28 research outputs found

    On (2-d)-kernels in the cartesian product of graphs

    Get PDF
    In this paper we study the problem of the existence of (2-d)-kernels in the cartesian product of graphs. We give sufficient conditions for the existence of (2-d)-kernels in the cartesian product and also we consider the number of (2-d)-kernels

    Index

    Get PDF

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    Distances and Domination in Graphs

    Get PDF
    This book presents a compendium of the 10 articles published in the recent Special Issue “Distance and Domination in Graphs”. The works appearing herein deal with several topics on graph theory that relate to the metric and dominating properties of graphs. The topics of the gathered publications deal with some new open lines of investigations that cover not only graphs, but also digraphs. Different variations in dominating sets or resolving sets are appearing, and a review on some networks’ curvatures is also present

    [[alternative]]Linear and Nonlinear Perron-Frobenius Theory(III)

    Get PDF
    計畫編號:NSC94-2115-M032-001研究期間:200508~200607研究經費:1,175,000[[sponsorship]]行政院國家科學委員

    Synchronizing permutation groups and graph endomorphisms

    Get PDF
    The current thesis is focused on synchronizing permutation groups and on graph endo- morphisms. Applying the implicit classification of rank 3 groups, we provide a bound on synchronizing ranks of rank 3 groups, at first. Then, we determine the singular graph endomorphisms of the Hamming graph and related graphs, count Latin hypercuboids of class r, establish their relation to mixed MDS codes, investigate G-decompositions of (non)-synchronizing semigroups, and analyse the kernel graph construction used in the theorem of Cameron and Kazanidis which identifies non-synchronizing transformations with graph endomorphisms [20]. The contribution lies in the following points: 1. A bound on synchronizing ranks of groups of permutation rank 3 is given, and a complete list of small non-synchronizing groups of permutation rank 3 is provided (see Chapter 3). 2. The singular endomorphisms of the Hamming graph and some related graphs are characterised (see Chapter 5). 3. A theorem on the extension of partial Latin hypercuboids is given, Latin hyper- cuboids for small values are counted, and their correspondence to mixed MDS codes is unveiled (see Chapter 6). 4. The research on normalizing groups from [3] is extended to semigroups of the form , and decomposition properties of non-synchronizing semigroups are described which are then applied to semigroups induced by combinatorial tiling problems (see Chapter 7). 5. At last, it is shown that all rank 3 graphs admitting singular endomorphisms are hulls and it is conjectured that a hull on n vertices has minimal generating set of at most n generators (see Chapter 8)

    Cyclically k-partite digraphs and k-kernels

    No full text
    Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N then d(u,v) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. A digraph D is cyclically k-partite if there exists a partition Vii=0k1{V_i}_{i = 0}^{k-1} of V(D) such that every arc in D is a ViVi+1arcV_i V_{i+1}-arc (mod k). We give a characterization for an unilateral digraph to be cyclically k-partite through the lengths of directed cycles and directed cycles with one obstruction, in addition we prove that such digraphs always have a k-kernel. A study of some structural properties of cyclically k-partite digraphs is made which bring interesting consequences, e.g., sufficient conditions for a digraph to have k-kernel; a generalization of the well known and important theorem that states if every cycle of a graph G has even length, then G is bipartite (cyclically 2-partite), we prove that if every cycle of a graph G has length ≡ 0 (mod k) then G is cyclically k-partite; and a generalization of another well known result about bipartite digraphs, a strong digraph D is bipartite if and only if every directed cycle has even length, we prove that an unilateral digraph D is bipartite if and only if every directed cycle with at most one obstruction has even length

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore