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ABSTRACT 

 

Due to technological advances, data collected from direct healthcare delivery is growing by the 

day. The constantly growing data that was collected from various resources including patient 

visits, images, laboratory results and physician notes, though important, has no significance 

beyond its satisfying reporting and/or documentation requirements and potential application to 

specific clinical situations, mainly due to the voluminous and heterogeneous nature of the data.  

With this tremendous amount of data, manual extraction of information is expensive, time 

consuming, and subject to human error. Fortunately, information technologies have enabled the 

generation and collection of this data and also the efficient extraction of useful information. 

Currently, there is a broad spectrum of secondary uses of this clinical data including clinical and 

translational research, public health and policy analysis, and quality measurement and 

improvement.  

The following case study examines a pilot project undertaken by the Veterans 

Engineering Resource Center (VERC) to design a data mining software utility called Data 

Resource Engine & Analytical Model (DREAM).This software should be operable within the 

VA IT infrastructure and will allow providers to view aggregate patient data rapidly and 

accurately using electronic health records.  

Wesley Rohrer, Ph.D. 
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1.0 INTRODUCTION  

Before summer 2014 interns begin their internship, Robert Monte, Director of the Veterans 

Engineering Resource Center must decide whether or not DREAM will be one of the projects he 

will assign for the new interns. The project that started as an idea for a potentially powerful tool 

for healthcare providers and researchers is facing a critical decision point to determine if it is 

feasible to continue.  

The DREAM project is one of the more interesting technical applications in the Veterans 

Engineering Resource Center’s history. The center had intended to create a search engine that 

would allow clinical practitioners to develop both field and text based searches as well as 

providing the option to conduct statistical analysis on the data obtained. This search engine will 

be searching the VistA electronic health records at the Pittsburgh data warehouse. The main goal 

was to allow clinical practitioners to search for information on two levels, a population search 

(all patients who share certain criteria that the practitioner specifies), and an individual patient 

search. The resulting system would allow clinical practitioners to better utilize their time in 

monitoring clinical quality indicators efficiently.  

Although two different teams have worked on DREAM so far, both had the same mix of 

professional backgrounds. The DREAM team included IT programmers, developers, clinical 

practitioners and statisticians. While some members embraced the project idea, others were more 

skeptical about the feasibility of the project, especially concerning the amount of data the 



 2 

Veterans Healthcare Administration possesses as well as the VA’s outdated IT infrastructure 

which was built decades ago and does not allow the rapid sharing of information or 

accommodation of new users’ applications (Walters, 2009).  

1.1 DATA MINING TECHNOLOGY 

Data mining is a process of pattern and relationship discovery within large sets of data. It is also 

one step in a multiple step process called knowledge discovery and data mining (KDD). KDD is 

a non-trivial extraction of implicit, previously unknown and potentially useful information from 

data that is located in databases (Milovic, 2012).The process of data mining consists of three 

stages (StatSoft,2013): (1) Initial exploration : This stage usually starts with data cleaning and 

transformation. Traditional-analytical tools (e.g. statistics) are used to explore data. (2) Model 

building and validation: This stage involves considering various models and choosing the best 

one based on its predictive performance. (3) Deployment: The use of mining results by exporting 

data into database tables or into other applications, for example, spreadsheets 

Analytical techniques  

A number of underling analytical techniques can be applied to various functions of data mining. 

Neural networks, decision tree, traditional statistics and visualization are the most popular 

techniques (Rogers, SAS Institute). The one aspect that linked these techniques and large data 

bases is a cheaper storage space and processing power (Milovic, 2012). Other analytical 

techniques are described below:  
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1. Neural networks 

An analytical technique composed of groups of connected input/output units where each 

connection has its own weight. Capable of predicting changes and events after process of 

learning to adjust network weights to produce optimum predictions (Rogers, SAS 

Institute). 

2. Decision trees  

A graphical representation of relations that exist between data in the database, a 

technique mainly used for classification and prediction (Milovic, 2012)  

3. Visualization  

A visual interpretation of complex relationships in multidimensional data. This 

technology offers immediate graphical identification of patterns (StatSoft, 2013).  

1.2 DATA MINING IN HEALTHCARE  

The valid and easily understood knowledge that resulted from the application of information 

technologies has a broad and constantly growing usage in healthcare settings. Healthcare 

organizations are mainly interested in using this knowledge to enhance physician practices, 

disease management, and resource utilization (Hardin, 2006). The driving force for this change 

has been the pressure to decrease the constantly increasing cost of care (Kraft, 2012).  

In spite of the numerous uses of the medical records data, accessing it has always been 

surrounded by multiple issues. Time spent, number of resources needed to identify the target 

cohort of patients, EHR software used and ability to access data in narrative text were among the 

most important issues. Facilitating access to this data along with an organized way of presenting 
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information will have a tremendous impact on willingness of usage by physicians, researchers, 

and public health professionals. 

Information technology and its impact on the quality of healthcare was mainly achieved 

through providing assistance in three services: monitoring, decision support, and tracking 

adverse events (Bates, 2003). 

1. Monitoring  

Due to the increased amount of clinical data to be collected, it is hard to sift through them to 

ensure adherence or detect unconformities. Very often, this comparison between quality of care 

and guidelines happens retrospectively. Ensuring adherence to guidelines in real time during the 

course of treatment will be very useful in detecting problems as they happen. This will contribute 

to shaping a more proactive healthcare system instead of a reactive one. A study that examined 

adherence to heart failure quality of care indicators in 223 US hospitals showed that across all 

hospitals, the median rate of conformity was 72% for the use of angiotensin converting enzyme 

inhibitors in patients with left ventricular systolic dysfunction and 43% for smoking cessation 

counseling (Fonarow, 2005). Another study showed that only 38% of patients with venous 

thromboembolism risk factors received the prophylaxis treatment mandated in the clinical 

guidelines (Khan, 2004). These are just a few examples evidencing the gap between best practice 

guidelines and actual performance.  

One of the first usages of data mining in healthcare quality management was done by 

United Healthcare Corporation. This managed care company developed a Quality Screening and 

Management (QSM) program to analyze the healthcare provided by its own health plans. QSM 

compares the care received by patients to practice guidelines using claims, administrative data 

and Medical records reviews (Leatherman S, 1991). QSM examined 15 measures for patients 
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with chronic diseases and results were used to direct appropriate quality management actions as 

well as to identify new strategies for improvement. 

According to Center of Medicare & Medicaid (CMS), ensuring adherence to guideline 

results in effective, safe, efficient, patient-centered, equitable and timely care. In July 2010, CMS 

started an incentive program to provide incentive payments to eligible professionals, eligible 

hospitals, and critical access hospitals (CAHs) as they adopt, implement, upgrade or demonstrate 

meaningful use of certified EHR technology. Simply, “meaningful use” means that providers are 

using a certified EHR technology in ways that can be measured significantly in quality and 

quantity. To receive the incentive, providers have to show they are “meaningfully using’’ their 

EHRs by meeting both a core and a menu set of objectives (CMS.gov). 

2. Decision support  

For decades, information systems have been used for clinical support through a wide variety of 

activities. Such as making key information available (e.g. lab results), calculating weight-based 

dosage of medication or red-flagging patients for whom a certain drug may be inappropriate 

(Bates, 2003). Now, computerized algorithms and neural networks can assist in the prediction of 

clinical outcomes while considering many factors simultaneously. A computerized decision 

support system can synthesize and integrate patient specific information, and perform complex 

evaluations that can be presented to clinicians in a timely fashion (Sen, 2012).  
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3. Tracking adverse events  

Computerized tools with electronic health records can identify, alarm, and track the frequency of 

adverse events. These tools are also capable of detecting drug allergies, and drug-to-drug 

interaction.  

Due to complexity of the healthcare system, mining data in this environment faced 

multiple challenges in the process of extracting knowledge from large and diverse data. Two of 

the main challenges are lack of standardization and mining free text clinical data.  

Lack of standardization  

Lack of coding standards of medical information is one of the huge obstacles facing data mining 

in healthcare. Although the ICD-9-CM (International Classification of Diseases, 9th Revision 

Clinical Modification) was mainly developed to track diseases, relying on it alone might be 

accurate in identifying a specific diagnosis but not in excluding it. When feasible, review of 

charts should be used to confirm a diagnosis (Birman-Deych, 2005). At Columbia University 

Medical Center, 48.8% of patients with ICD-9-CM code for pancreatic cancer did not have 

corresponding disease documentation in pathology reports (Botsis, 2010). Errors in ICD 

diagnostic coding process arises from the quality and amount of information at admission as well 

as the coder training and familiarity with the illness.   

On October 1, 2014, the ICD-9 code sets will be replaced by ICD-10 code sets. The new 

code sets consists of two parts.(1) The ICD-10-CM, for diagnosis coding, which uses 3 to 7 

digits instead of 3 to 5 digits used with ICD-9-CM. (2) ICD-10-PCS for inpatient procedure 

coding, which uses 7 alphanumeric digits instead of the 3 or 4 numeric digits used under ICD-9-

CM procedure coding( CMS,2013). This new structure provides greater specificity for diagnosis 
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and inpatient procedures which will provide better data for data mining in addition to improving 

the predictive accuracy.  

 

Free text clinical data  

The unstructured clinical notes are a valuable source of information that is hardly found in any 

other section in the electronic health record. It includes physical findings, symptoms, and 

medication’s side effects. These notes are very difficult to standardize and thus a challenge for 

data mining (Cios, 2002). To save time, healthcare providers usually use abbreviations that are 

often difficult to interpret. The use of synonyms to describe a disease or test and misspelling of 

words also contributes to this difficulty.  

Although difficult to mine, there is an increased need for extracting information from 

clinical notes. A recent study showed the possibility of detecting drug safety signals after 

transforming clinical notes to a feature matrix encoded using medical terminology (LePendu, 

2013).  

Another study that used natural language querying strategy, concluded that the free text 

of EMR is a viable source of quality reporting on evidence of foot examination for patients with 

diabetes (Pakhomov, 2008).  
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1.3 RELATED WORK 

Medical Language Extraction and Encoding System (MedLEE)  

Created by Carol Friedman at Columbia University. This system uses natural language 

processing methods to automatically encode data that is in textual form. This program was used 

in daily operations at Columbia Presbyterian Medical Center (CPMC) to structure and encode 

clinical reports (Friedman, 1996). A study in 2008 showed positive results using MedLEE for 

assessing quality of care for cardiovascular diseases (Chiang, 2010).  

SAS Software  

The SAS data mining tool was developed by SAS Institute and had been used by Oxford Health 

Plans. The typical user of this tool is a physician or executive with no IT background. The goal 

was to provide a dynamic interactive tool that provides key indicators involving quality 

outcomes and encounters of care (Rogers).  

Soarian Quality Measures  

In 2007, Siemens Medical Solutions introduced a healthcare data mining tool powered by 

Siemens award winning REMIND technology (Reliable Extraction and Meangiful Inference 

from Non-structured Data) that can help healthcare providers realize quality improvements by 

replacing time-consuming chart reviews with highly accurate automated chart abstraction of 

quality measures( Siemens, 2007). In 2011/2012, Siemens received the Office of the National 

Coordinator's Authorized Testing and Certification Body Certification for this quality reporting 

tool.  
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A guideline adherence study for patients with non-ST Elevation myocardial infarction (MI) at 

the Veterans Health Administration Hospital, Pittsburgh, presented analysis of 327 patients’ 

records by both manual abstraction and REMIND technology. These patients were studied to see 

if they were treated properly for each of these medication classes: Aspirin, Beta blockers, ACHE 

Inhibitors, and Glycoprotein Receptor antagonists, per the American College of Cardiology’s 

guidelines. Results showed that REMIND works as well as manual abstraction. REMIND took 

4.5 hours while the abstractor took 176 hours to complete the analysis manually (Rao, 2005). 

1.4 CLINICAL DECISION SUPPORT SYSTEMS (CDS) 

Decision support systems refers to class of computer –based systems that aid the process of 

decision making. The CDS provides healthcare professionals with the knowledge and person-

specific information, filtered and presented at appropriate time to enhance health and healthcare 

(Berner, 2009).  

There are two major CDS, one of which employs data mining tools and the other, rule-

based expert systems in the knowledge engine (Hardin, 2006). While the rule-based expert 

system must be supplied with facts which requires a broad knowledge from the decision maker 

in order to provide right answers to well informed questions, the data mining tool doesn’t require 

any previous knowledge (Hardin, 2006).  

Computerized clinical support systems showed considerable effectiveness in enhancing 

clinical performance. A study for CDS application in checking drug allergies and drug 

interactions, showed 83% reduction in overall rate of medication errors (Bates, 2003).  
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One of the most well-known CDS is MYCIN system. MYCIN was developed in 1972, at 

Stanford University. The primarily function was to help clinicians to choose appropriate 

antibiotics for bacteremia and meningitis. MYCIN is also capable of providing the reasoning 

behind its recommendations. However, it was never widely used due to difficulties incorporating 

the system to clinicians’ workflow (Pusic, 2004).  

1.5 DATA MINING & PUBLIC HEALTH  

The data mining applications have a very broad use in public health. These applications affected 

clinical and non-clinical aspects of public health. While it allowed the surveillance of disease and 

infections, it also affected the health policy making in public health. Data mining applications 

allowed evidence based medicine which resulted in an improvement of health outcomes through 

ensuring adherence to clinical guidelines. Data mining also affected public health research by 

accelerating the time needed to identify a research population and by enabling the study of large 

group of patients retrospectively as they were treated for multiple conditions. Data mining not 

only affected public health by detecting or preventing diseases, but also by predicting new trends 

and uncovering situations associated with these events.  
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2.0  THE VETERANS HEALTH ADMINSTRATION (VHA) 

The Veterans Healthcare Administration has one of the most developed electronic medical 

record systems in the world. About 8.8 million veterans' clinical information is recorded. Table 

data are generated for each veteran including health summaries, appointment lists, progress 

notes, discharge summaries, consult request, active medications, lab reports and imaging. As one 

of the US's largest integrated healthcare systems, the VHA has always been a source of 

information for researchers and healthcare providers. To be able to obtain customized data, 

researchers as well as VHA leaders and managers rely on computer programmers and other IT 

specialists. Retrieving information from data warehouses is expensive, time consuming and 

subject to human error (Pakhomov, 2008). In addition, unified understanding between 

researchers and computer programmers about which data is needed and which data is available 

has always been a major obstacle. After adding the time needed to analyze the data obtained to 

analyze relationships and examine trends and patterns, this whole process can take anywhere 

from a few days to several months. These studies very often provide the information 

retrospectively, and cannot be used for clinical monitoring during the course of treatment and 

cannot be relied on for timely access to needed information. 
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Though very helpful information is stored in tabled data, considerable and more important 

information waits to be analyzed in the free-text portion of electronic health records.  

The unstructured clinical notes that are typed in free text (i.e., natural language without 

well-defined structure), contain patient’s symptoms, physical findings, treatments, medications 

and laboratory results.  

2.1  VETERANS ENGINEERING RESOURCE CENTER (VERC) 

The VERC has maintained a strong quality improvement culture that had been implemented by 

its senior management. The Center’s mission is to “lead the continuous improvement of 

healthcare in the VHA through the application of knowledge and expertise in systems 

engineering and operations management”. Many of the employees have a quality or industrial 

engineering background. The center employed 10 full time VA staff, 5 fellows, and 25 part time 

contractors.  

To expand the level of knowledge and expertise, the Center partnered with several 

academic institutions in the Pittsburgh area including the University of Pittsburgh, Graduate 

School of Public Health. They offer summer internships and fellowships which are primarily of 

interest to industrial engineers, IT programmers and healthcare administrative students. The 

Center also offers its expertise for training at the facility and VISIN levels.  

The VERC culture encourages individual initiative, especially regarding innovative ideas 

for healthcare solutions. Summer interns are advised that it is their responsibility to dive in and 

take the lead in assigned projects. Accordingly, VERC is the home of many prototypes and 

startups in healthcare technology. Based upon the concept of facilitating learning through games 
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and real life simulation, a simulation game was designed to help new administrators implement 

access strategies and reduce the waiting time for appointments. Another example is a Tele-

medicine program for aphasia treatment called PIRATE (Program for Intensive Residential 

Aphasia Treatment and Education). The prototype of the PIRATE program was built using a 

smart phone and IPad.  

2.2 THE VETERANS INTEGRATED SYSTEM TECHNICAL 

ARCHITECTURE (VISTA) 

VistA is an integrated Electronic Health Record (EHR) information technology system with 

application packages that share a common data store and common internal services. The data 

store and VistA kernel are implemented in the Massachusetts General Hospital Utility Multi-

programming System (MUMPS or M) computer language, and the Computerized Patient Record 

System (CPRS) graphical user interface (GUI) is implemented in Delphi (US Department of 

Veterans Affairs, 2013).  

VistA/CPRS is used to record all clinical and administrative information related to the 

care of the veterans. VistA is deployed universally across VHA at more than 1,500 sites of care, 

including each Veterans Affairs Medical Center (VAMC), Community Based Outpatient Clinic 

(CBOC) and Community Living Center (CLC), as well as at nearly 300 VA Vet Centers.   

The VistA databases can be searched by a programmer who can write queries in the M 

language. VistA can also be searched using VA FileMan which is the VistA database 

management system (DBMS) that runs in any American National Standards Institute (ANSI) 

environment. The majority of VHA clinical data is stored in VA FileMan files and is retrieved 
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and accessed through VA FileMan Application Program Interfaces (API) and user interfaces. 

Although FileMan allows retrieving considerable amount of data, it is not capable of completing 

complex data searches (U.S. Department of Veterans Affairs, 2013).  
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3.0  THE DREAM PROJECT 

The first prototype of DREAM was created by a multidisciplinary team of VERC’s summer 

2012 interns with the help of VHA physicians from different specialties. The team held meetings 

with physicians to better understand their needs and the best way to address them. With the 

broad scale of diseases and medications in the clinical field, the team decided to address the 

design by specialty. Due to increased interest and enthusiasm from endocrinologists as well as 

the number of clinical indicators available for diabetes mellitus management, the team decided to 

focus on the endocrinology department.  

Based on the interviews, physicians were mainly interested in a timely clinical quality 

indicators screening for active patient care. For example, one relevant indicator is the number of 

current diabetic patients actively seen in the clinic who received the routine retinal check. 

Physicians were also interested in using free-text clinical notes for Pharmacovigilance. 

Pharmacovigilance is defined as the science and activities relating to the detection, assessment, 

understanding and prevention of adverse effects or any other drug-related problem (WHO). 

Analyzing the Free-text notes enables detecting drug- adverse event association which can be 

used for hypothesis generation as well as prediction of adverse event risk (LePendu, 2013).  
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Although the team had experience using and access to a variety of software utilities, including 

Microsoft Visual Studio, they chose to use Microsoft Access software, and Microsoft Visual 

Basic Access (VBA) for the ubiquity of the VA IT infrastructure. The engine was designed to 

allow searching for a single patient (Patient Search) as well as group of patients (Population 

Search). The patient search is a query for a single patient’s medical record separated into lab, 

notes, and medication, while Population search will search for group of patients based on 

demographics, diagnoses, lab results, notes, and active medication classes. (See Figure 1) 

By the end of summer 2012, the DREAM prototype was capable of identifying lists of 

patients based on the criteria selected. The search options would only return positive matches for 

active Veterans. The results would then be presented in an Excel spreadsheet with specific 

information about patients who matched the selected criteria. The population search was also 

capable of matching HbA1c with diabetic drug classes in a specified time range. The engine 

allowed medication- notes searching which would match specific drugs with a note keyword in a 

specific time range. The end result would be a list of patients’ Information Exchange Network 

(IEN) that matched the criteria.  

The patient search is IEN specific that would search the patient’s file for specific 

keyword or lab value. (See Figure 2) The engine would show the patient’s clinical notes with the 

keyword in the time range selected. The result would not highlight the keyword in the clinical 

notes.  
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Figure 1: DREAM screen shot of population search 

 

 

Figure 2: DREAM screen shot of patient search 

 



 18 

3.1 THE PROJECT PERFORMANCE 

At the VERC, the development of the DREAM project was affected by two major constraints. 

First, the security clearance required for handling sensitive information such as patient health 

records, limited the option of outsourcing the project to an external vendor. It also mandated the 

IT developers’ usage of VA computers to build the engine. The limitation of computers to be 

used affected the software selection due to the uniqueness of the VA IT infrastructure.  

The option of providing de-identified patient information to external programmers, 

though attempted later, was primarily avoided due to the extensive amount of data associated 

even with a very small sample of patients. In addition, the free-text clinical notes could not be 

released due to the high possibility that they would still contain patient identifiers.  

Second, most of the IT developers who worked on DREAM had no previous experience 

using the VA informational health system. While some developers had limited familiarity, the 

expert VA IT programmers on the team were only available for guidance due to commitments to 

other projects. The extent of the IT programmers’ learning curve definitely affected the time 

allocated for building the prototype.  

Since the project had to be completed in phases, transitioning the project from one team 

to another was affected by their experience and their translational capabilities. The variability in 

experience among IT programmers proved an obstacle to the continuity of the project and 

delayed its development.  
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3.2 REFLECTIONS ON THE PROJECT  

Though the design team agreed on the importance and potential of the DREAM project, there 

was some disagreement regarding whether to continue the project and how many resources the 

VERC is willing to allocate for it. While some team members felt that the prototype showed 

great potential and that it just requires more time to develop it fully, others were much less 

convinced of the value of the tool considering the time and resources it consumed.  

Robert Monte believes that deficiencies in the initial design prior to creating the 

prototype adversely affected the project. Monte commented “everyone perceives the engine 

differently and acts based on his own perception”. However, Monte is a strong believer of IT 

developers’ freedom and believes that a solid initial design would have definitely affected 

interns’ creativity.  

Some team members were strong believers in using the engine in clinical settings while 

others believed it is more appropriate for research applications because data obtained would still 

eventually need to be analyzed.  

Defining the project’s success was a point of discrepancy as well. Some managers 

believed that it was good enough to provide a learning experience for the team and that it 

provided useful information about the VA IT structure while providing feedback on design 

parameters and the ability to design an effective engine. However, others defined success as 

reaching the initial end goal of full implementation in which the engine is used by healthcare 

providers to manage active patients in a clinical health settings.  
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4.0  A NEW STRATEGY AND A NEW DESIGN  

After summer 2012 had ended and students were back to school, work on the DREAM project 

was put on hold. The available prototype, although still missing many features, was working and 

required testing and evaluation. When summer 2013 new interns arrived, the fever of DREAM 

caught them as well. The new team started compiling future steps needed in order to reach the 

original goal. These steps included adding as well as editing current features. First, the current 

system lacked the option of the name of the provider or clinic as a selection criterion which 

resulted in a negative impact of availability of its use by physicians who wanted to use the tool to 

monitor their own patients seen in their clinics. Second, the engine did not create an index of 

searches and one search had to be concluded before starting a new one. Third, the time frame for 

drugs selected and diagnoses was limited and did not allow recognition of a hierarchy of 

diagnoses to detect primary vs. secondary diseases. Finally, the text search will only look for the 

exact word entered and cannot recognize different phrases used for same meaning.  

The new team faced an obstacle trying to translate queries and previously built table data 

in order to add or edit features. With the absence of a detailed installation and configuration 

guide, editing the engine was a major challenge that could not be fixed within the limits of a 3-

month internship.  
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During fall 2013, a decision was reached to outsource DREAM project to Carnegie Mellon 

University students as part of their information system project. The main drive for this decision 

was to get a prototype that other teams can easily build on. The Carnegie Mellon team did not 

have access to VA computers, and due to the long process of obtaining security clearance it was 

decided that a sample of 10 patients’ information be de-identified and outsourced to be used 

externally. Due to the possibility of patient identifiers being in the free-text clinical notes, fake 

clinical notes were created and attached to patients’ files. Since the prototype was to be built 

using computers outside the VA system, the CMU team had more freedom in choosing the 

software to use. Time constraint was a huge challenge since students were working on this 

project while having full-time class schedules. 

The second prototype was designed as multiple search modules. The first module; 

Demographics, was designed for patients’ vitals, demographics, and clinic. The results could be 

viewed as a pivot table or line chart. (See figure 3)  

 

Figure 3: DREAM, 2nd version demographics modules 
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The second module; Diagnosis, allowed for identifying one single diagnosis or two diagnoses in 

relation to each other in time, i.e. primary diagnosis might have an earlier date than a secondary 

diagnosis. (See figure 4)  

 

 

Figure 4: DREAM 2nd version diagnosis module 
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The third module; Lab, was designed for laboratory tests in a specified time frame. In addition, 

the results would be color coded, red for abnormal values and blue for normal ones. (See figure 6 

&7)  

 

Figure 5: DREAM 2nd version, labs module 

 

 

Figure 6: DREAM 2nd version, lab results example  
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The fourth module; Medications, was designed for active patient’s medications. Results will also 

show an issue date for each medication. (See figure 8)  

 

Figure 7: DREAM 2nd version, medications module 

 

The final module; was designed for the free-text search. Due to limited time, only two 

keywords were used for this prototype, foot exams and eye exam.  

 

Figure 8: DREAM 2nd version, notes search module 
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By searching multiple clinical notes, the team compiled familiar phrases that are related to the 

keyword the researcher is interested in. (See table 1) The results would show patients’ IEN who 

matched criteria. Whenever needed the original clinical note could be viewed for further 

analysis. (See figure 10)  

   Table 1: Foot and eye exam common phrases 

Foot exam  Eye exam  

DM Foot Exam Refer for DM eye exam 

Podiatry Clinic consult ordered Teleretina exam 

Foot ulcers Diabetic Retinopathy Surveillance 
program 

Foot care   

The 10gm monofilament exam, pedal 
pulses and foot inspection  

 

Diabetes foot exam   

 

 

 

Figure 9: DREAM 2nd version, notes results example 
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5.0  CONCLUSION & RECOMMENDATIONS  

It should be noted that this project was intended for summer interns and is not one of the 

VERC’s main projects. Consequently, there is no master management plan for this project as the 

basis for comparing results against measurable objectives. Accordingly, this assessment is 

written based largely on the researcher’s own point of view and experience within the VA.  

5.1 CONCLUSION 

The DREAM project was a great learning experience for the two groups of summer interns who 

worked on it in addition to the Carnegie Mellon team. The team members with clinical 

backgrounds learned much about IT technologies and the team members with IT backgrounds 

learned much about clinical quality indicators as well as medical terminology. Working with no 

clearly specified design nourished the teams’ creativity and gave them an opportunity to explore 

and learn more about data mining. Team meetings with clinicians and senior managers were also 

helpful in giving students a snap shot of how external consultants work and provided them with 

the experience of translating needs into a working tool that will address those needs.  

The experience associated with working with a unique system such as the Veterans 

Affairs IT infrastructure forced students to refine their ideas and to discover previously unknown 

issues and opportunities.   
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Defining the projects’ scope is an early essential step to a successful project. Scope is identified 

through collaboration between the project’s owner, sponsor, and stakeholders. Scope 

management is defined by PMI (Project Management Institute) as the process of defining what 

work is required and then making sure all of that work and only that work, is done. Lack of a 

defined DREAM scope, though this likely encouraged creativity, it also definitely lowered the 

chances of the project to succeed. Though scope change is a step that is hard to avoid, 

documenting and getting it approved minimize the risk of questioning and revising the scope 

when a new team is in charge.  

Another area that represented a challenge to this project was risk management. 

Identifying risks, whether positive or negative, is done early during the initiation of the project.  

Although planning ahead will not eliminate risks, it will increase the probability for positive 

risks (opportunities) and lower the probability of negative risks (threats). The DREAM project 

faced multiple risks that the team was not prepared to handle. For example, the potential of a 

negative risk that the engine will not reach the speed needed for it to provide clinicians with a 

timely response was high. The amount of data the engine is searching was the main reason for 

the low speed and it usually caused the engine to crash. The potential risk of transitioning the 

project between teams was not fully assessed during the initiation of the project. Although the 

first prototype had not reached the initial goal, it achieved different results than were expected. 

Having to start from scratch had a great impact on the project’s success and caused major delay 

in the implementation phase.  

Great attention was given to physicians’ needs and expectation of this project, however, a 

comprehensive stakeholder analysis was not performed. Identifying major stakeholders and 

determining their expectations, influence, and impact is a very important step.  From the 
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researcher’s point of view, major stakeholders for this project would be the IT Department and 

the Information Security Office. Although they were consulted on technical issues and 

constraints, the team did not consult them on feasibility of the goals or the most efficient 

methods to achieve them. Both stakeholders have great interest in and influence upon outcomes, 

and their perceptions should be identified and addressed.   

5.2 RECOMMENDATIONS 

Based on my findings in this study, the following are my recommendations for action:  

I. Since the learning curve of teams definitely affected the project’s progress, a team with 

clinical and technological background will be most appropriate for this project. This team 

will require a project manager from the VERC’s staff to facilitate the transition between 

different teams and to minimize the effect of discrepancy in experience levels among 

teams.  

II. A scope management plan: a document that illustrates how scope will be planned, 

executed, controlled, and how to obtain acceptance to deliverables. Usually obtained 

through several meetings with key stakeholders and experts.  

III. Stakeholder register and stakeholder analysis: a document that identifies all stakeholders 

and includes their major requirements, expectations, influences, and phases of the project 

where they are most interested.  

IV. Work break down structure: a detailed description of all tasks required to complete the 

project and their relationship to one another. 
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