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Abstract

Nowadays, cost effective sensor networks can be deployed as a result of a plethora of recent engineer-

ing advances in wireless technology, storage miniaturisation, consolidated microprocessor design, and

sensing technologies.

Whilst sensor systems are becoming relatively cheap to deploy, two issues arise in their typical

realisations: (i) the types of low-cost sensors often employed are capable of limited resolution and tend

to produce noisy data; (ii) network bandwidths are relatively low and the energetic costs of using the

radio to communicate are relatively high. To reduce the transmission of unnecessary data, there is a

strong argument for performing local computation. However, this can require greater computational

capacity than is available on a single low-power processor. Traditionally, such a problem has been

addressed by using load balancing: fragmenting processes into tasks and distributing them amongst the

least loaded nodes. However, the act of distributing tasks, and any subsequent communication between

them, imposes a geographically defined load on the network. Because of the shared broadcast nature of

the radio channels and MAC layers in common use, any communication within an area will be slowed by

additional traffic, delaying the computation and reporting that relied on the availability of the network.

In this dissertation, we explore the tradeoff between the distribution of computation, needed to en-

hance the computational abilities of networks of resource-constrained nodes, and the creation of network

traffic that results from that distribution. We devise an application-independent distribution paradigm and

a set of load distribution algorithms to allow computationally intensive applications to be collaboratively

computed on resource-constrained devices. Then, we empirically investigate the effects of network

traffic information on the distribution performance. We thus devise bandwidth-aware task offload mech-

anisms that, combining both nodes computational capabilities and local network conditions, investigate

the impacts of making informed offload decisions on system performance.

The highly deployment-specific nature of radio communication means that simulations that are

capable of producing validated, high-quality, results are extremely hard to construct. Consequently, to

produce meaningful results, our experiments have used empirical analysis based on a network of motes

located at UCL, running a variety of I/O-bound, CPU-bound and mixed tasks. Using this setup, we have

established that even relatively simple load sharing algorithms can improve performance over a range of

different artificially generated scenarios, with more or less timely contextual information. In addition,

we have taken a realistic application, based on location estimation, and implemented that across the same

network with results that support the conclusions drawn from the artificially generated traffic.
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Chapter 1

Introduction

1.1 Background
Years of steady advancements in Micro-Electro-Mechanical Systems (MEMS) have seen them gain wide

popularity, especially because of the inexpensive production and pervasive deployment of miniaturised

nodes with communication, computation, storage, and sensing capabilities. Gumstix [Gumstix, 2010],

SunSPOT [SunSPOT, 2010], Arduino [Arduino, 2010], MICAz [MICAz, 2010], Imote2 [Imote2, 2010],

TMote Sky [TELOSB, 2010] are just a few examples of the plethora of embedded devices designed to

perform one or more dedicated functions, often with real-time computing constraints.

In particular, recent advances in integrated circuitry and wireless communication, fabrication

cost reductions, and innovative high-value applications have solidified the usage of Wireless Sen-

sor Networks (WSNs) as a significant component of pervasive computing. So far, WSNs, com-

prised of small, autonomous, and highly-constrained sensor nodes, have played a crucial role in

filling the void between computers and the physical world by enabling continuous, non-intrusive

observations of real-world phenomena, often achieving goals that have been unattainable in the

past. In particular, WSNs have been usually employed in a wide spectrum of applications rang-

ing from environmental monitoring [Mainwaring et al., 2002], to wildlife tracking [Juang et al., 2002],

supervised agriculture [Burrell et al., 2004], home automation [Petriu et al., 2000], building monitor-

ing and control [Deshpande et al., 2005], and emergency response [Costa et al., 2007], to name but a

few. Furthermore, recent surveys on WSNs applications [Yicka et al., 2008, Arampatzis et al., 2005,

l. F. Akyildiz et al., 2002] have emphasised their use in any kind of context.

However, since the computational capabilities of such devices are growing quickly, while their

size keeps shrinking, we believe that, nowadays, WSNs have become powerful enough to play not

only a passive, but also an active role. To date, WSNs have represented a viable solution to cover

the former situation, thus to gather information from the environment and make it available to sci-

entists [l. F. Akyildiz et al., 2002], or to use sensed data to decide on actions to take on the environ-

ment [l. F. Akyildiz and Kasimoglu, 2004]. On the contrary, we envision their active usage as entities

that, because of their computational capabilities, could be able to collaboratively perform more complex

and intensive applications. Moreover, since sensor nodes are not only limited in size but because they

are also extremely cheap, they can easily and widely be deployed, thus allowing their pervasive use in
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our everyday life.

Given the nature of WSNs technology, it is envisioned that there will be, in the near future, a

growing interest in instrumenting public spaces with WSNs [Campbell et al., 2006, Murty et al., 2008],

thus exploiting their pervasive deployment and use within a variety of fields. Let us now provide an

overview of some application scenarios.

Scenario 1 - Emergency

Consider a Chemical, Biological, Radiological or Explosive (CBRE) emergency event occurring in an

indoor environment (e.g. buildings, train stations, underground, etc.). If such threats are realised, severe

damage may be caused within a relatively limited area. This limited scope means that it is possible,

and clearly desirable, for the civil defence forces to respond as quickly and as effectively as possible to

ameliorate and contain the effects of the resulting hazards. However, particularly in indoor environments

where the effects of such attacks are magnified by containment, rescue services arrive from outside with-

out a detailed picture of what is happening inside and must pause in order to obtain that picture before

being able to respond effectively. WSNs could therefore play a crucial role in supporting first responders

to obtain such contextual snapshot. For example, before taking decisions about how to act effectively,

first responders would need to know the following environmental information: (i) the epicentre of the

threat (e.g. fire location); (ii) the spread of a possible gas cloud, fire, smoke; (iii) the level of hazard

lethality when entering the area. Thus, for example, the epicentre and spread of a gas cloud could be

assessed and, using a model of lethality, the first responders could directly go to the places in which

injured people might be located. WSNs would need to provide a small amount of information that, once

locally gathered and aggregated inside the network, could be externally communicated to the Command

& Control (C2) authority in order to inform reactive countermeasures.

Similarly, once first responders have entered the hazardous environment, the external C2 would

constantly need to know the position of personnel, while it moves. Since in indoor environments Global

Positioning System (GPS) support cannot be assumed, smart localisation algorithms would thus need

to be computed locally and a map of nodes delivered to the outside C2. Simultaneously, aggregated

data, gathered from embedded accelerometers and gyroscopes, could draw a real-time history of first

responders’ movements, identifying if they were standing, walking, or running at each instant of time.

If the scenario represents a situation that is too dangerous to send human responders inside, an

alternative approach could be the deployment of a group of autonomous robots, aiming both to explore

and look for hazards or victims, without risking human lives. Moreover, the robots could also deploy a

network of sensors during the exploration process [Ferranti et al., 2009]. Such a network could be used

by humans to monitor how the emergency situation evolves over time (e.g. moving fires, collapsing

corridors). Furthermore, paths could be discovered and maintained by the robots from points of interest

in the area (e.g. places where victims or hazards are located) to exit points [Ferranti et al., 2008]. In

order to accomplish all these tasks, robots need a great amount of computational power, which could be

provided by the locally and dynamically built sensor network.

These are only few examples of the pervasive deployment of WSNs to assist personnel in handling
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emergencies. To date, a considerable amount of work for emergency scenarios has been performed by

Professor Galea’s Fire Safety Engineering Group (FSEG) within the University of Greenwich. FSEG

is, in fact, one of the largest research groups in the world dedicated to the development and applica-

tion of mathematical modelling tools (i.e. EXODUS [EXODUS, 2010, Galea et al., 1993], SMART-

FIRE [SMARTFIRE, 2010, Taylor et al., 1996], AASK database [AASK, 2010, Owen et al., 1998])

suitable for the simulation of fire/evacuation-related phenomena. The group specialises in computa-

tional fire engineering, including fire and evacuation modelling and non-emergency pedestrian dynam-

ics. FSEG expertise and modelling tools are used to help solve fire safety, security and pedestrian dy-

namics problems. MESA [MESA, 2010], SAFECOM [SAFECOM, 2010], RUNES [Costa et al., 2007],

U-2010 [U-2010, 2010] and others [Varakliotis et al., 2009] are additional examples of practical scenar-

ios adopting the pervasive deployment and usage of WSNs within emergencies. In particular, U-2010’s

objective is to provide the most capable means of communication and the most effective access to in-

formation to everybody required to act in case of accident, incident, catastrophe or crisis, while using

existing or future telecommunication infrastructures.

Scenario 2 - Tracking and surveillance

Other scenarios benefitting from the pervasive deployment of WSNs are those in which devices are

adopted for target tracking and localisation [Bhatti and Xu, 2009, Amundson and Koutsoukos, 2009],

search and rescue [van Willigen et al., 2009, Ergen et al., 2009] and surveillance operations [Ali et al., 2008].

For example, consider an outdoor environment (e.g. industrial, financial and urban areas, etc.) re-

quired to be constantly patrolled for security reasons. Within industrial areas it might be necessary to

promptly detect and notify the presence of unauthorised people in order to limit their access to restricted

areas. Similarly, within urban areas it might be constantly required to patrol city roads to detect suspi-

cious activities, thus supporting local police in their surveillance activity. Moreover, especially within

highly populated areas, it may be required to constantly monitor the level of air pollution. In the presence

of massive environmental disasters (e.g. earthquakes, typhoons, fires, flooding, etc.), it might be nec-

essary to rely upon the aid of additional support entities assisting search and rescue operations, disaster

recovery and assessing the level of damage.

Whenever such situations occur, swarms of Unmanned Aerial Vehicles (UAVs) could therefore

be deployed in the environment to support human personnel in its activities of surveillance, patrolling,

tracking, monitoring, search and rescue operations. The SUAAVE project [SUAAVE, 2010] has been

recently initiated to deal with such kind of situations. In SUAAVE, swarms of UAVs represent clouds of

networked resource-constrained vehicles acting as sensor platforms targeted towards achieving a global

objective in an efficient manner. Such flocks of helicopters have the intrinsic property of being formed by

individually autonomous vehicles (i.e. not under the direct real-time control of a human) that are however

collaboratively able to self-organise to perform the following actions: (i) sense the environment in the

most efficient possible way; (ii) respond to node failures; and (iii) report their findings to a base station

on the ground. In effect there are three separate capabilities for use in addressing application-specific

problems: (i) ground sensing of various types; (ii) atmospheric sampling; and (iii) the ability to bridge
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communications, all within a rapidly deployable, survivable, hands-off package. An increasing interest

towards the exploration of decentralised, autonomous flocking schemes has been recently detected, thus

leading to the creation of several further research projects [Xiong et al., 2010].

Scenario 3 - Transportation Systems

WSNs have also become an important part of real-time sensing, monitoring, and control of critical

transport systems [Al-Ars and Kootkar, 2007]. National railway authorities have been recently attracted

towards WSN deployments, against wired ones, because of their (i) constrained power consumption,

(ii) automatic and dynamic configuration and routing (i.e. mesh networking multi-hop technologies),

(iii) reliable self-healing characteristics for long-term installations, (iv) fast adaptation to mobility and

environmental changes.

The integration of WSNs within transport systems would thus lead to exploit intelligent trains

and railway infrastructures (i) avoiding expensive wire replacements, while (ii) improving system se-

curity, remote monitoring and railway safety. Intelligent infrastructures could thus be adopted, from

an energy perspective, to assist transport systems in the network self-maintenance and sustainabil-

ity, while at the same time representing a flexible pollution monitoring system over large urban ar-

eas [Gil-Castieira et al., 2008]. Within underground transport systems, WSNs could also be in charge of

monitoring environmental conditions, with respect to human movement and autonomous device locali-

sation.

The above examples represent just a few of possible application scenarios, developed recently, that

take advantage of WSNs. However, despite their individual characterisations, within each scenario it is

possible to identify a set of common requirements. Firstly, each scenario has a set of computationally

intensive applications for which distributed processing capabilities are required, since each application

may not run easily on individual, portable devices. In fact, even if it were possible to over-engineer the

computational capacity of nodes and deploy them on a large-scale, constraints of cost, size and energy

consumption may make this impracticable for deployed systems. Secondly, the above mentioned appli-

cations are likely to run within environments with heterogeneous network conditions. Since in none of

the above scenarios can wired communication be assumed (e.g. it may be interrupted because of dis-

ruption to buildings in emergencies, it may not be an option within UAVs scenarios in which swarms of

helicopters exclusively communicate with each other wirelessly, etc.), devices are expected to dynami-

cally and locally collaborate with each other to achieve a common goal, communicating through wireless

radio communications even under heterogeneous and heavy network conditions. In such scenarios, the

main aim is therefore to improve the overall computing capacity of a system by making intelligent offload

decisions under severe environmental network conditions.

1.2 Problem Statement

The real deployment of scenarios like those described above requires that we address several challenges

that have not been tacked in the literature thus far.
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First Requirement: Impact of Distribution

Although the computational capabilities of WNSs devices are growing quickly, their CPUs, memory

size, as well as network bandwidth and latency, will continue to lag several orders of magnitude behind

their fixed counterparts. Thus single devices, alone, might not able to perform computationally intensive

applications. On the other hand a network of devices might contain sufficient computational capacity to

satisfy such needs, provided that capacity can be aggregated in an intelligent way. The first requirement

to be addressed is thus the impact of distribution.

The question that needs to be answered is thus the following: How is distributed processing

achieved? Whenever the sophistication of applications, particularly if dynamically deployed, reaches

a point in which tasks, into which a computationally intensive job has been split, cannot be executed on

a single node, they need to be dynamically offloaded in the network to others that could assist them with

computation. The question is therefore how this can best be achieved.

Second Requirement: Impact of Network Conditions

Whenever distributed processing takes place, offload of information competes with the existing network

congestion. Thus, whenever considerable amount of communication plays a role within the environment,

it becomes crucial to decide to where to direct the offload and to analyse the impact of incorrect decisions.

The second requirement to be addressed is thus the impact of network conditions on the distribution

performance.

The question that needs to be answered is thus the following: Towards which areas should a task of-

fload be directed under heterogeneous network conditions? In fact, whenever a task offload adds itself to

existing heterogeneous network traffic levels, tasks cannot be randomly offloaded within the network but

it becomes instead crucial to account for both task characterisation and real-time local network conditions

in order to decide where the distribution should actually take place. Since the extreme dynamism of the

environment from a communication perspective is difficult to emulate within simulators through models

and representations of the radio physical and MAC layers, we perform an experimental evaluation in a

WSN testbed. While traditional distributed systems are characterised by a stable network infrastructure

where hosts are permanently connected to the network through high-bandwidth links, WSNs instead

lack such reliable communication links and are more prone to congestion, collision, and interference.

Therefore, the impact of network conditions within WSNs are likely to play a significant role.

1.3 Research Hypothesis
The scenarios presented in Section 1.1 illustrate a few examples of situations in which a set of computa-

tionally intensive applications must run together to allow systems to function effectively. To generalise

this concept, let us define a number of intensive applications, namely Jobi with i = {1, . . . , N}, re-

quired to run simultaneously in each scenario. Let us also assume that each Jobi has been split into M

profiled tasks, namely Taski,j with j = {1, . . . ,M} for the specific Jobi. We are now in a position to

present the hypothesis behind our works as follows:
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We posit that, by accounting for real-time local network conditions in distributing each Taski,j ,

the overall Jobi latency decreases.

This implies that by distributing computationally intensive applications making informed decisions

about the local level of communication within the environment, the latency in executing the whole Jobi

decreases. We will test our research hypothesis along the latency dimension since, as described in

Chapter 2, timeliness of information is vital for the scenarios we elected to use.

1.4 System Assumptions
In meeting our research hypothesis, the assumption that our system makes is as follows:

• We assume the presence of an external task profiler able to characterise each Taski,j .

Our system assumes the presence of an external profiler, either static or dynamic, that is able both

to identify tasks Taski,j into which Jobi has been split and to characterise them both from a com-

putational and a communication perspective. We believe that this assumption does not constraint

the validity of the work, because it allows the system to choose and adopt the most suitable profiler

to characterise tasks without affecting the distribution process.

1.5 Experimental Assumptions
In order to understand the statistical validity of the experimental results presented in this dissertation

on the performance of deployed systems, it is crucial to highlight the experimental assumptions made

during the testing as follows:

• We assume constant radio connectivity over the timescale of each individual task offload.

We assume that system nodes are moving sufficiently slowly relative to one another so that ra-

dio connections are unlikely to break before offloaded tasks reach completion and consequent

computed results are uploaded back. We believe this assumption is reasonable because the tasks

involved in the scenarios described above are dynamic and latency matters.

• We assume that nodes are homogeneous.

For the whole evaluation conducted on deployed testbeds, the nodes used in the system have

identical computational capabilities, and thus our system does not make any assumption about

the usage of devices required to be more computationally powerful than others. We believe this

assumption is reasonable because it cannot always be assumed that environments are equipped

with devices more computationally capable than others.

• We assume that tasks have equal priority and are executed in parallel.

Every task into which a job is split has the same execution priority, thus we assume that task exe-

cution cannot be interrupted because of different task priorities. Moreover, because of concurrent

execution, independent tasks can simultaneously and concurrently run on the same node. We be-

lieve this assumption is reasonable because task independence and parallel execution are common

requirements of parallel computing.
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• Heterogeneous network contention levels are obtained through the introduction of additional in-

terfering nodes.

In order to reproduce heterogeneous, unbalanced level of network communication, we equip the

system with nodes generating additional network traffic perturbations. We test our approach along

a range of settings and configurations and, for each result, we highlight the boundaries of the ben-

efits brought by our approach. Interfering nodes emulate both general interference and that due

to traffic aggregation at sink nodes. We believe this assumption is reasonable because, for the

scenarios we investigate, heterogeneous network contention is envisioned to play a non-negligible

role [Desch, 2001].

• Sink nodes are disregarded in the experimental evaluation.

In the motivating scenario of this dissertation, sink nodes bridge the information flow between

indoor and outdoor entities. They are therefore nodes affected by non-negligible network traffic.

Whenever the result of a job computation is ready to be delivered to external authorities, informa-

tion flows with routing protocols through sink nodes. Hence, an extra routing time would add itself

to the actual job computation time if one were interested in measuring the global time spent from

application definition to final result delivery. However, since our research hypothesis focuses on

locally analysing the impact of network conditions whenever node collaborations become neces-

sary to achieve job completion, the data we are interested in analysing is transparent to the presence

of sinks (i.e. routing is a system invariant being required in both centralised and distributed scenar-

ios). Thus, within the experimental evaluation we omit the routing time computation and we use,

instead, the introduced interferer nodes to emulate the presence of sinks traversed by considerable

traffic routes.

• Jobs characterisations fall into specific categories.

Whenever task distribution becomes necessary to support a node in its need to achieve job comple-

tion, it is crucial to provide a characterisation for jobs to be distributed. The experiments performed

and described in this dissertation do not aim to cover the whole range of possible situations. In-

stead, we analyse behaviours for a number of applications falling into specific sets of categories.

In particular, initially we seek to distribute homogeneous jobs, then we heterogeneously profile

them according to their different level of computational and communication load. Job profiling

has been driven by adapting to our scenario task characterisations from the computational grids

field [Foster et al., 2001, Raimondi et al., 2008]. We believe this assumption is reasonable because

we provide experimentation for a wide range of tasks while, at the same time, characterising them

according to models extracted from real-world data.

• Errors in job profiling characterisations are disregarded.

In the experimental evaluation, we omit the introduction of errors in job profiling characterisations

for the following set of reasons. Firstly, some of the heuristics are completely transparent to

task profiling, thus a wrong characterisation would not impact on the decision making process.
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Secondly, for those heuristics that, instead, account for profile characterisation, the obtained results

do not outperform those obtained with the heuristic without profile characterisation. Therefore,

we disregard the introduction of a theoretical error model within job profiling characterisations.

1.6 Contributions

Whenever computationally intensive applications cannot be executed on individual nodes, they need to

be distributed and thus collaboratively executed. As mentioned above, the aim of this dissertation is thus

to empirically investigate the impact of local network conditions on distribution within deployed systems.

This is achieved by designing algorithms and mechanisms both to distribute jobs and to simultaneously

cope with local network traffic in order to achieve performance improvements in terms of average job

execution latency.

The research contributions tackled in the remainder of this dissertation can thus be organised ac-

cording to the main experimental evaluation we have performed. We are now in a position to list the

experimental research contributions as follows:

1.6.1 Distributed Wireless Ad-hoc Grid Paradigm

The first contribution of this dissertation is represented by the presentation of the Distributed Wireless

Ad-hoc Grid (DWAG) paradigm [Rondini and Hailes, 2007a]. Firstly, we present the motivating sce-

nario. Secondly, we detail the DWAG paradigm devised to allow computationally intensive applications

to be collaboratively computed on resource-constrained devices. Thirdly, we list the requirements for

applications to allow DWAG applicability. Finally, we describe DWAG main system flow, thus the se-

quence of actions undertaken through DWAG execution.

1.6.2 Network Conditions Impact on Distribution in Deployed Systems

The second contribution of this dissertation is represented by the empirical investigation of the

effects of network traffic information on the performance of distributing homogeneous applica-

tions [Rondini and Hailes, 2007b, Rondini et al., 2008b]. Firstly, we propose two load sharing algo-

rithms, namely the Auction and the Lookup List algorithms, to collaboratively distribute computationally

intensive jobs. Secondly, we implement such algorithms on deployed WSNs testbeds composed of

TMote Sky [TELOSB, 2010] devices. Thirdly, we empirically investigate the effects of local network

conditions on the job execution performance. Hence we devise and integrate within the load sharing al-

gorithms a Bandwidth-Aware Task Scheduling (BATS) offload mechanism that, dealing with both nodes

computational capabilities and local network conditions, investigates the impacts of making informed

offload decisions. Finally, we evaluate the effects of network conditions on the system performance at

the presence of diversified traffic levels. The set of experiments has been specifically chosen to measure

the impact of network conditions in settings where diversified level of network contention occurs but the

offloaded tasks are homogeneous.
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1.6.3 Impact of Heterogeneous Applications Distribution

The third contribution of this dissertation is represented by the empirical investigation of the effects of

combining network contention information with task profiling characterisation while distributing and

collaboratively executing heterogeneous applications kinds [Rondini and Hailes, 2010]. Thus, diverse

sets of applications are locally distributed and collaboratively executed, with some of them requiring

more computational capacity, while others more communication effort. Firstly, we define a set of appli-

cation classes and we profile them according to their computational and communication requirements.

Secondly, we empirically emulate heterogeneous job mixtures to be distributed. Thirdly, we evaluate

the robustness of the BATS mechanism against a Profile-Bandwidth-Aware Task Scheduling (P-BATS)

decision-making criteria combining task characterisation and network conditions. Fourthly, we devise

a heuristic algorithm able to greedily compute an analytical lower-bound against which to compare the

experimental data. Finally, we investigate the effects of network conditions, emphasising the consequent

algorithmic performance degradation. The set of experiments has been specifically chosen to measure

the impact of network conditions in settings where diversified level of network contention occurs but the

offloaded tasks are heterogeneous.

1.6.4 Localisation Case Study

The fourth contribution of this dissertation is represented by the applicability of the devised

DWAG paradigm with network control mechanism to a case study involving a localisation applica-

tion [Rondini et al., 2008a]. Firstly, we describe the existing localisation algorithm proposed by Li et

al. [Li and Kunz, 2009, Li, 2008, Li and Kunz, 2007a, Li and Kunz, 2007b], we study its limitations,

and we propose adaptations to allow its applicability to WSNs testbeds. Secondly, we identify the set

of tasks into which the localisation job can be split. Thirdly, we integrate and apply the load sharing

algorithm with distribution mechanism to the localisation job. Since most of the work done so far in

WSNs has almost exclusively been evaluated through simulations running on powerful machines, we

analyse the real-world issues met by applying distributed algorithms on testbeds. Finally, we evaluate

the system performance and the improvements achieved by accounting for network conditions during

the decision-making phase.

1.7 Publications
The main contributions of this dissertation have been published in the papers listed below. All papers

are co-authored by my supervisor, Professor Stephen Hailes, and several of them, by Dr. Li Li from

Communications Research Centre, Canada, thanks to the intense research collaboration carried on while

developing its collaborative localisation [Li and Kunz, 2009] approach, thus porting it from simulations

within pragmatic deployments.

• E. Rondini, S. Hailes and L. Li. Distributed Wireless Ad hoc Grids With Bandwidth Control For

Collaborative Node Localisation. In Proceedings of the 27th annual IEEE/Boeing Military Com-

munications Conference (MILCOM 2008), pages 1-8, San Diego, California, November 2008.
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• E. Rondini, S. Hailes and L. Li. Load Sharing and Bandwidth Control in Mobile P2P Wireless

Sensor Networks. In Proceedings of the 5th IEEE International Workshop on Mobile Peer-to-Peer

Computing (MP2P 2008) in conjunction with the 6th IEEE International Conference on Pervasive

Computing and Communication (PerCom 2008), pages 468-473, Hong Kong, China, March 2008.

• E. Rondini and S. Hailes. Distributed Computation in Wireless Ad Hoc Grids with Bandwidth

Control. In Proceedings of the 5th ACM Conference on Embedded Networked Sensor Systems

(SenSys 2007), pages 437-438, Sydney, Australia, November 2007.

• E. Rondini and S. Hailes. A Contiki-based Prototype for Creating Wireless Ad Hoc Grids. Contiki

Hands-On Workshop 2007, SICS, Kista, Stocholm, Sweden, March 2007.

1.8 Thesis Outline
The remainder of this dissertation is organised as follows:

Chapter 2 illustrates the common requirements of applications envisioned to run in the set of scenarios

presented in Chapter 1. Our position to related work is then discussed, highlighting the most

common assumptions in related work and enhancing the crucial importance of dealing with radio

communications issues.

Chapter 3 presents the work motivating scenario together with the DWAG paradigm and illustrates the

applicability requirements to allow jobs to be collaboratively computed. Our position to related

work is discussed, highlighting the most common assumptions made.

Chapter 4 introduces the impact of network conditions on distribution, it describes the proposed load

distributing algorithms, and it presents the bandwidth-aware BATS mechanism. An extensive

experimental evaluation is carried on to test the impact of distributing homogeneous applications

through our proposed approach on deployed testbeds. A critical evaluation of the achieved results

concludes the chapter.

Chapter 5 discusses the impact network conditions in simultaneously distributing heterogeneous kinds

of applications. It defines an additional P-BATS offloading mechanism accounting for a com-

bination of task profile and local radio communication information to handle task distribution.

Extensive experimental evaluation is performed on deployed testbeds with a variety of experimen-

tal settings and traffic configurations. A critical evaluation of the achieved results terminates the

chapter.

Chapter 6 describes the localisation case study, presents the adaptations brought to allow both its dis-

tributed development on deployed WSNs testbeds and its DWAG applicability. Critical experi-

mental evaluation concludes the chapter.

Chapter 7 summarises our work, points out its limitations, and identifies areas of future research.
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Requirements and Background

In Chapter 1, we provided a general overview of the research problem, its motivation, the assumptions

and the contributions we plan to include in this dissertation. This chapter illustrates, instead, the require-

ments common to application scenarios presented in Section 1.1 and we provide an extensive critical

analysis of the existing related work on such challenges.

The remainder of this chapter is thus organised as follows: (i) in Section 2.1, we analyse the main

requirements of application scenarios listed in Section 1.1; and (ii) in Section 2.2, we detail the existing

related work tackling such requirements.

2.1 Scenario Requirements and Background
In Section 1.1, we presented a set of possible application scenarios, such as emergency (Section 1.1),

tracking and surveillance (Section 1.1), intelligent transportation systems (Section 1.1), taking advantage

of Wireless Sensor Networks (WSNs) pervasive deployment and collaboration. We are now in a position

to identify the set of requirements common to such scenarios, as follows:

• In real-world situations, it is frequently the case that multiple computationally intensive applica-

tions are required to run simultaneously. Although the current research trend is that of instrument-

ing the environment with small devices that are cheap enough to be pervasively deployed but suffi-

ciently powerful to undertake basic computations, each resource-constrained device, alone, might

not able to perform the totality of the required computationally intensive applications. In addi-

tion, although the computational capabilities of devices are growing quickly, their CPUs, memory

size, as well as network bandwidth and latency, will continue to lag several orders of magnitude

behind their fixed counterparts, thus it is unsafe to assume that each application will run entirely

on a single device. Therefore, distributed processing becomes a system requirement within such

scenarios. In Section 2.2.1, we describe related work concerning WSNs and the way in which

distributed and collaborative processing has been tackled.

• Whenever distributed processing becomes a system requirement, devices are expected to syn-

chronise and communicate with each other. Because a wired network is usually not available in

pervasive deployments, communication between devices needs to be wireless. In wireless net-

works, each communication exchange modifies the actual level of traffic and leads to inevitable
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heterogeneous environmental network conditions. Moreover, this additional network traffic adds

itself to existing network communications. In fact, while traditional distributed systems (e.g. com-

putational grids) are characterised by stable network infrastructures where hosts are permanently

connected to the network through high-bandwidth wired links, WSNs lack instead of such reliable

communication and are more prone to congestion, interference, message collisions and consequent

retransmissions. Therefore, the analysis of network conditions becomes a system requirement

within such scenarios. In Section 2.2.2, we describe the problems arising from radio communica-

tions in WSNs.

• The scenarios described in Section 1.1 are examples of real-world situations. However, although

motivated by real-world scenarios, existing work in WSNs is often almost exclusively evaluated

through simulations. Although simulators represent a straightforward choice for evaluations be-

cause of their extreme flexibility, modularity, scalability and adaptability, they make many simpli-

fying assumptions, especially regarding wireless radio communication. In fact, the dynamism of

the environment from a communication perspective cannot be fully matched through radio com-

munication models and representations. For this reason, since simulator assumptions could com-

promise feasibility and actual performance of the devised algorithms, we decided to perform the

entire evaluation of the current dissertation through experimentations on real-world deployments.

Therefore, the comparison between simulation vs. deployed system experimentation becomes a re-

quirement within such scenarios. In Section 2.2.3, we describe the most commonly used Operating

Systems (OS) and platforms adopted to devise algorithms and infrastructures in WSNs.

We are now in a position to present the existing related work tackling the scenario requirements

mentioned above.

2.2 Related Work
It is not the aim of this dissertation to provide a detailed literature review in the entire area of WSNs, as

this would require the discussion of issues such as message routing and dissemination, security, quality of

service and so on, aspects that have not been investigated within the current work. For a more exhaustive

discussion on the state-of-the-art of WSNs, the interested reader may refer to [Karl and Willig, 2005,

Stojmenovic, 2005], to name but a few examples.

We are interested, instead, in discussing our position against the main scenario requirements listed

in Section 2.1. In particular, we structure the discussion into three main parts, thus (i) distributed pro-

cessing; (ii) network communication; and (iii) platforms in WSNs.

2.2.1 Distributed Processing in Wireless Sensor Networks

Recents advancements in MEMS have seen them gain wide popularity, especially because of the inex-

pensive production and pervasive deployment of miniaturised nodes with communication, computation,

storage, and sensing capabilities.

As mentioned in Section 1.1, MICAz [MICAz, 2010], SunSPOT [SunSPOT, 2010], TMote

Sky [TELOSB, 2010, Moteiv, 2006], Imote2 [Imote2, 2010] are just a few examples of the plethora
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of embedded devices designed to perform one or more dedicated functions, often with real-time comput-

ing constraints. Despite their diverse form-factor and peculiar characteristics, the individual hardware

components, used for processing and communication, fall into a small number of classes. Most plat-

forms use a 16-bit Texas Instruments MSP430 processor or a 8/16-bit micro-controller of the Atmel

ATMega family. Notable exceptions are the Imote2 and SunSPOT platforms, using the more powerful

Intel PXA and ARM920T cores, respectively. The amount of volatile memory ranges from 2 KB to

512 KB, whereas external memory support varies from 128 KB to 4 MB. As for radio hardware, most

platforms work in the 2.4GHz ISM band, and feature IEEE 802.15.4 [Baronti et al., 2007] compliant

radio chips (e.g. the ChipCon CC2420 [Instruments, 2006]). Alternative solutions operate in the 433

or 868/916 MHz band (e.g. using the ChipCon CC1000 transceiver). Various types of sensors and

actuators (e.g. temperature, sound, light, humidity, pressure) may be attached to the platforms by us-

ing expansion boards [EasySen, 2010] and thus the type of sensing/actuator device tends to be rather

application-specific.

Tmote Sky 

Figure 2.1: TMote Sky platform.

In the last few years TMote Sky devices, illustrated in Figure 2.1, have increased considerably their

popularity and market share in both academia and industry [Basaran et al., 2006], thanks to their inex-

pensive and easy deployable general-purpose platform. For this reason and because of the opportunity

to perform experimentation on a testbed, the Heterogeneous Experimental Network (HEN) [HEN, 2010]

TMote Sky sensor testbed deployed at the Department of Computer Science at University College Lon-

don (UCL-CS), we adopted TMote Sky devices for the experimental evaluation of the current disserta-

tion. Thanks to the ultra-low-power micro-controller and the electrically buffered external components

that can be switched-off when not in use, the platform achieves very low quiescent currents in the sleep

mode, and very fast wake-up times. Moreover, TMote Sky devices are equipped with a MSP430F1611

micro-controller from the Texas Instruments MSP430 family of ultra-low-power 8MHz 16-bit micro-

controllers. The on-board micro-controller offers 10KB RAM and 48KB flash programmable ROM.

The board provides 1MB of external flash memory connected to the SPI bus. TMote Sky devices are

equipped with ChipCon CC2420, an IEEE 802.15.4 compliant radio transceiver featuring data rates of

up to 250kbps. The transceiver is connected to an onboard antenna providing about 50m range indoors

and 125m outdoors. The TMote Sky board has predefined positions for mounting humidity and tem-

perature sensors from Sensirion AG (i.e. SHT11 and SHT15 are the supported models), as well as for

light sensors like the Hamamatsu Corporation S1087 for sensing photosensitive solar radiation or the

S1087-01 for total spectrum measurements. TMote Sky are approximately 70mm long, 30mm wide and
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20mm tall, and they weigh 23g excluding batteries.

To date, TMote Sky devices have been adopted within a wide spectrum of WSNs applica-

tions [Arampatzis et al., 2005, l. F. Akyildiz et al., 2002, Intanagowiwat et al., 2000, Hill et al., 2000,

Kulik et al., 1999] ranging from traffic and wildlife habitat monitoring, battlefield surveillance, target

detection and tracking, home automation, flood and fire detection, security and surveillance, emer-

gency scenarios and military applications. Moreover, they have been mainly adopted with the idea

of instrumenting the physical environment with resource-constrained, low cost devices able to moni-

tor environmental phenomena by progressively gathering data readings enabling possible system actua-

tors [Costa et al., 2007].

However, in situations like those presented in Section 1.1 in which several computationally intensive

applications are required to be simultaneously in place, the amount of computation to be performed can

necessitate greater computational capacity than is available on a single low-power processor. This has

therefore motivated the implementation of distributed processing approaches in WSNs.

A comprehensive review of the existing literature on techniques and protocols for in-network

aggregation and processing in WSNs has been presented [Fasolo et al., 2007]. In-network ag-

gregation is the global process of gathering and routing information through a multi-hop net-

work, processing data at intermediate nodes with the objective of reducing resource consumption

(i.e. mainly with respect to energy), thereby increasing network lifetime. Classic routing strate-

gies [Akkaya and Younis, 2005] are usually based on a hierarchical organisation of the nodes in

the network. In fact, the simplest way to aggregate data flowing from the sources to the sink

is to elect some special nodes which work as aggregation points and define a preferred direc-

tion to be followed when forwarding data. Regarding routing, some protocols are based on a tree

structure (e.g. TAG [Madden et al., 2002], Directed Diffusion [Intanagowiwat et al., 2000], PEGA-

SIS [Lindsey et al., 2002], DB-MAC [Bacco et al., 2004], TinyDB [Madden et al., 2005], etc.), while

others on a cluster head (e.g. LEACH [Heinzelman et al., 2002], Cougar [Yao and Gehrke, 2002], etc.)

one. The main advantage of a clustered structure is that it directly allows aggregation of data at the

cluster head. Such algorithms work well in relatively static networks where the cluster structure re-

mains unchanged for a sufficiently long time, but they may be fragile when used in more dynamic

environments. Moreover, the cost required to maintain the hierarchical structure is substantial. Similar

considerations apply to tree-based schemes.

In their work [Fasolo et al., 2007], the authors critically analyse several aspects of the existing ap-

proaches. Firstly, although in-network aggregation touches several layers of the protocol stack, and any

efficient solution is likely to require a cross-layer design, most of the existing research focuses on issues

such as routing, often considering only very simple approaches to aggregate data. Moreover, very few

cross-layer solutions, accounting for application, data representation, routing and MAC aspects have

been presented. Such schemes as are proposed mainly focus on a subset of such aspects, typically try-

ing to merge routing and data aggregation techniques, but ignoring MAC, memory and computational

issues regarding data aggregation processing. In fact, the authors stress the aspect that without a joint
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design, the performance gained at the routing layer may be partially lost due to MAC radio inefficiencies.

Hybrid algorithms [Manjhi et al., 2005], which combine the properties of different approaches, tune the

degree of aggregation and may therefore facilitate the adaptation of the aggregation scheme. Thus, they

are more suitable for the design of schemes that are able to adapt to application needs. However, while

many theoretical approaches have been devised, very few of them have been turned into practice and

thus applied to deployed WSNs.

Additional cluster-based techniques have also been developed to allow distributed pro-

cessing [Shah et al., 2009, Abbasi and Younis, 2007, Singh and Prasanna, 2003, Xu and Qi, 2004,

Qi et al., 2003, Fuggetta et al., 1998]. However, they all share the view that there is a hierarchical

network architecture comprising of a high number of low-cost, less powerful sensors, and a small num-

ber of higher-cost, more powerful cluster heads. Such algorithms are applicable if the structure of the

deployed network is indeed hierarchical, and if the geographic distribution of cluster heads relative to

sensor nodes is appropriate. However, cluster-based approaches are inappropriate otherwise, and the

existing approaches also fail to take into account issues that relate to bandwidth utilisation, message

collision and realistic radio modelling: communication is mainly assumed to be collision-free. Further-

more, some of them [Xu and Qi, 2004, Qi et al., 2003] make two strong assumptions: firstly, when a

certain event occurs, all sensor nodes can detect it and collect raw data, so that there is always the same

number of sensor nodes participating in data fusion; secondly, there are no events simultaneously occur-

ring in the field. Such assumptions are limiting to the generality of the approach as is, more generally,

the lack of testing outside the simulation domain.

Moreover, further surveys [Kuorilehto et al., 2005, Abbasi and Younis, 2007] on application dis-

tribution in WSNs analyse the implemented distribution aspects in middleware and stand-alone proto-

col proposals. The result is that most of the devised approaches neither support possible task migra-

tion or allocation, nor remote task communication (e.g. MiLAN [Heinzelman et al., 2004], TinyDB,

Cougar). In [Ruiz-Ibarra and Villasenor-Gonzalez, 2008], a framework for the classification taxon-

omy of coordination mechanisms designed for Wireless Sensor and Actor Networks (WSANs) envi-

ronments is provided. Based on this taxonomy, a comparative analysis is presented to study some of

the most representative coordination mechanisms [Shah et al., 2006, Yuan et al., 2006, Ngai et al., 2006,

Melodia et al., 2006, Melodia et al., 2007] proposed for WSANs. In general, the proposed mechanisms

proceed to split the event area and perform a hierarchical coordination by employing localisation infor-

mation; this is done with the objective of selecting the proper nodes (i.e. sensors and actors) that will

react in response to a specific event with the smallest possible response time. The proposed applications

for each of the coordination mechanisms differ with respect to the frequency of the events. In general, the

proposed coordination mechanisms try to comply with the support of real-time response requirements

along with an efficient use of energy in the WSAN. Moreover, none of the coordination mechanisms im-

plement a mechanism to guarantee data security and system robustness, task prioritisation, allocation and

actual migration, and cross-layer designs to reduce the overhead in the network in energy consumption

and latency. Finally, there is a generalised lack of system evaluation within deployed systems.
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An approach designed to achieve an energy-efficient collaborative signal processing system has

been presented in [Chiasserini and Rao, 2002]. This was reliant on the divide-and-conquer paradigm

through which a problem is divided into multiple sub-problems of smaller dimensions. Each sensor,

implementing the same function, exploits its processing capability to solve a sub-problem so that the

final solution to the original problem is obtained by combining the partial results computed by every

single node. The authors apply the idea of collaborative signal processing to implement a Distributed

Digital Signal Processing (DDSP) approach to the Fast Fourier Transform (FFT) algorithm, giving a

reduction in energy consumption and latency. The approach represents an example of computational

distribution in a sensor network. However, it assumes the replication of the same algorithm on every

single node, allowing the simple splitting of the data samples vector across different sensors. Moreover,

the work lacks infrastructure and protocols dealing with actual resource allocation and task migration.

Again, this is limiting as radio communication and node synchronisation are not taken into account.

The problem of task assignment and migration has been recently tackled within multi-agent sys-

tems [Vinyals et al., 2008]. Agilla [Fok et al., 2005] is one of the precursors in the use of mobile agents

in middleware for WSNs. Its approach is to use software agents that can move from one node to another

in the network. It also allows multiple agents to run on the same node. These characteristics provide

the desired features of energy saving, as agents can run near the data avoiding unnecessary communi-

cation. In [Kho et al., 2007], a proposal to use a distributed mechanism to control adaptive sampling

to support energy-constrained network operations is presented. In the proposal, each sensor is consid-

ered an autonomous agent, enabling decentralised control of the sampling rate of sensor nodes in the

application domain of flood monitoring. Besides the contribution in the increase of the efficiency of

the energy consumption, the goal is also to maximise the information value of the data collected to the

base station. The network is homogeneous, the approach is domain-specific and all agents have an uni-

form role. AWARE [Erman et al., 2008] proposes a middleware whose goal is to provide integration

of the information gathered by different types of sensors, including WSNs and mobile robots. Leung

et al. [Leung et al., 2008] present an information-processing paradigm for intelligent sensor networks.

Nodes in sensor networks have different levels of autonomy in terms of signal processing, information

fusion and situation assessment in order to contribute to the overall system decision making. Their

approach is based on the use of a genetic algorithm to provide learning features to the sensor nodes

and fuzzy cognitive maps to perform situation assessment. The sensor networks aimed at by this work

are those composed only of rich nodes, as the architecture and the techniques used are not lightweight

enough to fit in low-end nodes.

Another approach involving task assignment in a network of resource-constrained computing plat-

forms (microservers), was proposed by [Abrams et al., 2006]. An optimisation algorithm for the assign-

ment of tasks (dedicated to tracking physical objects as they move) to microservers is studied. The tasks

migrate within the network as the physical object moves, and the algorithm seeks to minimise the num-

ber of task migrations, whilst guaranteeing that the highest number of physical objects is monitored at

all times. Two heuristics that account for the knowledge of future trajectories are devised. The proposed
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approach provides an interesting example of forced task migration, even if energy and communication

consumption requirements are not explicitly considered in this model.

Another approach, aiming to maximise the network lifetime while minimising job execution time,

was presented by [Park and Srivastava, 2003]. The authors devise a three phase framework. In the first

phase, a task graph is parsed, every task is decomposed, transformed and assigned to the sensor nodes

in order to optimise a cost function (mapping of the total energy consumption of the network) using the

simulated annealing technique. In the second phase, the task is scheduled in order to minimise collisions

while communicating. After these two phases, the sensor network can perform its task (in the third

phase): if a node reaches a low energy state, the tasks running on it need to migrate towards health-

ier neighbouring nodes. However, the approach makes several assumptions: (i) task decomposition,

transformation and assignment are centralised; (ii) radio communication among sensors is established

through minimal energy routes and radio channels are symmetric, a particularly dubious assumption in

the real world.

In [de Freitas et al., 2009], a middleware is presented that aims at addressing mission-driven het-

erogeneous sensor networks deployed in highly dynamic scenarios. These scenarios require middleware

reflection to support nodes autonomous behaviours, by using an agent-oriented approach, and to ad-

dress changes in the environment and in the network. Multi-agent reasoning is used in order to set up,

configure and reconfigure the network. Formal definition of the mission statements and conditions (de-

scribed in MDL) are presented, as well as their mapping to the elements of a Belief-Desire-Intention

(BDI) approach that supports the proposed network-wide reasoning. A supporting agent framework is

presented, with the description of the mechanisms used for agent reasoning. However, the complexity of

the approach makes it greatly unsuitable to run on resource-constrained devices.

In [Sensoy et al., 2009], a way is proposed to describe tasks semantically with their requirements

and constraints so that software agents can reason about those tasks and determine what type of sensor

resources they may need. Based on the semantic description and reasoning mechanisms, they propose a

distributed agent-based approach to efficiently allocate sensor resources to tasks. Thus, Semantic Web

technologies and multi-agent systems are integrated in a way to determine and allocate resources to

tasks in WSNs. First, the approach proposes the adoption of an OWL-S process ontology with domain

ontologies used to describe tasks semantically. Second, it combines ontological reasoning with logic

programming to enable software agents to reason about the required sensor types for the tasks. Third, it

present a decentralised agent-based approach to solve the sensor-task assignment problem. Task agents

interact with sensor agents to allocate the most useful sensors for the tasks. For this purpose, task agents

convert the allocation problem into a knapsack problem utilising the multi-round knapsack algorithm to

provide a concrete solution.

For all the approaches mentioned above, not only is the sophistication of the proposed algorithms

non-negligible, but also the devised techniques have been not effectively tried on resource-constrained

devices. Evaluation has been performed through simulations, which are thus unable to provide a faith-

ful snapshot of the complex reality of radio wireless communications. Moreover, within multi-agents
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systems, the distribution is implemented through the movements of software agents simulated with high-

level programming languages not practically suitable or applicable within resource-constrained devices.

Finally, an interesting contribution aiming at the resolution of the resource allocation

problem by distributing tasks at run-time using a real-time approach is the one presented

in [Giannecchini et al., 2004]. The authors consider systems, such as WSNs, in which total CPU

and bandwidth cannot be considered constant all the time. To achieve this goal, the authors propose a

fast online resource allocation algorithm (CoRAl) to reconfigure a sensor network dynamically, when-

ever a new hot spot occurs or node activity changes, while taking into account the timing constraints

of end-to-end tasks. An end-to-end task is a chain of ordered subtasks, each of which is executed on

different nodes in a pipeline-fashion (the latter task cannot start the computation until the former has

finished). The scheduling of task activity is treated as an optimisation problem assuming the usage of

Earliest Deadline First (EDF) for the nodes’ scheduling algorithms and of implicit EDF for the wireless

network MAC protocol. However, the authors assume the use of FDMA-TDMA, in which all network

nodes are synchronised on a frame basis and a single data packet of constant size is sent during each

frame. They solve the hidden terminal problem by assuming a network of fully connected nodes. The

model of the wireless channel is simulated through a dummy node capable of sending messages peri-

odically. Starting from the above approach, Liu et al. in [Liu et al., 2006] solve some of the previous

drawbacks (e.g. replacing FDMA-TDMA with RICH schema), with the aim of studying centralised and

distributed solutions to the optimal sampling rate assignment problem in Real-Time Wireless Sensor

Networks (RTWSN), by formalising them as non-linear optimisation problems.

Consequently, analysing the existing related work in the field of distributed and collaborative pro-

cessing in WSNs, we notice that: (i) most of the approaches rely upon hierarchical, predefined physical

structures of nodes; (ii) they often model task distribution as optimisation problems, but they do not

practically test them on deployed systems; (iii) they disregard the actual impact of radio communication

layer, used by nodes to synchronise with each other; (iv) they devise approaches with the idea of min-

imising node communications while, at the same time, not practically accounting for possible existing

sources of interference; (v) they are often too sophisticated to run on resource-constrained devices.

What is missing: A simple distributed solution allowing nodes to collaborate in an ad-hoc

manner with each other to facilitate the execution of computationally demanding applications.

2.2.2 Network Communication Issues in WSNs

Whenever distributed processing becomes a system requirement, devices are expected to synchronise and

communicate with each other by wirelessly exchanging messages. Each communication exchange mod-

ifies the actual level of traffic and leads to inevitable heterogeneous environmental network conditions.

Moreover, this additional network traffic adds itself to existing network communications. In fact, while

traditional distributed systems (e.g. computational grids) are characterised by stable network infrastruc-

tures where hosts are permanently connected to the network through high-bandwidth wired links, WSNs

lack instead of such reliable communication and are more prone to congestion, interference, message

collisions and consequent retransmissions.
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Two fundamental problems that arise from wireless radio communications are explained as follows:

• Hidden terminal problem: Nodes in a wireless network that are out of range of a collection of other

nodes are called hidden nodes. As illustrated in Figure 2.2, assume that we have a physical star

topology with a wireless node A surrounded by a set of additional nodes B and C. Surrounding

nodes B and C fall into A’s communication range, but they cannot hear and communicate with

each other, because of the lack of a physical connection among them. Thus, B is likely to hear

A but unlikely to hear C (i.e. B is a hidden node with respect to C). Similarly, C is likely to

hear A but unlikely to hear B (i.e. C is a hidden node with respect to B). In such situations, a

problem arises when nodes B and C simultaneously send message packets to A. Since node B and

C cannot sense the carrier, the CSMA/CA mechanism does not push devices to back off and thus

message collisions occur as an effect of the hidden terminal problem [Kleinrock and Tobagi, 1975,

Moh et al., 1998].

To overcome this problem and thus to reduce frame collisions introduced by the hidden terminal

problem, handshaking mechanisms such as Request to Send/Clear to Send (RTS/CTS) have been

implemented in conjunction with the Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) scheme [Colvin, 1983]. Thus, a node wishing to send data initiates the process by

sending a Request to Send frame (RTS). The destination node replies with a Clear to Send frame

(CTS). Any other node receiving the RTS or CTS frame should refrain from sending data for a

given time, thus tempting to solve the hidden node problem. The amount of time the node should

wait before trying to get access to the medium is included in both the RTS and the CTS frame.

This protocol was designed under the assumption that all nodes have the same transmission range.

RTS/CTS is not a complete solution to the hidden terminal problem, therefore additional adaptive

acknowledgment (ACKs) mechanisms have been studied and combined to contain its effects.

A
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Figure 2.2: Hidden terminal problem in wireless networks.
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• Exposed terminal problem: In wireless networks, the exposed terminal problem occurs when a

node is prevented from sending packets to other nodes due to a neighbouring transmitter. As

illustrated in Figure 2.3, assume we have four nodes, labeled S1, R1, S2 and R2, where the two

receiver nodes R1 and R2 are not in range of each other, while the two sender nodes are in range

of each other. Thus, if a message exchange is performed between S1 and R1, node S2 is prevented

from transmitting toR2 since it concludes, after applying CSMA/CA, that it will interfere with the

transmission initiated by its neighbour S1 (although R2 could still receive the transmission of S2

without interference). This thus generates the exposed terminal problem [Jayasuriya et al., 2004].

Once again, IEEE 802.11 RTS/CTS mechanism helps solving the problem, but only if nodes are

synchronised and packet sizes and data rates are the same for both transmitting nodes. Thus,

when a node hears an RTS message from a neighbouring node, but not the corresponding CTS,

that node assumes the presence of an exposed terminal problem and, therefore, it transmits to its

neighbouring nodes.

R1 S1 S2 R2

Node
Approximative radio 
range of each node

Node currently
transmitting

Node waiting
to transmit

Figure 2.3: Exposed terminal problem in wireless networks.

Whenever devices are deployed within testbeds and are required to collaborate with each other, such

interactions are affected by two sources of network traffic:

• Interference at MAC layer: Whenever multiple nodes simultaneously and actively communicate

with each other, message collisions play a role. However, if the communication is performed

within the same MAC layer (e.g. IEEE 802.15.4/ZigBee), the protocol automatically deals with

possible message collisions by forcing devices to back off [Bertocco et al., 2008]. Thus, when-

ever multiple devices aim at simultaneously occupying the shared radio medium, IEEE 802.15.4

deploys the CSMA/CA mechanism, through which a station wishing to transmit first determines

the status of the channel. In the case of channel status idle then the station is allowed to transmit,

otherwise, in the case of channel status busy, it waits until the channel is free again.

• Interference at physical layer: Whenever nodes belong to a deployed system, they are pas-

sively affected by the existing network contention generated by additional sources of com-

munication adopting different MAC (e.g. IEEE 802.11b/WiFi, IEEE 802.15.1/Bluetooth,
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etc.) [Bertocco et al., 2008, Shina et al., 2007]. IEEE 802.15.4 systems with a CSMA/CA mech-

anism can thus be affected by radio interference at physical layer when a WSN terminal and a

nearby in-channel interfering source transmit simultaneously. In such situation, devices cannot

themselves minimise message collisions through the MAC layer. Instead, existing network traf-

fic passively affects message exchanges from devices thus increasing the amount of congestion,

interference, message collisions and consequent retransmissions. Moreover, the simultaneous

transmission of multiple signals, and the subsequent superposition, provokes data packet colli-

sions at the receiver node, and, consequently, losses in terms of quality parameters like error

vector magnitude (EVM) and packet error ratio (PER) [Proakis, 2000].

In order to cope with the issues mentioned above together with maximisation of the network life-

time, scalability, collision avoidance and tolerance to network changes, a plethora of MAC layer proto-

cols have been hitherto proposed [Naik and Sivalingam, 2004, Demirkol et al., 2006] (e.g. S-MAC/T-

MAC/DSMAC, WiseMAC, TRAMA, Sift, DMAC, etc.). They essentially fall into two categories.

Randomised protocols such as S-MAC [Ye et al., 2002, Ye and Heidemann, 2003, Ye et al., 2004], B-

MAC [Polastre et al., 2004] and T-MAC [van Dam and Langendoen, 2003] regulate the access to the

physical layer opportunistically, based on the current transmission requests. Conversely, time-slotted

protocols such as TRAMA [Rajendran et al., 2003, Rajendran et al., 2006], FDMA, TDMA, CDMA and

others assign the nodes with predefined time-slots to schedule their transmissions over time. While the

former class of protocols is easier to implement and better tolerates nodes joining or leaving, the latter

class enables better reliability and greater energy savings. The radio can also be switched to a low-power

mode based on the current transmission schedule. Nonetheless, the latter protocols generally require tight

time synchronisation among the nodes in some k-hop neighbourhood. However, despite the plethora of

devised protocols, there is a generalised lack of a uniquely accepted standard.

Future directions have been discussed in [Ali et al., 2006]. In particular, the critical analysis of

the proposed techniques has lead to state that the vast majority of related work in the MAC protocols

area has, to date, almost exclusively focused on the issue of energy optimisation, while instead it un-

derestimates traditional goals such as fairness, delay and real bandwidth utilisation. In particular, the

authors [Ali et al., 2006] propose a set of general future directions in the MAC area listed as follows:

(i) energy efficiency criteria should not be the only evaluating metric for a MAC protocol, instead opti-

misation criteria for latency, reliable data delivery and compliance with real-time constraints should be

met; (ii) sensor networks applications exhibit specific traffic patterns that should be carefully designed

in MAC protocols; (iii) security issues (e.g. against eavesdropping and malicious behaviours) should be

taken into account; (iv) different MAC protocols, operating at the same frequency band should be able

to coexist in the same physical environment; (v) MAC protocols, designed to be applied to static scenar-

ios, fail to provide acceptable performances when applied in mobile environments, thus MAC protocols

should address node mobility requirements; (vi) to obtain more realistic insight into MAC layer perfor-

mance, researchers should move from simulation environments to prototypes (software defined radios)

and real-world experiments.
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What is missing: A cross-layer solution pragmatically accounting for local network condi-

tions in performing distributed processing.

2.2.3 Operating Systems for WSNs

The design of Operating Systems (OS) for WSNs deviates from traditional OS design due to the pe-

culiar characteristics of WSN devices like constrained resources, high dynamics and inaccessible de-

ployment. Therefore, devices must be programmed though specific lightweight OS. Complete sur-

veys [Reddy et al., 2009, Basaran et al., 2006], detailing the main characteristics of the existing OS for

WSNs, have recently been published. Architecture, execution model, reprogramming, scheduling and

power management are the main OS features chosen in [Reddy et al., 2009] to classify the existing WSNs

OS.

The most widespread OS solution for WSNs is TinyOS [Hill et al., 2000, System, 2010b]. Al-

ternatives are the Contiki OS [Dunkels et al., 2004, System, 2010a], SOS [Han et al., 2005], Man-

tis [Abrach et al., 2003], RETOS [Cha et al., 2007] and NANO-rk [Eswaran et al., 2005]. TinyOS has

a monolithic architecture since it uses a component model at compile-time and single static im-

age at run-time. Mate’ [Levis and Culler, 2002], built on top of TinyOS, and CVM (Contiki VM),

built on top of Contiki, provide virtual machine architectures. Mantis, Contiki OS and SOS use

modular approach. Among them, SOS, Mantis, and Contiki feature dynamic linking functionality.

The concurrency model employed varies from event-driven solutions [Hill et al., 2000] to preemp-

tive, time-sliced multi-threading [Abrach et al., 2003, Cha et al., 2007] and asynchronous message pass-

ing [Han et al., 2005]. These approaches have also been further augmented in several works. Ex-

amples are Fibers [Welsh and Mainland, 2004], TinyThreads [McCartney and Sridhar, 2006], and Y-

Threads [Nitta et al., 2006]. These approaches add a threading model to TinyOS by enabling differ-

ent forms of blocking calls. Fiber allows a single blocking context, whereas TinyThreads enables

cooperative multi-threading by giving programmers a way to yield explicitly the current execution

context. Y-Threads, instead, are similar to Fiber, but they provide preemptive multi-threading. Pro-

tothreads [Dunkels et al., 2006] enable a form of cooperative multi-threading in Contiki. However, they

do not store the execution contexts, thus requiring the programmer to save and restore the relevant state

by hand. The Object State Model [Kasten and Römer, 2005] extends the event model with state ma-

chines. It also provides the ability to compose different state machines to build hierarchies.

Let us now focus on the two main OS running on TMote Sky devices, namely TinyOS [Hill et al., 2000,

System, 2010b] and Contiki OS [Dunkels et al., 2004, System, 2010a].

TinyOS is one of the first environments designed to meet the requirements of resource-constrained,

event-driven and networked embedded systems. Originally developed by the University of California,

Berkeley and Intel at the beginning of the last decade, it has since then become the most popular OS

for WSNs. Many of the features of TinyOS stem from the design goals of its implementation language

called NesC, an extension of C adapted to cope with the special needs of networks of embedded devices.

One of the main characteristics of its programming model is the use of component-based modularisation.

In this model, the functionality of the traditional monolithic abstraction layers is broken-up into smaller,
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self-contained building blocks that interact with each other via clearly defined interfaces. This hiding

of the implementation behind these interfaces preserves the modularity of the solution and promotes

reuse. At the same time, the component model supports interactions between the building blocks. The

TinyOS concurrency model is based on commands, asynchronous events, deferred computation called

tasks and split phase interfaces. The function invocation (i.e. command) and its completion (i.e. event)

are separated into two phases in interfaces provided by TinyOS. An application user has to write the

handler which should be invoked on the triggering of an event. Commands and event handlers may post a

task, which is executed by the TinyOS FIFO scheduler. Tasks are non-preemptive and run to completion.

However, tasks can be preempted by events but not by other tasks. Data race conflicts that arise due

to preemption can be solved using atomic sections. The communication architecture of TinyOS uses

the concept of Active Messages (AM). AMs are small packets of size 36 bytes and a one byte handler

ID. A node, after receiving an AM, dispatches it to corresponding registered handlers. TinyOS’s purely

event-driven model has obvious disadvantages like low programming flexibility and non-preemption.

In the last couple of years, TinyOS has mainly competed against Contiki OS for TMote Sky

programmability. Contiki OS is an open-source, highly portable, networked, multi-tasking OS for

memory-constrained networked embedded systems. A typical Contiki configuration requires 2KB

of RAM and 40KB of ROM. Contiki OS has been developed at Swedish Institute of Computer

Science (SICS) in Sweden and it has recently been adopted within a number of projects (e.g.

RUNES [Costa et al., 2007], [Pasztor et al., 2010]). Contiki OS combines the advantages of both event

and thread models. In fact, it is primarily an event-driven model, but also supports multi-threading as

an optional application level library. In fact, the event driven kernel does not provide multi-threading by

itself. Instead, preemptive multi-threading is implemented as a library that can optionally be linked with

applications. This library consists of two parts: a platform independent part, which is the same for all

platforms on which Contiki OS runs, and a platform specific part, which must be implemented specifi-

cally for the platform that the multi-threading library should run. Although an external library (i.e. mt.c)

has been implemented to allow multi-threading at the application level, its usage leads to non-negligible

memory overhead when loaded on resource-constrained devices. Thus, its adoption is usually replaced

by the more lightweight protothreads. Contiki OS includes also advanced reprogramming support in the

form of loadable modules. This feature is useful for both program development, since it shortens the

development cycle, and system deployment. In fact, replacing a module is more energy-efficient than

replacing the whole image.

Contiki OS supports, in fact, three concurrency models: events, threads and protothreads. The Con-

tiki OS kernel is event-based, but application programs can use any of the three concurrency models, or a

combination of them. The kernel consists of a lightweight event scheduler that dispatches events to run-

ning processes and, periodically, calls processes polling handlers. Program execution is triggered either

by events dispatched by the kernel or through the polling mechanism. The kernel does not preempt an

event handler once it has been scheduled. Therefore, event handlers must run to completion. In addition

to the events, the kernel provides a polling mechanism. Polling is seen as a high priority event sched-
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uled in-between each asynchronous event. Polling is used by processes that operate at hardware level to

check for status updates of hardware devices. When a poll is scheduled, processes that implement a poll

handler are invoked, in order of their priority. The Contiki OS kernel uses a single shared stack for the

entire process execution. The use of asynchronous events reduce stack space requirements as the stack

is rewound between each event handler’s invocation. Thus, events are classified as asynchronous and

synchronous. Synchronous events are scheduled immediately while asynchronous events are scheduled

later. Polling mechanism is used to avoid race conditions. In Contiki OS everything (i.e. communication,

device drivers, sensors data handling) is implemented as service. Each of the service has interface and

implementation. Application is aware of only interfaces.

Protothreads [Dunkels et al., 2006, Dunkels and Schmidt, 2005, Dunkels et al., 2005] are a novel

programming abstraction that provides a conditional blocking wait statement, PT WAIT UNTIL(), that

is intended to simplify event-driven programming for memory-constrained embedded systems. The op-

eration takes a conditional statement and blocks the protothread until the statement evaluates to true.

If the conditional statement is true the first time the protothread reaches the PT WAIT UNTIL(), the

protothread is not blocked but continues to execute without interruption. A protothread is stackless,

meaning that it does not have a history of function invocations. Instead, all protothreads in a system

run on the same stack, which is rewound every time a protothread blocks. This mechanism is extremely

advantageous in memory constrained systems, where a thread stack might use a large part of the avail-

able memory. A protothread runs inside a single function and it is therefore activated each time the

function is invoked. Since they are stackless, protothreads can only block at the top level of the function.

Nevertheless, by using hierarchical protothreads, it is possible to perform nested blocking. Protothreads

can thus be seen as a combination of events and threads. From threads, protothreads have inherited the

blocking wait semantics. From events, protothreads have inherited the stacklessness. Finally, although

Contiki does not provide explicit power management abstractions, it allows the application programmers

to implement such mechanisms. One such provision is exposing its internal queue state to the applica-

tions. Thus, applications can decide to power down the system when there are no events to be scheduled.

Consequently, the processor wakes up in response to an external event which is handled by an external

poll handler.

Contiki contains two radio communication stacks: uIP TCP/IP and Rime. The uIP

TCP/IP [Dunkels, 2003] stack allows Contiki OS to communicate over the Internet thus favouring

interoperability with existing IP network infrastructures and systems. The uIP implementation is de-

signed to have only the absolute minimal set of features needed for a full TCP/IP stack. Web server,

ftp server as well as a number of other applications have been developed to test such interoperability.

Although the uIP TCP/IP stack may not be as energy-efficient as custom protocols tailored for WSNs,

its early adoption was motivated by the need to promote systems integration and communication. Only

recently a novel communication stack, namely Rime [Dunkels et al., 2007], has been devised to cope

with the increasing (i) network heterogeneity, (ii) number of link layers, (iii) MAC protocols, and (iv)

underlying transportation mechanisms. Rime [Dunkels et al., 2007] is a lightweight communication
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Figure 2.4: The communication primitives in the Rime stack and how they are layered.

stack designed for low-power radios. As illustrated in Figure 2.4, it provides a wide range of communi-

cation primitives and protocols, such as multi-hop data collection, multi-hop unicast mesh routing, and

reliable multi-hop network flooding. As shown in Figure 2.5, applications and protocols transfer data

from application layers down to the Rime stack. The Rime stack adds packet attributes to the application

data before passing it to the underlying Chameleon header transformation module. This latter module

builds packet headers from the packet attributes and sends the final packets to the link-level device

driver or the MAC layer. The MAC layer can inspect the packet attributes to decide how the packet

should be transmitted. For example, broadcast packets may be sent differently from unicast packets, and

packets that need single-hop reliability can be sent with reliable link-layer acknowledgements turned

on. The Rime stack is built around a lightweight layering principle: the communication primitives are

designed in a layered hierarchical fashion, where more complex communication primitives build on

the top of simpler ones. For WSNs, this lightweight layering principle has several benefits. First, as

the communication primitives are simple, they are easy to implement and test. Second, the memory

footprint of the implementations of the primitives is small, which is important for memory-constrained

sensor nodes. Third, as applications may attach to any stack layer, they can precisely express the amount

of communication features they need. In more heavyweight-layered stacks, such as the TCP/IP protocol

stack, it is generally not possible to express such fine-grained feature requirements.

The inherent benefits brought by the Contiki OS (i.e. a concurrent and modular event-driven model

supporting cooperative multi-threading and library dynamic linking) have motivated our choice of devel-

oping the algorithms presented in the current dissertation by adopting the Contiki OS over TinyOS (i.e.

a monolithic purely event-driven architecture with low programming flexibility and non-preemption).

Moreover, recall that tests will be performed adopting, and thus testing, both uIP TCP/IP and Rime radio

communication stacks.

Finally, let us now drive a brief discussion about simulation environments. Early performance stud-
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Figure 2.5: The Chameleon architecture. Applications and network protocols run on top of the Rime
stack. The output from Rime is transformed into different underlying protocols by header transformation
modules.

ies [Li et al., 2004] were carried out using ad-hoc network simulators, such as NS-2 [Simulator, 2010]

or GlomoSim [Zeng et al., 1998]. Like TOSSIM [Levis et al., 2003] for TinyOS, Contiki OS offers a

variety of simulation environments to evaluate systems performance: MSPsim [Eriksson et al., 2007],

Netsim [Loubser, 2006] and COOJA [Österlind, 2006]. In fact, due to the distributed nature of sensor

networks and resource-constraints of sensor nodes, code development for wireless sensor network is a

challenging and time consuming task. Furthermore, the application development and debugging tools are

still cumbersome. Therefore, the use of a simulator enables testing without access to the target hardware

and allows more advanced debugging and instrumenting possibilities.

The Java-based MSP430 MSPsim has been developed as a tool for debugging and testing Contiki

OS-based MSP430-based sensor network applications. MSPsim is an extensible sensor board platform

and MSP430 instruction-level simulator that simulates sensor boards with peripherals (i.e. sensors, com-

munication ports, LEDs, and sound devices such as a beeper) for the purpose of reducing development

and debugging time. MSPsim can be, by design, incorporated within COOJAs cross-level simulation

environment. Current versions have been developed with emulation of Scatterweb ESB and TMote Sky

sensor nodes.

The Contiki OS Network Simulator, Contiki Netsim, is a simulator for sensor nodes running the

Contiki OS. In Netsim, each sensor node is simulated within a graphical environment. Each node is rep-

resented as user-level process and it communicates with other nodes using a simulated wireless network

layer. Although more advanced than MSPsim, Netsim is still a quite primitive and basic simulator: if

message collision and interference occur, they are not detected and the information will never be able
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to reach the destination. The lack of implementation of MAC protocols within the simulation environ-

ment is responsible for an unrealistic and implausible way to model radio communication and therefore

applications.

The most sophisticated and modular Contiki OS simulator is COOJA. COOJA’s main motivation

concerns extensibility, and thus the possibility to include additional functionalities and models to the

basic simulation environment through interfaces and plugins. The interface represents a sensor node

property (e.g. location etc.) or a hardware device (e.g. button, radio transmitter, etc.). The plugin is used

to interact with the simulation environment (e.g. control the simulation speed, monitor the network traffic

between the simulated nodes, etc.). Additional plugins and interfaces are created and easily linked to the

main simulation environment. Radio communication can be modelled, implemented and added to the

simulator. The simultaneous support of several plugins within the same simulation environment enhance

heterogeneous network simulation. Java Native Interface (JNI) is used to link the COOJA simulator

with the underlying Contiki OS, allowing simulated applications to run the Contiki OS. Therefore, any

application simulated within COOJA should be able to run unchanged on a real sensor node. Several

plugins have been developed in order to deal with WSNs radio communications (e.g. Unit Disk Graph

Medium (UDGM), Multi-path Ray-tracer Medium (MRM) [RadioCooja, 2010]). However, despite the

considerable efforts made by simulators to model network traffic, they are still unable to provide a

realistic snapshot of the complex and dynamic reality of radio communications.

The most common assumptions regarding radio communication models done within simula-

tion environments were summarised in [Kotz et al., 2004, Ali et al., 2006] as follows: (i) the world

is assumed to be flat; (ii) the radio transmission area of a node is assumed to be circular; (iii)

radio communications are assumed to have equal transmission range; (iv) nodes are assumed to

communicate with each other bidirectionally (i.e. if node A hears node B, then B equally hears

A); (v) if node A hears node B, then perfect communication is assumed (i.e. A perfectly hears

B); (vi) signal strength is assumed to be a simplified function of the distance among nodes. In-

stead, in the literature (e.g. [Kotz et al., 2004, Aguayo et al., 2004, Park et al., 2003, Kotz et al., 2003,

Zhao and Govindan, 2003, Cerpa et al., 2003, Ganesan et al., 2002]) it is widely accepted that: (i) radio

propagation is non-isotropic (i.e. the received signal, at a given distance from the sender, is not the same

in all directions); (ii) it has non-monotonic distance decay (i.e. lower distance does not mean better link

quality); and (iii) the communication is based on asymmetrical links (i.e. if A hears B, it cannot be

assumed that B hears A).

Consequently, in meeting our research hypothesis, and thus measuring the impact of network con-

ditions on the system performance whenever distributed processing becomes necessary, despite the pres-

ence of simulation environments, we decided to perform the whole experimental evaluation presented in

the current dissertation entirely on deployed WSNs testbeds.

What is missing: Solutions supporting evaluations undertaken within deployed systems and

testbeds.
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2.3 Discussion
In this chapter, we identified the requirements common to the application scenarios presented in Sec-

tion 1.1, thus (i) distributed processing, (ii) network communication, and (iii) evaluation platforms in

WSNs. We then provided an extensive critical analysis of the existing related work undertaken to deal

with such challenges. The weaknesses emerging from the related work analysis motivate the choices

made within the current dissertation, and thus the need to devise a distributed solution: (i) allowing

individual nodes to collaborate with each other in an ad-hoc manner to solve locally computationally

demanding applications; (ii) allowing individual nodes to account for local network conditions in rea-

soning about task allocation; and (iii) supporting evaluations undertaken within deployed systems and

testbeds.



Chapter 3

Distributed Wireless Ad-hoc Grids

In Chapter 2, we presented a set of scenarios and we listed their common issues and requirements. This

chapter details, instead, the emergency scenario chosen as driving one within the current dissertation.

Moreover, it presents the Distributed Wireless Ad-hoc Grids (DWAGs) paradigm together with the re-

quirements for its practical applicability and the related challenges. A critical analysis of the related

work places DWAG within the literature.

The remainder of this chapter is thus organised as follows: (i) in Section 3.1, we describe the

Distributed Wireless Ad-hoc Grids paradigm; (ii) in Section 3.2, we analyse requirements of applications

to allow DWAG applicability; (iii) in Section 3.3, we describe the main DWAG architecture and system

flow; and (iv) in Section 3.4, we place DWAG within the existing related work.

3.1 Distributed Wireless Ad-hoc Grids Paradigm
We are now in a position to focus on the scenario adopted within the current dissertation and to present

the proposed Distributed Wireless Ad-hoc Grids (DWAGs) paradigm.

Assume that we have an emergency scenario like that described in Section 1.1. Whenever a Chem-

ical, Biological, Radiological or Explosive (CBRE) emergency event occurs within an indoor environ-

ment, it is crucial (i) to constantly monitor the hazardous environment (e.g. to detect the epicentre of

the threat, its speed of spreading, its level of lethality), (ii) to progressively locate first responders while

they move (e.g. whenever GPS support cannot be assumed), (iii) to guide personnel movements towards

places at which injured people might be located, (iv) to support first responders in real-time finding evac-

uation routes according to how the emergency situation evolves over time. These are just a few examples

of the applications required to be in place whenever an emergency event occurs. Pervasively deployed

WSNs could support external Command & Control C2 authorities in fetching such information and thus

inferring reactive countermeasures.

In particular, let us thus assume a typical tactical WSN scenario as illustrated in Figure 3.1. In

such a context, we have that a group of first responders enters an indoor environment (e.g. building,

train station, underground, etc.) as a result of an emergency event (e.g. earthquake, fire, etc.). The

environment might be subdivided into rooms and corridors. In this scenario, we assume that a large

number of sensor nodes are distributed throughout a given space: some might be pre-deployed, some
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might dynamically enter the environment (e.g. sensors worn by operational personnel, carried on UAVs,

on robots, on animals, etc.). Let us name the pre-deployed devices Task Executors (TEs) (e.g. TE1, . . . ,

TE12 in Figure 3.1), and the dynamically deployed ones Grid Activators (GAs) (e.g. GA1, . . . , GA5

in Figure 3.1). Moreover, while pre-deployed TE nodes might be both constantly powered through the

fixed power network and pre-loaded/periodically updated with a set of libraries, the mobile GAs might

be battery-powered and dynamically programmed. The main task of a GA is the execution of a set of

intensive computations, that can occasionally require more resources than those available to them. In

particular, let us assume that there are GAx with x = {1, . . . , X} and TEy with y = {1, . . . , Y } in the

environment and that each GAx is required to compute one or more intensive applications Jobi with

i = {1, . . . , N}.

GA3

GA2

GA1

GA4

Room 2Room 1

Room 4Room 3

TE10

TE1

TE3

TE5TE4TE7

TE8
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TE6

TE11

TE2

TE12
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Grid Activator (GA)
GAx

Task Executor (TE)TEy

Emergency/Hazard
Distributed Wireless
Ad-hoc Grid (DWAG)

Figure 3.1: Example of an emergency scenario involving the Distributed Wireless Ad-hoc Grids
paradigm. Let us assume the presence of a fire spreading within an indoor environment. In such a
situation, the GAs are nodes lacking sufficient resources to perform a set of computationally demanding
applications (e.g. node localisation, data compression, etc.), while the TEs are auxiliary nodes support-
ing the GAs in performing such computations. The core idea behind the node-centric DWAG is, in fact,
the possibility for the GAs to fulfil their duties by taking advantage of the TEs by forming dynamic ad-
hoc grids with them. By doing so, the GAs can thus rely upon computational resources ideally bigger
than those locally available.

An example of an application needed in this situation is represented by node localisation. Since,

in indoor environments, Global Positioning System (GPS) support cannot be assumed, the GA nodes

would constantly need to autonomously compute their own location and to provide such summarised

information to the external Command & Control (C2) in order for it to keep real-time track of their

movements, guide and aid them to fulfil their duties (i.e. locate and save injured people trapped inside,
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extinguish fires, etc.). Therefore, although node localisation is only an example of the set of compu-

tationally demanding applications necessary to be in place whenever an emergency occurs, it is indeed

crucial for such scenarios. For this reason, localisation has been chosen as main case-study for the

current dissertation, and it is hence adopted to describe the envisioned DWAGs paradigm.

In order to perform the computation of intensive applications, such as for example real-time node

localisation, each GAx may choose either to individually and centrally execute job Jobi, or to distribute

some of the tasks Taski,j , of which the job is comprised, to some of its TEy neighbours. At present,

there are only two choices about where computation might occur within a network of devices: (i) on

individual nodes, with the advantage of achieving substantial data reduction, decreasing the cost of

transmission and avoiding congestion; (ii) outside the network, with the nodes simply supplying the data

required for the calculation. The latter approach does remove the need for powerful processors on nodes,

but necessitates a higher bandwidth network, whereas the tradeoffs are reversed for the former case. A

simple solution to the problem would be to over-engineer both the computational capacity of a node and

the network for data transmission; however, constraints of size and energy consumption may make this

impracticable, particularly for mobile nodes. Moreover, the sophistication of applications, particularly if

dynamically deployed, may change over the deployment lifetime of the devices that should be required

to compute them in the first place. Therefore, regardless of a device’s absolute computational power or

network bandwidth, applications may reach a point at which they cannot be individually executed on a

single node.

For this reason, we devise a distributed paradigm, namely DWAGs that, instead of relying upon

centralised approaches, represents a distributed solution to solve computationally demanding applica-

tions by applying computational grid principles, as described in Section 3.4.1, to WSNs. The core idea

of the node-centric DWAG paradigm is, in fact, the possibility for the GA nodes to fulfil their duties by

forming in the environment dynamic ad-hoc grids, whenever needed, with the auxiliary TE nodes that

are physically nearby (single-hop away). A requirement to consider in order for such distribution to take

place is the expectation of continued network connectivity over the duration of each DWAG interaction.

However since, during emergencies, applications are required to be computed as fast as possible (i.e.

few seconds/minutes), we do not expect network connectivity to represent a limiting constraint for the

considered scenario. Moreover, DWAG formations are lightweight and flexible, so that a GA can keep

dynamically adding new TEs and removing those outside its communication range. Independent DWAG

formations centred on different GAs can also overlap and use part of the same TEs. As illustrated in

Figure 3.1, the GAs keep forming dynamic ad-hoc grids while moving, thus offloading computation on

auxiliary nodes and asynchronously receiving back from them results.

Resource-intensive applications Jobi thus need to be split into smaller independent tasks Taski,j

that are then offloaded from the GAs to the TEs to create node-centric DWAGs. In order for this to

occur, schedulers need to be implemented on the GAs in order for them to make the best decision about

the TEs on which the task offload should be performed. Once results for each distributed task Taski,j

have been computed and sent back to the GA, a global result deriving from such individual computations
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needs to be combined on the GA. The final aggregated information thus represent a summarisation of the

data from which it was calculated, requiring reduced resources (e.g. bandwidth) to transmit throughout

towards C2 than would the raw information.

3.2 Application Requirements for DWAG Applicability
In order to allow computationally intensive applications to be executed by adopting the DWAG paradigm,

they need to fulfil a set of requirements that are listed as follows:

1. Whenever an application Jobi needs to be computed, it must be possible to identify a set of inde-

pendent Taski,j , forming Jobi, that can thus be executed in parallel. Task identification can be

performed either by hand or automatically through tools able to identify the main tasks and profile

them. As stated in Section 1.4, it is beyond the scope of this dissertation the design of general tools

able to automatically extract tasks Taski,j from each complex applications Jobi. Therefore, for

the applications we target within this dissertation, we assume that tasks are manually identified.

2. Whenever tasks Taski,j have been identified, the code for such tasks must be loaded onto

the nodes in the WSN. This can happen in a number of ways: typically, code will be dis-

tributed, or migrated while tasks are executed, from the GA to the TE nodes on-the-fly. Clearly,

this approach relies upon the existence of a supporting Operating System (OS) or middleware

(i.e. [Costa et al., 2007]) capable of dynamically loading and linking code. Other approaches in-

clude pre-deployment of useful code fragments to nodes that are likely to be used as TEs, or the

retrieval of such code from a repository. Since DWAG has been designed in the first place to be

independent from the underlying loading code infrastructure and since a variety of related work

(i.e. [Costa et al., 2007]) already exists in terms of middleware capable of on-the-fly loading and

linking code, we confine ourselves to code pre-deployment within this dissertation.

3. Whenever Taski,j are distributed, it must be possible to estimate their resource usage. In par-

ticular, tasks need to be profiled. Such a task profile can be determined statically, as a result of

a static analysis, or on the basis of dynamic profiles that are established and progressively main-

tained through task execution. In the former, the feature extraction statically occurs only once at

compile-time and no further profile update occurs at run-time. In the latter, the feature extraction

and characterisation dynamically occurs at run-time, thus progressive task profile refinements are

performed each time updates are required during job execution. Tactical WSNs are not a general

purpose computing resource and, although the superset from which extant tasks are drawn is ex-

pected to evolve over the long term, it will change relatively slowly. Moreover, tasks in WSNs are

frequently rather repetitive data analytic tasks. Thus, the conditions for both static analysis (i.e.

slowly changing and restricted tasks amenable to pre-deployment code analysis and simulation)

and dynamic analysis (i.e. repetitive tasks) hold. However, as stated in Section 1.4, the design of

an automatic profiler is beyond the scope of this dissertation, therefore our system assumes the

presence of an external profiler able both to identify Taski,j into which Jobi has been split and to

characterise them in terms of the resources required in order for them to be computed.
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3.3 DWAG System Flow Description
In order for demanding applications Jobi to be performed through the DWAG paradigm, a set of job

requirements need to be taken into account. As described in Section 3.2, it must thus be possible: (i) to

recognise the set of independent Taski,j into which Jobi can be split; (ii) to pre-load the TEs with a

set of functionalities allowing them to support the GAs during the computation of the main application

flow; (iii) to rely on a profile description for each Taski,j , thus a set of relevant features {f1, . . . , fF }

required to be extracted and used to characterise Taski,j .

:Main Thread :Task Manager :Resource Manager

:Task Executor (TE)

:Main Thread

:Grid Activator (GA)

:Task Manager GA TE

advertiseTask(GAID,Task(ID, {f1, ..., fF}))
offerAvailability

([TE1(ID, {a1, ..., aA}), ..., TEy(ID, {a1, ..., aA})])

TEBest := computeBest([TE1, ...,TEy])

notifySelection(TEBest)

acknowledge()

taskOffload(TaskID, Data)
acknowledge() startExecution()startExecution()

updateResources()

sendData(Data)

receiveData(Data)

*[while task not completed]

*[while there are tasks]

sendResult(Task(ID,Result))

JobResult := 
computeJob([Task1(ID,Result)Taskj(ID,Result)])

askResourcesAvailability()
receiveResourcesAvailability()

Figure 3.2: Main system flow and sequence of actions undertaken by the GA and the TE nodes whenever
the DWAG paradigm is performed.

We are now in a position to describe the sequence of actions performed whenever a demand-

ing application Jobi is executed through the DWAG paradigm. Recall that, although DWAG is ap-

plied to WSNs within the current dissertation, the paradigm itself is both technology and application-

independent. The following represents a high-level, application-independent description of DWAG main

system flow.

As illustrated in Figure 3.2, each time a node-centric dynamic ad-hoc grid is formed, a single GA

and a multiplicity of TEs are involved. Moreover, the GA and the TEs are internally composed of a

variety of processes, namely Main Thread, Task Manger and Resource Manager.

The GA has a unique Main Thread representing the main computational flow of the demanding

application Jobi required to be collaboratively executed. This flow is interrupted by the presence of a

multiplicity of tasks Taski,j , into which Jobi has been split. Each Taski,j is externally profiled so that,

when ready to be offloaded, it shows a set of characteristic features {f1, . . . , fF }. For both the GA and

the TE, each Task Manager instance takes care of an individual task offload. Thus, the number of Task
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Manager instances concurrently active on the same node represents the degree of parallel computations it

supports. The responsibilities of each Task Manager are twofold: (i) assisting the initial load distribution;

(ii) supporting the remote task computation (e.g. sending data required to perform remote task execution,

assisting message bursts, etc.).

Each TE is formed by the following components: (i) a single, always active, Main Thread instance

ready to react to any request of task execution performed by the GA; (ii) a set of Task Manager instances

each of which is responsible for the execution of a single task at the time; (iii) a single, always active,

Resource Manager instance responsible for fetching information related to both the TE real-time internal

resources (e.g. in terms of available computation) and real-time local network conditions (e.g. in terms

of network communication).

We are now ready to describe the sequence of activities illustrated in Figure 3.2 and un-

dertaken by the GA and the TE nodes each time DWAG applies. Whenever task Taski,j

needs to be remotely offloaded, firstly the GA advertises it within the environment (through

advertiseTask(GAID, Task(ID,{f1,...,fF })) by stating its own node identifier GAID, the identifier of

the task TaskID, and the set of characterising features Task{f1,...,fF }. The aim of this first phase is to

dynamically and locally discover the GA’s neighbourhood, and thus in-range TEyID together with their

resource availabilities TEy{a1,...,aA} . Each one of the in-reach available nodes replies in fact to such

request with an availability offer (through offerAvailability([TE1(ID,{a1,...,aA})
, . . . , TEy(ID,{a1,...,aA}) ]).

On the TEy side, such information is fetched by querying (through askResourcesAvailability() and re-

ceiveResourcesAvailability()) the Resource Manager component that, being an always active process,

constantly keeps real-time monitoring and updating the TEs resources and network information. The

output of this phase is thus a list, representing the discovered dynamic ad-hoc grid neighbourhood, filled

with the unique identifiers (e.g. unique IP addresses) of the neighbouring nodes and their respective

resources availabilities. The requests are synchronously handled, thus no further action is undertaken by

the GA unless the TEs are in range and provide their availability.

The GA needs now to select the best TEBest among those TEy belonging to the discovered neigh-

bourhood (through TEBest :=computeBest([TE1, . . . , TEy])). After the choice has been made, the GA

synchronously notifies the selection (through notifySelection(TEBest)) to the whole neighbourhood in

order both to inform the TEBest to get ready to handle the offload and to unlock the other TEy still

waiting to be potentially chosen. TEy’s acknowledgments allow the GA to progress the task offload.

Thus, the TEBest receives the initial amount of data required to handle the remote computation

of the offloaded TaskID (through notifySelection(TEBest)). From this moment on, the whole man-

agement of the task TaskID execution is delegated to the Task Manager components of both the GA

and the TEBest (through startExecution()). In fact, any further request of data required to maintain the

remote execution is directly managed by the GA and the TEBest’s Task Manager components (through

sendData(Data) and receiveData(Data)) until task execution is completed. At the end of the phase

of progressive task computation, the TEBest’s Task Manager keeps providing updates to the Resource

Manager (through updateResources()) on the actual status of the TEBest’s available resources. This is



3.4. Related Work 35

crucial, since each TE is required to handle multiple requests at the same time. During the offer phase,

the TE should be able promptly to provide as much up-to-date information as possible regarding the

current status of its resources.

Once computed, the task result is thus directly sent back to the GA (through sendResult(Task(ID,Result))).

The entire sequence of actions is repeated for each task Taski,j into which Jobi has been split. Finally,

since a result is generated for each computed task, they all need to be combined in order to create a

unique Jobi result (through JobResult :=computeJob([Task1(ID,Result) , . . . , Taskj(ID,Result) ])). Once

the final job result has been computed, both the GA’s main flow Main Thread and the Task Manger

terminate their execution.

3.4 Related Work
We are now interested in discussing the position of the devised DWAG paradigm within the related work.

In particular, we structure the discussion into two main parts, thus (i) we enhance DWAG features and

we relate them according to the Grid Computing research field that inspired them; and (ii) we present

existing approaches in the related work done to integrate Grid Computing and WSNs.

3.4.1 Grid Computing and DWAG Features

In this chapter, we presented the DWAG paradigm. This was proposed with the idea of applying some

principles deriving from the Grid Computing field to networks of resource-constrained WSNs devices.

We now provide a brief overview of computational grid systems, comparing them against clustering

computing systems, with the aim of highlighting and characterising DWAG properties.

Grid Computing [Foster and Kesselman, 1997, Foster and Kesselman, 1999, Foster et al., 2001]

(i.e. computational grid systems, grids) is a distributed computing paradigm referring to the ability

of a federation of common computers connected to a network (e.g. private, public, Internet, etc.)

by a conventional network interface (i.e. ethernet) to collaborate with each other to form a logical

Virtual Organisation (VO) with the aim of gathering and sharing computing resources, similarly to a

multi-processor super-computer, and then distributing process execution across a parallel infrastruc-

ture. Grid middleware (i.e. Globus Toolkit [Foster and Kesselman, 1997], gLite [gLite, 2010], and UNI-

CORE [UNICORE, 2010]) is a specific software product, representing a special layer placed between

the heterogeneous infrastructure and the specific user applications, enabling the sharing of heterogeneous

resources among Virtual Organisations.

Grid Computing systems greatly differ from the traditional notion of single super-computer. In tra-

ditional super-computers, in fact, several powerful processors are embedded within the same hardware

and connected with each other through a local high-speed computer bus. On the contrary, each node in a

computational grid system can be purchased as commodity hardware which, when combined with other

nodes, can logically emulate computing resources similar to those of a multi-processor super-computer,

but at lower cost. Hence, Grid Computing provides the ability to achieve higher computing through-

put by taking advantage of the unused resources of a federation of heterogeneous computational nodes

modelling a virtual computer architecture. Nodes belonging to a grid are then able to individually solve
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Grid Computing Cluster Computing

System nodes Loosely-coupled Tightly-coupled

Geographic distribution Dispersed Centralised

Infrastructure Distributed Fixed

Node hardware Heterogeneous Homogeneous

Job scheduling/management Distributed Centralised

Table 3.1: Grid computing vs. cluster computing systems.

smaller tasks, into which a computationally intensive application has been split, by distributing process

execution across an infrastructure in which multiple parallel computations take place, independently. The

grid infrastructure manages the logic behind the allocation process so that, once distributed, single tasks

are executed independently and intermediate task results do not affect other in-progress task executions.

Therefore, computational grid systems are composed of heterogeneous loosely-coupled computers, ge-

ographically dispersed but connected through a high-speed network, orchestrating with each other to

solve large-scale computational problems requiring a great number of computer processing cycles or the

access to large amounts of data.

To date, Grid Computing has also been applied to computationally intensive scientific, mathemat-

ical, and academic problems through volunteer computing, and it is used in commercial enterprises for

diverse applications. For example, some of the most popular Grid Computing systems are the following:

search for extraterrestrial intelligence in SETI@Home [SETI@Home, 2010]; protein folding in Fold-

ing@Home [Folding@Home, 2010]; physics research like developing and exploiting particle accelera-

tors such as CERN Large Hadron Collider LHC@Home [LHC@Home, 2010]; dealing with humanitar-

ian causes in Africa@Home [Africa@Home, 2010]; earthquake simulation, climate/weather modelling,

linked environments for atmospheric discovery in LEAD [LEAD, 2010]. A number of corporations,

professional groups, university consortiums, and other groups have developed frameworks and software

for managing computational grid projects. The European Union (EU), National Technology Grid, Sun

Microsystems, together with several other associations, are the main supporters of Grid Computing.

Grid Computing is a specialisation of cluster computing [Buyya, 1999a, Buyya, 1999b]. However,

cluster computing greatly differs from computational grids for the following reasons. Firstly, cluster

computing nodes are tightly-coupled among each other, thus remote task computations are not exe-

cuted autonomously but there is, instead, strong control coming from head nodes (e.g. cluster-heads)

in the architecture. Moreover, nodes are often organised according to a static pre-defined structure (e.g.

hierarchical). In addition, they are mainly homogeneous and geographically centralised. Finally, job

management and scheduling is not distributed on each node but it is managed by a centralised authority.

Grid Computing and clustering computing features are compared in Table 3.1.

The devised DWAG paradigm represents a tentative to port Grid Computing features within net-

works of resource-constrained devices, such as WSNs. Therefore, Grid Computing characteristics have

been adapted within the DWAG paradigm, as follows:
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• Loosely-coupled nodes: Whenever each task, into which a computationally intensive job has been

split, is distributed from the GAs to the auxiliary TEs nodes, task execution is performed in a

completely autonomous way on the TEs. Although data offload and upload are performed, DWAG

underlying node infrastructure is completely decentralised, thus grids are ad-hoc created, and the

TEs autonomously perform task computation.

• Geographically dispersed nodes: In DWAG, nodes are exclusively required to be wirelessly in

reach with each other to be able to communicate, but there is no constraint concerning their geo-

graphical placement in the environment.

• Distributed infrastructure: the GAs dynamically create distributed wireless ad-hoc grids, relying

upon a completely dynamic infrastructure in which nodes add or remove themselves according to

their available computational capabilities.

• Heterogeneous nodes: In DWAG, as long as nodes interact with each other through the same

communication protocol, no requirements of hardware homogeneity is assumed.

• Distributed job scheduling/management: Each GA node initiating DWAG must deal with task

scheduling and management algorithms, since task distribution is completely decentralised and

managed by single nodes, individually.

Finally, note that, like the Globus Toolkit for Grid Computing, DWAG relies upon job character-

isation and knowledge of the resources required to be allocated during the task distribution process.

Although Globus Toolkit represents a flexible and modular tool, its implementation is not lightweight

enough to run on networks of resource-constrained devices.

3.4.2 DWAG vs. Sensor Grid Systems

In the past few years, an increasing trend towards the integration of WSNs and Grid Computing fields

has been recorded [Coulson et al., 2006], leading to the development of a great variety of Sensor Grid

systems.

Sensor Grids represent the tentative of combining WSNs and Grid Computing features to generate

a unifying system. As described in Section 2.2.1, to date, WSNs have been adopted with the idea of

instrumenting the physical environment with resource-constrained, low cost devices able to monitor en-

vironmental phenomena by progressively gathering data readings. As described in Section 3.4.1, Grid

Computing is instead a distributed computing paradigm allowing nodes, required to perform intensive

computations, to exploit the unused resources of a federation of additional heterogeneous nodes, dis-

tributed across several administrative domains and modelling a virtual computer architecture, to achieve

job computation. Sensor Grid systems combine the two paradigms through infrastructures in which

real-time environmental data are: (i) collected by heterogeneous and distributed sensing nodes; and (ii)

real-time analysed by exploiting the computational resources of a pool of machines (e.g. computers)

belonging to several virtual organisations. Sensor Grid is therefore a technology for building large-

scale infrastructures integrating heterogeneous sensors, data and computational resources deployed over
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a wide area, to undertake computationally intensive tasks.

Sensor Grids have several motivations: firstly, the vast amount of data collected by sensors can be

processed, analysed, and stored using the computational and data storage resources of a Grid Computing

infrastructure; secondly, sensors can be efficiently shared by different users and applications under flexi-

ble usage scenarios. Hence each user can access a subset of nodes for a certain time period to run specific

applications and to collect the desired type of data. Finally, Sensor Grid allows the pervasive access to a

wide variety of resources. Data fusion, mining and distributed database processing techniques can thus

be applied to generate environmental knowledge, improve sensor collection and influence environmental

actuators.

Several pervasive support systems (e.g. GridStix [Hughes et al., 2006], SPRING [Lim et al., 2005],

Code Blue [CodeBlue, 2010], Discovery Net [Net, 2010], etc.) have been developed to predict and

manage environmental threats (e.g. fire, flooding [Coulson, 2006, Hughes et al., 2006], etc.), to sup-

port emergency rescue services [Lorincz et al., 2004], to monitor weather [Lim et al., 2007], to re-

act to strains in engineering artefact (e.g. bridges, aircraft engines, etc.) and for healthcare pur-

poses [Oh and Lee, 2008]. Therefore, the infrastructures [Lim et al., 2005, Tham and Buyya, 2005,

Gaynor et al., 2004] enable the construction of real-time models and databases of the environment and

physical processes as they unfold, from which high-value computations like decision-making, analyt-

ics, data mining, optimisation and prediction can be carried out to generate on-the-fly results. A sur-

vey [Ahuja and Myers, 2006] for Sensor Grid infrastructures has been provided. Since WSNs are ex-

posed to fixed and long-term deployments, the main concern is related to power efficiency and battery

lifetime maximisation.

Our DWAG paradigm greatly differs from the rationale behind Sensor Grid systems. Firstly, sensor

devices are employed in DWAGs not with a passive, but with an active role, since they are adopted

as entities that, because of their computational capabilities, are able to collaboratively perform more

complex and intensive applications. Secondly, in DWAG the grid is entirely initiated and built among

sensor platforms themselves without relying upon extra computational capacity deriving from additional

high-performing computing nodes: sensor devices are not themselves seen as mere data collectors, but

actual executing nodes. Finally, the DWAG infrastructure is completely flexible and distributed, thus

each node is able, according to its needs, to initiate the grid or perform the functionalities of auxiliary

nodes.

3.5 Discussion
In this chapter, we presented the Distributed Wireless Ad-hoc Grids paradigm employed to collabora-

tively execute computationally intensive applications by locally distributing tasks, into which a main job

is split, within the network. We listed the application requirements to allow DWAG applicability. We

then described the sequence of actions to be undertaken in order to perform DWAG. Finally, we located

the paradigm within the related work emphasising analogies and differences with traditional distributed

computing approaches like Grid Computing and cluster computing.



Chapter 4

Impact of Network Conditions

on DWAG in Deployed Systems

In Chapter 3, we described the scenario and the DWAG paradigm together with the requirements for

its practical applicability and the associated related challenges. In particular, the major weaknesses of

the related work presented in Chapters 2 and 3 are summarised as follows: (i) most of the approaches

exclusively focus on increasing algorithmic sophistication, largely ignoring practical issues pertaining

to real-world radio communications; (ii) most of the evaluations are performed through simulations

within simulation environments making implicit assumptions about persistent radio medium reliability.

Although these assumptions are convenient for simulation purposes, they happen to be inadequate when

it comes to evaluating algorithms in deployed testbeds. The objective of this chapter is thus to investigate

the impact of environmental network traffic contention on the distribution, according to the DWAG

paradigm, of computationally intensive applications within deployed systems.

The remainder of this chapter is thus organised as follows: (i) in Section 4.1, we describe the band-

width problem as the impact of environmental network traffic contention on the distribution of computa-

tionally intensive applications according to the DWAG paradigm; (ii) in Section 4.2, we present two load

sharing algorithms, namely the Auction and the Lookup List, chosen and adapted to be implemented in

a completely distributed manner on deployed testbeds with the aim of load distribute applications; (iii)

in Section 4.3, we devise and integrate within the algorithmic decision making process of the basic load

distribution algorithms a Bandwidth-Aware Task Scheduling (BATS) heuristic mechanism combining

the local information regarding the TEs available computational resources and the local amount of ex-

isting network contention in the areas where the TEs are located; (iv) in Section 4.5, we briefly discuss

related work on load distribution; (v) in Section 4.6, we test the proposed DWAG paradigm with related

bandwidth-aware heuristic with actual computation, actual profiling of the medium, and actual network

traffic for a multiplicity of settings and we assess the impact of network conditions on distribution of

homogeneous tasks within deployed systems; and (vi) in Section 4.7, we summarise the obtained results.
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4.1 Network Contention Impact on Distribution
As illustrated in Section 3.3, whenever collaborative computation takes place through the DWAG

paradigm, the set of tasks Taski,j , of which Jobi is comprised, are required to be distributed within

the environment from the GA to the auxiliary TE nodes. In particular, before being distributed, a task

Taski,j is assumed to be externally profiled and thus a set of characterising features {f1, . . . , fF } are

extracted and further used as task descriptor. Similarly, before becoming the remote auxiliary node re-

sponsible for computing Taski,j , the TE needs to advertise its resources availabilities {a1, . . . , aA}

to the GA. As described in Section 2.2.1, since WSNs are comprised of unsophisticated resource-

constrained devices, both task profiling features and nodes resources availabilities are characterised

through their computational (e.g. CPU cycles/active processes) and communication (e.g. bandwidth

occupation/availability) requirements.

Room 2Room 1

GA1 GA2

GA3

Grid Activator (GA)
GAx

Task Executor (TE)TEy
Distributed Wireless 
Ad-hoc Grid (DWAG)

Uncongested Area

Congested Area

GA4

TE5

TE2

TE1 TE3

TE6

TE4

Nodes with:
- lower computational availability
- higher communication availability

Nodes with:
- higher computational availability
- lower communication availability

TE7TE8

Figure 4.1: Network contention impact on distribution through DWAG. Several GAs keep distributing
Taski,j , of which their Jobi are comprised, to the TEs by building dynamic ad-hoc grids in the envi-
ronment. For example, GA1 needs to choose the best TEy among those belonging to the dynamically
discovered {TE1, . . . , TE4} neighbourhood. In a scenario where TEy are both unequally loaded (e.g.
{TE1, TE2} have lower computational and higher communication availabilities, {TE3, TE4} have a
reversed situation) and network utilisation is unevenly distributed (e.g. {TE1, TE2} and {TE3, TE4}
are located in congestion-free and contended areas, respectively), it is crucial to account not only for the
impact of computational conditions but also for those of network conditions, in terms of radio commu-
nication contention, on distribution performance.

In particular, let us assume that we have a situation like that illustrated in Figure 4.1 where several

GAx, required to execute a demanding Jobi, keep distributing their Taski,j to TEy by building virtual

ad-hoc grids in the environment. For example, let us now focus on GA1’s behaviour. Since GA1’s neigh-

bourhood is composed of {TE1, . . . , TE4}, GA1 needs to select the best TEy able to handle Taski,j

computation in the most efficient and effective way, namely completing Taski,j execution in the least
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amount of time. For each DWAG, the neighbourhood dynamically changes thus, for each task computa-

tion, the offload decision might involve a different set of nodes.

In each instant of time, TEy advertises its real-time internal resource availabilities, since each node

could potentially be busier than others either from a computational or from a communication perspective.

In Figure 4.1, nodes {TE1, TE2} have a lower computational availability, since they are already busy

performing intensive computations, and a higher communication availability since for example tasks, that

each of them are required to fulfil, do not involve several message exchanges (e.g. spiral representation

for {TE1, TE2} in Figure 4.1). The opposite situation occurs for nodes {TE3, TE4}, having instead

higher computational and lower communication availabilities (e.g. representation through sequence of

arrows for {TE3, TE4} in Figure 4.1), respectively.

A crucial aspect that cannot be disregarded in such scenarios is the impact of the local environ-

ment where TEy nodes happen to be located at distribution time. In situations affected by considerable

amounts of radio communication, it is unrealistic to assume a homogeneous distribution of both network

utilisation and interference in the environment. In Figure 4.1, nodes {TE1, TE2} and {TE3, TE4}

might be located in congestion-free or contended areas, respectively (e.g. they are in areas with a higher

density of nodes, or with many tasks to be performed requiring relatively high network utilisation, or

with few tasks requiring massive bandwidth usage, or again areas traversed by routes for substantial

amounts of cross traffic). Moreover, whenever distribution becomes necessary, there are several reasons

why it might itself add to the congestion of an area. Primary amongst them are the initial distribution

of data and/or code, any subsequent TEy requirement to communicate with the originating GA, and the

control overhead of maintaining accurate information about TEy state at the GA side.

Traditional distributed systems (e.g. computational grids) perform distribution relying upon sta-

ble network infrastructures where hosts are permanently connected to the main network through high-

bandwidth and high-quality links. In our case, most of the distribution occurring within WSNs or among

embedded devices communicating with each other through radio medium, lacks of such reliable commu-

nication links and it is thus more prone to congestion, collision, and interference. Since network traffic

plays a crucial role whenever distribution wirelessly takes place, in the current dissertation we build an

empirical analysis investigating the impact of network conditions on distribution performance. In partic-

ular, we analyse if, and to what extent, combining real-time information on local network utilisation to

computational requirements indeed leads to greater overall system performance (i.e. fast job completion)

than the case in which the load is merely distributed accounting for computational requirements.

Consequently, we are now in a position to state that, among the set of both task feature {f1, . . . , fF }

and TE availability {a1, . . . , aA} characterisations, we focus our research interest on two dimen-

sions: computation and communication. In particular, we will refer to Taski,j(fCPU ,fBand) and

TEy(aCPU ,aBand) to indicate task features and TE availabilities, respectively.

4.2 Load Distribution Algorithms
In Section 3.3, we described the high-level, application-independent flow representing the sequence of

actions undertaken whenever a demanding Jobi is executed through the DWAG paradigm. In such a
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system design, the entire negotiation phase anticipating both the actual offload and the further remote

computation is carried on with the aim of identifying, for each dynamically built DWAG, the best TEy

node to which Taski,j execution needs to be assigned.

Since this dissertation aims to address the research problem of analysing the impacts of real-time

local network conditions during collaborative computation rather than the creation of novel load sharing

protocols, we choose, modify, and adapt two existing load sharing algorithms to account for network

utilisation and local traffic congestion. Recall that, since the whole evaluation was performed on sig-

nificantly resource-constrained embedded TMote Sky devices, algorithmic simplicity has always been

preferred to sophistication.

The first protocol, described in Section 4.2.1, is a GA-initiated load sharing algorithm while the

second one, described in Section 4.2.2, is inspired by the dynamic TE-initiated load sharing algorithm

presented in [Chuang and Cheng, 2002]. In the remainder of this dissertation, we will refer to the former

as the Auction algorithm and to the latter as the Lookup List algorithm.

Algorithm 1: Auction Algorithm - Grid Activator

/* Jobi has been externally split into a set of tasks Taski,j. */
/* Each Taski,j is assumed to be profiled Taski,j(fCPU ,fBand). */
/* GA has a single Main Thread and multiple Task Managers. */
/* #TaskManageractive is the number of running tasks. */
/* #TaskManageravailable is the degree of multi-threading. */
/* Main Thread: */
foreach (Taski,j) do1

wait until #TaskManageravailable > 0;2

repeat3

broadcast a request advertising Taski,j(fCPU ,fBand);4

wait time ∆t1 to receive bids;5

until (at least one bid from TEy is received) ;6

select TEBest by computing the best bid;7

repeat8

broadcast a message notifying TEBest selection;9

wait time ∆t2 to receive TEBest ACK confirming selection notification;10

until (ACK is received) ;11

repeat12

offload Taski,j data;13

wait time ∆t3 to receive TEBest ACK confirming data offload reception;14

until (ACK is received) ;15

#TaskManageravailable −−;16

#TaskManageractive + +;17

launch a Task Manager instance;18

end19

wait until all Taski,j results are received from Task Manager;20

compute Jobi result combining all Taski,j results;21

/* Task Manager: */
repeat22

wait time ∆t4 to receive data required to support Taski,j computation;23

send data required to support Taski,j computation;24

until (Taski,j has not reached completion) ;25

receive Taski,j result when completion has been achieved;26

#TaskManageravailable + +;27

#TaskManageractive −−;28
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Algorithm 2: Auction Algorithm - Task Executor

/* TE has a single Main Thread and multiple Task Manager. */
/* #TaskManageractive is the number of running tasks. */
/* #TaskManageravailable is the degree of multi-threading. */
/* TEy(aCPU ) = #TaskManageravailable */
/* Main Thread: */
repeat1

receive advertising Taski,j(fCPU ,fBand) offload request;2

gather resource availabilities TEy(aCPU ,aBand);3

if (#TaskManageravailable > 0) then4

send bid to GA containing its internal resource availability TEy(aCPU ,aBand);5

end6

if (TEy == TEBest) then7

send ACK confirming selection notification;8

wait time ∆t1 to receive Taski,j data;9

send ACK confirming data offload reception;10

#TaskManageravailable −−;11

#TaskManageractive + +;12

launch an instance of Task Manager;13

end14

until (TEy is active) ;15

/* Task Manager: */
repeat16

send data required to support Taski,j computation;17

wait time ∆t2 to receive data required to support Taski,j computation;18

until (Taski,j has not reached completion) ;19

send Taski,j result when completion has been achieved;20

#TaskManageravailable + +;21

#TaskManageractive −−;22

update internal resource availabilities TEy(aCPU ,aBand);23

4.2.1 The Auction Algorithm

The first protocol, namely the Auction algorithm, is a GA-initiated load sharing algorithm, in which state

information exchange is reactively handled.

In order to achieve Jobi completion, the GA needs to distribute the set of tasks Taski,j , of which

Jobi is comprised, to the TEs. Each Taski,j is assumed to be externally profiled and thus, when ready

to be offloaded, it shows a structure of characterising features Taski,j(fCPU ,fBand) that can be explained

as follows: (i) Taski,j(fCPU ) identifies the number of CPU cycles required; (ii) Taski,j(fBand) identifies

the burst of messages to be exchanged to achieve Taski,j completion.

As illustrated in Section 3.3, both the GA and the TE have a single instance of Main Thread and

multiple instances of Task Manager components. The former manages the main application Jobi flow

for the GA and negotiates remote Taski,j offload for the TE. The latter instead handles the actual task

execution on both the GA and the TE. In particular, whenever a task enters the execution, a specific

instance of Task Manager is reserved on both the GA and the TE. Thus, while TaskManageractive identi-

fies the real-time number of parallel tasks running on a node, TaskManageravailable identifies the actual

degree of parallelism (i.e. multi-threading) handled by each node. Moreover, the TE has also a Re-

source Manager component, an always active process responsible to provide real-time information on
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both node computational and communication resources. It is crucial to point out that, as described in

Section 4.6, the resource-constrained TMote Sky devices, elected for the testing of our DWAG, do not

have embedded hardware multi-threading features and thus the parallelism and distribution have been

handled in software. Moreover, multiple requests are managed by each TE on a First-Come First-Served

(FCFS) basis.

Since the algorithms are fully distributed among the two main system actors GA and TE, we are

now in a position to describe the main algorithmic steps undertaken by both the GA and the TE while

performing the Auction algorithm, thus in Algorithm 1 and 2, respectively. Recall that since the Resource

Manager is an always active component whose unique responsibility is to provide real-time information

on node computational and communication availabilities, for the sake of simplicity we will not introduce

it as a separate entity within TE algorithmic explanation, but instead we will simply refer to it any time

internal resource availability information is fetched within a TE node.

For each Taski,j required to be remotely computed, the following actions need to be undertaken.

Firstly, the GA needs to wait until there is at least one TaskManageravailable available to handle a re-

mote offload. Then, the GA’s Main Thread broadcasts a task request message containing its own node

identifier, the identifier of the task (Taski,j), and advertising Taski,j(fCPU ,fBand) computational and

communication features. The GA thus waits ∆t1 time to receive bids from in-reach TEy in order to

discover its own DWAG neighbourhood. If no bid is received, the GA’s Main Thread keeps broadcasting

the request message until a set of bids are received. Upon receiving Taski,j(fCPU ,fBand) offload request,

the TE checks with the Resource Manager its internal resource availabilities TEy(aCPU ,aBand). If at least

a Task Manager is available to handle the request, then the TE sends a bid to the GA containing its inter-

nal resource availabilities TEy(aCPU ,aBand). In particular, TEy(aCPU ) identifies the number of available

TaskManageravailable in charge to take care of remote task computation, while TEy(aBand) identifies the

local level of bandwidth availability and thus describes the level of network congestion of an area.

Once all bids have been collected, and thus the DWAG neighbourhood has been discovered, the

GA’s Main Thread performs a computation to determine the best bid and thus selects the TEBest. In

Section 4.3, we will detail how the decision making process is handled at the GA side.

Upon selecting the TEBest, the GA’s Main Thread broadcasts a message notifying TEBest selec-

tion. This action has two effects: (i) the chosen TEBest locks the resources advertised through the bid

by participating in the auction; (ii) the other TEy , involved in the auction but not being chosen, are in-

formed about the winner of the auction, and thus they free their internal resources potentially ready to

be allocated for remote task execution.

Then, the GA keeps waiting a time ∆t2 and broadcasting the message notifying the TEBest se-

lection until it receives the ACK from the TEBest confirming the selection notification. Once the ACK

is received, the GA offloads the preliminary data necessary to allow Taski,j computation at TEBest

side. The GA waits a time ∆t3 and offloads data until it receives the ACK from TEBest confirming

the data offload reception. Upon receiving the ACK, the GA launches an independent Task Manager

instance responsible to handle the remote task execution. Moreover, it updates its resource availabilities
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by increasing the number of TaskManageractive and decreasing those available TaskManageravailable.

Analogously, after sending ACKs confirming both the node selection notification and the data offload re-

ception, the TEBest activates a parallel instance of Task Manager and it locks the set of resources ready

to be used. In particular, it increases the number of TaskManageractive and decreases those available

TaskManageravailable.

In the negotiation phase, the messages exchanged are synchronously handled. This implies that no

further action is undertaken within the protocol unless an ACK (either positive or negative) is received.

If no ACK is received within a defined time interval ∆t, the procedure iterates and a new message is

delivered.

However, whenever Task Manager instances are instead launched at both the GA and the TEBest’s

sides, they are individually and fully responsible for carrying on Taski,j’s execution. Until Taski,j has

reached completion, the GA and the TEBest’s Task Managers communicate with each other every time

it becomes necessary to exchange data required to support Taski,j computation.

Upon achieving Taski,j completion, the TEBest asynchronously delivers the results to the

GA and it further updates its internal resource availabilities TEBest(aCPU ,aBand). In particular, the

TEBest increases the number of available TaskManageravailable, while decreasing the number of active

TaskManageractive ones. As soon as Taski,j results are received at the GA side, the GA similarly frees

its internal resources, thus increasing the number of available TaskManageravailable, while decreasing

the number of active TaskManageractive ones.

Whenever results for all tasks Taski,j of which Jobi is comprised have been computed, the GA

computes the global Jobi result by combining all single task Taski,j results.

4.2.2 The Lookup List Algorithm

The second protocol, the Lookup List algorithm, is a more sophisticated TE-initiated load sharing algo-

rithm, in which state information exchange is proactively handled. The main idea behind this algorithm

comes from [Chuang and Cheng, 2002], but it has been adapted to allow for network control.

Analogously to the Auction algorithm, in order to achieve Jobi completion, the GA needs to dis-

tribute the set of tasks Taski,j , of which Jobi is comprised, to TEs. Each Taski,j is assumed to be

externally profiled and thus, when ready to be offloaded, it shows a structure of characterising fea-

tures Taski,j(fCPU ,fBand) that can be explained as follows: (i) Taski,j(fCPU ) identifies the number of

required CPU cycles; (ii) Taski,j(fBand) identifies the burst of messages to be exchanged to achieve

Taski,j completion.

As illustrated in Section 3.3 and specified for the Auction algorithm in Section 4.2.1, both the GA

and the TE have a single instance of Main Thread and multiple instances of Task Manager components.

The former manages the main Jobi flow for the GA and negotiates remote Taski,j offload for the TE.

The latter instead handles the actual task execution on both the GA and the TE. In particular, when-

ever a task is executed, a specific instance of Task Manager is reserved on both the GA and the TE.

Thus, while #TaskManageractive identifies the real-time number of parallel tasks running on a node,

#TaskManageravailable identifies the actual degree of parallelism (i.e. multi-threading) handled by each
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Algorithm 3: Lookup List Algorithm - Grid Activator

/* Jobi has been externally split into a set of tasks Taski,j. */
/* Each Taski,j is assumed to be profiled Taski,j(fCPU ,fBand). */
/* GA has a single Main Thread and multiple Task Managers. */
/* #TaskManageractive is the number of running tasks. */
/* #TaskManageravailable is the degree of multi-threading. */
/* Main Thread: */
repeat1

broadcast a request advertising need for remote task offload;2

wait time ∆t1 to receive availabilities;3

fill a Lookup List with internal resource availabilities TEy(aCPU ,aBand);4

until (at least N availabilities from TEy are received) ;5

foreach (Taski,j) do6

wait until #TaskManageravailable > 0;7

repeat8

select TEBest by computing the best availability;9

repeat10

send a message to TEBest notifying its selection;11

wait time ∆t2 to receive TEBest ACK confirming selection notification;12

until (ACK is received) ;13

receive and update Lookup List with internal resource availabilities14

TEBest(aCPU ,aBand);
until (ACK is positive) ;15

repeat16

offload Taski,j data;17

wait time ∆t3 to receive TEBest ACK confirming data offload reception;18

until (ACK is received) ;19

#TaskManageravailable −−;20

#TaskManageractive + +;21

launch a Task Manager instance;22

end23

wait until all Taski,j results are received from Task Manager;24

compute Jobi result combining all Taski,j results;25

/* Task Manager: */
repeat26

wait time ∆t4 to receive data required to support Taski,j computation;27

send data required to support Taski,j computation;28

until (Taski,j has not reached completion) ;29

receive Taski,j result when completion has been achieved;30

receive and update Lookup List with internal resource availabilities TEBest(aCPU ,aBand);31

#TaskManageravailable + +;32

#TaskManageractive −−;33
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Algorithm 4: Lookup List Algorithm - Task Executor

/* TE has a single Main Thread and multiple Task Manager. */
/* #TaskManageractive is the number of running tasks. */
/* #TaskManageravailable is the degree of multi-threading. */
/* TEy(aCPU ) = #TaskManageravailable */
/* Main Thread: */
repeat1

receive offload request;2

gather and send resource availabilities TEy(aCPU ,aBand) to GA;3

if (TEy == TEBest) then4

send ACK confirming selection notification;5

send update with internal resource availabilities TEBest(aCPU ,aBand) to GA;6

wait time ∆t1 to receive Taski,j data;7

send ACK confirming data offload reception;8

#TaskManageravailable −−;9

#TaskManageractive + + ;10

launch a Task Manager instance;11

end12

until (TEy is active) ;13

/* Task Manager: */
repeat14

send data required to support Taski,j computation;15

wait time ∆t2 to receive data required to support Taski,j computation;16

until (Taski,j has not reached completion) ;17

send Taski,j result when completion has been achieved;18

send update with internal resource availabilities TEBest(aCPU ,aBand) to GA;19

#TaskManageravailable + +;20

#TaskManageractive −−;21

update internal resource availabilities TEy(aCPU ,aBand);22
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node. Moreover, the TE has also a Resource Manager component, an always active process responsible

for providing real-time information on both node computational and communication resources. Multiple

requests are managed by the TEs using a FCFS strategy.

Since the algorithms are fully distributed among the two main system actors GA and TE, we are

now in a position to describe the main algorithmic steps undertaken by the GAs and the TEs while

performing the Lookup List algorithm, thus in Algorithm 3 and 4, respectively. Recall that, since the

Resource Manager is an always active component whose unique responsibility is to provide real-time

information on node computational and communication availabilities, for the sake of simplicity we will

not introduce it as a separate entity within the TE, but instead we will simply refer to it any time internal

resource availability information is fetched within a TE node.

Unlike the Auction algorithm, in the Lookup List protocol, the GA opens Jobi execution by launch-

ing an initial discovery phase through which it discovers its neighbourhood and it fills a look-up list

containing resource availabilities of in-range TEy(aCPU ,aBand). In particular, the GA’s Main Thread per-

forms the following actions: (i) it broadcasts a request advertising the need for remote task offload; (ii)

it waits ∆t1 time interval to receive availabilities from in-reach TEy; (iii) it fills a look-up list containing

resource availabilities of in-range TEy(aCPU ,aBand). These actions iterate until at least N availabilities

from TEy are received. In fact, since the neighbourhood discovery phase is preliminary to Jobi execu-

tion and it is performed only at the beginning of the protocol, it is crucial to gather enough information

about as many TEy as possible in order to rely upon a bigger node selection while distributing tasks. In

fact, while TEy resource availabilities keep been constantly updated during the execution of the protocol,

no other TEy node is added to the list once the distribution takes place.

Upon receiving the offload request, in-range TEy check with the internal Resource Manager com-

ponent to determine their resource availabilities TEy(aCPU ,aBand) and, after having collected them,

they send such information to the GA. Once again, TEy(aCPU ) identifies the number of available

TaskManageravailable in charge of handling remote task computation while TEy(aBand) identifies the

local level of bandwidth availability and thus describes the level of network congestion of an area.

For each Taski,j that must be remotely computed, the GA needs to undertake a set of actions.

Like the Auction algorithm, the GA needs to wait until there is at least one of its TaskManageravailable

available to handle a remote offload. Once this happens, the GA’s Main Thread performs a computation

to select the TEBest from the previously filled look-up list.

Upon selecting TEBest, the GA’s Main Thread keeps sending a message to the TEBest notifying its

selection and waiting a time interval ∆t2 until it receives the ACK from the TEBest confirming selec-

tion notification. Once it has received such a message, the TEBest sends an ACK to the GA confirming

selection notification together with an update of its internal resource availabilities TEBest(aCPU ,aBand).

The GA then updates the resource availability information contained within the look-up list and iterates

the computation of the TEBest selection. Upon updating the look-up list and further computing the best

node selection, if the TEBest keeps being the same node then Taski,j offload is performed on that very

same node, otherwise the procedure iterates until a new TEBest is selected. Once a positive ACK is re-
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ceived, the GA offloads the preliminary data necessary to allow Taski,j computation on the TEBest side.

The GA then waits a time ∆t3 and offloads data until it receives the ACK from the TEBest confirming

the data offload reception. Upon receiving the ACK, the GA launches an independent Task Manager

instance responsible to handle the remote task execution. Moreover, it updates its resource availabilities

by increasing the number of TaskManageractive and decreasing those available TaskManageravailable.

Like the Auction algorithm, also within the negotiation phase of the Lookup List protocol, the

exchanged messages are handled synchronously. This implies that no further action is undertaken within

the protocol unless an ACK (either positive or negative) is received. Thus, if no ACK is received within

a defined time interval ∆t, the procedure iterates and a new message is delivered.

However, whenever Task Manager instances are launched on both the GA and the TEBest’s nodes

instead, they are individually and fully responsible for carrying on Taski,j execution. Thus, until

Taski,j has reached completion, the GA and the TEBest’s Task Managers communicate with each other

every time it becomes necessary to exchange data required to support Taski,j computation.

Upon achieving Taski,j completion, the TEBest asynchronously delivers the results to the

GA and it further updates its internal resource availabilities TEBest(aCPU ,aBand). In particular, the

TEBest increases the number of available TaskManageravailable, while decreasing the number of active

TaskManageractive ones. Together with the Taski,j result, the TEBest sends also an update of its internal

resource availabilities TEBest(aCPU ,aBand). As soon as Taski,j results are received at the GA side, the

GA similarly frees its internal resources, thus increasing the number of available TaskManageravailable,

while decreasing the number of active TaskManageractive ones. Moreover, it updates TEBest resource

availability information contained within the look-up list.

Whenever results for all tasks Taski,j of which Jobi is comprised have been computed, the GA

computes the global Jobi result by combining all single task Taski,j results.

4.3 Bandwidth-Aware Task Scheduling Heuristic
As described in Section 4.1, whenever node collaboration and distributed computation is required to

achieve Jobi completion, among the general characterisations of both task features Taski,j(f1,...,fF )

and the TE availabilities TEy(a1,...,aA), it becomes necessary to account particularly for two dimen-

sions: computation (i.e. Taski,j(fCPU ) and TEy(aCPU )) and communication (i.e. Taski,j(fBand) and

TEy(aBand)).

In Section 4.2 we devised two algorithms to manage load distribution, namely the Auction and the

Lookup List algorithms. Although different from a behavioural perspective (i.e. the Auction algorithm

is reactive and GA-initiated, while the Lookup List algorithm is proactive and TE-initiated), both ap-

proaches have in common the need to perform a decision making phase in order to choose in an almost

real-time way the best TEy node towards which Taski,j offload needs to be directed.

Thus, each time the GA discovers its neighbourhood of TEy nodes together with their internal

resource availabilities TEy(aCPU ,aBand), a utility function is computed in order to take the best informed

decision about where the offload should be handled within the environment. In particular, we propose and

integrate within the load distribution algorithms a Bandwidth-Aware Task Scheduling (BATS) heuristic.
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BATS heuristic is built by linearly combining the information about the available computational

resources of a TEy node and the local amount of network contention performed in the area where TEy

is located. In Equation 4.1, we have that for each TEy node, belonging to GA’s neighbourhood dy-

namically discovered each time DWAG is applied, a score value ScoreTEy is obtained by computing a

linearly weighted score function combining computational TEy(aCPU ) and communication TEy(aBand)

availabilities of TEy . weightCPU and weightBand are the weights set to define the relative importance

of computational and communication resources, respectively. The TEBest with the highest computed

score ScoreTEBest is selected to handle the remote Taski,j offload. In the experimental Section 4.6, we

will describe how TEy(aCPU ), TEy(aBand), weightCPU and weightBand are computed.

In bandwidth-unaware systems, only TEy computational resources (i.e. TEy(aCPU )) affect the selec-

tion, and thus weightCPU 6= 0 and weightBand = 0. On the contrary, in bandwidth-aware systems also

the network traffic information (i.e. TEy(aBand)) is taken into account when choosing the best candidate

node towards which offload computation, and thus weightCPU 6= 0, and weightBand 6= 0.

ScoreTEy = (weightCPU · TEy(aCPU )) + (weightBand · TEy(aBand)) (4.1)

ScoreTEBest =
Y

max
i=1

ScoreTEy (4.2)

Existing load distribution approaches (e.g. [Lu and Lau, 1996]) in traditional computational grid

systems do not account for traffic contention levels in the underlying network while performing distri-

bution, since they rely upon high-bandwidth reliable network links. On the contrary, since such reliable

wireless radio links cannot be equally assumed for WSNs, we are interested in measuring how much

they impact system performance in exploiting DWAG collaborations. For this reason, we proposed the

BATS mechanism to account for bandwidth requirements as selection factor within the decision making

process.

4.4 CPU and Bandwidth Load Computation
Before entering into the details of the evaluation, we describe the way we measure computational (CPU)

and communication (bandwidth) load within WSNs. As described in Chapter 2, we evaluate our ap-

proach by using TMote Sky [TELOSB, 2010, Sentilla, 2010] ultra-low-power platforms programming

them by adopting the Contiki Operating System (Contiki OS) [Dunkels et al., 2004], an open-source,

highly portable, networked OS for memory-constrained systems. TMote Sky devices have been chosen

for the evaluation since they represent an example of general purpose micro-controllers small enough to

be portable in case of emergencies, but with enough computational power to perform basic tasks. More-

over, the research community in both academia and industry has greatly recognised and favoured their

adoption and study since they are extremely cheap, easy to deploy and thus pervasively embedded within

everyday life systems. However, while being so appealing from a form-factor perspective, their com-

putational resources are sometimes scarce, especially when application sophistication increases. Node

collaborations thus become necessary and with them the need to define both the computational load and
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the local network condition information of the nodes towards which the offload needs to be performed.

In our experiments, node computational load and local network contention are measured as detailed in

the following sections.

4.4.1 CPU Load Computation

TMote Sky devices are equipped with a MSP430F1611 micro-controller from the TI-MSP430 family

of ultra-low-power 8MHz 16-bit micro-controllers. As described in Section 2.2.1, we adopted the Con-

tiki OS protothreads to implement multi-threading at the application level, since they are extremely

lightweight to run on resource-constrained devices without leading to large memory overhead.

Whenever the execution of tasks in parallel is required, it is thus managed as follows. Each task

is managed by a computational protothread. The state of different protothreads is stored in dedicated

structures in memory, and every protothread is cyclically executed in a pre-defined immutable order.

Furthermore, each time a protothread is called, its execution is never interrupted (i.e. no preemption)

until the completion of a particular atomic, in-execution action (e.g. computation of a value, sending of

a message, etc.) is achieved. As opposite to traditional multi-threading, the granularity of this particular

context switching is thus very coarse, and the absence of a preemption mechanism leads to a very fair

scheduling of the protothreads, where no one is given priority with respect to the others.
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Figure 4.2: BATS computational load definition and computation. The number of protothreads executing
at any one time on a node of the system represents a suitable approximation to measure node CPU load.
Let us have nodes A and B, each of which required to execute a different number of protothreads with
each of them homogeneous and purely computational. Node A executes one protothread (i.e. pth1), node
B executes three of them (i.e. pth1, pth2, pth3). Node A will complete pth1 in a time roughly equal
to the number of functions (i.e. pth1 has two functions) times the execution time of a single function
(i.e tpth1). Node B will need three times that interval. If we define the time necessary to complete one
of the protothreads as tp, then node A will take tp = 2tpth1 to finish its task, while node B will take
3 ∗ tp = 6tpth1.

Moreover, as opposite to a normal computer, the resources used by a user-defined protothread are

much larger in proportion than those used by the underlying Contiki OS, which instead only adds a

minimal overhead to the system, and thus the impact of running or not an additional task is much more

considerable. For example, as illustrated in Figure 4.2, let us assume there are 2 nodes, A and B, each

of which required to execute a different number of tasks, each associated to a protothread. In particular,

each protothread is homogeneous, purely computational, and has to compute the result of a fixed list

of mathematical functions. Node A has to execute one protothread (i.e. pth1), while node B has to

execute three of them (i.e. pth1, pth2, pth3). In this case, node A will complete the execution of its

task in a time which is roughly equal to the number of functions in the list (i.e. two functions for pth1
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in Figure 4.2) times the execution time of a single function (i.e tpth1). Node B, instead, will need three

times the same interval, since each of the protothreads will execute the first function, then pause while

the others are doing the same, then execute the second function, and so on until all values have been

computed. Therefore, if we define the time necessary to complete one of the protothreads as tp, then

node A will take tp = 2tpth1 to finish its task, while node B will take 3 ∗ tp = 6tpth1. Since node A is

less loaded than node B, it is thus capable of starting another protothread while still being able to finish

both before node B will complete its three ones.

Therefore, the number of tasks (each computed by a protothread) executing at any one time on a

node has been chosen as the value to represent the CPU load of the node itself. In particular, TEy(aCPU )

in Equation 4.1 has thus been set as the difference between the maximum number of protothreads, that

we set to run tasks on a node, and those effectively running on it. Finally, recall that the responsibility of

fetching low level information on the computational load of a node is handled by the Resource Manager

introduced in Section 3.3.

4.4.2 Bandwidth Load Computation

As described in Section 2.2.2, TMote Sky devices communicate wirelessly with each other through the

radio medium. They are equipped with a CC2420 module, an IEEE 802.15.4 compliant radio transceiver

from Chipcon/Texas Instruments allowing a maximum bandwidth throughput of 250Kbps. In order

to collect responsive, real-time, information on the level of traffic contention in the environment, we

sampled over time the Clear Channel Assessment (CCA) value of the Chipcon CC2420 RF transceiver

(i.e. corresponding to hardware pin 28 [Instruments, 2006] in Figure 4.3). We thus maintain over time

a window of sampled values gathering information for the last n temporal slots and showing the times

in which the probed radio channel is clear or busy. The information in the temporal window is used to

estimate the network conditions of the local area in which the TE device is located: the more slots are

busy, the greater is the probability that the node is located in a congested area.

We now discuss how to dimension the temporal window in order to capture a realistic snapshot and

estimation of the TEs local network conditions when such conditions are time-dependent. Within the ex-

perimental evaluation, the dimension of the window has been tuned to n = 100 since this value has been

able to simultaneously mediate the two following situations. The first case occurs when the value of the

temporal window n is overestimated. In such a situation, whenever the GA needs to decide the best TE

towards which to perform task distribution, the decision making process is at risk of being influenced by

a considerable amount of out-of-date information thus preventing the system from reacting and adapting

quickly enough to the local environmental changes. Similarly, when the value of the temporal window

n is instead underestimated, the historical information incurs the risk of varying far too often, thus not

effectively providing a meaningful picture of the TE local network conditions. Therefore, in order to

represent a meaningful estimation of the TE’s local network conditions when they vary with time, n

needs to be tuned such that in the time interval between the end of a task offload and the beginning of

a new decision making phase, the window needs to detect and provide an up-to-date vision of the local

network conditions information.
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Figure 4.3: Clear Channel Assessment value (hardware pin 28) probed from Chipcon CC2420 RF
transceiver.

For example, consider the situations illustrated in Figures 4.4 and 4.5. In both cases, the local

level of network contention changes over time thus alternating periods of contention to others of no

contention. In every time window, the radio channel is probed n times. In each instant of time ti, the

system computes the summarised network contention information Si elaborating the n probes collected

in the previous {ti−1, ti} temporal window. The value Si computed in ti is thus maintained and used to

make offload decisions in the following {ti, ti+1} window.

congested

uncongested

S1=X%
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Case (b)
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Figure 4.4: BATS bandwidth load definition and computation with overestimated temporal window. If
the sampling window is overestimated, sudden network contention changes are not detected promptly
and the out-of-date information maintained by Si leads to inaccurate offload decisions (i.e. in case (a),
S2 = 100% computed in {t1, t2} is erroneously maintained for the whole {t2, t3}, despite network
trend inversions). A correctly estimated temporal window would promptly adapt to network changes,
thus storing up-to-date trends and leading to correct offload decisions (i.e. in case (b), network inversion
is detected quickly in t4 and propagated in {t4, t5}).

As illustrated in Figure 4.4(a), if the sampling window is overestimated then sudden network con-

tention changes are not detected promptly and thus the out-of-date information maintained by Si leads
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to inaccurate offload decisions. For example, the value S2 = 100%, computed in t2 and synthesising the

n probes performed in {t1, t2}, represents the information provided in {t2, t3} to deal with any request

(red arrow) coming from the application overlay aiming at fetching low-level information on network

utilisation. However, because of the overestimated window, S2 = 100% is kept for a relatively long time

despite the network inversion. This thus leads the system to make inaccurate offload decisions. On the

contrary, a correctly estimated temporal window, as illustrated in Figure 4.4(b), would instead promptly

adapt to the network changes, thus storing up-to-date trends and leading to correct offload decisions. In

fact, the network inversion is detected quickly in t4 and propagated in {t4, t5}.
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Case (b)

Case (a)
t1 t2 t3 t4 t5

S1=X% S2=100% S3=0% S4=100%
1stWindow 2ndWindow 3rdWindow 4thWindow
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Figure 4.5: BATS bandwidth load definition and computation with underestimated temporal window.
If the value n of the window is underestimated, the risk is that of feeding the application overlay (red
arrow) at the request time with not representative values of the historical network traffic trend (i.e. in case
(a), Si rapidly switches between Si = 0% and Si = 100%). A not underestimated window would be
able to mediate such sudden changes (i.e. in case (b), a summarised value like S2 = 50% is computed)
identifying realistic traffic pattern, storing up-to-date trends and leading to correct offload decisions.

If the value n of the window is instead underestimated, as illustrated in Figure 4.5(a), then the risk

is that of feeding the application overlay at the request time (red arrow) with values that are not truly

representative of the historical network congestion trend. In fact, if the traffic rapidly oscillates, then Si

rapidly switches between Si = 0% and Si = 100%, not truly representing the historical network trend.

A correctly estimated window, as illustrated in Figure 4.5(b), would instead be able to summarise such

sudden changes with a value like S2 = 50% identifying a more realistic traffic pattern and thus guiding

the system through correct offload decisions.

The bandwidth sampling process is iterated approximatively every 1
64 s, since it is periodically ac-

tivated every time a Contiki OS timer expires. The summarised value Si is updated after n = 100

probes have been collected and thus with a frequency of 1
64s ∗ 100. After running several experiments

simulating network traffic, we noticed that the temporal window oscillated fast for n <∼ 70 probes and

it was, instead, not promptly responsive for n >∼ 130. Thus, we tuned the number of probes for the

temporal window to n = 100, since this value was able to provide a suitable estimation of local network

traffic contention within our experimental settings. Recall that the sampling procedure is performed by

an autonomous protothread, the Resource Manager component, running on each TE, and thus in a com-

pletely distributed way. In fact, as described in Section 3.3, each TE is formed by a single always active

Resource Manager instance responsible for periodically fetching low-level information related to both

the TE computational resources and local network conditions.
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Since the value of TEy(aBand) in Equation 4.1 identifies the local level of available bandwidth, it is

thus computed as the difference between the maximum number of samples collected within a window

(i.e. n = 100 in our experiments) and the number of probes for which the sampled radio channel was

detected to be busy.

4.5 Related Work
We are now interested in briefly discussing the reason behind the choice of the load sharing algorithms,

namely Auction and Lookup List, selected and adapted within the work presented in the current disser-

tation.

4.5.1 Load Distribution Principles

In Section 4.2, we presented the two existing load sharing algorithms chosen, modified, and adapted

to account for network utilisation and local traffic congestion, while performing DWAG. The Auction

algorithm, described in Section 4.2.1, is a GA-initiated load sharing algorithm while the Looup List algo-

rithm, described in Section 4.2.2, is instead inspired to the dynamic TE-initiated load sharing algorithm

presented in [Chuang and Cheng, 2002]. We are now in a position to briefly discuss the reason behind

the choice of the adopted load distribution algorithms.

There is a particularly extensive literature review on the computation distribution problem, thus

the relocation of tasks from busy nodes to others that are lightly loaded, dating back twenty or more

years [Eager et al., 1986, Ferguson et al., 1988, Lu and Lau, 1996].

In [Eager et al., 1986], the authors study, for example, the use of system state information in adap-

tive load sharing policies for locally distributed systems in order to determine an appropriate level of

policy complexity. The results show that extremely simple adaptive load sharing policies, collecting

considerably small amount of state information and using it in extremely simple ways, yield dramatic

performance improvements compared to no load sharing cases. Moreover, results show how simple

policies lead to performance gains similar to those achieved through complex policies, whose viability

is however questionable. In [Ferguson et al., 1988], an approach based on concepts drawn from microe-

conomics is described, which uses algorithms that are competitive rather than cooperative. In particular,

the authors present an economic approach in which (i) competition sets prices for the resources in the

system, (ii) jobs compete for the resources by issuing bids, and (iii) the resource allocation decisions are

made through auctions held by the processors. The benefits of the presented method include limited com-

plexity and algorithms that are intrinsically decentralised and modular. The listed approaches represent

only few examples of the most famous techniques introduced to cope with load sharing. These algo-

rithms, even if particularly dated, attract for their embedded simplicity. In fact, although in the last years

several algorithms, even more sophisticated, have been devised, work has continued more steadily, after

an initial rush of enthusiasm, with an upturn in interest as part of computational grid activities. Within

computational grids, most of the devised approaches tackle the problem of load distribution within more

or less heterogeneous systems with ideally multiple task classes that are distributed in batch on several

processors. For example, in [Lau et al., 2006] the authors propose a class of load distribution algorithms
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that allow a batch of tasks to be transferred during each negotiation session. The core of the algorithms

is a protocol that ensures a sender-receiver pair to negotiate and arrive at a suitable batch size. The pro-

tocol takes into consideration the processing speeds of the sender and receiver, as well as their relative

workload, thus ensuring the maximal benefit for each negotiation session.

More recent approaches [Pontelli et al., 2010, Gmach et al., 2009, Qin et al., 2009, Shi and Kencl, 2006,

Antonis et al., 2004] present complex infrastructures and schemes based on policies to balance the load

of systems. However, the devised techniques are highly sophisticated, they are mainly developed

for powerful clusters of nodes organised in a tree-hierarchical topology, they reply upon centralised

authorities to decide on resource allocation, and they incur a non-negligible policy overhead.

A complete survey on meta-schedulers [Dong and Akl, 2006] for computational grids has been pro-

posed. However, the approaches devised for such computational grids context are largely unsuitable for

application to networks of resource-constrained devices for the following reasons. Firstly, they rely upon

cumbersome infrastructure and frameworks running on powerful machines with often multi-core proces-

sors. Secondly, communication among nodes occurs through extremely high-speed network links, and

not through wireless communication, thus communication does not play a crucial role or a bottleneck

within the distribution process. Consequently, the focus is mainly related to optimise batch distribu-

tion and parallel computation exploiting processors multi-threading capabilities. Thirdly, scheduling

techniques are mainly managed through a centralised authority responsible for resource allocation and

load distribution. Fourthly, the devised infrastructures and algorithms are particularly sophisticated and

demanding, thus not lightweight enough to run on devices with limited resources.

Recently, some approaches [Tipsuwan et al., 2009, Izakian et al., 2010] adopted auction techniques

to distribute different kinds of load within the system. In particular, in [Tipsuwan et al., 2009] the authors

propose a dynamic bandwidth allocation methodology, based on auction mechanisms, to control band-

widths given to open-loop networked control system to be at Nash equilibrium. However, the method

still relies upon the presence of a centralised access point authority, acting as a broker between con-

trol and action agents, thus collecting information from the various resources and thus managing in a

centralised way the actual allocation process. In addition, although simulation and experimental results

showed the effectiveness of the proposed methodology, this was not practically implemented and evalu-

ated in a decentralised way on standard wireless protocols. In [Izakian et al., 2010], the authors introduce

a continuous double auction method for grid resource allocation in which resources are considered as

provider agents and users as consumer agents. In their method, entities are allowed to participate in

a grid independently and make decisions autonomously. However, although simulations illustrate that

the proposed method is efficient in terms of successful execution rates, resource utilisation and fair

profit allocation, it does not account for typical network problems arising within WSNs. Auction mech-

anisms [Lei et al., 2009] have been recently adopted within target tracking WSNs scenarios to create

congestion control mechanisms.

Consequently, within the current dissertation we chose, adapted and implemented on deployed

WSNs systems two simple load sharing algorithms. Simplicity is one of the major requirements because
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of the limited resources available. The chosen algorithms do not claim to represent optimal allocation

strategies but they, instead, aim at enhancing their fully distributed implementation and deployment

while analysing the impact of network conditions in performing load distribution.

4.6 DWAG Evaluation with BATS Heuristic
In Section 4.4, we described the way we measured computational and communication load within WSNs.

We are now in a position to detail the set of experiments undertaken within deployed systems to measure

the impacts of traffic network congestion on the system performance while performing collaborative

computation.

We evaluate our work according to both the work assumptions presented in Section 1.4 and the

experimental criteria listed in Section 1.5. In particular, we apply the BATS heuristic to the DWAG

paradigm. For the set of experiments presented in this chapter, Jobi is assumed to be split into a set of

homogeneously characterised tasks Taski,j that must be distributed within the environment. In Chap-

ter 5, we will instead focus our attention on task heterogeneity. In particular, we will evaluate the effects

of offloading heterogeneous kind of tasks Taski,j , of which every single Jobi is comprised, within the

environment and we will therefore compare the BATS strategy against another heuristic dealing with

task profile information.

In the first set of experiments presented in Section 4.6.3, we measure the impact of DWAG collabo-

rations whenever a single GA node is exclusively entitled to perform distribution within the environment.

In the second set of experiments presented in Section 4.6.4, we measure instead the impacts of such col-

laborations whenever multiple GA nodes simultaneously perform distribution within the environment

and thus compete to achieve job computation. In Section 4.6.1, we define the general experimental setup

while we clarify the peculiar characteristics of each experiment in Sections 4.6.3 and 4.6.4, respectively.

Among the multitude of performed experiments, we decided to report in this dissertation the following

findings since they are those corresponding to significant data variations.

4.6.1 Experimental Setup

We are now in a position to describe the general experimental settings for the experiments we undertake.

In this first set of experiments, the aim is that of comparing the different behaviours of the se-

lected load distribution algorithms (i.e. Auction and Lookup List) in the presence of diversified levels

of traffic and with either one or multiple GAs simultaneously interacting within the environment. The

experiments are performed on the Heterogeneous Experimental Network (HEN) [HEN, 2010] TMote

Sky sensor testbed deployed in the Department of Computer Science at University College London

(UCL-CS). Details about UCL-CS HEN TMote Sky testbed are provided in Section 4.6.2. Recall that

the choice of an office-like environment as experimental setting is in line with the emergency scenario

presented in Section 3.1 (chosen among the set of motivating scenarios described in Section 1.1). In

fact, the emergency events that we are interested in analysing are those occurring within indoor environ-

ments (e.g. formed by corridors, rooms and office-like furniture) in which multiple sources of wireless

communication compete with each other generating medium contention. The UCL-CS HEN TMote Sky
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testbed has been chosen because it displays such environmental characterising features. Moreover, in or-

der to emulate the heterogeneous amount of communication expected for example during emergencies,

we have introduced additional interferer nodes, as described in the following paragraphs.

Each node in the system is uniquely identified and different code is pre-loaded on nodes. In fact,

while the GAs are loaded with Jobi, the TEs are instead pre-loaded with a set of functionalities aiming

at supporting the GAs in their process of distributing the multiplicity of Taski,j , of which each of their

Jobi are comprised, in the environment to achieve Jobi completion. In fact, as described in Section 3.2,

since DWAG has been designed in the first place to be independent from the underling loading code

infrastructure and since a variety of related work (e.g. [Costa et al., 2007]) already exists in terms of

middleware capable of on-the-fly loading and linking code, we confine ourselves to code pre-deployment

within this dissertation.

Three main phases have been emulated: firstly, the communication offload of the data inputs from

the GA to the TE; secondly, the inner communication exchanges needed to progress with task execution;

thirdly, the upload of the computed result from the TE to the GA.

TEy

Homogeneous Job Type

1
2

GAx
3

I/O Burst Computation

Figure 4.6: Homogeneous job type description.

In this experimental setting, we deal with homogeneous tasks. This means that (i) the number

of messages offloaded from the GA to the TE and uploaded back from the TE to the GA is the same

for every Taski,j , and (ii) the amount of computation performed at the TE side is the same for every

Taski,j .

As illustrated in Figure 4.6, for each Taski,j to be computed, the GA offloadsX Input/Output (I/O)

bursts to the TE, each of Y bytes containing information to be processed, while the TE uploads X I/O

bursts to the GA, each one of Y bytes containing the result from the computation. After running several

experiments, we tuned the default task offload size value X to 50 and the dimension of the messages

exchanged Y to 15 bytes. These values allowed, in fact, protothreads to interrupt each other in order to

reproduce actual task concurrency (i.e. multiple tasks can run simultaneously on a TE exploiting con-

current execution, even in the simpler case of a GA and a TE) and, therefore, representing a situation

common in parallel computing. Values X <∼ 20 and Y <∼ 5 bytes were leading, in fact, to a se-

quential flow of execution and not concurrency. Moreover, we tuned to 15 bytes the actual amount of

exchanged information since this value was representative of the data exchanged through short bursts

within collaborative localisation scenarios (i.e. node maps exchanges), as described in Chapter 6.



4.6. DWAG Evaluation with Bandwidth-Aware Task Scheduling Heuristic 59

Each offload I/O burst contains the information Z to be processed. The value Z represents the

number of times that a function is computed at the TE side. Since the tasks are homogeneous, the

value Z adopted was kept constant within this experimental setup. We chose fibonacci as the function

to be computed at the TE side, but recall that any other mathematical function could have been equally

adopted within the experiments to engage the CPU in computational cycles. We tuned the value Z to

20: TE’s CPU performs 20 times the fibonacci sequence of a number. This number was set to 15 (i) to

allow Contiki OS protothreads to interrupt each other (within the Z cycles to be performed) exploiting

concurrency, and (ii) to represent jobs in line with the logic of the real-world localisation case study

presented in Chapter 6.

Message exchanges are managed by adopting the uIP TCP/IP stack implemented within the Contiki

OS. This stack provides interoperability with existing systems and favours the integration of Contiki into

existing IP network infrastructures. In particular, the GAs and the TEs handle both UDP and TCP forms

of communication: the former is used to manage the negotiation phases characterising both the Auction

and the Lookup List algorithms, whilst the latter is used to cope with the effective data offload/upload

required to achieve remote computation. In fact, although the TCP protocol is heavier than UDP, we still

need its reliability to be sure that every data packet is effectively communicated.

Figure 4.7: RF channel spectrum of IEEE 802.15.4/ZigBee against IEEE 802.11b/WiFi.

In the following experiments, we programmed TMote Sky devices by setting the Radio Frequency

(RF) ZigBee channel to 26. This was done in order to minimise the radio interferences between IEEE

802.15.4/ZigBee and IEEE 802.11b/WiFi. In fact, as described in [Crossbow, 2007], the overlap of

ZigBee and WiFi RF spectrum leads to slight radio interference. As illustrated in Figure 4.7, channel

number 26 centred at 2480 MHz was chosen to handle WSN radio communications in order to minimise

the frequency overlap between bands of near-operating WiFi systems, existing in the UCL-CS open-
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space office where the HEN testbed was located.

As described in Section 3.3, both the GAs and the TEs concurrently handle a number of Task Man-

ager instances representing the number of tasks executing in parallel on a node (i.e. the actual degree

of parallelism). After a tuning phase, we set such value to 3 since up to this value the context switching

among processes does not affect the computational resources of TMote Sky devices. As described in Sec-

tion 4.4.1, parallel processes are implemented using the Contiki OS protothreads [Dunkels et al., 2006]

and the communication among them is obtained by the possibility to simultaneously open and manage

several TCP/IP connections through the Contiki OS protosockets.

We tested the DWAG paradigm with BATS mechanism with actual computation, actual profiling of

the medium, and actual network traffic. In order to reproduce the situation described in Section 4.1, and

thus to generate heterogeneous network traffic contention levels, we create a situation like that illustrated

in Figure 4.8(a), where existing communication flows disseminating information from nodes A to B may

indirectly affect the TE local network conditions, thus congesting the radio medium in the TE reception

area. Whenever the TE is therefore selected to perform Taski computation, its performance might

be influenced by the presence of such existing communication overhead. Within our experiments we

reproduce such traffic contention by locating an additional sensor node, namely the interferer node Str in

Figure 4.8(b), within the TE radio range while at the same time limiting Str radio transmission range in

order for it to be heard only from a subset of nodes (i.e. part of TEs) and not from others (i.e. GAs). Note

that Str reproduces the situation of having heterogeneous network contention but within the same MAC

layer. However, since the experiments are performed on a deployed testbed within an office, interference

coming from additional sources of network communication (e.g. IEEE 802.11b/WiFi) not acting within

the same MAC adds itself to that generated by Str.

GAx

TEy
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Taski
GAx

TEy

Taski

Str
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Message Exchanges

Congested Area
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Node B
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Figure 4.8: Introduction of an interferer node to handle heterogeneous network traffic contention.
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To gauge the appropriate rate at which the Str node keeps disseminating messages, we performed

an experiment as illustrated in Figure 4.8(b). Firstly, we positioned the Str node within the TE’s radio

range and we set Str radio transmission power to the second lowest possible level (i.e. -28 dBm), so that

messages sent by Str could exclusively influence the TE, but not the GA. Then, we instructed the GA to

send 100 messages towards the TE. The messages were sent in a best effort manner, without attempting

any retransmission if any of them was lost. The Str node was configured so that bursts of 3 bytes were

injected in the network after each time a trivial computation was executed. We thus managed to fine tune

the Str node, so that approximately 75% of the messages sent by the GA were received by the TE. The

experiment was repeated 20 times, changing the positions of the GA and the TE. Notice that in the real

experiments, whenever a message is lost it needs to be retransmitted, thus delaying the whole offload

process. In summary, we devised this simple experiment to tune the message transmission rate for the

Str node introduced in each of the following experiments to create heterogeneous environmental traffic

contention.

In order to warranty that the GAs were not affected by the additional communication injected by

the interferer node Str, before launching each of the experiments and, thus, before activating the TEs,

we instructed the GAs to gather sampled values over a temporal window showing the times in which the

probed radio channel was clear or busy and to record such values on a log. The presence of a detected

busy radio channel translated into the GAs being affected by Str injected network contention. In this

situation, we progressively varied the Str radio transmission power and position until the GAs were not

affected by Str influence.

In order to apply the BATS heuristic described in Equation 4.1, it is necessary to compute not

only TEy(aCPU ) and TEy(aBand) values, but also to set weightCPU and weightBand. In Section 4.4,

we described the process of computing both computation (TEy(aCPU )) and communication (TEy(aBand))

availabilities. TEy(aCPU ) is the difference between the maximum number of protothreads (i.e. maximum

number of parallel tasks) that we allow to run on a TE and those effectively running on it at the request

time. TEy(aBand) instead is the difference between the maximum number of samples collected within

a time window, n = 100 in our experiments, and the number of probes for which the sampled radio

channel was detected to be busy.

TEy(aCPU ) falls into range [0,3], because the maximum supported parallelism is 3, while

TEy(aBand) falls into range [0,100], because of the number of probes (n = 100) collected by the TE.

However, usually the bandwidth availability never drops below 50% (even in the case in which the Str

node is congesting 25% of it, and the other nodes are using another 25%), so the range is better esti-

mated as [50-100]. To normalise the range [50-100] within [0,50], a value of 50 was subtracted from

TEy(aBand). Thus, to normalise both contributions TEy(aCPU ) and TEy(aBand) within the same range

[0,50], the weights weightCPU and weightBand were tuned to 16 (i.e. with the maximum value be-

ing 3 ·16 = 48) and 1 (i.e. with the maximum value being 1 ·50 = 50), respectively. The values are

normalised according to the experimental setting and thus independent from the level of congestion.

Finally, in the following experiments we adopt latency as metric to measure the system performance
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since it captures the effects that tasks from one node have on the execution patterns of others. We

explicitly do not consider energy efficiency as a metric because, in the kind of scenarios we investigate,

battery lifetime is much less of an issue than is timely information. In fact, information from sensors

will be at its most useful within the first few tens of minutes of a happening, but in that timeframe it

could allow prompt and earlier intervention. In the experiments, we compute the job duration intended

as the overall time necessary for the totality of tasks, into which Jobi has been split, to reach completion.

The algorithms were run 30 times, more if necessary to obtain statistically valid results. Each point in

the graphs represents the average of all the runs and the error bars show the standard deviation over the

runs. In each experiment, we vary the values of one input parameter and assign the default values to the

others, if not mentioned otherwise.

In the experiments, we compare the performance of the load distribution Auction and Lookup List

algorithms analysing the impact of network conditions during distribution by adopting the BATS scheme.

In particular, we collect and analyse data coming from situations as follows:

• No Interferer (weightCPU 6= 0 and weightBand = 0 in BATS):

In this situation, we assume the presence of a homogeneous amount of network traffic in the

network. No interferer node Str is present within the experiments and the only traffic is that

occurring because of job distribution. In addition, whenever distribution must be undertaken, the

decision is based on the TE computational capabilities. In short, this situation translates into no

additional contention with weightCPU 6= 0 and weightBand = 0 in BATS.

• Interferer with No Bandwidth Control (weightCPU 6= 0 and weightBand = 0 in BATS):

In this situation, we introduce the interferer node Str into the system in order to generate additional

network traffic. However, whenever distribution is required, the offload decision is based only

on the TE computational capabilities. In short, this situation translates into distributing under

heavy communication load, while ignoring the TE local network traffic information, and thus

exclusively accounting for the TE computational availability, hence setting weightCPU 6= 0 and

weightBand = 0 in BATS.

• Interferer with Bandwidth Control (weightCPU 6= 0 and weightBand 6= 0 in BATS):

In this situation, the system is again affected by the presence of the interferer node Str responsible

for injecting traffic contention. However, in this case the offload decision accounts for the eval-

uation of both factors: TE local computational and network availabilities. In short, this situation

translates into distributing under heavy communication load, while combining information regard-

ing both the TE local network conditions and internal computational availabilities, hence setting

weightCPU 6= 0 and weightBand 6= 0 in BATS.

We are now in a position to detail and analyse the results for each of the experiments performed.

4.6.2 UCL-CS HEN TMote Sky Sensor Testbed

As described in Section 4.6.1, the experiments reported in this dissertation have been mainly performed

on the Heterogeneous Experimental Network (HEN) [HEN, 2010, Tuy and Muyal, 2009] TMote Sky
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sensor testbed deployed at the Department of Computer Science at University College London (UCL-

CS).

UCL-CS HEN Tmote Sky Testbed (Screenshot)

Tmote Sky deployed sensors 

Figure 4.9: View of the UCL-CS Heterogeneous Experimental Network (HEN) TMote Sky sensor
testbed.

The original HEN testbed comprised a set of PCs connected in clusters with the capability of being

re-configured, running dual-stack, and emulating routers, servers, gateways, and workstations. It now

consists of 80-100 nodes, each with multiple communication interfaces, thus it can be considered as

a general-purpose network experiment testbed. Several interfaces can be configured as, or attached

to, routers, mobile routers, 802.11 APs, other embedded systems. Open-source gateways supporting

multiple network technologies such as Ethernet, WiFi and IEEE 802.15.4 have been enhanced with

protocol stacks suitable for wireless sensor Internet working and basic multimedia capabilities. There is

also glue software for management of resources. All the nodes can be configured as dual-stack. Some of

the internal wireless sensors run only IPv6, whereas external routers and servers attached run dual-stack.

HEN has been recently adopted within U-2010 [U-2010, 2010] and RUNES [Costa et al., 2007] projects.

HEN is used for many types of experiments. One of these is with an attached WSN which can be

configured with IPv4, IPv6 or dual-stack. The IPv6 WSN testbed subset consists of 40 fixed TMote Sky

platforms. As shown in Figure 4.9, the UCL-CS HEN TMote Sky testbed spans a large laboratory area

with realistic radio conditions. Moreover, it has several strengths: firstly, platforms are randomly de-

ployed in order to eliminate any source of behavioural predictability; secondly, sensors can be remotely

accessible and programmable through fast kernel flashing able to load binaries on single devices; and,

lastly, it represents a large-scale environmental testing source. The devices run sensor Operating Sys-

tems such as TinyOS [System, 2010b] and Contiki OS [Dunkels et al., 2004]. The whole system is thus

a fully distributed network used for all sorts of network research in the UCL-CS department, usually

not IPv6 enabled. The facilities include those for development, deployment, administration, manage-

ment, experimentation and testing of WSN networks. Work in the area of IPv6-based sensor testbeds
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UCL-CS HEN Tmote Sky Testbed (Partial Map)

Tmote Sky deployed sensors 

Figure 4.10: Partial map of the UCL-CS HEN device deployment.

centres on efficient monitoring of tunnels and buildings, wide area IP-based network surveillance, and

response to emergency situations triggered by sensors deployed in such constructions. One can cross-

build mote applications or other middleware on UCL-CS HEN, or can upload mote binaries developed

by others. Figure 4.9 displays a snapshot of the the actual open-space area where devices are located,

while Figure 4.10 shows a partial map of the actual device distribution within the open-space floor.

The goal of UCL-CS HEN as a general-purpose network is to bridge the gap between simulation

and system deployments. In fact, too often network research has been confined to simulation, sometimes

resulting in an over-simplification of the problem or doubt about the validity of results. The alternative

was either very small-scale testing using desktop machines, or system deployment. HEN has thus been a

valuable attempt to bridge the two drawbacks since (i) experiments can be large enough to be interesting,

but (ii) the network environment is still under the researcher control, leading to a better understanding of

real-world behaviours.

4.6.3 Experimental Results with Single Grid Activator

We are now in a position to describe the setting for each one of the experiments performed and to reason

on the results achieved.

The aim of this first set of experiments is the investigation of the system behaviour in the presence

of DWAG, and thus in dealing with distribution and collaborative computation, whenever a single GA

node is required to exclusively perform within the environment. The experimental topology is as shown

in Figure 4.11. In particular, for this experiment we selected 7 devices from the UCL-CS HEN TMote

Sky testbed and instrumented them to run the Contiki OS binaries. In this context, only a single GA,

namely GA1 in Figure 4.11, is responsible to offload tasks to 5 possible TEy (i.e. {TE1, . . . , TE5}).
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Figure 4.11: Map of UCL-CS HEN device deployment for experiments with single GA.

Whenever the interferer node Str is active, thus generating traffic perturbations and consequent hetero-

geneous network contention, the environment finds itself subdivided into two areas: the first contains

nodes {TE1, TE2} since they are located in a more network contended area; while the second contains

nodes {TE3, TE4, TE5} that, not falling within Str’s radio transmission range, are thus slightly affected

by extra traffic. In the experiments, Str radio transmission power has been set to the second lowest level

(i.e. -28 dBm in [Instruments, 2006]) subdividing the environment in two virtual areas of influence con-

taining nodes {TE1, TE2} and {TE3, TE4, TE5}, respectively. As described in Section 4.6.1, in order

to inject traffic contention, Str was configured so that bursts of 3 bytes were injected at regular intervals.

Finally, recall that both the GAs and the TEs radio transmission power was kept to the original Contiki

OS default value (i.e. 0 dBm in [Instruments, 2006]) to allow nodes to be in reach of each other.

Figure 4.12: Effects of varying TE number with single GA experimentation.

Effect of varying the number of the TEs: The aim of the first experiment is to show the nature of

the speed-up obtained if the number of the TEs available for computation increases by keeping constant

the number of GAs distributing computation.

In this experiment, Jobi is comprised of 10 Taski,j required to be distributed from GA1 to 5 possi-

ble TE, thus {TE1, . . . , TE5}, adopting the Auction and the Lookup List algorithms without bandwidth
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control mechanism (i.e. weightCPU 6= 0 and weightBand = 0 in BATS). In this situation, the Str node

is inactive. Therefore, the TEs find themselves located in an environment homogeneous from a traffic

perspective with the only possible being generated from distribution. As described in Section 4.6.1, we

adopt homogeneous tasks. This means that (i) the number of messages offloaded from the GA to the

TE and uploaded back from the TE to the GA is the same for every Taski,j (i.e. 100 I/O bursts each

of 15 bytes in this experiment) and (ii) the amount of computation performed at the TE side is the same

for every Taski,j (i.e. for each computational cycle, TE’s CPU performs the fibonacci sequence of a

number as mentioned above).

Experimental results, shown in Figure 4.12, display the nature of the speed-up obtained when the

number of the TEs available for computation progressively increases from 1 to 5. As one can notice, the

biggest performance improvements are detected in the situation in which the TEs become operational up

to a number of 3. After this case in fact, the system reaches stability and additional TEs do not bring

further benefits. This happens because, as described in Section 4.6.1, the degree of parallelism supported

by both the GA and the TE nodes is 3. Let us now explain such behaviour as follows. Whenever the

system is composed of one GA and one TE only, the TE is required to manage parallel computation

and thus its resources are shared among all Taski,j simultaneously running on it thus slowing down the

execution of each single task and causing longer completion times. As soon as more TEs are added to the

system, extra resources become available: several Taski,j are thus distributed on a multiplicity of TEs,

and each TE is not required to use its full capacity by sharing its own resources among several process

executions. This results a speed-up of the whole job execution process.

It can be observed in Figure 4.12 that both load distribution algorithms show a similar execution

trend with the proactive, TE-initiated Lookup List algorithm slightly outperforming Auction. This hap-

pens because whenever only a single GA is acting within the system, it is the only node responsible for

actively modifying the status of TEs’ execution while at the same time keeping stored within itself up-

to-date data structures describing TEs’ availabilities in real-time. In fact, since such availabilities are not

affected by the concurrent activity of several GAs simultaneously load distributing applications within

the environment, the up-to-date stored information allow the GA to make, in each instant of time, the

best possible decision about where to perform the offload with very little overhead since the data struc-

tures are filled once and for all at the beginning of the algorithm and they are only updated at run-time.

This thus determines the slight performance improvements achieved by the Lookup List algorithm as

compared to Auction.

Effect of varying the task offload size: The aim of the second experiment is to show the impact

of varying the number of streamed messages during both task offload and result upload phases on the

algorithms performance.

In this situation, the interferer node Str is active, and it is thus responsible for injecting extra traffic

within the environment. Moreover, network traffic is also varied through the different amount of network

packets disseminated during Taski,j distribution. Again, Jobi is comprised of 10 Taski,j that must be

distributed from GA1 to 5 possible TEs, {TE1, . . . , TE5}, adopting either the Auction or the Lookup
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Figure 4.13: Effects of varying task offload size with single GA experimentation.

List algorithm. In the experiment, we vary from 25 to 300 the number of messages streamed both during

the task offload and the result upload phases. In particular, for each Taski,j of which a job is comprised,

we keep constant the number of messages to be streamed. Thus, from 25 to 300 message streams are

delivered during both task offload and upload phases. We measure the performance of the Auction

and the Lookup List algorithms in both situations in which, within the BATS heuristic, local network

conditions are accounted or disregarded.

Experimental results for the Auction and the Lookup List algorithms are reported in Figure 4.13A

and B, respectively. As can be seen, the increase in the number of packets to be exchanged for each task

to be distributed leads to increased contention levels within the environment. In this situation, it becomes

interesting to analyse the impact of making informed decisions accounting for both computational avail-

ability and network conditions. As shown in Figure 4.13A, performance improvements of ∼33% and

∼25% are detected for the Auction algorithm in the two extreme analysed situations in which 25 and

300 messages per task are load distributed, respectively. Similarly, performance improvements of∼23%

and ∼30% are detected for the same two cases by the Lookup List algorithm, as shown in Figure 4.13B.

Analysing Figures 4.13A and B together, the summary of displayed results provides a zoomed

view over the single Auction and Lookup List algorithm behaviours. In particular, experimental results

show that, although with similar behaviour and patterns, the Lookup List algorithm slightly outperforms

Auction. The reason is as before. Whenever a single GA acts in the system, it is the only one responsible

for actively affecting the environment modifying its level of traffic and the load of the nodes. However,

in making decisions, it is always able to deal with mostly up-to-date kind of information since it is the

only node injecting modifications within it. Thus, GA’s structures record up-to-date information about

the TEs. Such structures are created by the GA just once, at the beginning of the algorithm, and they are

only updated during the algorithm execution. Moreover, a single GA load distributes intensive tasks and

thus no multiple GAs concurrently access and modify TEs resources. For these reasons and since the

Lookup List algorithm incurs very little overhead, it slightly outperforms the Auction algorithm.
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A B

Figure 4.14: Effects of varying task number with single GA experimentation.

Effect of varying the number of tasks: The aim of the third experiment is to show the impact of

varying the number of tasks of which a job is comprised on the performance of the algorithms.

For this experiment, we vary the number of tasks from 1 to 30. Distributed tasks are homogeneous

and, as described in Section 4.6.1, they alternate streams of message offload with remote computation

and result upload. In particular, 50 message streams (default value) are delivered during both offload and

upload phases. In this experiment, we measure the performance of both the Auction and the Lookup List

algorithms in terms of job duration and thus as the time required by GA1 to achieve Jobi completion

allowing for remote execution of up to 30 Taski,j to be load distributed on 5 possible nodes.

As described in Section 4.6.1, we compare for each load distribution algorithm the three situa-

tions of (i) No Interferer, (ii) Interferer with No Bandwidth Control, and (iii) Interferer with Bandwidth

Control.

Experimental results in Figure 4.14A show that for the Auction algorithm, performance in the pres-

ence of contention is poor unless one considers bandwidth during task allocation, in which case system

performance approximates that of the no interferer, uncongested, case. This is as expected since in the

case in which GA1 offloads a task towards a relatively uncongested zone, we expect overall performance

close to the situation in which there is no congestion. In the case in which a task is sent towards a

more congested zone, the same contention for the medium as that we have in the offload process is ex-

perienced. Moreover, during the execution of the task, contention for the medium will slow down the

task computation itself relative to an uncongested situation, and the additional congestion generated will

slow down other nodes executing in the same area. The error bars show a larger variation in the case

of congestion without bandwidth control. On the other hand, the latency variations are minimal in the

case of congestion with bandwidth control. This is as expected. In the last case, the predictability of task

assignment is high since it will mostly go towards those TEs not belonging to congested environments.

As illustrated in Figure 4.14B, similar results are obtained for the Lookup List algorithm. Even in

this case, as the error bars show, the performance variations are minimal for the case with interferer and



4.6. DWAG Evaluation with Bandwidth-Aware Task Scheduling Heuristic 69

bandwidth control because the algorithm is capable of redirecting tasks to those TEs belonging to uncon-

gested environments, thus avoiding the delays occurring by sending tasks to congested areas. However,

the overall performance of the Lookup List algorithm is slightly better than Auction. We believe this

is due to the inherently adaptive nature of the TE-driven approach to the availability of advertisements.

After a short while, only uncontended nodes will advertise their availability for execution, eliminating

the further source of contention present in the Auction algorithm.

4.6.4 Experimental Results with Multiple Grid Activator

We are now in a position to test our algorithms with a multiplicity of GAs. In particular, for the performed

experiments we used a subset of 25 TMote Sky devices belonging to the UCL-CS HEN setting 3 GAs, 1

interferer node Str and 21 TEs, respectively.
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Figure 4.15: Map of UCL-CS HEN device deployment for Experiment A with multiple GA.

We set the radio transmission level of the interferer sensor Str to be -28 dBm in order to congest one

part of the involved area, and thus producing a situation of heterogeneous traffic contention. As described

above, in order to inject further traffic contention, Str node has been configured so that bursts of 3 bytes

each were injected in the environment at regular intervals. Every Jobi to be performed is composed of

32 Taski,j . We performed two set of experiments, namely Experiment A and Experiment B, varying

the network topology. In particular, Figure 4.15 and Figure 4.17 show maps of selected nodes, together

with their associated role, for both Experiment A and Experiment B, respectively. Experimental results

collected for both Experiment A (i.e. Figures 4.16A and B) and Experiment B (i.e. Figures 4.18A and B)

are obtained by averaging the job latencies gathered by each of the 3 GAs simultaneously distributing

jobs within the environment. Moreover, as described in Section 4.6.1 the latencies for each GA are

computed by performing the mean of approximatively 30 different experimental runs. We again compare

for each load distribution algorithm the three situations described in Section 4.6.1.
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In particular, the interest was in analysing and understanding the complex dynamics behind the two

load sharing algorithms whenever a multiplicity of GAs is simultaneously distributing load within the

system, thus actively modifying the environmental network traffic. In this situation, since several GAs

are concurrently offloading tasks at the same time, not only does the level of network contention differ

from the case where a single GA distributes load, but it also becomes crucial to analyse the algorithms

performance in dealing with more up-to-date and out-of-date network conditions. For this reason, we

exclusively present results and analyse the effect of varying the number of tasks, since varying either TEs

number or task offload size leads to experimental results similar to those already showed in Section 4.6.3

for single GA experimentation.

A B

Figure 4.16: Effects of varying task number in Experiment A and multiple GA.

Effect of varying the number of tasks: The aim of the experiment is to show the impact of varying

the number of tasks of which a job is comprised on the performance of the algorithms.

In the first experiment, we evaluate the impact of network contention on task distribution. Therefore,

we adopt the two load sharing algorithms, Auction and Lookup List, together with the BATS heuristic

but handling the distribution by making a decision exclusively accounting for TEs computational capa-

bilities. We compare the two situations where: (i) no interferer node Str is present; (ii) extra traffic is

injected within the environment by means of an interferer node Str.

Experimental results show that the additional network contention leads to an increase in the whole

execution latency, with respect to the case without congestion or an homogeneous amount of communi-

cation, of ∼55% and ∼40% (Figures 4.16A and 4.18A) in the case of the Auction algorithm and ∼50%

and ∼25% (Figures 4.16B and 4.18B) in the case of the Lookup List algorithm. This occurs when

considering the simplest form of task offload to physically adjacent neighbours, and it represents an

upper-bound on performance of WSNs, where similar problems of contention will be faced for each hop

in a possible multi-hop route. Therefore, from this experiment we observe that the distributed computa-

tion may encounter severe performance degradations if bandwidth requirements are disregarded during

task distribution.
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Figure 4.17: Map of UCL-CS HEN device deployment for Experiment B with multiple GA.
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Figure 4.18: Effects of varying task number in Experiment B and multiple GA.
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We then explore whether taking into account bandwidth availability has a significant impact on the

job duration. Both Experiment A and B are performed with the same configuration as above but feed-

ing the BATS heuristic with network information as well as computational load. Experimental results

demonstrate that by taking TEs’ local network conditions into consideration, thus combining both the TE

computational capabilities with network contention information, system performance approximates that

of the uncongested scenario. In fact, experimental results with multiple GAs confirm trends presented

within single GA results: performance in the presence of contention is poor unless one considers network

information during task allocation, in which case system performance approximates that of the uncon-

gested case. Thus, a considerable improvement in latency is gained by accounting for local network

conditions, while distributing computation.

However, a major difference emerges in comparing the behaviour of the Auction and Lookup List

algorithms in the current experiments, if compared to those described in Section 4.6.3. In fact, if the TE-

initiated algorithm (Lookup List) slightly outperforms the GA-initiated one (Auction) whenever a single

GA is exclusively entitled to distribute load in the system, the opposite trend is displayed when multiple

GAs concurrently distribute tasks within a shared environment, as illustrated in Figures 4.19A and B.

This happens because when one GA exclusively offloads tasks into a pool of TEs, it is the only entity

able to actively change the TEs status and so its lookup list can always effectively match in almost real-

time TEs load. On the other hand, when several GAs independently offload tasks into the environment,

the load of each TE can be modified by a GA without the other GAs being actively notified of such

load modification. For this reason, such behaviour leads to progressively increases in gap between the

information stored into the lookup lists at the GA’s side and the real-time load of the TE nodes.

A B

Figure 4.19: Auction and Lookup List comparison in Experiment A (left) and B (right).

The discovery phase, allowing each GA to discover and initialise its own neighbourhood of TEs by

filling a lookup list, is performed only at the beginning of each job execution. This implies that, in spite

of Lookup List updates, if the job is composed of many tasks, such lookup list could be very different

from the real-time status of the TEs toward the end of the job completion. Thus, when the number of
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tasks increases, this partial out-of-date stored information leads to the GA performing incorrect offload

decisions. With very little additional overhead caused by the broadcast performed at the beginning of

each task computation, the GA-initiated Auction algorithm always achieves better performance. In fact,

while during every decision making phase the Auction algorithm deals with an up-to-date snapshot of

the system reality in terms of load and network conditions, the Lookup List progressively worsens such

snapshot, thus leading to erroneous offload decisions.

Consequently, since the Auction algorithm is more flexible and robust both regarding the number of

tasks Taski,j required to be load distributed, and the number of the GAs simultaneously operating within

the environment, it represents a better choice to apply the collaborative computing DWAG paradigm.

In Experiment B, we also compare the performance of both algorithms against a random task as-

signment. This implies that within both Auction and Lookup List algorithms the BATS heuristic is not

applied and it is instead replaced by a random decision making process. This means that in both algo-

rithms, for each decision making phase performed to load distribute a task execution, a TE is picked at

random. This was done to test the approaches against a simple standard policy used for analysis in load

sharing approaches [Eager et al., 1986]. As expected, the experimental results shown in Figures 4.18A

and B indicate that our approach, which is capable of making informed decisions about where to dis-

tribute tasks, always achieves better performance than a pure random approach.

4.7 Summary of Results
We are now in a position to summarise the most interesting findings drawn from our empirical experi-

mental study, as follows:

• For both algorithms Auction and Lookup List proposed to deal with load distribution through

the DWAG paradigm, considerable performance improvements are achieved whenever a BATS

heuristic, combining both TEs computational and local network conditions, is applied. Hence ex-

perimental results show that computationally intensive applications, required to be collaboratively

executed, achieve faster completion times whenever informed decisions about heterogeneous traf-

fic contention levels are taken into account before blindly dealing with task offload. This happens

whenever homogeneous kind of tasks are distributed within the environment.

• As expected, the job duration of both algorithms decreases by increasing the number of the TEs

acting in the environment up to a value representing the GA’s parallelism. Moreover, the latency

value increases by increasing the number of I/O bursts necessary to be performed to allow remote

task computation (while keeping constant the amount of CPU bursts per task to be computed).

Again, the job duration increases by increasing the number of tasks forming the computationally

intensive job to be computed. This behavioural pattern recursively repeats for both algorithms not

only when the TEs computational capabilities are accounted, but also when a combination of CPU

and bandwidth information are coupled through BATS heuristic.

• Comparing the relative performance of the Auction and the Lookup List algorithms, it is possi-

ble to notice a tendency as follows. While the proactive more complex TE-initiated algorithm
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(Lookup List) slightly outperforms the reactive GA-initiated one (Auction) whenever a single GA

is exclusively entitled to distribute load in the system, the opposite behaviour is displayed when

multiple GAs concurrently distribute tasks within a shared environment. This happens because

when one GA exclusively offloads tasks to the TEs, it is the only entity able to actively change

the TEs status and thus the GA’s lookup list better approximates the actual load of the TEs. On

the other hand, when several GAs simultaneously offload tasks into the environment, the load of

each TE can be actively modified by the concurrent action of multiple GAs without them notify-

ing each other the provoked load variations. This behaviour leads in the long run to progressively

increase the gap between the information stored into the lookup lists at the GA’s side and the ac-

tual TE load. Hence experimental evaluation with homogeneous task configurations shows that

the very little overhead introduced by the Auction algorithm leads, in the long run, to statistical

performance benefits. Thus, in the following evaluations we will focus our attention on the more

flexible, robust and stable Auction algorithm.

4.8 Discussion
In this chapter, we presented the bandwidth problem as the impact of environmental network traffic con-

tention on the distribution of computationally intensive applications according to the DWAG paradigm.

In particular, we proposed two load sharing algorithms, the Auction and the Lookup List, chosen and

adapted to be implemented in a completely distributed manner on deployed systems with the aim of

applying job distribution. Moreover, we devised and integrated within the algorithmic decision making

process a BATS heuristic combining both the local information regarding TE available computational

resources and the local amount of existing network contention in the area where TE is located. Experi-

mental results showed: (i) the crucial impact of existing network traffic on node collaborations occurring

to achieve the completion of a computationally intensive application; (ii) the greater adaptability of the

simple and robust Auction algorithm in making more informed decision based on updated network con-

ditions.



Chapter 5

Impact on Distributing Heterogeneous Tasks

In Chapter 4, we described the bandwidth problem as the impact of environmental network traffic con-

tention on the distribution of computationally intensive applications according to the DWAG paradigm.

In particular, we presented two load sharing algorithms, the Auction and the Lookup List, chosen and

adapted to be implemented in a completely distributed manner on deployed testbeds with the aim of

applying job distribution. Moreover, we devised and integrated within the algorithmic decision making

process a BATS heuristic combining TE’s local available computational resources and local network

conditions.

In Chapter 4, experimental results measuring the impact of TE local network contention on com-

pleting homogeneous applications, have shown: (i) the crucial impact of accounting for radio commu-

nication in collaboratively computing a job; (ii) the flexibility of the Auction algorithm in dealing with

network conditions changes, thus resulting in prompt adaptations leading to informed decisions based

on up-to-date network radio communication values. The aim of this chapter is to progress such empiri-

cal investigation by analysing the impact of distributing heterogeneous applications and tasks within the

environment and by introducing a variation of heuristics to handle such distributions.

The remainder of this chapter is thus organised as follows: (i) in Section 5.1, we characterise a set

of heterogeneous applications, differing from both a computational and a communication perspective;

(ii) in Section 5.2, we devise an algorithm computing a theoretical lower-bound representing the view

of an oracular system capable of taking, in each instant of time, the best offload decisions; (iii) in Sec-

tion 5.3, we define an additional heuristic to measure the impact of distributing heterogeneous kinds of

applications within the environment and we compare it against BATS and the theoretical lower-bound;

(iv) in Section 5.4, we test the proposed DWAG paradigm by distributing the defined heterogeneous

applications and applying the set of specified heuristics with actual computation, actual profiling of the

medium, and actual network traffic for a multiplicity of settings; and (v) in Section 5.5, we summarise

the experimental results.

5.1 Heterogeneous Application Types
We are now in a position to tackle an experimental analysis aiming at investigating the impacts of dis-

tributing heterogeneous kinds of applications within the environment. Our aim is again focused on
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measuring the importance of taking network conditions into account while performing collaborative

computation through DWAG collaborations, and thus achieving job completion by distributing each task

Taski,j , into which Jobi is split, from the GA to the auxiliary TE nodes.

In Chapter 4, the experimental evaluation highlighted that, in dealing with up-to-date traffic values,

reactive approaches promptly detect and react to sudden environmental changes, thus leading to consis-

tent good performance. Hence, for the experimental analysis undertaken in the current chapter, we focus

our attention on the reactive GA-initiated Auction algorithm.

We are now interested in investigating the impacts of job, and consequently tasks, heterogeneity

on achieving fast DWAG completion times. As illustrated in Chapter 4, the applications adopted so far

within the experimentation were homogeneous. In fact, for each Taski,j forming Jobi the following

conditions were satisfied: (i) the same number of messages were offloaded from the GAs to the TEs and

uploaded back from the TEs to the GAs; and (ii) the same amount of computation was performed at

the TE side. This thus translates into identical Input/Output (I/O) bursts and CPU cycles for each task

computation.
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Figure 5.1: Different application types (I/O-, CPU-bound and balanced jobs).

Instead, we now define different sets of job classes, as follows:

• I/O-Bound Job Type

As displayed in Figure 5.1(a), these applications are characterised by tasks with a considerable

number of I/O bursts. Message streams are exchanged to allow both the GAs to supply the TEs

with the quantity of information necessary to perform task remote computation, and the TEs to

supply the GAs with the consequent upload of computed results. Moreover, I/O bursts also emu-

late inner communication exchanges required to progress with task execution. This kind of jobs

is classified as I/O-bound since the actual amount of communication handled by the remote exe-

cution of each task has more impact than the number of CPU cycles performed on the TE side.

Examples of I/O-bound applications include those involving target detection and tracking, node

localisation, and all kind of jobs for which considerable communication is required to achieve

overall completion.



5.1. Heterogeneous Application Types 77

• CPU-Bound Job Type

As displayed in Figure 5.1(b), these applications are characterised by tasks with few I/O bursts

and considerable remotely computed CPU cycles. Hence TEs, elected to compute CPU-bound

tasks, spend on average most of their time performing computation with very few message ex-

changes. Thus, the corresponding jobs are classified as CPU-bound since the actual amount of

computation involved within each remote task execution has more impact than the limited number

of I/O bursts. Examples of CPU-bound applications include those for which sensor platforms are

not only responsible for environmental data collection (e.g. habitat, wildlife, heating ventilation

and air conditioning, glacier monitoring, etc.), but also for autonomous data compression, filtering

and analysis. For this kind of applications, devices spend most of their time sensing and perform-

ing autonomous and local computations, periodically synchronising with each other only when

updates and collaborations are required.

• Balanced Job Type

Whenever applications are balanced, they are formed by tasks that are both I/O- and CPU-bound,

thus demanding from both a computational and a communication perspective. As displayed in

Figure 5.1(c), these applications combine both I/O-bound and CPU-bound properties, since tasks

of which they are comprised necessitate both considerable I/O bursts and demanding CPU cycles

to achieve completion. Examples of balanced applications include collaborative node localisa-

tion, emergency response data collection and compression, collaborative exploration of unknown

environments, to name but a few. Hence applications where nodes are heavily required to commu-

nicate with each other to achieve job completion while, at the same time, they are also involved in

considerably demanding computations.

We are now in a position to study the impact of accounting for network information on collabora-

tively distributing heterogeneous kinds of applications, namely I/O-bound, CPU-bound, and balanced,

through DWAG. The issue that arises now concerns the way of heterogeneously characterising jobs in

order for them to reflect possible representations of real-world applications.

In this dissertation, we heterogeneously characterise tasks, of which jobs are comprised, from

a computational and a communication perspective by taking inspiration from the real-world task

analysis undertaken within computational grid scenarios reported in the work of Raimondi et

al. [Raimondi et al., 2008]. In their work, the authors present a method able to monitor timeliness,

reliability and request throughput of web-service Service Level Agreements (SLAs) by translating such

conditions into timed automata. However, their work has been of use for our purposes not because

of the SLA method they use, but because of the analysis conducted on real-world data collected from

a large-scale case study carried out for a service-oriented computational grid involving a chemistry

application [Emmerich et al., 2005]. In this kind of computational grid application, a client component

submits searches to a web service implemented as a BPEL workflow. The BPEL workflow calls a

number of web services to submit different Fortran executables to compute resources, to visualise results

and to upload the consolidated search result to a data portal. The authors monitored the BPEL workflows
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generated by clients during 4 hours of activity. Approximately 16 batches of jobs were invoked, with

the generation of nearly 230,000 SOAP messages. From the data collected, distributions for both task

computation and communication emerged. In particular, the data reported [Raimondi et al., 2008] shows

a Gaussian-like distribution to represent task I/O-bursts, and a Poissonian-like distribution to represent

task CPU cycles.

Therefore, to cope with the lack of real-world data to characterise heterogeneous applications from

both a computational and a communication perspective, we adopted the I/O and CPU distributions

emerging from computational grid scenarios. Hence we applied the Gaussian distribution in Equation 5.1

to map the I/O burst and the Poissonian distribution in Equation 5.2 to map the CPU pattern behaviour.

The values of σ and µ, for the Gaussian distribution, and λ, for the Poissonian distribution, have been

tuned to represent significant I/O-bound, CPU-bound and balanced application type kind of settings.

Section 5.4 provides a detailed description of the values selected for each distribution according to the

specific application type. In the evaluation, we investigated a set of distributions (i.e. Binomial, Power)

but since the results did not substantially differ from those obtained with the Gaussian and Poissonian

functions, in this dissertation we decided to report exclusively those obtained with the latter.

f(x) = 1√
2πσ2 e

− (x−µ)2

2σ2 (5.1)

f(x) = λxe−λ

x!
(5.2)

Once the parameters for each distribution are set according to the type of application, the following

actions are performed for each task computation: (i) a burst of I/O messages is delivered from the GA

to the TE by randomly selecting a value within the Gaussian distribution; (ii) a burst of CPU cycles is

performed by randomly choosing a value within the Poissonian distribution; (iii) a burst of I/O messages

is uploaded back from the TE to the GA according to the value previously selected within the Gaussian

distribution. This set of actions are repeated for each task computation Repetition times (value kept

fixed for each task), and thus Repetition represents the number of repetitions undertaken by each task

to achieve overall completion.

5.2 Lower-bound Computation
The aim of this chapter is to investigate the impact of network conditions in executing heterogeneous

jobs. To cope with the lack of real data to describe computational and communication requirements

of a variety of applications, we have taken inspiration from behaviours emerging from computational

grids application and we have used them to characterise our application classes. This has been done by

observing patterns from real data, by extracting approximations of distributions for both computational

and communication task requirements and adapting values to WSNs real-time requirements.

In dealing with job heterogeneity, we are now interested in comparing our empirical findings against

a theoretically estimated lower-bound task completion time computed by envisioning the presence of

an oracular system capable of taking the best offload decision. Achieving a globally optimum task
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scheduling is an NP-complete problem [Garey and Johnson, 1979], not only in a dynamic but also in a

static system of nodes with an oracular overview of the global state of the system. The oracle is here

assumed to have a full vision on the current task allocation, on the current load of the TE nodes and on

the actual situation in terms of existing and generated traffic contention.

In order to obtain estimated task completion times comparable to those collected in our empirical

results, we performed an experiment to determine for each kind of application approximate task duration

values for both cases in which a new task is offloaded to a TE belonging to a congested or uncongested

area. In particular, as illustrated in Figure 5.2, we positioned a single GA and a single TE in the environ-

ment, setting both their degree of parallelism to 1, thus ensuring that both nodes will deal with a single

task at the time. Whenever a job is formed of multiple homogeneous tasks, the duration of a task is

obtained by averaging the durations of all tasks forming that job. We then loaded the GA with different

forms of application, each composed of 30 tasks characterised as described in Section 5.1. The values

of σ, µ and λ were set for each application type, as described in Section 5.4, and maintained throughout

the entire job execution.

Each task was thus offloaded and sequentially executed on the TE. We computed an approximate

task duration value by averaging task duration values of all tasks composing each individual applica-

tion. We repeated the experiment in situations both without (Figure 5.2(a)) and with (Figure 5.2(b)) an

interferer node Str. In this way, we computed, to a good approximation, two values representing task

duration ∆tTaskiTE of Taski if computed on a congested TE (i.e. cTE) or uncongested TE (i.e. ncTE).

In the experiments, Str’s radio transmission power was set to the second lowest level (i.e. -28 dBm

in [Instruments, 2006]), in the same way as for the experimental evaluation in Chapter 4. Likewise Str

was configured to send bursts of 3 bytes at regular intervals.

Str

(b)

GAx
cTE

(a)

GAx
ncTE

I/O Burst Computation Congested Area

Figure 5.2: Experiment to compute ∆tTaskiTE task duration on a congested cTE or uncongested ncTE
for each application type.

We now detail the algorithmic steps presented in Algorithm 5 responsible for lower-bound com-

putation. The algorithm was implemented using Python 2.6.4 and run on a MacBook Pro 2.8GHz Intel

Core Duo with 4GB RAM. In particular, the engine coding the main algorithmic logic was implemented

by using the python Discrete Event Simulation [Müller, 2008, Müller, 2010] paradigm.

The algorithm is split into two parts: the first takes care of selecting the best TE (i.e. TEBest)
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responsible for dealing with the computation of a task; the second one computes the actual newTask,

thus it progressively updates the estimated task completion times according to the actual number of tasks

already running on a TE node. Hence the first part describes what happens on the GA side, while the

second describes what instead occurs on the TE side.

Let us now describe the meaning of the variables adopted in Algorithm 5. GAbusySlots and

TEbusySlots represent the number of tasks actively running in each instant of time on the GA and the TE

nodes, respectively. Such values are always required to be smaller than the maximum supported degree

of parallelism, GAmaxSlots and TEmaxSlots. In fact, the difference between the maximum number of

tasks allowed to simultaneously run on a node (i.e. GAmaxSlots and TEmaxSlots) and those actually run-

ning on it (i.e. GAbusySlots and TEbusySlots) represents the number of free slots (i.e. GAfreeSlots and

TEfreeSlots), thus the number of tasks still potentially allocable on a node. In Algorithm 5, we indicate

with Taski each one of the tasks already running on a node, maximum one for each slot, and with new-

Task the task entering the system and required to be allocated. TEthr is an estimated value associated

with each TE and computed by the GA whenever the latter is required to decide the best TEBest node

towards which to direct and allocate newTask computation. Other variables are used to represent either

instants of time or task durations. For example, tcurrent identifies the current instant of time, tendTaski

and tendNewTask are the estimated instants at which either a running task Taski or a new task newTask

are envisioned to achieve completion. Similarly, ∆tTaski and ∆tnewTask indicate task durations for

Taski and newTask, respectively.
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Figure 5.3: TEBest selection within the theoretical lower-bound algorithm.

We are now in a position to describe the two parts composing Algorithm 5. The first part is per-

formed at the GA side and concerns the selection of TEBest. Thus, whenever the GA has available slots

GAfreeSlots to manage task allocation and whenever there is at least a TE similarly having at least a

free slot TEfreeSlots to handle a new task computation, the GA is required to decide onto which TE to

distribute task computation. Hence the GA computes a TEthr value for each TE. Such an estimated
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threshold is computed by performing the sum of the differences between the tendTaski estimated task

completion time and the current instant of time tcurrent for each running task Taski and further adding

to such partially computed value the envisioned duration of newTask to be allocated. In particular, if

newTask is forecast to be allocated on a cTE, thus belonging to a congested area, then its correspondent

duration is set to ∆tnewTaskcTE . On the other hand, if newTask is forecast to be allocated on a ncTE, thus

belonging to an uncongested area, then its corresponding duration is set to ∆tnewTaskncTE . In partic-

ular, ∆tnewTaskcTE and ∆tnewTaskncTE values are computed by performing the experiment described

above. The TE with associated the minimum TEestThr value is selected from the GA as the destination

for newTask.

As illustrated in Figure 5.3, let us imagine having two TE nodes, cTE belonging to a more con-

tended area and ncTE belonging to a less contended area, thus emulating the real situation of hetero-

geneous traffic congestion levels. Let us also assume that two tasks Task1 and Task2 are already

running on each node thus cTEbusySlots =ncTEbusySlots = 2 and the full degree of parallelism is

cTEmaxSlots =ncTEmaxSlots = 3. Whenever newTask enters the system at t1, Task1 and Task2

have already been partially computed, thus it becomes crucial to measure the time still required by

each of them to achieve completion, namely ∆t1 and ∆t2, respectively. Since the oracle is reckoned

to know both tendTask1 and tendTask2 , it computes the differences between tendTask1 and tendTask2

with respect to the current instant of time t1. Moreover, the oracle is assumed to know the duration

of newTask whether it is offloaded on congested cTE (i.e. ∆tnewTaskcTE ) or uncongested ncTE (i.e.

∆tnewTaskncTE ). Thus, the threshold TEthr is computed for each TE by adding together ∆t1, ∆t2 and

∆tnewTask values. The TE with minimum TEthr is selected as targeted TEBest to handle newTask ex-

ecution. In particular, since in Figure 5.3 ncTE is the least loaded node, it is therefore selected as target

for distribution. Note that, since the algorithm runs in simulation, no task offload is actually performed.
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t0 tend∆t

Task1

(b)t0 tend

∆t

Task1
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Figure 5.4: Task estimated completion time computation within the theoretical lower-bound algorithm.

The second part of Algorithm 5 takes care instead of the actual newTask computation and thus of

the definition and update of the estimated completion time tendTaski values of a task. In fact, whenever

a new task newTask enters the system or one of those Taski already running on the TE completes its
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execution, it is necessary both to set (for newTask) and to update (for Taski) the estimated completion

time for all tasks. In the former situation, in which newTask needs to start running on the previously

selected TEBest, for each Taski already running, it is necessary to undertake the following actions: (i)

compute the remaining time ∆tremTaski , for which running Taski, multiplying the difference between

the actual estimated completion time tendTaski and the current instant tcurrent for a number obtained by

dividing the current number of running tasks incremented by 1 (i.e. TEbusySlots+ 1) and the current one

(i.e. TEbusySlots); (ii) compute the new tendTaski of each Taski by adding to the current instant of time

tcurrent the new remaining task duration ∆tremTaski . Moreover, newTask estimated completion time

(i.e. tendNewTask) is set by adding to the current instant of time tcurrent a value computed by multiplying

newTask duration ∆tnewTask by the actual number of running tasks incremented by 1. Since newTask is

now allocated to the TE, the actual number of running tasks is incremented by 1 (i.e. TEbusySlots + +),

while the actual number of free slots, available to allocate task computation, is decremented by 1 (i.e.

TEfreeSlots −−).

The way in which this mechanism works can be easily explained with an example, as illustrated

in Figure 5.4. Let us assume that a task Task1 is already running on a TE (Figure 5.4(a)) when a new

task newTask wishes to start its execution (Figure 5.4(b)). Moreover, let us assume that both Task1

and newTask have the same ∆t duration whenever each one of them is computed in an exclusive way

on a TE node. This implies that, whenever either Task1 or newTask runs on the TE, task duration is

∆t. On the other hand, whenever both Task1 and newTask are required to be simultaneously executed

on a node, the task duration changes. In particular, according to the traditional parallel computing

principles [Grama et al., 2003], a process execution proportionally increases or decreases according to

the number of processes running in parallel. For example, in Figure 5.4(b) newTask starts when half of

Task1 (i.e. ∆t/2) has already been computed. Hence Task1 needs to double its remaining duration

∆t/2 in order to achieve completion, thus its estimated completion time is updated to tendTask1 = t0 +

3∆t/2. Similarly, newTask updates its duration ∆t to 2∆t and the correspondent estimated completion

time to tendNewTask = t1 +2∆t. The same procedure is repeated in reverse when a task terminates. For

example, as illustrated in Figure 5.4(c), when Task1 terminates at instant t2, newTask no longer shares

TE computational resources with any other task running in parallel. Hence its remaining duration is

halved since it can now run twice as fast as before. Thus, newTask updates both its duration, previously

set to 2∆t, to 3∆t/2 and its estimated completion time to tendNewTask = t1 + 3∆t/2. This situation

is described in the second part of Algorithm 5. The actions to be undertaken are as above with the only

difference being that the duration ∆tremTaski of each Taski is now obtained by multiplying the current

value by a number obtained by dividing the current number of running tasks decremented by 1 (i.e.

TEbusySlots − 1) with the current number of running tasks (i.e. TEbusySlots).

Recall that the computed values represent only a theoretical lower-bound obtained by making use

of an empirical approximation of task duration (i.e. ∆tTaskicTE and ∆tTaskincTE whether Taski is

computed on a congested cTE or uncongested ncTE), but totally discarding any radio communication

issue in terms of interference, collisions, retransmission mechanisms and delays.
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Algorithm 5: newTask Computation Algorithm

/* GAfreeSlots/TEfreeSlots are number of GA/TE free slots. */
/* GAbusySlots/TEbusySlots are number of GA/TE allocated slots. */
/* newTask is a new Task to be allocated. */
/* Taski are tasks running on TE, one for available slot. */
/* TEthr is an estimated threshold associated to each TE. */
/* tcurrent is the current instant of time. */
/* tendTask is estimated task ending time. */
/* ∆t is task duration. */
/* GA (Selection of TEBest): */
foreach (GA) do1

if (GAfreeSlots > 0) then2

foreach (TE) do3

if (TEfreeSlots > 0) then4

if (cTE) then5

TEthr = [
TEbusySlots∑

i=1

(tendTaski − tcurrent)] + ∆tnewTaskcTE ;
6

end7

else if (ncTE) then8

TEthr = [
TEbusySlots∑

i=1

(tendTaski − tcurrent)] + ∆tnewTaskncTE ;
9

end10

end11

end12

GA selects TEBest with minimum TEthr to offloads newTask;13

end14

end15

/* TE (newTask Computation of tendNewTask): */
foreach (event taskStart or taskF inish) do16

if (event taskStart) then17

foreach (TEbusySlotsi ) do18

∆tremTaski = (tendTaski − tcurrent) · [(TEbusySlots + 1)/TEbusySlots];19

tendTaski = tcurrent + ∆tremTaski ;20

end21

tendNewTask = tcurrent + ∆tnewTask · (TEbusySlots + 1);22

TEbusySlots + +;23

TEfreeSlots −−;24

end25

if (event taskF inish) then26

foreach (TEbusySlotsi ) do27

∆tremTaski = (tendTaski − tcurrent) · [(TEbusySlots − 1)/TEbusySlots];28

tendTaski = tcurrent + ∆tremTaski ;29

end30

TEbusySlots −−;31

TEfreeSlots + +;32

end33

end34
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Finally, it is interesting to point out that in Algorithm 5 the oracle allocates tasks on the TEs rea-

soning on task estimated completion time thresholds and not on the computational load of a node. The

reason for this choice is easily explained with the following example. Let us assume that a GA is entitled

to distribute a task by choosing among two possible TEs, namely TE1 and TE2, each of which has only

one slot available for task computation. Independently of TEs’ local level of network traffic, if the of-

fload decision is based exclusively on the TE remaining CPU load, then both TE1 and TE2 have the same

remaining CPU load (i.e. in this case equal to one), hence the GA could independently select any one of

the possible TEs. However, if the offload decision is instead based on the evaluation of tasks estimated

completion time values and tasks independently running on TE1 and TE2 have different thresholds, then

the GA would rather choose the TE with the smallest associated values. In fact, the smaller the estimated

completion time values of the tasks running on a node, the sooner a new running task would be able to

benefit from TE’s full CPU capacity since it will not be required to concurrently share TE’s resources

with other tasks for some time, as long as those running reach completion soon.

5.3 Heuristic Set
In this section, we define the set of heuristics adopted to measure the impact of distributing heterogeneous

applications within the environment. In particular, we empirically compare results achieved by adopting

a novel heuristic against those obtained by applying the BATS mechanism presented in Section 4.3. Once

again, the main aim is that of investigating the impact of local network congestion in making informed

decisions about load distribution.

Recall that in Section 5.1, we have characterised a set of applications in terms of I/O-bound, CPU-

bound, and balanced. I/O and CPU characterisations have been driven by adopting task distributions

emerging from computational grid fields and adapting them to WSNs. Moreover, in Section 5.2 we

described an algorithm to compute a theoretical lower-bound against which we plan to compare the

collected experimental results.

We are now in a position to list the set of heuristics adopted in the evaluation undertaken in the

current chapter.

• BATS:

The Bandwidth-Aware Task Scheduling mechanism is applied in this context in the same way as

explained in Section 4.3. Hence BATS heuristic is built by linearly combining the information

about the available computational resources of a TEy node and the local amount of network con-

tention performed in the area where TEy is located. In particular, for each TEy node belonging

to GA’s neighbourhood dynamically discovered through DWAG, a score value ScoreTEy is ob-

tained by computing a linearly weighted score function combining computational TEy(aCPU ) and

communication TEy(aBand) availabilities of TEy . The TEBest with the highest computed score

ScoreTEBest is selected to handle the remote Taski,j offload.

• Profile-Bandwidth-Aware Task Scheduling (P-BATS):

The introduction of heterogeneous job categories drove the definition of another heuristic com-
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bining TEy computational and communication capabilities with task characterisations. Thus, in

order to make an informed decision about to which TEy to offload task computation, the GA and

the TE are required to undertake the computations described in Equation 5.3 (GA), and Equa-

tions 5.4 and 5.5 (TE), respectively. In particular, each TEy computes and delivers to the GA two

values. The first value TE(loadCPU) (Equation 5.4) measures the amount of remaining compu-

tation, and thus CPU cycles, still required to be performed at TEy side. This value is computed

by multiplying, for each task already running on TE (i.e. TEbusySlots), the number of remain-

ing repetitions TaskiremRpt with the remaining number of CPU computations TaskiremCPU to

be undertaken (i.e. TaskiremCPUCycle = TaskiremRpt · TaskiremCPU ). The partial values are

then added together to form TE(loadCPU). Similarly, the second value TE(loadI/O) (Equation 5.5)

measures the amount of remaining communication, and thus I/O bursts, still needed at TEy , and

thus the amount of communication affecting the local network conditions in which TEy is lo-

cated. Also this value is computed by multiplying, for each task already running on TE (i.e.

TEbusySlots), the number of remaining repetitions TaskiremRpt and the number of remaining I/O

bursts TaskiremI/OBurst to be sent (i.e. TaskiremI/OBurst = TaskiremRpt · TaskiremI/O ). The

partial values are then added together and the value obtained is multiplied by the existing local

traffic contention TEy(oBand), identifying the level of bandwidth occupancy in TEy’s surround-

ing area, to form TE(loadI/O). This is in accordance with the task characterisation presented in

Section 5.1, for which each task is characterised by the repetition of the actions (i) burst of of-

fload messages, (ii) computation, and (iii) burst of upload messages, with the values for the bursts

randomly picked within the distributions. Once TE(loadCPU) and TE(loadI/O) are delivered from

each TEy forming DWAG to the GA through the selected load distribution algorithm, the GA then

associates with each TEy a score value ScoreTEy (Equation 5.3) by computing a linearly weighted

score function combining TE(loadCPU) and TE(loadI/O) with information about the profile char-

acterisation of the new task newTask to be offloaded. Thus, newTaskloadCPU is the value of the

computational load associated with newTask and computed according to newTask profile descrip-

tion newTaskloadCPU = newTaskrpt · newTaskCPU . Similarly, newTaskloadI/O represents

the communication load added to the system whenever offloading newTask, again computed ac-

cording to the profile characterisation newTaskloadI/O = newTaskrpt · newTaskI/O). The

TEBest with the minimum computed score ScoreTEBest is selected to handle the remote Taski,j

offload. Note that, in order for this heuristic to be applied, it is necessary not only to be aware of

TE local network information, but also of the task characterisation provided by the profiler. As

stated in Section 1.4, we make the assumption of having such information available within the

current dissertation.

GA Calculations:

ScoreTEy = (weightCPU · TEy(loadCPU) · newTaskloadCPU ) + (5.3)
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+ (weightBand · TEy(loadI/O) · newTaskloadI/O)

TE Calculations:

TE(loadCPU) =
TEbusySlots∑

i=1

TaskiremCPUCycle (5.4)

TE(loadI/O) = (
TEbusySlots∑

i=1

TaskiremI/OBurst) · TEy(oBand) (5.5)

Finally, recall that for the current experimental evaluation we adopt the same load distribution algo-

rithms as described in Section 4.2. In particular, since the experimental evaluation carried on in Chapter 4

has shown that the small amount of overhead introduced by the Auction brings considerable benefits in

handling offload decisions, so we focus the current evaluation mainly on the Auction algorithm.

5.4 Experimental Evaluation
We now have the information necessary to detail the set of experiments undertaken within deployed sys-

tems to measure the impact of network information on distributing heterogeneous application categories

within the environment, while introducing a variation of heuristics.

Recall that the results presented in this dissertation report information gathered from experimenta-

tion on deployed testbed. Moreover, we evaluate our work according to the assumptions presented in

Section 1.4 and the experimental criteria stated in Section 1.5. As described in Section 1.3, we drive

our evaluation along the latency dimension since latency translates into the amount of delay brought by

radio communication links whenever diverse offload decisions are undertaken. Among the multitude of

performed experiments, we decided to report in this dissertation the following findings since they are

those corresponding to significant data variations.

In the experiments, we adopt the following metrics:

• Job Duration:

This metric measures the overall duration of Jobi from the beginning to the end. Thus, this is the

time spent to allow Jobi to complete the totality of tasks Taski,j , into which it has been split.

• Task Duration:

This metric measures the duration of each task Taski,j computed. Each task is represented by its

TaskID.

• Task Completion Time:

This metric measures the instants of time in which each task Taski,j , into which Jobi is split,

progressively reaches completion. Each task is represented by its TaskID.

The algorithms were run 30 times, more if necessary to obtain statistically valid results. Each point

in the graphs represents the average of all runs and the error bars show the standard deviation over the
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runs. In each experiment, we vary the values of one input parameter and assign the default values to the

others if not mentioned otherwise.
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Figure 5.5: Map of UCL-CS HEN device deployment for job heterogeneity experiments.

The experiments are again performed on the UCL-CS HEN TMote Sky testbed, whose details were

provided in Section 4.6.2. The roles for the GA, the TE and the Str nodes were assigned as illustrated in

Figure 5.5.

In a similar manner to homogeneous experimentation, the degree of parallelism supported by both

GA and TE nodes is 3. Again, we set the value to 3 since up to this value the context switching among

processes does not affect the computational resources of TMote Sky devices.

In the following experiments, communication is handled through the Rime [Dunkels et al., 2007]

protocol stack implemented within the Contiki OS. As illustrated in Section 2.2.3, Rime was devised to

cope with increasing (i) network heterogeneity, (ii) number of link layers, (iii) MAC protocols, and (iv)

underlying transportation mechanisms. Hence, since the experiments presented in this chapter aim at

dealing with multiple heterogeneous network traffic and profile characterisation, we decided to test our

algorithms by adopting the Rime stack instead of uIP TCP/IP used for homogeneous experimentation in

Chapter 4.

Like the experiments in Chapter 4, we programmed TMote Sky devices by setting the Radio Fre-

quency (RF) ZigBee channel to 26 to minimise interference.

In order to generate heterogeneous environmental network contention traffic, while allowing exper-

imental repeatability, we make again use of an interferer node Str locating it within the radio range of

only a subset of TE nodes. We adopt for Str the same message transmission rate as that used within the

homogeneous scenario in Section 4.6.1. Moreover, we again set Str’s radio transmission power to the

second lowest possible level and inject bursts of 3 bytes into the network after a computation is executed.

This choice was made to avoid saturating completely TEs network bandwidth in their reception areas.
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Moreover, both the GAs and the TEs radio transmission power has been kept to the original Contiki OS

default value (i.e. 0 dBm in [Instruments, 2006]) to allow all nodes to be in range of one another.

For the set of experiments presented in this chapter, we use the classes of applications defined in

Section 5.1: I/O-bound, CPU-bound, and balanced. In each experiment, the offload/upload I/O bursts

and the CPU cycles vary according to the specific Gaussian and Poissonian distributions. Details about

the settings for the distribution parameters and the Repetition value are provided within each of the

following experimental setups. Moreover, we apply the set of heuristics described in Section 5.3 to the

DWAG paradigm and compare the experimental results against a theoretical lower-bound computed as

described in Section 5.2.

In order to apply the heuristics described in Section 5.3, it is necessary to compute weightCPU

and weightBand. For the BATS heuristic, these values are computed as described in Section 4.6.1 and

thus weights weightCPU and weightBand are tuned to 16 and 1, respectively. Analogously, for the P-

BATS heuristic weights weightCPU and weightBand are differently tuned for each of the experiments,

following the same procedure as that adopted for BATS. Values of weightCPU and weightBand are

detailed in each of the experiments.

Recall that, in the following experiments, we adopt the load distribution algorithms as described

in Section 4.2. Hence we compare the performance of the Auction algorithm analysing the impact of

the network conditions in dealing with traffic contention during distribution by adopting the heuristics in

Section 5.3. In particular, we collect and analyse data coming from situations as follows:

• Heuristic with No Bandwidth Control (weightCPU 6= 0 and weightBand = 0):

In this situation, we introduce into the system the interferer node Str in order to generate additional

network traffic. However, whenever distribution is required, the decision is taken based only on

TEs computational capabilities. This situation translates into distributing load while ignoring the

local network traffic information, and thus exclusively accounting for TE computational availabil-

ity, hence setting weightCPU 6= 0 and weightBand = 0 in each of the heuristics presented in

Section 5.3.

• Heuristic with Bandwidth Control (weightCPU 6= 0 and weightBand 6= 0):

In this situation, the system is again affected by the presence of the interferer node Str responsible

for injecting within the environment heterogeneous amounts of traffic contention. However, the

offload decision accounts here for the evaluation of both factors: TEs local computational and

network availabilities. This situation translates into distributing under heavy communication load,

while combining information regarding both TE local network conditions and internal computa-

tional availabilities, hence setting weightCPU 6= 0 and weightBand 6= 0 in each of the heuristics

presented in Section 5.3.

In these experiments dealing with heterogeneity, we also report a statistical analysis conducted

by applying One-Way Anova with Replication [Field and Hole, 2008] to the experimental values. The

statistical modelling technique called Analysis of Variance (Anova) was chosen because it is designed to
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test the statistical difference among two or more independent groups when data collected is normal and

homoscedastic. In particular, One-Way Anova with Replication is used when three or more experimental

groups (i.e. three or more means) are compared and the same participants are used in each group. The

null hypothesis to be rejected each time is that the averages of all measured experimental sets are the

same. According to the Anova technique, experimental results have a statistical impact when p < .05.

In each of the following sections, we detail the experimental setup and data analysis. In particular,

in Section 5.4.1 we report a brief comparison between the Auction and the Lookup List algorithms

again strengthening our decision to focus mainly on the Auction algorithm for the further experimental

evaluation. In Section 5.4.2 we present results deriving from the GAs distributing I/O-bound jobs. In

Section 5.4.3, the GAs deal with CPU-bound jobs, while in Section 5.4.4, the GAs cope with balanced

jobs. In Section 5.4.5, we describe a summarising experiment in which different GAs simultaneously

distribute a mixture of application categories within the environment. For each experimental set, we

measure the system performance for a multiplicity of node configurations by varying the number of the

GAs and the TEs actively working within the environment.

A B

C D

Figure 5.6: Performance comparison for Auction and Lookup List with I/O-bound jobs.
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5.4.1 1st Experimental Setup and Results (Auction vs. Lookup List)

The aim of this first set of experiments is to report a brief comparison between the Auction and the

Lookup List algorithms. In particular, for the following experimental setup, we adopted 4 GAs and 6

TEs. Moreover, we decided to perform the comparison running the experiments with I/O-bound and

balanced jobs, since they are more likely to be affected by local network information and thus bandwidth

control mechanisms are likely to have a greater impact. In particular, the GAs firstly offload I/O-bound

and then balanced jobs. Jobs and tasks have been configured according to the I/O-bound (Section 5.4.2)

and balanced (Section 5.4.4) settings described in details in the following sections. Each job has been

split into 30 tasks and each task is formed by 30 repetitions of the actions (i) burst of offload messages,

(ii) computation cycles, and (iii) burst of upload messages.

A B

C D

Figure 5.7: Performance comparison for Auction and Lookup List with balanced jobs.

In Chapter 4, we concluded the experimental analysis by stating that, the Auction algorithm out-

performs Lookup List because of its ability to make more informed decisions based on up-to-date TEs

status. As illustrated in Figures 5.6 and 5.7, by running both Auction and Lookup List with BATS

heuristic and bandwidth control mechanism, we confirm the trend of Auction outperforming Lookup

List. This is displayed for the experiments with I/O-bound jobs for task completion time, job duration

and task duration (Figure 5.6). Whenever multiple GAs instead distribute cumbersome balanced tasks
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I/O-bound job setup

Number GAs 5

Number TEs 10

Number Tasks 30

Repetitions 30

Gaussian σ 5

Gaussian µ 30

Poissonian λ 2

Table 5.1: Experimental setup for I/O-bound job experimentation.

on a fixed number of the TEs, then the improvement is partially obfuscated (Figure 5.7). This behaviour

is also confirmed by the computation of Anova. Regarding the Anova analysis, the following results have

been obtained: [F(1,30)=1.3785, p=0.2496] in Figure 5.6C; [F(1,58)=2.154, p=0.1476] in Figure 5.6D;

[F(1,22)=0.0065, p=0.9363] in Figure 5.7C; [F(1,58)=0.9096, p=0.3442] in Figure 5.7D. In an average

case, however, the Auction algorithm would offer a better alternative for distribution than Lookup List.

For this reason, we focus the following experimental analysis exclusively on the Auction algorithm.

5.4.2 2nd Experimental Setup and Results (I/O-Bound Jobs)

The aim of this second set of experiments is the investigation of the impact of network conditions in

dealing with the distribution of I/O-bound applications through DWAG collaborations. The experimental

setup is as described in Table 5.1, with 5 GAs and 10 TEs. The former are pre-loaded with I/O-bound

jobs each of which is split into 30 tasks. Each task is formed by 30 repetitions of the actions (i) burst of

offload messages, (ii) computation cycles, and (iii) burst of upload messages.

The I/O burst and computation cycle values are randomly chosen within the Gaussian (communi-

cation) and Poissonian (computation) distributions set to map I/O-bound applications, as illustrated in

Section 5.1. The values, randomly picked within the distributions, remain constant all over the task ex-

ecution for each repeated cycle, but they are different for every task. Thus, once an I/O burst value is

selected, it is used both for the task offload and upload. Hence, once the set of values for all tasks has

been selected, the same sequence is used to allow experimental repeatability. For example, let us assume

that we have an I/O-bound job, formed by 30 I/O-bound tasks. In order for each task to achieve comple-

tion, the following actions need to be undertaken: (i) two values X and Y are randomly selected from

the Gaussian and Poissonian distributions, respectively; (ii) for every repeated cycle, an offload burst of

X messages is sent from the GA to the TE, Y computational cycles are computed on the TE, and an

upload burst of X messages is delivered back from the TE to the GA. Each offload message contains a

value, which is then used by the TE to perform the computation of a function Y number of times.

The values adopted within the distributions to characterise I/O-bound jobs are as follows: σ = 5

and µ = 30 for the Gaussian distribution, λ = 2 for the Poissonian distribution. The values of the

weights within P-BATS have been set to weightBand = 1 and weightCPU = 11250 for I/O-bound jobs
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and they have been tuned adopting the same procedure as that used for BATS but applied to P-BATS.

Experimental parameters were tuned with such experimental values in order to create range variations

compatible with the settings chosen for the experiments with homogeneous tasks in Chapter 4.

A B

C D

Figure 5.8: Effects of varying TE and TaskID on task completion time in I/O-bound jobs.

Effect of varying the number of the TEs: The aim of this experiment is to show the nature of the

speed-up obtained if the number of the TEs available for computation in the system increases.

We vary the number of the TEs from 4 to 10, progressively adding 2 TEs at a time and locating each

of them in the two diversified areas of influence: one affected by Str additional network contention, the

other free from Str influences. In this experiment, 4 GAs simultaneously offload I/O-bound jobs each

of which is composed of heterogeneous tasks profiled according to the distribution values detailed in

Table 5.1. The number of the GAs is kept fixed within the experiment.

As illustrated in Figure 5.8, experimental results show that in terms of task completion time both

BATS and P-BATS heuristics with congestion control significantly outperform the case in which only

TEs computational requirements are accounted. This pattern is detected for each TE variation (Fig-

ure 5.8A-B-C-D), displaying a consistent trend. In addition, the increasing TE number reduces the

performance gap between the two cases with and without bandwidth control for both heuristic mecha-

nisms. This is as expected, since the computational load to be distributed remains constant, despite the
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A B

C D

Figure 5.9: Effects of varying TE and TaskID on task duration in I/O-bound jobs.

A B

Figure 5.10: Effects of varying TE on job duration and task duration in I/O-bound jobs.
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Number TEs F-value p-value

4 TEs F(2,57)=9.371 p=0.003029

6 TEs F(2,57)=21.99 p=8.351e-08

8 TEs F(2,81)=34.935 p=1.149e-11

10 TEs F(2,57)=56.05 p=3.471e-14

Table 5.2: Anova analysis for job duration vary-
ing TE in I/O-bound jobs (Figure 5.10A).

Number TEs F-value p-value

4 TEs F(3,116)=16.067 p=8.435e-09

6 TEs F(3,116)=17.339 p=2.282e-09

8 TEs F(3,116)=15.192 p=2.107e-08

10 TEs F(3,116)=46.727 p=2.2e-16

Table 5.3: Anova analysis for task duration vary-
ing TE in I/O-bound jobs (Figure 5.10B).

increasing TE number. Thus, the more TEs resources become scarce, the more the overall task comple-

tion time increases (increased gap between with and without bandwidth control cases in Figure 5.8A).

On the other hand, whenever additional TEs resources suddenly become available to distribute the same

amount of load, it is possible to notice performance improvements (decreased gap between with and

without bandwidth control cases in Figure 5.8D).

The unusual behaviour of task 2 and 3 in Figures 5.8A-B is explained as follows. Whenever all the

GAs simultaneously start offloading, the TEs find themselves dealing with a sudden burst of requests.

Thus, the least congested TEs, being the primary target for distribution, quickly saturate their computa-

tional slots (actual degree of parallelism supported by each device) and some of the tasks have no choice

but to be offloaded towards more congested TEs. This leads to a peak of the task completion time for the

first tasks to be computed which then quickly normalises as the experiment progresses. It can, in fact,

be noticed that the unusual delay caused by the initial burst of requests terminates approximately at the

same time as task number 10 (Figure 5.8A) is offloaded without compromising the task completion time

or times in which the experiment ends. The same behaviour is less obvious for Figures 5.8C-D since, in

such cases, the available TEs are sufficient to handle the initial burst of requests.

As illustrated in Figure 5.9, considerations similar to those regarding task completion time can be

propagated to task duration. In particular, as the graphs show, sometimes the task duration for heuris-

tics with bandwidth control displays increased values with respect to the case where bandwidth control

is disregarded. This happens because the mechanism distributing load exclusively accounting for TEs

computational capabilities does not exclusively offload tasks onto congested TEs. In fact, it might hap-

pen that a node more capable from a computational perspective is also located within a uncongested

area. Thus, the overlap of conditions leads to lower task duration for the mechanism without bandwidth

control.

In Figure 5.9, experimental measurements are also compared against the theoretical lower-bound

computed as described in Section 5.2. As the graphs show, the lower-bound values are sometimes higher

than experimental results. This is because the value of lower-bound for task duration time is computed

by dividing the theoretically computed job completion time lower-bound by the number of tasks, thus

leading to an heuristic approximation and not to an absolute optimised lower-bound value. Figure 5.10A

displays the actual lower-bound value for job duration, computed as described in Section 5.2.

The summarising results displayed in Figure 5.10 also highlight the relatively small benefits brought
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Number GAs F-value p-value

1 GA F(2,12)=10.366 p=0.002428

2 GAs F(2,27)=33.28 p=5.173e-08

3 GAs F(2,24)=17.569 p=2.855e-06

4 GAs F(2,57)=24.575 p=2.012e-08

5 GAs F(2,72)=14.128 p=6.667e-06

Table 5.4: Anova analysis for job duration vary-
ing GA in I/O-bound jobs (Figure 5.13A).

Number GAs F-value p-value

1 GA F(3,116)=40.345 p=2.2e-16

2 GAs F(3,116)=57.798 p=2.2e-16

3 GAs F(3,116)=21.996 p=2.393e-11

4 GAs F(3,116)=18.702 p=5.799e-10

5 GAs F(3,116)=10.399 p=4.11e-06

Table 5.5: Anova analysis for task duration vary-
ing GA in I/O-bound jobs (Figure 5.13B).

by the more sophisticated P-BATS heuristic, as compared to the simpler BATS one, for both job duration

and task duration. In fact, whenever multiple GEs simultaneously compete to access to a TE’s shared

resources, they are responsible for introducing an allocation unpredictability decreasing the benefits of

introducing more sophistication. The GA can never be totally sure of the match between TE’s avail-

able resources and real-time allocation, since other GAs could interfere among each other during the

allocation process.

Finally, again in Figure 5.10, observe how the theoretical lower-bound seems to significantly out-

perform experimental results. In reality, the gap illustrates the major impact of radio communication

interference, message collision and retransmission mechanisms, occurring under heavy communication

load, in causing critical and prolonged delays that are not easy to model through simulations. In par-

ticular, since for the current experimental setting (i.e. offload of I/O-bound jobs) radio communication

is expected to play a crucial role, the displayed experimental gap between theoretical lower-bound and

measurements meets the expectations. The behaviours explained above are confirmed by the Anova

results summarised in Tables 5.2 and 5.3.

Effect of varying the number of the GAs: The aim of this experiment is to show the nature of

the speed-up obtained if the number of the GAs, simultaneously offloading I/O-bound jobs within the

system, increases.

Each heterogeneous tasks of which the I/O-bound job is comprised is profiled according to the

distribution of values listed in Table 5.1. The number of the GAs increases from 1 to 5. The number of

the TEs is kept fixed at 6. In particular, 3 TEs are located in the area affected by Str, while the other 3

TEs are positioned in the area free from Str influence.

As illustrated in Figures 5.11, 5.12 and 5.13, considerations similar to those listed while investigat-

ing the effects of varying the number of the TEs can be derived for the metrics task completion time, job

duration and task duration.

In particular, as shown in Figure 5.11, the increasing GA number reduces the performance gap

between the two cases with and without bandwidth control for both heuristic mechanisms. This is as

expected, since the available TE resources remain constant, despite the increasing GA number.

Let us now analyse Figures 5.11A. While in most of the situations, in fact, the BATS and P-BATS

heuristics show comparable performance, in Figure 5.11A, and thus in the situation in which a single GA



96 Chapter 5. Impact on Distributing Heterogeneous Tasks
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Figure 5.11: Effects of varying GA and TaskID on task completion time in I/O-bound jobs.
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Figure 5.12: Effects of varying GA and TaskID on task duration in I/O-bound jobs.
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A B

Figure 5.13: Effects of varying GA on job duration and task duration in I/O-bound jobs.

is responsible for load distributing jobs, P-BATS outperforms BATS. The reason is that whenever a single

GA exclusively offloads tasks, it has a full and total control of TEs resources (resources not required to

be shared among several GAs) and thus it profits by P-BATS sophistication since there is always a

real-time match between advertised and actual TE resources. On the other hand, whenever multiple

GEs simultaneously compete to access to TEs’ shared resources, they are responsible for introducing an

allocation unpredictability responsible for decreasing such benefits. In fact, the GA can never be totally

sure of the match between TEs available resources and real-time allocation since other GAs could have,

in the meantime, modified TEs status. This explains why improvements are not detected when a set of

GAs simultaneously offload.

The anomalous behaviour of the first tasks in Figures 5.11D-E, and corresponding Figures 5.12D-E,

is explained as above. Thus, whenever the GAs simultaneously start offloading, the TEs find themselves

dealing with a sudden burst of requests. The least congested TEs quickly saturate their computational

slots and some of the tasks have no choice but to be offloaded towards more congested TEs. This leads

to a peak of the task completion time and task duration for the first tasks to be computed which then

quickly normalises as the experiment progresses. Clearly, if the available TEs are sufficient to handle the

initial burst of requests, the pattern is obfuscated (e.g. Figures 5.11A-B-C and Figures 5.12A-B-C). The

behaviours explained above are confirmed by the Anova results summarised in Tables 5.4 and 5.5.

5.4.3 3rd Experimental Setup and Results (CPU-Bound Jobs)

The aim of this third set of experiments is the investigation of the impact of network conditions in dealing

with the distribution of CPU-bound applications through DWAG collaborations. The experimental setup

is as described in Table 5.6, thus we have up to 5 GAs and 10 TEs. The former are pre-loaded with

CPU-bound jobs, each of which split into 30 tasks. Each task is formed by 30 repetitions of the actions

(i) burst of offload messages, (ii) computation cycles, and (iii) burst of upload messages.

As mentioned in Section 5.4.2, the values for I/O bursts and computation cycles are randomly

chosen within the Gaussian (communication) and Poissonian (computation) distributions. The values,
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CPU-bound job setup

Number GAs 5

Number TEs 10

Number Tasks 30

Repetitions 30

Gaussian σ 1

Gaussian µ 2

Poissonian λ 10

Table 5.6: Experimental setup for CPU-bound job experimentation.

randomly picked within the distributions, remain constant over the task execution for each repeated cycle,

but they instead change for every task. Hence, once a set of values for all tasks has been selected, the

same sequence is used to allow experimental repeatability. The values adopted within the distributions

are as follows: σ = 1 and µ = 2 for the Gaussian distribution, λ = 10 for the Poissonian distribution.

The values of the weights within P-BATS have been set to weightBand = 1 and weightCPU = 2 for

CPU-bound jobs and they have been computed adopting the same procedure as that used for BATS,

but applied to P-BATS. Again, experimental parameters have been set in this way according to range

variations of the experiments in Chapter 4.

Effect of varying the number of the TEs: The aim of this experiment is to show the nature of the

speed-up obtained if the number of the TEs available for computation in the system increases.

Again, we vary the number of the TEs from 4 to 10 progressively adding 2 TEs at the time and

locating each one of them in the two diversified areas, affected or not by Str’s generated network con-

gestion. In this experiment, 4 GAs simultaneously offload CPU-bound jobs each of which composed of

heterogeneous tasks profiled according to the distribution values detailed in Table 5.6. The number of

the GAs is kept fixed within the experiment.

A very interesting behaviour arises though by observing Figures 5.14 and 5.16. In fact, as can be

seen, in terms of task completion time (Figure 5.14) and job duration (Figure 5.16A), the performance

gap between bandwidth and no bandwidth control cases is not as pronounced as for the task duration. As

illustrated in Figures 5.15 and 5.16B, considerable improvements are seen in the task duration by apply-

ing BATS and P-BATS heuristics with bandwidth control against BATS without bandwidth control. In

particular, both BATS and P-BATS with bandwidth control approximatively halve task duration values.

The reason for such results is that, whenever CPU-bound tasks must be computed, they are completed

almost instantaneously with a negligible number of message exchanges thus, as expected, a limited per-

formance gap between bandwidth and no bandwidth control is detected in task completion time and job

duration. Thus, despite the benefits brought by accounting for network information, the pronounced

task duration gap is likely to be linked to the overhead introduced by the distribution algorithm. In fact,

before distributing, the infrastructure needs to perform a negotiation phase to collect network details and

take an informed decision based on them. On CPU-bound jobs though such network information has a
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Figure 5.14: Effects of varying TE and TaskID on task completion time in CPU-bound jobs.
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Figure 5.15: Effects of varying TE and TaskID on task duration in CPU-bound jobs.
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Figure 5.16: Effects of varying TE on job duration and task duration in CPU-bound jobs.
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Number TEs F-value p-value

4 TEs F(2,57)=10.499 p=0.0001312

6 TEs F(2,57)=11.028 p=8.936e-05

8 TEs F(2,57)=8.7777 p=0.0004751

10 TEs F(2,69)=24.223 p=1.074e-08

Table 5.7: Anova analysis for job duration vary-
ing TE in CPU-bound jobs (Figure 5.16A).

Number TEs F-value p-value

4 TEs F(3,116)=16.235 p=7.09e-09

6 TEs F(3,116)=31.847 p=4.31e-15

8 TEs F(3,116)=32.614 p=2.316e-15

10 TEs F(3,116)=39.733 p=2.2e-16

Table 5.8: Anova analysis for task duration vary-
ing TE in CPU-bound jobs (Figure 5.16B).

limited impact, thus the biggest price to be paid is in fetching and negotiating such information, through

the load distribution algorithms.

In Figure 5.15, experimental measurements are also compared against the theoretical lower-bound

computed as described in Section 5.2. Once again, as illustrated by the graphs, the lower-bound values

happen here to be sometimes higher than experimental results. This is because the value of lower-

bound for task duration time is computed by dividing the theoretically computed job completion time

lower-bound for the number of tasks, thus leading to an heuristic approximation and not to an absolute

optimised lower-bound value. Figure 5.16A displays the lower-bound for job duration, computed as

described in Section 5.2. Let us notice how, in terms of job duration (Figure 5.16A), the theoretical

lower-bound is comparable to the actual measured results. This is because only CPU-bound jobs are

distributed and thus the effect of network traffic and congestion are contained. The behaviours explained

above are confirmed by the Anova results summarised in Tables 5.7 and 5.8.

Effect of varying the number of the GAs: The aim of this experiment is to show the nature of

the speed-up obtained if the number of the GAs, simultaneously offloading CPU-bound jobs within the

system, increases.

Each heterogeneous tasks of which the CPU-bound job is comprised is profiled according to the

distribution values listed in Table 5.6. The number of the GAs increases from 1 to 5. The number of the

TEs is fixed at 6. In particular, 3 TEs are located in the area affected by Str, while the other 3 TEs are

positioned in the area free from Str influence.

As illustrated in Figures 5.17, 5.18 and 5.19, considerations similar to those listed while investigat-

ing the effects of varying the number of the TEs can be driven for the metrics task completion time, job

duration and task duration.

Both BATS and P-BATS heuristics with bandwidth control outperform the case without bandwidth

control. The performance gap for task completion time increases by increasing the number of the GAs,

since additional load must be distributed on a constant number of TE resources. This trend, partially

obfuscated in Figure 5.17A-B-C-D, is clearly displayed in Figure 5.17E. Again, the pronounced gap in

task duration is linked to the additional overhead introduced by the negotiation phase within the load

distribution algorithm. In fact, since, within CPU-bound jobs, communication is negligible with respect

to computation and the latter is quickly performed, then the overhead introduced by the load sharing

algorithms to fetch network information plays a role.



5.4. Experimental Evaluation 103

A

C

B

D

E

Figure 5.17: Effects of varying GA and TaskID on task completion time in CPU-bound jobs.
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Figure 5.18: Effects of varying GA and TaskID on task duration in CPU-bound jobs.
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A B

Figure 5.19: Effects of varying GA on job duration and task duration in CPU-bound jobs.

Number GAs F-value p-value

1 GA F(2,12)=6.1958 p=0.01418

2 GAs F(2,27)=6.6468 p=0.004495

3 GAs F(2,42)=15.407 p=9.585e-06

4 GAs F(2,57)=12.945 p=2.317e-05

5 GAs F(2,72)=20.309 p=1.014e-07

Table 5.9: Anova analysis for job duration vary-
ing GA in CPU-bound jobs (Figure 5.19A).

Number GAs F-value p-value

1 GA F(3,116)=15.576 p=1.408e-08

2 GAs F(3,116)=19.252 p=3.364e-10

3 GAs F(3,116)=11.988 p=6.812e-07

4 GAs F(3,116)=28.32 p=8.186e-14

5 GAs F(3,116)=22.321 p=1.763e-11

Table 5.10: Anova analysis for task duration
varying GA in CPU-bound jobs (Figure 5.19B).

In Figure 5.18, the lower-bound values are sometimes higher than experimental results. This is as

mentioned above. Figure 5.19A displays the lower-bound for job duration, computed as described in

Section 5.2. Again, in terms of job duration (Figure 5.19A), the theoretical lower-bound is comparable

to the actual measured results, since only CPU-bound jobs are distributed and thus the effect of network

traffic and congestion are contained. The behaviours explained above are confirmed by the Anova results

summarised in Tables 5.9 and 5.10.

5.4.4 4th Experimental Setup and Results (Balanced Jobs)

The aim of this fourth set of experiments is the investigation of the impact of network conditions in

dealing with the distribution of balanced kinds of applications through DWAG collaborations. The ex-

perimental setup is as described in Table 5.11, thus we have up to 5 GAs and 10 TEs. The former are

pre-loaded with balanced jobs each of which split into 30 tasks. Each task is formed by 30 repetitions of

the actions (i) burst of offload messages, (ii) computation cycles, and (iii) burst of upload messages.

As aforementioned, the values for I/O bursts and computation cycles are randomly chosen within

the Gaussian (communication) and Poissonian (computation) distributions. The values, randomly picked

within the distributions, remain constant over the task execution for each repeated cycle, but they instead

change for every task. Hence, once a set of values for all tasks has been selected, the same sequence
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Balanced job setup

Number GAs 5

Number TEs 10

Number Tasks 30

Repetitions 30

Gaussian σ 5

Gaussian µ 30

Poissonian λ 10

Table 5.11: Experimental setup for balanced job experimentation.

is used to allow experimental repeatability. The values adopted within the distributions are as follows:

σ = 5 and µ = 30 for the Gaussian distribution, λ = 10 for the Poissonian distribution. The values

of the weights within P-BATS have been set to weightBand = 1 and weightCPU = 450 for balanced

jobs and they have been computed adopting the same procedure as that used for BATS, but applied to

P-BATS. Again, experimental parameters have been set in this way according to range variations of the

experiments in Chapter 4.

Effect of varying the number of the TEs: The aim of this experiment is to show the nature of the

speed-up obtained if the number of the TEs available for computation in the system increases.

Again, we vary the number of the TEs from 4 to 10 progressively adding 2 TEs at the time and

locating each one of them in the two areas of influence generated by the Str node. In this experiment,

4 GAs simultaneously offload balanced jobs each of which composed of heterogeneous tasks profiled

according to the distribution values detailed in Table 5.11. The number of the GAs is kept fixed within

the experiment.

In these experiments, we distribute in the environment balanced jobs. As expected, experimental re-

sults gracefully combine both behaviours described for I/O-bound (Section 5.4.2) and CPU-bound (Sec-

tion 5.4.3) jobs. As illustrated in Figure 5.20, in terms of task completion time both BATS and P-BATS

heuristics with congestion control outperform the case in which only TEs computational requirements

are accounted for. Increasing the number of the TEs reduces the performance gap between the two cases

with and without bandwidth control for both heuristic mechanisms, since the computational load to be

distributed remains constant.

As illustrated in Figure 5.21, considerations similar to those regarding task completion time can be

propagated to task duration. Sometimes the task duration for heuristics with bandwidth control display

increased values with respect to the case where bandwidth control is disregarded. This happens because

the mechanism distributing load exclusively accounting for TEs computational capabilities does not

exclusively offload tasks onto congested TEs. In fact, it might happen that a node more capable from

a computational perspective is also located within a uncongested area. Thus, the overlap of conditions

leads to lower task duration for the mechanism without bandwidth control.

The considerations concerning lower-bound values in Figures 5.21 and 5.22 are described as above.
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Figure 5.20: Effects of varying TE and TaskID on task completion time in balanced jobs.
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Figure 5.21: Effects of varying TE and TaskID on task duration in balanced jobs.
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Figure 5.22: Effects of varying TE on job duration and task duration in balanced jobs.
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Number TEs F-value p-value

4 TEs F(2,69)=24.894 p=7.256e-09

6 TEs F(2,81)=9.3359 p=0.0002246

8 TEs F(2,57)=19.406 p=3.733e-07

10 TEs F(2,57)=19.225 p=4.157e-07

Table 5.12: Anova analysis for job duration vary-
ing TE in balanced jobs (Figure 5.22A).

Number TEs F-value p-value

4 TEs F(3,116)=10.490 p=3.699e-06

6 TEs F(3,116)=24.484 p=2.401e-12

8 TEs F(3,116)=59.743 p=2.2e-16

10 TEs F(3,116)=76.938 p=2.2e-16

Table 5.13: Anova analysis for task duration
varying TE in balanced jobs (Figure 5.22B).

Finally, as illustrated in Figure 5.22, the theoretical lower-bound seems to significantly outperform ex-

perimental results. In reality, the gap illustrates the major impact of radio communication interference,

message collision and retransmission mechanisms, occurring under heavy communication load, in caus-

ing inevitably critical and prolonged delays with difficulty modelled through simulations. In particular,

since for the current experimental setting (i.e. offload of balanced jobs) radio communication is expected

to play a crucial role, the displayed experimental gap between theoretical lower-bound and measurements

meets the expectations. The behaviours explained above are confirmed by the Anova results summarised

in Tables 5.12 and 5.13.

Effect of varying the number of the GAs: The aim of this experiment is to show the nature of

the speed-up obtained if the number of the GAs, simultaneously offloading I/O-bound jobs within the

system, increases.

Each heterogeneous tasks of which the balanced job is comprised is profiled according to the dis-

tribution values listed in Table 5.11. The number of the GAs increases from 1 to 5. The number of the

TEs is kept fixed to 6. In particular, 3 TEs are located in the area affected by Str, while the other 3 TEs

are positioned in the area free from Str influence.

Again, for balanced jobs results mediate both I/O-bound (Section 5.4.2) and CPU-bound (Sec-

tion 5.4.3) behaviours. As illustrated in Figure 5.23, increasing the number of the GAs reduces the

performance gap between the two cases with and without bandwidth control for both heuristic mecha-

nisms. This is as expected, since the available TE resources remain constant, despite the increasing GA

number.

Let us now analyse the behaviour displayed in Figures 5.23A. While in most of the situations the

P-BATS and BATS heuristics show comparable performance, in Figure 5.11A, and thus in the situa-

tion in which a single GA is responsible for load distributing jobs, BATS outperforms P-BATS. This

happens because the more sophisticated computation, that must be performed by the P-BATS heuristic,

increases the computational overhead that must be handled by devices leading nodes towards consuming

more internal resources, spending more time for the computation itself, thus leading the GAs to make

decisions based on inevitable out-of-date information. This pattern, so clearly displayed when a single

GA is load distributing (Figure 5.23A), is instead obfuscated when multiple GAs simultaneously offload

computation (Figure 5.23B-C-D-E). The behaviours explained above are confirmed by the Anova results

summarised in Tables 5.14 and 5.15.
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Figure 5.23: Effects of varying GA and TaskID on task completion time in balanced jobs.
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Figure 5.24: Effects of varying GA and TaskID on task duration in balanced jobs.
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A B

Figure 5.25: Effects of varying GA on job duration and task duration in balanced jobs.

Number GAs F-value p-value

1 GA F(2,12)=41.984 p=3.822e-06

2 GAs F(2,12)=11.147 p=0.001835

3 GAs F(2,60)=13.538 p=1.404e-05

4 GAs F(2,12)=14.037 p=0.000721

5 GAs F(2,72)=38.227 p=4.861e-12

Table 5.14: Anova analysis for job duration vary-
ing GA in balanced jobs (Figure 5.25A).

Number GAs F-value p-value

1 GA F(3,116)=63.991 p=2.2e-16

2 GAs F(3,116)=35.903 p=2.2e-16

3 GAs F(3,116)=21.774 p=2.951e-11

4 GAs F(3,116)=28.3 p=8.33e-14

5 GAs F(3,116)=31.199 p=7.325e-15

Table 5.15: Anova analysis for task duration
varying GA in balanced jobs (Figure 5.25B).
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Jobs F-value p-value

I/O-bound F(2,12)=14.370 p=0.000653

CPU-bound F(2,12)=4.7286 p=0.03059

Balanced F(2,12)=12.358 p=0.001219

Table 5.16: Anova analysis for job duration vary-
ing job types (Figure 5.27A).

Jobs F-value p-value

I/O-bound F(2,87)=6.9642 p=0.001565

CPU-bound F(2,87)=0.0186 p=0.9815

Balanced F(2,87)=3.8923 p=0.02404

Table 5.17: Anova analysis for task duration
varying job types (Figure 5.27B).

5.4.5 5th Experimental Setup and Results (Mixed Jobs)

The aim of this fifth set of experiments is the investigation of the impact of network conditions in dealing

with the simultaneous distribution of heterogeneous job mixtures through DWAG collaborations. In

particular, in the first configuration we have 3 GAs, each of which offloads one of the aforementioned

jobs: I/O-bound, CPU-bound and balanced. In the second configuration, we have 6 GAs simultaneously

offloading a job mixture, each two offloading tasks belonging to the same job category. The number of

the TEs is fixed at 6. Jobs and tasks were configured according to the previously described I/O-bound

(Section 5.4.2), CPU-bound (Section 5.4.3) and balanced (Section 5.4.4) settings. Each job was split

into 30 tasks and each task is formed by 30 repetitions of the actions (i) burst of offload messages, (ii)

computation cycles, and (iii) burst of upload messages.

Let us now summarise the main observations deriving from the experiment. Firstly, let us notice

how the increase from 3 to 6 GAs simultaneously offloading tasks leads to a general performance de-

crease, in terms of task completion time (Figure 5.26A-C-E and 5.28A-C-E), job duration (Figure 5.27A

and 5.29A) and task duration (Figure 5.27B and 5.29B). This occurs since a doubled load (from 3 to

6 GAs) must be distributed on a constant number of resources (6 TEs). However, as illustrated in Fig-

ures 5.26 and 5.28, for each job type considerable performance improvements are detected whenever

heuristics accounting for bandwidth control are adopted against those without bandwidth control. This

implies that a better allocation of the available resources, from a computational and a communication

point of view, considerably speeds up the overall job computation. Moreover, it emphasises the impor-

tance of accounting for network conditions in deciding towards which part of the network the load should

be distributed.

Secondly, as illustrated in Figures 5.27 and 5.29, it is possible to observe how the fine granularity

brought by the more sophisticated P-BATS heuristic does not practically outperform for each job type

the BATS one. In particular, in the case where 6 GAs are simultaneously load distributing tasks, it can be

observed that the additional overhead introduced by the more refined P-BATS heuristic leads the system

to consume more internal resources, spending more time for computation, thus leading to decisions based

on out-of-date information.

Thirdly, as illustrated in Figures 5.27A and 5.29A, observe that the performance gaps between the

cases with and without bandwidth control again reflect job patterns, each described within the aforemen-

tioned experiments. As expected, in the case with 6 GAs, the effect of performing considerable offloads

(while keeping constant the number of TEs) combined with the injected traffic leads to a condition of
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Figure 5.26: Effects of mixed job types on task completion time and task duration (3GAs).
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BA

Figure 5.27: Effects of mixed job types on job duration and task duration (3GAs).

Job Type F-value p-value

I/O-bound F(2,27)=10.420 p=0.0004427

CPU-bound F(2,27)=2.4102 p=0.1089

Balanced F(2,27)=3.6963 p=0.03812

Table 5.18: Anova analysis for job duration vary-
ing job types (Figure 5.29A).

Job Type F-value p-value

I/O-bound F(2,87)=1.9501 p=0.1484

CPU-bound F(2,87)=3.1981 p=0.04568

Balanced F(2,87)=0.542 p=0.5835

Table 5.19: Anova analysis for task duration
varying job types (Figure 5.29B).

generalised network saturation. Therefore, no real benefit is detected by applying any of the devised

heuristics.

The behaviours explained above are confirmed by the Anova results summarised in Tables 5.16

and 5.17 for the case with 3 GAs and in Tables 5.18 and 5.19 for the case with 6 GAs.

Finally, let us now review some of the assumptions presented in Section 1.4 with the aim of specu-

lating on system behaviour at the presence of constraint relaxation. If we did not assume constant radio

connectivity over the timescale of each individual task offload, the overall job duration might increase

due to the presence of retransmission mechanisms or the need to choose other nodes towards which to

distribute computation. In this case it might, however, be convenient to expand the presented algorithms

with additional control mechanisms so that, whenever nodes are moving sufficiently fast that radio con-

nections are likely to break before offloaded tasks reach completion, it might still be possible to exploit

multi-hop radio connectivity among them to disseminate the computed information without repeating

the offload procedure. If we adopted heterogeneous nodes, we might contain the need for communica-

tion since nodes might be able to perform all the necessary computations. However, some applications

are intrinsically distributed, therefore in such cases we do not expect gains in terms of task completion

time, job duration and task duration by introducing heterogeneous nodes. If we introduced task priori-

tisation, we might assist in the reduction of execution delay or locking for some tasks, since those that

are high priority might preempt their execution. Additional mechanisms would need to be introduced

to allow blocked tasks to be executed on different nodes whenever a sequence of high priority would
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A B

C D

E F

Figure 5.28: Effects of mixed job types on task completion time and task duration (6GAs).
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A B

Figure 5.29: Effects of mixed job types on job duration and task duration (6GAs).

progressively block their execution.

5.5 Summary of Results
We are now in a position to summarise the most interesting findings drawn from our empirical experi-

mental study, as follows:

• In heterogeneous experimental settings, exposed to diversified network traffic and job types dis-

tribution, considerable performance improvements are achieved whenever heuristic mechanisms,

combining TEs computational and local network information, are integrated and applied to the

load distribution algorithms. Hence experimental results show that computationally intensive ap-

plications, that must be collaboratively executed, achieve faster completion times (i.e. decreased

task completion time, job duration and task duration values), whenever informed decisions about

heterogeneous traffic contention levels are accounted for in deciding towards which TE nodes to

distribute load.

• As expected, task completion time, job duration and task duration decrease by increasing the num-

ber of the TEs, while keeping a constant GA number, and increase by increasing the number of

GAs, while keeping a constant TE number. Moreover, latencies generally increase by increas-

ing the number of I/O bursts required to be performed to allow remote task computation. In

particular, longer latencies can be observed for I/O-bound and balanced jobs. Latencies are, on

the other hand, shorter for CPU-bound jobs, since a limited amount of message exchanges is in-

volved during their computation. The same experimental pattern is reflected in the performance

gap between the two situations with and without bandwidth control. In fact, greater performance

improvements, resulting in pronounced gaps, are seen whenever either I/O-bound or balanced jobs

are distributed accounting for TEs local bandwidth information against the case in which traffic

details are disregarded. As one would expect, whenever I/O-bound or balanced jobs are required

to be collaboratively distributed in an environment affected by considerable network traffic, it be-
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comes crucial to make informed decision to equally balance the network load to achieve better

performance, hence avoiding further congestion in already contended areas.

• The simpler, less sophisticated, BATS heuristic outperforms, in most of the cases, the more so-

phisticated P-BATS. This might occur because, in dealing with more complex computations, the

latter heuristic might incur the risk of making decisions based on out-of-date information.

• The comparison between experimental results and a theoretically computed lower-bound shows

how the latter seems to significantly outperform the former. Such a gap is representative of the

considerable impact of radio communication interference, message collision and retransmission

mechanisms existing in the reality of network traffic not simulated within the computations of the

lower-bound. This behaviour is, in fact, mainly displayed whenever either I/O-bound or balanced

jobs must be distributed.

• Experimental results show that the simplicity and intrinsic robustness of the simpler Auction al-

gorithm leads to results outperforming the Lookup List algorithm for heterogeneous, as well as

homogeneous, scenarios. This behaviour might again be justified by the intrinsic capability of the

Auction algorithm to handle decisions based on more up-to-date network information. Experi-

mental evaluation confirms the trends in results already illustrated in Chapter 4.

5.6 Discussion
In this chapter, we performed an experimental analysis investigating the impact of environmental net-

work traffic contention in distributing heterogeneous applications types. In particular, we characterised

the set of heterogeneous applications according to both their computational and communication per-

spective, namely I/O-, CPU-bound and balanced job categories. We devised an algorithm computing a

theoretical lower-bound representing the view of an oracular system capable of taking, in each instant

of time, the best offload decisions. Moreover, we defined an additional P-BATS heuristic to measure the

impact of distributing heterogeneous kinds of applications within the environment and we compared it

against BATS and the theoretical lower-bound. We then tested the DWAG paradigm by distributing the

defined heterogeneous applications and applying the set of specified heuristics with actual computation,

actual profiling of the medium, and actual network traffic for a multiplicity of settings. Experimental

results showed: (i) the strong benefits brought by accounting for local network information in perform-

ing job collaborations, especially in distribution I/O-bound and balanced job types; (ii) whenever jobs

are mainly computational and require very little message exchange, it may be convenient, if possible,

to perform local computations in order to avoid incurring into distribution algorithms overhead; (iii) the

advantages brought by simpler heuristic (BATS) against more sophisticated ones (P-BATS).



Chapter 6

Localisation Case Study

In Chapters 4 and 5, we have undertaken an experimental analysis investigating the impact of accounting

for local network conditions on distributing computationally intensive applications through DWAG. We

have thus analysed the effects of applying a variety of heuristic mechanisms within the load distribution

protocols on both homogeneous and heterogeneous network traffic configurations and job profile char-

acterisations. The objective of this chapter is thus to apply our DWAG approach with BATS mechanism

to a real-world case study.

The remainder of this chapter is organised as follows: (i) in Section 6.1, we describe the motiva-

tion behind the selection of the localisation approach [Li and Kunz, 2009] as a case study for our work;

(ii) in Section 6.2, we present the rational behind the selected CCA-MAP localisation scheme; (iii) in

Section 6.3, we apply the DWAG paradigm with BATS scheme to the CCA-MAP localisation algo-

rithm, thus we match the algorithmic requirements over the DWAG actors and we describe the additional

algorithmic adaptations required to allow the CCA-MAP approach, evaluated exclusively through simu-

lations, to be deployed on real-world testbeds; and (iv) in Section 6.4, we measure the impact of network

conditions within the CCA-MAP localisation scheme and we summarise the experimental results.

6.1 Driving Motivation
In this chapter, we describe the application of DWAG with BATS mechanism to a case study, significant

for our scenario: that of node localisation.The Self-healing Autonomous Sensing Network (SASNet)

presents an advanced Wireless Sensor Network that aims to enhance the effectiveness of mission opera-

tion in the contemporary military environment, by providing relevant and accurate situational awareness

information. In order to achieve this objective, precise location information is required to be computed in

almost real-time in SASNet. We thus selected the existing localisation algorithm described within SAS-

Net and presented by Li et al. [Li and Kunz, 2009, Li, 2008, Li and Kunz, 2007a, Li and Kunz, 2007b]

and we adapted it by integrating the DWAG paradigm and BATS heuristic. Localisation as case study has

been chosen for several reasons. Firstly, we challenged our approach against a real-world problem re-

current within emergency scenarios. In fact, as described in Section 1.1, whenever an emergency occurs

within indoor environments in which GPS support cannot be assumed, it is crucial for external Command

& Control (C2) to monitor the position of first responders while they move and act. Secondly, recent
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research in the area of node localisation within military and tactical WSNs has promoted the adoption

of smart localisation algorithms able to perform fast computations in a distributed fashion directly in-

field on devices instead of relying on the presence of both centralised authorities and super-peer nodes

specifically elected to perform bulkier computations.

Li et al. [Li and Kunz, 2009]’s algorithm has been adopted as case study within the current disser-

tation for the following reasons: (i) it is inherently distributed, and thus supports parallel work; (ii) it

is challenging from both a computational and a communication point of view, hence it can benefit from

node collaborations; (iii) it is specifically envisioned for mission-critical operational network scenarios

(i.e. it is time sensitive, since out-of-date location information is of limited use within tactical WSNs);

(iv) it is flexible and robust, without requiring additional hardware (i.e. directional antennas) or assuming

that sensor nodes already have an estimate of each other locations; and (v) it represents a recent research

perspective demonstrating that cooperative localisation schemes can often produce accurate results using

a very small number of anchor nodes or even no anchor nodes.

Moreover, the work presented in this chapter is the result of a collaboration between University

College London, UK and the Communications Research Centre, Canada. The aim of such collabo-

ration has been twofold: (i) the practical development on real hardware and testbeds of a theoretical

approach so far exclusively evaluated through Matlab simulations; (ii) the adoption and integration of

our DWAG paradigm distributing load through an Auction algorithm enriched with BATS strategy within

the existing localisation approach in order to manage distribution. In fact, while simulations represent a

straightforward way to evaluate and compare theoretical approaches because of their extreme flexibility,

modularity, scalability and adaptability, they make many simplifying assumptions, especially regarding

radio communication behaviours, which are instead crucial whenever distribution plays a role in sup-

porting application execution.

6.2 SASNet Localisation Algorithm Overview
We now provide an overview of the localisation algorithm presented in SASNet and devised by Li et

al. [Li and Kunz, 2009].

In their work, the authors propose a cooperative node localisation scheme applying a non-linear data

mapping (NLM) technique, the Curvilinear Component Analysis (CCA) described in Section 6.2.1, to

produce accurate node position estimates for tactical WSNs. In particular, the CCA is a technique from

neural networks adopted by [Li and Kunz, 2009] to exploit the learning ability of nodes to self-organise

into maps of coordinates. The computed maps are then disseminated through a distributed CCA-MAP

algorithm, detailed in Section 6.2.3, capable of deriving node locations in either range-based or range-

free scenarios. The advantages of this localisation algorithm are related to the fact that it requires only a

minimum number of anchor nodes to convert relative position maps into absolute location values.

In their work, the authors compare the validity of their approach against another leading coopera-

tive node localisation algorithm, namely MDS-MAP, which employs Multi-Dimensional Scaling (MDS)

techniques to achieve node localisation. From this comparison, they demonstrate that the CCA-MAP ap-

proach significantly improves position estimate accuracy in many of the scenarios they simulate. How-



6.2. SASNet Localisation Algorithm Overview 121

ever, in the following evaluation we are not interested in measuring the localisation accuracy in terms

of generated location maps. Instead, we tackle Li et al. [Li and Kunz, 2009]’s approach with the aim of

understanding its behaviour, of adapting it to be practically implemented on deployed testbeds, of inves-

tigating communication issues arising from implementing a distributed approach exclusively evaluated

through simulations, in reality and of measuring the benefits brought from the application of our BATS

mechanism in handling DWAG distributions.

6.2.1 Curvilinear Component Analysis

We begin with a high level description of the grounding principles underlying the CCA-MAP localisation

approach. In their work [Li and Kunz, 2009], Li et al. adopt a non-linear mapping method, named Curvi-

linear Component Analysis (CCA) [Demartines and Herault, 1997], to allow each node in the system to

compute the map of its neighbouring nodes, as follows.

GivenN input vectors {xi, i = 1, ..., N}where each vector xi is of n input dimensions (e.g. ranges

between all nodes), CCA looks for N output vectors {yi, i = 1, ..., N} where each yi is of s dimensions

(s < n) (e.g. absolute position in 2 or 3D space). The relative distance between input vector xi and

xj is preserved between yi and yj . That is, given the distance between xi’s as Xij = d(xi, xj) and

the corresponding distance in the output space Yij = d(yi, yj), CCA pushes Yij to match Xij for each

possible pair (i, j) while minimising the cost function in Equation 6.1.

E = 1
2

∑
i

∑
j 6=i

(Xij − Yij)2F (Yij , λy) (6.1)

F (Yij , λy) in Equation 6.1 represents a weighing function often chosen as a bounded and mono-

tonically decreasing function to favour local topology conservation as in Self-Organising Maps (SOM).

Decreasing exponential, sigmoid, or Lorentz functions are all suitable choices for such function F .

The computing efficiency of CCA emerges in the minimisation process of the cost function in Equa-

tion 6.1. In fact, compared to other methods such as the stochastic gradient descent or the steepest gradi-

ent descent where one vector yi is moved every time according to the sum of every other yj’s influence,

CCA temporarily pins one yi and moves all the other yj around, without regard to interactions amongst

the yj . The update for each cycle is then defined in the way described in function in Equation 6.2.

∆yj = α(t)F (Yij , λy)(Xij − Yij) (yj−yi)
Yij

∀j 6= i (6.2)

The parameter α(t) in Equation 6.2 decreases with time, as usual for stochastic gradient methods.

This rule for update in each cycle is much simpler than stochastic gradient as only the distances from

node i to the others need to be computed, instead of all the N(N−1)
2 distances in both the input and output

spaces. For an adaptation cycle of all nodes (except i), the complexity is O(N) instead of O(N2). This

not only converges the computation much faster, but also makes it more likely to eventually escape from

local minima of E [Demartines and Herault, 1997] in Equation 6.1.
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6.2.2 CCA Algorithm

The CCA technique is thus applied in Algorithm 6 to allow each node in the system to compute a local

map of node coordinates in its own reference system containing both its coordinates and those of its

neighbours. Therefore, given the main CCA principles and using distance constraints, the localisation

problem can be stated as follows.

Given a distance matrix DN×N of N nodes, find the coordinates of all the points to minimise the

function in Equation 6.3.

min
∑
ij

(dij − pij)2i, j = 1, ..., N (6.3)

In particular, dij and pij values in Equation 6.3 are described as follows:

• dij is the either measured or known distance between node i and j;

• pij is the distance between node i and j computed using the calculated coordinates of i and j.

If dij is taken as the distance matrix of the input data set and pij the distance matrix of the output

data set, CCA then pushes Equation 6.3 to a minimum as it minimises the cost function in Equation 6.1.

Being the distance matrix DN×N = (dij)N×N the only known data of these N nodes, it is used as

both the input data set (i.e. xN×N = DN×N ) and the inter-vector distance matrix of the input data set

(i. e. Xij = DN×N ). Even though DN×N is not the real distance between vectors (i.e. the row vectors)

in DN×N , the CCA algorithm projects data points quite well given a defined distance matrix without

requiring that it is the real Euclidean distance between the input data vectors.

The CCA data reduction preserves the distances between every two data points in the input data

space while generating the output data set (with each data point having a reduced dimension). Thus,

taking the distance matrix DN×N of N nodes as the input data set (i.e. xN×N = DN×N ), each vector in

the input space is of N dimensions. CCA reduction is applied so that the output data set contains the N

vectors each reduced to a dimension of 2, or 3, according to a 2D, or 3D, dimensional space reduction,

respectively. The authors focus on a 2D space within their discussions. Unlike methods such as iterative

trilateration, cooperative algorithms using NLM often incur very little extra cost computing positions

in 3D space compared with that in 2D. This property makes the NLM based cooperative algorithm

advantageous for real network deployments. The output data set is denoted as yNx2 which represents in

fact the 2D coordinate matrix of the N nodes. The inter-vector distance in the input data space is thus

forced to be Xij = DN×N to push the inter-point distance in the output data space to Yij = DN×N , even

though DN×N is not the real distance between vectors in the input data set xN×N .

The CCA procedure consists of the steps described in the Algorithm 6.

The authors select F (Yij , λ) = e
Yij
λ(t) . Both λ(t) and α(t) decrease with time within each computing

cycle c. In particular, the function in Equation 6.5 was adopted within the simulations to implement λ(t)

and α(t) (i.e. λ(t) = ν and α(t) = ν), though other similar functions can be selected instead. Thus, c is

the number of total computing cycles, also called the CCA training length.
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Algorithm 6: CCA Algorithm

/* Initial setup of output yNx2: */
foreach (node) do1

compute the mean values of the first two columns of the input data set xN×N ;2

adjust these values by a uniformly randomised standard deviation of the same column;3

set yNx2 with the computed initial output estimation values;4

end5

/* Mapping Node Coordinates through CCA: */
for (c computing cycles) do6

repeat7

randomly select node i;8

foreach (node j (j 6= i)) do9

compute the new yj(t+ 1) from the current value of yj(t) through Equation 6.4;10

11

yj(t+ 1) = yj(t) + α(t)e
−Yij
λ(t) (XijYij

− 1)(yj − yi) (6.4)

end12

until (all nodes have been selected) ;13

end14

ν(t) = ν(0)×
(
ν(c)
ν(0)

) t
c−1 (6.5)

The number of training cycles c required is related to the size of the input data set and also the

accuracy of the distance matrix. The bigger the input data set (i.e. the larger N ), the fewer the cycles

are required in projecting the final output data. A more accurate distance matrix would also result in

fewer cycles, as the cost function in Equation 6.1 will decrease much faster towards the minimum. A

maximum number may be assigned to the total cycles allowed in the algorithm. During the execution,

if the cost function E < ε before reaching the maximum number of cycles, the algorithm exits and the

projected data form the final output data set.

Though the above description applies CCA to the task of determining node locations, the distance

matrix used as the input for the algorithm is often not available for large networks. Recently, Drineas

et al. [Drineas et al., 2006] proposed algorithms for distance matrix reconstruction for sensor network

localisation using single value decomposition. This may provide an option to obtain the distance matrix

for the network. However, in their work the authors assume that the distance matrix of the network is

unknown. Instead, a distributed map algorithm [Demartines and Herault, 1997] is adapted in the scheme

to compute the node coordinates in the network.

After performing Algorithm 6, each node has therefore a local map containing both its coordinates

and those of its neighbours in its own reference system.

6.2.3 CCA-MAP Algorithm

Adopting steps similar to the distributed map MDS-MAP algorithm [Shang et al., 2003], the authors

propose in their work [Li and Kunz, 2009] an alternative distributed CCA-MAP algorithm. In particular,

the CCA-MAP scheme similarly to MDS-MAP builds local maps for each node in the network and then

merges them together to form a global map. Unlike MDS-MAP, CCA is employed in computing the
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node coordinates in the local maps.

Once each node has computed a local map of node locations, for itself and its neighbours in its

own reference system through the CCA algorithm by using the local information only, such maps are

collaboratively patched together in order to form a global map. CCA-MAP performs this role.

If an accurate ranging capability is available in the network, the local distance between each pair of

neighbouring nodes is measured and known. Otherwise, connectivity information is used to assign value

1 to the edge between each neighbouring pair of nodes. From this, a distance matrix for all the nodes

in the Rlm (e.g. R = 2) hop neighbourhood of node x can be constructed using the shortest distance

matrix as an approximation. Instead of a fixed Rlm = 2, as that used in MDS-MAP [Shang et al., 2003],

Rlm can be adjusted in CCA-MAP. The CCA reduction technique can generate accurate results with

a reasonably accurate distance matrix of a small size, for example, a distance matrix of 12 or bigger.

Therefore, in the range-based scenarios where the local distance measurements are known with a certain

level of accuracy, the one hop neighbourhood distance matrix of a certain size (e.g. size > 12×12)

not only is more accurate than the two hop distance matrix of approximation, but can also be computed

faster using CCA to produce more accurate position estimates. In the range-free options, a bigger size

of the distance matrix assists better in determining the node position coordinates using CCA. Thus in

the range-based option of the algorithm, for any given node, if its one hop neighbourhood has more than

12 nodes, Rlm = 1 may be chosen for improved performance. Otherwise, Rlm = 2 is applied. In the

range-free computations of the local map where the local distance matrix is particularly inaccurate using

the hop count approximation, often Rlm = 1 is only taken when the one hop neighbourhood expands to

a much larger size of 30 or 40.

Algorithm 7: CCA-MAP Algorithm

foreach (node) do1

build the local map by filling the connectivity matrix including neighbouring nodes within2

Rlm hops;
compute the shortest distance matrix of the local map and take it as the approximate3

distance matrix LD;
apply the CCA procedure to generate the local map (Algorithm 6);4

patch local maps of different nodes to generate a global map of locations (Algorithm 8);5

transform the patched global map into an absolute map based on the absolute location of a6

sufficient number of anchor nodes;
end7

As described in Algorithm 7, each node first fills the connectivity matrix including neighbouring

nodes withinRlm hops. Then, it computes the shortest distance matrix and it applies the CCA procedure

(Algorithm 6) to generate a local map containing its coordinates and its neighbours coordinates in its own

reference system. Once each node has computed its own local map, such maps need to be progressively

patched together through an iterative procedure.

The computation of a global map of node locations is performed as described in Algorithm 8. As

illustrated in Figure 6.1, initially a node N is randomly selected and its local map is chosen as starting

current mapNLocalMap. Then,N selects from among its neighbouring nodes that (e.g. M ) sharing most
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Algorithm 8: Patch Algorithm

foreach (randomly selected starting node N ) do1

select N ’s local map as the starting current map (NLocalMap);2

select N ’s neighbouring node M sharing most neighbours with N ;3

request MLocalMap;4

sort NLocalMap and MLocalMap to match coordinates of common neighbouring nodes;5

compute SVD transformation matrices using coordinates of common neighbouring nodes;6

apply generated SVD matrices to patch MLocalMap into NLocalMap’s own reference system;7

end8

neighbours with it. N requests M ’s local map (i.e. MLocalMap) and it sorts its own map NLocalMap and

M ’s map MLocalMap in order to match coordinates of common neighbouring nodes. N then performs

a linear transformation using the coordinates of the nodes common to both maps. The output of such

transformation is finally adopted to patch MLocalMap’s coordinates into NLocalMap’s coordinates in

N ’s own reference system, thus generating a global map. The procedure is iterated until each node has

computed a global map in its own reference system. Each global map is then converted into an absolute

map of locations whenever a sufficient number of anchor nodes is deployed in the system (i.e. ≥ 3 for

2D space and ≥ 4 for 3D).

Singular Value Decomposition (SVD) has been selected as transformation procedure. Thus,

to merge MLocalMap into NLocalMap, a linear transformation involving translation, reflection, or-

thogonal rotation, and scaling, is applied to ensure that the coordinates of the nodes common to

NLocalMap and MLocalMap best match each other [Shang and Ruml, 2004, Shang et al., 2004]. Thus,

given the coordinates of common nodes in maps NLocalMap and MLocalMap as matrices XNLocalMap

and XMLocalMap
, the linear transformation T (.) delivers the minimum sum of the squared errors (i.e.

minT ||T (XMLocalMap
) − XNLocalMap ||2) to merge map MLocalMap into NLocalMap. Once the SVD

is computed, three transformation matrices are obtained and used to patch a global map in N ’s refer-

ence system. In particular, the coordinates of the nodes exclusively belonging to NLocalMap remain

unchanged. Those belonging solely to MLocalMap are transformed according to the computed SVD

transformation matrices. Finally, for the coordinates common to both node maps, the mean between

the original values and the transformed ones is computed. In [Li and Kunz, 2009], the authors state that

any node can be potentially selected to perform the merge, though practically, certain nodes in the net-

work that have more computing power or that need to know positions of other nodes can be selected to

construct the global map.

In the CCA-MAP scheme, unlike the MDS-MAP algorithm, no refinement procedure is applied,

since the results are often satisfactory without further optimisation. The computing of the local map can

be distributed at each local node, or can be carried out at more powerful gateway nodes of each cluster

should the sensor network have a hierarchical structure to relieve the severely resource-limited sensor

nodes from any of the computing and communication demands imposed by localisation. Moreover, the

local maps can be merged in parallel in different parts of the network by selected nodes. There is no need

for anchor nodes in merging the maps. When at least three anchor nodes are found in the merged map of
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Figure 6.1: CCA-MAP localisation algorithm global map patching procedure.
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a subnetwork, an absolute map of the subnetwork can be computed using the coordinates of the anchor

nodes to obtain the absolute coordinate values of all the nodes in the map of the subnetwork. Alterna-

tively, the CCA-MAP algorithm can be performed in a completely distributed way all over network and

node locations can thus be collaboratively computed by distributing cumbersome computations to spe-

cific nodes in the network. Hence the CCA-MAP localisation algorithm represents a case study suitable

for testing our DWAG paradigm while investigating the impact of network contention and bandwidth

occupancy while performing distributed and collaborative computations.

6.3 DWAG/BATS and CCA-MAP Integration
In Section 6.2, we described the logic behind the CCA-MAP localisation algorithm proposed by Li et

al. [Li and Kunz, 2009]. Although in their experimental evaluation the authors emphasise the inherently

distributed nature of the CCA-MAP proposed algorithm, they exclusively evaluate it in a centralised way

through simulations, without tackling the concrete issues related to distribution within deployed systems.

In this section, we are now ready to describe the application of the DWAG paradigm to the CCA-

MAP algorithm. In particular, in Section 6.3.1 we identify the main tasks into which the CCA-MAP job

can be split. Further, we match the localisation tasks to the DWAG paradigm actors, GAs and TEs.

In Section 6.3.2, we describe the practical adaptations brought to the original CCA-MAP localisa-

tion scheme to allow its fully distributed execution through DWAG. We then list the set of computational

and communication issues that must be tackled in moving from simulation to experimental deployments.

6.3.1 Localisation Tasks Identification

We are now in a position to identify the main tasks Taski,j into which we split the localisation Jobi

to allow for the application of the DWAG paradigm. Moreover, we match the localisation algorithm

requirements and tasks over the DWAG actors, GAs and TEs, as follows:

- GAs drive the main execution flow of the localisation Jobi by performing the following Taski,j :

• Task1 (t1): the GA broadcasts a message to discover its neighbours and to collect from them

their adjacency matrices. This phase was absent from the original algorithm implementation

presented in [Li and Kunz, 2009] because of the centralised way in which it was simulated.

In fact, this is the preliminary discovery phase undertaken within the DWAG paradigm to

allow the GA for neighbourhood discovery (Section 4.2).

Deliverable: the GA establishes its own neighbourhood.

• Task2 (t2): the GA computes its own local map by applying the CCA procedure (Algo-

rithm 6). In addition, the GA chooses among its neighbours (those stored in its adjacency

matrix) the one that shares the greatest number of neighbours with itself, requests and obtains

its local map.

Deliverable: the GA has two local maps to be patched together.

• Task4 (t4): the GA patches the two local maps into a global map in its own reference system

by merging neighbouring node local map with its own local one. This is done by adopting
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the SVD transformation matrices computed and received back from the elected TE node.

Deliverable: the GA outputs a global map containing its own and its neighbours computed

locations.

- The TEs are asked to perform the SVD computation and thus the following Taski,j is identified:

• Task3 (t3): the TE is selected by the GA for the computation of the SVD transformation

matrices. The TE is thus elected to receive two maps from the GA (i.e. two partial local maps

containing coordinates of common nodes within the original local maps) and to perform the

SVD transformation on them.

Deliverable: the TE outputs three transformation matrices that are then delivered back to GA

to allow it for global map computation.
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Figure 6.2: Tasks identification within the CCA-MAP localisation algorithm.

Let us now describe the mapping between the CCA-MAP localisation algorithm and DWAG

through the example illustrated in Figure 6.2. Firstly, each GA broadcasts a message to discover its
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neighbourhood and to collect from its neighbours their adjacency matrices (Task1 in Figure 6.2(a)). At

the end of this phase, each GA is aware of its own neighbourhood (Figure 6.2(b)). Secondly, each GA

computes its own local map by applying the CCA procedure (Algorithm 6). Moreover, each GA chooses

among its neighbours (those stored in its adjacency matrix) the one that shares the greatest number of

neighbours with itself, requests and obtains its local map (Task2 in Figure 6.2(c)). For example, let us

follow GA1’s behaviour and let us assume that GA4 is GA1’s neighbour and also the node that shares the

greatest number of neighbours with GA1. Having computed its own local map GA1LocalMap , GA1 asks

for GA4LocalMap . GA1 is now in possess of two local maps that must be patched together. However,

since the patching phase involves a computationally intensive SVD transformation to be executed, GA1

takes advantage of the DWAG paradigm and creates an ad-hoc grid with local auxiliary TE nodes in or-

der to distribute tasks to carry the burden of heavy computation (Task3 in Figure 6.2(d)). Hence TE3 is

selected by GA1 for the computation of the SVD transformation matrices. TE3 is thus elected to receive

two maps from GA1: two partial maps containing coordinates of nodes common to GA1LocalMap and

GA4LocalMap . Therefore, TE3 outputs a set of transformation matrices that will be sent back and used

by GA1 to perform the final GA1LocalMap and GA4LocalMap patch into a unique GA1GlobalMap (Task3

in Figure 6.2(e)). The procedure is iteratively repeated by every GA (Figure 6.2(f)), until each of them

builds a global map of the system nodes in its own reference system (Figure 6.2(g)). Relative maps are

converted into absolute maps in the presence of anchor nodes. We do not deal with anchor nodes within

our work, and thus we aim only at building a global relative patched map.

6.3.2 Moving from Theory to Practice

We now describe the main practical adaptations brought to the original CCA-MAP localisation scheme

to allow its fully distributed execution through DWAG collaborations.

Firstly, note that all the original simulations [Li and Kunz, 2009] carried on for the CCA-MAP

evaluation were run in a centralised way using Matlab V7.2 on a 1.60GHz Pentium M processor

with 1GB RAM. In this work, we implement the complete CCA-MAP localisation scheme in a

fully distributed manner, exploiting DWAG collaborations as described in Section 6.3.1, on TMote

Sky [TELOSB, 2010, Sentilla, 2010] devices, each of which has a MSP430 8MHz 16-bit micro-

controller, a ChipCon CC24202 radio module supporting IEEE 802.15.4 (with 250kbps as maximum

raw bandwidth), 10kB RAM and 48kB Flash ROM. We thus used devices that are O(200) (i.e. 1600
8 )

times slower and 100,000 (i.e. 1,000,000
10 ) times less capable than a common computer.

Effect of constrained memory resources: One of the first problems, met by developing the CCA-

MAP algorithm on a real testbed, was a memory problem. When working with simulators running on

standard processors (e.g. Pentium), floating point libraries do not usually represent an issue since the

hardware processor already supports them. On the other hand, the same assumptions might not hold for

resource-scarce micro-controllers that might thus not support them by default. However, since floating

points are used within localisation algorithms to test location accuracy, we nevertheless implemented an

external library emulating floating point computation, with the side effect of occupying precious memory

resources at run-time. This is illustrative of the observation that no matter how much computational
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power the actual technology squeezes inside an incredibly constrained form factor, a tradeoff between

limited size and computational capability will always represent an issue, since small devices (e.g. ideally

the size of a dust particle) will never be able to individually perform all the computations required to

handle the whole application complexity.

Algorithm 9: Neighbourhood Discovery Algorithm

/* GAList = {{ID1; ID1List}, . . . , {IDN ; IDNList}} contains GA’s neighbours
IDi and the list of their neighbours IDiList. */

/* GA Neighbourhood Discovery: */
broadcast a neighbourhood discovery request;1

repeat2

if (IDi ∈ GAList) then3

if (IDiL 6= IDiList ) then4

update IDiList with IDiL ;5

broadcast GAList update;6

end7

end8

else if (IDi /∈ GAList) then9

insert {IDi; IDiL} in GAList;10

broadcast GAList update;11

end12

until (receiving reply {IDi; IDiL}) ;13

if (receiving neighbourhood discovery request from other GAs) then14

send reply with updated {GAID;GAList};15

end16

Let us now describe task Task1’s behaviour. In fact, in order to allow a practical deployment of

the simulated [Li and Kunz, 2009] CCA-MAP scheme, we introduced Task1, and thus the initial neigh-

bourhood discovery phase, to the localisation algorithm. While in a simulated approach it is always

possible to assume the presence of an adjacency matrix that is as large as required filled with either 0/1

node connectivity information (i.e. range-free scenario) or local distances (i.e. range-based scenario),

such starting point values are not available by default and must be fetched through active node collab-

oration. Hence a neighbourhood discovery algorithm (i.e. Task1) has been added to the GA’s side in

the original CCA-MAP algorithm. Details are presented in Algorithm 9. Initially, each GA broadcasts

a neighbourhood discovery request to (i) assert the GA peers’ IDi within its communication range, and

(ii) obtain their adjacency matrices IDiL . This action is simple whenever a single GA alone is required

to discover its own neighbours, since it broadcasts a request and waits for neighbours replies. How-

ever, the action becomes more challenging when multiple GAs simultaneously boot and suddenly start

broadcasting messages. Consequently, we adopted random Contiki OS timers to desynchronise mes-

sage emission and thus to limit possible message collisions. Secondly, we introduced the mechanism

presented in Algorithm 9. Whenever GA receives a broadcast reply from a node IDi which does not

belong yet to its own adjacency matrix GAList (i.e. IDi ∈ GAList), or whose adjacency matrix IDiL

does not match the previously received one IDiList (i.e. IDiL 6= IDiList ), the GA initiates a further

broadcast, so that for each node added later to the group a broadcasting wave is triggered in its immediate

proximity. In this way, GAs are constantly updated with both their neighbours and their neighbours’s
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adjacency matrices. This phase may look expensive in terms of communication, but the traffic peak is

only reached when nodes are initially inserted into the system. Therefore, this procedure (i.e. Task1) is

performed only as an offline bootstrap procedure, not to be iterated during the execution of CCA-MAP.

Finally, notice that during Task1 GA can be required either to actively discover its own neighbourhood

or to passively provide its own details GAList to GAs interested in building their own adjacency matrix,

respectively.

Once the neighbourhood discovery phase is completed, each GA thus has a list (i.e. GAList) filled

with its own neighbours (i.e. IDi) and, for each of them, their adjacency matrices (i.e. IDiL ). From a

practical perspective, we stored within GAList not only the adjacency information but also the Received

Signal Strength Indication (RSSI) value that each node has with respect to its neighbours. This has

been done to test the computational part of the CCA-MAP scheme, thus the computation of the distance

matrix in Task2, using values different from those adopted within a pure range-free adjacency matrix

(i.e. based on node connectivity information only). However, it is crucial to recall that within this

dissertation we are not primarily interested in evaluating the accuracy of localisation results, thus we

made the aforementioned choice to better test nodes’ computational capabilities.

Another issue emerging from the real deployment of the CCA-MAP scheme is the SVD linear trans-

formation (i.e. Task3). While in a simulated environment SVD is relatively trivial, such computation

represents a demanding assignment whenever it must be executed on resource-constrained devices. In

particular, to cope with the scarcity of memory resources and with demanding computation, we distribute

Task3 to the auxiliary TE nodes deployed in the system.

Effect of radio communication: As detailed in Section 2.2.2, besides computational issues,

the strongest assumptions implicit in approaches exclusively evaluated within simulation environments

mainly regard radio communication.

In their work [Li and Kunz, 2009], Li et al. assume perfect communication. In fact, they attempt

to determine the efficiency of a distributed algorithm designed for a very practical tactical military-

based scenario by ignoring the impact of the communication generated by the algorithm itself. However,

especially in emergency situations, we can neither assume the presence of an ideal, congestion free,

environment nor can we discard the impact of such communication overhead on the performance of the

algorithm.

While performing our experiments, we experienced the same radio communication issues discussed

in Section 2.2.2, e.g. different kind of interference and message collisions generated both at physical and

MAC layers. Therefore, to cope with message collisions and consequent retransmissions, additional

control code was implemented to check the integrity of the exchanged localisation maps and matrices.

Such extra code adds itself to the actual computational load of the implemented algorithms. This high-

lights how communication indirectly affects computation and how difficult it is to provide a complete

performance evaluation exclusively within simulators.
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6.4 CCA-MAP Evaluation with DWAG/BATS
We now detail the set of experiments undertaken within deployed systems to measure the impacts of

traffic network congestion on system performance while performing collaborative computation.

Experimental data was gathered from experiments performed within the UCL-CS HEN testbed,

whose details were provided in Section 4.6.2. Moreover, experiments were performed according to the

assumptions listed in Section 1.4. Section 6.4.1 presents the experimental setup, while Section 6.4.2

describes the obtained results.

6.4.1 Experimental Setup

We now detail the experimental setup adopted for the evaluation of the localisation case study.

In our tests, we used different topological sets of 15 nodes belonging to the UCL-CS HEN testbed,

because this is usually the number either of first responders taking part in a single search and rescue op-

eration, or of soldiers collaborating with each other within a unit of Military Operation on Urban Terrain

(MOUT) [Desch, 2001]. Furthermore, the results obtained could easily be scaled to bigger networks

with a similar degree of connectivity, since the locally generated traffic would be the same. In partic-

ular, for each test we selected uniformly distributed network topologies of up to 10 GAs, 4 TEs and 1

interferer node Str injecting background traffic.

The interferer node Str emulates the presence within the environment of diversified computing

tasks and communications that are potentially carried out in parallel within the WSN while the highly-

demanding localisation computation is performed. This was done both to mimic a realistic and hetero-

geneous background level of communication, and to inject further real network traffic into the system,

in order to study the effects of high network congestion while allowing experimental repeatability.

We set the radio transmission power of Str to the second lowest possible level (i.e. -28 dBm

in [Instruments, 2006]) to congest only part of the overall area, reproducing a situation like that described

in Section 4.6.1. Thus, Str is located within the radio range of only a subset of TE nodes. However, this

value represents an approximation since, because of the vagaries of the radio medium, nodes belonging

to the uncongested part of the area might also suffer from slight interference. As for the experiments

described in Sections 4.6 and 5.4, Str was configured so that bursts of 3 bytes were injected at regular

intervals after each time a trivial computation was executed.

Again, we programmed TMote Sky devices by setting the Radio Frequency (RF) ZigBee channel to

26 in order to minimise the radio interferences between IEEE 802.15.4 ZigBee and IEEE 802.11b WiFi.

In the experiments, we used actual computation and actual network traffic. Three communication

phases are included in our experiments during task distribution: (i) offload of the data (but not code)

associated with tasks from the GA to the TE; (ii) in-progress communication exchanges between the

GAs and the TEs needed to progress task execution; (iii) upload of results from the TE to the GA.

The CCA-MAP localisation scheme has been implemented over the testbed using DWAG mappings, as

described in Section 6.3.1. Thus, the GAs drive the main execution flow of the localisation case study

Jobi that has been split into a set of tasks Taski,j (i.e. {t1, . . . , t4}). In particular, some of the tasks are

directly executed on GAs (i.e. {t1,t2,t4}), while the execution of the most computationally intensive is
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distributed to the auxiliary TEs (i.e. {t3}) through DWAG.

Job duration is used as performance metric in the experiments since timeliness of information is

vital in tactical scenarios. Moreover, latency captures the effects that tasks from one node have on the

execution patterns of others. One may argue that battery life is an important metric. However, in the

tactical scenario, battery lifetime is much less of an issue than the timeliness of information. In fact,

information from sensors will be most useful within the first few tens of minutes of an incident. In

the experiments, sensors were able to run the algorithms while battery powered for more than 48 hours

between charges, thus fulfilling the battery requirements of our scenario. Since within the case study

only one kind of task (i.e. {t3}) is distributed in the system, within the experiments we adopt the metric

job duration since such metric measures the overall time spent by each GA to compute its own global

map. Task t1 is used by GAs to discover their own neighbourhood, a process which is also required by

functions such as routing, sensor health monitoring, etc. already occurring within a WSN. The adjacency

matrices gathered through t1 could thus be obtained by simply piggybacking the messages employed

by other functions performed in the system such as routing or health monitoring. Thus, we did not

include the time budget t1 in our measurements. In a fully connected network, each GA computes a

global map by performing sequences of {t2, t4}, delegating the execution of {t3} to the TEs, until its

global map contains the locations of all nodes belonging to the network. Notice that this procedure is

carried out in parallel by all GAs in the network. Each sample measurement was obtained as the latency

of all GAs in the WSN to complete their global map computation, averaged over approximatively 20

runs of the experiment. Although we did not intend to evaluate nor improve the accuracy of the CCA-

MAP algorithm, we adopted the same set of input values (e.g. adjacency matrices, local map sizes) as

those used in the previous simulations [Li and Kunz, 2009] and verified that sensors were indeed able to

compute the positions with equal accuracy as reported by the simulator.

The case study evaluation was carried out by using the Auction algorithm (to distribute load through

DWAG collaborations) with the BATS scheduling (to account for timely network conditions). The choice

was made as result of the evaluations performed in Chapters 4 and 5. Moreover, compared to other

heuristics, BATS is the simplest and the most robust in handling bandwidth changes. In the experiments,

weightCPU 6= 0 andweightBand 6= 0 are used for BATS with bandwidth control, whilstweightCPU 6=

0 and weightBand = 0 are used for BATS without bandwidth control. Moreover, the values of the

weights have been set to weightCPU = 16 and weightBand = 1, as for the experiments in Chapter 4.

Moreover, recall that for each experiment we report a statistical analysis conducted by applying

One-Way Anova with Replication [Field and Hole, 2008] to the experimental values. The null hypothesis

to be rejected each time is that the averages of all measured experimental sets are the same. Experimental

results are determined to have a statistical impact when p < .05.

Let us finally specify that in the experimental results presented in Section 6.4.2 the job duration is

averaged on the number of GAs involved.
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A

B

Figure 6.3: Effects of varying TE on job duration in network with 6 GAs with RF=-22 dBm (A) and 0
dBm (B).

Number TEs F-value p-value

1 TE F(1,58)=4.8413 p=0.0318

2 TEs F(1,58)=269.26 p=2.2e-16

3 TEs F(1,58)=746.42 p=2.2e-16

4 TEs F(1,58)=747.8 p=2.2e-16

Table 6.1: Anova analysis for job duration vary-
ing TE with RF=-22 dBm (Figure 6.3A).

Number TEs F-value p-value

1 TE F(1,58)=2.154 p=0.1476

2 TEs F(1,58)=148.70 p=2.2e-16

3 TEs F(1,58)=655.83 p=2.2e-16

4 TEs F(1,58)=582.13 p=2.2e-16

Table 6.2: Anova analysis for job duration vary-
ing TE with RF=0 dBm (Figure 6.3B).
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A

B

Figure 6.4: Effects of varying TE on job duration in network with 10 GAs with RF=-22 dBm (A) and 0
dBm (B).

Number TEs F-value p-value

1 TE F(1,58)=2.503 p=0.1191

2 TEs F(1,58)=16.117 p=0.0002

3 TEs F(1,58)=86.857 p=3.953e-13

4 TEs F(1,58)=114.64 p=2.324e-15

Table 6.3: Anova analysis for job duration vary-
ing TE with RF=-22 dBm (Figure 6.4A).

Number TEs F-value p-value

1 TE F(1,58)=2.9467 p=0.0914

2 TEs F(1,58)=61.232 p=1.204e-10

3 TEs F(1,58)=261.83 p=2.2e-16

4 TEs F(1,58)=379.43 p=2.2e-16

Table 6.4: Anova analysis for job duration vary-
ing TE with RF=0 dBm (Figure 6.4B).
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6.4.2 Experimental Results

We are now in a position to describe the setting for each of the experiments and to reason about the

collected results.

We conducted four sets of experiments, varying both the number and the radio transmission power

of the GAs nodes. In particular, we used 6 GAs for the experiments illustrated in Figure 6.3 and 10 GAs

for those in Figure 6.4. We set the radio transmission power of nodes to -22 dBm (the fourth lowest

RF value in [Instruments, 2006]) and 0 dBm (the maximum RF value in [Instruments, 2006]) for the

experiments in Figures 6.3-6.4A and Figures 6.3-6.4B, respectively. This latter parameter was varied

to investigate the effects of generating both a loosely and a fully connected network: while with RF

power -22 dBm not all nodes are in range of each other, with 0 dBm all nodes are in range. Thus, the

variation of the radio transmission power affects both the size of the exchanged maps and consequently

the number of radio transmissions to which every node is exposed. The radio transmission power of the

TEs is set to 0 dBm, as for all the experiments conducted in Chapters 4 and 5.

Figure 6.3 and Figure 6.4 illustrate the measurements gathered. In particular, as stated in Sec-

tion 6.4.1, we apply the Auction algorithm to distribute the load within the system and we integrate it

with the BATS scheme. Hence we compare results achieved by exclusively accounting for computa-

tional capabilities of the auxiliary TE nodes, with those obtained by combining computation with local

network conditions of the TEs responsible to handle collaborative job execution.

Effect of varying the number of the GAs: The aim of this experiment is to study the effect on

the job duration brought by varying the number of GAs simultaneously required to perform CCA-MAP

computations. We thus examine the job duration spent by the GAs to compute the global map of the

GAs locations.

As illustrated in Figures 6.3 and 6.4, the job duration increases as follows: (i) when more GAs

are involved in the CCA-MAP localisation process, because of the increased size of the local maps

and the computed global map; and (ii) when the radio range grows bigger, because of the increased

local map size and the increased radio interference. The overall latency in networks of 6 GAs with

radio transmission power set to -22 dBm (Figure 6.3A) is, as a consequence, substantially lower than in

networks of 10 GAs communicating with full radio power 0 dBm (Figure 6.4B). However, this behaviour

does not imply that decreasing the radio transmission power of nodes is the best solution. In fact, as

detailed in [Li and Kunz, 2009], a bigger map or a greater degree of connectivity (e.g. resulting from a

more extended radio range) generate more accurate location results.

Effect of varying the number of the TEs: The aim of this experiment is to show the nature of the

speed-up obtained if the number of the auxiliary TEs available for computation progressively increases.

The experimental results, illustrated in both Figures 6.3 and 6.4, show that the increase in the number of

TEs is effectively exploited only if the BATS scheme with bandwidth control is applied. On the other

hand, if the GAs select the TEs exclusively based on the TEs’ computational load, the increase of the

candidate TEs does not lead to any significant performance improvement. In fact, the communication

cost in offloading tasks to radio congested, although computationally capable TEs, often results in overall
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job latencies longer than selecting congestion free TEs. Therefore, such findings confirm the behaviour

reported in the experiments in both Chapters 4 and 5. In particular, when applying the BATS scheme with

bandwidth control to the setting involving 6 GAs and 4 TEs, we observe performance improvements by

∼22% and ∼50%, as shown in Figure 6.3A-B respectively, when compared to the cases in which BATS

exclusively accounts for the TEs computational load. Moreover, as illustrated in Figure 6.4A-B with

the 10 GAs and 4 TEs setting, BATS with control of network information improves the performance by

∼28% and ∼27%, respectively.

The biggest improvement in performance of about 50% (Figure 6.3B), is detected when the net-

work includes 6 GAs and 4 TEs, using the radio transmission power 0 dBm that covers all nodes. In

this case, each GA has more candidate TEs from which to choose, thus it can avoid those that are con-

gested. Moreover, if compared with larger networks of 10 GAs and 4 TEs where the bigger size of the

exchanged maps considerably increases the computing latency, in the situation depicted in Figure 6.3

the communication latency makes up a relatively bigger proportion of the overall job execution latency.

Thus, the saving on the communication latency by avoiding congested local area leads to bigger overall

improvements. In addition, 4 TEs assisting 6 GA nodes would experience less overall computing load

than serving 10 GA nodes. Note that local maps of 6 GA nodes was amongst the recommended config-

urations for tactical WSNs [Li and Kunz, 2009], hence the improvement brought up by BATS paradigm

accounting for local network contention information can be of practical use.

The behaviours explained above are confirmed by the Anova results summarised in Tables 6.1

and 6.2 for the experiments with 6GAs (Figure 6.3) and Tables 6.3 and 6.4 for the experiments with 10

GAs (Figure 6.4).

Finally, the experimental results demonstrate that it is feasible to adopt the DWAG paradigm with

the BATS scheduling scheme to implement distributed computing in a tactical WSNs, for even moder-

ately complex algorithms. They also confirm that the BATS scheme can bring significant performance

improvements to job execution latency.

6.5 Summary of Results

We now summarise the most interesting findings drawn from our experimental study, as follows:

• The experimental analysis shows the practical applicability of the DWAG paradigm with BATS

heuristic in a real case study involving a collaborative localisation application representative of

emergency scenarios.

• Considerable performance improvements are achieved whenever the BATS heuristic mechanism,

combining the TEs computational and local network conditions, is integrated and applied to the

load distribution algorithms. Hence experimental results show that faster completion times are

achieved whenever informed decisions about heterogeneous traffic contention levels are accounted

for in deciding towards which TE nodes to distribute load.
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6.6 Discussion
In this chapter, we applied to an inherently distributed localisation case study, exclusively evaluated

through simulations, our DWAG paradigm with bandwidth control. In particular, we described the mo-

tivation behind the selection of the localisation approach, proposed by Li et al. [Li and Kunz, 2009], as

case study for our work. We briefly detailed the rationale behind the selected localisation scheme. We ex-

plained how we applied the DWAG paradigm with BATS scheme to the CCA-MAP localisation scheme.

We thus matched the localisation algorithm requirements over the DWAG actors, and we described

the additional algorithmic adaptations required to allow for the CCA-MAP approach to be deployed on

testbeds. We then tested the DWAG paradigm with BATS heuristic applied to the CCA-MAP localisation

scheme. Experimental results showed: (i) the practical applicability of the DWAG paradigm with BATS

heuristic to a case study involving a localisation application representative for emergency scenarios; (ii)

the strong benefits brought by accounting for local network information within BATS in performing job

collaborations; (iii) conclusions in line with those drawn from artificially generated traffic.
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Conclusions and Future Work

The main goal of the work presented in this dissertation has been the empirical investigation of the

impact of local network conditions on the distribution of computationally intensive applications that

cannot be executed on single nodes, individually. More specifically, we presented the DWAG paradigm

allowing computationally intensive applications to be collaboratively computed on resource-constrained

devices. Then, we empirically investigated the effects of network traffic information on the system

performance by distributing a range of applications. We devised and integrated within the adapted load

sharing algorithms a set of heuristic offload mechanisms to measure the impacts of making informed

offload decisions. Finally, we applied the DWAG paradigm with network control mechanism to a case

study involving a localisation application.

The remainder of this last chapter is thus organised as follows: (i) in Section 7.1, we summarise

the main contributions of this dissertation; (ii) in Section 7.2, we revise the system requirements; (iii)

in Section 7.3, we provide a critical evaluation of our approach limitations; and (iv) in Section 7.4, we

propose directions for future work.

7.1 Summary of Contributions
The aim of this dissertation has been the empirical analysis of the impact of local network conditions

in distributing computationally intensive applications within deployed systems formed by resource-

constrained devices. This has been achieved by designing algorithms and mechanisms both to distribute

jobs and to simultaneously cope with local network traffic in order to achieve performance improvements

in terms of job execution latency. The contributions of this dissertation are therefore organised according

to the main sets of performed experimental evaluation and they are summarised as follows:

• DWAG Paradigm: Our work presented a Distributed Wireless Ad-hoc Grid paradigm devised to

allow computationally intensive applications to achieve completion by exploiting the joint local

capabilities of resource-constrained nodes collaborating with each other in an ad-hoc fashion to

form virtual computational grids. We formalised the requirements for applications to allow DWAG

applicability and we detailed DWAG main system flow, including the sequence of actions under-

taken through DWAG execution. We then practically implemented DWAG on deployed WSNs

testbeds.
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• Network Conditions Impact on Homogeneous Task Distribution: Our work contributed the

empirical investigation of the impact of network conditions on the performance of distributing ho-

mogeneous applications. More specifically, we proposed two load sharing algorithms, to distribute

computationally intensive jobs. We implemented the algorithms on a deployed WSN testbed com-

posed of TMote Sky devices. We devised and integrated within the load sharing algorithms a

Bandwidth-Aware Task Scheduling offload mechanism that, dealing with both nodes computa-

tional capabilities and local network conditions, measured the actual effects of local network con-

ditions on the overall job execution performance. In addition, we evaluated the effects of making

decisions based on out-of-date information on the system performance.

• Impact of Heterogeneous Applications: Our work contributed the empirical investigation of the

effects of combining network contention information with task profiling characterisation while

distributing and collaboratively executing heterogeneous applications. We characterised several

artificially generated application sets, profiled according to their computational and communica-

tion requirements. Thus, we generated heterogeneous job mixtures to be distributed. We eval-

uated the robustness of BATS mechanism against a P-BATS decision-making criteria combining

task characterisation and network conditions. We devised a heuristic algorithm able to greedily

compute an analytical lower-bound against which to compare the experimental data. Finally, we

investigated the effects of making decisions based on out-of-date information, emphasising the

consequent performance degradation.

• Bandwidth-Aware DWAG to a Localisation Case Study: Our work contributed the practical

applicability of the devised DWAG paradigm with network control mechanism to a case study

involving a collaborative localisation application. We described the localisation algorithm devised

by Li et al. [Li and Kunz, 2009], we studied its limitations, and we proposed adaptations to allow

DWAG applicability and deployment within testbeds. We integrated the load sharing algorithm

with distribution mechanism with the localisation approach. In comparison to simulation, we

analysed the real-world issues met by applying distributed algorithms on deployed systems. We

evaluated the system performance and the improvements achieved by accounting for local network

conditions during the decision-making phase.

7.2 Requirements Revision
In Chapter 2.1, we listed the requirements for the scenarios targeted within this dissertation. In this

section, we evaluate the devised Bandwidth-Aware Distributed Wireless Ad-hoc Grids with respect to

these criteria, as follows:

• Distributed processing: We devised a general DWAG paradigm independent from network struc-

ture, application definition, device deployment and physical characteristics. Thus, DWAG is a

lightweight, totally distributed paradigm in which resource-constrained nodes exploit their social

capabilities by autonomously synchronising with each other forming virtual dynamic ad-hoc grids
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aiming at collaboratively performing computationally intensive computations. This was done with

the aim of improving task completion time in performing timely computations.

This idea contrasts therefore with most of the approaches relying, instead, upon the capabilities

of subsets of more powerful nodes hierarchically organised and in charge to perform the most

complex and demanding computations.

• Network communications: The DWAG paradigm explicitly accounts for the impact of heteroge-

neous environmental network conditions while distributing computational load among nodes. This

is done through the definition of heuristics fetching radio information from the physical layer, thus

exploiting a cross-layer design of the approach, and integrating it directly within the algorithms in

order to measure its impacts on distribution performance.

We thus practically explore the tradeoff between the distribution of computation, needed to en-

hance the computational abilities of networks of small nodes, and the creation of network traffic

that results from that distribution. The highly deployment-specific nature of radio communications

means that simulations, that are capable of producing validated, high-quality results, are extremely

hard to construct. Consequently, to produce credible results, our experiments used a direct empir-

ical analysis based on a deployed network of devices located at UCL. The results emerging from

our evaluation indeed show the benefits gained in accounting for network conditions in performing

collaborative computations.

• Implementation in deployed systems: The distributed Bandwidth-Aware Distributed Wireless

Ad-hoc Grids approach has been implemented on a deployed testbed of devices. The choice was

made with the idea of measuring the actual impact of network conditions on the performance of

distributed computations and thus balancing both computational and communication load.

Experimental results have been collected within deployed systems running a variety of experi-

mental configurations and different CPU-bound, I/O-bound and mixed tasks settings. In addition,

we have taken a realistic application, based on location estimation, and implemented that across

the same network with results that support the conclusions drawn from the artificially generated

traffic. Using this setup, we have established that even relatively simple load sharing algorithms

are capable of achieving considerable performance improvements over a range of different arti-

ficially generated scenarios with timely contextual information. The DWAG paradigm has thus

been proved to work in practice and to be lightweight enough to run and be supported by resource-

constrained devices.

7.3 Critical Evaluation
The work presented in this dissertation is mainly focused on the pragmatical and empirical analysis of

the impact of local network conditions in distributing computationally intensive applications within de-

ployed systems formed by resource-constrained devices. The current work limitations are, therefore,

mainly related to some of the experimental assumptions, made during the evaluation, and to some pa-
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rameters representing sources of variability for the experimental results. The limitations are summarised

as follows:

• Assumption about constant radio connectivity over individual task offload: In the experimental

evaluation, we assumed that system nodes are moving sufficiently slowly so that radio connec-

tions are unlikely to break before offloaded tasks reach completion, and thus computed results are

uploaded back from the TEs to the GAs. The assumption is reasonable for the targeted scenarios

in which involved applications are almost real-time computed (e.g. in emergency scenarios, in-

formation needs to be promptly on-the-field processed since the first minutes after a threat are the

most crucial ones). However, whenever offloaded tasks require considerable amount of time to be

computed (e.g. several hours of computation), the GAs might no longer be in reach of the TEs and

thus they might not be able to collect results derived from offloaded task computation. Additional

mechanisms should be devised and introduced within the algorithms to deal with such situations,

and they could be responsible for delaying the job execution.

• Assumption about task execution priority: In the experiments, every task into which a job is split

has the same execution priority, thus task execution cannot be interrupted because of the presence

of high-priority tasks. However, whenever tasks to be executed have higher priority than others,

such high-priority tasks should be able to preempt task execution. Additional mechanisms should

be added within the algorithms to deal with different task priorities. Concurrency combined with

task priorities could thus be responsible for favouring or delaying job execution according to the

execution priority.

• Assumption about sink nodes disregarded in the experimental evaluation: In the experimental eval-

uation, we do not explicitly introduce sink nodes and routing algorithms to disseminate to external

authorities the information once it is locally computed. In fact, our research hypothesis focuses

on locally analysing the impact of network conditions whenever node collaborations become nec-

essary to achieve job completion. Our approach aims at distributing not only computational but

also communication load in such a way that areas avoid to become over-congested. The interferer

node, introduced in the experimental evaluation to reproduce heterogeneous areas of network con-

tention, emulates the presence within the system of sink nodes traversed by considerable traffic.

In the future, it might be interesting to introduce actual sink nodes and additional dissemination

protocols in the system to be able to compute the whole time spent from information computation

and actual delivery to external authorities.

• Assumption about job characterisations: In the experiments, we chose significant task computa-

tional and communication configurations mirroring settings deriving from the computational grids

field and tuning the parameters to work within WSNs scenarios. Although in the current disserta-

tion we have explored an experimental spectrum and we have reported the most significant results,

the overall analysis does not claim to be exhaustive. The behaviour of more complex distributions

could be explored and compared against those adopted (i.e. Gaussian and Poissonian). Moreover,
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we have applied our approach to a case study involving a localisation application because (i) lo-

calisation is of primary concern within emergency scenarios, and (ii) the valuable opportunity to

collaborate with Communications Research Centre, Canada helping researchers to port in practice

a theoretical approach so far exclusively evaluated through simulations. Since implementations on

deployed systems are considerably demanding and time consuming, we confined the scope of this

dissertation to node localisation. However, it would be interesting to apply in future the devised

approach to a multitude of case studies and feed the system with values representative of WSN

applications.

• Deployment Heterogeneity: In the experiments, we adopted the number of running processes to

represent the computational capability of a node, since we dealt with resource-constrained devices.

In scenarios with heterogeneous more powerful devices, other metrics might be more adequate

to represent the CPU usage of a node. In this perspective, our approach might, therefore, be

required to integrate an additional layer providing at the application layer a common vision of the

information fetched at the physical layer, in a transparent way from the device adopted. Similar

considerations would apply to the network traffic and task profile characterisations.

• Parameter tuning: In the experimental evaluation, parameters were tuned according to values rep-

resentative of computation and network traffic for the adopted deployment. Different deployments

would, thus, similarly require a fast bootstrap phase to allow parameters to tune their values (e.g.

the weight values within BATS) according to the network traffic and nodes’ computation capabil-

ities.

7.4 Future Work
In the future, we would like to lift some of the limitations discussed in Section 7.3.

Firstly, we would like to make the algorithms robust against radio connectivity failures. More

specifically, we would like to expand them to have additional control mechanisms so that, whenever

nodes are moving sufficiently fast that radio connections are likely to break before offloaded tasks reach

completion, it could still be possible to exploit multi-hop radio connectivity among nodes to disseminate

the computed information without repeating the offload procedure.

Secondly, we would like to apply the DWAG approach with BATS, accounting for network infor-

mation, to a multitude of case studies in order to compare the actual benefits brought by the paradigm

within each of them against the localisation application.

Thirdly, we would like to introduce additional mechanisms within the algorithm to deal with het-

erogeneous task execution priorities.

Fourthly, we would like to introduce actual sink nodes in the system, and thus dissemination and

routing algorithms, in order to evaluate the whole time spent from application computation to result

delivery to external authorities.

In the current dissertation, we did not focus on devising novel sophisticated load sharing algorithms

since the focus of our research hypothesis relied upon analysing the local impact of network conditions
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on distribution whenever node collaborations were necessary to achieve job completion. Moreover, our

experimental results also proved how, even relatively simple load sharing algorithms, were capable of

achieving considerable performance improvements over a range of different experimental settings and

configurations. In fact, no additional improvements were detected by increasing the level of sophistica-

tion of the single algorithms. However, we would like to exploit the presence of algorithms already in

place in the environment for different purposes (e.g. routing, security, dissemination, etc.) to ameliorate

the distribution of both computational and communication load and, at the same time, to deal with the

risk of out-of-date information.

Moreover, we would like to test the DWAG paradigm with BATS, accounting for network informa-

tion, directly on real-world fields, thus collecting results not only from office-like indoor environments

and configurations, but also from actual emergency-like kind of scenarios. In fact, especially during

emergencies, the amount of in-place communication becomes a crucial aspect to be tackled to avoid the

isolation of entire areas caused by massive congestive collapse. In this context, we would like to test the

approach at the presence of real node movements. For these purposes, we initiated a collaboration with

Professor Galea and its team at University of Greenwich, UK.

Finally, we would like to integrate within our approach additional security mechanisms to improve

system robustness and guarantee data integrity against spoofing and man-in-the-middle attacks.

In conclusion, in this dissertation, we proposed a pragmatic and empirical analysis of the impact of

local network conditions in distributing computationally intensive applications within deployed systems

formed by resource-constrained devices. Adopting evaluations on deployed testbeds, we devised the

DWAG paradigm, we implemented concurrent load sharing algorithms and mechanisms to balance both

computational and communication system load accounting for timely local network conditions. We

tested the devised techniques across a set of artificially generated task mixtures and a realistic case

study based on location estimation. However, there are still experimental assumption that could be lifted

to allow additional evaluation and possible algorithm modification with the aim to ameliorate system

performance.
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