85 research outputs found

    Efficient Range-Free Monte-Carlo-Localization for Mobile Wireless Sensor Networks

    Get PDF
    Das Hauptproblem von Lokalisierungsalgorithmen für WSNs basierend auf Ankerknoten ist die Abhängigkeit von diesen. Mobilität im Netzwerk kann zu Topologien führen, in denen einzelne Knoten oder ganze Teile des Netzwerks temporär von allen Ankerknoten isoliert werden. In diesen Fällen ist keine weitere Lokalisierung möglich. Dies wirkt sich primär auf den Lokalisierungsfehler aus, der in diesen Fällen stark ansteigt. Des weiteren haben Betreiber von Sensornetzwerken Interesse daran, die Anzahl der kosten- und wartungsintensiveren Ankerknoten auf ein Minimum zu reduzieren. Dies verstärkt zusätzlich das Problem von nicht verfügbaren Ankerknoten während des Netzwerkbetriebs. In dieser Arbeit werden zunächst die Vor- und Nachteile der beiden großen Hauptkategorien von Lokalisierungsalgorithmen (range-based und range-free Verfahren) diskutiert und eine Studie eines oft für range-based Lokalisierung genutzten Distanzbestimmungsverfahren mit Hilfe des RSSI vorgestellt. Danach werden zwei neue Varianten für ein bekanntes range-free Lokalisierungsverfahren mit Namen MCL eingeführt. Beide haben zum Ziel das Problem der temporär nicht verfügbaren Ankerknoten zu lösen, bedienen sich dabei aber unterschiedlicher Mittel. SA-MCL nutzt ein dead reckoning Verfahren, um die Positionsschätzung vom letzten bekannten Standort weiter zu führen. Dies geschieht mit Hilfe von zusätzlichen Sensorinformationen, die von einem elektronischen Kompass und einem Beschleunigungsmesser zur Verfügung gestellt werden. PO-MCL hingegen nutzt das Mobilitätsverhalten von einigen Anwendungen in Sensornetzwerken aus, bei denen sich alle Knoten primär auf einer festen Anzahl von Pfaden bewegen, um den Lokalisierungsprozess zu verbessern. Beide Methoden werden durch detaillierte Netzwerksimulationen evaluiert. Im Fall von SA-MCL wird außerdem eine Implementierung auf echter Hardware vorgestellt und eine Feldstudie in einem mobilen Sensornetzwerk durchgeführt. Aus den Ergebnissen ist zu sehen, dass der Lokalisierungsfehler in Situationen mit niedriger Ankerknotendichte im Fall von SA-MCL um bis zu 60% reduziert werden kann, beziehungsweise um bis zu 50% im Fall von PO-MCL.

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Bandwidth-aware distributed ad-hoc grids in deployed wireless sensor networks

    Get PDF
    Nowadays, cost effective sensor networks can be deployed as a result of a plethora of recent engineering advances in wireless technology, storage miniaturisation, consolidated microprocessor design, and sensing technologies. Whilst sensor systems are becoming relatively cheap to deploy, two issues arise in their typical realisations: (i) the types of low-cost sensors often employed are capable of limited resolution and tend to produce noisy data; (ii) network bandwidths are relatively low and the energetic costs of using the radio to communicate are relatively high. To reduce the transmission of unnecessary data, there is a strong argument for performing local computation. However, this can require greater computational capacity than is available on a single low-power processor. Traditionally, such a problem has been addressed by using load balancing: fragmenting processes into tasks and distributing them amongst the least loaded nodes. However, the act of distributing tasks, and any subsequent communication between them, imposes a geographically defined load on the network. Because of the shared broadcast nature of the radio channels and MAC layers in common use, any communication within an area will be slowed by additional traffic, delaying the computation and reporting that relied on the availability of the network. In this dissertation, we explore the tradeoff between the distribution of computation, needed to enhance the computational abilities of networks of resource-constrained nodes, and the creation of network traffic that results from that distribution. We devise an application-independent distribution paradigm and a set of load distribution algorithms to allow computationally intensive applications to be collaboratively computed on resource-constrained devices. Then, we empirically investigate the effects of network traffic information on the distribution performance. We thus devise bandwidth-aware task offload mechanisms that, combining both nodes computational capabilities and local network conditions, investigate the impacts of making informed offload decisions on system performance. The highly deployment-specific nature of radio communication means that simulations that are capable of producing validated, high-quality, results are extremely hard to construct. Consequently, to produce meaningful results, our experiments have used empirical analysis based on a network of motes located at UCL, running a variety of I/O-bound, CPU-bound and mixed tasks. Using this setup, we have established that even relatively simple load sharing algorithms can improve performance over a range of different artificially generated scenarios, with more or less timely contextual information. In addition, we have taken a realistic application, based on location estimation, and implemented that across the same network with results that support the conclusions drawn from the artificially generated traffic

    A Service-Oriented Approach for Sensing in the Internet of Things: Intelligent Transportation Systems and Privacy Use Cases

    Get PDF
    This paper presents a Sensing-as-a-Service run-time Service Oriented Architecture (SOA), called 3SOA, for the development of Internet of Things (IoT) applications. 3SOA aims to allow interoperability among various IoT platforms and support service-oriented modelling at high levels of abstraction where fundamental SOA theories and techniques are fully integrated into a practical software engineering approach. 3SOA abstracts the dependencies of the middleware programming model from the application logic. This abstraction allows the development efforts to focus on writing the application logic independently from hardware platforms, middleware, and languages in which applications are programmed. To achieve this result, IoT objects are treated as independent entities that may interact with each other using a well-defined message exchange sequence. Each object is defined by the services it provides and the coordination protocol it supports. Objects are then able to coordinate their resources to address the global objectives of the system. To practically validate our proposals, we demonstrate an intelligent transportation system and data privacy functional prototypes as proof of concepts. The use cases show that 3SOA and the presented abstraction language allow the amalgamation of macroprogramming and node-centric programming to develop real-time and efficient applications over IoT

    A fuzzy logic approach to localisation in wireless local area networks

    Get PDF
    This thesis examines the use and value of fuzzy sets, fuzzy logic and fuzzy inference in wireless positioning systems and solutions. Various fuzzy-related techniques and methodologies are reviewed and investigated, including a comprehensive review of fuzzy-based positioning and localisation systems. The thesis is aimed at the development of a novel positioning technique which enhances well-known multi-nearest-neighbour (kNN) and fingerprinting algorithms with received signal strength (RSS) measurements. A fuzzy inference system is put forward for the generation of weightings for selected nearest-neighbours and the elimination of outliers. In this study, Monte Carlo simulations of a proposed multivariable fuzzy localisation (MVFL) system showed a significant improvement in the root mean square error (RMSE) in position estimation, compared with well-known localisation algorithms. The simulation outcomes were confirmed empirically in laboratory tests under various scenarios. The proposed technique uses available indoor wireless local area network (WLAN) infrastructure and requires no additional hardware or modification to the network, nor any active user participation. The thesis aims to benefit practitioners and academic researchers of system positioning

    Algorithmes de localisation distribués en intérieur pour les réseaux sans fil avec la technologie IEEE 802.15.4

    Get PDF
    The Internet of Things is finally blooming through diverse applications, from home automation and monitoring to health tracking and quantified-self movement. Consumers deploy more and more low-rate and low-power connected devices that provide complex services. In this scenario, positioning these intelligent objects in their environment is necessary to provide geo-localized services, as well as to optimize the network operation. However, indoor positioning of devices using only their radio interface is still very imprecise. Indoor wireless localization techniques often deduce from the Radio frequency (RF) signal attenuation the distances that separate a mobile node from a set of reference points called landmarks. The received signal strength indicator (RSSI), which reflects this attenuation, is known in the literature to be inaccurate and unreliable when it comes to distance estimation, due to the complexity of indoor radio propagation (shadowing, multi-path fading). However, it is the only metric that will certainly be available in small and inexpensive smart objects. In this thesis, we therefore seek algorithmic solutions to the following problem: is it possible to achieve a fair localization using only the RSSI readings provided by low-quality hardware? To this extent, we first study the behavior of the RSSI, as reported by real hardware like IEEE 802.15.4 sensor nodes, in several indoor environments with different sizes and configurations , including a large scale wireless sensor network. Such experimental results confirm that the relationship between RSSI and distance depends on many factors; even the battery pack attached to the devices increases attenuation. In a second step, we demonstrate that the classical log-normal shadowing propagation model is not well adapted in indoor case, because of the RSSI values dispersion and its lack of obvious correlation with distance. We propose to correct the observed inconsistencies by developing algorithms to filter irrelevant samples. Such correction is performed by biasing the classical log-normal shadowing model to take into account the effects of multipath propagation. These heuristics significantly improved RSSI-based indoor localization accuracy results. We also introduce an RSSI-based positioning approach that uses a maximum likelihood estimator conjointly with a statistical model based on machine learning. In a third step, we propose an accurate distributed and cooperative RSSI-based localization algorithm that refines the set of positions estimated by a wireless node. This algorithm is composed of two on-line steps: a local update of position¿s set based on stochastic gradient descent on each new RSSI measurement at each sensor node. Then an asynchronous communication step allowing each sensor node to merge their common local estimates and obtain the agreement of the refined estimated positions. Such consensus approach is based on both a distributed local gradient step and a pairwise gossip protocol. This enables each sensor node to refine its initial estimated position as well as to build a local map of itself and its neighboring nodes. The proposed algorithm is compared to multilateration, Multi Dimensional Scaling (i.e. MDS) with modern majorization problem and classical MDS. Simulation as well as experimental results obtained on real testbeds lead to a centimeter-level accuracy. Both landmarks and blind nodes communicate in the way that the data processing and computation are performed by each sensor node without any central computation point, tedious calibration or intervention from a human.L¿internet des objets se développe à travers diverses applications telles que la domotique, la surveillance à domicile, etc. Les consommateurs s¿intéressent à ces applications dont les objets interagissent avec des dispositifs de plus en plus petits et connectés. La localisation est une information clé pour plusieurs services ainsi que pour l¿optimisation du fonctionnement du réseau. En environnement intérieur ou confiné, elle a fait l¿objet de nombreuses études. Cependant, l¿obtention d¿une bonne précision de localisation demeure une question difficile, non résolue. Cette thèse étudie le problème de la localisation en environnement intérieur appliqué aux réseaux sans fil avec l¿utilisation unique de l¿atténuation du signal. L¿atténuation est mesurée par l¿indicateur de l¿intensité du signal reçu (RSSI). Le RSSI est connu dans la littérature comme étant imprécis et peu fiable en ce qui concerne l¿estimation de la distance, du fait de la complexité de la propagation radio en intérieur : il s¿agit des multiples trajets, le shadowing, le fading. Cependant, il est la seule métrique directement mesurable par les petits objets communicants et intelligents. Dans nos travaux, nous avons amélioré la précision des mesures du RSSI pour les rendre applicables à l¿environnement interne dans le but d¿obtenir une meilleure localisation. Nous nous sommes également intéressés à l¿implémentation et au déploiement de solutions algorithmiques relatifs au problème suivant : est-il possible d¿obtenir une meilleure précision de la localisation en utilisant uniquement les mesures de RSSI fournies par les n¿uds capteurs sans fil IEEE 802.15.4 ? Dans cette perspective, nous avons d¿abord étudié le comportement du RSSI dans plusieurs environnements intérieurs de différentes tailles et selon plusieurs configurations , y compris un réseau de capteurs sans fil à grande échelle (SensLAB). Pour expliquer les résultats des mesures, nous avons caractérisé les objets communicants que nous utilisons, les n¿uds capteurs Moteiv TMote Sky, par une série d¿expériences en chambre anéchoïque. Les résultats expérimentaux confirment que la relation entre le RSSI et la distance dépend de nombreux facteurs même si la batterie intégrée à chaque n¿ud capteur produit une atténuation. Ensuite, nous avons démontré que le modèle de propagation log-normal shadowing n¿est pas adapté en intérieur, en raison de la dispersion des valeurs de RSSI et du fait que celles-ci ne sont pas toujours dépendantes de la distance. Ces valeurs devraient être considérées séparément en fonction de l¿emplacement de chaque n¿ud capteur émetteur. Nous avons proposé des heuristiques pour corriger ces incohérences observées à savoir les effets de la propagation par trajets multiples et les valeurs aberrantes. Nos résultats expérimentaux ont confirmé que nos algorithmes améliorent significativement la précision de localisation en intérieur avec l¿utilisation unique du RSSI. Enfin, nous avons étudié et proposé un algorithme de localisation distribué, précis et coopératif qui passe à l¿échelle et peu consommateur en termes de temps de calcul. Cet algorithme d¿approximation stochastique utilise la technique du RSSI tout en respectant les caractéristiques de l¿informatique embarquée des réseaux de capteurs sans fil. Il affine l¿ensemble des positions estimées par un n¿ud capteur sans fil. Notre approche a été comparée à d¿autres algorithmes distribués de l¿état de l¿art. Les résultats issus des simulations et des expériences en environnements internes réels ont révélé une meilleure précision de la localisation de notre algorithme distribué. L¿erreur de localisation est de l¿ordre du centimètre sans aucun n¿ud ou unité centrale de traitement, ni de calibration fastidieuse ni d¿intervention humaine

    A voting median base algorithm for approximate performance monitoring of wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) are expected to be a new, revolutionary technology in the same manner as the Internet. This is due to their special characteristics such as low power consumption, ad hoc operation, self-maintenance and many other features. These special characteristics help in reducing the costs of network manufacture and implementation which extends their applications in a number of areas such as health and military services. Unfortunately, network resources such as memory, power and processing capacity constitute a serious constraint. In addition, they reduce the immunity of the network against external and internal impacts (such as electromagnetic interference) which make sensor node operations frequently deviate from the norm, degrading the WSN's functionality. In some cases the data collected by the network becomes unreliable; the monitoring of the phenomenon may even fail. To ensure the reliability of the network, several tools have been proposed to detect and isolate these deviations but most use relatively high levels of resources. In certain circumstances these state-of-the-art tools are unable to avoid the instant impact of data deviations on the accuracy of the collected data and on the network's functionality. This thesis overcomes these drawbacks by proposing a new, real-time, low resources usage, distributed performance algorithm that will monitor the accuracy of collected data and network functionality in large scale dense deployed WSNs. In order to achieve this, we have used the spatio-temporal correlation between the measurements of the neighbour nodes in large scale dense deployed WSNs. This correlation arises due to near proximity (of the nodes) and/or the slow characteristics' change of monitored phenomenon. The proposed algorithm has been tested via simulation experiments using different simulated and real world application data sets. Moreover, it has been tested on a real network testbed with Mote sensors using continuous reporting and event-driven applications. The results from these experiments showed a high rate of detection of changes in the reliability levels of data and in network performance. They also showed a high level of accuracy in terms of the detection of sensor faults. This, however, comes alongside certain limitations because of the use of simple passive analysis with the proposed algorithm.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Ambient Sound-Based Collaborative Localization of Indeterministic Devices

    Get PDF
    Localization is essential in wireless sensor networks. To our knowledge, no prior work has utilized low-cost devices for collaborative localization based on only ambient sound, without the support of local infrastructure. The reason may be the fact that most low-cost devices are indeterministic and suffer from uncertain input latencies. This uncertainty makes accurate localization challenging. Therefore, we present a collaborative localization algorithm (Cooperative Localization on Android with ambient Sound Sources (CLASS)) that simultaneously localizes the position of indeterministic devices and ambient sound sources without local infrastructure. The CLASS algorithm deals with the uncertainty by splitting the devices into subsets so that outliers can be removed from the time difference of arrival values and localization results. Since Android is indeterministic, we select Android devices to evaluate our approach. The algorithm is evaluated with an outdoor experiment and achieves a mean Root Mean Square Error (RMSE) of 2.18 m with a standard deviation of 0.22 m. Estimated directions towards the sound sources have a mean RMSE of 17.5 ° and a standard deviation of 2.3 °. These results show that it is feasible to simultaneously achieve a relative positioning of both devices and sound sources with sufficient accuracy, even when using non-deterministic devices and platforms, such as Android

    Cooperative mobility maintenance techniques for information extraction from mobile wireless sensor networks

    Get PDF
    Recent advances in the development of microprocessors, microsensors, ad-hoc wireless networking and information fusion algorithms led to increasingly capable Wireless Sensor Networks (WSNs). Besides severe resource constraints, sensor nodes mobility is considered a fundamental characteristic of WSNs. Information Extraction (IE) is a key research area within WSNs that has been characterised in a variety of ways, ranging from a description of its purposes to reasonably abstract models of its processes and components. The problem of IE is a challenging task in mobile WSNs for several reasons including: the topology changes rapidly; calculation of trajectories and velocities is not a trivial task; increased data loss and data delivery delays; and other context and application specific challenges. These challenges offer fundamentally new research problems. There is a wide body of literature about IE from static WSNs. These approaches are proved to be effective and efficient. However, there are few attempts to address the problem of IE from mobile WSNs. These attempts dealt with mobility as the need arises and do not deal with the fundamental challenges and variations introduced by mobility on the WSNs. The aim of this thesis is to develop a solution for IE from mobile WSNs. This aim is achieved through the development of a middle-layer solution, which enables IE approaches that were designed for the static WSNs to operate in the presence of multiple mobile nodes. This thesis contributes toward the design of a new self-stabilisation algorithm that provides autonomous adaptability against nodes mobility in a transparent manner to both upper network layers and user applications. In addition, this thesis proposes a dynamic network partitioning protocol to achieve high quality of information, scalability and load balancing. The proposed solution is flexible, may be applied to different application domains, and less complex than many existing approaches. The simplicity of the solutions neither demands great computational efforts nor large amounts of energy conservation. Intensive simulation experiments with real-life parameters provide evidence of the efficiency of the proposed solution. Performance experimentations demonstrate that the integrated DNP/SS protocol outperforms its rival in the literature in terms of timeliness (by up to 22%), packet delivery ratio (by up to 13%), network scalability (by up to 25%), network lifetime (by up to 40.6%), and energy consumption (by up to 39.5%). Furthermore, it proves that DNP/SS successfully allows the deployment of static-oriented IE approaches in hybrid networks without any modifications or adaptations

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF
    • …
    corecore