10,470 research outputs found

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    NEOREG : design and implementation of an online neonatal registration system to access, follow and analyse data of newborns with congenital cytomegalovirus infection

    Get PDF
    Today's registration of newborns with congenital cytomegalovirus (cCMV) infection is still performed on paper-based forms in Flanders, Belgium. This process has a large administrative impact. It is imortant that all screening tests are registered to have a complete idea of the impact of cCMV. Although these registrations are usable in computerised data analysis, these data are not available in a format to perform electronic processing. An online Neonatal Registry (NEOREG) System was designed and developed to access, follow and analyse the data of newborns remotely. It allows patients' diagnostic registration and treatment follow-up through a web interface and uses document forms in Portable Document Format (PDF), which incorporate all the elements from the existing forms. Forms are automatically processed to structured EHRs. Modules are included to perform statistical analysis. The design was driven by extendibility, security and usability requirements. The website load time, throughput and execution time of data analysis were evaluated in detail. The NEOREG system is able to replace the existing paper-based CMV records

    Can the US Minimum Data Set Be Used for Predicting Admissions to Acute Care Facilities?

    Get PDF
    This paper is intended to give an overview of Knowledge Discovery in Large Datasets (KDD) and data mining applications in healthcare particularly as related to the Minimum Data Set, a resident assessment tool which is used in US long-term care facilities. The US Health Care Finance Administration, which mandates the use of this tool, has accumulated massive warehouses of MDS data. The pressure in healthcare to increase efficiency and effectiveness while improving patient outcomes requires that we find new ways to harness these vast resources. The intent of this preliminary study design paper is to discuss the development of an approach which utilizes the MDS, in conjunction with KDD and classification algorithms, in an attempt to predict admission from a long-term care facility to an acute care facility. The use of acute care services by long term care residents is a negative outcome, potentially avoidable, and expensive. The value of the MDS warehouse can be realized by the use of the stored data in ways that can improve patient outcomes and avoid the use of expensive acute care services. This study, when completed, will test whether the MDS warehouse can be used to describe patient outcomes and possibly be of predictive value

    Enhanced Safety Surveillance of Influenza Vaccines in General Practice, Winter 2015-16: Feasibility Study

    Get PDF
    BACKGROUND: The European Medicines Agency (EMA) requires vaccine manufacturers to conduct enhanced real-time surveillance of seasonal influenza vaccination. The EMA has specified a list of adverse events of interest to be monitored. The EMA sets out 3 different ways to conduct such surveillance: (1) active surveillance, (2) enhanced passive surveillance, or (3) electronic health record data mining (EHR-DM). English general practice (GP) is a suitable setting to implement enhanced passive surveillance and EHR-DM. OBJECTIVE: This study aimed to test the feasibility of conducting enhanced passive surveillance in GP using the yellow card scheme (adverse events of interest reporting cards) to determine if it has any advantages over EHR-DM alone. METHODS: A total of 9 GPs in England participated, of which 3 tested the feasibility of enhanced passive surveillance and the other 6 EHR-DM alone. The 3 that tested EPS provided patients with yellow (adverse events) cards for patients to report any adverse events. Data were extracted from all 9 GPs' EHRs between weeks 35 and 49 (08/24/2015 to 12/06/2015), the main period of influenza vaccination. We conducted weekly analysis and end-of-study analyses. RESULTS: Our GPs were largely distributed across England with a registered population of 81,040. In the week 49 report, 15,863/81,040 people (19.57% of the registered practice population) were vaccinated. In the EPS practices, staff managed to hand out the cards to 61.25% (4150/6776) of the vaccinees, and of these cards, 1.98% (82/4150) were returned to the GP offices. Adverse events of interests were reported by 113 /7223 people (1.56%) in the enhanced passive surveillance practices, compared with 322/8640 people (3.73%) in the EHR-DM practices. CONCLUSIONS: Overall, we demonstrated that GPs EHR-DM was an appropriate method of enhanced surveillance. However, the use of yellow cards, in enhanced passive surveillance practices, did not enhance the collection of adverse events of interests as demonstrated in this study. Their return rate was poor, data entry from them was not straightforward, and there were issues with data reconciliation. We concluded that customized cards prespecifying the EMA's adverse events of interests, combined with EHR-DM, were needed to maximize data collection. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2016-015469

    Evidence in Practice – A Pilot Study Leveraging Companion Animal and Equine Health Data from Primary Care Veterinary Clinics in New Zealand

    Get PDF
    Veterinary practitioners have extensive knowledge of animal health from their day-to-day observations of clinical patients. There have been several recent initiatives to capture these data from electronic medical records for use in national surveillance systems and clinical research. In response, an approach to surveillance has been evolving that leverages existing computerized veterinary practice management systems to capture animal health data recorded by veterinarians. Work in the United Kingdom within the VetCompass program utilizes routinely recorded clinical data with the addition of further standardized fields. The current study describes a prototype system that was developed based on this approach. In a 4-week pilot study in New Zealand, clinical data on presentation reasons and diagnoses from a total of 344 patient consults were extracted from two veterinary clinics into a dedicated database and analyzed at the population level. New Zealand companion animal and equine veterinary practitioners were engaged to test the feasibility of this national practice-based health information and data system. Strategies to ensure continued engagement and submission of quality data by participating veterinarians were identified, as were important considerations for transitioning the pilot program to a sustainable large-scale and multi-species surveillance system that has the capacity to securely manage big data. The results further emphasized the need for a high degree of usability and smart interface design to make such a system work effectively in practice. The geospatial integration of data from multiple clinical practices into a common operating picture can be used to establish the baseline incidence of disease in New Zealand companion animal and equine populations, detect unusual trends that may indicate an emerging disease threat or welfare issue, improve the management of endemic and exotic infectious diseases, and support research activities. This pilot project is an important step toward developing a national surveillance system for companion animals and equines that moves beyond emerging infectious disease detection to provide important animal health information that can be used by a wide range of stakeholder groups, including participating veterinary practices

    Extracting information from the text of electronic medical records to improve case detection: a systematic review

    Get PDF
    Background: Electronic medical records (EMRs) are revolutionizing health-related research. One key issue for study quality is the accurate identification of patients with the condition of interest. Information in EMRs can be entered as structured codes or unstructured free text. The majority of research studies have used only coded parts of EMRs for case-detection, which may bias findings, miss cases, and reduce study quality. This review examines whether incorporating information from text into case-detection algorithms can improve research quality. Methods: A systematic search returned 9659 papers, 67 of which reported on the extraction of information from free text of EMRs with the stated purpose of detecting cases of a named clinical condition. Methods for extracting information from text and the technical accuracy of case-detection algorithms were reviewed. Results: Studies mainly used US hospital-based EMRs, and extracted information from text for 41 conditions using keyword searches, rule-based algorithms, and machine learning methods. There was no clear difference in case-detection algorithm accuracy between rule-based and machine learning methods of extraction. Inclusion of information from text resulted in a significant improvement in algorithm sensitivity and area under the receiver operating characteristic in comparison to codes alone (median sensitivity 78% (codes + text) vs 62% (codes), P = .03; median area under the receiver operating characteristic 95% (codes + text) vs 88% (codes), P = .025). Conclusions: Text in EMRs is accessible, especially with open source information extraction algorithms, and significantly improves case detection when combined with codes. More harmonization of reporting within EMR studies is needed, particularly standardized reporting of algorithm accuracy metrics like positive predictive value (precision) and sensitivity (recall)

    Veterans engineering resource center: the DREAM project

    Get PDF
    Due to technological advances, data collected from direct healthcare delivery is growing by the day. The constantly growing data that was collected from various resources including patient visits, images, laboratory results and physician notes, though important, has no significance beyond its satisfying reporting and/or documentation requirements and potential application to specific clinical situations, mainly due to the voluminous and heterogeneous nature of the data. With this tremendous amount of data, manual extraction of information is expensive, time consuming, and subject to human error. Fortunately, information technologies have enabled the generation and collection of this data and also the efficient extraction of useful information. Currently, there is a broad spectrum of secondary uses of this clinical data including clinical and translational research, public health and policy analysis, and quality measurement and improvement. The following case study examines a pilot project undertaken by the Veterans Engineering Resource Center(VERC) to design a data mining software utility called Data Resource Engine & Analytical Model (DREAM).This software should be operable within the VA IT infrastructure and will allow providers to view aggregate patient data rapidly and accurately using electronic health records
    corecore