observed mean, in 

order to define the baseline against which a model should be compared. For example, for 

most hydrological or hydro-climatological studies, persistence or averages that vary by 

season or another time period may provide a more appropriate baseline than simply the 

average of the entire time series (Legates & McCabe, 1999). Thus, E1 can be rewritten in a 

“baseline adjusted” form (E’1) (Equation (II-24)). 
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(II-24) 

Where: 

'A  is the baseline value of the time series against which the model is to be 

compared. It is usually a function of time and, in some applications, may be a 

function of other variables as well. 

Berry and Mielke 

The generalized measure of agreement ( ) of Berry & Mielke (1992), provides for the 

analysis of a nominal independent variable with any number or combination of nominal, 

ordinal, or interval dependent variables (Equation (II-25)). The distribution of   is 

usually asymmetric, and the upper and lower bounds depend on both the nature of the data 

and the structure of δ (described in previous section as MAE). The values of   range 

from negative values to a maximum of 1 for the extreme case when all object 

measurements within each classified group are identical (i.e., δ = 0). When   = 1 implies 

perfect agreement,   > 0 implies agreement, and   < 0 implies no agreement. Thus, the 

closer   is to +1, the higher the agreement. As Mielke & Berry (2007) describe,   has 

advantages over the Pearson product-moment correlation coefficient (r), since (a) is a 

measure of agreement rather than a measure of linearity and (b) is far more stable (i.e., 

robust) than r since it is based on ordinary Euclidean distances rather than squared 

Euclidean distances. 
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Watterson 

The Watterson’s (1996) measure of agreement (M) is a symmetric measure that converges 

linearly to 1 as errors diminish to zero. Thus, positive values indicate "skill", relative to 

permutations of the data values. Watterson’s argues that other measures based on mean 

square error; do not have the useful properties of M. 

In Equation (II-28), it is clear that if error (MSE) diminishes to zero, the M will not be 

equal to 1 but it would be equal to 0.7566. Thus, this measure was not used in this work 

because the upper and lower bounds are not well defined. 
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Factor of Exceedance 

The Factor of Exceedance (FOEX) (Sokhi, et al., 2006) is a useful measure to indicate if 

the forecasting results are over or under-predicted. FOEX varies between -0.5 and 0.5. In 

order to calculate the percentage of FOEX the Equations (II-29), (II-30) and (II-31) can be 

used. From Table II-5 it is clear that Equation (II-31) is easier to be interpreted than 

Equation (II-30). Table II-5 shows examples of FOEX values and their interpretation. It is 

clear from Equation (II-29) that FOEX cannot be used to evaluate the performance of a 

forecasting model because it only takes into account the number of over-predictions. Thus, 

FOEX cannot identify a perfect fit. For example (in the extreme case) when all forecasts 

have a perfect fit, the N(Fi > Ai) is zero and consequently FOEX=-0.5 and not 0. 
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Where: 

)( ii AFN   is the number of over-predictions, i.e. the number of 

times where ii AF   

(II-29) 

100*1 FOEXFOEX P   (II-30) 

200*2 FOEXFOEX P   (II-31) 

 

Table II-5: Examples of Factor of Exceedance values and their interpretation 

FOEX 

Value 

FOEXP1 

Value 

FOEXP2 

Value 
Interpretation 

-0.5 -50% -100% 
All points lie below the y = x line, i.e. all the forecasted results 

are under-predicted. 

0 0% 0% 
The data distribution is optimum, i.e. there are half under- and 

half over-predictions. 

0.5 50% 100% 
All points lie above the y = x line, i.e. all the forecasted results 

are over-predicted. 

Theil’s Inequality Coefficient 

Theil’s Inequality Coefficient (TIC) proposed two error measures, at different times and 

under the same name and symbol "U" which has caused some confusion (Bliemel, 1973). 

In (1958) Theil proposed Equation (II-32) (denoted as U1 in this work) and in (1966) Theil 

proposed the Equation (II-33) (denoted as U2 in this work) as a measure of forecast 

quality. The differences in those equations are that a) the F-term is absence in Equation 

(II-33), and b) their boundaries and their interpretation are different. Table II-6 shows 

examples of values from the two Theil’s equations and their interpretation (Bliemel, 1973). 

In addition, Table II-6 shows the boundaries of the two Theil’s equations, where it is clear 

that the U1 varies between 0 and 1, and U2 varies between 0 and +∞. Theil’s U2 is the 

RMSE of the proposed forecasting model divided by the RMSE of the "no-change" model 

(naive). Bliemel (1973) shows that Theil’s U1 has little or no value as a forecasting 

accuracy index. 
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Table II-6: Examples of values from the two Theil's equations and their interpretation 

U1 

Value 
Interpretation of (U1) 

U2 

Value 
Interpretation of (U2) 

0 Indicate perfect forecasting. 0 Indicate perfect forecasting. 

1 

Is the maximum inequality, there is either a 

negative proportionality or one of the 

variables (A or F) is zero. For example, it 

would mean that the forecasted value is 

always zero. 

1 
Indicate that the forecasting method is 

as good as a naive no-change method. 

<1 

 A value lower than 1 (e.g. 0.06) would 

mean that the standard error of the forecast 

is 0.06 times as large as the standard value 

of all forecasts plus the standard value of all 

outcomes added together. 

<1 

Indicate the improvement of the 

forecasting method over a naive no-

change method. 

- - >1 
Indicate that the forecasting method is 

worse than a naive no-change method. 
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Appendix III. Categorical Verification Scores 

Appendix III 

Categorical Verification Scores 

Percentage of Agreement 

The Percentage of Agreement (PA) is used in order to calculate the percentage of the time 

that the forecasted values were identical with the observed values, and it is expressed as a 

numerical value ranging from 0% up to 100%. 

Critical Success Index  

The Critical Success Index (CSI) also known as Threat Score (TS) verifies how well the 

events of interest (in this work, Benzene exceedances) are predicted, and it is unaffected 

by the number of correct forecasts. The CSI values range from 0 (indicates no skill) to 1 

which indicates a perfect skill of forecasting the true positive events. Its calculation is 

based on the Equation (III-1), where a, b, c and d are calculated as shown in Table III-1. 

The positives or negatives in Table III-1 refer to the occurrence or not of the event of 

interest (i.e. classification of an occurred episode).The CSI applied in this work does not 

use the "d" events (true negatives). As a consequence, the CSI is tending to give poorer 

scores for rare events, but it takes into account both false negative events and false positive 

events. Therefore, the CSI can be characterized as a more balanced score (Ji, et al., 2010). 
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cba

a
CSI

++
=  (III-1) 

Table III-1: The meaning of parameters a, b, c and d of the Critical Success Index formula 

Event 

forecasted 

Event Observed 

Yes No 

Yes a: true positives b: false positives 

No c: false negatives d: true negatives 

Cohen’s Kappa Index 

Cohen’s Kappa Index (κ) measures the fraction of correct forecasts after eliminating those 

forecasts which would be correct due to random chance. For that reason it is generally 

thought to be a more robust measure than simple percent agreement calculation. The κ 

score values range from -1 to 1, where 0 indicate no skill and 1 indicate a perfect score. 

The κ agreement between categorical variables X and Y can be calculated by Equation 

(III-2) from the observed and expected frequencies on the diagonal of a square 

contingency table (King, et al., 2017). Suppose that there are g distinct categorical 

outcomes for both X and Y from n subjects. In addition, if fij denote the frequency of the 

number of subjects with the i
th

 categorical response for variable X and the j
th

 categorical 

response for variable Y, then the frequencies can be arranged in the g×g Table III-2. 

 

Table III-2: A square (g×g) contingency table 

X 
Y 

1 2 … g 

1 f11 f12 … f1g 

2 f21 f22 … f2g 

…
 

…
 

…
 

… …
 

g fg1 fg2 … fgg 
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𝜅 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒
 (III-2) 

Where:  

The observed proportional agreement between X and Y is defined as: 

𝑝0 =
1

𝑛
∑ 𝑓𝑖𝑖

𝑔

𝑖=1

 

(III-3) 

The expected agreement by chance is: 

𝑝𝑒 =
1

𝑛2
∑ 𝑓𝑖+𝑓+1

𝑔

𝑖=1

 

Where fi+ is the total for the i
th

 row and f+i is the total for the i
th

 

column 

(III-4) 
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Appendix IV. Major Air Pollutants and the AQI 

Appendix IV 

Major Air Pollutants and the AQI 

Benzene and Ozone 

Benzene is a known carcinogen and has been classified as a Group A carcinogen of 

medium potency by the United States Environmental Protection Agency (USEPA) and a 

Group 1 carcinogen by the International Agency for Research on Cancer (IARC). It is 

regulated in Europe on the basis of yearly mean values (not to exceed the levels of 5 

μg/m
3
) estimated on the basis of hourly measurements. Some parts of the world have 

however used significantly shorter limit values (for example, the 3 μg/m
3
 limit value in 

Japan (Ministry of Environment, Japan, 1997)). In this work, hourly Benzene 

concentration levels were addressed, as they are directly related to traffic emissions and 

thus represent an important parameter for the estimation of the overall environmental 

burden in a city’s atmosphere. 

Ozone is a photochemical pollutant with adverse effects on the respiratory and 

cardiovascular system, with a limit value for the 8-HRA levels of 120μg/m
3
 (European 

Environment Agency and World Health Organ, 2008). Both pollutants are associated with 

traffic (Benzene being directly emitted and Ozone being a secondary pollutant formulated 

with the synergy of other car-emitted pollutants) and are found in city areas affected by 

traffic (Oftedal, et al., 2003). 
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The Common Air Quality Index 

The use of environmental indices comes as a result of scientific initiatives that combine the 

impacts of various pollutants in order to come up with an aggregated measure, that may be 

used for the description of the environmental (here atmospheric) quality (Moussiopoulos, 

et al., 2010). Various air quality indices have been suggested by institutes and authorities 

in different countries (Kassomenos, et al., 2009) (Poupkou, et al., 2011). The EEA has 

proposed the Common Air Quality Index (CAQI) to identify the atmospheric quality in 

respect of public safety and health. 

The CAQI is defined in a way that allows for the calculation and the comparison of air 

quality levels on an hourly or daily basis. The CAQI has five categorical levels, 

corresponding to a range of values starting from 0 (very low) to >100 (very high), as 

presented in Figure IV-1. Two types of a CAQI are specified, an urban background index 

and a traffic (or roadside) related index, in order to better represent areas not directly 

affected by traffic (the former) as well as areas mostly affected by traffic (the latter). The 

urban background index takes into account three so-called main pollutants (NO2, PM10 and 

O3) and two auxiliary pollutants (SO2 and CO) while the traffic index takes into account 

two main pollutants (NO2 and PM10) and one auxiliary (CO). The use of the auxiliary 

pollutants in the calculation of the CAQI is decided on the basis of the availability of data. 

The scientific background of the CAQI as well as the way to calculate it is described in 

detail (in Elshout, et al., 2012). The calculation method is defined in Table IV-1, where all 

concentrations are in μg/m
3
, except of CO where the 8-hour moving average value is used. 
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Figure IV-1: The Common Air Quality Index five categorical levels 

 

Table IV-1: The two types of Common Air Quality Index (a background index and a traffic index) 

proposed by the European Environment Agency (Elshout, et al., 2012) 
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Main Background Index = Max(NO2_Index, PM10_Index, O3_Index) (IV-6) 

Auxiliary Background Index = Max(NO2_Index, PM10_Index, O3_Index, 

SO2_Index, CO_Index) 

(IV-7) 

Main Traffic Index = Max(NO2_Index, PM10_Index) (IV-8) 

Auxiliary Traffic Index = Max(NO2_Index, PM10_Index, CO_Index) (IV-9) 
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Appendix V. Arsenal of Methods used by the DOM 

Appendix V 

Arsenal of Methods used by the DOM 

Methods of Step 1 (Remove Outliers) 

The first step in the pre-processing phase is the handling of the outliers. Outliers are data 

patterns that deviate substantially from the data variation. Outliers result in large errors and 

consequently large weight updates because of the large deviation from the norm. They 

may be attributed to measurement error, or they may represent a significant feature within 

the investigated data. Identifying outliers and deciding what to do with them depends on 

the understanding of the data, information on their source and knowledge concerning the 

scientific domain they represent and the range of values that the associated parameters are 

expected to have. 

Detecting the presence of outliers is critical because they have a strong influence on the 

estimates of the data model parameters that are fitted. This could lead to wrong scientific 

conclusions and inaccurate predictions. Figure V-1 demonstrates how the (fitted) function 

is pulled towards the outlier in an attempt to reduce the training error. As a result, the 

generalization capacity of any model being developed to describe the data deteriorates 

(Engelbrecht, 2007). 
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Figure V-1: Illustration of the way that outliers affect the fitted function (Engelbrecht, 2007) 

 

Visual aids (Dot Plots and Box Plots) may be used to identify outliers. Box plots are useful 

graphical displays for describing the behaviour of the data (Figure V-2), and may help in 

the qualitative identification of outliers. However, both those methods require human 

interaction to identify outliers. This is a disadvantage for this work because the DOM it is 

intended to be used as an automated procedure. In this work, three methods that identify 

outliers were used, which do not require any human interaction, a) the standard deviation 

criterion, b) bisquare robust function, and c) the median absolute deviation criterion. 
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Figure V-2: Example of a Box plot for Temperature (at Ag. Sofia’s monitoring station) (Kyriakidis, et 

al., 2009) 

Standard Deviation Criterion  

A common method that may be applied in order to quantitatively identifying outliers is to 

look for values located more than a certain number of standard deviations (STD) away 

from the mean (for each input variable) (Kyriakidis, et al., 2009). Although there is no 

general rule, a distance of two up to ten standard deviations above the mean may be 

applied in most AQ data series, as demonstrated in Figure V-3. The mean and the STD 

were calculated by the using the Matlab functions, “nanmean” and “nanstd” respectively. 

These functions were used because they are ignoring the missing values (marked as NaN - 

Not a Number). 
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Figure V-3: Example of Temperature standard deviations (at Ag. Sofia’s monitoring station) 

(Kyriakidis, et al., 2009) 

Robust Functions 

Robust objective functions may be used to identify outliers, as they are not influenced by 

them. Robust objective functions find the best fitting structure concerning the majority of 

the data. A robust objective function may also be able to identify the outlier’s substructures 

for further treatment. The most common general method of robust objective function in 

regression is the “m-Estimator” introduced by Huber (1964) (Muthukrishnan & Radha, 

2010). 

The standard least-squares method tries to minimize the ∑ 𝑟𝑖
2

𝑖 , which is unstable if there 

are outliers present in the data. Where 𝑟𝑖 is the residual of the 𝑖𝑡ℎ datum, i.e. the difference 

between the 𝑖𝑡ℎ observation and its fitted value. The M-estimetors (Zhang, 1997) try to 

reduce the effect of outliers by replacing the squared residuals 𝑟𝑖
2 by another function of 

the residuals, as shown in formula (V-1) 

𝑚𝑖𝑛 ∑ 𝜌(𝑟𝑖)

𝑖

 

Where: 

𝜌 is a symmetric, positive-definite weight function with a unique minimum at 

zero, and is chosen to be less increasing than square. 

 

(V-1) 

 

In the current work, the “robustfit” function of Matlab was used in order to evaluate nine 

𝜌 weight functions (Table V-1). The "tune" parameter of function "robustfit" was not set in 
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order to use the default tuning constant value of Table V-1. Default tuning constants give 

coefficient estimates that are approximately 95% as statistically efficient as the ordinary 

least-squares estimates, provided the response has a normal distribution with no outliers. 

The values that do not contribute to the best robust fit have a zero weight. Those are 

treated as outliers and removed from the time-series. 

Table V-1: The nine robust regression weight functions 

Weight Function Equation 
Default Tuning 

Constant 
'andrews' 𝑤 =  (𝑎𝑏𝑠(𝑟) < 𝑝𝑖) .∗  𝑠𝑖𝑛(𝑟) ./ 𝑟 1.339 

'bisquare' 𝑤 =  (𝑎𝑏𝑠(𝑟) < 1) .∗  (1 −  𝑟. ^2). ^2 4.685 

'cauchy' 𝑤 =  1 ./ (1 +  𝑟. ^2) 2.385 

'fair' 𝑤 =  1 ./ (1 +  𝑎𝑏𝑠(𝑟)) 1.400 

'huber' 𝑤 =  1 ./ 𝑚𝑎𝑥(1, 𝑎𝑏𝑠(𝑟)) 1.345 

'logistic' 𝑤 =  𝑡𝑎𝑛ℎ(𝑟) ./ 𝑟 1.205 

'ols' Ordinary least squares (no weighting function) None 

'talwar' 𝑤 =  1 ∗  (𝑎𝑏𝑠(𝑟) < 1) 2.795 

'welsch' 𝑤 =  𝑒𝑥𝑝(−(𝑟. ^2)) 2.985 

 

The value 𝑟 in the weight functions of Table V-1 is  

𝑟 = 𝑟𝑒𝑠𝑖𝑑/(𝑡𝑢𝑛𝑒 ∗ 𝑠 ∗ 𝑠𝑞𝑟𝑡(1 − ℎ)) 

Where: 

𝑟𝑒𝑠𝑖𝑑 is the vector of residuals from the previous iteration 

ℎ is the vector of leverage values from a least-squares fit 

𝑠 is an estimate of the standard deviation of the error term given by 

 

(V-2) 

𝑠 =  𝑀𝐴𝐷/0.6745 

Where: 

𝑀𝐴𝐷 is the median absolute deviation of the residuals from their median. 

The constant 0.6745 makes the estimate unbiased for the normal distribution. 

(V-3) 

Median Absolute Deviation 

Leys, et al. (2013) states that the mean plus or minus three standard deviations rule is 

problematic and argues in favour of a robust alternative. In addition, they show how to use 

the Median Absolute Deviation (MAD) method to deal with the problem of outliers, which 

was adopted in this work. 

There are three problems can be identified when using the mean as the central tendency 

indicator (Miller, 1991) (Leys, et al., 2013). Firstly, it assumes that the distribution is 

normal (outliers included). Secondly, the mean and standard deviation are strongly 
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impacted by outliers. Thirdly, as stated by Cousineau & Chartier (2010), this method is 

very unlikely to detect outliers in small samples. 

The median (M) is, like the mean, a measure of central tendency but offers the advantage 

of being very insensitive to the presence of outliers. To calculate the median, observations 

have to be sorted in ascending order to identify the mean rank of the statistical series and 

to determine the value associated with that rank. In this work, in order to calculate the 

MAD the “mad” function of MATLAB was used. The MAD is defined in formula (V-4) 

(Huber, 1981). 

𝑀𝐴𝐷 = 𝑏 𝑀𝑖(|𝑥𝑖 − 𝑀𝑗(𝑥𝑗)|) 

Where: 

b = 1.4826, a constant linked to the assumption of normality of the data, 

disregarding the abnormality induced by outliers (Rousseeuw & Croux, 

1993). 

 

(V-4) 

In order to remove the outliers a rejection criterion threshold must be defined. The 

proposed values for the threshold rejection criterion threshold are 3 (very conservative), 

2.5 (moderately conservative), and 2 (poorly conservative) (Leys, et al., 2013). In this 

work, a conservative threshold value of 3 was used, as shown in formula (V-5). This 

threshold value was selected because a dataset with daily values was used (i.e. averaged 

hourly values), and thus, high outlier values were not expected. All values greater than 

𝑀 + (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑀𝐴𝐷) and all values smaller than 𝑀 − (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑀𝐴𝐷) < 𝑥𝑖 can 

be removed. 

𝑀 − (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑀𝐴𝐷) < 𝑥𝑖 < 𝑀 + (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑀𝐴𝐷) 

Where: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 3 (in this work) 

(V-5) 

Methods of Step 2 (Missing Data) 

Interpolation algorithms 

The presence of missing values does not affect some algorithms (e.g. Naïve Bayes, CART, 

Bayes Tree, CN2) (Michie, et al., 2009), whereas others require that the missing values 

should be replaced or removed. While pattern removal solves the missing values problem, 

valuable information may be lost, and the available information for training is reduced, 

which may be a real issue if the data is already of limited volume. Missing or erroneous 
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data complicates the modelling of large data sets, because of the fact that most data 

processing methods require for complete data metrics before performing any further 

analysis (Bishop, 1995). 

In this work the next five interpolation algorithms were used, 1) Linear, 2) Piecewise, 3) 

Cubic, 4) Spline, and 5) Nearest. Interpolation algorithms produce estimates between 

known observations. Thus, the missing values at the start or at the end of the time-series 

could not be interpolated (i.e. estimated). In these cases, the observations were removed 

from the time-series. 

For this problem, the aforementioned five interpolation algorithms were also used with 

extrapolation in order to estimate beyond the original observation range (i.e. for the 

missing at the end of the time-series). Table V-2 shows all the interpolation methods that 

were used by the “fillts” function of MATLAB. 

Table V-2: The used MATLAB Interpolation and Extrapolation methods 

Interpolation Method 

(fill method) 
Description 

'linear' Linear interpolation. The interpolated value at a query point is 

based on linear interpolation of the values at neighbouring grid 

points in each respective dimension. 'linearExtrap' 

'cubic' Shape-preserving piecewise cubic interpolation. The interpolated 

value at a query point is based on a shape-preserving piecewise 

cubic interpolation of the values at neighbouring grid points. 'cubicExtrap' 

'spline' Spline interpolation using not-a-knot end conditions. The 

interpolated value at a query point is based on a cubic 

interpolation of the values at neighbouring grid points in each 

respective dimension. 
'splineExtrap' 

'nearest' Nearest neighbour interpolation. The interpolated value at a 

query point is the value at the nearest sample grid point. 'nearestExtrap' 

'pchip' 
Piecewise Cubic Hermite Interpolating Polynomial. Shape-

preserving piecewise cubic interpolation. The interpolated value 

at a query point is based on a shape-preserving piecewise cubic 

interpolation of the values at neighbouring grid points. 
'pchipExtrap' 

Methods of Step 3 (Smoothing Data) 

Data smoothing techniques are used to eliminate “noise” and extract real trends and 

patterns. They provide with a clearer view of the behaviour of the time series studied. 

Thus, for example, economists use smoothing techniques to reveal economic trends in data 

(Leblebicioğlu, 2009). Smoothing may also deal with missing values, in cases that they are 

not of high percentage. In some cases, seasonal variation is so strong that do not allow for 

any trend or periodicity indications, aspects of great importance for the understanding of 
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the process being studied. Smoothing can remove seasonality and may help in revealing 

lagged fluctuations within the data set (Xiong, et al., 2006). In this work, six smoothing 

methods were used in each variable by the “smooth” function of MATLAB. Table V-3 

presents the six supported smoothing methods of MATLAB. 

Table V-3: The six supported smoothing methods of MATLAB 

Smoothing Method Description 

'moving' 
Moving average is a lowpass filter with filter coefficients equal to the reciprocal of 

the span (in this work the span number was 5). 

'lowess' 
Local regression using weighted linear least squares and a 1

st
 degree polynomial 

model 

'loess' 
Local regression using weighted linear least squares and a 2

nd
 degree polynomial 

model 

'sgolay' 

Savitzky-Golay filter is a generalized moving average with filter coefficients 

determined by an unweighted linear least-squares regression and a polynomial 

model of specified degree (2
nd

 degree is used here). 

'rlowess' 
A robust version of 'lowess' that assigns lower weight to outliers in the regression. 

The method assigns zero weight to data outside six mean absolute deviations. 

'rloess' 
A robust version of 'loess' that assigns lower weight to outliers in the regression. 

The method assigns zero weight to data outside six mean absolute deviations. 

 

To configure the moving average method’s input parameter (known as, span or length), 

Equation (V-6 was used. This equation calculates the “ideal moving average length” as 

described by Achelis (2013). In this work, the periodicity of the forecasting parameter 

(PM10) was found to be weekly, as in other studies (Byung-Gon, et al., 2009) (Yong-Sang 

& Bo-Ram, 2012) (Bigi & Ghermandi, 2014). Thus, the moving average length was 

calculated as (7/2) + 1 ≅ 5. 

𝐼𝑑𝑒𝑎𝑙 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ =
𝐶𝑦𝑐𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ

2
+ 1 

(V-6) 

 

Polynomials with low degrees are desirable for maximum smoothing of statistical noise in 

data (Barak, 1995). Thus, in the current work a 2
nd

 polynomial degree Savitzky-Golay 

filter was used for data smoothing. 

Methods of Step 4 (Detrending Data) 

The trend in a time series is a slow, gradual change in some property of the data over the 

whole time interval under investigation. The trend is sometimes loosely defined as a long-

term change in the mean, but can also refer to a change in other statistical properties. 
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Detrending is the mathematical operation of removing trends from the data under 

investigation. Detrending is often applied to remove a feature thought to distort or obscure 

the relationships of interest. Detrending is also used as a pre-processing step to prepare 

time series for analysis by methods that assume stationarity (Varotsos, et al., 2005). 

Detrending might improve computational accuracy when the signals vary around a large 

signal level. 

Constant and Straight (linear) detrending 

Constant detrending removes the mean of the data to create zero mean data. Straight line 

detrending finds linear trends (in the least-squared sense) and the removes them. In this 

work, the “detrend” function of MATLAB was used for each variable. 

Fit and remove a 2nd degree of polynomial curve 

Measured signals can show overall patterns that are not intrinsic to the data. These trends 

can sometimes hinder the data analysis and must be removed. To eliminate a nonlinear 

trend in a signal, the next two steps can be performed, 1) fit a low-order polynomial to the 

signal, and 2) subtract it from the signal. In this work, the "polyfit" function of MATLAB 

was used in order to find the coefficients of a 2
nd

 degree of the polynomial that fits each 

input variable. In addition, the "polyval" function was used to calculate the value of the 

coefficients of a polynomial of 2
nd

 degree. 

Hodrick-Prescott filter 

Hodrick & Prescott (1997) proposed a procedure for representing a time series as the sum 

of a smoothly varying trend component and a cyclical component. Hodrick-Prescott filter 

is used in this work to remove trends from the time-series. For that purpose, the “hpfilter” 

function of MATLAB was used for each input variable. This function requires a 

"smoothing" parameter, which determines how linear the smoothed series will become. As 

the smoothing parameter increases in value, the smoothed series becomes more linear. 

Appropriate values of the smoothing parameter depend upon the periodicity of the data. 

The MATLAB documentation suggests the smoothing values of Table V-4. 
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Table V-4: Suggested smoothing values per periodicity 

Periodicity Smoothing Value 
Yearly 100 

Quarterly 1600 

Monthly 14400 

 

In this implementation, the periodicity of each input variable was calculated by using the 

Fast Fourier Transformation (FFT). Formula (V-7) was used in order to map the 

𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 from the 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦. The 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 value was 

calculated from the highest value of strength. 

𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 =
14400

𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦2
 

(V-7) 

Methods of Step 5 (Feature Selection / Extraction) 

It might be expected that the inclusion of an increasing number of features would increase 

the likelihood of including enough information to distinguish between classes. 

Unfortunately, this is not true if the size of the training dataset does also increase rapidly 

with each additional feature included, resulting in a sparse dataset (Jensen & Shen, 2008). 

This is the so-called curse of dimensionality (Bazan, et al., 1994). 

The main aim of the Feature Selection/Extraction phase is to investigate the features to be 

selected for the effective modelling and forecasting with the aid of data mining-

computational intelligence algorithms. A high dimensional dataset increases the chances 

that a data mining algorithm will find patterns that are not valid in general. For that 

purpose, the useful features that represent the data must be found, and the non-relevant 

features must be removed. This will reduce the time required to perform data mining, and 

will make the resulting rules more comprehensible and can increase the resulting 

classification accuracy (Jensen & Shen, 2008) (Webb, 2002) (Fulcher, 2006). 

Dimensionality reduction can be achieved by two different ways, feature selection, and 

feature extraction. All systems that deal with datasets with large dimensionality, feature 

selection, and extraction have found wide applicability. Some of the main areas of 

application are shown in Figure V-4. 
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 Feature selection methods select a subset of the original features based on a subset 

evaluation function. Basically, feature selection methods identify those variables 

that do not contribute to the classification task. 

 Feature extraction (also called Feature transformation) methods transform the 

underline meaning of the data in order to have a descriptive power that is more 

easily ordered than the original features. This transformation may be a linear or 

nonlinear combination of the original variables and may be supervised or 

unsupervised (Webb, 2002). 

 
Figure V-4: Typical feature selection and extraction application areas 

 

Factor Analysis 

Factor analysis is a statistical method for investigating variable relationships for complex 

concepts. The purpose of factor analysis is to discover simple patterns in the pattern of 

relationships among the variables. In particular, it seeks to discover if the observed 

variables can be explained largely or entirely in terms of a much smaller number of 

variables called factors, and the coefficients are known as loadings (Darlington, 2015). 

Specifically, factor analysis assumes that the covariance matrix of the data is of the form 

described in formula (V-8). 

𝑐𝑜𝑣(𝑥) = 𝛬𝛬𝛵 + 𝛹 

Where: 

𝛬 is the matrix of loadings 

𝛹 =  𝑐𝑜𝑣(𝑒) is a d-by-d diagonal matrix of specific variances 

 

(V-8) 
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In this work, the "factoran" function of MATLAB was used (without rotation) to compute 

the maximum likelihood estimate (MLE) of the factor loadings matrix 𝛬 in the factor 

analysis model. The factoran(X, m) function returns among others, 

a) The MLEs of the specific variances as a column vector of length d (referred as psi), 

and 

b) A structure referred as stats. 

When, X is an n-by-d matrix where each row is an observation of d variables. A psi value 

of 1 would indicate that there is no common factor component in that variable; while a psi 

value of 0 would indicate that the variable is entirely determined by common factors. The 

p-value of the stats structure is the right-tail significance level for the null hypothesis (H0), 

that the number of common factors is m. 

Because the number of common factors (m) was not known, the execution of the factoran 

function was repeated with different m values, ranges from 1 to 6. A higher number of 

common factors were not possible because the maximum number of the input variables 

was 11. Thus, a higher m value result is an error in the factoran function. When the p-value 

was greater from a threshold value of 0.8, the execution stops. From the outcome of the 

last execution, the variables with a psi value lower of equal to a threshold value of 0.4 

were selected. These thresholds were chosen by a number of trial runs for the current data. 

Different thresholds may increase the forecasting performance, but its improvement was 

not a goal of this work. 

Covariance Feature Selection 

In probability theory and statistics, covariance is the measure of how much two random 

variables varies together, as distinct from variance, which measures how much a single 

variable varies. The covariance between two real-valued random variables 𝑋 and 𝑌 is 

defined in formula (V-9) (Weisstein, 2015). 

𝐶𝑜𝑣𝑋𝑌 =
∑(𝑋 − 𝑋̅)(𝑌 − 𝑌̅)

𝑁
 

Where: 

𝑋̅ is the mean of X 

𝑌̅ is the mean of Y 

𝑁 is the number of observations 

(V-9) 
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A simple feature selection method is to calculate the covariance of each input variable with 

the target variable and keep only the variables with the highest covariance. In this work, 

the variables with the highest covariance, which correspond in a maximum total 

covariance of at least 90%, were selected. 

Principal Components Analysis 

Principal component analysis (PCA) is a computational intelligence method originating 

from the multivariate statistical analysis that allows for the identification of the major 

drives within a certain multidimensional data set. Thus, PCA may be applied for data 

compression, identifying patterns in data, and expressing the data in such a way as to 

highlight their similarities and differences. Since patterns in data can be hard to find in 

high dimensional data, where the luxury of the graphical representation is not available, 

PCA is a powerful tool for such an analysis. 

PCA generates a new set of variables, called principal components. Each principal 

component is a linear combination of the original variables. All the principal components 

are orthogonal to each other, so there is no redundant information. The principal 

components as a whole form an orthogonal basis for the space of the data. 

In this work, the PCA was used in order to transform the input data and reduce their 

dimensionality. For that purpose, the "princomp(X)" function of MATLAB was used, 

which performs PCA on the n-by-p data matrix X, and returns the principal component 

coefficients, also known as loadings. The rows of X correspond to observations and 

columns to variables. The princomp function also returns the following information: 

a) The principal component scores, which is the representation of X in the principal 

component space. 

b) A vector containing the eigenvalues (variance) of the covariance matrix of X. 

In order to keep only the principal components with high variance, a threshold value of 

90% was used. Thus, the principal components which account at least 90% of the variation 

in the data set were selected. A variation threshold of 80% or 90% is used in the literature 

(Khattree & Naik, 2000) (Zwol, 2006) (Abrahams & Zhang, 2008) and sometimes 

recommended (Kingston & Clark, 2014) for components selection. 
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Methods of Step 6 (Forecasting) 

Multiple Linear Regression 

In a simple linear regression model, a single response measurement 𝑌 is related to a single 

predictor 𝑋 for each observation, as is shown in formula (V-10). The assumption of the 

model is that the conditional mean function is linear. 

𝑌 = 𝛼 + 𝛽𝑋 
 

(V-10) 

Multiple linear regression (MLR) attempts to model the relationship between two or more 

explanatory variables and a response variable by fitting a linear equation to observed data. 

Every value of the independent variable 𝑋 is associated with a value of the dependent 

variable 𝑌. A general equation of MLR is presented in formula (V-11). 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝛸𝑖1 + 𝛽2𝛸𝑖2 + ⋯ + 𝛽𝑝𝛸𝑖𝑝 + 𝜀𝑖 

Where: 

𝛽𝑗 are the coefficients that measure the effect of each predictor 

𝜀𝑖 is the error term, which is assumed it have a normal distribution with mean 

0 and constant variance 𝜎2 

 

(V-11) 

In order to use the MLR model in this work, the "regress" function of MATLAB was used. 

The regress(y, X) returns a p-by-1 vector b of coefficient estimates for a multilinear 

regression of the responses in y on the predictors in X. The X parameter is an n-by-p 

matrix of p predictors at each of n observations, in which the train input data-set was used. 

The y parameter is an n-by-1 vector of observed responses, in which the train target data-

set was used. To calculate the predicted values, the coefficients b was multiplied with the 

input test data-set. 

Feed-forward Backpropagation Artificial Neural Networks 

ANNs are computational data that may be considered as attempts to mimic the biological 

processes of the human brain and nervous system. ANNs were advanced in the late ’80s, 

popularizing non-linear regression techniques such as Multi-layer Perceptrons (MLP) 

(Gallant, 1990) and self-organizing maps (SOM) (Kohonen, 1997). ANNs introduce a new 

way to handle and analyse highly complex data (Yang & Yang, 2014). Thus, ANNs are 
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widely used for data mining tasks such as classification and pattern recognition. ANNs are 

especially effective in modelling nonlinear relationships, which makes them ideal 

candidates for differential processes (Lu, et al., 2015). 

Feed-forward neural networks (FNNs) are one of the popular structures among artificial 

neural networks. In FNNs, the information moves in only forward, from the input nodes, 

through the hidden nodes and finally to the output nodes, without any cycles or loops in 

the network. 

 

Figure V-5: Feed-forward neural network example 

Backpropagation is a supervised learning technique, which means that the desired outputs 

are already known. The task of the backpropagation network is to learn to generate the 

desired outputs from the inputs. This is performed by calculating the gradient of a loss 

function with respects to all the weights in the network. The gradient is fed to the 

optimization method which is used to update the weights in order to minimize the loss 

function. 

Data to be imported to the ANN were firstly normalized, by applying the hyperbolic 

tangent sigmoid transfer function (Figure V-6), which was also applied to the hidden layer. 

In the output layer, the linear transfer function was used (Figure V-7). This is a common 

structure for function approximation (or regression) problems (Mathworks, 2008), but has 

also shown good results in similar studies (Slini, et al., 2003). 
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Figure V-6: The hyperbolic tangent sigmoid transfer function 

 

Figure V-7: The linear transfer function 

In this work, the Levenberg-Marquardt Backpropagation algorithm (Saini & Soni, 2002) 

was implemented in the training phase. For that purpose, the "newff" function of 

MATLAB was used to initialize and configure the ANN. The newff was configured to use 

only one hidden layer, in which the number of neurons was equal to the number of the 

input parameters. In addition, it is configured to use two stopping criteria, 

a) The maximum number of epochs (iterations), which was set to 100, and 

b) The error goal, which was set to 0.01. 

These stopping criteria were selected by a number of trial runs for the current data and 

goal of this work. In a different work, a higher maximum number of epochs or a lower 

error goal could be used. To train the ANN the "train" function of MATLAB was used, by 

using the train and validation data sets as arguments. To calculate the predicted values, the 

"sim" function of MATLAB was used by using the input test data set as an argument. 

Linear Neural Networks 

Linear Neural Networks (LNNs) are the simplest kind of networks, with a single-layer 

network whose weights and biases could be trained to produce a correct target vector when 

presented with the corresponding input vector. The linear neuron uses the "purelin" linear 
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transfer function of MATLAB (Figure V-7). The LNNs is a supervised learning technique, 

because of the need for target outputs. The LNNs is used to solve linearly separable 

problems. 

In order to use the LNNs in this work, the "newlind" function of MATLAB was used by 

using the training data sets (input data and targeted forecasting parameters) as arguments. 

To calculate the predicted values, the "sim" function of MATLAB was used by using the 

input test data set as an argument. 

The "newlind" function calculates weight 𝑊 and bias 𝐵 values for a linear layer from 

inputs 𝑃 and targets 𝑇 by solving the linear equation (V-12) in the least squares sense. 

𝑇 = [𝑊 𝛣] ∗ [
𝑃

𝑜𝑛𝑒𝑠
] (V-12) 

Generalized Regression Neural Networks 

The generalized regression neural networks (GRNNs) as proposed by Specht (1991) are 

memory-based networks that provide estimates of continuous variables and converge to 

the underlying (linear or nonlinear) regression surface. Specht (1991) shown that, even 

with sparse data in a multidimensional measurement space, the algorithm provides smooth 

transitions from one observed value to another. The GRNNs are a kind of radial basis 

network that is often used for function approximation. A GRNN does not require an 

iterative training procedure as back propagation networks. It approximates any arbitrary 

function between input and output vectors, drawing the function estimate directly from the 

training data (Hannan, 2010). The GRNN uses a two-layer network, which has a radial 

basis layer (first layer) and a special linear layer (second layer). 

In the radial basis layer, each neuron's weighted input is the Euclidean distance between 

the input vector and its weight vector. Each neuron's net input is the product of its 

weighted input with its bias. The second layer has linear neurons, calculates weighted 

input, and net inputs are calculated by its weighted inputs (by not use biases). 

In order to use the GRNNs in this work, the "newgrnn" function of MATLAB was used by 

using the training data sets (input data and targeted forecasting parameters) as arguments. 

The spread argument of the "newgrnn" function is the spread of radial basis functions, 

which was used by its default value of 1. In the literature, in order to find the best spread 



Arsenal of Methods used by the DOM | 232 

parameter for each work, a range of spread values are usually examined. In addition, the 

examined ranges of the spread values are different in each work. For example, Celikoglu 

(2006) used a range from 0.1 to 1 (with 0.1 intervals), Mateo, et al. (2015) used a range 

from 0.1 to 2 (with 0.1 intervals), and Ababaei, et al. (2012) used a range from 0.1 to 2000 

(with variable intervals). In this work, additional spread values were not examined in order 

to increase the forecasting performance, because its improvement was not a goal. As 

spread becomes larger, the radial basis function's slope becomes smoother (more neurons 

contribute to the average) and several neurons can respond to an input vector. To calculate 

the predicted values, the "sim" function of MATLAB was used by using the input test data 

set as an argument. 

Generalized linear model regression 

Linear regression models describe a linear relationship between a response and one or 

more predictive terms. However, many times a nonlinear relationship exists, and in these 

cases a nonlinear regression can be used to describe general nonlinear models. A special 

class of nonlinear models called generalized linear models (GLMs) which use linear 

methods. 

The GLMs were formulated by Nelder & Wedderburn (1972), as a technique of iterative 

weighted linear regression that can be used to obtain maximum likelihood estimates of the 

parameters with observations distributed according to some exponential family and 

systematic effects that can be made linear by a suitable transformation. As John Fox 

(2008) described, a GLM consists of three components: 

1. A random component, specifying the conditional distribution of the response 

variable, 𝑌𝑖 (for the 𝑖th of 𝑛 independently sampled observations), given the values 

of the explanatory variables in the model. In Nelder & Wedderburn (1972), the 

distribution of 𝑌𝑖 was a member of an exponential family, such as the Gaussian, 

binomial, Poisson, gamma, or inverse-Gaussian families of distributions. 

2. A linear predictor that is a linear function of regressors: 𝜂𝑖 = 𝛼 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +·

 · · +𝛽𝑘𝑋𝑖𝑘 

3. A smooth and invertible linearizing link function 𝑔(·), which transforms the 

expectation of the response variable, 𝜇𝑖 = 𝐸(𝑌𝑖), to the linear predictor: 𝑔(𝜇𝑖) =

𝜂𝑖 = 𝛼 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +· · · +𝛽𝑘𝑋𝑖𝑘. 
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In order to use the GLM in this work, the "glmfit" function of MATLAB was used. The 

glmfit(X,y,distr) returns a (p + 1)-by-1 vector b of coefficient estimates for a generalized 

linear regression of the responses in y on the predictors in X. X is an n-by-p matrix of p 

predictors at each of n observations. The distr (i.e. distribution) argument can be any of the 

following strings: 'binomial', 'gamma', 'inverse gaussian', 'normal' (the default), and 

'poisson'. In this work, the default 'normal' distribution was used. The other possible 

distributions were not examined in order to increase the forecasting performance because 

its improvement was not a goal. Table V-5 shows the commonly employed link functions 

and their corresponding distribution and link parameter in MATLAB. To calculate the 

predicted values, the coefficients b (by excluding the first value) was multiplied with the 

input test data set. This was necessary, because the glmfit function, by default adds a first 

column of 1s to X, corresponding to a constant term in the model. 

Table V-5: The commonly employed link functions and their corresponding distribution and link 

parameter in MATLAB 

Link (glmfit parameter) 
Distribution 

parameter (distr) 
Description 

Identity ('identity') 'normal' µ = 𝑋𝑏 

Log ('log') 'poisson' 𝑙𝑜𝑔(µ) = 𝑋𝑏 

Logit ('logit') 'binomial' 𝑙𝑜𝑔(µ/(1 –  µ)) = 𝑋𝑏 

Probit ('probit')  𝑛𝑜𝑟𝑚𝑖𝑛𝑣(µ)  =  𝑋𝑏 

Complementary log-log ('comploglog')  𝑙𝑜𝑔( −𝑙𝑜𝑔(1 –  µ))  =  𝑋𝑏 

Inverse ('reciprocal') 'gamma' 1/µ =  𝑋𝑏 

Log-log ('loglog')  𝑙𝑜𝑔( −𝑙𝑜𝑔(µ))  =  𝑋𝑏 

Inverse-square (with number -2) 'inverse gaussian' µ−2 = 𝑋𝑏 

Multivariate adaptive regression splines (MARS) 

Multivariate adaptive regression splines (MARS) is introduced by Jerome H. Friedman (in 

1991). The aim of the MARS procedure is to combine recursive partitioning and spline 

fitting in a way that best retains the positive aspects of both while being less vulnerable to 

their unfavourable properties. MARS have the ability to model complex and high-

dimensional data dependencies. MARS builds models of the form of Equation (V-13). The 

model takes the form of an expansion in product spline basis functions, where the number 

of basis functions as well as the parameters associated with each one (product degree and 

knot locations) are automatically determined by the data through a forward/backward 

iterative approach (Jekabsons, 2015). Basis functions are known as hinge function, where 

their general form is shown in Equation (V-14). 
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𝑓(𝑥) = ∑ 𝐶𝑖 × 𝐵𝑖(𝑥)

𝑘

𝑖=1

 

(V-13) 

Where: 

𝐵𝑖(𝑥) are the basis functions 

𝐶𝑖 is constant coefficient 

𝑘 is the number of total basis functions 

 

 

max(0, 𝑥 − 𝑐𝑜𝑛𝑠𝑡) 𝑜𝑟 max (0, 𝑐𝑜𝑛𝑠𝑡 − 𝑥) 
 

(V-14) 

In order to use the MARS in this work, the ARESLab toolbox (Jekabsons, 2015) for 

MATLAB was used. The "aresbuild" function of ARESLab toolbox was used to train the 

model, by using the training data sets (input data and targeted forecasting parameters) as 

arguments. To calculate the predicted values, the "arespredict" function of ARESLab 

toolbox was used by using the input test data set as an argument. 
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