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Preface to the Abstracts Volume of EuroComb21

This volume includes the collection of extended abstracts that were presented at the
European Conference on Combinatorics, Graph Theory and Applications
(EUROCOMB’21), held online and organized by Universitat Politècnica de
Catalunya from September 6 to September 10, 2021.

The EUROCOMB conferences are organized biannually. The series was started
in Barcelona 2001 and continued with Prague 2003, Berlin 2005, Seville 2007,
Bordeaux 2009, Budapest 2011, Pisa 2013, Bergen 2015, Viena 2017, and
Bratislava 2019. In 2021 and for the first time in history, EUROCOMB will be held
online due to the worldwide effects of COVID-19.

Combinatorics is a central topic in mathematics with countless applications in
other disciplines such as theoretical physics, life and social sciences, and engi-
neering. Most notably, combinatorial methods have played an essential role in the
theoretical analysis of algorithms. This interaction has been recently recognized
with the 2021 Abel Prize awarded to Lázlo Lovász and Avi Widgerson for their
contributions on discrete mathematics and theoretical computer science.

EUROCOMB is the reference European conference in combinatorics and one
of the main events worldwide in the area. Since EUROCOMB’03 in Prague, the
European Prize in combinatorics is awarded to recognize groundbreaking contri-
butions in combinatorics, discrete mathematics, and their applications by young
European researchers not older than 35. It is supported by DIMATIA, by the local
organizers and by private sources.

EUROCOMB’21 was organized by members of the Universitat Politècnica de
Catalunya, Barcelona, Spain. A total of 177 contributions were submitted from
which the program committee selected 135 to be presented at the conference. We
would like to highlight the excellent quality of most of the submitted abstracts. In
addition to the contributed presentations, the conference hosted ten plenary talks
delivered by top researchers in the area on a variety of topics in extremal, proba-
bilistic and structural combinatorics, and theoretical computer science.

– Julia Böttcher (LSE, London)
– Josep Díaz (UPC, Barcelona)

v



– Louis Esperet (G-SCOP, Grenoble)
– Christian Krattenthaler (U. Wien)
– Sergey Norin (McGill, Montreal)
– Will Perkins (UIC, Chicago)
– Marcin Pilipczuk (U. of Warsaw)
– Lisa Sauerman (IAS, Princeton)
– Eva Tardos (Cornell, Ithaca)
– David Wood (Monash, Melbourne)

In this edition, a special session has been organized to honor the memory of
Robin Thomas and his contributions to the area. The session included the plenary
talk by Sergey Norin and invited talks by Dan Král’, Zdenek Dvořák, and Luke
Postle.

The program committee members were

– Maria Axenovich (KIT, Karlsruhe)
– Agnes Backhausz (Eötvös Loránd U., Budapest)
– Marthe Bonamy (LABRI, Bordeaux)
– Michael Drmota (TUWien)
– Zdenek Dvořák (Charles University, Prague)
– Stefan Felsner (TU Berlin)
– Ervin Gyori (Alfred Rényi Institute, Budapest)
– Dan Král’ (Masaryk University, Brno)
– Bojan Mohar (SFU, Vancouver and University of Ljubljana)
– Rob Morris (IMPA, Rio de Janeiro)
– Jaroslav Nešetřil (Charles University and ITI, Prague), Chair
– Marc Noy (UPC, Barcelona)
– Patrice Ossona de Mendez (CNRS and EHESS, Paris)
– Marco Pellegrini (IIT-CNR, Pisa)
– Oleg Pikhurko (Warwick)
– Andrzej Ruciński (UAM, Póznan and Emory)
– Oriol Serra (UPC, Barcelona), Co-chair
– Martin Škoviera (Comenius U., Bratislava)
– Jozef Skokan (LSE, London)
– Maya Stein (U. de Chile, Santiago de Chile)
– Benjamin Sudakov (ETH, Zurich)
– Xuding Zhu (Zhejiang Normal U., Jinhua)

We thank all participants of EUROCOMB’21, all invited speakers, and all
members of the program committee for their generous commitment to the scientific
success of the conference, especially during challenging times.

Jaroslav Nešetřil
Guillem Perarnau

Juanjo Rué
Oriol Serra
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Size of Local Finite Field Kakeya Sets
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Abstract. Let F be a finite field consisting of q elements and let n ≥
1 be an integer. In this paper, we study the size of local Kakeya sets
with respect to subsets of F

n and obtain upper and lower bounds for
the minimum size of a (local) Kakeya set with respect to an arbitrary
set T ⊆ F

n.

Keywords: Local Kakeya sets · Minimum size · Probabilistic method

1 Introduction

The study of finite field Kakeya sets is of interest from both theoretical and
application perspectives. Letting F be a finite field containing q elements and n ≥
1 be an integer, Wolff [1] used counting arguments and planes to estimate that
the minimum size of a global Kakeya set covering all vectors in F

n grows at
least as qn/2. Later Dvir [2] used polynomial methods to obtain sharper bounds
(of the form C · qn) on the minimum size of global Kakeya sets and for further
improvements in the multiplicative constant C, we refer to Saraf and Sudan [3].

In this paper, we are interested in studying local Kakeya sets with respect
to subsets of Fn. Specifically, in Theorem 1, we obtain upper and lower bounds
for the minimum size of a Kakeya set with respect to a subset T ⊆ F

n.
The paper is organized as follows. In Sect. 2, we describe local Kakeya sets

and state and prove our main result (Theorem 1) regarding the minimum size
of a local Kakeya set.

2 Local Kakeya Sets

Let F be a finite field containing q elements and for n ≥ 1 let F
n be the set of

all n−tuple vectors with entries belonging to F.
We say that a set K ⊆ F

n is a Kakeya set with respect to the vector x =
(x1, . . . , xn) ∈ F

n if there exists y = y(x) ∈ F
n such that the line

L(x,y) :=
⋃

a∈F

{y + a · x} ⊆ K, (2.1)

where a ·x := (ax1, . . . , axn). For a set T ⊆ F
n, we say that K ⊆ F

n is a Kakeya
set with respect to T if K is a Kakeya set with respect to every vector x ∈ T .

The following result describes the minimum size of local Kakeya sets.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Theorem 1. Let T ⊆ F
n be any set with cardinality #T an integer multiple

of q − 1 and let θ (T ) be the minimum size of a Kakeya set with respect to T .
We then have that

q
√

M + min
(
0, q −

√
M

)
≤ θ (T ) ≤ q + qn

(
1 −

(
1 − 1

qn−1

)M−1
)

(2.2)

where M := #T
q−1 .

For example suppose M = ε ·
(

qn−1
q−1

)
for some 0 < ε ≤ 1. From the lower bound

in (2.2), we then get that θ (T ) grows at least of the order of qn/2. Similarly,
using the fact that 1 − x ≥ e−x−x2

for 0 < x ≤ 1
2 , we get that

(
1 − 1

qn−1

)M−1

≥ exp
(

−M − 1
qn−1

(
1 +

1
qn−1

))
≥ e−Δ,

where Δ := qε
q−1

(
1 + 1

qn−1

)
. From (2.2) we then get that

θ (T ) ≤ q + qn(1 − e−Δ).

In what follows we prove the lower bound and the upper bound in Theorem 1
in that order.

Proof of Lower Bound in Theorem 1

The proof of the lower bound consists of two steps. In the first step, we extract
a subset N of T containing vectors that are non-equivalent. In the next step,
we then use a high incidence counting argument similar to Wolff (1999) and
estimate the number of vectors in a Kakeya set K with respect to N .

Step 1: Say that vectors x1,x2 ∈ F
n are equivalent if x1 = a ·x2 for some a ∈

F\{0}. We first extract a subset of vectors in T that are pairwise non-equivalent.
Pick a vector x1 ∈ N and throw away all the vectors in T , that are equivalent
to x1. Next, pick a vector x2 in the remaining set and again throw away the
vectors that are equivalent to x2. Since we throw away at most q − 1 vectors in
each step, after r steps, we are left with a set of size at least #T −r(q−1). Thus
the procedure continues for

M =
#T
q − 1

(2.3)

steps, assuming henceforth that M is an integer.
Let N = {x1, . . . ,xM} ⊆ T be a set of size M and let K be a Kakeya

set with respect to N , of minimum size. By definition (see (2.1)), there are
vectors y1, . . . ,yM in F

n such that the line L(xi,yi) ⊆ K for each 1 ≤ i ≤ M.
Moreover, since K is of minimum size, we must have that

K =
M⋃

j=1

{L(xi,yi)}. (2.4)
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Step 2: To estimate the number of distinct vectors in K, suppose first that
each vector in K belongs to at most t of the lines in {L(xi,yi)}1≤i≤M . Since
each line L(xi,yi) contains q vectors, we get that the total number of vectors
in K is bounded below by

#K ≥ Mq

t
. (2.5)

Suppose now that there exists a vector v in K that belongs to at least t + 1
lines L1, . . . , Lt+1 ⊆

⋃
1≤i≤M{L(xi,yi)}. Because the vectors {xi}1≤i≤M are not

equivalent, any two lines L(xi,yi) and L(xj ,yj) must have at most one point of
intersection. To see this is true suppose there were scalars a1 �= a2 and b1 �= b2
in F such that

y1 + ai · x1 = y2 + bi · x2 for i = 1, 2.

Subtracting the equations we would then get (a1 − a2) · x1 = (b1 − b2) · x2,
contradicting the fact that x1 and x2 are not equivalent.

From the above paragraph, we get that any two lines in {Li}1≤i≤t+1 have
exactly one point of intersection, the vector v. Since each line Li contains q
vectors, the total number of vectors in {Li}1≤i≤t+1 equals (q − 1)(t + 1) + 1, all
of which must be in K. From (2.5) we therefore get that

#K ≥ min
(

Mq

t
, (q − 1)(t + 1) + 1

)

and setting t =
√

M, we get

#K ≥ q
√

M + min
(
0, q −

√
M

)
.

From the expression for M in (2.3), we then get (2.2). �

Proof of Upper Bound in Theorem 1

We use the probabilistic method. Let {x1, . . . ,xM} be the set of non-equivalent
vectors obtained in Step 1 in the proof of the lower bound with M = #T

q−1

(see (2.3)). Let Y1, . . . ,YM be independently and uniformly randomly chosen
from F

n and for 1 ≤ i ≤ M, set

Si :=
i⋃

j=1

{L (xj ,Yj)},

where L(x,y) is the line containing the vectors x and y as defined in (2.1).
By construction, the set SM forms a Kakeya set with respect to T . To esti-

mate the expected size of SM , we use recursion. For 1 ≤ i ≤ M, let θi := E#Si

be the expected size of Si. Given Si−1, the probability that a vector chosen
from F

n, uniformly randomly and independent of Si−1, belongs to the set Si−1

is given by pi := Si−1
qn . Therefore

E#
(
L (xi,Yi)

⋂
Si−1

)
= q · E

(
#Si−1

qn

)
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and so

θi = θi−1 + q

(
1 − θi−1

qn

)
= θi−1

(
1 − 1

qn−1

)
+ q. (2.6)

Letting a = 1 − 1
qn−1 and using (2.6) recursively, we get

θi = ai−1 · θ1 + q · (1 + a + . . . + ai−2) = ai−1 · θ1 +
q(1 − ai−1)

1 − a
.

Using θ1 = q, we then get that

θM = aM−1 · q + qn

(
1 −

(
1 − 1

qn−1

)M−1
)

≤ q + qn

(
1 −

(
1 − 1

qn−1

)M−1
)

.

This implies that there exists a Kakeya set with respect to T of size at most θM .
�
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Abstract. The problem of finding the minimum number of colors to
color a graph properly without containing any bicolored copy of a fixed
family of subgraphs has been widely studied. Most well-known exam-
ples are star coloring and acyclic coloring of graphs (Grünbaum, 1973)
where bicolored copies of P4 and cycles are not allowed, respectively.
We introduce a variation of these problems and study proper coloring
of graphs not containing a bicolored path of a fixed length and provide
general bounds for all graphs. A Pk-coloring of an undirected graph G
is a proper vertex coloring of G such that there is no bicolored copy of
Pk in G, and the minimum number of colors needed for a Pk-coloring of
G is called the Pk-chromatic number of G, denoted by sk(G). We pro-
vide bounds on sk(G) for all graphs, in particular, proving that for any

graph G with maximum degree d ≥ 2, and k ≥ 4, sk(G) ≤ �6√10d
k−1
k−2 �.

Moreover, we find the exact values for the Pk-chromatic number of the
products of some cycles and paths for k = 5, 6.

Keywords: Graphs · Acyclic coloring · Star coloring

1 Introduction

The proper coloring problem on graphs seeks to find colorings on vertices with
minimum number of colors such that no two neighbors receive the same color.
There have been studies introducing additional conditions to proper coloring,
such as also forbidding 2-colored copies of some particular graphs. In particular,
star coloring problem on a graph G asks to find the minimum number of colors
in a proper coloring forbidding a 2-colored P4, called the star-chromatic num-
ber χs(G) [10]. Similarly, acyclic chromatic number of a graph G, a(G), is the
minimum number of colors used in a proper coloring not having any 2-colored
cycle, also called acyclic coloring of G [10]. Both, the star coloring and acyclic
coloring problems are shown to be NP-complete in [2] and [15], respectively.

These two problems have been studied widely on many different families of
graphs such as product of graphs, particularly grids and hypercubes. In this
paper, we introduce a variation of these problems and study proper coloring of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 5–11, 2021.
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graphs not containing a bicolored (2-colored) path of a fixed length and provide
general bounds for all graphs. The Pk-coloring of an undirected graph G, where
k ≥ 4, is a proper vertex coloring of G such that there is no bicolored copy of
Pk in G, and the minimum number of colors needed for a Pk-coloring of G is
called the Pk-chromatic number of G, denoted by sk(G). A special case of this
coloring is the star-coloring, when k = 4, introduced by Grünbaum [10]. Hence,
χS(G) = s4(G) and all of the bounds on sk(G) in Sect. 2 apply to star chromatic
number using k = 4.

If a graph does not contain a bicolored Pk, then it does not contain any
bicolored cycle from the family Ck = {Ci : i ≥ k}. Thus, as the star coloring
problem is a strengthening of the acyclic coloring problem, a Pk-coloring is also
a coloring avoiding a bicolored member from Ck. We call such a coloring, a
Ck-coloring, where the minimum number of colors needed for such a coloring
of a graph G is called Ck-chromatic number of G, denoted by ak(G). By this
definition, we have a3(G) = a(G). In Sect. 2, we provide a lower bound for the
Ck-chromatic number of graphs as well.

Our results comprise lower bounds on these colorings and an upper bound
for general graphs. Moreover, some exact results are presented. In Sect. 2, we
provide lower bounds on sk(G) and ak(G) for any graph G. Moreover, we show
that for any graph G with maximum degree d ≥ 2, and k ≥ 4, sk(G) = O(d

k−1
k−2 ).

Finally, in Sect. 3, we present exact results on the P5-coloring and P6-coloring
for the products of some paths and cycles.

1.1 Related Work

Acyclic coloring was also introduced in 1973 by Grünbaum [10] who proved that
a graph with maximum degree 3 has an acyclic coloring with 4 colors.

The following bounds obtained in [3] are the best available asymptotic bounds
for the acyclic chromatic number, that are obtained using the probabilistic
method.

Ω

(
d

4
3

(logd)
1
3

)
= a(G) = O(d

4
3 ).

Recently, there have been some improvements in the constant factor of the upper
bound in [6,9,16], by using the entropy compression method. Similar results
for the star chromatic number of graphs are obtained in [8], showing χs(G) ≤
�20d3/2� for any graph G with maximum degree d.

We observe that the method in [6] is also used in finding a general upper
bound for Pk-coloring of graphs, when k is even. This coloring is called star k
coloring, where a proper coloring of the vertices is obtained avoiding a bicolored
P2k. In [6], it is shown that every graph with maximum degree Δ has a star
k coloring with at most ckk

1
k−1 Δ

2k−1
2k−2 + Δ colors, where ck is a function of k.

Our result presented in Sect. 2 improves this result and generalizes Fertin et al.’s
result in [8] to Pk-coloring of graphs for k ≥ 4.

The star chromatic number and acyclic chromatic number of products of
graphs have been studied widely as well. In [8], various bounds on the star chro-
matic number of some graph families such as hypercube, grid, tori are obtained,
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providing exact values for 2-dimensional grids, trees, complete bipartite graphs,
cycles, outerplanar graphs. More recent results on the acyclic coloring of grid
and tori can be found in [1] and [11]. Similarly, the acyclic chromatic number of
the grid and hypercube is studied in [7]. Moreover, [12–14] investigate the acyclic
chromatic number for products of trees, products of cycles and Hamming graphs.
For some graphs, finding the exact values of these chromatic numbers has been
a longstanding problem, such as the hypercube.

2 General Bounds

We obtain lower bounds on sk(G) and ak(G) by using the theorem of Erdős and
Gallai below.

Theorem 1 [4]. For a graph G on n vertices, if the number of edges is more
than

1. 1
2 (k − 2)n, then G contains Pk as a subgraph,

2. 1
2 (k − 1)(n − 1), then G contains a member of Ck as a subgraph,

for any Pk with k ≥ 2, and for any Ck with k ≥ 3.

As also observed in [8] for star coloring, the subgraphs induced by any two
color classes in a Pk-coloring are Pk-free. Using this observation together with
Theorem 1, we obtain the results in Theorems 2 and 3.

Theorem 2. For any graph G = (V,E), let |V | = n and |E| = m. Then,
sk(G) ≥ 2m

n(k−2) + 1, for any k ≥ 3.

Theorem 3. For any graph G = (V,E), let |V | = n, |E| = m and Δ = 4n(n −
1) − 16m

k−1 + 1. Then, ak(G) ≥ 1
2 (2n + 1 − √

Δ), for any k ≥ 3.

We obtain an upper bound on the Pk-chromatic number of any graph on n
vertices and maximum degree d. Our proof relies on Lovasz Local Lemma, for
which we provide some preliminary details as follows. An event Ai is mutually
independent of a set of events {Bi | i = 1, 2..., n} if for any subset B of events
or their complements contained in {Bi}, we have Pr[Ai | B] = Pr[Ai]. Let
{A1, A2, ..., An} be events in an arbitrary probability space. A graph G = (V,E)
on the set of vertices V = {1, 2, ..., n} is called a dependency graph for the events
A1, A2, ..., An if for each i, 1 ≤ i ≤ n, the event Ai is mutually independent of
all the events {Aj | (i, j) /∈ E}.

Theorem 4 (General Lovasz Local Lemma) [5]. Suppose that H = (V,E)
is a dependency graph for the events A1, A2, ..., An and suppose there are real
numbers y1, y2, ..., yn such that 0 ≤ yi ≤ 1 and

Pr[Ai] ≤ yi
∏

(i,j)∈E

(1 − yj) (1)

for all 1 ≤ i ≤ n. Then Pr[
∧n

i=1 Ai] ≥ ∏n
i=1(1 − yi). In particular, with positive

probability no event Ai holds.
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We use Theorem 4 in the proof of the following upper bound.

Theorem 5. Let G be any graph with maximum degree d. Then sk(G) ≤
�6√

10d
k−1
k−2 �, for any k ≥ 4 and d ≥ 2.

Proof. Assume that x = �ad
k−1
k−2 � and a = 6

√
10. Let f : V �→ {1, 2, ..., x} be

a random vertex coloring of G, where for each vertex v ∈ V , the color f(v) ∈
{1, 2, ..., x} is chosen uniformly at random. It suffices to show that with positive
probability f does not produce a bicolored Pk.

Below are the types of probabilistic events that are not allowed:

– Type I: For each pair of adjacent vertices u and v of G, let Au,v be the event
that f(u) = f(v).

– Type II: For each Pk called P , let AP be the event that P is colored properly
with two colors.

By definition of our coloring, none of these events are allowed to occur. We
construct a dependency graph H, where the vertices are the events of Types I
and II, and use Theorem 4 to show that with positive probability none of these
events occur. For two vertices A1 and A2 to be adjacent in H, the subgraphs
corresponding to these events should have common vertices in G. The depen-
dency graph of the events is called H, where the vertices are the union of the
events. We call a vertex of H of Type i if it corresponds to an event of Type i.
For any vertex v in G, there are at most

– d pairs {u, v} associated with an event of Type I, and
– k+1

2 dk−1 copies of Pk containing v, associated with an event of Type II
(Table 1).

Table 1. The (i, j)th entry showing an upper bound on the number of vertices of type
j that are adjacent to a vertex of type i in H.

I II

I 2d (k + 1)dk−1

II kd k
2
(k + 1)dk−1

The probabilities of the events are

– Pr(Au,v) = 1
x for an event of type I, and

– Pr(AP ) = 1
xk−2 for an event of type II.

To apply Theorem 4, we choose the values of yi’s accordingly so that (1) is
satisfied:

y1 =
1
3d

, y2 =
1

2(k + 1)dk−1
.
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3 Coloring of Products of Paths and Cycles

The cartesian product of two graphs G = (V,E) and G′ = (V ′, E′) is shown by
G�G′ and its vertex set is V × V ′. For any vertices x, y ∈ V and x′, y′ ∈ V ′,
there is an edge between (x, y) and (x′, y′) in G�G′ if and only if either x = y
and x′y′ ∈ E′ or x′ = y′ and xy ∈ E. For simplicity, we let G(n,m) denote the
product Pn�Pm.

Theorem 6

s5(P3�P3) = s5(C3�C3) = s5(C3�C4) = s5(C4�C4) = 4.

To prove this theorem, we start by showing that s5(P3�P3) ≥ 4. Since C3�C3,
C3�C4 and C4�C4 contain P3�P3 as a subgraph, this shows that at least 4
colors are needed to color these graphs. Such a coloring can be obtained as
in (2) by taking the first three or four rows/columns depending on the change
in the grid dimension.

a b c
c a b
b c a

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

(2)

Theorem 7. s5(G(n,m)) = 4 for all n,m ≥ 3.

Proof. Note that 4 = s5(G(3, 3)) ≤ s5(G(n,m)) for all m,n ≥ 3. Since there
exists some integer k for which 3k ≥ n,m and G(n,m) is a subgraph of G(3k, 3k),
s5(G(n,m)) ≤ s5(G(3k, 3k)) for some k. Hence, we show that s5(G(3k, 3k)) = 4.
In Theorem 6, a P5-coloring of C3�C3 is given by the upper left corner of the
coloring in (2) by using 4 colors. By repeating this coloring of C3�C3 k times in
3k rows, we obtain a coloring of G(3k, 3). Then repeating this colored G(3k, 3) k
times in 3k columns, we obtain a P5-coloring of G(3k, 3k) using 4 colors. There
exists no bicolored P5 in this coloring.

In the following, we generalize the previous cases by making use of the well-
known result below.

Theorem 8 (Sylvester, [17]). If r, s > 1 are relatively prime integers, then
there exist α, β ∈ N such that t = αr + βs for all t ≥ (r − 1)(s − 1).

Theorem 9. Let p, q ≥ 3 and p, q 
= 5. Then s5(Cp�Cq) = 4.

Proof. The lower bound follows from Theorem 6. By Theorem 8, p and q can
be written as a linear combination of 3 and 4 using nonnegative coefficients. By
using this, we are able to tile the p×q-grid of Cp�Cq using these blocks of 3×3,
3× 4, 4× 3, and 4× 4 grids. Recall that the coloring pattern in (2) also provides
a P5-coloring of smaller grids listed above by using the upper left portion for the
required size. Therefore, using these coloring patterns on the smaller blocks of
the tiling yields a P5-coloring of Cp�Cq.
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Corollary 1. Let i, j ≥ 3 and i, j 
= 5. Then, s5(Pi�Cj) = 4.

Proof. Since Pi�Pj is a subgraph of Pi�Cj , Theorem 7 gives the lower bound.
By Theorem 9, we have equality.

The ideas used above can be generalized to P6-coloring of graphs. We are
able to show the following result by using the fact s6(G(4, 4)) ≤ s5(G(4, 4)) = 4
and by proving that three colors are not enough for a P6-coloring of G(4, 4).

Theorem 10. s6(G(4, 4)) = 4.

Together, with Theorem 10 and s6(G(n,m)) ≤ s5(G(n,m)) = 4, we have the
following.

Corollary 2. s6(G(n,m)) = 4 for all n,m ≥ 4.

Similarly, Theorem 9 and Corollary 2 imply the following result.

Corollary 3. s6(Cm�Cn) = 4 for all m,n ≥ 4 and m,n 
= 5.
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Abstract. In 1975, Erdős asked the following question: what is the
smallest function f(n) for which all graphs with n vertices and f(n)
edges contain two edge-disjoint cycles C1 and C2, such that the vertex
set of C2 is a subset of the vertex set of C1 and their cyclic orderings
of the vertices respect each other? We prove the optimal linear bound
f(n) = O(n) using sublinear expanders.

Keywords: Graph theory · Cycles · Sublinear expander

1 Introduction

Cycles C1, . . . , Ck in a graph G are said to be nested cycles if the vertex set
of Ci+1 is a subset of the vertex set of Ci for each i ∈ [k − 1]. If, in addition,
their edge sets are disjoint, we say they are edge-disjoint nested cycles. In 1975,
Erdős [5] conjectured that there is a constant c such that graphs with n vertices
and at least cn edges must contain two edge-disjoint nested cycles. Bollobás [1]
proved the conjecture and asked for extension to k edge-disjoint nested cycles.
This was confirmed later in 1996 by Chen, Erdős and Staton [2], who showed
that Ok(n) many edges forces k edge-disjoint nested cycles.

A stronger conjecture of Erdős that also appeared in [5] is that there exists a
constant C such that graphs with n vertices and at least Cn edges must contain
two edge-disjoint nested cycles such that, geometrically, the edges of the inner
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cycle do not cross each other, in other words, if C1 = v1 . . . v�1 , then C2 has no
two edges vivi′ and vjvj′ with i < j < i′ < j′. In this case, C1 and C2 are said
to be two nested cycles without crossings. Here we prove this conjecture.

Theorem 1. There exists a constant C > 0 such that every graph G with aver-
age degree at least C has two nested cycles without crossings.

Our proof utilise a notion of sublinear expanders, which plays an important
role in some recent resolutions of long-standing conjectures, see e.g. [7,8,10,11].

1.1 Notation

For n ∈ N, let [n] := {1, . . . , n}. If we claim that a result holds for 0 < a �
b, c � d < 1, it means that there exist positive functions f, g such that the result
holds as long as a < f(b, c) and b < g(d) and c < g(d). We will not compute
these functions explicitly. In many cases, we treat large numbers as if they are
integers, by omitting floors and ceilings if it does not affect the argument. We
write log for the base-e logarithm.

Given a graph G, denote its average degree 2e(G)/|G| by d(G). Let F ⊆ G
and H be graphs, and U ⊆ V (G). We write G[U ] ⊆ G for the induced subgraph
of G on vertex set U . Denote by G ∪ H the graph with vertex set V (G)∪V (H)
and edge set E(G)∪E(H), and write G−U for the induced subgraph G[V (G)\U ],
and G \ F for the spanning subgraph of G obtained from removing the edge set
of F . For a set of vertices X ⊆ V (G) and i ∈ N, denote

N i(X) := {u ∈ V (G) : the distance in G between X and u is exactly i},

and write N0(X) = X, N(X) := N1(X), and for i ∈ N ∪ {0}, let Bi(X) =
⋃i

j=0 N j(X) be the ball of radius i around X. For a path P , we write �(P ) for
its length, which is the number of edges in the path.

1.2 Sublinear Expander

Our proof makes use of the sublinear expander introduced by Komlós and Sze-
merédi [9]. We shall use the following extension from [7].

Definition 1. Let ε1 > 0 and k ∈ N. A graph G is an (ε1, k)-expander if for
all X ⊂ V (G) with k/2 ≤ |X| ≤ |G|/2, and any subgraph F ⊆ G with e(F ) ≤
d(G) · ε(|X|)|X|, we have

|NG\F (X)| ≥ ε(|X|) · |X|,

where

ε(x) = ε (x, ε1, k) =
{

0 if x < k/5,

ε1/ log2(15x/k) if x ≥ k/5.
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We invoke [7, Lemma 3.2], which asserts that every graph contains an
expander subgraph with almost the same average degree, to reduce Theorem 1
to an expander. That is, it suffices to show that any n-vertex expander with
sufficiently large constant average degree contains two nested cycles without
crossings. One of the main tools we use is the following lemma ([9, Corollary
2.3]), which allows us to link two sets with a short path avoiding a small set.

Lemma 1. Let ε1, k > 0. If G is an n-vertex (ε1, k)-expander, then any two
vertex sets X1,X2, each of size at least x ≥ k, are of distance at most m =
1
ε1

log3(15n/k) apart. This remains true even after deleting ε(x) · x/4 vertices
from G.

1.3 Auxiliary Definitions and Results

Definition 2. For λ > 0 and k ∈ N, we say that a vertex set U in a graph G
is (λ, k)-thin around A if, for each i ∈ N,

|NG(Bi−1
G−U (A)) ∩ U | ≤ λik.

We will use the following two results. The first one (which essentially follows
from [7, Proposition 3.5]) shows that the rate of expansion for every small set
is almost exponential in a robust expander even after deleting a thin set around
it. The second one [11, Lemma 3.12] ensures the existence of a linear size ver-
tex set with polylogarithmic diameter in G while avoiding an arbitrary set of
size o(n/ log2 n).

Proposition 1. Let 0 < 1/d � ε1 � 1/λ, 1/k and 1 ≤ r ≤ log n. Suppose G is
an n-vertex (ε1, ε1d)-expander with δ(G) ≥ d, and X,Y are sets of vertices with
|Y | ≤ 1

4ε(|X|) · |X|. Let W be a (λ, k)-thin set around X in G − Y . Then, for
each 1 ≤ r ≤ log n, we have

|Br
G−W−Y (X)| ≥ exp(r1/4).

Lemma 2. Let 0 < 1/d � ε1 < 1 and let G be an n-vertex (ε1, ε1d)-expander
with δ(G) ≥ d. For any W ⊆ V (G) with |W | ≤ ε1n/100 log2 n, there is a set
B ⊆ G − W with size at least n/25 and diameter at most 100ε−1

1 log3 n.

2 Proof of Theorem 1

To prove Theorem 1, we embed the desired nested cycles by linking the arms
of a kraken iteratively to get the outer cycle so that the cyclic orderings of the
vertices of both cycles respect each other.

Definition 3. For k,m, s ∈ N, a graph K is a (k,m, s)-kraken if it contains a
cycle C with vertices v1, . . . , vk, vertices ui,1, ui,2 ∈ V (G) \ V (C), i ∈ [k], and
subgraphs A =

⋃k
i=1

(
Ai,1 ∪ Ai,2

)
and R =

⋃k
i=1

(
Ri,1 ∪ Ri,2

)
, where
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– {Ai,j : i ∈ [k], j ∈ [2]} is a collection of pairwise disjoint sets of size s lying
in V (G) \ V (C) with ui,j ∈ Ai,j, each with diameter at most m.

– {Ri,j : i ∈ [k], j ∈ [2]} is a collection of pairwise internally vertex disjoint
paths such that Ri,j is a vi, ui,j-path of length at most 10m with internal
vertices disjoint from V (C) ∪ (V (A) \ V (Ai,j)).

We usually write a kraken as a tuple (C,Ai,j , Ri,j , ui,j), i ∈ [k], j ∈ [2]. The
following lemma finds a kraken in any expander with average degree at least
some large constant.

Lemma 3. Let 0 < 1/d � ε1 < 1 and let G be an n-vertex (ε1, ε1d)-expander
with δ(G) ≥ d. Let L be the set of vertices in G with degree at least log100 n and let
m = 100ε−1

1 log3 n. Then, there exists a (k,m, log10 n)-kraken (C,Ai,j , Ri,j , ui,j),
i ∈ [k], j ∈ [2], in G for some k ≤ log n such that

– either {ui,j : i ∈ [k], j ∈ [2]} ⊆ L;
– or |L| ≤ 2 log n and any distinct ui,j , ui′,j′ 
∈ L are a distance at least

√
log n

apart in G − L.

Proof (Theorem 1). Assume Lemma 3 is true. Let L be the set of high degree
vertices and K = (C,Ai,j , Ri,j , ui,j), i ∈ [k], j ∈ [2] be the kraken as in Lemma 3.
We will embed, for each i ∈ Zk, a ui,2, ui+1,1-path Pi of length at most 30m,
such that all paths Pi are internally pairwise disjoint. Such paths Pi, i ∈ [k],
together with C and Ri,j , i ∈ [k], j ∈ [2], form the desired nested cycles without
crossings.

If the first alternative in Lemma 3 occurs, i.e., all ui,j ∈ L, i ∈ [k], j ∈ [2],
then we can iteratively find the desired paths Pi, i ∈ [k], by linking N(ui,2)
and N(ui+1,1) avoiding previously built paths and K, using Lemma 1. Indeed,
the number of vertices to avoid is at most |V (K)| + k · 30m ≤ log20 n, which is
much smaller than the degree of vertices in L.

We may then assume that |L| ≤ 2 log n and distinct ui,j , ui′,j′ 
∈ L are at
distance at least

√
log n apart in G′ = G − L. Let V ′ ⊆ V (C) be the set of

vertices not linked to vertices in L, i.e., V ′ = {vi ∈ V (C) : {ui,1, ui,2} 
⊆ L}.
For each vi ∈ V ′ and j ∈ [2], write Yi,j = (∪i′∈[k],j′∈[2]Ri′,j′ \ {ui,j}) ∪ V (C).

Note that |Yi,j | ≤ log5 n and recall that |Ai,j | = log10 n. Applying Proposition 1
with (X,Y,W )1 = (Ai,j , Yi,j ∪ L, ∅), we can expand Ai,j in G′ avoiding Yi,j

to get A∗
i,j := Br

G′−Yi,j
(Ai,j) of size at least log30 n, where r = (log log n)10.

Moreover, as for distinct vi, vi′ ∈ V ′ and j, j′ ∈ [2], ui,j and ui′,j′ are at distance
at least

√
log n apart in G′, A∗

i,j and A∗
i′,j′ are disjoint.

Finally, for all vi ∈ V (C) \ V ′ and j ∈ [2], as the corresponding ui,j lie in L,
we can choose pairwise disjoint A∗

i,j ⊆ N(ui,j) \ (∪vi′ ∈V ′,j′∈[2]A
∗
i′,j′), each of

size log30 n. For each i ∈ Zk, link A∗
i,2 and A∗

i+1,1 in G to get a path Qi with
length at most m using Lemma 1, avoiding previously built path Qj and K. The
desired ui,2, ui+1,1-path Pi can be obtained by extending Qi in A∗

i,2 ∪ A∗
i+1,1.

This concludes the proof.
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Proof (Proof sketch of Lemma 3). Let C be a shortest cycle in G with vertices
v1, . . . , vk. Note that k ≤ 2 logd n ≤ log n due to δ(G) ≥ d. We distinguish two
cases depending on the size of L, the set of high degree vertices.
Case 1: Suppose |L| ≥ 2k, then there are enough vertices to join each vertex of C
to two in L. Let P be a maximal collection of paths in G from V (C) to L such
that:

– each v ∈ V (C) is linked to at most 2 vertices in L;
– all paths are pairwise disjoint outside of V (C) with internal vertices in V (G)\

(V (C) ∪ L);
– each path has length at most 10m.

Subject to |P| being maximal, let �(P) :=
∑

P∈P �(P ) be minimised.
Suppose, for contradiction, that there is some v ∈ V (C) which is in less

than 2 paths in P, then |P| < 2 log n. Let U = V (C) ∪ V (P) \ {v}, hence
|U | ≤ 50ε−1

1 log4 n.
A key part of the proof is to show that U is (10, 2)-thin around v in G. This

allows us to use Proposition 1 with (X,Y,W )1 = ({v}, ∅, U) to get the desired
expansion

|Br
G−U (v)| ≥ exp(r

1
4 ) = log100 n. (1)

Finally, since |P| < 2|C| ≤ |L|, we can choose a vertex w ∈ L \ V (P). As w ∈ L,
deg(w) ≥ log100 n, and so by Lemma 1, we can connect Br

G−U (v) and NG(w)
with a path of length at most m in G − U , which extends in Br

G−U (v) ∪ {w} to
an v, w-path in G − U with length at most 10m, contradicting the maximality
of P. Therefore, each vertex in V (C) is in exactly 2 paths in P, yielding the first
alternative.

Case 2: Suppose |L| < 2k. Taking a maximal collection of paths P from V (C) to L
as in Case 1, then the argument in Case 1 shows that, due to the maximality
of P, every vertex in L is linked to a path in P, i.e., L ⊆ V (P). Note that
|V (P)| ≤ 2k · 10m ≤ log5 n. Relabelling if necessary, let k′ ≤ k be such that
v1, . . . , vk′ are the vertices in C that are not linked in P to two vertices in L. Let

V ′ = {v1, . . . , vk′} and G′ := G − (V (P) \ V ′) ⊆ G − L.

Then, by the definition of L, Δ(G′) ≤ log100 n.
Using G′ has bounded maximum degree, we show that there are sets Bi ⊆

V (G′), i ∈ [n1/8], each of diameter at most m and size n1/8, that are at distance
at least 4

√
log n from each other and from V (C) in G′. Now, for each i ∈ [n1/8],

let B′
i ⊆ Bi be a connected subset of size log10 n, and set B = {B′

i}i∈[n1/8].
Let P ′ be a maximal collection of paths in G′ from V ′ to V (B) such that

– each v ∈ V ′ is in at most two paths of P ′ and each set in B is linked to at
most one path;

– all paths are pairwise disjoint outside of V ′ with internal vertices in V (G′) \
V (B);

– the length of each path is at most 10m.
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Subject to |P ′| being maximal, let �(P ′) :=
∑

P∈P′ �(P ) be minimised.
Now we proceed in the same way as in Case 1: we suppose, for contradiction,

that there is some v ∈ V ′ which is in less than two paths in P ′, and consider
the subcollection B′ ⊆ B of sets linked to some path in P ′. Taking U ′ := V (C)∪
V (P) ∪ V (P ′) \ {v}, we see that |U ′| + |V (B′)| < |B|, so there is a set B ∈ B
disjoint from U ′ ∪ V (B′).

Finally, we show that U ′ is (10, 2)-thin around v in G, so that we can expand v
in G−U ′ ⊆ G′. And, since Br

G−U ′(v) is disjoint from B ∪V (B′), and U ′ ∪V (B′)
is much smaller than B and Br

G−U ′(v), we can find a path of length at most m
in G − U ′ − V (B′) between B and Br

G−U ′(v). Extend this path to v and trim B

down to a set of size log10 n, which gives one more V ′, V (B)-path, contradicting
the maximality of P ′. This yields the second alternative.
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Abstract. We denote by P (n,m) a graph chosen uniformly at random
from the class of all vertex-labelled planar graphs on vertex set {1, . . . , n}
with m = m(n) edges. We determine the asymptotic number of cut
vertices in P (n,m) in the sparse regime. For comparison, we also derive
the asymptotic number of cut vertices in the Erdős-Rényi random graph
G(n,m).
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1 Introduction and Main Results

The Erdős-Rényi random graph G(n,m) is a graph chosen uniformly at random
from the class of all vertex-labelled graphs on vertex set [n] := {1, . . . , n} with
m = m(n) edges. Many exciting results on G(n,m) and on the closely related
binomial random graph G(n, p) can be found in literature (see e.g. [1]). In the
last decades various models of random graphs have been introduced by imposing
additional constraints. Prominent examples of such models are random planar
graphs and related objects (see e.g. [4–6,8]).

Throughout this extended abstract, all asymptotics are taken as n → ∞ and
we say that an event holds with high probability (whp for short) if it holds with
probability tending to 1 as n → ∞. Given a graph H we denote by V (H) its
vertex set, by v(H) the number of vertices, by e(H) the number of edges, and by
dH(v) the degree of a vertex v in H. We call a vertex v ∈ V (H) a cut vertex in H
if deleting v (and its incident edges) from H increases the number of components
in H. We denote by cv (H) the number of cut vertices in H divided by v(H).

Let P (n,m) be the random planar graph, i.e. a graph chosen uniformly at
random from the class of all vertex-labelled planar graphs on vertex set [n]
with m = m(n) edges, and G = G(n,m) the Erdős-Rényi random graph. In
this extended abstract, we determine the asymptotic behaviour of cv (P ) and
cv (G), i.e. the fraction of cut vertices in P and G respectively, revealing their
coincidence if 2m/n → d ∈ [0, 1] and stark difference otherwise. We note that
Drmota, Noy, and Stufler [3] studied the number of cut vertices in a random
planar map (i.e. a connected planar graph embedded in the plane) with given
number of edges.

To state our main results on cv (P ) we distinguish two cases depending on
how large the average degree 2m/n is. Our first case is when 2m/n → d ∈ [0, 1].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Fig. 1. Fraction of cut vertices in P = P (n,m) and G = G(n,m), where m = m(n) is
such that 2m/n → d.

Theorem 1. Let P = P (n,m) and m = m(n) ≤ n/2 + O
(
n2/3

)
such that

2m/n → d ∈ [0, 1]. Then whp cv (P ) = 1 − (d + 1)e−d + o (1).

Kang and �Luczak [6] showed that if m ≥ n/2+ω
(
n2/3

)
, then whp the largest

component of P (n,m) is significantly larger than each of the other components.
Therefore, we compute not only the fraction of cut vertices in P , but also in the
largest component L(P ) of P and the remaining part S(P ) := P \ L(P ).

Theorem 2. Let P = P (n,m), L = L(P ) be the largest component of P , and
S = S(P ) = P \ L. Assume m = m(n) is such that n/2 + ω

(
n2/3

) ≤ m ≤
n+ o

(
n (log n)−2/3

)
and 2m/n → d ∈ [1, 2]. Then whp cv (L) = 1− e−1 + o (1),

cv (S) = 1 − 2e−1 + o (1), and cv (P ) = 1 − (3 − d)e−1 + o (1).

The ‘technical’ assumption m ≤ n+ o
(
n (log n)−2/3

)
in Theorem 2 is inher-

ited from a result in [8], which we will use in our proofs. In light of Theorems 1
and 2, a natural question is whether cv (P ) behaves like cv (G) or very differently
from it. We will provide an answer to this question in Theorems 3 and 4.

Theorem 3. Let G = G(n,m) and m = m(n) ≤ n/2 + O
(
n2/3

)
such that

2m/n → d ∈ [0, 1]. Then whp cv (G) = 1 − (d + 1)e−d + o (1) .

To state our result on cv (G) when 2m/n → d ∈ [1,∞), we let βd denote
the unique positive solution of the equation 1 − x = e−dx for d > 1 and we set
βd := 0 for all d ∈ [0, 1]. In fact, βd is the survival probability of a Galton-Watson
process with offspring distribution Po (d).

Theorem 4. Let G = G(n,m), L = L(G) be the largest component of G, and
S = S(G) = G\L. Assume m = m(n) ≥ n/2+ω

(
n2/3

)
is such that 2m/n → d ≥

1. Then whp cv (L) = 1 − e−d(1−βd) + o (1), cv (S) = 1 − (
d + edβd

)
e−d + o (1),

and cv (G) = 1 − (
d + edβd − dβd

)
e−d + o (1).

Theorems 1 and 3 show that cv (P ) and cv (G) coincide asymptotically as
long as m ≤ n/2 + O

(
n2/3

)
. However, Theorems 2 and 4 reveal a completely
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different behaviour of cv (P ) and cv (G) beyond this region (see also Fig. 1). We
could not find the results of Theorems 3 and 4 in literature and therefore, we
provide sketches of their proofs in Sect. 2. In Sect. 3, we show Theorems 1 and 2.

2 Cut Vertices in the Erdős-Rényi Random Graph

To prove Theorems 3 and 4 on the number of cut vertices in the Erdős-Rényi
random graph G = G(n,m), we will use the following facts (see e.g. [1]).

Theorem 5. Let k ∈ N, G = G(n,m), L = L(G) be the largest component
of G, and m = m(n) be such that 2m/n → d ≥ 0. Then whp (i) v(L) =
(βd + o (1)) n, (ii) the second largest component of G has o (n) vertices, and (iii)
|{v ∈ V (G) | dG(v) = k}| =

(
e−ddk/k! + o (1)

)
n.

Sketch Proofs of Theorems 3 and 4. We estimate the number X(k) of cut vertices
in G with dG(v) = k for k ≥ 2. Let X

(k)
v = 1 if v ∈ V (G) is a cut vertex

and dG(v) = k, otherwise we set X
(k)
v = 0. We construct G conditioned on

the event dG(v) = k: We choose a random graph G′ on vertex set [n] \ {v}
with m − k edges and then pick independently a set Nv ⊆ [n] \ {v} for the k
neighbours of v. Now v is not a cut vertex if and only if all k vertices of Nv

lie in the same component of G′. As G′ is distributed like G(n − 1,m − k),
Theorem 5 implies that whp the largest component of G′ has (βd + o (1))n
vertices, while all other components have o(n) vertices. Together with Theorem
5 this shows P

[
X

(k)
v = 1

]
= e−ddk/k! · (

1 − βk
d

)
+ o (1). Similarly, we obtain

P

[
X

(k)
v = X

(k)
w = 1

]
=

(
e−ddk/k! · (

1 − βk
d

))2 + o (1) for v �= w. Hence, whp

X(k) =
(
e−ddk(1 − βk

d )/k! + o (1)
)
n by the first and second moment method.

Due to Theorem 5 there are o (n) vertices v ∈ V (G) with dG(v) = ω (1). Thus,
whp cv (G) =

(∑
k≥2 X(k) + o(n)

)
/n =

∑
k≥2

(
e−ddk(1 − βk

d )/k!
)

+ o (1) =

1−(
d + edβd − dβd

)
e−d+o (1), which proves the statements on cv (G). Similarly,

we show the assertions on cv (L) and cv (S). 	


3 Cut Vertices in the Random Planar Graph

3.1 Proof of Theorem 1

Theorem 1 is a direct consequence of the following well-known fact from [2].

Theorem 6 ([2]). Let G = G(n,m) and m = m(n) ≤ n/2 + O
(
n2/3

)
. Then we

have lim infn→∞ P [G has no components with at least two cycles] > 0.

Proof of Theorem 1. Due to Theorem 6 we have lim infn→∞ P [G is planar] > 0.
Therefore, each property that holds whp in G(n,m) is also true whp in P (n,m)
as long as m ≤ n/2 + O

(
n2/3

)
. Hence, Theorem 1 follows by Theorem 3. 	
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3.2 Graph Decomposition and Conditional Random Graphs

To show Theorem 2 we use the graph decomposition as in [8]. Given a graph H,
the complex part Q(H) of H is the union of all components with at least two
cycles. The remaining part U(H) := H \ Q(H) is called the non-complex part
and we define nU (H) := v(U(H)) and mU (H) := e(U(H)). The core C(H) is
the maximal subgraph of Q(H) with minimum degree at least two. We note that
Q(H) arises from C(H) by replacing each vertex by a rooted tree. The following
results of Kang, Moßhammer, and Sprüssel [8] will be useful.

Theorem 7 ([8]). Let P = P (n,m), Q = Q(P ) the complex part of P , C =
C(P ) the core, L = L(P ) the largest component, and S = S(P ) = P \ L. More-
over, let U = U(P ) be the non-complex part of P , nU = v(U), and mU = e(U).
Assume m = m(n) is such that n/2 + ω

(
n2/3

) ≤ m ≤ n + o
(
n (log n)−2/3

)
and

2m/n → d ∈ [1, 2]. Then whp (i) v(C) = o (v(Q)), (ii) v(L) = (d − 1 + o (1)) n,
(iii) nU = ω (1), (iv) mU = nU/2 + O

(
hn

2/3
U

)
for each function h = h(n) =

ω (1), (v) |V (L)�V (Q)| = o (v(L)), and (vi) |V (S)�V (U)| = o (v(S)).

Theorem 7(v) and (vi) imply that whp cv (L) = cv (Q) + o (1) and cv (S) =
cv (U) + o (1). Furthermore, Theorem 7(ii) allows us to compute cv (P ) once
cv (L) and cv (S) are known. Thus, it suffices to determine cv (Q) and cv (U),
which we will do in Sects. 3.3 and 3.4, respectively. We will compute cv (Q)
and cv (U) conditioned that P satisfies some properties. Then we will use the
following definition and lemma from [7] to deduce cv (Q) and cv (U).

Definition 1 ([7, Definition 3.1]). Given a class A of graphs let A(n) be the
subclass containing those graphs with vertex set [n]. Let S be a set and Φ : A → S
a function. We say that a sequence a = (an)n∈N is feasible for (A, Φ) if for each
n ∈ N there is a graph H ∈ A(n) such that Φ(H) = an. Furthermore, for each
n ∈ N we write (A | a) (n) for a graph chosen uniformly at random from the
set {H ∈ A(n) : Φ(H) = an}. We will often omit the dependence on n and write
A | a instead of (A | a) (n).

Lemma 1 ([7, Lemma 3.2]). Let A be a class of graphs, A = A(n) a graph
chosen uniformly at random from A(n), S a set, Φ : A → S a function, and R a
graph property, i.e. R is a set of graphs. If for every sequence a = (an)n∈N that
is feasible for (A, Φ) whp A | a ∈ R, then we have whp A ∈ R.

3.3 Cut Vertices in the Complex Part

Using the concept of ‘conditional’ random graphs (see Definition 1 and Lemma
1) we will determine cv (Q(P )) in this section. For a given core C and q ∈ N

we denote by Q(C, q) a graph chosen uniformly at random from the class of all
complex parts which have C as its core and vertex set [q]. We observe that Q(C, q)
is distributed like Q(P ) conditioned on the event C(P ) = C and v(Q(P )) = q.
Furthermore, Q(C, q) can be constructed by choosing a random forest F on
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vertex set [q] with v(C) many tree components such that the vertices from C
lie all in different tree components. Then we obtain Q(C, q) by replacing each
vertex v in C by the tree component of F which is rooted at v. Therefore, we
estimate first cv (F ) in Lemma 2 and then deduce cv (Q(C, q)) in Lemma 3. To
that end, we denote by F (n, t) a forest chosen uniformly at random from the
class of all forests on vertex set [n] having exactly t trees as components such
that the vertices 1, . . . , t lie all in different tree components.

Lemma 2. Let t = t(n) = o (n) and F = F (n, t) be the random forest. Then we
have whp cv (F ) = 1 − e−1 + o (1).

Proof. A vertex v ∈ [n] \ [t] is a cut vertex in F if and only if dF (v) �= 1. We
set Xv = 1 if dF (v) = 1 and Xv = 0 otherwise. As t = o (n), it suffices to prove
whp

∑
v∈[n]\[t] Xv =

(
e−1 + o (1)

)
n. Each realisation H of F with dH(v) = 1

can be constructed by first choosing a forest H ′ on vertex set [n]\{v} with t tree
components such that the vertices in [t] lie all in different tree components. Then
we obtain H by picking a vertex v′ ∈ [n]\{v} and adding the edge vv′ in H ′. This
implies P [Xv = 1] = t(n − 1)n−t−2 · (n − 1)/

(
tnn−t−1

)
= e−1 + o (1). Similarly,

we obtain P [Xv = Xw = 1] = t(n − 2)n−t−3 · (n − 2)2/
(
tnn−t−1

)
= e−2 + o (1)

for all v �= w. The statement follows by the first and second moment method. 	

Lemma 3. For each n ∈ N, let C = C(n) be a core, q = q(n) ∈ N, and
Q = Q(C, q) be the random complex part with core C and vertex set [q]. If
v(C) = o (q), then whp cv (Q) = 1 − e−1 + o (1).

Proof. W.l.o.g. we assume V (C) = [v(C)]. We construct Q by picking a random
forest F = F (q, v(C)) and replacing each vertex v in C by the tree component
of F which is rooted at v. A vertex v ∈ [q] \ [v(C)] is a cut vertex in Q if and
only if it is a cut vertex in F . Together with the fact v(C) = o (q) it implies whp
cv (Q) = cv (F ) + o (1). Hence, whp cv (Q) = 1 − e−1 + o (1) by Lemma 2. 	


Finally, we use Lemma 1 to transfer the result on the fraction of cut vertices
in Q(C, q) from Lemma 3 to the complex part Q(P ) of P .

Lemma 4. Let P = P (n,m) and Q = Q(P ) be the complex part of P . Assume
m = m(n) is such that n/2+ω

(
n2/3

) ≤ m ≤ n+o
(
n (log n)−2/3

)
and 2m/n →

d ∈ [1, 2]. Then whp cv (Q) = 1 − e−1 + o (1).

Proof. To use Lemma 1, let A(n) be the class of planar graphs H with vertex set
[n] and m edges satisfying v(C(H)) = o (v(Q(H))). By Theorem 7(i) we have
whp P ∈ A := ∪n∈NA(n). Let Φ be such that Φ(H) = (C(H), v(Q(H))) for
each H ∈ A, A = A(n) be a graph chosen uniformly at random from A(n), and
a = (Cn, qn)n∈N be a sequence that is feasible for (A, Φ). We note that Q(A | a)
is distributed like the random complex part Q(Cn, qn). Thus, we get by Lemma
3 that whp cv (Q(A | a)) = 1 − e−1 + o (1). Combining it with Lemma 1 yields
whp cv (Q(A)) = 1− e−1 + o (1). This shows the statement, since whp P ∈ A. 	
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3.4 Cut Vertices in the Non-complex Part

For given n,m ∈ N let U(n,m) be a graph chosen uniformly at random from all
graphs with vertex set [n] and m edges in which every component has at most
one cycle. First we will determine cv (U(n,m)) and then deduce cv (U(P )).

Lemma 5. Let U = U(n,m) and m = m(n) ≤ n/2 + O
(
n2/3

)
such that

2m/n → d ∈ [0, 1]. Then whp cv (U) = 1 − (d + 1)e−d + o (1).

Proof. The assertion follows by combining Theorems 3 and 6. 	

Lemma 6. Let P = P (n,m) and U = U(P ) be the non-complex part of P .
Assume m = m(n) is such that n/2 + ω

(
n2/3

) ≤ m ≤ n + o
(
n (log n)−2/3

)
and

2m/n → d ∈ [1, 2]. Then whp cv (U) = 1 − 2e−1 + o (1).

Proof. To use Lemma 1, let A(n) be the class of planar graphs H with ver-
tex set [n] and m edges satisfying nU (H) = ω (1) and mU (H) = nU (H)/2 +
O

(
nU (H)2/3

)
. By Theorem 7(iii) and (iv) we can choose the implicit constants in

these equations such that P ∈ A := ∪n∈NA(n) with a probability of at least 1−δ,
where δ > 0 is a given constant. Let Φ be such that Φ(H) = (nU (H),mU (H)) for
each H ∈ A, A = A(n) be a graph chosen uniformly at random from A(n) and
a = (νn, μn)n∈N be a sequence that is feasible for (A, Φ). By Lemma 5 we get
whp cv (U(A | a)) = 1 − 2e−1 + o (1), as U(A | a) is distributed like U(νn, μn).
Together with Lemma 1 this implies whp cv (U(A)) = 1 − 2e−1 + o (1). Using
P [P ∈ A] > 1 − δ, we obtain that cv (U(P )) = 1 − 2e−1 + o (1) holds with a
probability of at least 1 − 2δ. The statement follows, as δ > 0 was arbitrary. 	


3.5 Proof of Theorem 2

Let Q = Q(P ) be the complex part of P . By Theorem 7(v) we have whp cv (L) =
cv (Q)+ o (1) and Lemma 4 states that whp cv (Q) = 1− e−1 + o (1). Thus, whp
cv (L) = 1 − e−1 + o (1). Due to Theorem 7(vi) and Lemma 6 we have whp
cv (S) = cv (U) + o (1) = 1 − 2e−1 + o (1), where U = U(P ) is the non-complex
part of P . Finally, by Theorem 7(ii) we have whp v(L) = (d − 1 + o (1))n. Thus,
we get whp cv (P ) = (cv (L) v(L) + cv (S) v(S)) /n = 1 − (3 − d)e−1 + o (1). 	
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Abstract. We prove an asymptotically tight bound on the extremal
density guaranteeing subdivisions of bounded-degree bipartite graphs
with a mild separability condition. As corollaries, we answer several ques-
tions of Reed and Wood. Among others, (1 + o(1))t2 average degree is
sufficient to force the t× t grid as a topological minor; (3/2+o(1))t aver-
age degree forces every t-vertex planar graph as a minor, furthermore,
surprisingly, the value is the same for t-vertex graphs embeddable on any
fixed surface; average degree (2 + o(1))t forces every t-vertex graph in
any nontrivial minor-closed family as a minor. All these constants are
best possible.

Keywords: Graph minors · Subdivisions · Extremal function ·
Average degree · Sparse graphs

1 Introduction

Classical extremal graph theory studies sufficient conditions forcing the appear-
ance of substructures. A seminal result of this type is the Erdős–Stone–
Simonovits theorem [4,5], determining the asymptotics of the average degree
needed for subgraph containment. We are interested here in the analogous prob-
lem of average degree conditions forcing H as a minor. A graph H is a minor
of G, denoted by G � H, if it can be obtained from G by vertex deletions, edge
deletions and contractions.

The study of this problem has a long history. An initial motivation was
Hadwiger’s conjecture that every graph of chromatic number t has Kt as a
minor, which is a far-reaching generalisation of the four-colour theorem. Since
every graph of chromatic number k contains a subgraph of average degree at least
k−1, a natural angle of attack is to find bounds on the average degree which will
guarantee a Kt-minor. The first upper bounds for general t were given by Mader
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[13,14]. In celebrated work of Kostochka [10] and, independently, Thomason [20],
it was improved to the best possible bound Θ(t

√
log t), Thomason subsequently

determining the optimal constant [21].
For a general graph H, denote

d�(H) := inf{c : d(G) ≥ c ⇒ G � H}.

Myers and Thomason [16] determined this function when H is polynomially
dense, showing that again d�(H) = Θ(|H|

√
log|H|) and determining the opti-

mal constant in terms of H. However, for sparse graphs their results only give
d�(H) = o(|H|

√
log|H|), similar to the way that the Erdős–Stone–Simonovits

theorem gives a degenerate bound for bipartite subgraphs, and so it is natural
to ask for stronger bounds in this regime.

Reed and Wood [17] gave improved bounds for sparser graphs, and in par-
ticular showed that if H has bounded average degree then d�(H) = Θ(|H|).
They asked several interesting questions about the precise asymptotics in this
regime. Among sparse graphs, grids play a central role in graph minor theory,
and Reed and Wood raised the question of determining d�(Gt,t), where Gt,t is
the t × t grid. That is, what is the minimum β > 0 such that every graph with
average degree at least βt2 contains Gt,t as a minor. Trivially β ≥ 1 in order for
the graph to have enough vertices, and their results give a bound of β ≤ 6.929.

This question provides the motivating example for our results. However, we
shall focus on a special class of minors: subdivisions or topological minors. A
subdivision of H is a graph obtained from subdividing edges of H to pairwise
internally disjoint paths. The name of topological minor comes from its key role
in topological graph theory. A cornerstone result in this area is Kuratowski’s
theorem from 1930 that a graph is planar if and only if it does not contain a
subdivision of K5 or K3,3. Again it is natural to ask what average degree will
force Kt as a topological minor, and we define analogously

dT(H) := inf{c : d(G) ≥ c ⇒ G contains H as a topological minor}.

Clearly, for any H, d�(H) ≤ dT(H). However, there can be a considerable gap
between the two quantities; Komlós and Szemerédi [9] and, independently, Bol-
lobás and Thomason [2] showed that dT(Kt) = Θ(t2), meaning that clique topo-
logical minors are much harder to guarantee than clique minors. Furthermore,
the optimal constant is still unknown in this case, and in general much less is
known for bounds on average degree guaranteeing sparse graphs as topological
minors.

1.1 Main Result

Our main result offers the asymptotics of the average degree needed to force sub-
divisions of a natural class of sparse bipartite graphs, showing that a necessary
bound is already sufficient. It reads as follows.
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Theorem 1. For given ε > 0 and Δ ∈ N, there exist α0 and d0 satisfying the
following for all 0 < α < α0 and d ≥ d0. If H is an α-separable bipartite graph
with at most (1 − ε)d vertices and Δ(H) ≤ Δ, and G is a graph with average
degree at least d, then G contains a subdivision of H.

Here a graph H is α-separable if there exists a set S of at most α|H| vertices
such that every component of H −S has at most α|H| vertices. Graphs in many
well-known classes are o(1)-separable. For example, large graphs in any nontrivial
minor-closed family are o(1)-separable [1,15].

As an immediate corollary, our main result answers the above question of
Reed and Wood in a strong sense by showing that any β > 1 is sufficient to force
the k-dimensional grid Gk

t,...,t not only as a minor but as a topological minor,
and so

dT(Gk
t,...,t) = d�(Gk

t,...,t) = (1 + ot(1))tk.

We remark that the optimal constant 1 in Theorem 1 is no longer sufficient
if H is not bipartite. Indeed, if e.g. H is the disjoint union of triangles, then the
Corrádi–Hajnal theorem [3] implies that d�(H) = 4

3 |H| − 2.

2 Applications

Reed and Wood [17] raised several other interesting questions on the average
degree needed to force certain sparse graphs as minors. In particular, they asked
the following.

– What is the least constant c > 0 such that every graph with average degree
at least ct contains every planar graph with t vertices as a minor?

– What is the least function g1 such that every graph with average degree at
least g1(k) · t contains every graph with t vertices and treewidth at most k as
a minor?

– What is the least function g2 such that every graph with average degree at
least g2(k) · t contains every Kk-minor-free graph with t vertices as a minor?

In applying our results to answer these questions, there are two obstacles to
overcome. First, the graph classes considered have bounded average degree, but
our main result only covers graphs of bounded maximum degree. Secondly, and
more significantly, these classes include non-bipartite graphs. Both issues may be
overcome by first constructing a suitable graph H ′ containing the target graph
H as a minor, ensuring that H ′ is bipartite with bounded average degree but still
inherits a suitable separability condition from the original target graph. We then
find a subdivision of H ′ in the host graph. In order to ensure H ′ has bounded
degree it cannot necessarily be a subdivision of H, and so this procedure gives
H as a minor, but not necessarily a topological minor.

Passing from a bounded average degree H to a bounded degree graph only
requires the addition of o(t) vertices, whereas ensuring that H ′ is bipartite typ-
ically changes the constant required, in a way that depends on the precise class
of graphs involved. Thus we obtain a range of different constants for different
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classes; nevertheless, many of these constants are optimal. In the following results
we use the notation

d�(F , t) := inf{c : d(G) ≥ c ⇒ G � H, ∀H ∈ F with |H| ≤ t}

for a graph family F . We answer the first question above in a strong sense, giving
the optimal constant and showing that the answer is the same for graphs which
may be drawn on any fixed surface.

Theorem 2. Writing Fg for the class of graphs with genus at most g, we have
d�(Fg, t) = (3/2 + o(1)) t.

Many other important classes of graphs are naturally closed under taking
minors. The seminal graph minor theorem of Robertson and Seymour (proved
in a sequence of papers culminating in [18]) shows that every minor-closed family
can be characterised by a finite list of minimal forbidden minors. For example, the
linklessly-embeddable graphs are defined by a minimal family of seven forbidden
minors, including K6 and the Petersen graph [19]. We can extend the proof of
Theorem 2 to minor-closed families more generally; in fact our results also apply
to classes of polynomial expansion, which are not necessarily minor-closed. For
each k ∈ N, define αk(G) := max{|U | : U ⊆ V (G), χ(G[U ]) = k}. So α1(G) is
the usual independence number and α2(G) is the maximum size of the union of
two independent sets.

Theorem 3. Let F be a nontrivial minor-closed family, or, more generally, a
class of polynomial expansion. For each F ∈ F with t vertices, we have

2t − 2α(F ) − O(1) ≤ d�(F ) ≤ 2t − α2(F ) + o(t).

Theorem 3 yields the following consequences, for all of which the constants are
best possible (note that the last example is not a minor-closed class).

– The class Tk of treewidth at most k satisfies d�(Tk, t) =
(

2k
k+1 + o(1)

)
t; in

particular, g1(k) = 2 − ok(1).
– g2(k) = 2 − ok(1).
– For any nontrivial minor closed family F , we have d�(F , t) ≤ (2 + o(1))t.
– The class L of linklessly embeddable graphs satisfies d�(L, t) = (8/5+o(1))t.
– The class P1 of 1-planar graphs satisfies d�(P1, t) = (5/3 + ot(1))t.

While for some families we are able to show that the upper and lower bounds
from Theorem 3 match, giving the precise constant, in others this is not clear.
In particular, for the Kk-minor-free graphs Hadwiger’s conjecture would imply
matching bounds.

3 Outline of the Proof

Our proof utilises both pseudorandomness from Szemerédi’s regularity lemma
and expansions for sparse graphs. The particular expander that we shall make



Extremal Density for Sparse Minors and Subdivisions 29

use of is an extension of the one introduced by Komlós and Szemerédi [8,9],
which has played an important role in some recent developments on sparse graph
embedding problems, see e.g. [7,11,12].

To prove Theorem 1, we first pass to a robust sublinear expander subgraph
without losing much on the average degree. Depending on the density of this
expander, we use different approaches. Roughly speaking, when the expander
has positive edge density, we will utilise pseudorandomness via the machinery of
the graph regularity lemma and the blow-up lemma, and otherwise we exploit
its sublinear expansion property. Full proofs may be found in [6].

3.1 Embeddings in Dense Graphs

The regularity lemma essentially partitions our graph G into a bounded number
of parts, in which the bipartite subgraphs induced by most of the pairs of parts
behave pseudorandomly. The information of this partition is then stored to a
(weighted) fixed-size so-called reduced graph R which inherits the density of
G. We seek to embed H in G using the blow-up lemma, which boils down to
finding a ‘balanced’ bounded-degree homomorphic image of H in R. This is
where the additional separable assumption on H kicks in, enabling us to cut H
into small pieces to offer suitable ‘balanced’ homomorphic images. If the reduced
graph R is not bipartite, the density of R inherited from G is just large enough
to guarantee an odd cycle in R long enough to serve as our bounded-degree
homomorphic image of H. However, an even cycle of the same length would
not be sufficient, since H could be an extremely asymmetric bipartite graph. To
overcome this problem, when R is bipartite we make use of a ‘sun’ structure.
This is a bipartite graph consisting of a cycle with some additional leaves, which
help in balancing out any asymmetry of H.

3.2 Embeddings in Robust Expanders with Medium Density

The robust sublinear expansion underpins all of our constructions of H-sub-
divisions when the graph G is no longer dense. At a high level, in G, we anchor on
some carefully chosen vertices and embed paths between anchors (corresponding
to the edge set of H) one at a time. As these paths in the subdivision need to be
internally vertex disjoint, to realise this greedy approach we will need to build
a path avoiding a certain set of vertices. This set of vertices to avoid contains
previous paths that we have already found and often some small set of ‘fragile’
vertices that we wish to keep free.

To carry out such robust connections, we use the small-diameter property of
sublinear expanders. We aim to anchor at vertices with large ‘boundary’ com-
pared to the total size of all paths needed, that is, being able to access many
vertices within short distance. If there are d vertices of sufficiently high degree,
we can anchor on them. Assuming this is not the case essentially enables us to
view G as if it is a ‘relatively regular’ graph. We now use a web structure in
which each core vertex is connected by a tree to a large ‘exterior’. Using the rel-
ative regularity of G, together with the fact that it is not too sparse, we can pull
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out many reasonably large stars and link them up to find webs. We then anchor
on their core vertices and connect pairs via the exteriors of the corresponding
webs, while being careful to avoid the fragile centre parts of other webs.

3.3 Embeddings in Sparse Robust Expanders

The method of building and connecting webs breaks down if the expander is too
sparse, and we need to use other structures in this case.

For the easier problem of finding minors, it suffices to find d large balls
and link them up by internally disjoint paths according to the structure of H;
contracting each ball gives H as a minor. In order to be able to find the paths,
we ensure the balls are sufficiently far apart that any given pair of balls can be
expanded to very large size, avoiding all others, and then connect the pairs one
by one.

Coming back to embedding H-subdivisions, we shall follow a similar general
strategy. However, an immediate obstacle we encounter is that we need to be able
to lead a constant number of paths arriving at each ball disjointly to the anchor
vertex. In other words, each anchor vertex has to expand even after removing a
constant number of disjoint paths starting from itself. Our expansion property
is simply too weak for this.

We therefore use a new structure we call a ‘nakji’. Each nakji consists of
several ‘legs’, which are balls pairwise far apart, linked to a central well-connected
‘head’. This structure is designed precisely to circumvent the above problem by
doing everything in reverse order. Basically, instead of looking for anchor vertices
that expand robustly, we rather anchor on nakjis and link them via their legs first
and then extend the paths from the legs in each nakji’s head using connectivity.
The remaining task is then to find many nakjis. This is done essentially by linking
small subexpanders within G, after removing the few high-degree vertices.
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Abstract. Gessel and Stanley introduced Stirling permutations to give
a combinatorial interpretation of certain polynomials related to Stirling
numbers. A natural extension of these permutations are quasi-Stirling
permutations, which are in bijection with labeled rooted plane trees,
and can be viewed as labeled noncrossing matchings. They were recently
introduced by Archer et al., who conjectured that there are (n + 1)n−1

quasi-Stirling permutations of size n having n descents. Here we prove
this conjecture. More generally, we enumerate quasi-Stirling permuta-
tions, as well as a one-parameter family that generalizes them, by the
number of descents, giving an implicit equation for their generating func-
tion in terms of that of Eulerian polynomials. We also show that many
of the properties of descents on usual permutations and on Stirling per-
mutations have an analogue for quasi-Stirling permutations.

Keywords: Quasi-Stirling · Stirling permutation · Descent · Plane
tree

1 Introduction

1.1 Stirling Permutations

Stirling permutations were introduced by Gessel and Stanley in [7]. Denoted
by Qn, they are defined as those permutations π1π2 . . . π2n of the multiset
{1, 1, 2, 2, . . . , n, n} satisfying that, if i < j < k and πi = πk, then πj > πi.
This condition can be described as avoiding the pattern 212. In general, given
two sequences of positive integers π and σ, we say that π avoids σ if there is
no subsequence of π whose entries are in the same relative order as those of σ.
There is an extensive literature on Stirling permutations and their generaliza-
tions [3,4,8,9,12].

With the notation [r] = {1, 2, . . . , r}, let i ∈ [r] be a descent of π = π1π2 . . . πr

if πi > πi+1 or i = r, and let des(π) denote the number of descents of π. This
definition agrees with [3,7,9], while other papers [2] do not consider i = r to be
a descent. We also consider ascents, which are indices i ∈ {0, . . . , r − 1} such
that πi < πi+1 or i = 0, and plateaus, which are indices i ∈ [r − 1] such that
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πi = πi+1. Let asc(π) and plat(π) denote the number of ascents and the number
of plateaus of π, respectively.

Denoting by Sn the set of permutations of [n], the polynomials

An(t) =
∑

π∈Sn

tdes(π) (1)

are called Eulerian polynomials. It is well known (see e.g. [13, Prop. 1.4.4]) that

∑

m≥0

mntm =
An(t)

(1 − t)n+1
. (2)

Let S(n,m) be the Stirling numbers of the second kind, which count par-
titions of an n-element set into m blocks. Gessel and Stanley [7] showed that,
when replacing the coefficients in the left-hand side of Eq. (2) by these numbers,
then the role of the Eulerian polynomials is played by the Stirling polynomials
Qn(t) =

∑
π∈Qn

tdes(π).

Theorem 1 ([7])

∑

m≥0

S(m + n,m) tm =
Qn(t)

(1 − t)2n+1
.

1.2 Quasi-Stirling Permutations

In [2], Archer et al. introduce the set Qn of quasi-Stirling permutations. These
are permutations π1π2 . . . π2n of the multiset {1, 1, 2, 2, . . . , n, n} avoiding 1212
and 2121, which means that there do not exist i < j < k < � such that πi = πk

and πj = π�. Thinking of π as a labeled matching of [2n], by placing an arc
between with label k between i with j if πi = πj = k, the avoidance requirement
is equivalent to the matching being noncrossing1. By definition, Qn ⊆ Qn.

Archer et al. [2] note that |Qn| = n!Cn = (2n)!
(n+1)! , where Cn = 1

n+1

(
2n
n

)

is the nth Catalan number. They also compute the number of permutations
in Qn avoiding some sets of patterns of length 3, and they enumerate quasi-
Stirling permutations by the number of plateaus. They pose the open problem
of enumerating quasi-Stirling permutations by the number of descents, and they
conjecture that the number of π ∈ Qn with des(π) = n is equal to (n + 1)n−1.

1.3 A Bijection to Plane Trees

Quasi-Stirling permutations are in bijection with labeled plane rooted trees, in
much the same way that Stirling permutations are in bijection with increasing
trees. Denote by Tn the set of edge-labeled plane (i.e., ordered) rooted trees with
1 The closely related set of labeled nonnesting matchings corresponds to permutations

that avoid 1221 and 2112. The distribution of des on these permutations, which is
different from its ditribution on Qn, is the topic of a forthcoming preprint [1].
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n edges. Each edge of such a tree receives a unique label from [n]. The root is
a distinguished vertex of the tree, which we place at the top. The children of a
vertex i are the neighbors of i that are not in the path from i to the root; the
neighbor of i in the path to the root (if i is not the root) is called the parent of
i. The children of i are placed below i, and the left-to-right order in which they
are placed matters.

Disregarding the labels, it is well known that the number of unlabeled plane
rooted trees with n edges is Cn. Since there are n! ways to label the edges of a
particular tree, it follows that |Tn| = n!Cn.

Denote by In ⊆ Tn be the subset of those trees whose labels along any
path from the root to a leaf are increasing. Elements of In are called increasing
edge-labeled plane trees, or simply increasing trees when there is no confusion.

A simple bijection between In and Qn was introduced by Koganov [10, Thm.
3]. Archer et al. [2] showed that this bijection naturally extends to a bijection
ϕ between Tn and Qn. Both bijections can be described as follows. Given a tree
T ∈ Tn, traverse its edges by following a depth-first walk from left to right (i.e.,
counterclockwise); that is, start at the root, go to the leftmost child and explore
that branch recursively, return to the root, then continue to the next child, and
so on. Recording the labels of the edges as they are traversed gives a permutation
ϕ(T ) ∈ Qn; see Fig. 1 for an example. Note that each edge is traversed twice,
once in each direction. As shown in [2], the map ϕ : Tn → Qn is a bijection.
Additionally, the image of the subset of increasing trees is precisely the set of
Stirling permutations, and so ϕ induces a bijection between In and Qn, which
is the map described in [10].

Fig. 1. An example of the bijection ϕ : Tn → Qn.

2 Descents on Quasi-Stirling Permutations

In order to enumerate quasi-Stirling permutations by the number of descents,
we first describe how descents are transformed by the bijection ϕ. Define the
number of cyclic descents of a sequence of positive integers π = π1π2 . . . πr to be

cdes(π) = |{i ∈ [r] : πi > πi+1}|,

with the convention πr+1 := π1.
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Let T ∈ Tn, and let v a vertex of T . If v is not the root, define cdes(v) to be
the number of cyclic descents of the sequence obtained by listing the labels of
the edges incident to v in counterclockwise order (note that the starting point
is irrelevant). Equivalently, if the label of the edge between v and its parent is
�, and the labels of the edges between v and its children are a1, a2, . . . , ad from
left to right, then cdes(v) = cdes(�a1 . . . ad). If v is the root of T , define cdes(v)
to be the number of descents of the sequence obtained by listing the labels of
the edges incident to v from left to right, that is, cdes(v) = des(a1 . . . ad) with
the above notation. Finally, define the number of cyclic descents of T to be
cdes(T ) =

∑
v cdes(v), where the sum ranges over all the vertices v of T .

Lemma 1. The bijection ϕ : Tn → Qn has the following property: if T ∈ Tn

and π = ϕ(T ) ∈ Qn, then des(π) = cdes(T ).

It follows from Lemma 1 that the maximum value of des(π) for π ∈ Qn is n.
Our next result counts how many permutations attain this upper bound.

Theorem 2. The number of π ∈ Qn with des(π) = n is equal to (n + 1)n−1.

Let
A(t, z) =

∑

n≥0

An(t)
zn

n!
=

1 − t

1 − te(1−t)z

be the well-known [13, Prop. 1.4.5] exponential generating function (EGF for
short) of the Eulerian polynomials, defined in Eq. (2).

In analogy to An(t) and Qn(t), define the quasi-Stirling polynomials and their
EGF:

Qn(t) =
∑

π∈Qn

tdes(π), Q(t, z) =
∑

n≥0

Qn(t)
zn

n!
.

The following equation describes Q(t, z), and allows us to compute Qn(t).
We use [zn]F (z) to denote the coefficient of zn in the generating function F (z).

Theorem 3. The EGF of quasi-Stirling permutations by the number of descents
satisfies the implicit equation Q(t, z) = A(t, zQ(t, z)), that is,

Q(t, z) =
1 − t

1 − te(1−t)zQ(t,z)
.

In particular, extracting its coefficients using Lagrange inversion,

Qn(t) =
n!

n + 1
[zn]A(t, z)n+1.

Gessel and Stanley’s main result from [7] (stated above as Theorem 1) is the
analogue for Stirling polynomials of Eq. (2). As a consequence of Theorem 3, we
obtain the following analogue for quasi-Stirling polynomials.

Theorem 4
∑

m≥0

mn

n + 1

(
m + n

m

)
tm =

Qn(t)
(1 − t)2n+1

.
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3 Properties of Quasi-Stirling Polynomials

Bóna proves in [3, Cor. 1] that Stirling permutations in Qn have, on average,
(2n+1)/3 ascents, (2n+1)/3 descents, and (2n+1)/3 plateaus. From Theorem 3,
we can derive the following analogue for quasi-Stirling permutations.

Corollary 1. Let n ≥ 1. On average, elements of Qn have (3n + 1)/4 ascents,
(3n + 1)/4 descents, and (n + 1)/2 plateaus.

It is well-known result of Frobenius that the roots of the Eulerian polynomials
An(t) are real, distinct, and nonpositive. In [3, Thm. 1], Bóna proves the anal-
ogous result for the Stirling polynomials Qn(t), although their real-rootedness
had already been shown by Brenti [4, Thm. 6.6.3] in more generality. We can
prove that quasi-Stirling polynomials Qn(t) also have this property.

Theorem 5. For every n ≥ 1, the polynomials Qn(t) have real, distinct, and
nonpositive roots. Thus, their coefficients are unimodal and log-concave.

Theorem 6. The distribution of the number of descents (resp. ascents, plateaus)
on elements of Qn converges to a normal distribution as n → ∞.

4 Generalization to k-Quasi-Stirling Permutations

Here we refine the results from Sect. 2 to track the joint distribution of asc, des
and plat, and we generalize them to a one-parameter family of permutations.

Gessel and Stanley [7] proposed an extension of Stirling permutations by
considering permutations of the multiset containing k copies of each element in
[n], while avoiding the pattern 212. These permutations, often called k-Stirling
permutations, have been studied in [4,9,12].

In analogy to these, we define k-quasi-Stirling permutations as permutations
with k copies of each element in [n] that avoid the patterns 1212 and 2121. Denote
this set by Qk

n. Note that Q1

n = Sn and Q2

n = Qn. Viewing such permutations
as ordered set partitions into blocks of size k, the avoidance requirement is
equivalent to the partition being noncrossing.

We have constructed bijections between k-quasi-Stirling permutations and
two different kinds of decorated trees. The first one extends a bijection of Gessel
[6] and Janson, Kuba and Panholzer [9, Thm. 1] between k-Stirling permutations
and so-called (k + 1)-ary increasing trees. The second extends a construction of
Kuba and Panholzer [11, Thm. 2.2]. These bijections allow us to easily count
the number of k-quasi-Stirling permutations:

Theorem 7. For n ≥ 1 and k ≥ 1,

|Qk

n| =
(kn)!

((k − 1)n + 1)!
= n!Cn,k, where Cn,k =

1
(k − 1)n + 1

(
kn

n

)
.
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Next we state our most general result, proved using our new bijections to
decorated trees. Define the refined k-quasi-Stirling polynomials and their EGF:

P
(k)

n (q, t, u) =
∑

π∈Qk
n

qasc(π)tdes(π)uplat(π), P
(k)

(q, t, u; z) =
∑

n≥0

P
(k)

n (q, t, u)
zn

n!
.

Theorem 8. Fix k ≥ 1. The EGF of k-quasi-Stirling permutations by the num-
ber of ascents, the number of descents, and the number of plateaus satisfies the
implicit equation

P
(k)

(q, t, u; z) = 1 − q +
q(q − t)

q − t exp
(
(q − t)z(P

(k)
(q, t, u; z) − 1 + u)k−1

) .

In particular, for n ≥ 1, its coefficients satisfy

P
(k)

n (q, t, u) =
n!

(k − 1)n + 1
[zn]

(
u − q +

q(q − t)
q − te(q−t)z

)(k−1)n+1

.

As a consequence of Theorem 8, we obtain the following generalization of
Theorem 2. One can show that the maximum number of descents that a permu-
tation in Qk

n can have is n.

Corollary 2. The number of π ∈ Qk

n with des(π) = n is ((k − 1)n + 1)n−1.

The proofs of the results in this extended abstract can be found in [5].
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Abstract. The theory of randomly perturbed graphs deals with the
properties of graphs obtained as the union of a deterministic graph H
and a random graph G. We study Hamiltonicity in two distinct settings.
In both of them, we assume H is some deterministic graph with min-
imum degree at least αn, for some α (possibly depending on n). We
first consider the case when G is a random geometric graph, and obtain
an asymptotically optimal result. We then consider the case when G is
a random regular graph, and obtain different results depending on the
regularity.

Keywords: Randomly perturbed graphs · Random regular graphs ·
Random geometric graphs · Hamiltonicity

1 Introduction

The theory of randomly perturbed graphs serves to bridge between two classical
areas of combinatorics, namely the area of extremal combinatorics and the area
of random graphs. In the case of Hamiltonicity, for instance, a classical result of
Dirac asserts that every graph G on n ≥ 3 vertices with minimum degree δ(G) ≥
n/2 contains a Hamilton cycle. As for random graphs, another classical result
(originally due to Koršunov) states that the random graph Gn,p is Hamiltonian
asymptotically almost surely (abbreviated as a.a.s.; we say that a sequence of
events {Ei}i∈N holds a.a.s. if P[Ei] → 1 as i → ∞) whenever p ≥ (1 + ε) log n/n,
while a.a.s. it is not even connected if p ≤ (1−ε) log n/n (here, Gn,p stands for the
binomial random graph on n vertices, where each of the possible edges is added to
the graph with probability p, independently of all other edges). Bohman, Frieze
and Martin [2] were the first to consider the union of a deterministic graph and
a random graph, and they proved the following result.

Theorem 1 ([2]). For every α ∈ (0, 1/2), there exists a constant C such that,
if H is an n-vertex graph with δ(H) ≥ αn and p ≥ C/n, then a.a.s. H ∪ Gn,p is
Hamiltonian.
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Observe that the union allows to reduce the degree of H below the threshold
given by Dirac’s theorem, and to also obtain a logarithmic-factor improvement
on the threshold for Hamiltonicity in Gn,p.

After this seminal result, Hamiltonicity has been considered in randomly per-
turbed directed graphs [2,9], hypergraphs [8,9,11] and subgraphs of the hyper-
cube [3], with significant improvements on the probability threshold in all cases.
Many properties other than Hamiltonicity have been considered as well (see,
e.g., the references in [7]), similarly improving probability thresholds. However,
all of these results rely on the random structure being binomial, and no results
are known when G follows a different distribution. Here, we begin the study of
graphs perturbed by random graphs which are not binomial. In particular, we
consider random geometric and random regular graphs. All our results extend
to pancyclicity, but for simplicity here we only refer to Hamiltonicity.

2 Hamiltonicity of Graphs Perturbed by a Random
Geometric Graph

A d-dimensional random geometric graph Gd(n, r), where r is a positive real
number, is a graph with vertex set V := [n] and edge set E defined as follows.
Let X1, . . . , Xn be n independent uniform random variables on [0, 1]d. Then,
let E := {{i, j} : ‖Xi − Xj‖ ≤ r}, where ‖·‖ denotes the Euclidean norm.
(The results in this section extend to any �p norm, but we consider p = 2 here
for simplicity.)

Hamiltonicity is fairly well-understood in random geometric graphs. In par-
ticular, for all d ≥ 1 there exists a constant cd such that, for all ε > 0, if
r ≥ (1 + ε)(cd log n/n)1/d, then a.a.s. Gd(n, r) is Hamiltonian, and if r ≤
(1−ε)(cd log n/n)1/d, then a.a.s. Gd(n, r) is not Hamiltonian [1,5,12]. The main
result of the first author in this context is the following, which can be seen as
an analogue of Theorem 1 for random geometric graphs.

Theorem 2 ([6]). For every integer d ≥ 1 and α ∈ (0, 1/2), there exists a
constant C such that the following holds. Let H be an n-vertex graph with δ(H) ≥
αn, and let r ≥ (C/n)1/d. Then, a.a.s. H ∪ Gd(n, r) is Hamiltonian.

Proof (sketch). We choose some constant C, which depends on α and d and
is sufficiently large so that all subsequent claims hold. We assume that r =
(C/n)1/d (which suffices since, by increasing r, we create a sequence of nested
graphs).

Partition the hypercube [0, 1]d into smaller cubes of side y, which we call cells.
Two cells c1 and c2 are friends if there is a cell c3 whose boundary intersects
those of both c1 and c2. The value of y is chosen so that, if c1 and c2 are friends,
then all x1 ∈ c1, x2 ∈ c2 satisfy ‖x1 − x2‖ ≤ r (i.e., all vertices in c1 will be
adjacent to all vertices in c2). In particular, y = Θ(r) and there are Θ(n) cells.

Consider the variables X1, . . . , Xn that assign positions in [0, 1]d to the ver-
tices of H. A cell is called dense if it contains at least 2 · 5d vertices of H, and
sparse otherwise. Furthermore, for each pair of (not necessarily distinct) vertices
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u, v ∈ V (H), we call a cell {u, v}-dense if it contains two distinct vertices w and
x such that uw, vx ∈ E(H), and {u, v}-sparse otherwise. By Azuma’s inequality
(and adjusting the value of C), we can show that a.a.s. the proportion of sparse
cells is an arbitrarily small constant, and similarly the proportion of {u, v}-sparse
cells is an arbitrarily small constant, for all pairs of vertices u, v ∈ V (H).

We now define an auxiliary graph Γ , whose vertices are the dense cells, and
where two cells are adjacent whenever they are friends. This definition ensures
Γ has bounded degrees (Δ(Γ ) < 5d). Since there are “few” sparse cells, we can
show Γ has “few” connected components (at most δn, where δ is an arbitrarily
small constant). These two properties are crucial for the rest of the proof.

The main strategy for the proof now is as follows. We will use the auxiliary
graph Γ to construct a set of cycles, each of which covers all the vertices in
the cells that form a component of Γ . Then, using the fact that there are few
{u, v}-sparse cells, we will find suitable edges of H that can be added to the
cycles in such a way that we obtain a unique cycle on the same vertex set as the
original cycles. To complete the proof, we can again use the fact that there are
few {u, v}-sparse cells to incorporate all vertices in sparse cells into the cycle,
again using some edges of H for this purpose.

In practice, however, in order to guarantee that this process works, it is
better to proceed backwards. Indeed, first we are going to find paths which can
incorporate all vertices in sparse cells. For each sparse cell c (which contains
at least one vertex of H), we choose two vertices u and v in the cell (distinct
whenever possible) and choose a {u, v}-dense cell c′ which is also dense. By the
definition of {u, v}-dense, we can find a path in Gd(n, r) with endpoints in c′

which contains all vertices in c. Moreover, since there are “few” sparse cells, we
can do this in such a way that all the cells c′ are distinct.

We define the edges that will be used to connect the different components
similarly. Indeed, for each component of Γ , we choose a cell c that lies in this
component and two vertices u, v ∈ V (H) that lie in this cell. Then, we choose
an arbitrary {u, v}-dense cell c′ which lies in a different component of Γ . Using
the fact that Γ has few components, we can make sure that all the cells c and c′

that are picked are distinct, and distinct from those we picked for sparse cells.
For each dense cell c or c′ that we have picked in the previous steps, we have

chosen exactly two edges of H incident to two vertices in this cell, say, w and x.
Now, assume we can find a set of cycles, each of which covers all vertices in the
cells of a component of Γ , with the added property that, for all cells c and c′ that
we picked in the previous steps, we can ensure that the vertices w and x form an
edge in the cycle. Then, we can replace these edges by the corresponding edges
of H and paths containing vertices in sparse cells to obtain a Hamilton cycle.

To complete the proof, it suffices to find such a set of cycles. For each com-
ponent of Γ , we first find a spanning tree T of the component. Then we consider
a traversal of the tree that goes through every edge of the tree twice and returns
to the starting vertex (e.g., by a depth-first search). To build the cycle, we pick
a vertex in the first cell of the traversal. Then, for each subsequent cell of the
traversal, we pick an arbitrary vertex in the cell which has not been covered yet.
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If the previous cell will be visited again at some point in the traversal, we add
an edge joining the newly chosen vertex to the last vertex of the path we have
built so far. Otherwise, we build a path that connects the two desired vertices
while including all vertices in the previous cell which had not been covered yet.
Here, we make sure that, if the current cell contains a pair of vertices w and x
as above, we incorporate wx to the path. The same approach allows to close this
path into a cycle at the end. This step can be carried out because Δ(T ) < 5d, so
no cell will appear in the traversal more than 5d times, and since all these cells
are dense, they contain sufficiently many vertices. It is also here that we use the
fact that all cells c or c′ are distinct. 	


3 Hamiltonicity of Graphs Perturbed by a Random
Regular Graph

A graph is regular if all its vertices have the same degree, and a random d-regular
graph on n vertices Gn,d is a graph chosen uniformly at random from the set of
all such graphs. It is well known by now that, for each 3 ≤ d ≤ n− 1, a.a.s. Gn,d

is Hamiltonian [4,10,13,14]. We thus focus on randomly perturbed graphs for
the two remaining values of d, and show that each case behaves quite differently.

Theorem 3 ([7]). Let α = ω((log n/n)1/4). Let H be an n-vertex graph with
δ(H) ≥ αn. Then, a.a.s. H ∪ Gn,2 is Hamiltonian.

Theorem 4 ([7]). For all ε > 0, if α := (1 + ε)(
√

2 − 1) and H is an n-vertex
graph with δ(H) ≥ αn, then a.a.s. H ∪ Gn,1 is Hamiltonian.

Theorem 4 is best possible. Indeed, for every α <
√

2 − 1, there exist graphs
H with δ(H) ≥ αn such that H ∪ Gn,1 is not a.a.s. Hamiltonian. The main
extremal construction for this lower bound is a complete unbalanced bipartite
graph. One key feature of this example is that H does not contain a very large
matching. Indeed, when we further impose that H contains an (almost) perfect
matching, we can obtain the following result analogous to Theorem 3.

Theorem 5 ([7]). Let α = ω((log n/n)1/4). Assume that H is an n-vertex graph
with δ(H) ≥ αn which contains a matching M which covers n− o(α2n) vertices.
Then, a.a.s. H ∪ Gn,1 is Hamiltonian.

Theorems 3 and 5 have analogous proofs. Here, for simplicity, we sketch the
proof of the slightly weaker Proposition 1. The proofs of Theorems 3 and 5 follow
the same ideas, although with some modifications which are needed to deal with
smaller degrees.

Proposition 1. Let α = ω((log n/n)1/6). Let H be an n-vertex graph with
δ(H) ≥ αn. Then, a.a.s. H ∪ Gn,2 is Hamiltonian.

Proof (sketch). Note that G = Gn,2 is, by definition, a union of vertex disjoint
cycles. We first show that the following two properties hold a.a.s.
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(P1) G contains at most log2 n cycles.
(P2) For every pair of vertices (x, y) ∈ V (H) × V (H), the set NH(x) contains

at least α3n/4 vertices z such that NG(z) ⊆ NH(y).

In order to prove these properties, we rely on the configuration model (this is
a well-studied model for generating random regular graphs). By considering a
particular order in which to choose edges in this model, we can define a random
variable that counts the number of components and is easy to analyse. In par-
ticular, we can derive (P1) from the expectation of this variable, together with
Markov’s inequality. The second property does not follow quite so easily, but can
be obtained by making use of Azuma’s inequality. We remark that the bound
on α in the statement is in place so that (P2) holds.

We can now follow an iterative process to obtain a Hamilton cycle. First,
choose an arbitrary cycle of G and remove one of its edges, so that we are left
with a graph which consists of a path and several cycles, all vertex disjoint. In
each step of the process, we will obtain a longer path by incorporating all the
vertices of (at least) one of the cycles. In order to do so, we will rely on (P2) to
replace some edges of G by some edges of H. We proceed as follows.

While the graph we are considering has at least two components, we let x
be an endpoint of the path and let y be an arbitrary vertex outside the path.
Then, we can choose some vertex z which satisfies the property described in
(P2). By this property, we can construct a new path that contains all vertices of
the original path and all vertices of the component containing y. There are three
cases to consider here (z lies in the path, z lies in the same component as y, or
z lies in a distinct component), but a quick analysis of each shows that this is
possible. By repeating this process, in at most log2 n steps (see (P1)) we end up
with a graph which consists of a Hamilton path. We then apply (P2) once more,
with x and y being both endpoints of the path, to obtain a Hamilton cycle.

We remark that, while following the iterative process above, the number of
vertices z as described in (P2) that we can use will decrease; crucially, since (P1)
means we only need to iterate at most log2 n times, we can guarantee that at
least one choice for z remains in each step. 	


The proof of Theorem 4 follows similar ideas, but is a lot more technical, in
part due to the fact that we obtain the optimal bound on α; thus, in the sketch
that we provide, we will be more vague than in the previous sketches. More
precisely, we rely on some structural properties of graphs with linear minimum
degree which do not contain an almost spanning matching (otherwise, the proof
is covered by Theorem 5). These properties are captured by the following lemma.

Lemma 1 ([7]). Let 1/n  β < α/2 < 1/4. Let H be an n-vertex graph with
δ(H) ≥ αn which does not contain a matching of size greater than (n − √

n)/2.
Then, the vertex set of H can be partitioned into sets A ∪̇ B1 ∪̇ B2 ∪̇ C1 ∪̇ C2 ∪̇ R
in such a way that the following hold:

(H1) |A| ≤ 12β−2;
(H2) |B1| = |B2|, H[B1, B2] contains a perfect matching and, for every v ∈

B2 ∪ R, we have eH(v,B1) ≥ (α − 2β)n, and
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(H3) |C1| = |C2| and either C1 is empty or G[C1, C2] contains a perfect match-
ing; furthermore, for all v ∈ C2 we have eH(v,B2 ∪ R) ≤ β−1 + 1.

Proof (Sketch of the Proof of Theorem 4). We first consider a partition of H as
described by Lemma 1. Among other properties, for all v ∈ R ∪ B2 ∪ C2 we can
show that the number of edges between v and B1 is large (at least n/5), and
each pair of vertices x, y ∈ R∪B2 have linearly many common neighbours in B1.

Consider the matching M which is the union of those spanned by B1 and B2,
and C1 and C2. We first prove that M ∪ Gn,1 a.a.s. satisfies certain important
properties (namely, it contains at most log2 n cycles, few edges belong to both
M and Gn,1, and it satisfies an edge distribution property somewhat akin to
(P2) from the proof of Proposition 1). Furthermore, we can show that a.a.s., for
each pair of vertices x, y ∈ R ∪ B2, their common neighbourhood in B1 spans
many edges of Gn,1: more than |R|/2, which is roughly the number of paths in
M ∪ Gn,1. This is a crucial property in showing the optimal bound on α.

For the rest of the proof, we show that, by using edges of H, the paths and
cycles of M ∪ Gn,1 can be modified into a set of paths all whose endpoints lie
in R ∪ B2. Then, using the properties that we have shown for these vertices
(mainly about the number of edges in the common neighbourhood of any pair of
such vertices), we can iteratively combine the paths into a single spanning path,
which we eventually turn into a cycle. 	


References

1. Balogh, J., Bollobás, B., Krivelevich, M., Müller, T., Walters, M.: Hamilton cycles
in random geometric graphs. Ann. Appl. Probab. 21, 1053–1072 (2011)

2. Bohman, T., Frieze, A., Martin, R.: How many random edges make a dense graph
Hamiltonian? Random Struct. Algorithms 22, 33–42 (2003)

3. Condon, P., Espuny Dı́az, A., Girão, A., Kühn, D., Osthus, D.: Hamiltonicity of
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Abstract. We show that for d ≥ d0(ε), with high probability, the size of
a largest induced cycle in the random graph G(n, d/n) is (2 ± ε)n

d
log d.

This settles a long-standing open problem in random graph theory.

Keywords: Random graph · Induced path · Hole · Second moment
method

1 Introduction

Let G(n, p) denote the binomial random graph on n vertices, where each edge is
included independently with probability p. We are concerned here with induced
subgraphs of G(n, p), specifically trees, forests, paths and cycles.

The study of induced trees in G(n, p) was initiated by Erdős and Palka [7]
in the 80s. Among other things, they showed that for constant p, with high
probability (whp) the size of a largest induced tree in G(n, p) is asymptotically
equal to 2 logq(np), where q = 1

1−p . The obtained value coincides asymptotically
with the independence number of G(n, p), the study of which dates back even
further to the work of Bollobás and Erdős [2], Grimmett and McDiarmid [13]
and Matula [18].

As a natural continuation of their work, Erdős and Palka [7] posed the prob-
lem of determining the size of a largest induced tree in sparse random graphs,
when p = d/n for some fixed constant d. More precisely, they conjectured that
for every d > 1 there exists c(d) > 0 such that whp G(n, p) contains an induced
tree of order at least c(d) ·n. This problem was settled independently in the late
80s by Fernandez de la Vega [8], Frieze and Jackson [12], Kučera and Rödl [15]
as well as �Luczak and Palka [17]. In particular, Fernandez de la Vega [8] showed
that one can take c(d) ∼ log d

d , and a simple first moment calculation reveals
that this is tight within a factor of 2.

Two natural questions arise from there. First, one might wonder whether it
is possible to find not only some arbitrary induced tree, but a specific one, say a
long induced path. Indeed, Frieze and Jackson [11] in a separate paper showed
that whp there is an induced path of length c̃(d) · n. Two weaknesses of this
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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result were that their proof only worked for sufficiently large d, and that the
value obtained for c̃(d) was far away from the optimal one. Later, �Luczak [16]
and Suen [21] independently remedied this situation twofold. They proved that
an induced path of length linear in n exists for all d > 1, showing that the
conjecture of Erdős and Palka holds even for induced paths. Moreover, they
showed that one can take c̃(d) ∼ log d

d as in the case of arbitrary trees.
A second obvious question is to determine the size of a largest induced tree

(and path) more precisely. The aforementioned results were proved by analysing
the behaviour of certain constructive algorithms which produce large induced
trees and paths. The value log d

d seems to constitute a natural barrier for such
approaches. On the other hand, recall that in the dense case, the size of a largest
induced tree coincides asymptotically with the independence number. In 1990,
Frieze [10] showed that the first moment bound ∼ 2n

d log d is tight for the inde-
pendence number, also in the sparse case. His proof is based on the profound
observation that the second moment method can be used even in situations where
it apparently does not work, if one can combine it with a strong concentration
inequality. Finally, in 1996, Fernandez de la Vega [9] observed that the earlier
achievements around induced trees can be combined with Frieze’s breakthrough
to prove that the size of a largest induced tree is indeed ∼ 2n

d log d. This com-
plements the result of Erdős and Palka [7] in the dense case. (When p = on(1),
we have 2 logq(np) ∼ 2n

d log d.)
Fernandez de la Vega [9] also posed the natural problem of improving the

�Luczak–Suen bound [16,21] for induced paths, for which his approach was
“apparently helpless”. Despite the widely held belief (see [3,6] for instance) that
the upper bound ∼ 2n

d log d obtained via the first moment method is tight, the
implicit constant 1 has not been improved in the last 30 years.

2 Long Induced Paths

Our main result is the following, which settles this problem and gives an asymp-
totically optimal result for the size of a largest induced path in G(n, p).

Theorem 1. For any ε > 0 there is d0 such that whp G(n, p) contains an
induced path of length at least (2 − ε)nd log d whenever d0 ≤ d = pn = o(n).

For the sake of generality, we state our result for a wide range of functions d =
d(n). However, we remark that the most interesting case is when d is a sufficiently
large constant. In fact, for dense graphs, when d ≥ n1/2 log2 n, more precise
results are already known (cf. [6,19]).

Some of the earlier results [6,11,16] are phrased in terms of induced cycles
(holes). Using a simple sprinkling argument, one can see that aiming for a cycle
instead of a path does not make the problem any harder.

We briefly explain our strategy. Roughly speaking, the idea is to find a long
induced path in two steps. First, we find many disjoint paths of some chosen
length L, such that the subgraph consisting of their union is induced. To achieve
this, we generalize a recent result of Cooley, Draganić, Kang and Sudakov [3]
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who obtained large induced matchings. We will discuss this further in Sect. 3.
Assuming now we can find such an induced linear forest F , the aim is to connect
almost all of the small paths into one long induced path, using a few additional
vertices. As a “reservoir” for these connecting vertices, we find a large indepen-
dent set I which is disjoint from F . To model the connecting step, we give each
path in F a direction, and define an auxiliary digraph whose vertices are the
paths, and two paths (P1, P2) form an edge if there exists a “connecting” vertex
a ∈ I that has some edge to the last εL vertices of P1 and some edge to the first
εL vertices of P2, but no edge to the rest of F . Our goal is to find an almost
spanning path in this auxiliary digraph. Observe that this will provide us with a
path in G(n, p) of length roughly |F |. The intuition is that the auxiliary digraph
behaves quite randomly, which gives us hope that, even though it is very sparse,
we can find an almost spanning path (see e.g. [14]).

Crucially, we do not perform this connecting step in the whole random graph.
This is because ensuring that the new connecting vertices are only connected to
two vertices of F is too costly, making the auxiliary digraph so sparse that
it is impossible to find an almost spanning path. Instead, we use a sprinkling
argument, meaning that we view G(n, p) as the union of two independent random
graphs G1 and G2, where the edge probability of G2 is much smaller than p. We
then reveal the random choices in several stages. When finding F and I as above,
we make sure that there are no G1-edges between F and I. Then, in the final
connecting step, it remains to expose the G2-edges between F and I, with the
advantage that now the edge probability is much smaller.

3 Induced Forests with Small Components

As outlined above, in the first step of our argument, we seek an induced linear
forest whose components are reasonably long paths. For this, we generalize a
recent result of Cooley, Draganić, Kang and Sudakov [3]. They proved that
whp G(n, p) contains an induced matching with ∼ 2 logq(np) vertices, which is
asymptotically best possible. They also anticipated that using a similar approach
one can probably obtain induced forests with larger, but bounded components.
As a by-product, we confirm this. To state our result, we need the following
definition. For a given graph T , a T -matching is a graph whose components
are all isomorphic to T . Hence, a K2-matching is simply a matching, and the
following for T = K2 implies the main result of [3].

Theorem 2. For any ε > 0 and tree T , there exists d0 > 0 such that whp
the order of the largest induced T -matching in G(n, p) is (2 ± ε) logq(np), where
q = 1

1−p , whenever
d0
n ≤ p ≤ 0.99.

We use the same approach as in [3], which goes back to the work of Frieze [10]
(see also [1,20]). The basic idea is as follows. Suppose we have a random variable
X and want to show that whp, X ≥ b − t, where b is some “target” value and
t a small error. For many natural variables, we know that X is “concentrated”,
say P [|X − E [X] | ≥ t/2] < ρ for some small ρ. This is the case for instance
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when X is determined by many independent random choices, each of which
has a small effect. However, it might be difficult to estimate E [X] well enough.
But if we know in addition that P [X ≥ b] ≥ ρ, then we can combine both
estimates to P [X ≥ b] > P [X ≥ E [X] + t/2], which clearly implies that b ≤
E [X] + t/2. Applying now the other side of the concentration inequality, we
infer P [X ≤ b − t] ≤ P [X ≤ E [X] − t/2] < ρ, as desired.

In our case, say X is the maximum order of an induced T -matching in G(n, p).
Since adding or deleting edges at any one vertex can create or destroy at most
one component, we know that X is |T |-Lipschitz and hence concentrated. Using
the above approach, it remains to complement this with a lower bound on the
probability that X ≥ b. Introduce a new random variable Y which is the number
of induced T -matchings of order b (a multiple of |T |). Then we have X ≥ b
if and only if Y > 0. The main technical work is to obtain a lower bound
for the probability of the latter event using the second moment method. We
note that by applying the second moment method to labelled copies (instead
of unlabelled copies as in [3]) the proof becomes shorter even in the case of
matchings. More crucially, it turns out that one can even find induced forests
where the component sizes can grow as a function of d, which we need in the
proof of Theorem 1 (specifically, we need L � log d). This is provided by the
following auxiliary result.

Lemma 1. For any ε > 0, there exists d0 > 0 such that whp G(n, p) contains
an induced linear forest of order at least (2− ε)p−1 log(np) and component paths
of order d1/2/ log4 d, whenever d0 ≤ d = np ≤ n1/2 log2 n.

4 Concluding Remarks

In [3] it is conjectured that one should not only be able to find an induced path
of size ∼ 2n

d log d, but any given bounded degree tree. For dense graphs, when
d = ω(n1/2 log n), this follows from the second moment method (see [5]). On the
contrary, the sparse case seems to be more difficult, mainly because the vanilla
second moment method does not work. However, Dani and Moore [4] demon-
strated that one can actually make the second moment method work, at least
for independent sets, by considering a weighted version. This even gives a more
precise result than the classical one due to Frieze [10]. It would be interesting to
find out whether this method can be adapted to induced trees.
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On 13-Crossing-Critical Graphs
with Arbitrarily Large Degrees
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Abstract. A surprising result of Bokal et al. proved that the exact min-
imum value of c such that c-crossing-critical graphs do not have bounded
maximum degree is c = 13. The key to the result is an inductive con-
struction of a family of 13-crossing-critical graphs with many vertices
of arbitrarily high degrees. While the inductive part of the construc-
tion is rather easy, it all relies on the fact that a certain 17-vertex base
graph has the crossing number 13, which was originally verified only by
a machine-readable computer proof. We now provide a relatively short
self-contained computer-free proof.

Keywords: Graph · Crossing number · Crossing-critical families

1 Introduction

The crossing number cr(G) of a graph G is the minimum number of (pairwise)
edge crossings in a drawing of G in the plane. To resolve ambiguity, we consider
drawings of graphs such that no edge passes through another vertex and no three
edges intersect in a common point which is not their end. A crossing is then an
intersection point of two edges that is not a vertex, and we always assume a
finite number of crossings. A graph G is c-crossing-critical if cr(G) ≥ c, but for
every edge e of G we have cr(G − e) < c (i.e., the crossing number drops down
in every proper subgraph).

There are two 1-crossing-critical graphs up to subdivisions, K5 and K3,3,
but for every c ≥ 2 there exists an infinite number of c-crossing-critical graphs,
see Kochol [5]. A natural interesting question about c-crossing-critical graphs,
first asked by Richter in 2013, is whether they have maximum degree bounded
in c. A surprising negative answer has been implicitly confirmed by Dvořák and
Mohar [4] in 2010, but no explicit examples were known until a significantly
more recent exhaustive work of Bokal et al. [1] in 2019:

Theorem 1 (Bokal, Dvořák, Hliněný, Leaños, Mohar and Wiedera [1])

a) For each 1 ≤ c ≤ 12, there exists a constant Dc such that every c-crossing-
critical graph has vertex degrees at most Dc.
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Fig. 1. The inductive construction of 13-crossing-critical graphs from Theorem 1 (note
that all 13 depicted crossings are only between the blue edges). The edge labels in the
picture represent the number of parallel edges between their end vertices (e.g., there
are 7 parallel edges between x1 and x2). Figure (a) defines the base graph G13 of the
construction, and (b) outlines the general construction which arbitrarily duplicates the
two “wedge” shaped gray subgraphs of G13 and the gray vertices x1, x2.

b) For each c ≥ 13 and every integers m, d, one can construct a c-crossing-
critical graph which has more than m vertices of degree at least d.

Due to space restrictions, we have to refer the readers to [1,3] for a more
detailed general discussion of crossing-critical graphs and their properties.

The (now improved) critical construction of Theorem 1(b) is outlined for c =
13 in Fig. 1. Figure 1(a) defines the 17-vertex 13-crossing-critical (multi)graph
G13 which is the base graph of the full inductive construction. One can see in [1]
that the proof of Theorem 1(b) follows straightforwardly (using induction) from
the fact that cr(G13) ≥ 13. However, for the latter fact only a machine-readable
computer proof is provided in [1]; the proof is based on an ILP branch-and-cut-
and-price routine [2] with about a thousand cases of up to hundreds of constraints
each. Our goal is to provide a much simpler handwritten proof.

Theorem 2 (a computer-free alternative to Theorem 1(b)). cr(G13) ≥ 13.
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2 Analyzing Optimal Drawings of G13

We divide the proof of Theorem 2 into two steps. We call red the edges of G13

(Fig. 1(a)) which form the path with multiple edges on (u5, u4, u3, u2, u1, x1, x2,
v1, v2, v3, v4, v5), and we call blue the edges {ui, vj} where i, j ∈ {1, 2, 3, 4}.

(1) We will first show that there is an optimal drawing (i.e., one minimizing the
number of crossings) of G13 such that no red edge crosses a red or a blue
edge. Note that blue–blue crossings are still allowed (and likely to occur).

(2) While considering drawings as in the first point, we will focus only on
selected crossings (roughly, those involving a blue edge), and prove at least
13 of them, or at least 12 with the remaining drawing still being non-planar.

We start with some basic facts about the crossing number.

Proposition 1 (folklore). a) If D is an optimal drawing of a graph G, then two
edges do not cross more than once, and not at all if sharing a common end.
b) If e and f are parallel edges in G (i.e., e, f have the same end vertices), then
there is an optimal drawing of G in which e and f are drawn “closely together”,
meaning that they cross the same other edges in the same order.

In view of Proposition 1(b), we adopt the following view of multiple edges:
If the vertices u and v are joined by p parallel edges, we view all p of them as
one edge f of weight p. If (multiple) edges f and g of weights p and q cross each
other, then their crossing naturally contributes the amount of p · q to the total
number of crossings. With help of the previous, we now finish the first step:

Lemma 1. There exists an optimal drawing of the graph G13 in which no red
edge crosses a red or a blue edge, or cr(G13) ≥ 13.

Proof. Let D be an optimal drawing of G13 with less than 13 crossings. By Propo-
sition 1, if two red edges cross in D, then it can only be that an edge from
{u5u4, u4u3, u3u2} crosses an edge from {v5v4, v4v3, v3v2}, which gives 3·3 = 9 or
3 ·4 = 12 crossings. Consider the edge-disjoint cycles C1 = (u5, u4, u3, u2, u1, x1)
and C2 = (u5, u4, u3, u2, u1, x1, w

1
1), and symmetric C ′

1 = (v5, . . . , v1, x1),
C ′

2 = (v5, . . . , v1, x1, w
1
1). Since C1, C2 transversely cross C ′

1, C
′
2, they must cross

a second time by the Jordan curve theorem, giving additional 2 ·2 = 4 crossings.
Hence D had at least 9 + 4 = 13 crossings, and cr(G13) ≥ 13.

It remains to get rid of possible red–blue crossings in D. Assume first that
the red edge x1x2 (weight 7) is crossed by a blue edge e. If e is of weight 2, then
D has 14 crossings. Hence, up to symmetry, e = u3v2. We redraw e tightly along
the path P = (u3, u4, v1, v2), saving 7 crossings on x1x2, and newly crossing
u4v1 (possibly) and p edges which cross P in D. If p ≥ 3, there are already
7 + p · 2 ≥ 13 crossings in D. Otherwise, redrawing e makes only p + 2 ≤ 4 new
crossings, contradicting optimality of D.

In the rest, we iteratively remove possible red–blue crossing without increas-
ing the total numer of crossings, until we reach a desired optimal drawing of G13.
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Assume in D that a red edge v3v4 (or, symmetrically u4u3) is crossed by
blue e, and this is the blue crossing on v3v4 closest to v3. In this case, e has one
end w ∈ {v1, v2}. Instead of crossing v3v4 (saving 3 crossings), we redraw part
of e tightly along the path (v3, v2, v1) to the end w, while possibly crossing blue
v3u2, v2u3 (if w = v1), and other r edges which in D cross red v3v2 or v2v1.
If r ≥ 3, we already had r · 4 + 3 ≥ 15 crossings in D. If r ≥ 2 and e = v1u4

(weight 2), we had r · 4+ 3 · 2 ≥ 14 crossings in D. Otherwise, redrawn e crosses
at most 3 new edges, and so we have no more crossings than in D.

Finally, if the red edge v4v5 is crossed by blue e in D, then we “pull” the end
v5 along v4v5 towards v4 across e. This replaces the crossing of e with v4v5 of
weight 4 by 4 crossings with the non-red edges of v5, so again no more crossings
than in D. If red v3v2 (v2v1, or v1x2) is crossed by blue e in D, we similarly
“pull” along the red edges v3 towards v2 (v2, v3 towards v1, or v1, v2, v3 towards
x2). This replaces the original crossing of e with red by crossings of e with v3v4
and v3u2 (plus v2u3 or plus v2u3, v1u4), but the total number of crossings stays
the same as in D. Then we redraw the crossing of e and v3v4 as above. ��

3 Counting Selected Crossings in a Drawing of G13

In the second step, we introduce two additional sorts of edges of G13. The edges
u5x1 and v5x2 are called green, and all remaining edges of G13. Let G0 denote
the subgraph of G13 formed by all red and gray edges and the incident vertices.
Let R denote the (multi)path of all red edges.

Lemma 2. Let D be an optimal drawing of G13 as claimed by Lemma 1. If the
subdrawing of G0 within D is planar, then D has at least 13 crossings.

Proof (a sketch). There are only two non-equivalent planar drawings of G0, as
in Fig. 2. We picture them with the red path R drawn as a horizontal line. We
call a blue edge of G13 bottom if it is attached to R from below at both ends,
and top if attached from above at both ends. A blue edge is switching if it is
neither top nor bottom. Note that we have only crossings involving a green edge,
or crossings of a blue edge with a blue or gray edge.

If G0 is drawn as in Fig. 2(a), by the Jordan curve theorem, we deduce:

(I) If a blue edge e is bottom (top), and a blue edge e′ �= e attaches to R from
below (from above) at its end which is between the ends of e on R, then e
and e′ cross. In particular, two bottom (two top) blue edges always cross.

(II) A top (switching) blue edge crosses at least 4 (at least 3) gray edges.
(III) If there is weight k of top (or switching) blue edges and weight � of bottom

blue edges, then each (or at least one) green edge must cross min(k, �) ≤ 3
blue or red edges.

Say, if all blue edges are bottom, they pairwise give desired
(
6
2

) − 2 = 13
crossings by (I). If one of blue u4v1, u1v4 is top (or switching) and all other blue
edges are bottom, we get at least 5+2 ·4+4 = 17 crossings (or 5+2 ·3+2 = 13
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crossings) by the claims (I), (II) and (III) in this order. If one of u3v2, u2v3 is
top (or switching) and all other blue are bottom, we similarly get 8+4+2 = 14
crossings (or 10 + 3 + 1 = 14 crossings) by (I),(II),(III), and so on. One may
solve all other cases using the same arguments, and we omit the details here.

Consider the drawing of G0 as in Fig. 2(b). Now a top or bottom blue edge
must cross at least 2 gray edges, and a switching blue edge at least 3 gray edges.
Hence we get 13 crossings, unless all blue edges are top or bottom, giving 6·2 = 12
blue-gray crossings. Though, then we get another blue crossing as in (I). ��

a)

2

2 2

2

b)

2

2 2

2

Fig. 2. Schematically, the two non-equivalent planar drawings of the subgraph G0 (red
and gray) of G13. This is used in the proof of Lemma 2.

We now focus on the following selected crossings in a drawing of G13: a refined
crossing is one in which a blue edge crosses a gray or green edge, or two blue
edges cross each other.

Lemma 3. Let D be a drawing of G13 as claimed by Lemma 1. If no red edge
is crossed in D, then D contains 12 refined crossings or at least 13 crossings.

Proof (a sketch). We again picture the red path R as a straight horizontal line,
and use terms top/bottom/switching for blue edges as in the proof of Lemma 2.
Then we consider the following six pairwise edge-disjoint gray and green paths:
P1 (of length 2) and P2 (of length 6) join u5 to v5 via w2

2, Q1 and Q′
1 are formed

by the edges u5x1 and v5x2, and Q2, Q
′
2 (of length 2) join u5 to x1 via w1

1 and
v5 to x2 via w2

4. Using the Jordan curve theorem (cf. Fig. 1), we deduce:

(I′) The same claim as (I) in the proof of Lemma 2 applies here.
(II′) If a blue edge e is switching, then e adds a refined crossing on each of P1

and P2.
(III′) If the sum of weights of the blue edges attached to u1, u2, u3, u4 on R from

below is k (and 6 − k from above), then each of Q1, Q2 (symmetrically,
Q′

1, Q
′
2) carries at least min(k, 6 − k) crossings with blue edges in D.

Now it remains to examine all combinations of the blue edges being top/
bottom/switching, and in each one use the above claims to argue that D contains
at least 12 pairwise distinct refined crossings. E.g., if u3v2 is top, u2v3 is switching



On 13-Crossing-Critical Graphs 55

and both u1v4, u4v1 are bottom, then we get by (I′) 2 · 2 = 4 crossings, by (II′)
additional 2 crossings and by (III′) additional 2 · (1 + 2) = 6 crossings. We omit
the remaining routine technical details here. ��

We can finish our self-contained computer-free proof of cr(G13) ≥ 13:

Proof (of Theorem 2). Let D be an optimal drawing of G13 satisfying the con-
clusion of Lemma 1. Thanks to Lemma 2, we may assume that the subdrawing
of G0 within D is not planar. If the red edges of G0 are not crossed, we have a
crossing of two gray edges of G0 in D and 12 more refined crossings by Lemma 3,
altogether 13 crossings.

If some red edge is crossed in a point x by a gray or green edge g (since g is
not blue by Lemma 1), we redraw g as follows: Up to symmetry, let x be closer
(or equal) to v5 than to u5 on R. We cut the drawing of g at x and route both
parts of g closely along their side of the drawing of R, until we rejoin them at the
end v5. This redrawing D′ saves � ∈ {3, 4, 5, 7} crossings of g at x, and creates
at most �− 1 new refined crossings only between g and the blue edges ending on
R between x and v5, as one can check in Fig. 1. (We possibly repeat the same
procedure for other crossings of red edges in D.)

We now apply Lemma 3 to D′, finding at least 12 refined crossings. Hence,
D contained at least 12 − (� − 1) refined crossings and � other crossings at x,
summing again to 13. ��

4 Conclusion

With the computer-free proof of Theorem 2, we have completed a thorough study
of high and possibly unbounded vertex degrees in c-crossing-critical graphs. Still,
there is an unanswered secondary question about what exact high degrees can
be achieved, say, for c = 13. Looking at the construction in Fig. 1, we see that
the two vertices x1 and x2 can attain any odd degree at least 17, and possible
additional vertices on the red path between x1 and x2 (in the expanded con-
struction) can attain any combination of even degrees at least 16, independently
of each other. A slight modification of this construction of 13-crossing-critical
graphs allowing for any combination of arbitrarily many even and odd degrees
is the subject of our continuing research.
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1. Bokal, D., Dvořák, Z., Hliněný, P., Leaños, J., Mohar, B., Wiedera, T.: Bounded
degree conjecture holds precisely for c-crossing-critical graphs with c ≤ 12. In:
Symposium on Computational Geometry. LIPIcs, vol. 129, pp. 14:1–14:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019). Full and improved version on
arXiv:1903.05363

2. Chimani, M., Wiedera, T.: An ILP-based proof system for the crossing number
problem. In: ESA 2016. LIPIcs, vol. 57, pp. 29:1–29:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016)

http://arxiv.org/abs/1903.05363
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Abstract. We describe the asymptotic local shape of a graph drawn uni-
formly at random from all connected simple planar graphs with n labelled
vertices. We establish a novel uniform infinite planar graph (UIPG) as
quenched limit in the local topology as n tends to infinity. We also estab-
lish such limits for random 2-connected planar graphs and maps as their
number of edges tends to infinity. Our approach encompasses a new prob-
abilistic view on the Tutte decomposition. This allows us to follow the
path along the decomposition of connectivity from planar maps to planar
graphs in a uniformed way, basing each step on condensation phenomena
for random walks under subexponentiality, and Gibbs partitions. Using
large deviation results, we recover the asymptotic formula by Giménez
and Noy (2009) for the number of planar graphs.

Keywords: Planar graphs · Local convergence

A graph is planar if it may be drawn in the plane such that edges intersect
only at endpoints. The reader may consult the book by [23] for details of graph
embeddings on surfaces. We are interested in properties of the graph Pn selected
uniformly at random among all simple connected planar graphs with vertices
labelled from 1 to n. Here the term simple refers to the absence of loops and
multiple edges.

Properties of the random graph Pn have received increasing attention in
recent literature [3,5,10,11,16,21,27]. We refer the reader to the comprehensive
survey by [24] for a detailed account. Our main theorem shows that Pn admits
a local limit.1

Theorem 1. The uniform n-vertex connected planar graph Pn rooted at a uni-
formly selected vertex vn admits a distributional limit P̂ in the local topology.
We call P̂ the uniform infinite planar graph (UIPG). The regular conditional
law L((Pn, vn) | Pn) satisfies

L((Pn, vn) | Pn)
p−→L(P̂). (1)

1 The full version of the present extended abstract is available on the arXiv [29].
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The UIPG is a random infinite planar graph that is connected, locally finite
and has a root vertex. L(P̂) refers to its distribution, and L((Pn, vn) | Pn)
denotes the uniform measure on the n vertex-rooted versions of the graph Pn.
The so-called quenched convergence of random probability measures with respect
to the local topology in (1) means that for any integer r ≥ 1 and any finite
rooted connected planar graph H the proportion of vertices in Pn whose r-
neighbourhood is isomorphic to H concentrates around the probability for the r-
neighbourhood of the root of P̂ to be isomorphic to H. Here the r-neighbourhood
of a vertex refers to the subgraph induced by all vertices with graph distances
at most r from that vertex.

The root degree of the UIPG follows the asymptotic degree distribution of
Pn established by [10] and [27]. We may also prove a version of this theorem
(with a different limit object) where vn is chosen according to the stationary
distribution instead. That is, when vn instead assumes a vertex of Pn with prob-
ability proportional to its degree. By a celebrated result of [18, Thm. 1.1], this
implies that the UIPG is almost surely recurrent.

Several milestones in the proof of our main result are of independent inter-
est. For example, we prove local limits for 2-connected planar graphs and non-
separable planar maps. That is, planar graphs and maps without cutvertices.

Theorem 2. Let vB
n denote a uniformly selected vertex of the uniform 2-

connected planar graph Bn with n edges. There is a uniform infinite planar graph
B̂ with

L((Bn, vB
n ) | Bn)

p−→L(B̂). (2)

We call B̂ the uniform infinite 2-connected planar graph (UI2PG).

There is a natural coupling where P̂ is obtained from B̂ by attaching inde-
pendent and identically Boltzmann distributed connected vertex-marked planar
graphs at the non-root vertices of B̂, and a Boltzmann distributed doubly vertex-
marked connected planar graph at the root of B̂.

Theorem 3. Let vV
n denote a uniformly selected corner of the random non-

separable planar map Vn with n edges. There is uniform infinite planar map V̂
with

L((Vn, vV
n ) | Vn)

p−→L(V̂). (3)

We call V̂ the uniform infinite 2-connected planar map (UI2PM).

The degree distribution of the non-separable case has been studied by [12]. We
note that the local limit of a uniform random planar map (that is not required to
be non-separable) with n edges is known and called the uniform infinite planar
map (UIPM), see [4,7,22,28] (and also [2,19]). Our results entail that the UIPM
may be constructed from V̂ by attaching independent identically Boltzmann
distributed planar maps at each non-root corner, and a Boltzmann distributed
doubly corner rooted planar map at its root-corner.
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The methods we develop in order to prove our main result encompass a
novel probabilistic view on the Tutte decomposition of these objects. We do not
prove or build upon local convergence of uniform 3-connected planar maps and
graphs with n edges. This highly relevant result was established by [1] using a
different approach. As a further mayor application we recover a celebrated result
in enumerative combinatorics by Giménez and Noy:

Theorem 4 ([16, Thm. 1]). The number pn of labelled simple planar graphs
with n vertices satisfies the asymptotic expression

pn ∼ cGρ−n
C n−7/2n!, (4)

for some constants cG , ρC > 0 admitting expressions in terms of generating
series.

Giménez and Noy obtained this breakthrough result (resolving a history of
rougher estimates by [3,8,15,26]) by performing analytic integration and extend-
ing results by [3] on the number of 2-connected graphs. An approach employing
“combinatorial integration” was given by [6]. We reprove Eq. (4) by different
methods, without any integration step at all, deducing the asymptotic number
of connected graphs from the number of 2-connected graphs using results for the
big-jump domain by [9, Cor. 2.1] and properties of subexponential probability
distributions, see [14]. We emphasize that the approach by Giménez and Noy
additionally yields singular expansions for the involved generating series, and
our proof does not. Hence the methods of [16] yield stronger results, and the
methods employed here work under weaker assumptions.

Our main motivation for enhancing the toolset of enumerative combinatorics
is that important problems in the field remain open, in particular the enumer-
ation of unlabelled planar graphs. We believe that the approach we introduce
here is promising for tackling this problem.

Theorem 1 has applications concerning subgraph count asymptotics. By a
general result of [20, Lem. 4.3] and using the asymptotic degree distribution of
Pn established by [10], it follows that:

Corollary 1. For any finite connected graph H the number emb(H,Pn) of
occurrences of H in Pn as a subgraph satisfies

emb(H,Pn)
n

p−→E[emb•(H•, P̂)]. (5)

Here H• denotes any fixed vertex rooted version of H, and emb•(H•, P̂) counts
the number of root-preserving embeddings of H• into P̂.

The study of the number of pendant copies (or appearances) of a fixed graph
in Pn was initiated by [21], and a normal central limit theorem was established
by [17, Sec. 4.3]. The difficulty of studying emb(H,Pn) stems from the fact that
it requires us to look inside the giant 2-connected component of Pn, whereas
pendant copies lie with high probability in the components attached to it. It is
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natural to conjecture convergence to a normal limit law for the fluctuations of
emb(H,Pn) around nE[emb•(H•, P̂)] at the scale

√
n. Such a result has recently

been established for the number of triangles in random cubic planar graphs by
[25], and the number of double triangles in random planar maps by [13]. In light
of [20], it would be interesting to know whether such a central limit theorem
may be established in a way that applies to general sequences of random graphs
that are locally convergent in some strengthened sense.

1 Summary of Proof

Full proofs of all results are given on the arXiv version [29] of the present
manuscript, which has been submitted to a peer-reviewed journal. Here we give
a rough overview by summarizing the main steps in the proof of Theorem 1,
without going into any details.

A quenched local limit for the random planar map Mt
n with n edges and

weight t > 0 at vertices was established in [31]. We pass this convergence down
to a quenched limit for the non-separable core V(Mt

n). That is, the largest non-
separable submap of the map Mt

n. For this, we employ a quenched version of
an inductive argument discovered by [30, Thm. 6.59]. The idea is that we have
full information about the components attached to the core. The neighbourhood
of a uniformly selected corner of Mt

n gets patched together from a connected
component containing it, a neighbourhood in the core, and neighbourhoods in
components attached to the core neighbourhood. Expressing this yields a recur-
sive equation, which by an inductive arguments allows us to prove convergence
of V(Mt

n). It is important to note that V(Mt
n) has a random size, hence a priori

properties of V(Mt
n) do not carry over automatically to properties of the random

non-separable planar map Vt
n with n edges and weight t at vertices.

A planar network is a planar map with two distinguished vertices called the
south and north pole, such that adding an edge between the two poles yields a
non-separable network. Without this extra edge, the network may or may not be
non-separable. Both cases are admissible. A planar network is called non-serial,
if it cannot be expressed as a series composition of two networks, where the
north pole of the first gets identified with the south pole of second. We reduce
the study V(Mt

n) of the non-separable core to the study of non-serial networks by
showing that series networks admit a giant non-series component, with precise
limits for the small fragments.

We proceed to establish a novel fully recursive tree-like combinatorial encod-
ing for non-serial networks in terms of a complex construct that we call R̄-
networks. This allows us to generate a non-serial network by starting with a
random network R̄ where one edge is marked as “terminal”. The process pro-
ceeds recursively by substituting non-terminal edges by independent copies of
R̄ until only terminal edges are left. This allows us to deduce a local limit the-
orem for the number of edges in a giant R̄-core R̄(Mt

n) of the V-core V(Mt
n),

and implies that the network V(Mt
n) behaves like a network obtained from the

R̄-core R̄(Mt
n) by substituting all but a negligible number of edges by indepen-

dent copies of the Boltzmann distributed R̄-network R̄. If we choose any fixed
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number of corners independently and uniformly at random, the corresponding R̄-
components containing them will follow size-biased distributions by the famous
waiting time paradox. This gives us full information on the R̄-components in the
vicinity of these components. Since we substitute at edges, the resulting recursive
equation for the probability of neighbourhoods in V(Mt

n) to have a fixed shape
do not allow for the same inductive argument as before. The reason for this
problem is that the event for a radius r neighbourhood in V(Mt

n) to have a fixed
shape with k edges may correspond to configurations with more than k edges
in an r-neighbourhood in R̄(Mt

n), since components of edges between vertices
of distance r from the center do not always contribute to the r-neighbourhood
in V(Mt

n). We solve bis problem by abstraction, working with a more general
convergence determining family of events (instead of shapes of neighbourhoods
we look at shapes of what we call communities) that allows the induction step
to work.

Having arrived at a quenched local limit for the R̄-core, we deduce conver-
gence of what we call the Ō-core Ō(Mt

n) and is a randomly sized map obtained
from a 3-connected planar map by blowing up edges into paths. As we have a
local limit theorem at hand for the number of edges of Ō(Mt

n), we may transfer
properties of Ō(Mt

n) to other randomly sized Ō-networks satisfying a similar
local limit theorem (but with possibly different constants). For example, we may
define similarly the Ō-core Ō(Vt

n) of Vt
n. The quenched convergence of Ō(Mt

n)
transfers to quenched local convergence of Ō(Vt

n). The arguments we used to
pass convergence from V(Mt

n) to Ō(Mt
n) may be reversed to pass convergence

from Ō(Vt
n) to Vt

n, yielding a quenched local limit for Vt
n.

Whitney’s theorem ensures that we may group Ō-maps into pairs such that
each pair corresponds to a unique graph. We call such graphs O-graphs. Ō-
networks and O-graphs form the link between planar maps and planar graphs
in our proof.

Networks that encode 2-connected planar graphs differ from the networks
that encode 2-connected planar maps, since we do not allow multiple edges and
do not care about the order in parallel compositions. But guided by the fully
recursive decomposition for non-serial networks encoding maps, we establish
a somewhat more technical novel fully recursive decomposition for non-serial
networks encoding graphs. The price we have to pay is that this decomposition
is no longer isomorphism preserving. This constitutes no issue or downside for
the present work, which concerns itself exclusively with labelled planar graphs.
However, future applications to random unlabelled planar graphs will require
careful consideration and further study of how this step affects the symmetries.
The decomposition allows us to argue analogously as for planar maps. Hence
quenched local convergence of the random 2-connected planar graph Bt

n with n
edges and weight t at vertices follows from the corresponding convergence of a
giant O-core O(Bt

n), obtained via a transfer from the core Ō(Mt
n).

If we condition the 2-connected core of the random planar graph Pn to have
a fixed number m of edges, we do not obtain the uniform distribution on the
2-connected planar graphs with m edges. This effect does not go away as n and
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m tend to infinity. Instead, a result by [17] shows that the 2-connected core
has a vanishing total variational distance from a mixture of (Bt

n)n≥1 for the
special case of vertex weight t = ρB, the radius of convergence of the generating
series for 2-connected planar graphs. This allows us to deduce quenched local
convergence of the 2-connected core B(Pn) of the random connected planar graph
Pn. A quenched extension of a result by [30, Thm. 6.39] then yields quenched
convergence of Pn, completing the proof of Theorem 1.
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1 Introduction

Let G be a simple graph with vertex set V (G) = {1, 2, . . . , n} and edge set
E(G). For a given integer k such that 1 ≤ k ≤ n, the k-token graph Fk(G) of G
is the graph whose vertex set V (Fk(G)) consists of the

(
n
k

)
k-subsets of vertices

of G, and two vertices A and B of Fk(G) are adjacent whenever their symmetric
difference A � B is a pair {a, b} such that a ∈ A, b ∈ B, and {a, b} ∈ E(G);
see Fig. 1 for an example. Note that if k = 1, then F1(G) ∼= G; and if G is the
complete graph Kn, then Fk(Kn) ∼= J(n, k), where J(n, k) denotes a Johnson
graph [5]. The naming token graph comes from an observation by Fabila-Monroy,
Flores-Peñaloza, Huemer, Hurtado, Urrutia, and Wood [5], that vertices of Fk(G)
correspond to configurations of k indistinguishable tokens placed at distinct ver-
tices of G, where two configurations are adjacent whenever one configuration can
be reached from the other by moving one token along an edge from its current
position to an unoccupied vertex. Such graphs are also called symmetric k-th
power of a graph by Audenaert, Godsil, Royle, and Rudolph [2]; and n-tuple
vertex graphs in Alavi, Lick, and Liu [1]. The token graphs have some applica-
tions in physics. For instance, a connection between symmetric powers of graphs
and the exchange of Hamiltonian operators in quantum mechanics is given in [2].
They have also been considered in relation to the graph isomorphism problem,
see Rudolph [8].

In this work, we focus on the Laplacian spectrum of Fk(G) for any value
of k. Recall that the Laplacian matrix L(G) of a graph G is L(G) = D(G) −
A(G), where A(G) is the adjacency matrix of G, and D(G) is the diagonal
matrix whose non-zero entries are the vertex degrees of G. For a d-regular graph
G, each eigenvalue λ of L(G) corresponds to an eigenvalue μ of A(G) via the
relation λ = d−μ. In [3], Carballosa, Fabila-Monroy, Leaños, and Rivera proved
that, for 1 < k < n − 1, the k-token graph Fk(G) is regular only if G is the
complete graph Kn or its complement, or if k = n/2 and G is the star graph
K1,n−1 or its complement. Then, for most graphs, we cannot directly infer the
Laplacian spectrum of Fk(G) from the adjacency spectrum of Fk(G). In fact,
when considering the adjacency spectrum, we find graphs G whose spectrum is
not contained in the spectrum of Fk(G); see Rudolph [8]. Surprisingly, for the
Laplacian spectrum, this holds and it is our first result.

This extended abstract is organized as follows. In Sect. 2, we show that the
Laplacian spectrum of a graph G is contained in the Laplacian spectrum of its
k-token graph Fk(G). Besides, with the use of a new (n; k)-binomial matrix, we
give the relationship between the Laplacian spectrum of a graph G and that of
its k-token graph. In Sect. 3, we show that an eigenvalue of a k-token graph is
also an eigenvalue of the (k +1)-token graph for 1 ≤ k < n/2. Besides, we define
another matrix, called (n;h, k)-binomial matrix. With the use of this matrix, it
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Fig. 1. A graph G (left) and its 2-token graph F2(G) (right). The Laplacian spectrum
of G is {0, 2, 3, 4, 5}. The Laplacian spectrum of F2(G) is {0, 2, 32, 4, 53, 7, 8}.

is shown that, for any integers h and k such that 1 ≤ h ≤ k ≤ n
2 , the Laplacian

spectrum of Fh(G) is contained in the spectrum of Fk(G). Finally, in Sect. 4,
we obtain a relationship between the Laplacian spectra of the k-token graph of
G and the k-token graph of its complement G. This generalizes a well-known
property for Laplacian eigenvalues of graphs to token graphs.

For more information, not included in this extended abstract, see [4].

2 The Laplacian Spectra of Token Graphs

Let us first introduce some notation used throughout the paper. Given a graph
G = (V,E), we indicate with a ∼ b that a and b are adjacent in G. As usual, the
transpose of a matrix M is denoted by M�, the identity matrix by I, the all-1
vector (1, . . . , 1)� by 1, the all-1 (universal) matrix by J , and the all-0 vector
and all-0 matrix by 0 and O, respectively. Let [n] := {1, . . . , n}. Let

(
[n]
k

)
denote

the set of k-subsets of [n], the set of vertices of the k-token graph.
Our first theorem deals with the Laplacian spectrum of a graph G and its

k-token graph Fk(G).

Theorem 1. Let G be a graph and Fk(G) its k-token graph. Then, the Laplacian
spectrum (eigenvalues and their multiplicities) of G is contained in the Laplacian
spectrum of Fk(G).

Theorem 1 has a direct proof using token movements, and it can also be
obtained using the (n; k) binomial matrix B, defined in the following. Given
some integers n and k (with k ∈ [n]), we define the (n; k)-binomial matrix B.
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This is a
(
n
k

)×n matrix whose rows are the characteristic vectors of the k-subsets
of [n] in a given order. Thus, if the i-th k-subset is A, then

(B)ij =
{

1 if j ∈ A,
0 otherwise.

Lemma 1. The (n; k)-binomial matrix B satisfies

B�B =
(

n − 2
k − 1

)
I +

(
n − 2
k − 2

)
J .

Let G be a graph with n vertices and, for k ≤ n
2 , let Fk = Fk(G) be its k-token

graph. The following result gives the relationship between the corresponding
Laplacian matrices, L1 and Lk.

Theorem 2. Given a graph G and its k-token graph Fk, with corresponding
Laplacian matrices L1 and Lk, and (n; k)-binomial matrix B, the following
holds:

B�LkB =
(

n − 2
k − 1

)
L1. (1)

Corollary 1. Given a graph G, with G ∼= F1, and its k-token graph Fk, with
corresponding Laplacian matrices L1 and Lk, and (n; k)-binomial matrix B, the
following implications hold:

(i) If v is a λ-eigenvector of L1, then Bv is a λ-eigenvector of Lk.
(ii) If w is a λ-eigenvector of Lk and B�w �= 0, then B�w is a λ-eigenvector

of L1.

Corollary 2. (i) The Laplacian spectrum of L1 is contained in the Laplacian
spectrum of Lk.

(ii) Every eigenvalue λ of Lk, having eigenvector w such that B�w �= 0, is a
λ-eigenvector of L1.

3 A More General Result

In this section, we show a stronger result. Namely, for any 1 ≤ k < n/2, the
Laplacian spectrum of the k-token graph Fk(G) of a graph G is contained in the
Laplacian spectrum of its (k + 1)-token graph Fk+1(G).

A ‘local analysis’, based on token movements, is used to show that every
eigenvalue of Fk(G) is also an eigenvalue of Fk+1(G).

Theorem 3. Let G be a graph on n vertices. Let h, k be integers such that
1 ≤ h ≤ k ≤ n/2. If λ is an eigenvalue of Fh(G), then λ is an eigenvalue of
Fk(G).
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All previous results can be seen as consequences of the following matricial
formulation. First, we define, for some integers n, k1, and k2 (with 1 ≤ k1 <
k2 < n), the (n; k2, k1)-binomial matrix B = B(n; k2, k1). This is a

(
n
k2

) × (
n
k1

)

(0, 1)-matrix, whose rows are indexed by the k2-subsets A ⊂ [n], and its columns
are indexed by the k1-subsets X ⊂ [n]. The entries of B are

(B)AX =
{

1 if X ⊂ A,
0 otherwise.

The transpose of B = B(n; k2, k1) is known as the set-inclusion matrix, denoted
by Wk1,k2(n) (see, for instance, Godsil [7]).

Lemma 2. The matrix B satisfies the following simple properties.

(i) The number of 1’s of each column of B is
(
n−k1
k2−k1

)
.

(ii) The number of common 1’s of any two columns of B, corresponding to k2-
subsets of [n] whose intersection has k1 − 1 elements, is

(
n−k1−1
k2−k1−1

)
.

The new matrix B allows us to give the following result that can be seen as a
generalization of Theorem 2 (see also Corollary 3).

Theorem 4. Let G be a graph on n = |V | vertices, with k1- and k2-token graphs
Fk1(G) and Fk2(G), where 1 ≤ k1 ≤ k2 ≤ n. Let Lk1 and Lk2 be the respective
Laplacian matrices, and B the (n; k2, k1)-binomial matrix. Then, the following
holds:

BLk1 = Lk2B. (2)

Let us now see some consequences of this theorem. First, we get again The-
orem 2.

Corollary 3. With the same notation as before, the following holds.

(i) For every k1, k2 with 1 ≤ k1 ≤ k2 ≤ n,

B�Lk2B = B�BLk1 . (3)

(ii) For k1 = 1 and k2 = k,

B�LkB =
(

n − 2
k − 1

)
L1.

Since Fk(G) ∼= Fn−k(G) assume, without loss of generality, that 1 ≤ k1 ≤
k2 ≤ n

2 . Then, we have a generalization of Corollary 3.

Corollary 4. For any integers h, k such that 1 ≤ h ≤ k ≤ n
2 , let B be the

(n; k, h)-binomial matrix. Then, the eigenvalues and eigenvectors of the Lapla-
cian matrices of the token graphs Fh and Fk are related in the following way.

(i) If v is a λ-eigenvector of Lh, then Bv is a λ-eigenvector of Lk. Moreover,
the linear independence of the different eigenvectors is preserved. (That is,
the spectrum of Lh is contained in the spectrum of Lk.)
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(ii) If w is a λ-eigenvector of Lk and B�w �= 0, then B�w is a λ-eigenvector
of Lh. Moreover, all the eigenvalues, including multiplicities, of Lh are
obtained (that is, one eigenvalue each time that the above non-zero condition
is fulfilled).

In our context, Theorem 4 allows us to obtain the Laplacian matrix of Fh in
terms of the Laplacian matrix of Fk, provided that we know the binomial matrix
B(n; k, h) with its rows and columns in the right order (that is, the same order
as the columns of Lh and Lk, respectively). Indeed, in this case, (3) with k1 = h
and k2 = k leads to

Lh = (B�B)−1B�LkB. (4)

Notice that B�B is a Gram matrix of the columns of B, which are linearly
independent vectors and, hence, B�B is invertible.

Following with the simplified notation k1 = h and k2 = k, the result of
Theorem 4 can also be written in terms of the adjacency matrices Ah and Ak

of Fh and Fk, respectively. Then, we get

AkB − BAh = DkB − BDh, (5)

where Dh and Dk are the diagonal matrices with non-zero entries the degrees of
the vertices of Fh and Fk, respectively. Some consequences of this are obtained
when both Fh and Fk are regular.

Corollary 5. Assume that a graph G ≡ F1 and its k-token graph Fk are
d1-regular and dk-regular graphs, respectively. Let B be the (n; k, 1)-binomial
matrix. Let A and Ak be the respective adjacency matrices of G and Fk. If v is
a λ-eigenvector of A, then Bv is a μ-eigenvector of Ak, where μ = (dk−d1+λ).

4 A Graph, Its Complement, and Their Token Graphs

Let us consider a graph G and its complement G, with respective Laplacian
matrices L and L. We already know that the eigenvalues of G are closely related
to the eigenvalues of G, since L + L = nI − J . Hence, the same relationship
holds for the algebraic connectivity, see Fiedler [6].

Observe that the k-token graph of G is the complement of the k-token graph
of G with respect to the Johnson graph J(n, k) (the k-token graph of Kn), see
Carballosa, Fabila-Monroy, Leaños, and Rivera [3, Prop. 3]. Then, it is natural
to ask whether a similar relationship holds between the Laplacian spectrum of
the k-token graph of G and the Laplacian spectrum of the k-token graph of
G = Kn − G. In this section, we show that, indeed, this is the case.

Our result is a consequence of the following property.

Lemma 3. Given a graph G and its complement G, the Laplacian matrices
L = L(Fk(G)) and L = L(Fk(G)) of their k-token graphs commute: LL = LL.
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Theorem 5. Let G = (V,E) be a graph on n = |V | vertices, and let G be its
complement. For a given k, with 1 ≤ k < n − 1, let us consider the token graphs
Fk(G) and Fk(G). Then, the Laplacian spectrum of Fk(G) is the complement
of the Laplacian spectrum of Fk(G) with respect to the Laplacian spectrum of
the Johnson graph J(n, k) = Fk(Kn). That is, every eigenvalue λJ of J(n, k) is
the sum of one eigenvalue λFk(G) of Fk(G) and one eigenvalue λFk(G) of Fk(G),
where each λFk(G) and each λFk(G) is used once:

λFk(G) + λFk(G) = λJ .

Theorem 5 leads to the following consequence.

Corollary 6. Let G be a graph such that its complement G has c connected
components. Then, for 1 ≤ k ≤ n − 1, the k-token graph Fk(G) has at least c
integer eigenvalues. If each of the c components of G has at least k vertices, then
Fk(G) has at least

(
c+k−1

k

)
integer eigenvalues.
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Abstract. We provide almost tight bounds on the minimum and max-
imum possible numbers of compositions of two polycubes, either when
each is of size n, or when their total size is 2n, in two and higher dimen-
sions. We also provide an efficient algorithm (with some trade-off between
time and space) for computing the number of composition two given
polyominoes (or polycubes) have.

Keywords: Lattice animals · Polyominoes · Polycubes · Compositions

1 Introduction

A d-dimensional polycube (polyomino if d = 2) is a connected set of cells on the
cubical lattice Z

d, where connectivity is through (d−1)-dimensional faces. Poly-
cubes and “animals” of other lattices play for more than half a century an impor-
tant role in enumerative combinatorics [4] as well as in statistical physics [3].

The size (volume, or area in the plane) of a polycube is the number of d-
dimensional cells it contains. A composition of two d-dimensional polycubes is
the placement of one of them relative to the other, such that they touch each
other (sharing one or more (d−1)-dimensional faces) but do not overlap, so
that the union of their cell sets is a valid (connected) polycube. The number
of compositions of polycubes of certain sizes plays an important role in proving
bounds on the growth constant of polycubes. For example, an incorrect upper
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bound on the maximum possible compositions of polyominoes [1] was used for
claiming an erroneous upper bound on the growth constant of polyominoes. A
corrected version of the argument [2] was used for obtaining an upper bound on
the growth constant of polyiamonds (edge-connected sets of cells on the regular
planar triangular lattice). The main question which we ask is:

Question 1: Given two polycubes of total size 2n, how many different
compositions (up to translations) do they have?

Alternatively, we can ask a similar question but in a more restricted setting:

Question 2: Given two polycubes, each of size n, how many different
compositions (up to translations) do they have?

Obviously, the set of pairs of polycubes, each being of size n, is a subset
of pairs of polycubes of total size 2n. Hence, any lower (resp., upper) bound
on the minimum (resp., maximum) number of compositions of polycubes in
Question 1 also carries over to Question 2, and any upper (resp., lower) bound
on the minimum (resp., maximum) number of compositions of polycubes in
Question 2 also carries over to Question 1. In fact, all our bounds apply to
both versions of the question. In addition, any specific example provides both
an upper bound on the minimum and a lower bound on the maximum of the
respective number of compositions. We summarize our results in Table 1.

Table 1. The number of compositions of two polycubes of total size 2n.

Number of
compositions

Two dimensions d ≥ 3 dimensions

Lower bound Upper bound Lower bound Upper bound

Minimum Θ(n1/2) 2n1−1/d O(2ddn1−1/d)

Maximum n2/2O(log1/2 n) O(n2) Θ(dn2)

We also provide an efficient algorithm for computing the number of composi-
tion two given polyominoes (or polycubes) have. A few possible implementations
of the required data structures suggest a trade-off between the running time and
the required memory.

2 Two Dimensions

2.1 Minimum Number of Compositions

Theorem 1
(i) Any pair of polyominoes of sizes n1 and n2 have Ω((n1+n2)1/2) compositions.
(ii) For every two numbers n1 ≥ 1, n2 ≥ 1, there is a pair of polyominoes of
sizes n1 and n2 with Θ((n1 + n2)1/2) compositions.
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Proof. Let n = n1 + n2, and consider a pair of polyominoes P1, P2 of sizes n1

and n2. Assume without loss of generality that n1 ≥ n2, that is, n1 ≥ n/2.
Assume, also without loss of generality, that the width (x-span) of P1 is greater
than (or equal to) the height (y-span) of P1. Hence, the width of P1 is at
least n

1/2
1 . Then, P2 may touch P1 from below or above in different ways at

least twice this width: Simply put P2 below (or above) P1 so that the left col-
umn of P2 is aligned with the ith column of P1 (for 1 ≤ i ≤ n

1/2
1 ) and translate P2

upward (or downward) until it touches P1. Hence, we have a least 2n
1/2
1 ≥ (2n)1/2

compositions.
To see that this lower bound is tight, we take polyominoes that fit in a square

with side lengths k1 = �n1/2
1 � and k2 = �n1/2

2 �. We form P1 and P2 by filling
the respective squares row-wise until they have the desired size. P1 and P2 can
be composed in at most 2(2k1 − 1 + 2k2 − 1) = 4(2((n1 + n2)1/2 + 1) − 1) <
8(n1 + n2)1/2 + 4 ways.

The following is a trivial corollary of Theorem 1.

Corollary 1. Any pair of polyominoes of total size 2n have Ω(n1/2) composi-
tions. This lower bound is attainable. ��

2.2 Maximum Number of Compositions

In this section, we find bounds on the maximum number of compositions of two
polyominoes of size n. First, we show a (quite trivial) upper bound of O(n2).
Next, we show that it is “almost tight” by constructing an example that yields
a lower bound of Ω(n2−ε), for any ε > 0.

Upper Bound

Observation 2. Any pair of polyominoes of sizes n1, n2 has O(n1n2) composi-
tions.

Proof. Let n1, n2 be the sizes of polyominoes P1, P2, resp. Every cell of P1 can
touch every cell of P2 in at most 4 ways, yielding 4n1n2 as a trivial upper bound
on the number of compositions.

Lower Bound

Theorem 3. For every n ≥ 1, there are two polyominoes, each of size at most n,
that have at least n2

28·
√

log2 n
compositions.

The detailed proof of Theorem 3 is provided in the full version of the paper.
In this extended abstract, we only note that the bound is obtained by a careful
analysis of a construction of two “combs” whose first three levels are shown in
Fig. 1.
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Fig. 1. A recursive construction of two “combs” for the proof of Theorem 3.

3 Higher Dimensions

3.1 Minimum Number of Compositions

Lower Bound

Theorem 4. All pairs of d-dimensional polycubes of total size 2n have at least
2n1−1/d compositions.

Proof. The proof is similar to that of Theorem 1. Consider a pair of poly-
cubes P1, P2 of total size 2n. Assume, without loss of generality, that P1 is
the larger of the two polycubes, that is, the size (d-dimensional volume) of P1

is at least n. Let Vi (1 ≤ i ≤ d) be the (d−1)-dimensional volume of the pro-
jection of P1 orthogonal to the xi axis. An isoperimetric inequality of Loomis
and Whitney [5] ensures that

∏d
i=1 Vi ≥ nd−1. Let Vk ≥ n1−1/d be largest

among V1, . . . , Vd. Then, there are at least 2Vk ≥ 2n1−1/d different ways how P2

may touch P1. The polycube P1 has Vk “columns” in the xk direction. Pick one
“column” of P2 and align it with each “column” of P1, putting it either “below”
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or “above” P1 along direction xk, and find the unique translation along xk by
which they touch for the first time while being translated one towards the other.

Upper Bound

Theorem 5. There exist pairs of d-dimensional polycubes, of total size 2n, that
have O(2ddn1−1/d) compositions.

k

k

Fig. 2. A composition of two hypercubes

Proof. Figure 2 shows a composition of
two copies of a d-dimensional hyper-
cube P of size k×k× . . .×k. The cube
is made of n cells, hence, its sidelength
is k = n1/d. Two copies of P can slide
towards each other in 2d directions
until they touch. Obviously, there are
no other compositions since no hyper-
cube can penetrate into the bounding
box of the other. Once we decide which facets of the hypercube touch each
other, this can be done in (2k−1)d−1 ways. Indeed, in each of the d−1 dimen-
sions orthogonal to the sliding direction, there are 2k−1 possible offsets of one
hypercube relative to the other. Overall, the total number of compositions in
this example is (2d)(2k − 1)d−1 = 2d(2n1/d − 1)d−1 = Θ(2ddn1−1/d).

3.2 Maximum Number of Compositions in d ≥ 3 Dimensions

Theorem 6. Let d ≥ 3. All pairs of d-dimensional polycubes of total size 2n
have O(dn2) compositions. For d ≥ 3, the upper bound is attainable: There exist
pairs of d-dimensional polycubes of total size 2n with Ω(dn2) compositions.

Proof. Similarly to two dimensions, any two polycubes P1, P2 of total size 2n
have O(dn2) compositions. Indeed, let n1 = |P1| and n2 = |P2, where n1 +
n2 = 2n. Then, every cell of P1 can touch every cell of P2 in at most 2d ways,
yielding 2dn1n2 ≤ 2dn2 as an upper bound on the number of compositions.

n

(a) (b) (c)

Fig. 3. Compositions of sticks

The upper bound is attained asymptot-
ically by two nonparallel “sticks” of size n,
as shown in Fig. 3(a). Each stick has two
extreme (d−1)-D facets (orthogonal to the
direction of the stick), plus 2(d−1)n mid-
dle facets. The number of compositions
that involve only middle facets is 2(d −
2)n2 = Ω(dn2), see Fig. 3(b): Indeed, for
each of the d−2 directions which are not
parallel to one of the sticks, there are 2n2 different choices for letting two middle
facets of the sticks touch. We can ignore the 4n compositions that involve an
extreme facet (see Fig. 3(c)).
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Note the difference, for the maximum number of compositions, between two
and higher dimensions. In d > 2 dimensions, two of the dimensions (those along
which the sticks in the proof of Theorem 6 are aligned) restrict the compositions
of the sticks, but the existence of more dimensions allows every pair of cells, one
of each polycube, to have compositions which manifest themselves through this
pair only. This is not the case in two dimensions, a fact that makes the proof of
Theorem 3 much more complicated.

4 Counting Compositions and Distribution Analysis

Finally, we refer to counting how many compositions a pair of polyominoes or
polycubes have.

Theorem 7
(i) Given two polyominoes, each of size at most n, the number of compositions
they have can be computed in Θ(n2) time and Θ(n2) space.
(ii) Given two d-dimensional polycubes, each of size at most n, the number of
compositions they have can be computed in O(d2n2) time and O(dn3) space,
or O(d2n2 log n) time and O(d2n2) space, or O(d2n2) expected time and O(d2n2)
space.

We give the proof of Theorem 7 in the full version of the paper. The provided
algorithms assume the unit-cost model of computation, in which numbers in the
range [−n, n] can be accessed and be subject to arithmetic operations in O(1)
time.

In the full version of the paper, we also present some empirical data concern-
ing the distribution of NC(n1, n2), the number of compositions of all pairs of
polyominoes of sizes n1, n2. The data suggest that the average value of NC(n, n)
for two random polyominoes grows linearly with n. With the available data
for 3 ≤ n ≤ 14, a linear regression gives the relation NC(n, n) ≈ 2.19n + 4.97.
Available data of NC(n1, n2), for several values of a constant n1 + n2, were
fitted to various discrete distributions. The best fit was found with the negative-
binomial distribution.
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Abstract. An end of a graph G is an equivalence class of rays, where
two rays are equivalent if there are infinitely many vertex-disjoint paths
between them in G. The degree of an end is the maximum cardinality of
a collection of pairwise disjoint rays in this equivalence class.

An old question by Halin asks whether the end degree can be char-
acterised in terms of typical ray configurations. Halin conjectured that
it can – in a very strong form which would generalise his famous grid
theorem. In particular, every end of regular uncountable degree κ would
contain a star of rays, i.e. a configuration consisting of a central ray R
and κ neighbouring rays (Ri : i < κ) all disjoint from each other and
each Ri sending a family of infinitely many disjoint paths to R so that
paths from distinct families only meet in R.

We show that Halin’s conjecture fails for end degree ℵ1, holds for end
degree ℵ2, ℵ3, . . . , ℵω, fails for ℵω+1, and is undecidable (in ZFC) for the
next ℵω+n with n ∈ N, n � 2.

Keywords: Infinite graph · Ends · End degree · Ray graph

1 Introduction

1.1 Halin’s End Degree Conjecture

An end of a graph G is an equivalence class of rays, where two rays of G are
equivalent if there are infinitely many vertex-disjoint paths between them in G.
The degree deg(ε) of an end ε is the maximum cardinality of a collection of
pairwise disjoint rays in ε, see Halin [10].

However, for many purposes a degree-witnessing collection R ⊆ ε on its own
forgets significant information about the end, as it tells us nothing about how G
links up the rays in R; in fact G[

⋃ R ] is usually disconnected. Naturally, this
raises the question of whether one can describe typical configurations in which G
must link up the disjoint rays in some degree-witnessing subset of a pre-specified
end.

Observing that prototypes of ends of any prescribed degree are given by the
Cartesian product of a sufficiently large connected graph with a ray (see e.g.
Fig. 1), Halin [10] suggested a way how to make question precise by introducing
the notion of a ‘ray graph’, as follows.
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Fig. 1. The Cartesian product of a star and a ray.

Given a set R of disjoint equivalent rays in a graph G, we call a graph H
with vertex set R a ray graph in G if there exists a set P of independent R-paths
(independent paths with precisely their endvertices on rays from R) in G such
that for each edge RS of H there are infinitely many disjoint R–S paths in P.
Given an end ε in a graph G, a ray graph for ε is a connected ray graph in G on
a degree-witnessing subset of ε. The precise formulation of the question reads as
follows:

Does every graph contain ray graphs for all its ends?

For ends of finite degree it is straightforward to answer the question in the
affirmative. For ends of countably infinite degree the answer is positive too, but
only elaborate constructions are known. These constructions by Halin [10, Satz 4]
and by Diestel [4,6] show that in this case the ray graph itself can always be
chosen as a ray:

Theorem 1 (Halin’s grid theorem). Every graph with an end of infinite
degree contains a subdivision of the hexagonal quarter grid whose rays belong to
that end.

For ends of uncountable degree, however, the question is a 20-year-old open
conjecture that Halin stated in his legacy collection of problems [11, Conjec-
ture 6.1]:

Conjecture 1 (Halin’s Conjecture). Every graph contains ray graphs for all its
ends.

In our paper [7], we settle Halin’s conjecture: partly positively, partly negatively,
with the answer essentially only depending on the degree of the end in question.

1.2 Our Results

If the degree in question is ℵ1, then any ray graph for such an end contains
a vertex of degree ℵ1, which together with its neighbours already forms a ray
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graph for the end in question, namely an ‘ℵ1-star of rays’. Thus, finding in G a
ray graph for an end of degree ℵ1 reduces to finding such a star of rays. Already
this case has remained open.

Let HC(κ) be the statement that Halin’s conjecture holds for all ends of
degree κ in any graph. As our first main result, we show that

HC(ℵ1) fails.

So, Halin’s conjecture is not true after all. But we do not stop here, for the ques-
tion whether HC(κ) holds remains open for end degrees κ > ℵ1. And surprisingly,
we show that HC(ℵ2) holds. In fact, we show more generally that

HC(ℵn) holds for all n with 2 � n � ω.

Interestingly, this includes the first singular uncountable cardinal ℵω. Having
established these results, it came as a surprise to us that

HC(ℵω+1) fails.

How does this pattern continue? It turns out that from this point onward, set-
theoretic considerations start playing a role. Indeed

HC(ℵω+n) is undecidable for all n with 2 � n � ω,while HC(ℵω·2+1) fails.

The following theorem decides Halin’s conjecture for all end degrees:

Theorem 2. The following two assertions about HC(κ) are provable in ZFC:

(1) HC(ℵn) holds for all 2 � n � ω,
(2) HC(κ) fails for all κ with cf(κ) ∈ {μ+ : cf(μ) = ω}; in particular, HC(ℵ1)

fails.

Furthermore, the following assertions about HC(κ) are consistent:

(3) Under GCH, HC(κ) holds for all cardinals not excluded by (2).
(4) However, for all κ with cf(κ) ∈ {ℵα : ω < α < ω1} it is consistent with

ZFC+CH that HC(κ) fails, and similarly also for all κ strictly greater than
the least cardinal μ with μ = ℵμ.

1.3 Proof Sketch

All details can be found in [7].
The first step behind our affirmative results for HC(κ) is the observation that

it suffices to find some countable set of vertices U for which there is a set R of κ
many rays in ε, all disjoint from each other and from U , such that each R ∈ R
comes with an infinite family PR of disjoint R–U paths which, for distinct R and
R′, meet only in their endpoints in U : then it is not difficult to find a ray R∗

that contains enough of U to include the endpoints of almost all path families
PR, yielding a κ-star of rays on {R∗} ∪ R′ for some suitable R′ ⊆ R.
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While it may be hard to identify a countable such set U directly, for κ
of cofinality at least ℵ2 there is a neat greedy approach inspired by [2,15] to
finding a similar set U ′ of cardinality just < κ rather than ℵ0. Let us illustrate
this approach in the case of κ = ℵ2: Starting from an arbitrary ray R0 in ε,
does U0 = V (R0) already do the job? That is to say, are there ℵ2 disjoint rays
in ε that are independently attached to U0 as above? If so, we have achieved
our goal. If not, take a maximal set of disjoint rays R0 in ε all whose rays are
independently attached to U0 as above, and define U1 to be the union of U0

together with the vertices from all the rays in R0 and all their selected paths to
U0. Then |U1| � ℵ1. Does U1 do the job? If so, we have achieved our goal. If not,
continue as above. We claim that when continuing transfinitely and building
sets U0 � U1 � . . . � Uω � Uω+1 � . . ., we will achieve our goal at some
countable ordinal < ω1. For suppose not. Then U ′′ :=

⋃ {Ui : i < ω1} meets all
the rays in ε. Indeed, any ray R from ε outside of U ′′ could be joined to U ′′

by an infinite family of disjoint R–U ′′ paths. But then their countably many
endvertices already belong to some Ui for i < ω1, contradicting the maximality
of Ri in the definition of Ui+1. Hence, |U ′′| = ℵ2. For cofinality reasons there is
a first index j = i + 1 with |Uj | = ℵ2. Now U ′ = Ui is as required.

Having identified a <κ-sized set U ′ together with κ disjoint rays all indepen-
dently attached to it, we aim to restrict U ′ to a countable set U while keeping
κ many rays attached to U . For κ = ℵ2 this is straightforward, since if U ′ is
written as an increasing ℵ1-union of countable sets, one of them already contains
all the endpoints of the path systems for some ℵ2-sized subcollection R′ ⊆ R.
Take this countable set as the set U originally sought. This completes the proof
of HC(ℵ2).

What about general cardinalities κ? The above strategy can fail in two dif-
ferent ways: First, if cf(κ) = ℵ1, the greedy approach may not terminate: for
example, it may well be possible that |U ′| = ℵ1 while |Ui| = ℵ0 for all i < ω1.
And indeed, we will show that rays in ends of degree ℵ1 may be ‘arranged
like an Aronszajn tree’, witnessing the failure of HC(ℵ1). This idea can be cap-
tured as follows: For an Aronszajn tree T , consider first a disjoint family of rays
{Rt : t ∈ T} indexed by the nodes of the tree. If t is a successor of s in T , add an
infinite matching between the rays Rt and Rs. And if t is a limit, pick a cofinal
ω-sequence t0 < t1 < . . . < t of nodes below t, and add an edge from the nth
vertex of Rt to the nth vertex of Rtn , for all n ∈ N. If these cofinal sequences
t0 < t1 < . . . < t below each limit t are chosen carefully (for this we rely on a
trick by Diestel, Leader and Todorčević from [5]), the resulting graph, which we
call the ray inflation of T , is one-ended of degree ℵ1 but contains no ℵ1-star of
rays. This refutes HC(ℵ1).

What about the remaining cardinals κ with cf(κ) = ℵ1? Also there, coun-
terexamples to HC(κ) exist, and we have a machinery that produces a multitude
of such examples: Any counterexample for HC(κ) for regular κ may be turned
canonically into a counterexample for HC(λ) for all λ with cf(λ) = κ.

The second way in which our above strategy can fail is that even if our greedy
algorithm terminates and provides a <κ-sized U ′ to which there are κ disjoint
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rays independently attached, it may not be possible to further reduce U ′ as earlier
to some countable subset U . And indeed, using our idea of ray inflations of order
trees, also this constellation can be exploited to construct counterexamples to
Halin’s conjecture. However, the trees that work now are quite different from
the earlier Aronszajn trees: Generalising the concept of binary trees with tops
introduced by Diestel and Leader in [5], we consider the class of λ-regular trees
with tops, where λ is any singular cardinal of countable cofinality. These are
order trees of height ω + 1 in which every point of finite height has exactly λ
successors, and above some κ > λ many selected branches we add further nodes
to the tree at height ω, called tops.

There is a reason why we take λ to be singular of countable cofinality: Just
like the binary tree has uncountably many branches, these λ’s are the only other
cardinals for which an uncountable regular tree is guaranteed to have strictly
more than λ branches. And just like the precise number of branches of the
binary tree is not determined in ZFC alone (it is 2ℵ0 , which may be ℵ1 if CH
holds, or may be arbitrarily large), also the precise number of branches of the
λ-regular tree is λ+ if GCH holds, but it also may be much larger.

Now the starting point for our consistent counterexamples of (4) in Theorem 2
are simply models of ZFC+CH in which the two λ-regular trees for λ = ℵω and
λ equal to the first fixed point of the ℵ-function have a lot more branches than
nodes. In these cases, any λ-regular tree with tops gives rise to counterexamples
for Halin’s conjecture. What happens if one looks for ZFC-counterexamples, not
just consistent ones? With significantly more effort, and building on the concept
of a scale from Shelah’s pcf-theory from [16], we find that for any singular λ of
countable cofinality one can directly select a suitable set of λ+ many branches so
that the λ-regular tree with corresponding tops gives rise to the counterexamples
for Halin’s conjecture, settling the remaining cases of (2) in Theorem 2.

1.4 Open Problems

We suspect that (1) and (2) in Theorem 2 capture all the cases of Halin’s con-
jecture that can be proved or disproved in ZFC alone. This is certainly true
up to ℵω1 , as for each κ � ℵω1 our main Theorem 2 provides either a ZFC or an
independence result regarding the truth value of HC(κ). While for all remaining
cardinals assertion (3) of Theorem 2 gives consistent affirmative results, we do
not know whether any of these can be established in ZFC.

Question 1. Is Halin’s conjecture true for any κ > ℵω1?

Question 2. Is it true that any end of degree ℵ1 either contains an ℵ1-star of
rays or a subdivision of an Aronszajn tree of rays?

Question 3. Is it true that for every cardinal κ there is f(κ) � κ, such that every
end ε of degree f(κ) contains a connected ray graph of size κ?
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Raphael Steiner2, and Birgit Vogtenhuber3

1 Institut für Informatik, Freie Universität Berlin, Berlin, Germany
chiumk@zedat.fu-berlin.de

2 Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
{felsner,scheucher,fschroed,steiner}@math.tu-berlin.de

3 Institute of Software Technology, Graz University of Technology, Graz, Austria
bvogt@ist.tugraz.at

Abstract. Felsner, Hurtado, Noy and Streinu (2000) conjectured that
arrangement graphs of simple great-circle arrangements have chromatic
number at most 3. This paper is motivated by the conjecture.

We show that the conjecture holds in the special case when the
arrangement is �-saturated, i.e., arrangements where one color class of
the 2-coloring of faces consists of triangles only. Moreover, we extend �-
saturated arrangements with certain properties to a family of arrange-
ments which are 4-chromatic. The construction has similarities with
Koester’s (1985) crowning construction.

We also investigate fractional colorings. We show that every arrange-
ment A of pairwise intersecting pseudocircles is “close” to being 3-
colorable; more precisely χf (A) ≤ 3 + O( 1

n
) where n is the number

of pseudocircles. Furthermore, we construct an infinite family of 4-edge-
critical 4-regular planar graphs which are fractionally 3-colorable. This
disproves the conjecture of Gimbel, Kündgen, Li and Thomassen (2019)
that every 4-chromatic planar graph has fractional chromatic number
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1 Introduction

An arrangement of pseudocircles is a family of simple closed curves on the sphere
or in the plane such that each pair of curves intersects at most twice. Simi-
larly, an arrangement of pseudolines is a family of x-monotone curves such that
every pair of curves intersects exactly once. An arrangement is simple if no
three pseudolines/pseudocircles intersect in a common point and intersecting
if every pair of pseudolines/pseudocircles intersects. Given an arrangement of
pseudolines/pseudocircles, the arrangement graph is the planar graph obtained
by placing vertices at the intersection points of the arrangement and thereby
subdividing the pseudolines/pseudocircles into edges.

A (proper) coloring of a graph assigns a color to each vertex such that no two
adjacent vertices have the same color. The chromatic number χ is the smallest
number of colors needed for a proper coloring. The famous 4-color theorem and
also Brook’s theorem imply the 4-colorability of planar graphs with maximum
degree 4. This motivates the question: which arrangement graphs need 4 colors
in any proper coloring?

Fig. 1. A 4-chromatic non-simple
line arrangement. The red sub-
arrangement not intersecting the
Moser spindle (highlighted blue)
can be chosen arbitrarly.

There exist arbitrarily large non-simple line
arrangements that require 4 colors. For exam-
ple, the construction depicted in Fig. 1 contains
the Moser spindle as a subgraph and hence
cannot be 3-colored. Using an inverse central
(gnomonic) projection, which maps lines to
great-circles, one gets non-simple arrangements
of great-circles with χ = 4. Koester [12] pre-
sented a simple arrangement of 7 circles with
χ = 4 in which all but one pair of circles inter-
sect, see Fig. 3(c). Moreover, there are simple
intersecting arrangements that require 4 colors.
We invite the reader to verify this property for
the example depicted in Fig. 2.

In 2000, Felsner, Hurtado, Noy and
Streinu [3] (cf. [4]) studied arrangement graphs of pseudoline and pseudocir-
cle arrangements. They have results regarding connectivity, Hamiltonicity, and
colorability of those graphs. In this work, they also stated the following conjec-
ture:

Conjecture 1 (Felsner et al. [3,4]). The arrangement graph of every simple
arrangement of great-circles is 3-colorable.

While the conjecture is fairly well known (cf. [10,14,18] and [19,
Chapter 17.7]) there has been little progress in the last 20 years. Aichholzer,
Aurenhammer, and Krasser verified the conjecture for up to 11 great-circles [13,
Chapter 4.6.4].

Results and Outline. In Sect. 2 we show that Conjecture 1 holds for �-saturated
arrangements of pseudocircles, i.e., arrangements where one color class of the
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Fig. 2. A simple intersecting arrangement of 5 pseudocircles with χ = 4 and χf = 3.

Fig. 3. (a) A �-saturated arrangement A of 6 great-circles. (b) The doubling method
applied to A. The red pseudocircle is replaced by a cyclic arrangement. Triangular
cells are shaded gray. (c) The corona extension of A at its central pentagonal face.
This arrangement is Koester’s [11] example of a 4-edge-critical 4-regular planar graph.

2-coloring of faces consists of triangles only. In Sect. 3 we extend our study
of �-saturated arrangements and present an infinite family of arrangements
which require 4 colors. The construction generalizes Koester’s [12] arrangement
of 7 circles which requires 4 colors; see Fig. 3(c). Moreover, we believe that the
construction results in infinitely many 4-vertex-critical1 arrangement graphs.
Koester [12] obtained his example using a “crowning” operation, which actually
yields infinite families of 4-edge-critical 4-regular planar graphs. However, except
for the 7 circles example these graphs are not arrangement graphs.

In Sect. 4 we investigate the fractional chromatic number χf of arrangement
graphs. This variant of the chromatic number is the objective value of the linear
relaxation of the ILP formulation for the chromatic number. We show that inter-
secting arrangements of pseudocircles are “close” to being 3-colorable by proving
that χf (A) ≤ 3 + O( 1

n ) where n is the number of pseudocircles of A. In Sect. 5,
we present an example of a 4-edge-critical arrangement graph which is fraction-
ally 3-colorable. The example is the basis for constructing an infinite family
of 4-regular planar graphs which are 4-edge-critical and fractionally 3-colorable.
This disproves Conjecture 3.2 from Gimbel, Kündgen, Li and Thomassen [7] that
every 4-chromatic planar graph has fractional chromatic number strictly greater

1 A k-chromatic graph is k-vertex-critical (k-edge-critical, resp.) if the removal of every
vertex (edge, resp.) decreases the chromatic number.
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than 3. In Sect. 6 we report on our computational data, mention some some new
observations related to Conjecture 1, and present strengthened versions of the
conjecture.
Due to space constraints, some proofs are deferred to the full version of this
work.

2 �-Saturated Arrangements are 3-Colorable

The maximum number of triangles in arrangements of pseudolines and pseu-
docircles has been studied intensively, see e.g. [2,8,15] and [6]. By recursively
applying the “doubling method”, Harborth [9] and also [2,15] proved the exis-
tence of infinite families of �-saturated arrangements of pseudolines. Similarly, a
doubling construction for arrangements of (great-)pseudocircles yields infinitely
many �-saturated arrangements of (great-)pseudocircles. Figures 3(a) and 3(b)
illustrate the doubling method applied to an arrangement of great-pseudocircles.
It will be relevant later that arrangements obtained via doubling contain pen-
tagonal cells. Note that for n ≡ 2 (mod 3) there is no �-saturated intersecting
pseudocircle arrangement because the number of edges of the arrangement graph
is not divisible by 3.

Theorem 1. Every �-saturated arrangement A of pseudocircles is 3-colorable.

Proof. Let H be a graph whose vertices correspond to the triangles of A and
whose edges correspond to pairs of triangles sharing a vertex of A. This graph
H is planar and 3-regular. Moreover, since the arrangement graph of Å is 2-
connected, H is bridgeless. Now Tait’s theorem, a well known equivalent of the
4-color theorem, asserts that H is 3-edge-colorable, see e.g. [1] or [17]. The edges
of H correspond bijectively to the vertices of the arrangement A and, since
adjacent vertices of A are incident to a common triangle, the corresponding
edges of H share a vertex. This shows that the graph of A is 3-colorable.

3 Constructing 4-Chromatic Arrangement Graphs

In this section, we describe an operation that extends any �-saturated intersect-
ing arrangement of pseudocircles with a pentagonal cell (which is 3-colorable by
Theorem 1) to a 4-chromatic arrangement of pseudocircles by inserting one addi-
tional pseudocircle.

The Corona Extension: We start with a �-saturated arrangement of pseudocir-
cles which contains a pentagonal cell �. By definition, in the 2-coloring of the
faces one of the two color classes consists of triangles only; see e.g. the arrange-
ment from Fig. 3(a). Since the arrangement is �-saturated, the pentagonal cell� is surrounded by triangular cells. As illustrated in Fig. 3(c) we can now insert
an additional pseudocircle close to �. This newly inserted pseudocircle intersects
only the 5 pseudocircles which bound �, and in the so-obtained arrangement one
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of the two dual color classes consists of triangles plus the pentagon �. It is inter-
esting to note that the arrangement depicted in Fig. 3(c) is precisely Koester’s
arrangement [11,12].

The following proposition plays a central role in this section.

Proposition 1. The corona extension of a �-saturated arrangement of pseu-
docircles with a pentagonal cell � is 4-chromatic.

The proof is based on the observation that after the corona extension the
inequality 3α < |V | holds.

By applying the corona extension to members of the infinite family of �-
saturated arrangements with pentagonal cells (cf. Sect. 2), we obtain an infinite
family of arrangements that are not 3-colorable.

Theorem 2. There exists an infinite family of 4-chromatic arrangements of
pseudocircles.

Koester [12] defines a related construction which he calls crowning and con-
structs his example by two-fold crowning of a graph on 10 vertices. He also uses
crowning to generate an infinite family of 4-edge-critical 4-regular graphs. In the
full version of our paper, we present sufficient conditions to obtain a 4-vertex-
critical arrangement via the corona extension. We conclude this section with the
following conjecture:

Conjecture 2. There exists an infinite family of arrangement graphs of arrange-
ments of pseudocircles that are 4-vertex-critical.

4 Fractional Colorings

In this section, we investigate fractional colorings of arrangements. A b-fold col-
oring of a graph G with m colors is an assignment of a set of b colors from
{1, . . . , m} to each vertex of G such that the color sets of any two adjacent ver-
tices are disjoint. The b-fold chromatic number χb(G) is the minimum m such
that G admits a b-fold coloring with m colors. The fractional chromatic number
of G is χf (G) := lim

b→∞
χb(G)

b = inf
b

χb(G)
b . With α being the independence number

and ω being the clique number, it holds that:

max
{ |V |

α(G)
, ω(G)

}
≤ χf (G) ≤ χb(G)

b
≤ χ(G). (1)

Theorem 3. Let G be the arrangement graph of an intersecting arrangement A
of n pseudocircles, then χf (G) ≤ 3 + 6

n−2 .
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Fig. 4. (a) A 4-edge-critical 4-regular 18-vertex planar graph with χ = 4 and χf = 3.
and (b) the crowning extension at its center triangular face.

Proof (Sketch of the proof). Let C be a pseudocircle of A. After removing all
vertices along C from the arrangement graph G we obtain a graph which has
two connected components A (vertices in the interior of C) and B (vertices
in the exterior). Let C ′ be a small circle contained in one of the faces of A,
the Sweeping Lemma of Snoeyink and Hershberger [16] asserts that there is a
continuous transformation of C ′ into C which traverses each vertex of A precisely
once. In particular, when a vertex is traversed, at most two of its neighbors have
been traversed before. Hence, we obtain a 3-coloring of the vertices of A by
greedily coloring vertices in the order in which they occur during the sweep. An
analogous argument applies to B. Taking such a partial 3-coloring of G for each
of the n pseudocircles of A, we obtain for each vertex a set of n−2 colors, i.e., an
(n − 2)-fold coloring of G. The total number of colors used is 3n. The statement
now follows from inequality (1).

5 Fractionally 3-Colorable 4-Edge-Critical Planar Graphs

From our computational data (cf. [5]), we observed that some of the arrange-
ments such as the 20 vertex graph depicted in Fig. 2 have χ = 4 and χf = 3, and
therefore disprove Conjecture 3.2 by Gimbel et al. [7]. Moreover, we determined
that there are precisely 17 4-regular 18-vertex planar graphs with χ = 4 and
χf = 3, which are minimal in the sense that there are no 4-regular graphs on
n ≤ 17 vertices with χ = 4 and χf = 3. Each of these 17 graphs is 4-vertex-
critical and the one depicted in Fig. 4(a) is even 4-edge-critical.

Starting with a triangular face in the 4-edge-critical 4-regular graph depicted
in Fig. 4(a) and repeatedly applying the Koester’s crowning operation [12] as
illustrated in Fig. 4(b) (which by definition preserves the existence of a facial
triangle), we deduce the following theorem.

Theorem 4. There exists an infinite family of 4-edge-critical 4-regular planar
graphs G with fractional chromatic number χf (G) = 3.

6 Discussion

With Theorem 1 we confirmed Conjecture 1 for �-saturated great-pseudocircle
arrangements. While this is a very small subclass of great-pseudocircle arrange-
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ments, it is reasonable to think of it as a “hard” class for 3-coloring. The ratio-
nale for such thoughts is that triangles restrict the freedom of extending partial
colorings. Our computational data indicates that sufficiently large intersecting
pseudocircle arrangements that are diamond-free, i.e., no two triangles of the
arrangement share an edge, are also 3-colorable. Computations also suggest that
sufficiently large great-pseudocircle arrangements have antipodal colorings, i.e.,
3-colorings where antipodal points have the same color. Based on the experi-
mental data we propose the following strengthened variants of Conjecture 1.

Conjecture 3. The following three statements hold.

(a) Every diamond-free intersecting arrangement of n ≥ 6 pseudocircles is 3-
colorable.

(b) Every intersecting arrangement of sufficiently many pseudocircles is 3-
colorable.

(c) Every arrangement of n ≥ 7 great-pseudocircles has an antipodal 3-coloring.
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Abstract. “V −E+F = 2”, the famous Euler’s polyhedral formula, has
a natural generalization to convex polytopes in every finite dimension,
also known as the Euler–Poincaré Formula. We provide another short
inductive combinatorial proof of the general formula. Our proof is self-
contained and it does not use shellability of polytopes.

Keywords: Euler–Poincaré formula · Polytopes · Discharging

1 Introduction

In this paper we follow the standard terminology of polytopes theory, such as
Ziegler [7]. We consider convex polytopes, defined as a convex hull of finitely many
points, in the d-dimensional Euclidean space for an arbitrary d ∈ N, d ≥ 1. We
shortly say a polytope to mean a convex polytope. A landmark discovery in the
history of combinatorial investigation of polytopes was famous Euler’s formula,
stating that for any 3-dimensional polytope with v vertices, e edges and f faces,
v − e + f = 2 holds. This finding was later generalized, in every dimension d,
to what is nowadays known as (generalized) Euler’s relation or Euler–Poincaré
formula, as follows.

For instance, in dimension d = 1 we have v = 2, which can be rewritten as
v − 1 = 1, and in dimension d = 2 we have got v − e = 0 or v − e + 1 = 1.
Similarly, the d = 3 case can be rewritten as v − e + f − 1 = 1. Note that the
‘1’ left of ‘=’ stands in these expressions for the polytope itself. In general, the
following holds:

Theorem 1 (“Euler–Poincaré formula”; Schläfli [5] 1852). Let P be a
convex polytope in R

d, and denote by fc, c ∈ {0, 1, . . . , d}, the numbers of faces
of P of dimension c. Then

f0 − f1 + f2 − · · · + (−1)dfd = 1. (1)

We refer to classical textbooks of Grünbaum [3] and Ziegler [7] for a closer
discussion of the interesting history of this formula and of the difficulties associ-
ated with its proof. Here we just briefly remark that all the historical attempts
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to prove the formula in a combinatorial way, starting from Schläfli, implicitly
assumed validity of a special property called shellability of a polytope. How-
ever, the shellability of any polytope was formally established only in 1971 by
Bruggesser and Mani [1].

We provide a new short and self-contained inductive combinatorial proof of
(1) which does not assume shellability of polytopes.

2 New Combinatorial Proof

Our proof of Theorem 1 proceeds by induction on the dimension d ≥ 1. Note
that validity of (1) is trivial for d = 1, 2, and hence it is enough to show the
following:

Lemma 1. Let k ≥ 2 and P be a polytope of dimension k + 1. Assume that (1)
holds for any polytope of dimension d ∈ {k − 1, k}. Then (1) holds for P (with
d = k + 1).

Proof. Recall that fc, c ∈ {0, 1, . . . , k + 1}, denote the numbers of faces of P of
dimension c. The only (improper) face of dimension k + 1 is P itself, and the
faces of dimension k are the facets of P . Our goal is to prove

f0 − f1 + f2 − · · · + (−1)k−1fk−1 + (−1)kfk + (−1)k+1fk+1 = 1,

or equivalently, since fk+1 = 1,

f0 − f1 + f2 − · · · + (−1)k−1fk−1 = 1 + (−1)k(1 − fk). (2)

We choose arbitrary two facets T1, T2 of P (distinct, but not necessarily
disjoint) and two points t1 ∈ T1 and t2 ∈ T2 in their relative interior, such that
the straight line q = t1t2 passing through t1, t2 is in a general position with
respect to P . In particular, we demand that no nontrivial line segment lying
in a face of P of dimension c ≤ k − 1 is coplanar with q. We also denote by
T3, . . . , Tfk the remaining facets of P , in any order.

In the proof we use a discharging argument, an advanced variant of the
double-counting method in combinatorics. To every face F of P of dimension
0 ≤ c ≤ k − 1, we assign charge of value (−1)c (the facets start with no charge).
Hence the total change initially assigned to all faces of P equals the left-hand
side of (2).

Now we discharge all the assigned charge from those faces to the facets of
P (which initially have no charge). The discharging rule is only one and very
simple. Consider a facet Ti of P , 1 ≤ i ≤ fk. Let ti ∈ q denote the unique point
which is the intersection of the line q with the support hyperplane of Ti. This is
a sound definition of ti according to a general position of q, and it is consistent
with the choice of t1, t2 above. Consider further any proper face F of Ti (so F
is a face of P as well and is of dimension 0 ≤ c ≤ k − 1), and choose a fixed
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Fig. 1. Proof of Lemma 1: a facet in a 3-dimensional polytope P (k = 2). Each vertex
of P initially gets charge of 1 and each edge −1. Consider, e.g., a facet Ti of P which is
a pentagon with vertices a, b, c, d, e and sides (edges) A,B,C,D,E in order. Let ti be
the point in which the plane of Ti intersects the line q (see in the proof). On the left of
the picture (ti �∈ Ti, for i ≥ 3), we have that the vertices b, c, d send charge of 1

2
to Ti

by the rule (3), while a, e are not sending to Ti. On the right (ti ∈ Ti, i = 1, 2), all the
vertices a, b, c, d, e send charge of 1

2
to Ti. In both cases, every side A,B,C,D,E sends

charge of − 1
2
to Ti. Consequently, on the left Ti ends up with charge −1 (compare to

(5)), while on the right with charge 0 (cf. (4)).

point xF in the relative interior of F (note that xv = v if v is a vertex of P ).
Our discharging rule reads (see in Fig. 1):

The face F sends half of its initial charge, i.e. 1
2 (−1)c, to the facet Ti

if, and only if, the straight line passing through xF and ti intersects the
relative interior of Ti.

(3)

Note that we will be finished if we prove that, after applying the discharging
rule, (i) every face of P of dimension ≤ k− 1 ends up with charge 0, and (ii) the
total charge of the facets of P sums up to the right-hand side of (2).

For the task (i), consider any face F of P of dimension c ≤ k − 1 and the
point xF chosen in F above. Let L denote the plane determined by the line
q = t1t2 and the point xF �∈ q. Then N := P ∩ L is a convex polygon. See
Fig. 2. We claim that xF must be a vertex of N : indeed, if xF belonged to a
relative interior of a side A0 of N , then A0 ⊆ F and A0 would be coplanar
with q, contradicting our assumption of a general position of q. Consequently,
xF is incident to two sides A1, A2 of N , and there exist facets Ti1 , Ti2 of P ,
1 ≤ i1 �= i2 ≤ fk, such that Aj = Tij ∩ L for j = 1, 2. Observe that the support
line of Aj intersects q precisely in tij (which has been defined as the intersection
of the support hyperplane of Tij with q).

Moreover, since Aj is coplanar with q, by our assumption of a general position
of q it cannot happen that Aj is contained in a face of dimension ≤ k − 1.
Consequently, Aj (except its ends) belongs to the relative interior of Tij , and
Tij is a unique such face for Aj . Hence, taking this argument for j = 1, 2, we
see that F sends away by (3) exactly two halves of its initial charge, ending up
with charge 0.
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A1 A2

N

q

xF

t1 t2ti1 ti2

Fig. 2. Proof of Lemma 1: A polygon N which is the intersection of the polytope P
with the plane spanning q and a point xF of a face F . The two sides A1, A2 of N
incident to xF determine the two unique facets Ti1 , Ti2 of P that F sends charge to.

For the task (ii), let fc
i , where c ∈ {0, 1, . . . , k} and i ∈ {1, . . . , fk}, denote

the number of faces of Ti of dimension c. We first look at the two special facets
Ti, i = 1, 2 (Fig. 1 right). Since ti ∈ Ti in this case, by (3) Ti receives charge
from every of its proper faces. Using (1) for Ti, which is of dimension k, we thus
get that the total charge Ti ends up with, is

1
2

(
f0
i − f1

i + · · · + (−1)k−1fk−1
i

)
=

1
2

(
1 − (−1)kfk

i

)
=

1
2

(
1 − (−1)k

)
. (4)

Second, consider a facet Ti where i ≥ 3. Let Hi be the support hyperplane
of Ti. Then {ti} = Hi ∩ q and ti �∈ Ti. We restrict ourselves to the affine space
formed by Hi, and denote by Si a projection of Ti from the point ti onto a suitable
hyperplane within Hi. Since ti is in a general position with respect to Ti (which
is implied by a general position of q), the following holds: every proper face of Si

is the image of an equivalent face of Ti (of the same dimension!). Furthermore,
by convexity, a face F of Ti has no image among the faces of Si if, and only if,
the line through xF and ti intersects the relative interior of Ti. See also Fig. 1
left.

Consequently, as directed by (3), Ti receives charge precisely from those of its
faces F which do not have an image among the proper faces of Si (in particular,
Ti receives charge from all of its faces of dimension k − 1). Denote by gci the
number of faces of Si of dimension c ≤ k − 1, and notice that fk

i = gk−1
i = 1.

Hence, precisely, Ti receives 1
2 (−1)k−1 of charge from each of its fk−1

i faces of
dimension k − 1, and 1

2 (−1)c from fc
i − gci of its faces of dimension 0 ≤ c ≤

k − 2. Summing together, and using (1) for Ti (of dimension k) and for Si (of
dimension k − 1), we get

1
2
(−1)k−1fk−1

i +
1
2

k−2∑

c=0

(−1)c(fc
i − gci ) =

1
2

k−1∑

c=0

(−1)cfc
i − 1

2

k−2∑

c=0

(−1)cgci

=
1
2

(
1 − (−1)kfk

i

) − 1
2

(
1 − (−1)k−1gk−1

i

)
= −(−1)k. (5)
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Since the total charge is not changed (only redistributed), we get that (the
left-hand side of) (2) must equal the sum of (4) over i = 1, 2 and of (5) over
i = 3, . . . , fk, leading to

f0 − f1 + f2 − · · · + (−1)k−1fk−1 = 2 · 1
2

(
1 − (−1)k

) − (fk − 2) · (−1)k

= 1 + (−1)k(1 − fk),

and thus finishing the proof of (2) for P .

3 Final Remarks

We have shown a full proof of the Euler–Poincaré formula (1) with only sim-
ple, combinatorial and elementary geometric arguments. Our proof has been in
parts inspired by a proof of basic Euler’s formula via angles [2, “Proof 8: Sum of
Angles”], and by Welzl’s probabilistic proof [6] of Gram’s equation. Although,
the resulting exposition of the proof does not resemble either of those; in fact,
it looks like a generalization of the basic discharging proof [2, “Proof 6: Elec-
trical Charge”], but that was not our way to the result. Lastly, we remark that
the underlying idea of our proof can be expressed also in an alternative, more
geometric way, such as the exposition in the preprint [4].
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Abstract. In this paper, we study the weight spectrum of linear codes
with super-linear field size and use the probabilistic method to show that
for nearly all such codes, the corresponding weight spectrum is very close
to that of a maximum distance separable (MDS) code.
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1 Introduction

MDS codes have the largest possible minimum distance since they meet the
Singleton bound with equality (Huffman and Pless [1]) and many properties of
the weight spectrum of MDS codes are known. For example, the weight spec-
trum of an MDS code is unique (Tolhuizen [2], MacWilliams and Sloane [3]) and
any MDS code with length n and dimension k has precisely k distinct non-zero
weights n, n − 1, . . . , n − k + 1 (Ezerman et al. [4]). In this paper, we study the
weight spectrum of linear codes that are not necessarily MDS but are equipped
with a field size that grows super-linear in the code length. We use the probabilis-
tic method and weight concentration properties to show that such codes closely
resemble MDS codes in terms of the weight spectrum. The paper is organized
as follows: In the next Sect. 2, we state and prove our main result regarding the
approximate MDS property of linear codes with super-linear field size.

2 Approximate MDS Property of Linear Codes

Let q be a power of a prime number and let Fq be the finite field containing q
elements. For integers n ≥ k ≥ 1, a subset C ⊂ F

n
q of cardinality qk is defined

to be an (n, k)q−code. A vector subspace of Fn
q of dimension k is defined to be

a linear code and is also said to be an [n, k]q−code. Elements of C are called
codewords or simply words.

For two words c = (c1, . . . , cn) and d = (d1, . . . , dn) in F
n
q , we define the

Hamming distance between c and d to be dH(c,d) =
∑n

i=1 11(ci �= di), where 11(.)
refers to the indicator function. The Hamming weight of c is the number of non-
zero entries in c. All distances and weights in this paper are Hamming and so we
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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suppress the term Hamming throughout. We define the minimum distance dH(C)
of the code C to be the minimum distance between any two codewords of C.

From the Singleton bound, we know that dH(C) ≤ n − k + 1 and if q ≥
n − 1 is a power of prime, there are [n, k]q−codes that achieve the Singleton
bound. Such codes are called maximum distance separable (MDS) codes (pp. 71,
(Huffman and Pless [1]) and the MDS conjecture asserts that q = n − 1 is
essentially the minimum required field size to construct MDS codes (see for
example (Alderson [5]), for a precise formulation).

In our main result of this paper, we show that nearly all linear codes
with super-linear field size behave approximately like MDS codes. We begin
with a couple of definitions. Let C be a linear [n, k]q−code and suppose
for 1 ≤ w ≤ n, the code C contains Aw codewords of weight w. We define
the n−tuple (A1, . . . , An) to be the weight spectrum of C. The weight spectrum
of an [n, k]q−MDS code C with n ≤ q is as follows (Theorem 6, pp. 320–321,
MacWilliams and Sloane [3]):

(p1) For 1 ≤ w ≤ n − k, the number of codewords of weight w is λw := 0.
(p2) For each D := n − k + 1 ≤ w ≤ n, the number of codewords of weight w
equals

λw :=
(

n

w

)

(q − 1)
w−D∑

j=0

(−1)j
(

w − 1
j

)

qw−D−j . (2.1)

It is well-known (Ezerman et al. [4]) that if n ≤ q then λw > 0 for each n−k+1 ≤
w ≤ n.

The following result shows that nearly all linear codes with super-linear field
size have a weight spectra closely resembling that of an MDS code.

Theorem 1. For integer n ≥ 4 let k = k(n) be an integer and q = q(n) be a
power of a prime number satisfying

1√
log n

≤ k(n)
n

≤ 1 − 1√
log n

and
q(n)
n

−→ ∞ (2.2)

as n → ∞. Let P be the set of all [n, k]q−codes and let Q ⊆ P be the set of all
codes satisfying the following properties:

(a1) There exists no word of weight w for any 1 ≤ w ≤ n − k − 2n
log q .

(a2) For each n − k + 5 ≤ w ≤ n, the number of codewords of weight w equals
lies between λw

(
1 − 3n

q

)
and λw

(
1 + 3n

q

)
.

For all n large we have that

#Q ≥ #P ·
(

1 − 18q

n2

)

. (2.3)

From (2.2) we have that n
log q = o(k), n

q = o(1) and so in addition if we have
that q

n2 = o(1), then comparing with (a1) − (a2), we see that nearly all linear
codes behave approximately like an MDS code.

In the following subsection, we derive a couple of preliminary estimates used
in the proof of Theorem1 and in the next subsection, we prove Theorem1.
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Preliminary Estimates

We use the probabilistic method to prove Theorem 1. Let G be a random k ×
n matrix with entries i.i.d. uniform in Fq. We prove Theorem 1 by estimating
the weights of the words generated by the code G := {x · G}x∈Fk

q
. All vectors

throughout are row vectors.
We collect auxiliary results used in the proof of Theorem1, in the following

Lemma. For 1 ≤ w ≤ n let Cw be the set of all words in F
n
q with weight w. The

following result estimates the number of words of a given weight present in a
linear code.

Lemma 1. We have:
(a) For 1 ≤ w ≤ n let Nw be the set of words of the random code G present
in Cw. We have that the mean and the variance satisfy

μw := ENw =
(

n

w

)

· (q − 1)w · qk − 1
qn

and var(Nw) ≤ (2q + 1) · μw, (2.4)

respectively.
(b) Let λw and μw be as in (2.1) and (2.4), respectively. If q ≥ n then for
each n − k + 1 ≤ w ≤ n we have that

(

1 − 1
q

)

·
(

1 − w − 1
q

)

≤ λw

μw
≤ 1

1 − w
q

. (2.5)

From (2.4) in part (a), we get the intuitive result that the number of words of
weight w in a linear code is concentrated around its mean. From part (b) we see
that if q is much larger than n, then w

q = o(1) and so λw is approximately equal
to μw.

Proof of Lemma 1(a): We first obtain the expression for μw. For any fixed non-
zero vector x ∈ F

k
q , the random vector x · G is uniform in Fn

q and so for any
vector y ∈ Cw we have that P (x · G = y) = 1

qn . The relation for μw in (2.4)
then follows from the fact that the number of words of weight w equals #Cw =(
n
w

) · (q − 1)w and the fact that there are qk − 1 non-zero vectors in Fk
q . To

estimate the variance of Nw we write Nw =
∑

x∈Fk
q\{0} 11 (A(x)) where A(x) is

the event that the vector x · G ∈ Cw. We then get that

var(Nw) =
∑

x

Δ(x) +
∑

x1 �=x2

β(x1,x2) (2.6)

where 0 ≤ Δ(x) := P (A(x)) − P
2(A(x)) ≤ P (A(x)) and

|β(x1,x2)| :=
∣
∣
∣P

(
A(x1)

⋂
A(x1)

)
− P(A(x1))P(A(x2))

∣
∣
∣

≤ P

(
A(x1)

⋂
A(x1)

)
+ P(A(x1))P(A(x2)) ≤ 2P(A(x1)). (2.7)

It is well-known that if x1 is not a multiple of x2 then the events A(x1)
and A(x2) are independent (see for example, Chapter 7, Problem P.7.18, pp.
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175, (Zamir [6]). Therefore for each x1 there are at most q values of x2 for
which β(x1,x2) �= 0. Thus var(Nw) ≤ ∑

x P (A(x)) + 2q
∑

x1
P (A(x1)) = (2q +

1)μw and this proves the variance estimate in (2.4).

Proof of Lemma 1(b): We begin by showing that if n − k + 1 ≤ w ≤ n then
(

1 − 1
q

)

·
(

1 − w − 1
q

)

≤ λw(
(n
w)·qw
qn−k

) ≤ 1 − 1
q
. (2.8)

To prove the upper bound in (2.8) we write λw =
(

(n
w)·qw
qn−k

)

·
(
1 − 1

q

)
· θ(w)

where θ(w) :=
∑w−D

j=0 (−1)j
(
w−1
j

) · 1
qj . Expanding θ(w) and regrouping we get

θ(w) = 1 − (t1(w) + t3(w) + t5(w) + . . .) where

tj(w) :=
(

w − 1
j

)

· 1
qj

−
(

w − 1
j + 1

)

· 1
qj+1

(2.9)

for all j if w − D is odd. If w − D is even, then an analogous expansion holds
with the distinction that the final tj(w) term is simply

(
w−1
j

) · 1
qj . For simplicity

we assume below that w − D is odd and get tj(w) =
(
w−1
j

) · 1
qj

(
1 − rj(w)

q

)

where rj(w) := (w−1
j+1)

(w−1
j ) = w

j+1 − 1. Thus |rj(w)| ≤ n and since q ≥ n we get

that tj(w) ≥ 0. This implies that θ(w) ≤ 1 and so we get the upper bound
in (2.8).

For the lower bound in (2.8) we write θ(w) = 1 − w−1
q + t2(w) + t4(w) + . . .

and use tj(w) ≥ 0 to get that θ(w) ≥ 1 − w−1
q . This proves the lower bound

in (2.8). Finally to prove (2.5), we write μw = (n
w)qw
qn−k ·

(
1 − 1

q

)w

·
(
1 − 1

qk

)
and

use
(
1 − 1

q

)w

≥ 1 − w
q and 1 − 1

qk
≥ 1 − 1

q to get that

(

1 − 1
q

)

·
(

1 − w

q

)

≤ μw

(n
w)qw
qn−k

≤ 1. (2.10)

Together with (2.8) we then get (2.5).

Proof of Theorem1

We first estimate the probability of occurrence of property (a1). Recalling
that μw = ENw is the expected number of words of weight w in the random
code G (see Lemma 1) and using Stirling’s approximation we have that

μw ≤
(
n
w

)
qw

qn−k
≤ 4en · q

nH(w
n )

log q · qw

qn−k
≤ 4en · q

n
log q · qw

qn−k
. (2.11)
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Setting wlow := n − k − 2n
log q , we see for all 1 ≤ w ≤ wlow that μw = ENw ≤

4en

q
n

log q
= 4en · e−n. Therefore if Flow is the event that the property (a1) in the

statement of the Theorem holds, then we get by the union bound that

P(F c
low) = P

⎛

⎝
⋃

1≤w≤wlow

{Nw ≥ 1}
⎞

⎠ ≤
wlow∑

w=1

ENw ≤ wlow · 4en · e−n ≤ 4en2 · e−n

(2.12)
since wlow ≤ n.

Next we study property (a2) for weights w ≥ wup = n−k +5. First we show
that

μw ≥
(
n
w

)
qw

qn−k
·
(

1 − w

q

)

·
(

1 − 1
qk

)

≥ n5

4
(2.13)

for all n large. the first bound in (2.13) follows from (2.10). For w ≥ n − k + 5

we have that (n
w)qw
qn−k ≥ (

n
w

) · q5 ≥ n5 since q ≥ n for all n large, by (2.2). Also
from (2.2) we see that 1 − w

q ≥ 1 − n
q ≥ 1

2 and 1 − 1
qk

≥ 1
2 for all n large. This

proves the final bound in (2.13).
From Chebychev’s inequality, the variance estimate in (2.4) and the above

estimate (2.13), we therefore get that

P

(
|Nw − μw| ≥ μw

n

)
≤ n2var(Nw)

μ2
w

≤ n2(2q + 1)
μw

≤ 4(2q + 1)
n3

. (2.14)

If μw

(
1 − 1

n

) ≤ Nw ≤ μw

(
1 + 1

n

)
, then using the bounds (2.5), we see that

λw

(

1 − w

q

)

·
(

1 − 1
n

)

≤ Nw ≤ λw

(
1 + 1

n

)

(
1 − 1

q

)
·
(
1 − w−1

q

)

and using (2.2) and the fact that w ≤ n we get that

Nw ≤ λw

(

1 +
1
n

)

·
(

1 +
2
q

)

·
(

1 +
2n

q

)

≤ λw

(

1 +
3n

q

)

for all n large. Similarly we also get that Nw ≥ λw

(
1 − 3n

q

)
for all n large.

Therefore if Fup denotes the event that property (a2) in the statement of
the Theorem holds, then from (2.14) and the union bound we get that P(F c

up)
is bounded above by

∑n
w=wup

P
(|Nw − μw| ≥ µw

n

) ≤ 4(2q+1)
n2 . Thus P(Fup) ≥

1 − 4(2q+1)
n2 and combining this with (2.12) we get that

P(Fup ∩ Flow) ≥ 1 − 4en2 · e−n − 4(2q + 1)
n2

≥ 1 − 9q

n2
(2.15)

for all n large using the fact that q ≥ n (see statement of Theorem). If Ffull

denotes the event that the matrix G has full rank then we show below that

P(Ffull) ≥ 1 − 2
qn−k

≥ 1
2

(2.16)

since q ≥ 2 and n − k ≥ 2 (see statement of Theorem).
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The ratio of the sets Q and P defined in the statement of the Theorem is
therefore simply

#Q
#P =

P(Ffull ∩ Fup ∩ Flow)
P(Ffull)

≥ 1 − P(F c
up ∪ F c

low)
P(Ffull)

(2.17)

using P(A ∩ B) ≥ P(A) − P(Bc) with A = Ffull and B = Fup ∩ Flow. Plug-
ging (2.15) and (2.16) into (2.17) we get that #Q

#P ≥ 1− 18q
n2 and this proves (2.3).

It remains to prove (2.16). Let Vi, 1 ≤ i ≤ k be the independent and iden-
tically distributed (i.i.d.) vectors chosen uniformly randomly from F

n
q that form

the rows of the matrix G. For 1 ≤ i ≤ k let Ei be the event that the vec-
tors Vj , 1 ≤ j ≤ i are linearly independent so that P(E1) = 1. For i ≥ 2, we
note that the event Ei =

⋂
1≤j≤i Ej and write

P(Ei) = P

⎛

⎝
⋂

1≤j≤i

Ei

⎞

⎠ = E (11(Ei−1) · P (Ei | Vj , 1 ≤ j ≤ i − 1)) . (2.18)

If Ei−1 occurs, the size of the space spanned by the vectors Vj , 1 ≤ j ≤ i − 1
is qi−1 and so the event Ei occurs if and only if we choose Vi from amongst
the remaining qn − qi−1 vectors. Therefore from (2.18) we get that P(Ei) =(

qn−qi−1

qn

)
P(Ei−1) and continuing iteratively, we get that

P(Ek) =
k−1∏

j=1

(

1 − qj

qn

)

≥ 1 − 1
qn

k−1∑

j=1

qj = 1 − qk − 1
qn(q − 1)

≥ 1 − 2
qn−k

, (2.19)

using the fact that q ≥ 2 and so qk−1
qn(q−1) ≤ qk

qn(q−1) ≤ 2
qn−k . This proves (2.16).
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Abstract. A famous result by Erdős and Szekeres (1935) asserts that,
for every k, d ∈ N, there is a smallest integer n = g(d)(k), such that
every set of at least n points in R

d in general position contains a k-gon,
i.e., a subset of k points which is in convex position. We present a SAT
model for higher dimensional point sets which is based on chirotopes,
and use modern SAT solvers to investigate Erdős–Szekeres numbers in
dimensions d = 3, 4, 5. We show g(3)(7) ≤ 13, g(4)(8) ≤ 13, and g(5)(9) ≤
13, which are the first improvements for decades. For the setting of k-
holes (i.e., k-gons with no other points in the convex hull), where h(d)(k)
denotes the minimum number n such that every set of at least n points in
R

d in general position contains a k-hole, we show h(3)(7) ≤ 14, h(4)(8) ≤
13, and h(5)(9) ≤ 13. Moreover, all obtained bounds are sharp in the
setting of chirotopes and we conjecture them to be sharp also in the
original setting of point sets.

Keywords: Erdös–Szekeres Theorem · Higher dimensional point set ·
Chirotope · Boolean satisfiability (SAT) · Computer-assisted proof

1 Introduction

The classical Erdős–Szekeres Theorem [7] asserts that every sufficiently large
point set in the plane in general position (i.e., no three points on a common
line) contains a k-gon (i.e., a subset of k points in convex position).

Theorem 1 ([7], The Erdős–Szekeres Theorem). For every integer k ≥ 3,
there is a smallest integer n = g(2)(k) such that every set of at least n points in
general position in the plane contains a k-gon.

Erdős and Szekeres showed that g(2)(k) ≤ (
2k−4
k−2

)
+ 1 [7] and constructed

point sets of size 2k−2 without k-gons [8], which they conjectured to be extremal.
There were several improvements of the upper bound in the past decades, each
of magnitude 4k−o(k), and in 2016, Suk showed g(2)(k) ≤ 2k+o(k) [24]. Shortly
after, Holmsen et al. [12] slightly improved the error term in the exponent. The
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lower bound g(2)(k) ≥ 2k−2 + 1 is known to be sharp for k ≤ 6. The value
g(2)(4) = 5 was determined by Klein in 1935, g(2)(5) = 9 was determined by
Makai (cf. [14]), and g(2)(6) = 17 was shown by Szekeres and Peters [25] using
heavy computer assistance. While their computer program uses thousands of
CPU hours, we have developed a SAT framework [23] which allows to verify this
result within only 2 CPU hours, and an independent verification of their result
using SAT solvers was done by Marić [18].

1.1 Planar k-Holes

In the 1970’s, Erdős [6] asked whether every sufficiently large point set contains
a k-hole, that is, a k-gon with the additional property that no other point lies
in its convex hull. In the same vein as g(2)(k), we denote by h(2)(k) the smallest
integer such that every set of at least h(2)(k) points in general position in the
plane contains a k-hole. This variant differs significantly from the original setting
as there exist arbitrarily large point sets without 7-holes [13]. While Harborth
[11] showed h(2)(5) = 10, the existence of 6-holes remained open until 2006, when
Gerken [10] and Nicolás [20] independently showed that sufficiently large point
sets contain 6-holes. Today the best bounds are 30 ≤ h(2)(6) ≤ 463 [17,21].

1.2 Higher Dimensions

The notions general position (no d + 1 points in a common hyperplane), k-
gon (a set of k points in convex position), and k-hole (a k-gon with no other
points in the convex hull) naturally generalize to higher dimensions, and so does
the Erdős–Szekeres Theorem We denote by g(d)(k) and h(d)(k) the minimum
number of points in R

d in general position that guarantee the existence of k-gon
and k-hole, respectively. In contrast to the planar case, the asymptotic behavior
of the higher dimensional Erdős–Szekeres numbers g(d)(k) remains unknown
for dimension d ≥ 3. While a dimension-reduction argument by Károlyi [15]
combined with Suk’s bound [24] shows

g(d)(k) ≤ g(d−1)(k − 1) + 1 ≤ . . . ≤ g(2)(k − d + 2) + d − 2 ≤ 2(k−d)+o(k−d)

for k ≥ d ≥ 3, the currently best asymptotic lower bound is g(d)(k) = Ω(c
d−1√

k)
with c = c(d) > 1 is witnessed by a construction by Károlyi and Valtr [16].

1.3 Higher Dimensional Holes

Since Valtr [27] gave a construction for any dimension d without dd+o(d)-holes,
generalizing the idea of Horton [13], the central open problem about higher
dimensional holes is to determine the largest value k = H(d) such that every
sufficiently large set in d-space contains a k-hole. Note that with this notation
we have H(2) = 6 because h(2)(6) < ∞ [10,20] and h(2)(7) = ∞ [13]. Very
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recently Bukh et al. [5] presented a construction without 27d-holes, which fur-
ther improves Valtr’s bound and shows H(d) < 27d. On the other hand, the
dimension-reduction argument by Károlyi [15] also applies to k-holes, and hence

h(d)(k) ≤ h(d−1)(k − 1) + 1 ≤ . . . ≤ h(2)(k − d + 2) + d − 2.

This inequality together with h(2)(6) < ∞ implies that h(d)(d + 4) < ∞ and
hence H(d) ≥ d+4. However, already in dimension 3 the gap between the upper
and the lower bound of H(3) remains huge: while there are arbitrarily large
sets without 23-holes [27], already the existence of 8-holes remains unknown
(7 ≤ H(3) ≤ 22).

1.4 Precise Values

As discussed before, for the planar k-gons g(2)(5) = 9, g(2)(6) = 17, h(2)(5) = 10,
and g(2)(k) ≤ (

2k−5
k−2

)
+ 1 are known. For planar k-holes, h(2)(5) = 9, 30 ≤

h(2)(6) ≤ 463, and h(2)(k) = ∞ for k ≥ 7.
While the values g(d)(k) = h(d)(k) = k for k ≤ d + 1 and g(d)(d + 2) =

h(d)(d + 2) = d + 3 are easy to determine (cf. [3]), Bisztriczky et al. [2,3,19]
showed g(d)(k) = h(d)(k) = 2k − d − 1 for d + 2 ≤ k ≤ 3d

2 + 1. This, in particu-
lar, determines the values for (k, d) = (3, 5), (4, 6), (4, 7), (5, 7), (5, 8) and shows
H(d) ≥ � 3d

2 � + 1. For k > 3d
2 + 1 and d ≥ 3, Bisztriczky and Soltan [3] more-

over determined the values g(3)(6) = h(3)(6) = 9. Tables 1 and 2 summarize the
currently best bounds for k-gons and k-holes in small dimensions.

Table 1. Known values and bounds for g(d)(k). Entries marked with a star (*) are
new. Entries left blank can be upper-bounded by the estimate g(2)(k) ≤ (

2k−5
k−2

)
+1 [26]

and the dimension-reduction argument from [15].

k = 4 5 6 7 8 9 10 11

d = 2 5 9 17

3 4 6 9 ≤13*

4 4 5 7 9 ≤13*

5 4 5 6 8 10 ≤13*

6 4 5 6 7 9 11 13

Table 2. Known values and bounds for h(d)(k). Entries marked with a star (*) are
new.

k = 4 5 6 7 8 9 10 11

d = 2 5 10 30..463 ∞ ∞ ∞ ∞ ∞
3 4 6 9 ≤14* ? ? ? ?

4 4 5 7 9 ≤13* ? ? ?

5 4 5 6 8 10 ≤13* ? ?

6 4 5 6 7 9 11 13 ?
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1.5 Our Results

In this article we show the following upper bounds on higher dimensional Erdős–
Szekeres numbers and the k-holes variant in dimensions 3, 4 and 5, which we
moreover conjecture to be sharp.

Theorem 2. It holds g(3)(7) ≤ 13, h(3)(7) ≤ 14, g(4)(8) ≤ h(4)(8) ≤ 13, and
g(5)(9) ≤ h(5)(9) ≤ 13.

For the proof of Theorem2, we generalize our SAT framework from [23] to higher
dimensional point sets. Our framework for dimensions d = 3, 4, 5 is based on
chirotopes of rank r = d + 1, and we use the SAT solver CaDiCaL [1] to prove
unsatisfiability. Moreover, CaDiCaL can generate unsatisfiability proofs which
then can be verified by a proof checking tool such as DRAT-trim [28].

2 Preliminaries

Let {p1, . . . , pn} be a set of n labeled points in R
d in general position with

coordinates pi = (xi1, . . . , xid). We assign to each (d + 1)-tuple i0, . . . , id a sign
to indicate whether the d + 1 corresponding points pi0 , . . . , pid are positively or
negatively oriented. Formally, we define χ : {1, . . . , n}d → {−1, 0,+1} with

χ(i0, . . . , id) = sgn det
(

1 1 . . . 1
pi0 pi1 . . . pid

)
= sgn det

⎛

⎜
⎜
⎜
⎝

1 1 . . . 1
xi01 xi11 . . . xid1

...
...

...
xi0d xi1d . . . xidd

⎞

⎟
⎟
⎟
⎠

.

It is well known that this mapping χ is a chirotope of rank r = d + 1 (cf.
[4, Definition 3.5.3]). Moreover, since we are only interested in point sets in
general position in this article, we only consider non-degenerate chirotopes, that
is, χ(a1, . . . , ar) �= 0 holds for any r distinct indices a1, . . . , ar. The following
theorem fully characterizes non-degenerate chirotopes:

Theorem 3. (cf. [4, Theorem 3.6.2]). A map χ : {1, . . . , n}r → {−1, 0,+1} is
a non-degenerate chirotope of rank r if the following two properties are fulfilled:

(i) for every permutation σ on any r distinct indices a1, . . . , ar ∈ {1, . . . , n},

χ(aσ(1), . . . , aσ(r)) = sgn(σ) · χ(a1, . . . , ar) �= 0;

(ii) for any a1, . . . , ar, b1, b2 ∈ {1, . . . , n},

if χ(b1, a2, . . . , ar) · χ(a1, b2, b3, . . . , br) ≥ 0
and χ(b2, a2, . . . , ar) · χ(b1, a1, b3, . . . , br) ≥ 0
then χ(a1, a2, . . . , ar) · χ(b1, b2, b3, . . . , br) ≥ 0.
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2.1 Gons and Holes

Carathéodory’s theorem asserts that a d-dimensional point set is in convex
position if and only if all (d + 2)-element subsets are in convex position.
Now that a point pid+1 lies in the convex hull of {pi0 , . . . , pid} if and only if
χ(i0, . . . , id) = χ(i0, . . . , ij−1, id+1, ij , . . . , id) holds for every j ∈ {0, . . . , d}, we
can fully axiomize k-gons and k-holes solely using the information of the chiro-
tope, that is, the relative position of the points. (The explicit coordinates do not
play a role.)

3 The SAT Framework

For the proof of Theorem2, we proceed as following: To show g(d)(k) ≤ n (or
h(d)(k) ≤ n, resp.), assume towards a contradiction that there exists a set S
of n points in R

d in general position, which does not contain any k-gon (or
k-hole, resp.). The point set S induces a chirotope χ of rank d + 1, which can
be encoded using nd+1 Boolean variables. The chirotope χ fulfills the Θ(nd+3)
conditions from Theorem 3, which we can encode as clauses.

Next, we introduce auxiliary variables for all i0, . . . , id+1 ∈ {1, . . . , n} to indi-
cate whether the point pid+1 lies in the convex hull of {pi0 , . . . , pid}. As discussed
in Sect. 1.2, the values of these auxiliary variables are fully determined by the
chirotope (variables). Using these nd+2 auxiliary variables we can formulate

(
n
k

)

clauses, each involving kd+2 literals, to assert that there are no k-gons in S:
Among every subset X ⊂ S of size |X| = k there is at least one point p ∈ X
which is contained in the convex hull of d + 1 points of X \ {p}. (To assert that
there are no k-holes in S, we can proceed in a similar manner: Among every
subset X ⊂ S of size |X| = k there is at least one point p ∈ S which is contained
in the convex hull of d + 1 points of X \ {p}.)

Altogether, we can now create a Boolean satisfiability instance that is satis-
fiable if and only if there exists a rank d + 1 chirotope on n elements without
k-gons (or k-holes, resp.). If the instance is provable unsatisfiable, no such chiro-
tope (and hence no point set S) exists, and we have g(d)(k) ≤ n (or h(d)(k) ≤ n,
resp.).

3.1 Running Times and Resources

All our computations were performed on single CPUs. However, since some com-
putations (especially for verifying the unsatisfiability certificates) required more
resources than available on standard computers/laptops, we made use of the
computing cluster from the Institute of Mathematics at TU Berlin.

– g(3)(7) ≤ 13: The size of the instance is about 245 MB and CaDiCaL managed
to prove unsatisfiability in about 2 CPU days. Moreover, the unsatisfiability
certificate created by CaDiCaL is about 39 GB and the DRAT-trim verification
took about 1 CPU day.
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– h(3)(7) ≤ 14: The size of the instance is about 433 MB and CaDiCaL (with
parameter --unsat) managed to prove unsatisfiability in about 19 CPU days.

– h(4)(8) ≤ 13: The size of the instance is about 955 MB and CaDiCaL managed
to prove unsatisfiability in about 7 CPU days.

– h(5)(9) ≤ 13: The size of the instance is about 4.2 GB and CaDiCaL managed
to prove unsatisfiability in about 3 CPU days. Moreover, the unsatisfiability
certificate created by CaDiCaL is about 117 GB and the DRAT-trim verification
took about 3 CPU days.

The python program for creating the instances and further technical infor-
mation is available on our supplemental website [22].

4 Discussion

Unfortunately, the unsatisfiability certificates for h(3)(7) ≤ 14 and h(4)(8) ≤ 13,
respectively, created by CaDiCaL grew too big to be verifiable with our available
resources. However, it might be possible to further optimize the SAT model to
make the solver terminate faster (cf. [23]) so that one obtains smaller certificates.

In the course of our investigations we found chirotopes that witness that all
bounds from Theorem 2 are sharp in the more general setting of chirotopes. How-
ever, since we have not yet succeeded in finding realizations of those chirotopes,
we can only conjecture that all bounds from Theorem2 are also sharp in the
original setting, but we are looking forward to implementing further computer
tools so that we can address all those realizability issues. It is worth noting that
finding realizable witnesses is a notoriously hard and challenging task because
(i) only 2Θ(n log n) of the 2Θ(nd) rank d+1 chirotopes are realizable by point sets
and (ii) the problem of deciding realizability is ETR-complete in general (cf.
Chapters 7.4 and 8.7 in [4]).

Concerning the existence of 8-holes in 3-space: while we managed to find a
rank 4 chirotope on 18 elements without 8-holes within only a few CPU hours,

the solver did not terminate for months on the instance h(3)(8)
?≤ 19. We see

this as a strong evidence that sufficiently large sets in 3-space (possibly already
19 points suffice) contain 8-holes.

Last but not least we want to mention that our SAT framework can also be
used to tackle other problems on higher dimensional point sets. For example, by
slightly adapting our SAT framework, we managed to answer a Tverberg-type
question by Fulek et al. (cf. Sect. 3.2 in [9]).
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26. Tóth, G., Valtr, P.: The Erdős-Szekeres theorem: upper bounds and related results.
In: Combinatorial and Computational Geometry, vol. 52, pp. 557–568. MSRI Pub-
lications, Cambridge Univ. Press (2005)

27. Valtr, P.: Sets in R
d with no large empty convex subsets. Discret. Math. 108(1),

115–124 (1992)
28. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-

ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3 31

https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31


Improved Bounds on the Cop Number
of a Graph Drawn on a Surface

Joshua Erde(B) and Florian Lehner

Institute of Discrete Mathematics, Graz University of Technology, 8010 Graz, Austria
erde@math.tugraz.at, florian.lehner@tugraz.at

Abstract. It is known that the cop number c(G) of a connected graph
G can be bounded as a function of the genus of the graph g(G). It is
conjectured by Schröder that c(G) ≤ g(G)+3. Recently, by relating this
problem to a topological game, the authors, together with Bowler and
Pitz, gave the current best known bound that c(G) ≤ 4g(G)

3
+ 10

3
. Combin-

ing some of these ideas with some techniques introduced by Schröder we
improve this bound and show that c(g) ≤ (1 + o(1))(3 − √

3)g ≈ 1.268g.

Keywords: Cops and Robbers · Graph searching · Genus

1 Introduction

The game of cops and robbers was introduced independently by Nowakowski and
Winkler [7] and Quillot [9]. The game is a pursuit game played on a connected
graph G = (V,E) by two players, one player controlling a set of k ≥ 1 cops and
the other controlling a robber. Initially, the first player chooses a starting con-
figuration (c1, c2, . . . , ck) ∈ V k for the cops and then the second player chooses
a starting vertex r ∈ V for the robber. The game then consists of alternating
moves, one move by the cops and then a subsequent move by the robber. For
a cop move, each cop may move to a vertex adjacent to his current location,
or stay still, and the same goes for a subsequent move of the robber. Note that
each cop may change his position in a move, and that multiple cops may occupy
the same vertex. The first player wins if at some time there is a cop on the same
vertex as the robber; otherwise the robber wins. We define the cop number c(G)
of a graph G to be the smallest number of cops k such that the first player has
a winning strategy in this game.

The problem of bounding the cop number of a graph in terms of other graph
invariants has been well studied, for a full introduction to the area see the book
of Bonato and Nowakowski [3]. In particular there has been much interest in the
relationship between the cop number of a graph and the topological properties
of the graph, see for example the recent survey of Bonato and Mohar [2]. One
of the first results in this direction is a result of Aigner and Fromme [1], who
showed that every planar graph has cop number at most three.

Theorem 1. Every planar graph G has c(G) ≤ 3.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 111–116, 2021.
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More generally, given a graph G, let us write g(G) for the genus of G, that
is, the smallest k such that G can be drawn on an orientable surface of genus k
without crossing edges. For g ∈ N we define

c(g) := max{c(G) | g(G) = g}.

Hence, in this notation Theorem1 says that c(0) ≤ 3. Quillot [10] used similar
methods to show that c(g) ≤ 2g+3, and these methods were then further refined
by Schröder to show that c(g) ≤ ⌊

3g
2

⌋
+ 3.

A key part of Aigner and Fromme’s strategy was the notion of guarding a
vertex set. We say that a cop guards a set C of vertices of G if whenever the
robber moves to a vertex of C, he is caught by that cop on the next move. We
call C ⊆ V (G) guardable if there is a strategy for a single cop c in which, after
finitely many steps, c guards C. An important step in their proof was then the
following lemma.

Lemma 1 ([1], Lemma 4). For x, y ∈ V (G), the vertex set of any geodesic
path from x to y is guardable.

This lemma has be turned out to be very fundamental in the study of the cops
and robbers game, and in particular it is essential to all known upper bounds on
the cop number of graphs drawn on surfaces. Broadly, the strategy of all of these
proofs is to find collections of geodesic paths (initially in G, but later in some
subgraph, to which the cops have restricted the robber) such that, if we delete
these paths, then each component of the remaining graph has strictly smaller
genus than before. By assigning a cop to guard each of these paths eventually
the robber is restricted to a planar subgraph of G, in which three more cops can
then catch him by Theorem 1. Perhaps the best bound we could hope for using
such a strategy would be to always find a single path whose deletion leaves only
components of smaller genus and, motivated by this Schröder conjectured that
the following is true

Conjecture 2 (Schröder [8]). For every g ∈ N, we have

c(g) ≤ g + 3.

We note that whilst c(0) = 3 by Aigner and Fromme’s result, the only other
value of c which is know is c(1) = 3, which was shown recently by the second
author [5], and it seems unlikely that the bound in Conjecture 2 is tight for any
g > 1. In fact, very little seems to be known about lower bounds for the cop
number of graphs drawn on a surface, with the only lower bound we could find
in the literature coming from the survey paper of Bonato and Mohar [2] who
give the following lower bound, which is due to a random construction of Mohar.

Theorem 3 (Mohar [6]).
c(g) ≥ g

1
2−o(1).
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One ample source of geodesic paths in a graph is to pick a pair of vertices
x and y and consider any shortest path between x and y. Using this, one way
to give a strategy for the cops would be to split the cops strategy into distinct
periods. In period t the cops pick some pair of vertices xt and yt, informed
perhaps by the current state of the game and the previous moves, and then in
the next period assign a cop to guard some shortest path Pt between x and y (in
G \ ⋃t−1

i=1 Pi), which he can achieve after a finite number of moves. Then, in the
next period, we know that robber is restricted to some component of G\⋃t

i=1 Pi.
For example, Quillot’s strategy can be phrased in this manner. Let us call such
a strategy a naive strategy.

It might seem like a potential issue that we don’t have much control over
what the shortest paths between x and y will look like, however if we consider
these paths as arcs living on the surface that G is drawn in, then at least in
a topological sense, up to a homeomorphism of this surface, there will only be
a small number of possibilities for what this arc can look like. By analysing
carefully the possible types of arcs that can arise in this fashion, the authors
together with Bowler and Pitz [4] were able to improve on Schröder’s bound.

Theorem 4. For every g ∈ N, we have

c(g) ≤ 4g

3
+

10
3

.

Their proof related the cops and robbers game on a graph drawn on a surface
S to a purely topological ‘Waiter-Client’ game on the surface S, where one player
chooses two points in the boundary of the surface and the other chooses an arc
between these points in the surface, cuts along this arc and then discards all
but one of the resulting components. The first player wants to eventually get
to a planar surface using as few cuts as possible, and they showed that he has
a strategy to do so using 4

3g + O(1) cuts. However, they also showed that this
strategy is essentially optimal, in that the second player has a strategy to ensure
that at least 4

3g + O(1) cuts are used. This strongly suggests that the bound of
Theorem 4 is the best one can hope for using a naive strategy.

However, whilst Schröder’s strategy still uses Lemma 1 in an essential man-
ner, there are some ingredients to Schröder’s proof which improve on these naive
strategies. By using some of these ideas to complement the ideas from [4] we are
able to give an improvement to Theorem 4.

Theorem 5. For every g ∈ N, we have

c(g) ≤ (3 −
√

3 + o(1))g.

It seems however that this is not the limit of these methods, and attempt-
ing to improve this bound leads to the following question, which seems to be
interesting in its own right.

Question 6. Let n and g be integers and let G be a drawing of Kn on the surface
S of genus g. What is the size of the largest matching in G whose edge set is
topologically connected in S?



114 J. Erde and F. Lehner

If we could show the existence of a matching of size tending to infinity with
n when n = εg for some small ε > 0, then this should be sufficient to improve
the bound in Theorem5 to c(g) ≤ ( 54 + o(1))g.

2 Sketch of Proof

To motivate our strategy, let us sketch Schröder’s proof. To this end it will be
useful to think of the graph G as being drawn on a fixed surface S. Given a
path or cycle W in G there is a corresponding arc AW in S. If we ‘cut along’1

the arc AW in S we get a new surface Cut(S,AW ) and there is a new graph
Cut(G,W ) on this surface, where there might now be multiple distinct ‘copies’
of the vertices and edges in W on the surface, but there will only be a single
copy of each other edge of G, and in particular each edge of G incident with a
vertex v of W will only be incident with a single copy of v in Cut(G,W ).

If a collection of cops is currently guarding W in G, we can imagine that
the remaining cops and robber are playing on Cut(G,W ), although in fact the
robber in the actual game is weaker, he can’t use vertices of W , and the cops
in the actual game are stronger, they can ‘teleport’ between copies of the same
vertex. In this way we can, during the play of the game, keep track of a sequence
of graphs drawn on a sequence of surfaces where during a particular period of
play we will be focusing on what we’ll refer to as the active graph and surface.
After assigning some cops to guard some geodesic paths in the active graph,
we will cut up the active surface along the corresponding arc. The robber will
be restricted to some component of this cut up graph, and we will take that
component, and the component of the cut up surface containing it, to be the
new active graph and component. Note that there may be multiple copies of
the vertices of the paths that are being guarded by cops in the earlier graphs
appearing in the active graph, and also there may say some paths where none
of the copies of the vertices in these paths appear in the active graph, in which
case it is no longer necessary that this cop keeps guarding his path.

Translated into this setting, there are then perhaps two ingredients to the
proof of Schröder: He first shows that using two cops c1 and c2 it is possible
to guard a subgraph whose deletion reduces the genus of the active surface and
such that, in the new active surface S, c1 and c2 are only guarding vertices which
appear in some cycle which lies in the boundary of S or boundary cycle.

He then shows that, given a boundary cycle C, either a single cop can guard
a walk between two vertices in C whose deletion reduces the genus of the active
surface, or using two cops c3 and c4 it is possible to restrict the robber to some
part of the active surface where c3 and c4 are only guarding vertices which appear
in some cycle which lies in the boundary of this part, and the only vertices of C
appearing in this part are guarded by c3 and c4.

1 Imagine your surface being made out of rubber and cutting the surface precisely
along the middle of the edges, so that a part of each edge remains on each side of
the cut.
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At this point the cops c1 and c2 are redundant, and so we can ‘relabel’ the
cops c3 and c4 as c1 and c2 and repeat the previous argument. Eventually, since
the graph is finite, and at each stage we are restricting the robber’s territory, we
end up using a single cop to reduce the genus of the active surface, and so all in
all we’ve used three cops (as well as potentially two extra cops, but only for a
finite period) to reduce the genus of the active surface by two.

By induction we can conclude that c(G) ≤ 3
2g + O(1), and at this point

Schröder carefully analyses the start and end of this induction to minimise this
constant.

Broadly our strategy follows that of Schröder, but we begin by using a variant
of his argument to first guard a subgraph using 2k cops which reduces the genus
of the active surface by k and such that these cops are only guarding vertices
which appear on boundary cycle. Whilst this may seem very inefficient, using
2k cops to reduce the genus by k, we will be able to leverage the existence of a
boundary cycle C on which many different cops are guarding vertices to make
more efficient moves.

At this point we consider a maximal sequence of nested paths P1, P2, . . . , Pa

between points on C such that sequentially deleting these paths reduces the
genus of the active surface by a.

If a is large, then we have found a sequence of very efficient genus reducing
moves for the cops. However, if a is small, then C will split into a small number
of boundary cycles in the new active surface, and we can use similar ideas as in
Schröder’s argument to replace the 2k +a cops guarding vertices on these cycles
with a smaller number of cops, and to make a further genus reducing cut in each
of these cycles.

In both cases this represents an improvement over the asymptotic rate of
reducing the genus by three using four cops, and by considering the worst choice
of a for a given k it can be shown that a rate arbitrarily close to that given in
Theorem 5 can be achieved in this fashion.

References

1. Aigner, M., Fromme, M.: A game of Cops and Robbers. Discret. Appl. Math. 8(1),
1–12 (1984)

2. Bonato, A., Mohar, B.: Topological directions in Cops and Robbers. J. Comb.
11(1), 47–64 (2020)

3. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. American
Mathematical Society, Providence (2011)

4. Bowler, N., Erde, J., Lehner, F., Pitz, M.: Bounding the cop number of a graph
by its genus. ArXiv preprint https://arxiv.org/abs/1911.01758 (2019)

5. Lehner, F.: On the cop number of toroidal graphs. ArXiv preprint https://arxiv.
org/abs/1904.07946 (2019)

6. Mohar, B.: Notes on Cops and Robber game on graphs. ArXiv preprint http://
arxiv.org/abs/1710.11281 (2017)

7. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math.
43(2–3), 235–239 (1983)

https://arxiv.org/abs/1911.01758
https://arxiv.org/abs/1904.07946
https://arxiv.org/abs/1904.07946
http://arxiv.org/abs/1710.11281
http://arxiv.org/abs/1710.11281


116 J. Erde and F. Lehner
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Abstract. A Berge-path of length k in a hypergraph H is a sequence
v1, e1, v2, e2, . . . , vk, ek, vk+1 of distinct vertices and hyperedges with
vi+1 ∈ ei, ei+1 for all i ∈ [k]. Füredi, Kostochka and Luo, and inde-
pendently Győri, Salia and Zamora determined the maximum number of
hyperedges in an n-vertex, connected, r-uniform hypergraph that does
not contain a Berge-path of length k provided k is large enough com-
pared to r. They also determined the unique extremal hypergraph H1.

We prove a stability version of this result by presenting another con-
struction H2 and showing that any n-vertex, connected, r-uniform hyper-
graph without a Berge-path of length k, that contains more than |H2|
hyperedges must be a subhypergraph of the extremal hypergraph H1,
provided k is large enough compared to r.

Keywords: Extremal hypergraph theory · Berge-paths · Connectivity

1 Introduction

This work is an extended abstract of a manuscript [9].
In extremal graph theory, the Turán number ex(n,G) of a graph G is the

maximum number of edges that an n-vertex graph can have without containing
G as a subgraph. If a class G of graphs is forbidden, then the Turán number is
denoted by ex(n,G). The asymptotic behavior of the function ex(n,G) is well-
understood if G is not bipartite. However, much less is known if G is bipartite
(see the survey [8]). One of the simplest classes of bipartite graphs is that of
paths. Let Pk and Ck denote the path and the cycle with k edges and let C≥k

denote the class of cycles of length at least k.
Erdős and Gallai [3] proved that for any n ≥ k ≥ 1, the Turán number

satisfies ex(n, Pk) ≤ (k−1)n
2 . They obtained this result by first showing that for

any n ≥ k ≥ 3, ex(n, C≥k) ≤ (k−1)(n−1)
2 . The bounds are sharp for paths, if k

divides n, and sharp for cycles, if k − 1 divides n − 1. These are shown by the
example of n/k pairwise disjoint k-cliques for the path Pk, and adding an extra

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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vertex joined by an edge to every other vertex for the class C≥k+2 of cycles.
Later, Faudree and Schelp [4] gave the exact value of ex(n, Pk) for every n.

Observe that the extremal construction for the path is not connected. Kopy-
lov [14] and independently Balister, Győri, Lehel, and Schelp [1] determined the
maximum number of edges exconn(n, Pk) that an n-vertex connected graph can
have without containing a path of length k. The stability version of these results
was proved by Füredi, Kostochka and Verstraëte [7]. To state their result, we
need to define the following class of graphs.

Definition 1. For n ≥ k and k
2 > a ≥ 1 we define the graph Hn,k,a as follows.

The vertex set of Hn,k,a is partitioned into three disjoint parts A,B and L such
that |A| = a, |B| = k − 2a and |L| = n − k + a. The edge set of Hn,k,a consists
of all the edges between L and A and also all the edges in A ∪ B. Let us denote
the number of edges in Hn,k,a by |Hn,k,a|.
Theorem 1 (Füredi, Kostochka, Verstraëte [7], Theorem 1.6). Let t ≥ 2,
n ≥ 3t − 1 and k ∈ {2t, 2t + 1}. Suppose we have a n-vertex connected Pk-free
graph G with more edges than |Hn+1,k+1,t−1| − n. Then we have either

• k = 2t, k �= 6 and G is a subgraph of Hn,k,t−1, or
• k = 2t + 1 or k = 6, and G \ A is a star forest for A ⊆ V (G) of size at most

t − 1.

The Turán numbers for hypergraphs exr(n,H), exr(n,H) can be defined
analogously for r-uniform hypergraphs H and classes H of r-uniform hyper-
graphs.

Definition 2. A Berge-path of length t is an alternating sequence of
t + 1 distinct vertices and t distinct hyperedges of the hypergraph,
v1, e1, v2, e2, v3, . . . , et, vt+1 such that vi, vi+1 ∈ ei, for i ∈ [t]. The vertices
v1, v2, . . . , vt+1 are called defining vertices and the hyperedges e1, e2, . . . , et are
called defining hyperedges of the Berge-path. We denote the set of all Berge-paths
of length t by BPt.

The study of the Turán numbers exr(n,BPk) was initiated by Győri, Katona
and Lemons [10], who determined the quantity in almost every case. Later
Davoodi, Győri, Methuku and Tompkins [2] settled the missing case r = k + 1.
For results on the maximum number of hyperedges in r-uniform hypergraphs
not containing Berge-cycles longer than k see [5,11] and the references therein.

Analogously to graphs, a hypergraph is connected, if for any two of its vertices,
there is a Berge-path containing both vertices. The connected Turán numbers for
an r-uniform hypergraph H and class of r-uniform hypergraphs H can be defined
analogously, they are denoted by the functions exconn

r (n,H) and exconn
r (n,H),

respectively. In order to introduce our contributions, we need the following def-
inition.
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Definition 3. For integers n, a ≥ 1 and b1, . . . , bt ≥ 2 with n ≥ 2a +
∑t

i=1 bi

let us denote by Hn,a,b1,b2,...,bt the following r-uniform hypergraph.

• Let the vertex set of Hn,a,b1,b2,...,bt be A∪L∪⋃t
i=1 Bi, where A,B1, B2, . . . , Bt

and L are pairwise disjoint sets of sizes |A| = a, |Bi| = bi (i = 1, 2, . . . , t)
and |L| = n − a − ∑t

i=1 bi.
• Let the hyperedges of Hn,a,b1,b2,...,bt be

(
A

r

)

∪
t⋃

i=1

(
A ∪ Bi

r

)

∪
{

{c} ∪ A′ : c ∈ L,A′ ∈
(

A

r − 1

)}

.

Note that, if a ≤ a′ and bi ≤ b′
i for all i = 1, 2, . . . , t, then Hn,a,b1,b2,...,bt

is a subhypergraph of Hn,a′,b′
1,b′

2,...,b′
t
. Finally, the length of the longest path in

Hn,a,b1,b2,...,bt is 2a − t +
∑t

i=1 bi if t ≤ a + 1, and a − 1 +
∑a+1

i=1 bi if t > a + 1
and the bi’s are in non-increasing order.

With a slight abuse of notation, we define H+
n,a to be a hypergraph obtained

from Hn,a by adding an arbitrary hyperedge. Hyperedges containing at least r−1
vertices from A are already in Hn,a, therefore there are r − 1 pairwise different
hypergraphs that we denote by H+

n,a depending on the number of vertices from
A in the extra hyperedge. Observe that the length of the longest path in H+

n,a

is one larger than in Hn,a, in particular, if k is even, then H+

n,� k−1
2 	 does not

contain a Berge-path of length k.
The first attempt to determine the largest number of hyperedges in connected

r-uniform hypergraphs without a Berge-path of length k can be found in [12],
where the asymptotics of the extremal function was determined. The Turán
number of Berge-paths in connected hypergraphs was determined by Füredi,
Kostochka and Luo [6] for k ≥ 4r ≥ 12 and n large enough. Independently in a
different range it was also given by Győri, Salia and Zamora [13], who also proved
the uniqueness of the extremal structure. To state their result, let us introduce
the following notation: for a hypergraph H we denote by |H| the numbers of
hyperedges in H.

Theorem 2 (Győri, Salia, Zamora, [13]). For all integers k, r with k ≥ 2r +
13 ≥ 18 there exists nk,r such that if n > nk,r, then we have

– exconn
r (n,BPk) = |Hn,� k−1

2 	| = (n − k−1
2 )

( k−1
2

r−1

)
+

( k−1
2
r

)
, if k is odd, and

– exconn
r (n,BPk) = |Hn,� k−1

2 	,2| = (n− k−2
2 )

( k−2
2

r−1

)
+

( k−2
2
r

)
+

( k−2
2

r−2

)
, if k is even.

Depending on the parity of k, the unique extremal hypergraph is Hn,� k−1
2 	 or

Hn,� k−1
2 	,2.

Our main result provides a stability version (and thus a strengthening) of
Theorem 2 and also an extension of Theorem 1 for uniformity at least 3.

First we state it for hypergraphs with minimum degree at least 2, and then
in full generality. In the proof, the hypergraphs Hn, k−3

2 ,3 and Hn, k−3
2 ,2,2 will

play a crucial role in case k is odd, while if k is even, then the hypergraphs



120 D. Gerbner et al.

Hn,� k−3
2 �,4, Hn,� k−3

2 �,3,2 and Hn,� k−3
2 �,2,2,2 will be of importance, note that all

of them are n-vertex, maximal, BPk-free hypergraphs. In both cases, the hyper-
graph listed first contains the largest number of hyperedges. This number gives
the lower bound in the following theorem.

Theorem 3. For any ε > 0 there exist integers q = qε and nk,r such that if
r ≥ 3, k ≥ (2 + ε)r + q, n ≥ nk,r and H is a connected n-vertex, r-uniform
hypergraph with minimum degree at least 2, without a Berge-path of length k,
then we have the following.

– If k is odd and |H| > |Hn, k−3
2 ,3| = (n − k+3

2 )
( k−3

2
r−1

)
+

( k+3
2
r

)
, then H is a

subhypergraph of Hn, k−1
2

.

– If k is even and |H| > |Hn,� k−3
2 �,4| = (n − �k+5

2 	)(� k−3
2 �

r−1

)
+

(� k+5
2 �
r

)
, then H

is a subhypergraph of Hn,� k−1
2 �,2 or H+

n,� k−1
2 	.

Let H′
n′,a,b1,b2,...,bt

be the class of hypergraphs that can be obtained from
Hn,a,b1,b2,...,bt for some n ≤ n′ by adding hyperedges of the form A′

j ∪Dj , where
the Dj ’s partition [n′] \ [n], all Dj ’s are of size at least 2 and A′

j ⊆ A for all j.
Let us define H+

n′,� k−1
2 	 analogously.

Theorem 4. For any ε > 0 there exist integers q = qε and nk,r such that if
r ≥ 3, k ≥ (2 + ε)r + q, n ≥ nk,r and H is a connected n-vertex, r-uniform
hypergraph without a Berge-path of length k, then we have the following.

– If k is odd and |H| > |Hn, k−3
2 ,3|, then H is a subhypergraph of some H′ ∈

H′
n, k−1

2
.

– If k is even and |H| > |Hn,� k−3
2 �,4|, then H is a subhypergraph of some H′ ∈

H′
n,� k−1

2 �,2
or H+

n,� k−1
2 	.

2 A Sketch of the Proof

We start the proof of Theorem 3 with a technical but crucial lemma.

Lemma 1. Let H be a connected r-uniform hypergraph with minimum degree
at least 2 and with longest Berge-path and Berge-cycle of length � − 1. Let C be
a Berge-cycle of length � − 1 in H, with defining vertices V = {v1, v2, . . . , v�−1}
and defining edges E(C) = {e1, e2, . . . , e�−1} with vi, vi+1 ∈ ei (modulo � − 1).
Then, we have

(i) every hyperedge h ∈ H \ C contains at most one vertex from V (H) \ V .
(ii) If u, v are not necessarily distinct vertices from V (H)\V , then there cannot

exist distinct hyperedges h1, h2 ∈ H \ C and an index i with v, vi ∈ h1 and
u, vi+1 ∈ h2.

(iii) If there exists a vertex v ∈ V (H) \ V and there exist different hyperedges
h1, h2 ∈ H \ C with v, vi−1 ∈ h1 and v, vi+1 ∈ h2, then there exists a cycle
of length � − 1 not containing vi as a defining vertex.
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We say that an r-uniform hypergraph H has the set degree condition, if for
any set X of vertices with |X| ≤ k/2, we have |E(X)| ≥ |X|(� k−3

2 �
r−1

)
, i.e., the

number of those hyperedges that are incident to some vertex in X is at least
|X|(� k−3

2 �
r−1

)
. We first prove Theorem 3 for such hypergraphs, see manuscript [9],

this is an important part of the proof but we omit this part in this extended
abstract. We first state an useful proposition without a proof.

Proposition 1. Let � − 1 be the length of the longest Berge-path in H. Then
� ≥ k − 3 and H contains a Berge-cycle of length � − 1.

Proof (Proof of Theorem 3 and Theorem 4). Let H be a connected n-vertex
r-uniform hypergraph without a Berge-path of length k, and suppose that if k
is odd, then |H| > |Hn,� k−3

2 �,3| while if k is even, then |H| > |Hn,� k−3
2 �,4|. We

obtain a subhypergraph H′ of H using a standard greedy process: as long as
there exists a set S of vertices with |S| ≤ k/2 such that |E(S)| < |S|(� k−3

2 	
r−1

)
, we

remove S from H and all hyperedges in E(S). Let H′ denote the subhypergraph
at the end of this process.

Proposition 2. There exists a threshold n′′
k,r, such that if |V (H)| ≥ n′′

k,r, then
H′ is connected and contains at least n′

k,r vertices.

Proof. To see that H′ is connected, observe that every component of H′ possesses
the set degree condition. Therefore Proposition 1 yields that every component
contains a cycle of length at least k−4. Therefore, as H is connected, H contains
a Berge-path with at least 2k − 8 vertices from two different components of H′,
a contradiction as k ≥ 9.

Suppose to the contrary that H′ has less than n′
k,r vertices. Observe that,

by definition of the process, |E(H′)| − |V (H′)|(� k−3
2 	

r−1

)
strictly increases at every

removal of some set X of at most k vertices. Therefore if n > n′
k,r+k

(
n′
k,r
r

)
= n′′

k,r

and |V (H′)| < n′
k,r, then at the end we would have more hyperedges than those

in the complete r-uniform hypergraph on |v(H′)| vertices, a contradiction.

By Proposition 2 and the statement for hypergraphs with the set degree
property, we know that H′ has n1 ≥ n′

k,r vertices, and H′ ⊆ Hn1,� k−1
2 � if k is

odd, and H′ ⊆ Hn1,� k−1
2 �,2 or H+

n1,� k−1
2 	 if k is even. Then for any hyperedge

h ∈ E(H)\E(H′) that contain at least one vertex from V (H)\V (H′) with degree
at least two, we can apply Lemma 1 (i) to obtain that all such h must meet the
A of H′ in r − 1 vertices. This shows that if the minimum degree of H is at least
2, then H ⊆ Hn2,� k−1

2 � if k is odd, and H ⊆ Hn2,� k−1
2 �,2 or H ⊆ H+

n2,� k−1
2 	 if k is

even, where n2 ≤ n is the number of vertices that are contained in a hyperedge
of H that is either in H′ or has a vertex in V (H) \ V (H′) with degree at least 2.
This finishes the proof of Theorem 3.

Finally, consider the hyperedges that contain the remaining n − n2 vertices.
As all these vertices are of degree 1, they are partitioned by these edges. For
such a hyperedge h let Dh denote the subset of such vertices. Observe that for
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such a hyperedge h, we have that h \ Dh ⊆ A. Indeed if v ∈ h \ (Dh ∪ A), then
there exists a cycle C of length k − 1 in H′ not containing v. Thus there is a
path of length at least k starting at an arbitrary d ∈ Dh, continuing with h, v,
and having k−1 more vertices as it goes around C with defining hyperedges and
vertices. This contradicts Proposition 1 and finishes the proof of Theorem 4.
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10. Győri, E., Katona, G.Y., Lemons, N.: Hypergraph extensions of the Erdős-Gallai
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Abstract. We prove that there are O(n) tangencies among any set of
n red and blue planar curves in which every pair of curves intersects at
most once and no two curves of the same color intersect. If every pair of
curves may intersect more than once, then it is known that the number of
tangencies could be super-linear. However, we show that a linear upper
bound still holds if we replace tangencies by pairwise disjoint connecting
curves that all intersect a certain face of the arrangement of red and blue
curves.

The latter result has an application for the following problem stud-
ied by Keller, Rok and Smorodinsky [Disc. Comput. Geom. (2020)] in
the context of conflict-free coloring of string graphs: what is the mini-
mum number of colors that is always sufficient to color the members of
any family of n grounded L-shapes such that among the L-shapes inter-
sected by any L-shape there is one with a unique color? They showed
that O(log3 n) colors are always sufficient and that Ω(log n) colors are
sometimes necessary. We improve their upper bound to O(log2 n).

Keywords: Curves · Tangencies · Delaunay-graph · Geometric
hypergraph · Conflict-free coloring · L-shapes

1 Introduction

The intersection graph of a collection of geometric shapes is the graph whose
vertex set consists of the shapes, and whose edge set consists of pairs of shapes
with a non-empty intersection. Various aspects of such graphs have been studied
vastly over the years. For example, by a celebrated result of Koebe [11] planar
graphs are exactly the intersection graphs of interior-disjoint disks in the plane.
Another example which is more recent and more related to our topic is a result
by Pawlik et al. [17], who showed that intersection graphs of planar segments
are not χ-bounded, that is, their chromatic number cannot be upper-bounded by
a function of their clique number.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 123–128, 2021.
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We will mainly consider (not necessarily closed) planar curves (Jordan arcs).
A family of curves is t-intersecting if every pair of curves intersects in at most t
points. We say that two curves touch each other at a touching (tangency) point
p if both of them contain p in their interior, p is their only intersection point
and it is not a crossing point.1

According to a nice conjecture of Pach [13] the number of tangencies among
a 1-intersecting family S of n curves should be O(n) if every pair of curves
intersects. Györgyi et al. [8] proved this conjecture in the special case where
there are constantly many faces of the arrangement of S such that every curve
in S has one of its endpoints inside one of these faces. Here we prove the following
variant.

Theorem 1. Let S be a 1-intersecting set of red and blue curves such that no
two curves of the same color intersect. Then the number of tangencies among
the curves in S is O(n).

Note that it is trivial to construct an example with Ω(n) tangencies. Theo-
rem 1 does not hold if a pair of curves in S may intersect twice. Indeed, Pach et
al. [16] considered the following problem: what is the maximum number f(n) of
tangencies among n x-monotone red and blue curves where no two curves of the
same color intersect. They showed that Ω(n log n) ≤ f(n) ≤ O(n log2 n), where
their lower bound construction is 2-intersecting (but not 1-intersecting).

The number of tangencies within a 1-intersecting set of n (x-monotone)
curves can be Ω(n4/3): it is not hard to obtain this bound using the famous
construction of Erdős of n points and n lines that determine that many point-
line incidences [14]. An almost matching upper bound of O(n4/3 log2/3 n) follows
from a result of Pach and Sharir [15].2

Connecting Curves. Instead of considering touching points among curves in a
family of curves S, we may consider pairs of disjoint curves that are intersected
by a curve c from a different family of curves C, such that c does not intersect any
other curve. Indeed, each touching point of two curves from S can be replaced
by a new, short curve that connects the two previously touching curves that
become disjoint by redrawing one of them near the touching point. Conversely,
if C consists of curves that connect disjoint curves from S, then each connecting
curve in C can be replaced by a touching point between the corresponding curves
by redrawing one of these two curves. Therefore, studying touching points or such
connecting curves are equivalent problems. This gives the following reformulation
of Theorem 1.

Theorem 2. Let S be a set of 1-intersecting n red and blue curves such that no
two curves of the same color intersect. Suppose that C is a set of pairwise disjoint
1 p is a crossing point of two curves if there is a small disk D centered at p which

contains no other intersection point of these curves, each curve intersects the bound-
ary of D at exactly two points and in the cyclic order of these four points no two
consecutive points belong to the same curve.

2 A more careful analysis yields the upper bound O(n4/3 log1/3 n).
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curves such that each of them intersects exactly a distinct pair of disjoint curves
from S. Then |C| = O(n).

If S and C are two families of curves, then we say that C is grounded with
respect to S if there is a connected region of R2 \ S that contains at least one
point of every curve in C. If C is grounded with respect to S, then we can drop
the assumption that S is 1-intersecting and prove the following variant.

Theorem 3. Let S be a set of n red and blue curves such that no two curves
of the same color intersect. Suppose that C is a set of pairwise disjoint curves
grounded with respect to S, such that each of them intersects exactly a distinct
pair of curves from S. Then |C| = O(n).

Note that we have also dropped the assumption that a red curve and a
blue curve which are connected by a curve in C are disjoint. Therefore it is
essential that C is grounded with respect to S, for otherwise we might have
|C| = Ω(n2). Indeed, let S be a (1-intersecting) set of n/2 horizontal segments
and n/2 vertical segments such that every horizontal segment and every vertical
segment intersect. Then each such pair can be connected by a curve in C very
close to their intersection point. Hence |C| = n2/4.

Clearly, instead of curves, Theorem 3 could also be stated with a red and
a blue family of disjoint shapes, with no requirement at all about the shapes,
except that each of them is connected.

A corollary of Theorem3 improves a result of Keller, Rok and Smorodin-
sky [10] about conflict-free colorings of L-shapes.

Coloring L-shapes. An L-shape consists of a vertical line-segment and a hor-
izontal line-segment such that the left endpoint of the horizontal segment coin-
cides with the bottom endpoint of the vertical segment (as in the letter ‘L’,
hence the name). Whenever we consider a family L-shapes, we always assume
that no pair of them have overlapping segments, that is, they have at most one
intersection point.

A family of L-shapes is grounded if there is a horizontal line that contains
the top point of each L-shape in the family. A (grounded) L-graph is a graph
that can be represented as the intersection graph of a family of (grounded) L-
shapes. Gonçalves et al. [7] proved that every planar graph is an L-graph. The
line graph of every planar graph is also known to be an L-graph [6]. As for
grounded L-graphs, McGuinness [12] proved that they are χ-bounded. Jeĺınek
and Töpfer [9] characterized grounded L-graphs in terms of vertex ordering with
forbidden patterns.

Keller, Rok and Smorodinsky [10] studied conflict-free colorings of string
graphs3 and in particular of grounded L-graphs. A coloring of the vertices of
a hypergraph is conflict-free, if every hyperedge contains a vertex whose color
is not assigned to any of the other vertices of the hyperedge. The minimum

3 A string graph is the intersection graph of curves in the plane.
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number of colors in a conflict-free coloring of a hypergraph H is denoted by
χCF(H). There is a vast literature on conflict-free coloring of hypergraphs that
stem from geometric settings due to its application to frequencies assignment in
wireless networks and its connection to cover-decomposability and other coloring
problems—see the survey of Smorodinsky [18], the webpage [1] and the references
within.

One natural way of defining a hypergraph H(S) with respect to a family of
geometric shapes S is as follows: the vertex set is S and for every shape S ∈ S
there is a hyperedge that consists of all the members of S \ {S} whose intersec-
tion with S is non-empty.4 This is the so-called punctured or open neighborhood
hypergraph of the intersection graph. Similarly, for two families of shapes, S and
F , the hypergraph H(S,F) has S as its vertex set and has a hyperedge for every
F ∈ F which consists of all the members of S \ {F} whose intersection with F
is non-empty. Hence, H(S) = H(S,S).

Using Theorem 3 we can improve the following result.

Theorem 4 (Keller, Rok and Smorodinsky [10]). χCF(H(L)) = O(log3 n)
for every set L of n grounded L-shapes. Furthermore, for every n there exists a
set L of n grounded L-shapes such that χCF(H(L)) = Ω(log n).

In order to obtain this result and many other results considering (conflict-
free) coloring of hypergraphs it is often enough to consider the chromatic number
of a sub-hypergraph consisting of hyperedges of size two, that is, the Delaunay
graph. For two families of geometric shapes S and F , the Delaunay graph of S
and F , denoted by D(S, F ), is the graph whose vertex set is S and whose edge
set consists of pairs of vertices such that there is a member of F that intersects
exactly the shapes that correspond to these two vertices and no other shape.
Note that if S is a set of planar points and F is the family of all disks, then
D(S, F ) is the standard Delaunay graph of the point set S.

A key ingredient in the proof of Theorem4 in [10] is the following lemma.

Lemma 5 ([10, Proposition 3.9]). Let L ∪ I be a set of grounded L-shapes
such that |L| = n and the L-shapes in I are pairwise disjoint. Then D(L, I) has
O(n log n) edges.

Theorem 3 clearly implies Lemma 5, since every family of n L-shapes consists
of n pairwise disjoint horizontal (red) segments and n pairwise disjoint vertical
(blue) segments. Thus, Theorem 3 is a twofold improvement of Lemma5: we
consider a more general setting and prove a better upper bound. Furthermore,
our proof is simpler than the proof of Lemma5 in [10] (especially a weaker version
of Theorem 3 which we prove separately).

By replacing Lemma 5 with Theorem 3 (or its weaker version) in the proof of
Theorem 4 we obtain a better upper bound for the number of colors that suffice
to conflict-free color n grounded L-shapes.
4 If two shapes give rise to the same hyperedge, then this hyperedge appears only once

in the hypergraph.
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Theorem 6. Let L be a set of n grounded L-shapes. Then it is possible to color
every L-shape in L with one of O(log2 n) colors such that for each � ∈ L there
is an L-shape with a unique color among the L-shapes whose intersection with �
is non-empty.

The upper bound on the number of edges in the Delaunay graph also implies
upper bounds for the number of hyperedges of size at most k, the chromatic
number of the hypergraph and its VC-dimension.5 This was already shown,
e.g., for pseudo-disks [3,4], however, the same arguments apply in general. We
summarize these facts in the following statement.

Theorem 7. Let H = (V, E) be an n-vertex hypergraph. Suppose that there exist
absolute constants c, c′ ≥ 0 such that for every V ′ ⊆ V the Delaunay graph of the
sub-hypergraph6 induced by V ′ has at most c|V ′| − c′ edges, then:

(i) The chromatic number of H is at most 2c + 1 (at most 2c if c′ > 0);
(ii) The VC-dimension of H is at most 2c + 1 (at most 2c if c′ > 0); and
(iii) H has O(kd−1n) hyperedges of size at most k where d is the VC-dimension

of H.

Using a result of Chan et al. [5] this has another consequence about finding
hitting sets. We follow the usage of this result as in [3] (see therein the definition
of the minimum weight hitting set problem):

Theorem 8. Let H = (V, E) be a hypergraph. Suppose that there exist abso-
lute constants c, c′ ≥ 0 such that for every V ′ ⊆ V the Delaunay graph of the
sub-hypergraph induced by V ′ has at most c|V ′| − c′ edges. Then there exists
a randomized polynomial-time O(1)-approximation algorithm for the minimum
weight hitting set problem for H.

Thus, we have:

Corollary 9. Let S be a set of n red and blue curves, such that no two curves of
the same color intersect and let C be another set of pairwise disjoint curves which
is grounded with respect to S. Then the chromatic number of the intersection
hypergraph H(S, C) and its VC-dimension are bounded by a constant, and for
every k the number of hyperedges of size at most k in H(S, C) is kO(1)n. Also
there exists a randomized polynomial-time O(1)-approximation algorithm for the
minimum weight hitting set problem for H.

Note that the upper bounds on the chromatic number and VC-dimension
can be deduced easily in this case without using Theorem7.

Due to space constraints the proofs are omitted from this extended abstract.
The interested reader can find them in the full version [2].
5 Recall that the VC-dimension of a hypergraph H = (V, E) is the size of its largest

subset of vertices V ′ ⊆ V that can be shattered, that is, for every subset V ′′ ⊆ V ′

there exists a hyperedge h ∈ E such that h ∩ V ′ = V ′′.
6 The hyperedges of this sub-hypergraph are the non-empty subsets in {h∩V ′ | h ∈ E};

this is sometimes called the trace, or the restriction to V ′.
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7. Gonçalves, D., Isenmann, L., Pennarun, C.: Planar graphs as L-intersection or
L-contact graphs. In: Czumaj, A. (ed.) Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, 7–10 January 2018, pp. 172–184. SIAM (2018)

8. Györgyi, P., Hujter, B., Kisfaludi-Bak, S.: On the number of touching pairs in a
set of planar curves. Comput. Geom. 67, 29–37 (2018)
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Abstract. We introduce and study a semi-random multigraph process,
which forms a no-replacement variant of the process that was introduced
in [3]. The process starts with an empty graph on the vertex set [n]. For
every positive integers q and 1 ≤ r ≤ n, in the ((q − 1)n + r)th round
of the process, the decision-maker, called Builder, is offered the vertex
πq(r), where π1, π2, . . . is a sequence of permutations in Sn, chosen inde-
pendently and uniformly at random. Builder then chooses an additional
vertex (according to a strategy of his choice) and connects it by an edge
to πq(r).

For several natural graph properties, such as k-connectivity, mini-
mum degree at least k, and building a given spanning graph (labeled or
unlabeled), we determine the typical number of rounds Builder needs in
order to construct a graph having the desired property. Along the way we
introduce and analyze two urn models which may also have independent
interest.

Keywords: Random process · Games on graphs

1 Introduction

This is an extended abstract to the paper [4], which contains all the proofs.
In this paper we introduce and analyze a general semi-random multigraph

process, arising from an interplay between a sequence of random choices on the
one hand, and a strategy of our choice on the other. It is a no-replacement
variant of the process which was proposed by Peleg Michaeli, analyzed in [3],
and further studied in [2] and [5]. The process starts with an empty graph on
the vertex set [n]. Let π1, π2, . . . be a sequence of permutations in Sn, chosen
independently and uniformly at random. For every positive integer k, in the kth
round of the process, the decision-maker, called Builder, is offered the vertex
vk := πq(r), where q and r are the unique integers satisfying (q − 1)n + r = k
and 1 ≤ r ≤ n. Builder then irrevocably chooses an additional vertex uk and
adds the edge ukvk to his (multi)graph, with the possibility of creating multiple
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edges (in fact, we will make an effort to avoid multiple edges; allowing them is
a technical aid which ensures that Builder always has a legal edge to claim).
The algorithm that Builder uses in order to add edges throughout this process
is referred to as Builder’s strategy.

Given a positive integer n and a family F of labeled graphs on the vertex
set [n], we consider the one-player game in which Builder’s goal is to build a
multigraph with vertex set [n] that contains, as a (spanning) subgraph, some
graph from F , as quickly as possible; we denote this game by (F , n)lab. In the
case that the family F consists of a single graph G, we will use the abbreviation
(G,n)lab for ({G}, n)lab. We also consider the one-player game in which Builder’s
goal is to build a multigraph with vertex set [n] that contains a subgraph which
is isomorphic to some graph from F , as quickly as possible; we denote this game
by (F , n). Note that

(F , n) = (Fiso, n)lab, (1)

where Fiso is the family of all labeled graphs on the vertex set [n] which are
isomorpic to some graph from F . The general problem discussed in this paper
is that of determining the typical number of rounds Builder needs in order to
construct such a multigraph under optimal play.

For the labeled game (F , n)lab and a strategy S of Builder, let τ(S) denote
the total number of rounds played until Builder’s graph first contains some graph
from F , assuming he plays according to S. For completeness, if no such integer
exists, we define τ(S) to be +∞. Note that τ(S) is a random variable. Let pS
be the non-decreasing function from the set N of non-negative integers to the
interval [0, 1] defined by pS(k) = Pr(τ(S) ≤ k) for every non-negative integer k.
For every non-negative integer k, let p(F,n)lab(k) be the maximum of pS(k), taken
over all possible strategies S for (F , n)lab. Clearly, p(F,n)lab is a non-decreasing
function from N to [0, 1]; hence there exists a random variable τlab(F , n) taking
values in N ∪ {+∞} such that Pr(τlab(F , n) ≤ k) = p(F,n)lab(k) for every non-
negative integer k. Note that if there is an optimal strategy S for the labeled
game (F , n)lab (i.e., such that for any strategy S ′ for (F , n)lab it holds that
pS(k) ≥ pS′(k) for every k), then we may take τlab(F , n) to be τ(S).

For the unlabeled game (F , n) we define τ(F , n) in an analogous manner,
or by using (1), namely τ(F , n) = τlab(Fiso, n). Since, obviously, p(F,n)(k) ≥
p(F,n)lab(k) for every k, we may assume (by coupling) that τ(F , n) ≤ τlab(F , n).

2 Results

Let f : N → N be a function satisfying f(n) = ω(
√

n).

2.1 General Bounds

The following two results are very simple but very widely applicable. Together
with their many corollaries they form a good indication of what is interesting to
prove in relation to the no-replacement semi-random process.
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Proposition 1. Let G be a graph on the vertex set [n]. If there exists an ori-
entation D of the edges of G such that d+D(u) ≤ d for every u ∈ [n], then
τ(G,n) ≤ τlab(G,n) ≤ dn.

Proposition 2. Let G be a graph on the vertex set [n]. Let d be the largest
integer such that in every orientation of the edges of G there exists a vertex of
out-degree at least d. Then

τlab(G,n) ≥ τ(G,n) ≥ max{(d − 1)n + 1, e(G)}.

Remark 1. It is well-known (see Lemma 3.1 in [1]) that a graph G admits an
orientation in which the out-degree of every vertex is at most d if and only if
d ≥ L(G), where

L(G) := max
{

e(H)
v(H)

: ∅ 
= H ⊆ G

}
.

Corollary 1. Let G be a 2d-regular graph on the vertex set [n]. Then,

τ(G,n) = τlab(G,n) = dn.

Corollary 2. Let G be a d-degenerate graph on the vertex set [n]. Then,

e(G) ≤ τ(G,n) ≤ τlab(G,n) ≤ dn.

In particular, in the special case where e(G) = dn, it holds that τ(G,n) =
τlab(G,n) = dn. Another special case is when T is a tree, and then n − 1 ≤
τ(T, n) ≤ τlab(T, n) ≤ n.

Corollary 3. Let G be an arbitrary balanced1 graph with m edges on the vertex
set [n]. Then m ≤ τ(G,n) ≤ τlab(G,n) ≤ �m/nn. In particular, if m/n is an
integer, then τ(G,n) = τlab(G,n) = m.

Corollary 4. Let G ∼ G(n, p), where p = p(n) ≥ (1 + o(1)) ln n/n and let
g : N → N be a function satisfying g(n) = ω(n

√
p(n)). Then w.h.p.

n2p/2 − g(n) ≤ τ(G,n) ≤ τlab(G,n) ≤ n2p/2 +
√

n3p ln n + n.

It follows from all of the aforementioned corollaries that some properties
which may still be interesting to study are the construction of odd regular graphs
and the construction of a (not predetermined) graph from an interesting family,
such as graphs of minimum degree k or k-connected graphs (where k is odd).

2.2 Minimum Degree

Let Dd = Dd(n) be the family of n-vertex simple graphs with minimum degree
at least d. Note that τ(Dd, n) = τlab(Dd, n) for every d and every n.

1 a graph G is balanced if e(G)/v(G) = max{e(H)/v(H) : ∅ �= H ⊆ G}.
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Theorem 1. Let d ≤ n − 1 be a positive integer.

1. If d is even, then τ(Dd, n) = dn/2;
2. If d is odd, then w.h.p. it holds that

(d + 1 − 2/e) n/2 − f(n) ≤ τ(Dd, n) ≤ (d + 1 − 2/e) n/2 + f(n) + d,

where the upper bound holds under the additional assumption that d = o(n).

2.3 Building Regular Graphs

Let G be a d-regular graph on n vertices. If d is even, then τ(G,n) = τlab(G,n) =
dn/2 holds by Corollary 1. In the case d = 1, where G is a perfect matching, we
prove the following result.

Theorem 2. Let g : N → N be a function satisfying g(n) = ω
(
n3/4

)
, let n be an

even integer and let G be a perfect matching on the vertex set [n]. Then w.h.p.
it holds that

n − g(n) ≤ τ(G,n) ≤ τlab(G,n) = n − Θ(
√

n).

Finally, for odd d > 1, by Proposition 1 and by the second part of Theorem 1,
it holds w.h.p. that

(d + 1 − 2/e − o(1))n/2 ≤ τ(Dd, n) ≤ τ(G,n) ≤ τlab(G,n) ≤ (d + 1)n/2. (2)

The following result shows that the upper bound in (2) is asymptotically tight
for τlab(G,n).

Theorem 3. Let n be an even integer and let 1 < d < n be an odd integer.
Let G be a d-regular graph on the vertex set [n]. Then w.h.p. τlab(G,n) ≥ (d +
1)n/2 − f(n).

For the complete graph, the game (Kn, n) is obviously the same as the game
(Kn, n)lab. Hence, Theorem 3 yields an asymptotically tight lower bound for
τ(Kn, n) as well.

Corollary 5. Let n be an even integer. Then w.h.p. τ(Kn, n) ≥ n2/2 − f(n).

2.4 Trees

Recall that n − 1 ≤ τ(T, n) ≤ τlab(T, n) ≤ n holds by Corollary 2 for every tree
T on n vertices. The remaining interesting question is to determine Pr(τ(T, n) =
n−1) and Pr(τlab(T, n) = n−1) for every tree T . We make the following modest
step in this direction.

Proposition 3. Let n ≥ 2 be an integer and let T be a tree on the vertex set
[n].

1. If T is a path, then τ(T, n) = n − 1 and Pr(τlab(T, n) = n − 1) = Θ(1/n);
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2. If τ(T, n) = n − 1, then T is a path;
3. If T is a star, then Pr(τ(T, n) = n−1) = 1

n−1

(
1 +

∑n−2
k=1

1
k

)
= (1+o(1)) log n

n

and Pr(τlab(T, n) = n−1) = 1
n

(
1 +

∑n−1
k=1

1
k

)
= (1+o(1)) log n

n . In particular,
the difference between Pr(τ(T, n) = n − 1) and Pr(τlab(T, n) = n − 1) is

1
n(n−1)

∑n−2
k=1

1
k = (1 + o(1)) log n

n2 .

It is interesting to note that, as can be seen from Proposition 3, Pr(τ(T, n) =
n−1) and Pr(τlab(T, n) = n−1) are “very close” when T is a star but are “very
far” when T is a path.

2.5 Edge-Connectivity

For every positive integer k, let Ck = Ck(n) denote the family of all k-edge-
connected n-vertex graphs. Since there are k-vertex-connected k-regular graphs
for every k ≥ 2, it follows by Corollary 1 that τ(Ck, n) = kn/2 for every positive
even integer k and every sufficiently large n. Moreover, τ(C1, n) = n− 1. Indeed,
the lower bound is trivial and the upper bound holds since τ(C1, n) ≤ τ(Pn, n) =
n − 1, where the equality holds by the first part of Proposition 3. Finally, for
odd k > 1, by the second part of Theorem 1, it holds w.h.p. that

(k + 1 − 2/e) n/2 − f(n) ≤ τ(Dk, n) ≤ τ(Ck, n) ≤ τ(Ck+1, n) = (k + 1)n/2. (3)

The following result shows that the lower bound in (3) is asymptotically tight
for τ(Ck, n) when k is not too small or too large.

Theorem 4. Let n ≥ 12 be an integer and let 5 ≤ k = o(n) be an odd integer.
Then w.h.p.

τ(Ck, n) ≤ (k + 1 − 2/e) n/2 + f(n) + k.

3 Urn Models

In the proofs of Theorems 1 and 2 we use the analysis of two urn models, which
are somewhat reminiscent of Polya’s urn model [6], and may have independent
interest.

First Urn Model. We start with an even number n of white balls in an urn.
In each round, as long as there is at least one white ball in the urn, we remove
one ball from the urn, chosen uniformly at random, and then if the removed
ball was white, we replace one remaining white ball by one black ball. Let T be
the number of rounds until this process terminates (i.e., until there are no white
balls left in the urn); clearly T ≤ n.

Proposition 4. Let α(n) be a positive integer smaller than n. Then

Pr (T < n − α(n)) <
n3

(α(n))4
.
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Second Urn Model. We start with n white balls in an urn. In each round, as
long as there is at least one white ball in the urn, we remove one ball from the
urn, chosen uniformly at random, and then if the urn still contains at least one
white ball, we replace one white ball with one black ball. Let T be the number
of rounds until the process terminates (i.e., until there are no white balls left in
the urn); clearly T ≤ n − 1.

Proposition 5. Let α(n) < �(1 − 1/e)n� be a positive integer (in particular,
n ≥ 4). Then

Pr (T < �(1 − 1/e)n� − α(n)) <
6n

(α(n))2

and

Pr
(

T > �(1 − 1/e)n� + 36α(n) +
12n

(α(n))2

)
<

6n

(α(n))2
.

4 Concluding Remarks and Open Problems

We suggest a few related open problems for future research.

Labeled vs. Unlabeled. As noted in the introduction, τ(F , n) ≤ τlab(F , n)
holds for every family F of n-vertex graphs. We have proved that τ(F , n) =
τlab(F , n) for several such families (e.g., when F consists of a single regular
graph of even degree). We have also proved that τlab(F , n) − τ(F , n) = o(n)
for several other families (e.g., for perfect matchings). It would be interest-
ing to decide whether there exists a (natural) family F of n-vertex graphs
such that τlab(F , n) − τ(F , n) = Ω(n). In particular, it would be interest-
ing to decide whether there exists an n-vertex regular graph of odd degree
G such that τlab(G,n) − τ(G,n) = Ω(n); recall that we have proved that
τlab(G,n) − τ(G,n) ≤ (1/e + o(1))n holds for all such graphs.

Trees. As noted in Sect. 2.4, the most natural and interesting question concern-
ing trees is to determine Pr(τ(T, n) = n − 1) and Pr(τlab(T, n) = n − 1) for
every tree T . We have proved some partial related results. In particular, we have
shown that Pr(τ(T, n) = n − 1) = 1 if and only if T ∼= Pn. This implies that Pn

is the “best” tree in the sense that Pr(τ(T, n) = n − 1) < Pr(τ(Pn, n) = n − 1)
for every n-vertex tree T 
= Pn. We believe that the star K1,n−1 is the “worst”
tree. That is, that Pr(τ(T, n) = n − 1) > Pr(τ(K1,n−1, n) = n − 1) holds for
every n-vertex tree T 
= K1,n−1. As we saw, the situation is reversed for labeled
trees, that is, Pr(τlab(Pn, n) = n − 1) < Pr(τlab(K1,n−1, n) = n − 1). It would be
interesting to determine whether these are the extremal cases also for the labeled
version of the game, that is, whether Pr(τlab(Pn, n) = n − 1) < Pr(τlab(T, n) =
n − 1) < Pr(τlab(K1,n−1, n) = n − 1) for every n-vertex tree T /∈ {Pn,K1,n−1}.
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Abstract. For a hypergraph H, define its intersection spectrum I(H)
as the set of all intersection sizes |E ∩F | of distinct edges E,F ∈ E(H).
In their seminal paper from 1973 which introduced the local lemma,
Erdős and Lovász asked: how large must the intersection spectrum of a k-
uniform 3-chromatic intersecting hypergraph be? They showed that such
a hypergraph must have at least three intersection sizes, and conjectured
that the size of the intersection spectrum tends to infinity with k. Despite
the problem being reiterated several times over the years by Erdős and
other researchers, the lower bound of three intersection sizes has remark-
ably withstood any improvement until now. In this paper, we prove the
Erdős–Lovász conjecture in a strong form by showing that there are at
least k1/2−o(1) intersection sizes. In this extended abstract we sketch a
simpler argument which gives slightly weaker bound of k1/3−o(1). Our
proof consists of a delicate interplay between Ramsey type arguments
and a density increment approach.

Keywords: Intersecting hypergraphs · Property B · Intersection
spectrum

1 Introduction

A family F of sets is said to have property B if there exists a set X which properly
intersects every set of the family, that is, ∅ �= F ∩X �= F for all F ∈ F . The term
was coined in the 1930s by Miller [21,22] in honor of Felix Bernstein. In 1908,
Bernstein [5] proved that for any transfinite cardinal number κ, any family F of
cardinality at most κ, whose sets have cardinality at least κ, has property B. In
the 60s, Erdős and Hajnal [12] revived the study of property B, and initiated its
investigation for finite set systems, or hypergraphs. A hypergraph H consists of a
vertex set V (H) and an edge set E(H), where every edge is a subset of the vertex
set. As usual, H is k-uniform if every edge has size k. A hypergraph is r-colorable
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if its vertices can be colored with r colors such that no edge is monochromatic.
Note that a hypergraph has property B if and only if it is 2-colorable.

The famous problem of Erdős and Hajnal is to determine m(k), the minimum
number of edges in a k-uniform hypergraph which is not 2-colorable. This can
be viewed as an analogue of Bernstein’s result for finite cardinals. Clearly, one
has m(k) ≤ (

2k−1
k

)
, since the family of all k-subsets of a given set of size 2k − 1

does not have property B. On the other hand, Erdős [8] soon observed that
m(k) ≥ 2k−1. Indeed, if a hypergraph has less than 2k−1 edges, then the expected
number of monochromatic edges in a random 2-coloring is less than 1, hence a
proper 2-coloring exists. Thanks to the effort of many researchers, see survey [23]
and references within, the best known bounds are now

Ω
(√

k/ log k
)

≤ m(k)/2k ≤ O(k2), (1)

proofs of which are now textbook examples of the probabilistic method [2].
Improving either of these bounds would be of immense interest.

The 2-colorability problem for hypergraphs has inspired a great amount of
research over the last half century, with many deep results proved and meth-
ods developed. One outstanding example is the Lovász local lemma, originally
employed by Erdős and Lovász [13] to show that a k-uniform hypergraph is
2-colorable if every edge intersects at most 2k−3 other edges. In addition to
the Lovász local lemma, the seminal paper of Erdős and Lovász [13] from
1973 left behind a whole legacy of problems and results on the 2-colorability
problem. Some of their problems were solved relatively soon [3,4], others took
decades [14,17,18] or are still the subject of ongoing research.

At the heart of some particularly notorious problems are intersecting hyper-
graphs. In an intersecting hypergraph (Erdős and Lovász called them cliques),
any two edges intersect in at least one vertex. The study of intersecting families
is a rich topic in itself, which has brought forth many important results such
as the Erdős–Ko–Rado theorem. We refer the interested reader to [15]. With
regards to colorability, the intersecting property imposes strong restrictions. For
instance, it is easy to see that any intersecting hypergraph has chromatic num-
ber at most 3. Hence, the 3-chromatic ones are exactly those which do not have
property B. On the other hand, every 3-chromatic intersecting hypergraph is
“critical” in the sense that deleting just one edge makes it 2-colorable. These
and other reasons (explained below) make the 2-colorability problem for inter-
secting hypergraphs very interesting. It motivated Erdős and Lovász to initiate
the study of 3-chromatic intersecting hypergraphs, proving some fundamental
results and raising tantalizing questions.

Analogously to m(k), define m̃(k) as the minimum number of edges in a
k-uniform intersecting hypergraph which is not 2-colorable. The problem of esti-
mating m̃(k) seems much harder. While for non-intersecting hypergraphs, we
know at least that limk→∞ k

√
m(k) = 2, no such result is in sight for m̃(k).

Clearly, the lower bound in (1) also holds for m̃(k). However, the best known
upper bound for m̃(k) is exponentially worse. For any k which is a power of 3, an
iterative construction based on the Fano plane yields a k-uniform 3-chromatic
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intersecting hypergraph with 7
k−1
2 edges (see [1,13]). Perhaps the main obstacle

to improving this bound is that the probabilistic method does not seem applica-
ble for intersecting hypergraphs. Erdős and Lovász also asked for the minimum
number of edges in a k-uniform intersecting hypergraph with cover number k,
which can be viewed as a relaxation of m̃(k) since any k-uniform 3-chromatic
intersecting hypergraph has cover number k. This problem was famously solved
by Kahn [18].

In addition to the size of 3-chromatic intersecting hypergraphs, Erdős and
Lovász also studied their “intersection spectrum”. For a hypergraph H, define
I(H) as the set of all intersection sizes |E ∩F | of distinct edges E,F ∈ E(H). A
folklore observation is that if a hypergraph is not 2-colorable, then there must
be two edges which intersect in exactly one vertex, that is, 1 ∈ I(H). A very
natural question is what else we can say about the intersection spectrum of a
non-2-colorable hypergraph. In general, hypergraphs can be non-2-colorable even
if their only intersection sizes are 0 and 1. There are various basic constructions
for this, see e.g. [20]. For instance, consider Kk−1

N , the complete (k − 1)-uniform
hypergraph on N vertices. For N large enough, any 2-coloring of the edges will
contain a monochromatic clique on k vertices by Ramsey’s theorem. Let H be
the hypergraph with V (H) = E(Kk−1

N ) whose edges correspond to the k-cliques
of Kk−1

N . Then H is a k-uniform non-2-colorable hypergraph with I(H) = {0, 1}.
Erdős and Lovász observed that the situation changes drastically for inter-

secting hypergraphs. In the aforementioned construction of the iterated Fano
plane, the intersection spectrum consists of all odd numbers (between 1 and
k − 1). In particular, the maximal intersection size is k − 2, and the number of
intersection sizes is (k−1)/2. Astonishingly, not a single example (of a k-uniform
3-chromatic intersecting hypergraph) is known where these quantities are any
smaller. Intrigued by this, Erdős and Lovász studied the corresponding lower
bounds. Concerning the maximal intersection size, they (and also Shelah) could
prove that max I(H) = Ω(k/ log k) for any k-uniform 3-chromatic intersecting
hypergraph H. This is in stark contrast to non-intersecting hypergraphs where
we can have max I(H) = 1 as discussed. In fact, Erdős and Lovász conjectured
that a linear bound should hold, or perhaps even k − O(1). Erdős [11] later
offered $100 for settling this question.

Finally, consider the number of intersection sizes. As already noted, we always
have 1 ∈ I(H). Moreover, the above result on max I(H) adds another intersec-
tion size for sufficiently large k. Hence, 3-chromatic intersecting hypergraphs
have a small intersection size, namely 1, and a relatively big intersection size.
Recall that general non-2-colorable hypergraphs might only have two intersec-
tion sizes. However, Erdős and Lovász were able to show that intersecting hyper-
graphs must have at least one more. Using a theorem of Deza [7] on sunflowers,
they proved that i(k) ≥ 3 for sufficiently large k, where i(k) is the minimum
of |I(H)| over all k-uniform 3-chromatic intersecting hypergraphs. They also
remarked that they “cannot even prove” that i(k) tends to infinity. This is par-
ticularly striking in view of the best known upper bound being (k − 1)/2.

Conjecture 1 ( Erdős and Lovász, 1973). i(k) → ∞ as k → ∞.
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Despite the fact that over the years this problem has been reiterated many
times by Erdős and other researchers [6,9–11,23], remarkably, the lower bound
of three intersection sizes has withstood any improvement until now. In this
paper, we prove Conjecture 1 in the following strong form.

Theorem 2. The intersection spectrum of a k-uniform 3-chromatic intersecting
hypergraph has size at least Ω(k1/2/ log k).

2 Preliminaries

We list here a number of auxilliary results which we use in out argument.

Proposition 1. Let A be a k-uniform and B a k′-uniform hypergraph on the
same vertex set and with the same number of edges �. Then

∑

{A,A′}⊆E(A)

|A∩A′|+
∑

{B,B′}⊆E(B)

|B ∩B′| ≥
∑

A∈E(A),B∈E(B)

|A∩B|−�(k+k′)/2.

It will be convenient for us to introduce the following averaging functions.
Given a hypergraph H and disjoint subsets S, T ⊆ E(H) we define

λS :=
1

(|S|
2

)
∑

{e,f}⊆S

|e ∩ f | and λS,T :=
1

|S||T |
∑

e∈S,f∈T

|e ∩ f |.

Lemma 1. Let S, T be disjoint collections of � edges of a k-uniform hypergraph
H, with the property that there are x vertices of H which all belong to every edge
in S and none of them belong to any edge in T . Then

λS + λT

2
≥ λS,T +

x

2
− k

� − 1
.

Proposition 2. Let H be a k-uniform 3-chromatic and intersecting hypergraph,
and X ⊆ V (H). Then for any 0 ≤ i ≤ k − |X|, there exists a set Xi ⊆ V (H) of
size |X| + i such that at least a k−i proportion of the edges containing X also
contain Xi.

3 Proof Ideas

Here we present our proof ideas by sketching a slightly simpler argument which
shows |I(H)| ≥ k1/3−o(1).

Let H be a k-uniform, 3-chromatic and intersecting hypergraph. Let λ1 <
. . . < λr denote the distinct intersection sizes in H, so r = |I(H)|. A natural
way to approach our problem is to define a coloring of the complete graph with
vertex set E(H) where an edge is colored according to the size of the intersection
of its endpoints. We will refer to this coloring as the intersection coloring. The
well-known argument for bounding Ramsey numbers actually gives us more than



140 M. Bucić et al.

just a monochromatic clique. If we repeatedly take out an arbitrary edge of H
and only keep its majority color neighbors, we keep at least a proportion of 1/r of
the edges per iteration. If we repeat rt many times we can find a set X consisting
of t edges that we took out which had the same majority color, so in particular
X is a monochromatic clique in the intersection coloring. Furthermore, we know
that the size of the set of remaining edges Y has lost at most a factor of rrt

compared to the original number of edges. In addition, the complete bipartite
graph between X and Y is also monochromatic in the same color as X.

In particular, this provides us with a pair (X,Y ) of disjoint subsets of edges
of H with the property that any two edges in X as well as any pair of edges one
in X and one in Y intersect in exactly λi vertices, for some λi. We call such a pair
a λi-pair. Note that if we choose |X| = t ≈ k1/3 and assume r ≤ O(k1/3/ log k)
(otherwise we are done) then |Y | ≥ |E(H)|/rrt ≥ |E(H)|/kO(k2/3).

Our strategy will be to show that given a λi-pair one can find a λj-pair, for
some j > i, whose set X still has size t and the size of Y shrinks by at most a
factor of kO(k2/3). Since by Erdős’ result mentioned in the introduction we know
|E(H)| ≥ 2k−1, we can repeat this procedure at least Ω(k1/3/ log k) times to
conclude there are at least this many different intersection sizes and complete
the proof.

To do this, let (X,Y ) be a λi-pair with |X| = t ≈ k1/3. We can apply
Lemma 1 to X and any t-subset Y ′ ⊆ Y to conclude that λY ′ ≥ λi − 2k2/3.
So in particular, the average intersection size in any subset of Y of size at least
t cannot be much lower than λi. Next we take an arbitrary edge U in X and
consider the intersections of edges in Y with U . We will separate between two
cases depending on the structure of Y .

In the first case, many of the edges in Y have almost the same intersection
with U . In this case we will find a collection of at least |Y |/kO(k2/3) edges in Y
which contain the same set of vertices of size at least λi − x, where x ≈ 10k2/3.
Then we apply Proposition 2 (with i = x+1) to obtain a subset of edges of size at
least |Y |/kO(k2/3) in which any pair of edges intersects in more than λi vertices.
Applying once again the Ramsey argument, this time within this collection of
edges, we find a λj-pair in which we only lost another factor of kO(k2/3) in terms
of size of Y . Since all intersection sizes are larger than λi we know that j > i,
so we found our desired new pair.

In the second case, the intersections of edges in Y with U are “spread out”.
Then we can find two disjoint subsets A,B ⊆ Y both of size |Y |/kO(k2/3) with
the property that there is a set of x vertices W ⊆ U which belongs to every
edge of A and is disjoint from all edges in B. By applying the Ramsey argument
to the collection A and to the collection B we either find a desired λj-pair
with j > i or we find a t-subset S ⊆ A and a t-subset T ⊆ B such that
all pairwise intersections inside S and T have size at most λi. In particular,
λS , λT ≤ λi. We now apply Lemma 1 to S and T , knowing that the x = 10k2/3

vertices in W belong to every edge in S and none belong to any edge in T .
This will give us λS,T ≤ λi − 4k2/3. Combining these three inequalities we
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obtain λS∪T < λi − 2k2/3, which contradicts our lower bound on the average
intersection size among subsets of Y and completes the argument.
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Abstract. For k ≥ 2, an ordered k-uniform hypergraph H = (H, <) is
a k-uniform hypergraph H together with a fixed linear ordering < of
its vertex set. The ordered Ramsey number R(H, G) of two ordered k-
uniform hypergraphs H and G is the smallest N ∈ IN such that every
red-blue coloring of the hyperedges of the ordered complete k-uniform
hypergraph K(k)

N contains a blue copy of H or a red copy of G.
The ordered Ramsey numbers are quite extensively studied for ordered

graphs, but little is known about ordered hypergraphs of higher unifor-
mity. We provide some of the first nontrivial estimates on ordered Ram-
sey numbers of ordered 3-uniform hypergraphs. In particular, we prove
that for all d, n ∈ IN and for every ordered 3-uniform hypergraph H on
n vertices with maximum degree d and with interval chromatic number

3 there is an ε = ε(d) > 0 such that R(H, H) ≤ 2O(n2−ε).

Keywords: Ordered graph · Ramsey number · Tripartite · Uniform

1 Introduction

For an integer k ≥ 2 and a k-uniform hypergraph H, the Ramsey number R(H)
is the minimum N ∈ IN such that every 2-coloring of the hyperedges of the
complete k-uniform hypergraph K

(k)
N on N vertices contains a monochromatic

subhypergraph isomorphic to H. Estimating Ramsey numbers is a notoriously
difficult problem. Despite many efforts in the last 70 years, no tight bounds are
known even for the complete graph Kn on n vertices. Apart from some smaller
term improvements, essentially the best known bounds are 2n/2 ≤ R(Kn) ≤ 22n

by Erdős [12] and by Erdős and Szekeres [15]. The Ramsey numbers R(K(k)
n )

are even less understood for k ≥ 3. For example, it is only known that

2Ω(n2) ≤ R(K(3)
n ) ≤ 22

O(n)
, (1)

as shown by Erdős and Rado [14]. A famous conjecture of Erdős states that
there is a constant c > 0 such that R(K(3)

n ) ≥ 22
cn

.
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Recently a variant of Ramsey numbers has been introduced for hypergraphs
with a fixed order on their vertex sets [2,5]. For an integer k ≥ 2, an ordered
k-uniform hypergraph H is a pair (H,<) consisting of a k-uniform hypergraph H
and a linear ordering < of its vertex set. An ordered k-uniform hypergraph H1 =
(H1, <1) is an ordered subhypergraph of another ordered k-uniform hypergraph
H2 = (H2, <2), written H1 ⊆ H2, if H1 is a subhypergraph of H2 and <1 is a
suborder of <2. Two ordered hypergraphs H1 and H2 are isomorphic if there is
an isomorphism between their underlying hypergraphs that preserves the vertex
orderings of H1 and H2. Note that, up to isomorphism, there is a unique ordered
complete k-uniform hypergraph K(k)

n on n vertices.
The ordered Ramsey number R(H,G) of two ordered k-uniform hypergraphs

H and G is the smallest N ∈ IN such that every coloring of the hyperedges of
K(k)

N by colors red and blue contains a blue ordered subhypergraph isomorphic to
H or a red ordered subhypergraph isomorphic to G. In the diagonal case H = G,
we just write R(G) instead of R(G,G).

The ordered Ramsey numbers are known to be finite and it is easy to see that
they grow at least as fast as the standard Ramsey numbers. Studying ordered
Ramsey numbers has attracted a lot of attention lately (see the survey by Conlon,
Fox, and Sudakov [10]), as there are various motivations coming from the field of
discrete geometry. It is known that ordered Ramsey numbers can behave quite
differently than the standard Ramsey numbers, especially for sparse ordered
graphs [2,3,5]. However, so far, the ordered Ramsey numbers have been studied
mostly for ordered graphs only and very little is known about ordered Ramsey
numbers of ordered k-uniform hypergraphs with k ≥ 3.

We focus on 3-uniform hypergraphs and we prove some new bounds on the
ordered Ramsey numbers of ordered tripartite 3-uniform hypergraphs.

1.1 Preliminaries

For an ordered k-uniform hypergraph H = (H,<) and two subsets U and V of
vertices of H, we say that U and V are consecutive if all vertices from U precede
all vertices of V in <. An interval in H is a subset I of vertices of H such that
for all vertices u, v, w of H with u < v < w and u,w ∈ I we have v ∈ I.

For integers k ≥ 2 and χ ≥ k, we use K
(k)
χ (n) to denote the complete k-

uniform χ-partite hypergraph, that is, the vertex set of K
(k)
χ (n) is partitioned

into χ sets of size n and every k-tuple with at most one vertex in each of these
parts forms a hyperedge. The ordering of K

(k)
χ (n), in which the color classes form

consecutive intervals, is denoted by K(k)
χ (n). We use Kn,n to denote K(2)

2 (n).
The degree of a vertex v in a hypergraph H is the number of hyperedges of

H that contain v. For d ∈ IN, a k-uniform hypergraph H is d-degenerate if there
is an ordering v1 ≺ · · · ≺ vt of vertices of H such that each vi is contained in
at most d hyperedges of H that contain a vertex from v1, . . . , vi−1. We use [n]
to denote the set {1, . . . , n}. We omit floor and ceiling signs whenever they are
not crucial and we use log and ln to denote base 2 logarithm and the natural
logarithm, respectively.
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1.2 Previous Results

The ordered Ramsey numbers of k-uniform ordered hypergraphs with k ≥ 3
remain quite unexplored. Only the ordered Ramsey numbers of so-called mono-
tone hyperpaths are well understood due to their close connections to the famous
Erdős–Szekeres Theorem [15]; see [1,17,20]. A monotone hyperpath P(k)

n on n
vertices is an ordered k-uniform hypergraph where the hyperedges are formed by
k-tuples of consecutive vertices. Note that the maximum degree of a k-uniform
monotone hyperpath is at most k. Moshkovitz and Shapira [20] showed that
R(P(k)

n ) = towk−1((2 − o(1))n) for k ≥ 3, where towh is the tower function of
height h defined as tow1(x) = x and towh(x) = 2towh−1(x) for h ≥ 2.

Thus even for 3-uniform hypergraphs H with bounded maximum degree the
numbers R(H) can grow very fast. We get an exponential lower bound on R(H)
even for 3-uniform ordered hypergraphs H with maximum degree 3. A similar
result is known for ordered graphs, as for arbitrarily large values of n there are
ordered graphs Mn with n vertices and maximum degree 1 such that R(Mn) ≥
nΩ(log n/ log log n) [2,5]. This superpolynomial growth rate is in sharp contrast
with the situation for unordered hypergraphs, where the Ramsey number R(H)
of every k-uniform hypergraph H with bounded k and with bounded maximum
degree is at most linear in the number of vertices of H [4,6,11,18,21].

Therefore, in order to obtain smaller upper bounds on the ordered Ramsey
numbers, it is necessary to bound other parameter besides the maximum degree.
A natural choice is so-called interval chromatic number, which can be understood
as an analogue of the chromatic number due to a variant of the Erdős–Stone–
Simonovits theorem for ordered graphs proved by Pach and Tardos [23]. The
interval chromatic number χ<(H) of an ordered k-uniform hypergraph H is the
minimum number of intervals the vertex set of H can be partitioned into so that
each hyperedge of H has at most one vertex in each interval.

For ordered graphs, bounding both parameters indeed helps, as the number
R(G) of every ordered graph G with bounded maximum degree d and bounded
interval chromatic number χ is at most polynomial in the number of vertices [2,
5]. Since G ⊆ K(2)

χ (n), this result follows from the following stronger estimate
proved by Conlon, Fox, Lee, and Sudakov [5]: for all d, χ ∈ IN, every d-degenerate
ordered graph G on n vertices with interval chromatic number χ satisfies

R(G,K(2)
χ (n)) ≤ n32d log χ. (2)

A natural question is whether we can also get some good upper bounds on
ordered Ramsey numbers of similarly restricted classes of ordered hypergraphs.
If the interval chromatic number is bounded, then we can use a result of Conlon,
Fox, and Sudakov [8], who showed that, for all positive integers χ ≥ 3 and n,
R(K(3)

χ (n)) ≤ 22
2Rn2

, where R = R(Kχ−1). Since every ordering of K
(3)
χ (χn)

contains an ordered subhypergraph isomorphic to K(3)
χ (n) and every ordered 3-

uniform hypergraph on n vertices with interval chromatic number χ is an ordered
subhypergraph of K(3)

χ (n), we obtain the following bound.
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Corollary 1. For all positive integers χ ≥ 3 and n, every ordered 3-uniform
hypergraph H on n vertices with interval chromatic number χ satisfies R(H) ≤
22

2Rχ2n2
, where R = R(Kχ−1). In particular, if the interval chromatic number

χ of H is fixed, we have R(H) ≤ 2O(n2).

Note that the last bound is asymptotically tight for dense ordered hyper-
graphs, as a standard probabilistic argument shows that R(H) ≥ 2Ω(n2) for
every ordered 3-uniform hypergraph H on n vertices with Ω(n3) hyperedges. In
particular, we get R(K(3)

3 (n)) ≥ 2Ω(n2).

2 Our Results

Since the bounds on the ordered Ramsey numbers from Corollary 1 are asymp-
totically tight for dense ordered hypergraphs with bounded interval chromatic
number, we consider the sparse case with bounded maximum degree and inter-
val chromatic number. The situation for ordered hypergraphs seems to be more
difficult than for ordered graphs, so we focus on the first nontrivial case, which
is for ordered 3-uniform hypergraphs with interval chromatic number 3.

Assuming the maximum degree of an ordered hypergraph H with χ<(H) = 3
is sufficiently small, we obtain a better upper bound on R(H) than the esti-
mate 2O(n2) we would get from Corollary 1. We can prove an estimate with a
subquadratic exponent even in the more general setting R(H,K(3)

3 (n)), where,
additionally, the interval chromatic number of H is arbitrary.

Theorem 1. Let H be an ordered 3-uniform hypergraph on t vertices with max-
imum degree d and let s be a positive integer. Then there are constants C = C(d)

and c > 0 such that R(H,K(3)
3 (s)) ≤ t · 2C(s2−1/(1+cd2)). In particular, for

s = t = n and bounded d, we get the estimate

R(H,K(3)
3 (n)) ≤ 2O(n2−1/(1+cd2)). (3)

The main idea of the proof of Theorem1 is based on an embedding lemma
from [9]. We prove a variant of this lemma, which works for ordered hypergraphs,
does not consider induced copies, and uses the assumption that the maximum
degree of H is bounded instead of assuming that the number of vertices of H is
fixed. Since every ordered 3-uniform hypergraph H on n vertices with χ<(H) = 3
is an ordered subhypergraph of K(3)

3 (n), we obtain the following corollary.

Corollary 2. Let H be an ordered 3-uniform hypergraph on n vertices with
maximum degree d and with interval chromatic number 3. Then there exists
an ε = ε(d) > 0 such that R(H) ≤ 2O(n2−ε).

It might seem wasteful to use Theorem 1 in order to obtain Corollary 2, as
the ordered hypergraph H is much sparser than K(3)

3 (n). However, as noted
in [5], this intuition is wrong already for ordered graphs, as there are ordered
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matchings M on n vertices with χ<(M) = 2 and ordered graphs G on N = 2nc

vertices for some constant c > 0 such that G has edge density at least 1 − n−c

and does not contain M as an ordered subgraph. In fact, the best known upper
bounds on R(G) for n-vertex ordered graphs G with bounded maximum degree
and χ<(G) = χ are derived from the bound (2) on R(G,K(2)

χ (n)).
The upper bound (3) is quite close to the truth, as even when H is fixed we get

a superexponential lower bound on R(H,K(3)
3 (n)). We recently learned that Fox

and He (Theorem 1.3 in [16]) independently proved the same lower bound for the
unordered Ramsey number and that their result implies Theorem2. However,
we leave this result here as our proof is much simpler.

Theorem 2. For every t ≥ 4 and every positive integer n, there is an ordered
3-uniform hypergraph H on t vertices such that R(H,K(3)

3 (n)) ≥ 2Ω(n log n).

We do not have any nontrivial lower bound in the diagonal case R(H) for H
with bounded maximum degree and χ<(H) = 3. Even for ordered graphs G with
bounded maximum degree d and χ<(G) = 2 the best known lower and upper
bounds on R(G) are of order Ω((n/ log n)2) [3] and nO(d) [2,5], respectively.

Concerning k-uniform hypergraphs with k > 3, the following result is based
on a modification of the proof from [7, Proposition 6.3] and gives an estimate
on ordered Ramsey numbers of ordered k-uniform hypergraphs with bounded
interval chromatic number. In particular, this estimate shows that we do not
have a tower-type growth rate for R(H) once the uniformity and the interval
chromatic number of H are bounded.

Proposition 1. Let χ, k be integers with χ ≥ k ≥ 2 and let H be an ordered
k-uniform hypergraph on n vertices with interval chromatic number χ. Then
there is a constant c such that R(H) ≤ 2Rχ(χ−1)(cχn)χ−1

, where R = R(K(k)
χ ).

In particular, if the uniformity k and the interval chromatic number χ of H are
fixed, we have R(H) ≤ 2O(nχ−1).

Our understanding of the ordered Ramsey numbers of ordered hypergraphs
is still very limited. Many interesting open problem arose during our study and
we would like to draw attention to some of them in the full version.

Acknowledgment. The first author was supported by the grant no. 18-13685Y of
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21. Nagle, B., Olsen, S., Rödl, V., Schacht, M.: On the Ramsey number of sparse
3-graphs. Graphs Comb. 24(3), 205–228 (2008). https://doi.org/10.1007/s00373-
008-0784-x

22. Nikiforov, V.: Complete r-partite subgraphs of dense r-graphs. Discret. Math.
309(13), 4326–4331 (2009)

23. Pach, J., Tardos, G.: Forbidden paths and cycles in ordered graphs and matrices.
Israel J. Math. 155(1), 359–380 (2006). https://doi.org/10.1007/BF02773960

https://doi.org/10.1007/s11856-011-0016-6
https://doi.org/10.1007/s11856-011-0016-6
https://doi.org/10.1007/s00493-009-2356-y
https://doi.org/10.1007/BF02759942
https://doi.org/10.1007/BF01886396
http://arxiv.org/abs/1909.05988
https://doi.org/10.1007/s00373-008-0784-x
https://doi.org/10.1007/s00373-008-0784-x
https://doi.org/10.1007/BF02773960


Hypergraphs with Minimum Positive
Uniform Turán Density

Frederik Garbe, Daniel Král’, and Ander Lamaison(B)

Faculty of Informatics, Masaryk University,
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Abstract. Reiher, Rödl and Schacht [J. London Math. Soc. 97 (2018),
77–97] showed that the uniform Turán density of every 3-uniform hyper-
graph is either 0 or at least 1/27, and asked whether there exist 3-uniform
hypergraphs with uniform Turán density equal or arbitrarily close to
1/27. We construct 3-uniform hypergraphs with uniform Turán density
equal to 1/27.

Keywords: Extremal combinatorics · Turán density · Uniform Turán
density

1 Introduction

Determining the minimum density of a (large) combinatorial structure that guar-
antees the existence of a given (small) substructure is a classical extremal com-
binatorics problem, which can be traced to the work of Turán [21] in the early
1940s. The Turán density of a k-uniform hypergraph H, which is denoted by
π(H), is the infimum over all d such that every sufficiently large host k-uniform
hypergraph with edge density at least d contains H as a subhypergraph. It can
be shown [9] that the Turán density of H is equal to the limit of the maxi-
mum density of a k-uniform n-vertex H-free hypergraph (n tends to infinity);
in particular, Katona, Nemetz and Simonovits [9] showed that this sequence of
maximum densities is non-increasing and so the limit always exists.

The Turán density of a complete graph Kr of order r is equal to r−2
r−1 as

determined by Turán himself, and Erdős and Stone [5] showed that the Turán
density of any r-chromatic graph H is equal to r−2

r−1 (also see [3]). The situation
is more complex already for 3-uniform hypergraphs, in particular, determining
the Turán density of a complete 3-uniform 4-vertex hypergraph K

(3)
4 is a major

open problem, and likewise determining the Turán density of K
(3)−
4 , i.e., K

(3)
4

with an edge removed, is a challenging open problem [1,6,12] despite some recent
progress obtained using the flag algebra method of Razborov [11]; also see the
survey [10] for further details.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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It is well-known that H-free graphs with density close to the Turán den-
sity π(H) are close to (r − 1)-partite complete graphs [7,20], i.e., the edges in
such graphs are distributed in a highly non-uniform way. The same applies to
conjectured extremal constructions in the setting of 3-uniform hypergraphs [6].
We study the notion of uniform Turán density of hypergraphs, which requires
the edges of the host hypergraph to be distributed uniformly. This notion was
suggested by Erdős and Sós [2,4] in the 1980s and there is a large amount of
recent progress in relation to this notion and to some of its variants [8,14–18],
also see the survey [13].

The following result of Reiher, Rödl and Schacht [15] is the starting point
of our work: the uniform Turán density of every 3-uniform hypergraph is either
zero or at least 1/27. Reiher et al. [15] asked whether there exist 3-uniform
hypergraphs with the uniform Turán density equal or arbitrarily close to 1/27.
We answer this question in the affirmative by giving a sufficient condition for a
3-uniform hypergraph to have the uniform Turán density equal to 1/27 and by
constructing examples of 3-uniform hypergraphs satisfying this condition.

2 Main Result

We start with introducing the notation needed to state our results precisely.
The ε-linear density of an n-vertex hypergraph H is the minimum density of
an induced subhypergraph of H with at least εn vertices. The uniform Turán
density of a hypergraph H0 is the infimum over all d such that for every ε > 0,
every sufficiently large hypergraph H with ε-linear density at least d contains
H0. An equivalent definition, which is used by Reiher, Rödl and Schacht [14–18]
reads as follows: an n-vertex k-uniform hypergraph H is (d, ε)-dense if every
subset W of its vertices induces at least d

(|W |
k

) − εnk edges, and the uniform
Turán density of a hypergraph H0 is the supremum over all d such that for every
ε > 0, there exist arbitrarily large H0-free (d, ε)-dense hypergraphs. It is easy to
show that the two definitions are equivalent.

The notion of the uniform Turán density is trivial for graphs as the uniform
Turán density of every graph is equal to zero. However, the situation is much
more complex already for 3-uniform hypergraphs. As we have already mentioned,
the uniform Turán density of K

(3)−
4 has been determined only recently [8,17].

Determining the uniform Turán density of K
(3)
4 is a challenging open problem

though it is believed that the 35-year-old construction of Rödl [19] showing that
the uniform Turán density of K

(3)
4 is at least 1/2 is optimal [13].

Reiher, Rödl and Schacht [15] gave a simple characterization of 3-uniform
hypergraphs with the uniform Turán density equal to zero, which we now present.
Let H be a 3-uniform hypergraph with n vertices. We say that an ordering
v1, . . . , vn of its vertices is vanishing if the set of pairs (i, j), 1 ≤ i < j ≤ n,
can be partitioned to sets L, T and R such that every edge {vi, vj , vk} of H,
where i < j < k, satisfies that (i, j) ∈ L, (i, k) ∈ T and (j, k) ∈ R. The pairs
that belong to L, T and R are referred to as left, top and right, respectively.
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The characterization of 3-uniform hypergraphs with the uniform Turán density
equal to zero is the following.

Theorem 1 (Reiher, Rödl and Schacht [15]). Let H be a 3-uniform hyper-
graph. The uniform Turán density of H is zero if and only if H has a vanishing
ordering of its vertices.

If a 3-uniform hypergraph H has no vanishing ordering, then the uniform
Turán density of H is at least 1/27 because of the following construction
from [15]. Fix a 3-uniform hypergraph H with no vanishing ordering and con-
struct a random n-vertex 3-uniform hypergraph Hn as follows: let v1, . . . , vn be
the vertices of Hn, randomly partition their pairs to sets L, T and R, and include
{vi, vj , vk}, 1 ≤ i < j < k ≤ n, as an edge of Hn if (i, j) ∈ L, (i, k) ∈ T and
(j, k) ∈ R. Observe that H cannot be a subhypergraph of Hn (as H has no
vanishing ordering). On the other hand, for every ε > 0 and δ > 0, there exists
n0 such that the density of every subset of at least εn vertices of Hn for n ≥ n0

is at least 1/27 − δ with positive probability. It follows that the uniform Turán
density of H is at least 1/27 as claimed. Hence, Theorem 1 implies the following.

Corollary 1. The uniform Turán density of every 3-uniform hypergraph is
either zero or at least 1/27.

Reiher, Rödl and Schacht [15] asked whether there exist 3-uniform hyper-
graphs with the uniform Turán density equal or arbitrarily close to 1/27. The
following theorem, which is our main result, gives a sufficient condition on a
3-uniform hypergraph to have the uniform Turán density equal to 1/27.

Theorem 2. Let H0 be an n-vertex 3-uniform hypergraph that

– has no vanishing ordering of its vertices,
– can be partitioned to two spanning subhypergraphs H1 and H2 such that there

exists an ordering of the vertices that is vanishing both for H1 and H2 and if
e1 is an edge of H1 and e2 is an edge of H2 such that |e1 ∩ e2| = 2, then the
pair e1 ∩ e2 is right with respect to H1 and left with respect to H2, and

– can be partitioned to two spanning subhypergraphs H ′
1 and H ′

2 such that there
exists an ordering of the vertices that is vanishing both for H ′

1 and H ′
2 and if

e1 is an edge of H ′
1 and e2 is an edge of H ′

2 such that |e1 ∩ e2| = 2, then the
pair e1 ∩ e2 is top with respect to H ′

1 and left with respect to H ′
2.

The uniform Turán density of H0 is equal to 1/27.

In Sect. 3, we present a 7-vertex 9-edge hypergraph (Theorem3) and an infi-
nite family of hypergraphs (Theorem4), whose smallest element has 8 vertices
and 9 edges, that have the properties given in Theorem2. We remark that it is
possible to show that the uniform Turán density of every 3-uniform hypergraph
with at most 6 vertices is either zero or at least 1/8.

We next present some steps of the proof of Theorem 2 and the main lemma
needed for the proof. Using [13, Theorem 3.3], we consider so-called reduced
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hypergraphs instead of general hypergraphs; these are hypergraphs that repre-
sent a regularity partition of a 3-uniform hypergraph. If a regularity partition
of a 3-uniform hypergraph has N parts, the reduced hypergraph has a vertex set
partitioned to sets Vii′ corresponding to pairs of parts of the regularity parti-
tion, i.e., i, i′ ∈ [N ]. Three such sets corresponding to the three pairs in the same
triple of parts form a triad, i.e., a triad is formed by sets Vii′ , Vii′′ and Vi′i′′ for
some i, i′, i′′ ∈ [N ]. Edges of a reduced hypergraph may involve only vertices
from different sets of the same triad. The condition of the uniform density of a
hypergraph translates to a condition on the density of each triad.

We say that an �-vertex 3-uniform hypergraph H0 embeds in a reduced hyper-
graph HR if it is possible to associate each vertex of H0 with one of the parts
of the reduced hypergraph HR, say that k1, . . . , kn are indices of the associated
parts, and to choose from each set Vkiki′ , i, i′ ∈ [�], a vertex vii′ in a way that
if the vertices of an edge of H0 are associated with the parts ki, ki′ and ki′′ ,
then the vertices vii′ , vii′′ and vi′i′′ form an edge in HR. Theorem 3.3 in [13]
asserts that if H0 embeds in every sufficiently large reduced hypergraph with
the minimum density of its triad at least d, then the uniform Turán density of
H0 is at most d.

The following lemma is the main tool to prove Theorem 2. The reverse of a
reduced hypergraph is the reduced hypergraph obtained by indexing the parts
in the opposite order, i.e., the i-th part becomes the (N + 1 − i)-th part if there
are N parts in total.

Lemma 1. For every real δ > 0 and positive integer n, there exists an integer N
such that the following holds. If HR is a reduced hypergraph with N parts and with
density of each triad at least 1/27+δ, then the following is true for HR or for the
reverse of HR. There exist indices k1, . . . , kn and vertices αii′ , βii′ , γii′ , β

′
ii′ , γ

′
ii′ ∈

Vkiki′ for all 1 ≤ i < i′ ≤ n such that

– {αii′ , βi′i′′ , γii′′} is an edge for all 1 ≤ i < i′ < i′′ ≤ n, and

at least one of the following holds:

– {βii′ , β
′
i′i′′ , γ

′
ii′′} is an edge for all 1 ≤ i < i′ < i′′ ≤ n, or

– {γii′ , β
′
i′i′′ , γ

′
ii′′} is an edge for all 1 ≤ i < i′ < i′′ ≤ n.

3 Hypergraphs with Uniform Turán Density Equal
to 1/27

In this section, we give examples of hypergraphs that satisfy the assumption of
Theorem 2 and so their uniform Turán density is equal to 1/27. We have verified
by a computer that there is no such hypergraph with six or fewer vertices; in
fact, we are able to show that every 3-uniform hypergraph with six or fewer
vertices has Turán density either equal to zero or at least 1/8.

As the first example of a 3-uniform hypergraph with uniform Turán density
equal to 1/27, we present a hypergraph with seven vertices. This hypergraph
has a non-trivial group of automorphisms, which correspond to a vertical mirror
symmetry in Fig. 1 where the hypergraph is visualized.
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Theorem 3. Let H be a 3-uniform hypergraph with seven vertices a, . . . , g and
the following 9 edges: abc, ade, bcd, bcf , cde, def , abg, cdg and efg. The uniform
Turán density of H is equal to 1/27.

a

b

c d

e

f

g

Fig. 1. The 3-uniform hypergraph H described in the statement of Theorem 3 (the
edges correspond to the drawn triangles).

As our second example, we present a family of 3-uniform hypergraphs, which
enjoys three cyclic symmetries (by mapping the vertices ci, di and ei to each
other in a cyclic way); the smallest hypergraph in the family has eight vertices
and nine edges.

Theorem 4. For a positive integer k, let Hk be a 3-uniform hypergraph with
5+3k vertices a, b, c0, . . . , ck, d0, . . . , dk, e0, . . . ek and the following 3(k+2) edges:

abc0, bc0c1, c0c1c2, . . . , ck−2ck−1ck, ck−1ckdk,
abd0, bd0d1, d0d1d2, . . . , dk−2dk−1dk, dk−1dkek,
abe0, be0e1, e0e1e2, . . . , ek−2ek−1ek, ek−1ekck.

The uniform Turán density of Hk is equal to 1/27.

4 Conclusion

We conclude with the following open problem.

Problem 1. Does there exist c > 1/27 such that the uniform Turán density of
every 3-uniform hypergraph is either equal to zero, equal to 1/27 or at least c?
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Abstract. For two graphs G and H, write G
rbw−→ H if G has the prop-

erty that every proper colouring of its edges yields a rainbow copy of H.
We study the thresholds for such so-called anti-Ramsey properties in ran-
domly perturbed dense graphs, which are unions of the form G∪G(n, p),
where G is an n-vertex graph with edge-density at least d, and d is a
constant that does not depend on n.

We determine the threshold for the property G ∪ G(n, p)
rbw−→ Ks for

every s. We show that for s ≥ 9 the threshold is n−1/m2(K�s/2�); in fact,
our 1-statement is a supersaturation result. This turns out to (almost)
be the threshold for s = 8 as well, but for every 4 ≤ s ≤ 7, the threshold
is lower and is different for each 4 ≤ s ≤ 7.

Moreover, we prove that for every � ≥ 2 the threshold for the prop-

erty G ∪ G(n, p)
rbw−→ C2�−1 is n−2; in particular, the threshold does not

depend on the length of the cycle C2�−1. It is worth mentioning that for
even cycles, or more generally for any fixed bipartite graph, no random
edges are needed at all.

Keywords: Random graphs · Anti-Ramsey · Randomly perturbed
graphs

1 Introduction

A random perturbation of a fixed n-vertex graph G, denoted by G ∪ G(n, p),
is a distribution over the supergraphs of G with the latter generated through
the addition of random edges sampled from the binomial random graph of edge-
density p, namely G(n, p). The fixed graph G being perturbed or augmented in
this manner is referred to as the seed of the perturbation G ∪ G(n, p).

The above model was introduced by Bohman, Frieze, and Martin [6], who
allowed the seed G to range over the family of n-vertex graphs with minimum
degree at least δn, denoted by Gδ,n. In particular, they discovered the phe-
nomenon that for every δ > 0, there exists a constant C(δ) > 0 such that
G ∪ G(n, p) a.a.s. admits a Hamilton cycle, whenever p := p(n) ≥ C(δ)/n and
G ∈ Gδ,n. Their bound on p undershoots the threshold for Hamiltonicity in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 154–159, 2021.
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G(n, p) by a logarithmic factor. The notation Gδ,n ∪ G(n, p) then suggests itself
to mean the collection of perturbations arising from the members of Gδ,n for a
prescribed δ > 0.

Several strands of results regarding the properties of randomly perturbed
(hyper)graphs can be found in the literature. One prominent such strand can be
seen as an extension of the aforementioned result of [6]. Indeed, the emergence
of various spanning configurations in randomly perturbed (hyper)graphs was
studied, for example, in [3,5,7,8,11,12,15,16,22].

Another prominent line of research regarding random perturbations concerns
Ramsey properties of Gd,n ∪G(n, p), where here Gd,n stands for the family of n-
vertex graphs with edge-density at least d > 0, and d is a constant. This strand
stems from the work of Krivelevich, Sudakov, and Tetali [17] and is heavily
influenced by the now fairly mature body of results regarding the thresholds of
various Ramsey properties in random graphs see, e.g. [21,26–28].

Krivelevich, Sudakov, and Tetali [17], amongst other things, proved that for
every real d > 0, integer t ≥ 3, and graph G ∈ Gd,n, the perturbation G∪G(n, p)
a.a.s. satisfies the property G ∪ G(n, p) → (K3,Kt), whenever p := p(n) =
ω(n−2/(t−1)); moreover, this bound on p is asymptotically best possible. Here,
the notation G → (H1, . . . , Hr) is used to denote that G has the asymmetric
Ramsey property asserting that any r-edge-colouring of G admits a colour i ∈ [r]
such that Hi appears with all its edges assigned the colour i.

Recently, the aforementioned result of Krivelevich, Sudakov, and Tetali [17]
has been significantly extended by Das and Treglown [10] and also by Powier-
ski [25]. In particular, there is now a significant body of results pertaining to
the property G ∪ G(n, p) → (Kr,Ks) for any pair of integers r, s ≥ 3, whenever
G ∈ Gd,n for constant d > 0. Further in this direction, the work of Das, Morris,
and Treglown [9] extends the results of Kreuter [14] pertaining to vertex Ramsey
properties of random graphs into the perturbed model.

A subgraph H ⊆ G is said to be rainbow with respect to an edge colouring ψ,
if any two of its edges are assigned different colours under ψ. An edge-colouring
ψ of a graph G is said to be proper if incident edges are assigned distinct colours
under ψ. We write G

rbw−→ H, if G has the property that every proper colouring
of its edges admits a rainbow copy of H. The first to consider the emergence
of small fixed rainbow configurations in random graphs with respect to proper
colourings were Rödl and Tuza [29]. The systematic study of the emergence of
general rainbow fixed graphs in random graphs with respect to proper colourings
was initiated by Kohayakawa, Kostadinidis and Mota [18,19].

In [18] it is proved that for every graph H, there exists a constant C > 0 such
that G(n, p) rbw−→ H, whenever p ≥ Cn−1/m2(H), where here m2(H) denotes the
maximum 2-density of H, see e.g. [13]. Nenadov, Person, Škorić, and Steger [24]
proved, amongst other things, that for H ∼= C� with � ≥ 7, and for H ∼= Kr

with r ≥ 19, n−1/m2(H) is, in fact, the threshold for the property G(n, p) rbw−→ H.
Barros, Cavalar, Mota, and Parczyk [4] extended the result of [24] for cycles,
proving that the threshold of the property G(n, p) rbw−→ C� remains n−1/m2(C�)

also when � ≥ 5. Kohayakawa, Mota, Parczyk, and Schnitzer [20] extended the
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result of [24] for complete graphs, proving that the threshold of G(n, p) rbw−→ Kr

remains n−1/m2(Kr) also when r ≥ 5.
For C4 and K4 the situation is different. The threshold for the property

G(n, p) rbw−→ C4 is n−3/4 = o
(
n−1/m2(C4)

)
, as proved by Mota [23]. For the

property G(n, p) rbw−→ K4, the threshold is n−7/15 = o
(
n−1/m2(K4)

)
as proved by

Kohayakawa, Mota, Parczyk, and Schnitzer [20]. More generally, Kohayakawa,
Kostadinidis and Mota [19] proved that there are infinitely many graphs H for
which the threshold for the property G(n, p) rbw−→ H is significantly smaller than
n−1/m2(H).

Lastly, properly edge-coloured triangles are rainbow. Hence, the thresholds
for the properties K3 ⊆ G(n, p) and G(n, p) rbw−→ K3 coincide so that n−1 is the
threshold for the latter.

1.1 Our Results

For a real d > 0, we say that Gd,n ∪ G(n, p) a.a.s. satisfies a graph property P,
if limn→∞ P[Gn ∪G(n, p) ∈ P] = 1 holds for every sequence {Gn}n∈N satisfying
Gn ∈ Gd,n for every n ∈ N. We say that Gd,n ∪ G(n, p) a.a.s. does not satisfy
P, if limn→∞ P[Gn ∪ G(n, p) ∈ P] = 0 holds for at least one sequence {Gn}n∈N

satisfying Gn ∈ Gd,n for every n ∈ N. Throughout, we suppress this sequence-
based terminology and write more concisely that Gd,n ∪G(n, p) a.a.s. satisfies (or
does not) a certain property. In particular, given a fixed graph H, we write that
a.a.s. Gd,n ∪G(n, p) rbw−→ H to mean that for every sequence {Gn}n∈N, satisfying

Gn ∈ Gd,n for every n ∈ N, the property Gn∪G(n, p) rbw−→ H holds asymptotically

almost surely. On the other hand, we write that a.a.s. Gd,n ∪ G(n, p) rbw
�−→ H to

mean that there exists a sequence {Gn}n∈N, satisfying Gn ∈ Gd,n for every n ∈ N,

for which a.a.s. Gn ∪ G(n, p) rbw−→ H does not hold.
A sequence p̂ := p̂(n) is said to form a threshold for the property P in the

perturbed model, if Gd,n ∪ G(n, p) a.a.s. satisfies P whenever p = ω(p̂), and if
Gd,n ∪ G(n, p) a.a.s. does not satisfy P whenever p = o(p̂).

For every real d > 0 and every pair of integers s, t ≥ 1, every sufficiently
large graph G ∈ Gd,n satisfies G

rbw−→ Ks,t; in fact, every proper colouring of
G supersaturates G with Ω(ns+t) rainbow copies of Ks,t. Consequently, the

property Gd,n ∪ G(n, p) rbw−→ Ks,t is trivial as no random perturbation is needed
for it to be satisfied. The emergence of rainbow copies of non-bipartite prescribed
graphs may then be of interest. For odd cycles (including K3), we prove the
following.

Proposition 1. For every integer � ≥ 2, and every real 0 < d ≤ 1/2, the
threshold for the property Gd,n ∪ G(n, p) rbw−→ C2�−1 is n−2.

Unlike the threshold for the property G(n, p) rbw−→ C�, established in [4,24],
the threshold for the counterpart property in the perturbed model is independent
of the length of the cycle.
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Our main result concerns the thresholds for the emergence of rainbow com-
plete graphs in properly coloured randomly perturbed dense graphs. From the
results of [20,24], one easily deduces that if r ≥ 5 and p = o

(
n−1/m2(Kr)

)
,

then a.a.s. there exists a proper edge-colouring of G(n, p) admitting no rain-
bow copy of Kr. Consequently, given a real number 0 < d ≤ 1/2 and
an n-vertex bipartite graph G of edge-density d, a.a.s. there exists a proper
edge-colouring of G ∪ G(n, p) admitting no rainbow copy of K2r−1, provided
that p = o

(
n−1/m2(Kr)

)
. We conclude that Gd,n ∪ G(n, p) rbw

�−→ K2r and

Gd,n ∪ G(n, p) rbw
�−→ K2r−1 hold a.a.s. whenever p = o

(
n−1/m2(Kr)

)
.

For every r ≥ 5, we prove a matching upper bound for the above construction.
Our main result reads as follows.

Theorem 1. Let a real number 0 < d ≤ 1/2 and an integer r ≥ 5 be given.
Then, the threshold for the property Gd,n ∪ G(n, p) rbw−→ K2r is n−1/m2(Kr). In
fact, Gd,n ∪G(n, p) a.a.s. has the property that every proper colouring of its edges

gives rise to Ω
(
p2(

r
2)n2r

)
rainbow copies of K2r, whenever p = ω(n−1/m2(Kr)).

The following result is an immediate consequence of Theorem 1 and of the
aforementioned lower bound.

Corollary 1. Let a real number 0 < d ≤ 1/2 and an integer r ≥ 5 be given.
Then, the threshold for the property Gd,n ∪ G(n, p) rbw−→ K2r−1 is n−1/m2(Kr).

Theorem 1 and Corollary 1 establish that for sufficiently large complete
graphs, i.e., Ks with s ≥ 9, the threshold for the property Gd,n ∪G(n, p) rbw−→ Ks

is governed by a single parameter, namely, m2(K�s/2�). This turns out to be
true (almost, at least) for s = 8 as well, but proving it requires new ideas. For
4 ≤ s ≤ 7, this is not the case; here, for each value of s in this range, the threshold
is different. Using completely different methods, we prove the following.

Theorem 2. Let 0 < d ≤ 1/2 be given.

1. The threshold for the property Gd,n ∪ G(n, p) rbw−→ K4 is n−5/4

2. The threshold for the property Gd,n ∪ G(n, p) rbw−→ K5 is n−1.

3. The threshold for the property Gd,n ∪ G(n, p) rbw−→ K7 is n−7/15.

For K6 and K8, we can “almost” determine the thresholds.

Theorem 3. Let 0 < d ≤ 1/2 be given.

1. The property Gd,n ∪ G(n, p) rbw−→ K6 holds a.a.s. whenever p = ω(n−2/3).

2. For every constant ε > 0 it holds that a.a.s. Gd,n ∪ G(n, p) rbw
�−→ K6 whenever

p := p(n) = n−(2/3+ε).

Theorem 4. Let 0 < d ≤ 1/2 be given.
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1. The property Gd,n ∪ G(n, p) rbw−→ K8 holds a.a.s. whenever p = ω(n−2/5).
2. For every constant ε > 0 it holds that a.a.s. Gd,n ∪ G(n, p) rbw

�−→ K8 whenever
p := p(n) = n−(2/5+ε).

Proofs of all of our results can be found in [1,2].
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24. Nenadov, R., Person, Y., Škorić, N., Steger, A.: An algorithmic framework for
obtaining lower bounds for random Ramsey problems. J. Comb. Theory Ser. B
124, 1–38 (2017)

25. Powierski, E.: Ramsey properties of randomly perturbed dense graphs (2019). arxiv
preprint arXiv:1902.02197

26. Rödl, V., Ruciński, A.: Lower bounds on probability thresholds for Ramsey proper-
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Abstract. Catalytic equations appear in several combinatorial appli-
cations, most notably in the enumeration of lattice paths and in the
enumeration of planar maps. The main purpose of this paper is to show
that the asymptotic estimate for the coefficients of the solutions of (so-
called) positive catalytic equations has a universal asymptotic behavior.
In particular, this provides a rationale why the number of maps of size n
in various planar map classes grows asymptotically like c · n−5/2γn, for
suitable positive constants c and γ. Essentially we have to distinguish
between linear catalytic equations (where the subexponential growth is
n−3/2) and non-linear catalytic equations (where we have n−5/2 as in
planar maps). The Proofs are based on a delicate analysis of systems of
polynomials equations and singularity analysis and are omitted for lack
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1 Introduction and Statement of Results

A planar map is a connected planar graph, possibly with loops and multiple
edges, together with an embedding in the plane. A map is rooted if an edge e is
distinguished and directed. This edge is called the root-edge. The initial vertex
v of this (directed) root-edge is then the root-vertex The face to the right of e
is called the root-face and is usually taken as the outer face. All maps in this
paper are rooted.

The enumeration of rooted maps (up to homeomorphisms) is a classical sub-
ject, initiated by Tutte in the 1960’s [7,8]. Tutte (and Brown) introduced the
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technique now called “the quadratic method” in order to compute the number
Mn of rooted maps with n edges, proving the formula

Mn =
2(2n)!

(n + 2)!n!
3n. (1)

This was later extended by Tutte and his school to several classes of pla-
nar maps: 2-connected, 3-connected, bipartite, Eulerian, triangulations, quad-
rangulations, etc. Using the previous formula, Stirling’s estimate gives Mn ∼
(2/

√
π) ·n−5/212n. In all cases where a “natural” condition is imposed on maps,

the asymptotic estimates turn out to be of this kind:

c · n−5/2γn.

The constants c and γ depend on the class under consideration, but one gets
systematically an n−5/2 term in the estimate.

This phenomenon is discussed by Banderier et al. [1]: ‘This generic asymp-
totic form is “universal” in so far as it is valid for all known “natural families of
maps”.’ The goal of this paper is to provide to some extent an explanation for
this universal phenomenon, based on a detailed analysis of functional equations
for generating functions with a catalytic variable. Let us mention that the criti-
cal exponent −5/2 has been ‘explained’ previously in at least two different ways.
In the physics literature using matrix integrals [3], and using bijections between
classes of planar maps and ‘decorated trees’ [6].

Let us recall the basic technique for counting planar maps. Let Mn,k be the
number of maps with n edges and in which the degree of the root-face is equal
to k. Let M(z, u) =

∑
n,k Mn,kukzn be the associated generating function. As

shown by Tutte [8], M(z, u) satisfies the quadratic equation

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u) − M(z, 1)

u − 1
. (2)

In this context the variable u is usually called a “catalytic variable” (see [2]). It
is needed to formulate and solve the equation, but afterwards can be ignored if
we are just interested in the univariate generating function M(z, 1) =

∑
n Mnzn

of Mn =
∑

k Mn,k. It turns out that

M(z, 1) =
∑

n≥0

Mnzn =
18z − 1 + (1 − 12z)3/2

54z2
= 1+2z +9z2 +54z3 + · · · , (3)

from which we can deduce the explicit form (1). The remarkable fact here is the
singular part (1 − 12z)3/2 that reflects the asymptotic behavior c · n−5/212n of
Mn.

A general approach to equations of the form (2) was carried out by Bousquet-
Mélou and Jehanne [2]. First one rewrites (2) into the form

P (M(z, u),M1(z), z, u) = 0,
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where P (x0, x1, z, u) is a polynomial and M1(z) abbreviates M(z, 0) or M(z, 1)
Next one searches for functions f(z), y(z) and u(z) with1

P (f(z), y(z), z, u(z)) = 0,
Px0(f(z), y(z), z, u(z)) = 0, (4)
Pu(f(z), y(z), z, u(z)) = 0.

The idea is to bind u and z in the function G(z, u) = Px0(M(z, u),M1(z), z, u)
so that G(z, u(z)) = 0 for a proper function u(z). By taking the derivative of
P (M(z, u),M1(z), z, u) with respect to u one has

Px0(M(z, u),M1(z), z, u)Mu(z, u) + Pu(M(z, u),M1(z), z, u). (5)

Thus, if G(z, u(z)) = Px0(M(z, u(z)),M1(z), z, u(z)) = 0 then we also have the
relation Pu(M(z, u(z)),M1(z), z, u(z)) = 0. This leads to the system (4) for
f(z) = M(z, u(z)), y(z) = M1(z) and u(z).

At this moment it is not completely clear that this procedure gives the correct
solution. To show that this is the case we can argue as follows. Bousquet-Mélou
and Jehanne [2] considered in particular equations of the form2

M(z, u) = F0(u) + zQ

(

M(z, u),
M(z, u) − M(z, 0)

u
, z, u

)

, (6)

where F0(u) and Q(α0, α1, z, u) are polynomials, that is

P (x0, x1, z, u) = F0(u) + zQ(x0, (x0 − x1)/u, z, u) − x0,

and showed that there is a unique power series solution M(z, u), and that it is
also an algebraic function. The Eq. (5) is now (if we multiply by u)

zuQα0

(
M(z, u),

M(z, u) − M(z, 0)

u
, z, u

)
(7)

+ zQα1

(
M(z, u),

M(z, u) − M(z, 0)

u
, z, u

)
− u = 0.

Clearly this equation has a power series solutions u(z) with u(0) = 0. Thus, the
power series f(z) = M(z, u(z)), y(z) = M(z, 0), u(z) solve the system (4).

In the context of this paper we always assume that F0 and Q have non-
negative coefficients. This is natural since Eq. (6) can be seen as a translation of a
recursive combinatorial description of maps or other combinatorial objects. This
also implies that M(z, u) has non-negative coefficients, since the Eq. (6) can be
written as an infinite system of equations for the functions Mj(z) = [uj ]M(z, u)
with non-negative coefficients on the right hand side.

Proofs are omitted for lack of space; see [5] for full proofs.
1 We denote by Px = ∂P

∂x
the partial derivative of the function P with respect to the

variable x.
2 Actually Bousquet-Mélou and Jehanne [2] considered more general functional equa-

tions that contain also higher differences.
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1.1 The Linear Case

We consider the first case, where Q is linear in α0 and α1, so we can write (6)
as

M(z, u) = Q0(z, u) + zM(z, u)Q1(z, u) + z
M(z, u) − M(z, 0)

u
Q2(z, u) . (8)

Here we are in the framework of the so-called kernel method. We rewrite (8) as

M(z, u)(u − zuQ1(z, u) − zQ2(z, u)) = uQ0(z, u) − zM(z, 0)Q2(z, u), (9)

where
K(z, u) = u − zuQ1(z, u) − zQ2(z, u)

is the kernel. The idea of the kernel method is to bind u and z so that K(z, u) = 0,
that is, one considers a function u = u(z) such that K(z, u(z)) = 0. Then the left
hand side of (9) cancels and M(z, 0) can be calculated from the right hand side
by setting u = u(z). Of course, the kernel equation is precisely the Eq. (7). The
kernel method is just a special case of the general procedure of Bousquet-Mélou
and Jehanne [2].

Proposition 1. Suppose that Q0, Q1, and Q2 are polynomials in z and u with
non-negative coefficients and let M(z, u) be the power series solution of (8).
Furthermore let u(z) be the power series solution of the equation

u(z) = zQ2(z, u(z)) + zu(z)Q1(z, u(z)), with u(0) = 0.

Then M(z, 0) is given by

M(z, 0) =
Q0(z, u(z))

1 − zQ1(z, u(z))
.

Disregarding some exceptional cases (not included here for lack of space; see
[5] for details), M(z, 0) has universally a dominant square root singularity as our
first main theorem states. We recall that M(z, 0) is an algebraic function and
has, thus, a Puiseux expansion around its (dominant) singularity.

Theorem 2. Suppose that Q0, Q1, and Q2 are polynomials in z and u with non-
negative coefficients such that Q1(z, u) depends on u and such that Q2(z, 0) �= 0.

Let M(z, u) be the power series solution of (8) and let z0 > 0 be the radius
of convergence of M(z, 0). Then the local Puiseux expansion of M(z, 0) at z0 is
given by

M(z, 0) = a0 + a1(1 − z/z0)1/2 + a2(1 − z/z0) + · · · , (10)

where a0 > 0 and a1 < 0. Furthermore, there exist b ≥ 1, a non-empty set
J ⊆ {0, 1, . . . , b − 1} of residue classes modulo b and constants cj > 0 such that
for j ∈ J

Mn = [zn]M(z, 0) = cjn
−3/2z−n

0

(

1 + O

(
1
n

))

, (n ≡ j mod b, n → ∞)

(11)
and Mn = 0 for n ≡ j mod b with j �∈ J if Q1 depends on u or Mn = O((z0(1 +
η))−n) for some η > 0 and n ≡ j mod b with j �∈ J if Q1 does not depend on u.
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1.2 The Non-linear Case

In the non-linear case the situation is more involved. Here we find the solution
function M(z, 0) in the following way.

Proposition 3. Suppose that Q is a polynomial in α0, α1, z, u with non-negative
coefficients that depends (at least) on α1, that is, Qα1 �= 0, and let M(z, u) be
the power series solution of (6). Furthermore we assume that Q is not linear in
α0 and α1, that is, Qα0α0 �= 0, or Qα0α1 �= 0 or Qα1α1 �= 0.

Let f(z), u(z), w(z) be the power series solution of the system of equations

f(z) = F0(u(z)) + zQ(f(z), w(z), z, u(z)),
u(z) = zu(z)Qα0(f(z), w(z), z, u(z)) + zQα1(f(z), w(z), z, u(z)), (12)
w(z) = F ′

0(u(z)) + zQu(f(z), w(z), z, u(z)) + zw(z)Qα0(f(z), w(z), z, u(z)).

with f(0) = F0(0), u(0) = 0, w(0) = F ′
0(0). Then

M(z, 0) = f(z) − w(z)u(z).

We again recall that M(z, 0) is an algebraic function and has, thus, a Puiseux
expansion around its singularities.

Theorem 4. Suppose that Q is a polynomial in α0, α1, z, u with non-negative
coefficients that depends (at least) on α1, that is, Qα1 �= 0 and let M(z, u) be the
power series solution of (6). Furthermore, we assume that Q is not linear in α0

and α1, that is, Qα0α0 �= 0 or Qα0α1 �= 0 or Qα1α1 �= 0. We assume additionally
that Qα0u �= 0.

Let z0 > 0 denote the radius of convergence of M(z, 0). Then the local Puiseux
expansion of M(z, 0) around z0 is given by

M(z, 0) = a0 + a2(1 − z/z0) + a3(1 − z/z0)3/2 + O((1 − z/z0)2), (13)

where a0 > 0 and a3 > 0.
Furthermore there exists b ≥ 1 and a residue class a modulo b such that

Mn = [zn]M(z, 0) = c n−5/2z−n
0

(
1 + O

(
1

n

))
, (n ≡ a mod b, n → ∞) (14)

for some constant c > 0, and Mn = 0 for n �≡ a mod b.

2 Some Examples

Natural examples for the linear case come from the enumeration of lattice paths.
We consider paths on N

2 starting from the coordinate point (0, 0) (or from
(0, t), t ∈ N) and allowed to move only to the right (up, straight or down),
but forbid going below the x-axis y = 0 at each step. Define a step set S =
{(a1, b1), (a2, b2), · · · , (as, bs)|(aj , bj) ∈ N × Z}, and let fn,k be the number of
paths ending at point (n, k), where each step is in S. The associated generating
function is then defined as

F (z, u) =
∑

n,k≥0

fn,kznuk.
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Example 1 (Motzkin Paths). We start from (0, 0) with step set S = {(1, 1),
(1, 0), (1,−1)}. The functional equation of its associated generating function is
as follows:

F (z, u) = 1 + z

(
u+ 1 +

1

u

)
F (z, u)− z

u
F (z, 0) = 1 + z(u+ 1)F (z, u) + z

F (z, u)− F (z, 0)

u
,

which in the notation of (8) corresponds to

Q0(z, u) = 1, Q1(z, u) = u + 1, and Q2(z, u) = 1.

We let u(z) be the power series solution of the equation

u(z) = zQ2(z, u(z)) + zu(z)Q1(z, u(z)) = z + zu(z)(1 + u(z)),

that is,

u(z) =
1 − z − √

1 − 2z − 3z2

2z
.

Then F (z, 0) is given by

F (z, 0) =
Q0(z, u(z))

1 − zQ1(z, u(z))
=

1
1 − z(1 + u(z))

=
1 − z − √

1 − 2z − 3z2

2z2
,

and

Mn = fn,0 = [zn]F (z, 0) =
�n/2�∑

k=0

n!
(n − 2k)!k!(k + 1)!

∼ 3
√

3
2
√

π
n−3/23n.

Natural examples for the non-linear case come from the enumeration of planar
maps. The starting point is the classical example of all planar maps [8].

Example 2 (Planar maps). Let M(z, u) be the generating function of planar
maps with n edges and in which the degree of the root-face is equal k [8]. We have
already mentioned that M(z, u) satisfies the non-linear catalytic equation (2). In
order to apply Proposition 3 and Theorem4 we use the substitution u → u + 1
and obtain

M(z, u + 1) = 1 + z(u + 1)

(

(u + 1)M(z, u + 1)2 + M(z, u + 1)

+
M(z, u + 1) − M(z, 1 + 0)

u

)

,

that is, we have F0(u) = 1, and Q(α0, α1, z, u) = (u+1)2α2
0+(u+1)α0+(u+1)α1.

Here Qα1 = u + 1 �= 0, Qα0,u �= 0, and Qα0,α0 �= 0, so that Theorem4 fully
applies. Of course this is in accordance with

M(z, 1) =
∑

n≥0

Mnzn =
18z − 1 + (1 − 12z)3/2

54z2
,
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and
Mn = [zn]M(z, 1) ∼ 2√

π
n−5/212n.

Example 3 (Planar triangulations). Let T (z, u) be the generating function for
planar triangulations, which satisfies (see [4,7])

T (z, u) = (1 − uT (z, u)) + (z + u)T (z, u)2 + z(1 − uT (z, u))
T (z, u) − T (z, 0)

u
.

Here Tn,k = [znuk]T (z, u) denotes the number of near-triangulations, that is,
all finite faces are triangles, with n internal vertices and k + 3 external vertices.
In order to get rid of the negative sign we set T̃ (z, u) = T (z, u)/(1 − uT (z, u))
and we obtain

T̃ (z, u) = 1 + uT̃ (z, u) + z(1 + T̃ (z, u))
T̃ (z, u) − T̃ (z, 0)

u
.

Again this is not precisely of the form (6) but our methods apply once more.
Note that T̃ (z, 0) = T (z, 0). We finally get for the number Tn,0 or triangulations

Tn,0 = [zn]T (z, 0) ∼ 8
√

6
27

√
π

n−5/2

(
256
27

)n

.
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Abstract. A well-known conjecture by Lovász and Plummer from the
1970s asserting that a bridgeless cubic graph has exponentially many
perfect matchings was solved in the affirmative by Esperet et al. (Adv.
Math. 2011). On the other hand, Chudnovsky and Seymour (Combi-
natorica 2012) proved the conjecture for the special case of cubic pla-
nar graphs. In our work we consider random bridgeless cubic planar
graphs with the uniform distribution on graphs with n vertices. Under
this model we show that the expected number of perfect matchings in
labeled bridgeless cubic planar graphs is asymptotically cγn, where c > 0
and γ ∼ 1.14196 is an explicit algebraic number. We also compute the
expected number of perfect matchings in (non necessarily bridgeless)
cubic planar graphs and provide lower bounds for unlabeled graphs. Our
starting point is a correspondence between counting perfect matchings in
rooted cubic planar maps and the partition function of the Ising model
in rooted triangulations. (Supported by the Ministerio de Economı́a y
Competitividad grant MTM2017-82166-P, and by the Special Research
Program F50 Algorithmic and Enumerative Combinatorics of the Aus-
trian Science Fund.).

Keywords: Perfect matching · Random planar graph · Ising model

1 Introduction

In the 1970s Lovász and Plummer conjectured that a bridgeless cubic graph
has exponentially many perfect matchings. The conjecture was solved in the
affirmative by Esperet, Kardoš, King, Král and Norine [4], and independently
for cubic planar graphs by Chudnovsky and Seymour [3]. The lower bound from
[4] is 2n/3656 ≈ 1.0002n. It is natural to expect that a typical bridgeless cubic
graph has more perfect matchings than those guaranteed by this lower bound.

Our main result gives estimates on the expected number of perfect matchings,
both for labeled and unlabeled cubic planar graphs. The model we consider is
the uniform distribution on graphs with n vertices.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Theorem 1. Let Xn be the number of perfect matchings in a random (with the
uniform distribution) labeled bridgeless cubic planar graph with 2n vertices. Then

E(Xn) ∼ bγn,

where b > 0 is a constant and γ ≈ 1.14196 is an explicit algebraic number. If Xu
n

is the same random variable defined on unlabeled bridgeless cubic planar graphs,
then

E(Xu
n) ≥ 1.119n.

We obtain a similar result for general, non necessarily bridgeless, cubic planar
graphs.

Theorem 2. Let Yn be the number of perfect matchings in a random (with the
uniform distribution) labeled cubic planar graph with 2n vertices. Then

E(Yn) ∼ cδn,

where c > 0 is a constant and δ ≈ 1.14157 is an explicit algebraic number. If Y u
n

is the same random variable defined on unlabeled cubic planar graphs, then

E(Y u
n ) ≥ 1.109n.

2 Preliminaries

A map is a planar multigraph with a specific embedding in the plane. All maps
considered in this paper are rooted, that is, an edge is marked and given a
direction. A map is simple if it has no loops or multiple edges. It is 2-connected
if it has no loops or cut vertices, and 3-connected if it has no 2-cuts or multiple
edges. A map is cubic if it is 3-regular, and it is a triangulation if every face has
degree 3. By duality, cubic maps are in bijection with triangulations. And since
duality preserves 2- and 3-connectivity, k-connected cubic maps are in bijection
with k-connected triangulations, for k = 2, 3. Notice that a general triangulation
can have loops and multiple edges, and that a simple triangulation is necessarily
3-connected. The size of a cubic map is defined as the number of faces minus 2,
a convention that simplifies the algebraic computations.

We need the generating function of 3-connected cubic maps, which is related
to the generating function T (z) of simple triangulations. The latter was obtained
by Tutte [8] and is an algebraic function given by

T (z) = U(z) (1 − 2U(z)) , (1)

where z = U(z)(1 − U(z))3, and z marks the number of vertices minus two. As
shown in [8], the unique singularity of T , coming from a branch point, is located
at τ = 27/256 and T (τ) = 1/8. The singular expansion of T (z) near τ is

T (z) =
1
8

− 3
16

Z2 +
√

6
24

Z3 + O(Z4), (2)
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where Z =
√

1 − z/τ . Notice that τ is a finite singularity, since T (τ) = 1/8 < ∞.
The generating function M3(z) of 3-connected cubic maps, where z marks

the number of faces minus 2 is equal to

M3(z) = T (z) − z. (3)

This follows directly from the duality between cubic maps and triangulations,
which exchanges vertices and faces.

Adapting directly the proof from [6] for cubic planar graphs, one finds that
cubic maps are partitioned into five subclasses, as defined below, and where st
denotes the root edge of a cubic map M .

– L (Loop). The root edge is a loop.
– I (Isthmus). The root edge is an isthmus (an alternative name for a bridge).
– S (Series). M − st is connected but not 2-connected.
– P (Parallel). M − st is 2-connected but M − {s, t} is not connected.
– H (polyHedral). M is obtained from a 3-connected cubic map by possibly

replacing each non-root edge with a cubic map whose root edge is not an
isthmus.

3 The Ising Model on Rooted Triangulations and Perfect
Matchings in Cubic Maps

Given a graph G, its Ising partition function is defined as follows. Given a 2-
coloring, not necessarily proper, c : V (T ) → {1, 2} of the vertices of G, let m(c)
be the number of monochromatic edges in the coloring. Then define

pG(u) =
∑

c : V (T )→{1,2}
um(c).

The same definition applies for rooted maps, using the fact that in a rooted map
the vertices are distinguishable.

Suppose G is a triangulation with 2n faces. Since in a 2-coloring every face of
T has at least one monochromatic edge, the number of monochromatic edges at
least n. The lower bound can be achieved taking the dual edge-set of a perfect
matching in a cubic map. We show next that perfect matchings of a cubic map
M with 2n vertices are in bijection with 2-colorings of the dual triangulation
M∗ with exactly n monochromatic edges, in which the color of the root vertex
is fixed.

Lemma 1. Let M be a rooted cubic map and T = M∗ its dual triangulation.
There is a bijection between perfect matchings of M and 2-colorings of T with
exactly n monochromatic edges in which the color of the root vertex of T is fixed.

The generation function of the Ising partition of triangulations is defined as

P (z, u) =
∑

T∈T
pT (u)zn,
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where T is the class of rooted triangulations and the variable z marks the num-
ber of vertices minus 2. An expression for P was obtained by Bernardi and
Bousquet-Mélou [1] in the wider context of counting q-colorings of maps with
respect to monochromatic edges, which is equivalent to computing the q-Potts
partition function. It is the algebraic function Q3(2, ν, t) in [1, Theorem 23].
Here the parameter 2 refers to the number of colors, t marks edges and ν marks
monochromatic edges. Extracting the coefficient [νn]Q3(2, ν, t) we obtain a gen-
erating function which is equivalent to the generating function M(z) of rooted
cubic maps with a distinguished perfect matching, where z marks faces minus
2. After a simple algebraic manipulation we obtain:

Lemma 2. The generating function M = M(z) counting rooted cubic maps with
a distinguished perfect matching satisfies the quadratic equation

72M2z2 +
(
216 z2 − 36 z + 1

)
M + 162 z2 − 6 z = 0. (4)

where the variable z marks the number of faces minus two.

The former quadratic equation has a non-negative solution

M(z) =
−1 + 36z − 216z2 + (1 − 24z)3/2

144z2
.

Expanding the binomial series one obtains the closed formula

[zn]M(z) = 3 · 6n
(
2n
n

)

(n + 2)(n + 1)
, (5)

a formula which can be proved combinatorially [7].

4 From the Ising Model to 3-Connected Cubic Graphs

We use the decomposition of cubic graphs as in [2] and [6], and the following
observation. We say that a class N of rooted maps is closed under rerooting if
whenever a map N is in N , so is any map obtained from N by forgetting the
root edge and choosing a different one.

Lemma 3. Let N be a class of cubic maps closed under rerooting with a distin-
guished perfect matching. Let N1 be the maps in N whose root edge belongs
to the perfect matching, and N0 those whose root edge does not belong to
the perfect matching. Let Ni(z) be the associated generating functions. Then
N0(z) = 2N1(z).

The previous lemma applies in particular to the class of all cubic maps and
to the class of 3-connected cubic maps.
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Lemma 4. The following system of equations holds and has a unique solution
in power series with non-negative coefficients.

M0(z) = D0(z), M1(z) = D1(z) + I(z),
D0(z) = L(z) + S0(z) + P0(z) + H0(z), D1(z) = S1(z) + P1(z) + H1(z)

I(z) = L(z)2

4z
, L(z) = 2z(1 + D0(z))

S1(z) = D1(z)(D1(z) − S1(z)), S0(z) = D0(z)(D0(z) − S0(z))
P1(z) = z(1 + D0(z))2, P0(z) = 2z(1 + D0(z))(1 + D1(z)),

H1(z) =
T1(z(1 + D1(z))(1 + D0(z))2)

1 + D1
, H0(z) =

T0(z(1 + D1(z))(1 + D0(z))2)

1 + D0
.

(6)

We sketch the justification of the former equations, starting with an observation.
An edge e is replaced with a map whose root edge is in a perfect matching if
and only if the two new edges resulting from the subdivision and replacement of
e belong to the resulting perfect matching. The equation for I(z) is because an
isthmus map is composed of two loop maps; division by 4 takes into account the
possible rootings of the two loops. The situation for L(z), Si(z), Pi(z) and H1(z)
are rather straightforward. The equations for Hi can be detailed as follows: in a
cubic map with 2n vertices there are n edges in a perfect matching and 2n not
in it, hence the term (1 + D1(z))(1 + D0(z))2 in the substitution.

By elimination we obtain T1(z) and T0(z) = 2T1(z). The equation defining
T1 is

T 6
1 + (24 z + 16) T 5

1 +
(
60 z2 + 92 z + 25

)
T 4
1 +

(
80 z3 + 208 z2 + 96 z + 19

)
T 3
1

+
(
60 z4 + 232 z3 + 150 z2 + 12 z + 7

)
T 2
1 +

(
24 z5 + 128 z4 + 112 z3 + z2 − 16 z + 1

)
T1

+4 z6 + 28 z5 + 33 z4 + 12 z3 − z2 = 0.

5 From 3-Connected Cubic Maps to Cubic Planar
Graphs

A cubic network is a connected cubic planar multigraph G with an ordered
pair of adjacent vertices (s, t) such that the graph obtained by removing one of
the edges between s and t is connected and simple. We notice that st can be
a simple edge, a loop or be part of a double edge, but cannot be an isthmus.
The oriented edge st is called the root of the network, and s, t are called the
poles. Replacement in networks is defined as for maps. We let D be the class
of cubic networks. The classes I, L, S, P and H have the same meaning as for
maps, and so do the subindices 0 and 1. We let C be the class of connected cubic
planar graphs (always with a distinguished perfect matching), with associated
generating function C(x), and C•(x) = xC ′(x) be the generating functions of
those graphs rooted at a vertex. We also let G(x) be the generating function of
arbitrary (non-necessarily connected) cubic planar graphs.

Whitney’s theorem claims that a 3-connected planar graph has exactly two
embeddings in the sphere up to homeomorphism. Thus counting 3-connected
planar graphs rooted at a directed edge amounts to counting 3-connected maps,
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up to a factor 2. Below we use the notation Ti(x) for the exponential generating
functions of 3-connected cubic planar graphs rooted at a directed edge, similarly
to maps.

Lemma 5. The following system of equations holds and has a unique solution
in power series with non-negative coefficients.

D0 = L + S0 + P0 + H0, D1 = S1 + P1 + H1

I = L2

x2 , L = x2

2 (D0 − L)
S1 = D1(D1 − S1, 6, S0 = D0(D0 − S0

P1 = x2D0 + x2

2 D2
0, P0 = x2(D0 + D1) + x2D0D1

H1 =
T1(x2(1 + D1)(1 + D2

0))
2(1 + D1)

, H0 =
T0(x2(1 + D1)(1 + D2

0))
2(1 + D0)

.

(7)

Moreover, we have

3C• = I + D0 + D1 − L − L2 − x2(D0 + D1) − x2D.

6 Proofs of the Main Results

Proof of Theorem 2. We first need to find the dominant singularity of C(x),
which is the same as that of D0(x), D1(x) and then D(x). It is obtained by first
computing the minimal polynomial for D(x) and then its discriminant Δ(x).
After discarding several factors of Δ(x) for combinatorial reasons (as in [6]), the
relevant factor of Δ(x) turns out to be

904x8 + 7232x6 − 11833x4 − 45362x2 + 3616,

whose smallest positive root is equal to σ ≈ 0.27964. After routinely checking the
conditions of [6, Lemma 15], we conclude that σ is the only positive dominant
singularity and that D(x) admits an expansion near σ of the form

D(x) = d0 + d2X
2 + d3X

3 + O(X4), X =
√

1 − x/σ.

And the same hold for D0(x) and D1(x). But also for L(x) and I(x), using their
definitions given in terms of D0(x) in Lemma 5. There is a second singularity
−σ with a similar singular expansion and, as explained in [6], the contributions
of ±σ are added.

From there, and using again Lemma 5 we can compute the singular expansion
of C•(x) = xC ′(x), and by integration, that of C(x). For arbitrary cubic planar
graphs, we use the exponential formula G(x) = eC(x), which encodes the fact
that a graph is an unordered set of connected graphs. The transfer theorem
finally gives

Gn = [xn]G(x) ≈ c1n
−7/2σ−nn!. (8)

To obtain the expected value of Xn we have to divide Gn by the number gn
of labeled cubic planar graphs, which as shown in [2,6] is asymptotically gn ∼
c0n

−7/2ρ−nn!, where c0 > 0 and ρ ≈ 0.31923 is the smallest positive root of

729x12 + 17496x10 + 148716x8 + 513216x6 − 7293760x4 + 279936x2 + 46656 = 0.
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And we obtain the claimed result by setting c = c1/c0 and δ = ρ/σ. Furthermore,
since σ and ρ are algebraic numbers, so is δ (actually of degree 48).

For the second part of the statement we argue as follows. Since a graph with
n vertices has at most n! automorphisms, the number of unlabeled graphs in
a class is at least the number of labeled graphs divided by n!. It follows that
the number Un of unlabeled cubic planar graphs with a distinguished perfect
matching is at least Gn/n!, where Gn is given in (8).

No precise estimate is known for the number un of unlabeled cubic pla-
nar graphs, but it can be upper bounded by the number Cn of simple rooted
cubic planar maps, because a planar graph has at least one embedding in
the plane. These maps have already been counted in [5] and the estimate
Cn ∼ cs · n−5/2α−n, where α ∼ 0.3102, follows from [5, Corollary 3.2]. The
relation between α and the value x0 given in [5] is α = x

1/2
0 ; this is due to the

fact that we count cubic maps according to faces whereas in [5] they are counted
according to vertices, and a map with n + 2 faces has 2n vertices. Disregarding
subexponential terms, we have Un ≥ σ−n and un ≤ α−n. The last result holds
as claimed since α/σ ≈ 1.109. 	

Proof of Theorem 1. The proof follows the same scheme as that of Theorem 2
and is omitted. One just needs to adapt the system (7) to bridgeless cubic planar
graphs by removing the generating functions I(z) and L(z), and follow a similar
procedure.

7 Concluding Remarks

A natural open question is to prove some kind of concentration result for the
number of perfect matchings in cubic planar graphs. But already computing the
variance seems out of reach with our techniques, since for computing the second
moment we would need to consider maps or graphs with a pair of distinguished
perfect matchings, and this does not seem feasible using the connection with the
Ising model on triangulations.
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Abstract. Given a graph H, the k-colored Gallai-Ramsey number
grk(K3 : H) is defined to be the minimum integer n such that every k-
coloring of the edges of the complete graph on n vertices contains either
a rainbow triangle or a monochromatic copy of H. Fox et al. [J. Fox,
A. Grinshpun, and J. Pach. The Erdős-Hajnal conjecture for rainbow
triangles. J. Combin. Theory Ser. B, 111:75-125, 2015.] conjectured the
values of the Gallai Ramsey numbers for complete graphs. Recently, this
conjecture has been verified for the first open case, when H = K4.

In this paper we attack the next case, when H = K5. Surpris-
ingly it turns out, that the validity of the conjecture depends upon the
(yet unknown) value of the Ramsey number R(5, 5). It is known that
43 ≤ R(5, 5) ≤ 48 and conjectured that R(5, 5) = 43 [B.D. McKay and
S.P. Radziszowski. Subgraph counting identities and Ramsey numbers.
J. Combin. Theory Ser. B, 69:193-209, 1997]. If 44 ≤ R(5, 5) ≤ 48, then
Fox et al.’s conjecture is true and we present a complete proof. If, how-
ever, R(5, 5) = 43, then Fox et al.’s conjecture is false, meaning that
exactly one of these conjectures is true while the other is false. For the
case when R(5, 5) = 43, we show lower and upper bounds for the Gallai
Ramsey number grk(K3 : K5).

Keywords: Ramsey numbers · Gallai-Ramsey numbers · Gallai
coloring · McKay-Radziszowski conjecture · Fox-Grinshpun-Pach
conjecture

1 Introduction

Given a graph G and a positive integer k, the k-color Ramsey number Rk(G)
is the minimum number of vertices n such that every k-coloring of the edges
of KN for N ≥ n must contain a monochromatic copy of G. We refer to [12]
for a dynamic survey of known Ramsey numbers. As a restricted version of
the Ramsey number, the k-color Gallai-Ramsey number grk(K3 : G) is defined
to be the minimum integer n such that every k-coloring of the edges of KN

for N ≥ n must contain either a rainbow triangle or a monochromatic copy
of G. We refer to [3] for a dynamic survey of known Gallai-Ramsey numbers.
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In particular, the following was recently conjectured for complete graphs. Here
R(p, p) = R(Kp,Kp) denotes the classical Ramsey number.

Conjecture 1 [2]. For k ≥ 1 and p ≥ 3,

grk(K3 : Kp) = (R(p, p) − 1)k/2 + 1, if k is even,

grk(K3 : Kp) = (p − 1)(R(p, p) − 1)(k−1)/2 + 1, if k is odd.

The case where p = 3 was actually verified in 1983 by Chung and Graham
[1]. A simplified proof was given by Gyárfás et al. [6].

Theorem 1 [1]. For k ≥ 1,

grk(K3 : K3) = 5k/2 + 1, if k is even,

grk(K3 : K3) = 2 · 5(k−1)/2 + 1, if k is odd.

The next case, where p = 4, was proven in [7].

Theorem 2. For k ≥ 1,

grk(K3 : K4) = 17k/2 + 1, if k is even,

grk(K3 : K4) = 3 · 17(k−1)/2 + 1, if k is odd.

Our main result is to essentially prove Conjecture 1 in the case where p = 5.
This result is particularly interesting since R(K5,K5) is still not known. Let
R = R(K5,K5) − 1 and note that the known bounds on this Ramsey number
give us 42 ≤ R ≤ 47.

Theorem 3. For any integer k ≥ 2,

grk(K3 : K5) = Rk/2 + 1, if k is even,

grk(K3 : K5) = 4 · R(k−1)/2 + 1, if k is odd

unless R = 42, in which case we have

grk(K3 : K5) = 43, if k = 2,

grk(K3 : K5) = 42k/2 + 1 ≤ grk(K3 : K5) ≤ 43k/2 + 1, if k ≥ 4 is even,

grk(K3 : K5) = 169 · 42(k−3)/2 + 1 ≤ grk(K3 : K5) ≤ 4 · 43(k−1)/2 + 1, if k ≥ 3 is odd.

Theorem 3 will be proven in Sect. 4. Note that if R = 42, then Theorem 3
implies that Conjecture 1 is false.

Also recall the following well known conjecture about the sharp value for the
2-color Ramsey number of K5.
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Conjecture 2 [11]. R(K5,K5) = 43.

By Theorem 3, it turns out that exactly one of Conjecture 1 or Conjecture 2
is true and the other is false.

In order to prove Theorem 3, we actually prove a more refined version, stated
in Theorem 4. Note that Theorem 3 follows from Theorem 4 by setting r = k,
s = 0 and t = 0.

Since we will generally be working only with K5 or K4 or K3, for three
integers r, s, t we use the following shorthand notation:

grk(K3 : rK5, sK4, tKt) = grk(K3 : K5,K5, . . . ,K5,K4, . . . ,K4,K3, . . . ,K3),

where we look for K5 in any of the first r colors or K4 in any of the s middle
colors or K3 in any of the last t colors.

To simplify the notation, we let c1 denote the case where r, s, t are all even,
c2 denote the case where r, s are both even and t is odd, and so on for c3, . . . , c11.
For nonnegative integers r, s, t, let k = r + s + t. Then we define

grk(K3 : rK5, sK4, tK3) =
Rr/2 · 17s/2 · 5t/2 + 1, if r, s, t are even, (c1)
2 · Rr/2 · 17s/2 · 5(t−1)/2 + 1, if r, s are even, and t is odd, (c2)
3 · Rr/2 · 17(s−1)/2 + 1, if r is even, s is odd, and t = 0, (c3)
4 · R(r−1)/2 + 1, if r is odd, and s = t = 0, (c4)
8 · Rr/2 · 17(s−1)/2 · 5(t−1)/2 + 1, if r is even, and s, t are odd, (c5)
13 · R(r−1)/2 · 17s/2 · 5(t−1)/2 + 1, if r, t are odd, and s is even, (c6)
16 · Rr/2 · 17(s−1)/2 · 5(t−2)/2 + 1, if r, t are even, t ≥ 2, and s is odd, (c7)
24 · R(r−1)/2 · 17(s−1)/2 · 5t/2 + 1, if r, s are odd, and t is even, (c8)
26 · R(r−1)/2 · 17s/2 · 5(t−2)/2 + 1, if r is odd, s is even, t ≥ 2 is even, (c9)
48 · R(r−1)/2 · 17(s−1)/2 · 5(t−1)/2 + 1, if r, s, t are odd, (c10)
72 · R(r−1)/2 · 17(s−2)/2 + 1, if r is odd, t = 0, and s ≥ 2 is even. (c11)

For ease of notation, let g(r, s, t) be the value of grk(K3 : rK5, sK4, tK3)
claimed above. Also, for each i with 1 ≤ i ≤ 11, let gi(r, s, t) = g(r, s, t) − 1 in
the case where (ci) holds. Now we can state Theorem 4.

Theorem 4. For nonnegative integers r, s, t, let k = r + s + t. Then

grk(K3 : rK5, sK4, tK3) = g(r, s, t).

2 Preliminaries

In this section, we recall some known results and provide several helpful lemmas
that will be used in the proof. First we state the main tool for looking at colored
complete graphs with no rainbow triangle.
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Theorem 5 [4]. In any coloring of a complete graph containing no rainbow tri-
angle, there exists a nontrivial partition of the vertices (called a Gallai-partition)
such that there are at most two colors on the edges between the parts and only
one color on the edges between each pair of parts.

In light of this result, a colored complete graph with no rainbow triangle is
called a Gallai coloring and the partition resulting from Theorem5 is called a
Gallai partition. Let D be the reduced graph of the Gallai partition, with vertices
wi corresponding to parts Gi of the partition.

Next recall some useful Ramsey numbers.

Theorem 6 [5].
R(K3,K5) = 14.

Theorem 7 [10].
R(K4,K5) = 25.

Also recall a general lower bound for Gallai-Ramsey numbers, a special case
of the main result in [8]. We will present a more refined construction later for
the purpose of proving Theorem4.

Lemma 1 [8]. For a complete graph H of order n and an integer k ≥ 2, we
have

grk(K3 : H) ≥ (R(H,H) − 1)k/2 + 1, if k is even,

grk(K3 : H) ≥ (n − 1) · (R(H,H) − 1)(k−1)/2 + 1, if k is odd.

3 Three Colors

In this section, we discuss a lower bound example that leads to a counterexample
to either Conjecture 1 or Conjecture 2.

Lemma 2. There exists a 3-colored copy of K169 which contains no rainbow
triangle and no monochromatic copy of K5.

Proof. Let Grb be a sharpness example on 13 vertices for the Ramsey number
R(K3,K5) = 14 say using colors red and blue respectively. Such an example as
Grb is 4-regular in red and 8-regular in blue. Similarly, let Grg be a copy of the
same graph with all blue edges replaced by green edges. We construct the desired
graph G by making 13 copies of each vertex in Grb and for each set of copies
(corresponding to a vertex), insert a copy of Grg. If an edge uv in Grb is red
(respectively blue), then all edges in G between the two inserted copies of Grg

corresponding to u and v are colored red (respectively blue). Then G contains
no rainbow triangle by construction but also contains no monochromatic K5.
Since |G| = 169, this provides the desired example.

Note that if R(K5,K5) = 43 so R = 42, then Conjecture 1 claims that
gr3(K3 : K5) = 169 but this example refutes this claim. On the other hand, if
R(K5 : K5) > 43, then the conjecture holds for K5, as proven in Sect. 4 below.
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4 Proof of Theorem 4 (and Theorem 3)

Note that the lower bound for Theorem3 follows from Lemma 1 and was also
presented in [2] but the lower bound for Theorem4 must be more detailed. Here
we give a sketch of proof for Theorem 4. A full proof for Theorem4, which is
much longer and quite technically, is given in [9].

Proof. (sketch) For the lower bounds, use the following constructions. For all
constructions, we start with an i-colored base graph Gi (constructed below) and
inductively suppose we have constructed an i-colored graph Gi containing no
rainbow triangle an no appropriately colored monochromatic cliques. For each
two unused colors requiring a K5, we construct Gi+2 by making R copies of
Gi, adding all edges in between the copies to form a blow-up of a sharpness
example for r(K5,K5) on R vertices. For each two unused colors requiring a K4,
we construct Gi+2 by making 17 copies of Gi, adding all edges in between the
copies to form a blow-up of a sharpness example for r(K4,K4) on 17 vertices. For
each two unused colors requiring a K3, we construct Gi+2 by making 5 copies of
Gi, adding all edges in between the copies to form a blow-up of the sharpness
example for r(K3,K3) on 5 vertices.

The base graphs for this construction are constructed by case as follows.

– For Case (c1), the base graph G0 is a single vertex.
– For Case (c2), the base graph G1 is a monochromatic copy of K2.
– For Case (c3), the base graph G1 is a monochromatic copy of K3.
– For Case (c4), the base graph G1 is a monochromatic K4.
– For Case (c5), the base graph G2 is a sharpness example on 8 vertices for

r(K3,K4) = 9.
– For Case (c6), the base graph G2 is a sharpness example on 13 vertices for

r(K3,K5) = 14.
– For Case (c7), the base graph G3 is two copies of a sharpness example for
r(K3,K4) = 9 with all edges in between the copies having a third color.

– For Case (c8), the base graph G2 is a sharpness example on 24 vertices for
r(K4,K5) = 25.

– For Case (c9), the base graph G3 is two copies of a sharpness example on 13
vertices for r(K3,K5) = 14.

– For Case (c10), the base graph G3 is two copies of a sharpness example on
24 vertices for r(K4,K5) = 25 with all edges in between the copies having a
third color.

– For Case (c11), the base graph G3 is three copies of a sharpness example on
24 vertices for r(K4,K5) = 25 with all edges in between the copies having a
third color.

These base graphs and the corresponding completed constructions contain no
rainbow triangle and no appropriately colored monochromatic cliques.

For the upper bound, let G be a Gallai coloring of Kn where n is given in
the statement. We prove this result by induction on 3r + 2s + t, meaning that
it suffices to either reduce the order of a desired monochromatic subgraph or



180 C. Magnant and I. Schiermeyer

eliminate a color. Let k = r + s + t. Then the case k = 1 is trivial, and the case
k = 2 follows from classical Ramsey numbers R(3, 3) = 6R(3, 4) = 9, R(3, 5) =
14, R(4, 4) = 18, R(4, 5) = 25, and R = R(5, 5) − 1. Now let k ≥ 3 and suppose
that Theorem 4 holds for all r′ + s′ + t′ < r + s + t.

Consider a Gallai partition of G and let q be the number of parts in this
partition. Choose such a partition so that q is minimized. Let red and blue be
the colors on the edges between the parts. Now the colors red and blue can occur
among the first r colors, among the s middle colors, or among the t last colors.
This leads to the six main cases that comprise the (lengthy) remainder the proof.
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6. Gyárfás, A., Sárközy, G., Sebő, A., Selkow, S.: Ramsey-type results for Gallai
colorings. J. Graph Theory 64(3), 233–243 (2010)

7. Liu, H., Magnant, C., Saito, A., Schiermeyer, I., Shi, Y.: Gallai-Ramsey number
for K4,. J. Graph Theory 94(2), 192–205 (2020)

8. Magnant, C.: A general lower bound on Gallai-Ramsey numbers for nonbipartite
graphs. Theo Appl. Graphs 5(1), Article 4 (2018)

9. Magnant, C., Schiermeyer, I.: Gallai-Ramsey number for K5, submitted.
arXiv:1901.03622

10. McKay, B.D., Radziszowski, S.P.: R(4, 5) = 25. J. Graph Theory 19(3), 309–322
(1995)

11. McKay, B.D., Radziszowski, S.P.: Sungraph counting identities and Ramsey num-
bers. J. Combin. Theory B 69(2), 193–209 (1997)

12. Radziszowski, S.P.: Small Ramsey numbers. Electron. J. Comb. 1 (1994). Dynamic
Survey 1

https://doi.org/10.1007/BF02579187
https://doi.org/10.1007/BF02579187
http://arxiv.org/abs/1901.03622


On the Dichromatic Number of Surfaces

Pierre Aboulker1, Frédéric Havet2, Kolja Knauer3,4,
and Clément Rambaud1(B)
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Abstract. In this paper, we give bounds on the dichromatic number−→χ (Σ) of a surface Σ, which is the maximum dichromatic number of
an oriented graph embeddable on Σ. We determine the asymptotic
behaviour of −→χ (Σ) by showing that there exist constants a1 and a2 such

that, a1

√−c
log(−c)

≤ −→χ (Σ) ≤ a2

√−c
log(−c)

for every surface Σ with Euler char-
acteristic c ≤ −2. We then give more explicit bounds for some surfaces
with high Euler characteristic. In particular, we show that the dichro-
matic numbers of the projective plane N1, the Klein bottle N2, the torus
S1, and Dyck’s surface N3 are all equal to 3, and that the dichromatic
numbers of the 5-torus S5 and the 10-cross surface N10 are equal to 4.

Keywords: Dichromatic number · Planar graphs · Graphs on surfaces

1 Introduction

All surfaces considered in this paper are closed.
A graph is embeddable on a surface Σ if its vertices can be mapped onto

distinct points of Σ and its edges onto simple curves of Σ joining the points
onto which its endvertices are mapped, so that two edge curves do not intersect
except in their common extremity. A face of an embedding G̃ of a graph G is
a component of Σ \ G̃. Recall that an important theorem of the topology of
surfaces, known as the Classification Theorem for Surfaces, states that every
surface is homeomorphic to either the k-torus – a sphere with k-handles Sk or
the k-cross surface – a sphere with k-cross-caps Nk. The surface S0 = N0 is the
sphere, and the surfaces S1, S2, N1, N2, N3 are also called the torus, the double
torus, the projective plane, the Klein bottle, and Dyck’s surface, respectively. The
Euler characteristic of a surface homeomorphic to Sk is 2−2k and of a surface
homeomorphic to Nk it is 2 − k. We denote the Euler characteristic of a surface
Σ by c(Σ).

Let G be a graph. We denote by n(G) its number of vertices, and by m(G)
its number of edges. If G is embedded in a surface Σ, then we denote by f(G)
the number of faces of the embedding. Euler’s Formula relates the numbers of
vertices, edges and faces of a (connected) graph embedded in a surface.
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Theorem 1. Euler’s Formula
Let G be a connected graph embedded on a surface Σ. Then

n(G) − m(G) + f(G) ≥ c(Σ).

We denote by Ad(G) = 2m/n the average degree of a graph G. Euler’s
formula implies that graphs on surfaces have bounded average degree.

Theorem 2. A connected graph G embeddable on a surface Σ satisfies:

m(G) ≤ 3n(G) − 3c(Σ) and Ad(G) ≤ 6 − 6c(Σ)
n(G)

.

Moreover, there is equality if and only if G is a triangulation.

A k-colouring of a graph G is a partition of the vertex set of G into k
disjoint stable sets (i.e. sets of pairwise non-adjacent vertices). A graph is k-
colourable if it has a k-colouring. The chromatic number of a graph G,
denoted by χ(G), is the least integer k such that G is k-colourable, and the
chromatic number of a surface Σ, denoted by χ(Σ), is the least integer k such
that every graph embeddable on Σ is k-colourable. Determining the chromatic
number of surfaces attracted lots of attention, with its most important instance
being the Four Colour Conjecture, which was eventually proved by Appel and
Haken [2]. The chromatic numbers of the other surfaces were established earlier.
Franklin [4] showed that the Klein bottle has chromatic number 6, and combined
results of Heawood [6] and Ringel and Youngs [12] imply that if Σ is a surface
different from the Klein bottle N2 with Euler characteristic c, then χ(Σ) ≤
H(c) =

⌊
7+

√
49−24c
2

⌋
.

In 1982, Neumann Lara [10] introduced the notion of directed colouring or
dicolouring. A k-dicolouring of a digraph is a partition of its vertex set into
k subsets inducing acyclic subdigraphs. A digraph is k-dicolourable if it has a
k-dicolouring. The dichromatic number of a digraph D, denoted by −→χ (D), is
the least integer k such that D is k-dicolourable.

Let G be an undirected graph. The bidirected graph
←→
G is the digraph

obtained from G by replacing each edge by a digon, that is a pair of oppositely
directed arcs between the same end-vertices. Observe that χ(G) = −→χ (

←→
G ) since

any two adjacent vertices in
←→
G induce a directed cycle of length 2.

It is thus natural to consider oriented graphs, which are digraphs with no
digons. Oriented graphs may be also seen as the digraphs which can be obtained
from (simple) graphs by orienting every edge, that is replacing each edge by
exactly one of the two possible arcs between its end-vertices. If

−→
G is obtained

from G by orienting its edges, we say that G is the underlying graph of
−→
G .

It is easy to show that oriented planar graphs are 3-dicolourable and Neumann
Lara [10] proposed the following conjecture.

Conjecture 1 (Neumann Lara [10]). Every oriented planar graph is 2-
dicolourable.
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This conjecture is part of an active field of research. It has been verified for
planar oriented graphs on at most 26 vertices [7] and holds for planar digraphs
of with no directed cycle of length 3 [9].

In this paper, we study the dichromatic number of surfaces. The dichro-
matic number of a surface Σ, denoted by −→χ (Σ), is the least integer k such
that every oriented graph embeddable on Σ is k-dicolourable. We first establish
asymptotic bounds on the dichromatic number of surfaces.

Theorem 3. There exist two positive constants a1 and a2 such that, for every
surface Σ with Euler characteristic c ≤ −2, we have

a1

√−c

log(−c)
≤ −→χ (Σ) ≤ a2

√−c

log(−c)

Due to lack of space, we do not include the proof of this theorem. Like every
other proofs missing in this paper, it can be found in the long version of the
paper [1].

We then estimate the exact value of the dichromatic number of surfaces close
to the sphere. Table 1 summarizes the main results.

Table 1. Bounds on the dichromatic number of some surfaces.

Σ c(Σ) Bounds for −→χ (Σ) Reference

Sphere N0 = S0 2 2 ≤ −→χ ≤ 3 Neumann Lara [10]

N1, N2, S1, N3 ∈ {1, 0, −1} −→χ = 3 Theorem5

S2, N4, N5, S3, N6, N7, S4, N8, N9 ∈ {−2, . . . , −7} 3 ≤ −→χ ≤ 4 Theorems 5 and 6

S5, N10 −8 −→χ = 4 Theorem6

In order to prove that the dichromatic number of a surface Σ is at most k,
we shall prove that there is no (k + 1)-dicritical digraph embeddable in Σ. A
digraph D is (k +1)-dicritical if −→χ (D) = k +1 and −→χ (H) ≤ k for every proper
subdigraph H of D. Kostochka and Stiebitz [8] prove the following.

Theorem 4 (Kostochka and Stiebitz [8]). Let
−→
G be a 4-dicritical oriented

graph then 3m(
−→
G) ≥ 10n(

−→
G) − 4. Moreover, if

−→
G is embeddable in a surface

with Euler characteristic c, then n(
−→
G) ≤ 4 − 9c.

2 The Dichromatic Number of N1, N2, N3, and S1

Theorem 5. −→χ (N1) = −→χ (N2) = −→χ (N3) = −→χ (S1) = 3.

Proof. K7 \ e, the complete graph on seven vertices minus an edge, is embed-
dable in every surface other than the projective plane and the sphere. Neumann-
Lara [11] proved that this graph has an orientation with dichromatic number 3.
Hence −→χ (N2),−→χ (N3),−→χ (S1) ≥ 3.
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The complete graph on 6 vertices K6 can be embedded as a triangulation of
the projective plane, that is is an embedding of K6 in the projective plane such
that all faces are triangles. Let T be the orientation of K6 displayed on the left
of Fig. 1. Let

−→
G be the oriented graph obtained from T by adding in each gray

triangular face (which is a transitive tournament on three vertices with source s
and sink t), the gadget graph depicted on the left of Fig. 1. Observe that in any
2-dicolouring of the gadget graph, the vertices of the outer face do not have all
the same colour.

t s

Fig. 1. Left: an orientation T of K6 on the projective plane. Right: the gadget graph.

Assume now for a contradiction that
−→
G admits a 2-dicolouring. Observe

that either we have a monochromatic directed triangle in T or one of the gray
triangles is monochromatic. But then the 2-dicolouring cannot be extended to
the gadget inside this transitive tournament by the above observation. Hence

−→
G

is not 2-dicolourable. Hence 3 ≤ −→χ (N1).
Suppose for a contradiction that there exists a 4-dicritical oriented graph

−→
G

embeddable on N3. By Theorem 4, it has at most 13 vertices (because c(N3) =
−1).

If G is not a triangulation of N3, then, by Theorem 2, m(
−→
G) ≤ 3n(

−→
G) + 2,

that is 3m(
−→
G) ≤ 9n(

−→
G) + 6. But 3m(

−→
G) ≥ 10n(

−→
G) − 4 by Theorem 4. Hence

n(
−→
G) ≤ 10. But Neumann Lara [11] proved that every oriented graph of order

at most 10 is 3-diciolorable. This is a contradiction.
So

−→
G is a triangulation of N3. By Theorem 4 and the abiove mentioned result

of Neumann-Lara, 11 ≤ n(
−→
G) ≤ 13. Then, an exhaustive enumeration of the

triangulations of order 11, 12 and 13 shows that there is no 4-dicritical oriented
graph in N3.

Since every oriented graph embeddable in N1, N2, or S1 is also embeddable
in N3, we get the result. �

2.1 The Dichromatic Number of S5 and N10

Theorem 6. −→χ (S5) = −→χ (N10) = 4.
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Proof. The complete graph on 11 vertices is embeddable on S5 and N10 and
Neumann-Lara [11] showed an orientation of this graph with dichromatic number
4. Therefore −→χ (S5),−→χ (N10) ≥ 4.

It remains to prove that every oriented graph embeddable on S5 or N10 is
4-dicolourable. We now sketch this proof. The entire proof may be found in [1].

Assume for a contradiction that there is a 5-dicritical oriented graph
−→
G of

order n which is embedded in S5 or N10.
Let T be the subdigraph induced by the vertices of degree 8 (i.e. in-degree 4

and out-degree 4). Set H =
−→
G − T , n8 = n(T ) and let m(H,T ) be the number

of arcs with one end-vertex in H and the other in T . A result of Bang-Jensen et
al. [3] implies that T is a directed cactus, that is an oriented graph in which
each block is a single arc or a directed cycle. In particular, T is 2-dicolourable.
Therefore H is not 2-dicolourable. In particular, one can prove that m(H) ≥ 20.

Euler’s Formula yields 8n8 + 9(n − n8) +
∑

v∈V (H)(d(v) − 9) = 2m(
−→
G) ≤

6n + 48 and so:

n8 ≥ 3(n − 16) +
∑

v∈V (H)

(d(v) − 9) ≥ 3(n − 16) (1)

On the other hand, we have
∑

v∈V (T ) d(v) = 8n8 = 2m(T ) + m(H,T ) and

m(
−→
G) = m(H) + m(H,T ) + m(T ). We deduce

m(H) = m(
−→
G) + m(T ) − 8n8 (2)

Since T is a directed cactus, we have m(T ) ≤ 3
2 (n8 − 1). Thus 20 ≤ m(H) ≤

m(
−→
G) + 3

2 (n8 − 1) − 8n8. Hence 13n8 ≤ 2m(
−→
G) − 43. With Eq. (1) and Euler’s

formula, it implies

3(n − 16) ≤ n8 ≤ 2m(
−→
G) − 43
13

≤ 6n + 5
13

(3)

After simplifying, we get n ≤ 19. Moreover, one can easily prove that every
oriented graph of order at most 15 is 4-dicolourable, thus n ≥ 16. We then
distinguish few cases depending on the number n of vertices. We only sketch
here the proof for n = 19. The details of this case and the proof of the other
cases can be found in [1].

Case n = 19: By Eq. (3), we have 9 ≤ n8 ≤ 119
13 and so n8 = 9.

Assume first that m(T ) = 3
2 (n8 − 1) = 12. By as T is a directed cactus, T

is connected and each block of T is a directed triangle. So T is Eulerian, i.e.
d+T (v) = d−

T (v) for all v ∈ V (T ).
Since n8 = 9, we have n(H) = 10. So, by a result of Neumann-Lara [11],

H admits a 3-dicolouring φ with colour set {1, 2, 3}. Since all blocks of T are
directed triangles, T contains a vertex v such that d+T (v) = d−

T (v) = 1. So v has
3 out-neighbours in H. Let v1, v2 be two of these out-neighbours. Let us recolour
v1 and v2 by setting φ(v1) = φ(v2) = 4 (since there is no digon, the resulting
colouring is still proper). We then define for every vertex x of T :

L(x) = {1, 2, 3, 4} \ φ(N+(x) ∩ V (H))
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Observe that an L-colouring of T extends the 4-colouring of H into a 4-colouring
of G, so T is not L-colourable. Observe that |L(x)| ≥ 4 − (4 − d+T (x)) =
max{d+T (x), d−

T (x)} because T is Eulerian. Moreover, since v1 and v2 are both
coloured 4, |L(v)| ≥ 2 = max{d+T (x), d−

T (x)} + 1. So T is L-dicolourable by a
theorem of Harutyunyan and Mohar [5], a contradiction.

Therefore we have m(T ) ≤ 11. By Euler’s Formula, m(
−→
G) ≤ 3n + 24, and

by Eq. (2) m(H) = m(
−→
G) − 8n8 + m(T ). Hence m(H) ≤ 20. But H is not 2-

dicolourable, so it contains a 3-dicritical oriented subgraph H̃, and m(H̃) ≤ 20.
One can show that there is a unique such 3-dicritical oriented graph with at most
20 arcs: it has 7 vertices and 20 arcs. Hence n(H̃) = 7, m(H̃) = m(H) = 20
and H is the disjoint union of H̃ and a stable set S′ of size 3. Observe that each
vertex of S′ has degree at least 9, which implies that they are adjacent to every
vertex of T and have degree exactly 9.

Now, m(H̃) < m(K7), so there are two non-adjacent vertices x, y in H̃.
Thus S = S′ ∪ {x, y} is a stable set of order 5 in H. Moreover, since it is a
directed cactus, T has an acyclic subdigraph A of order 6. Pick v ∈ V (T )\V (A).
The subdigraph B of

−→
G induced by S ∪ {v} is acyclic and has order 6. Let

G′ =
−→
G − (A ∪ B). Observe that G′ has order 19 − 6 − 6 = 7. Recall that

Neumann-Lara [11] showed that oriented graphs on at most 6 vertices are 2-
dicolourable.

Let w ∈ V (G′) ∩ V (T ).

– If |N(w) ∩ V (A)| ≤ 1, then the subdigraph A′ induced by V (A) ∪ {w} is
acyclic. Hence G can be partitioned into two acyclic subdigraphs A′ and B

and G − A′ ∪ B which has order 6 and so is 2-dicolourable. Thus
−→
G is 4-

dicolourable, a contradiction.
– If |N(w) ∩ V (A)| ≥ 2, then as w is adjacent to all vertices of S′, we have

dG′(w) ≤ 8 − 2 − 3 = 3. Now, G′−{w} is 2-dicolourable, and since dG′(w) = 3,
G′ is also 2-dicolourable, and thus G is 4-dicolourable, a contradiction. �
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1 Alfréd Rényi Institute of Mathematics, Budapest, Hungary
patkos@renyi.hu

2 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
3 Department of Computer Science and Information Theory, Budapest University

of Technology and Economics, Budapest, Hungary

Abstract. In the area of forbidden subposet problems we look for the
largest possible size La(n, P ) of a family F ⊆ 2[n] that does not contain
a forbidden inclusion pattern described by P . The main conjecture of
the area states that for any finite poset P there exists an integer e(P )
such that La(n, P ) = (e(P ) + o(1))

(
n

�n/2�
)
.

In this paper, we formulate three strengthenings of this conjecture
and prove them for some specific classes of posets.

Keywords: Extremal set theory · Forbidden subposet problem ·
Supersaturation

Extremal set theory starts with the seminal result of Sperner [15] that was
generalized by Erdős [6] as follows: if a family F ⊆ 2[n] of sets does not contain a
nested sequence F1 � F2 � · · · � Fk+1 (such nested sequences are called chains
of length k + 1 or (k + 1)-chains for short), then its size cannot exceed that of
the union of k middle levels of 2[n], i.e., |F| ≤ ∑k

i=1

(
n

�n−k
2 �+i

)
. This theorem

has many applications and several of its variants have been investigated.
In the early 80’s, Katona and Tarján [9] introduced the following general

framework to study set families avoiding some fixed inclusion patterns: we say
that a subfamily G of F is a (non-induced) copy of a poset (P,≤) in F , if there
exists a bijection i : P → G such that if p, q ∈ P with p ≤ q, then i(p) ⊆ i(q). If
i satisfies the property that for p, q ∈ P we have p ≤ q if and only if i(p) ⊆ i(q),
then G is called an induced copy of P in F . If F does not contain any (induced)
copy of P , the F is said to be (induced) P-free. The largest possible size of
a(n induced) P -free family F ⊆ 2[n] is denoted by La(n, P ) (La∗(n, P )). Let
Pk denote the k-chain, then the result of Erdős mentioned above determines
La(n, Pk+1). These parameters have attracted the attention of many researchers,
and there are widely believed conjectures in the area (see Conjecture 1) that
appeared first in [2] and [8], giving the asymptotics of La(n, P ) and La∗(n, P ).

Let e(P ) denote the maximum integer m such that for any i ≤ n, the family
(
[n]
i+1

) ∪ (
[n]
i+2

) ∪ · · · ∪ (
[n]

i+m

)
is P -free. Similarly, let e∗(P ) denote the maximum
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integer m such that for any i ≤ n, the family
(
[n]
i+1

)∪(
[n]
i+2

)∪· · ·∪(
[n]

i+m

)
is induced

P -free.

Conjecture 1.

(i) La(n, P ) = (e(P ) + o(1))
(

n
�n/2�

)
.

(ii) La∗(n, P ) = (e∗(P ) + o(1))
(

n
�n/2�

)
.

Conjecture 1 has been verified for several classes of posets, but is still open
in general. For more results on the La(n, P ) function, see Chap. 7 of [7], and
see other chapters for more background on the generalizations considered in this
paper.

After determining (the asymptotics of) the extremal size and the structure
of the extremal families, one may continue in several directions. Stability results
state that all P -free families having almost extremal size must be very similar in
structure to the middle e(P ) levels of 2[n]. Supersaturation problems ask for the
minimum number of copies of P that a family F ⊆ 2[n] of size La(n, P )+E may
contain. This is clearly at least E, but usually one can say much more. Counting
problems ask to determine the number of P -free families in 2[n]. As any subfamily
of a P -free family is P -free, therefore the number of P -free families is at least
2La(n,P ). The question is how many more such families there are. Finally, one
can address random versions of the forbidden subposet problem. Let P(n, p)
denote the probability space of all subfamilies of 2[n] such that for any F ⊆ [n],
the probability that F belongs to P(n, p) is p, independently of any other set F ′.
What is the size of the largest P -free subfamily of P(n, p) with high probability1?
Clearly, for p = 1, this is La(n, P ). For other values of p, an obvious construction
is to take a P -free subfamily of 2[n], and then the sets that are in P(n, p) form
a P -free family. Taking the e(P ) middle levels shows that the size of the largest
P -free family in P(n, P ) is at least p(e(P )+o(1))

(
n

�n/2�
)

w.h.p.. For what values
of p does this formula give the asymptotically correct answer?

In this paper, we will consider supersaturation, counting and random versions
of the forbidden subposet problem, mostly focusing on supersaturation results.
We will propose three strengthenings of Conjecture 1 and prove them for some
classes of posets. In the remainder of the introduction, we state our results and
also what was known before.

The supersaturation version of Sperner’s problem is to determine the mini-
mum number of pairs F � F ′ over all subfamilies of 2[n] of given size. We say
that a family F is centered if it consists of the sets closest to n/2. More precisely,
if F ∈ F and ||G| − n/2| < ||F | − n/2| imply G ∈ F . Kleitman [10] proved that
among families of cardinality m, centered ones contain the smallest number of
copies of P2. He conjectured that the same holds for any Pk. This was decades
later confirmed by Samotij [14]. The following is a consequence of the result of
Samotij. We will only use it with k = 2, i.e. the result of Kleitman.

1 We say that a sequence of events E1, E2, . . . , En, . . . holds with high probability (or
w.h.p., in short) if P(En) tends to 1 as n tends to infinity.
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Theorem 1. For any k, t with k − 1 ≤ t and ε > 0 there exists nk,t,ε such that
if n ≥ nk,t,ε, then any family F ⊆ 2[n] of size at least (t + ε)

(
n

�n/2�
)
contains at

least ε nt

2t+1

(
n

�n/2�
)
chains of length k.

We will investigate the number of copies of P created when the number of
additional sets compared to a largest P -free family is proportional to the size of
the middle level

(
[n]

�n/2�
)
. Let M(n, P ) denote the number of copies of P in the

e(P ) + 1 middle levels of 2[n], and let M∗(n, P ) denote the number of induced
copies of P in the e∗(P ) + 1 middle levels of 2[n]. The Hasse diagram of a poset
P is the directed graph with vertex set P and for p, q ∈ P , (pq) is an arc in the
Hasse diagram if p < q and there does not exist z ∈ P with p < z < q. We say
that P is connected, if its Hasse diagram (as a digraph) is weakly connected, i.e.,
we cannot partition its vertices into two sets such that there is no arc between
those sets. The undirected Hasse diagram is the undirected graph obtained from
the Hasse diagram by removing orientations of all arcs.

Proposition 1. For any connected poset P on at least two elements there exist
positive integers x(P ) and x∗(P ) such that M(n, P ) = Θ

(
nx(P )

(
n

�n/2�
))

and

M∗(n, P ) = Θ
(
nx∗(P )

(
n

�n/2�
))

hold.

Now we can state the first generalization of Conjecture 1.

Conjecture 2.

(i) For every poset P and ε > 0 there exists δ > 0 such that if F ⊆ 2[n] is of
size at least (e(P ) + ε)

(
n

�n/2�
)
, then F contains at least δ · M(n, P ) many

copies of P .
(ii) For every poset P and ε > 0 there exists δ > 0 such that if F ⊆ 2[n] is of

size at least (e∗(P ) + ε)
(

n
�n/2�

)
, then F contains at least δ · M∗(n, P ) many

induced copies of P .

We will prove Conjecture 2 for several classes of tree posets. A poset T is a
tree poset, if its undirected Hasse diagram is a tree. The height h(P ) of poset P
is the length of the longest chain in P . Note that for any tree poset T of height
2, we have x(T ) = x∗(T ) = |T | − 1.

Theorem 2. Let T be any height 2 tree poset of t + 1 elements. Then for any
ε > 0 there exist δ > 0 and n0 such that for any n ≥ n0 any family F ⊆ 2[n] of
size |F| ≥ (1 + ε)

(
n

�n/2�
)
contains at least δnt

(
n

�n/2�
)
copies of T .

For two elements x, y of the poset P , we write x ≺ y if x <P y and there does
not exist any z ∈ P with x <P z <P y. We say that a tree poset T is upward
(downward) monotone, if for any x ∈ T there exists at most 1 element y ∈ T
with y ≺ x (x ≺ y). A tree poset is called monotone, if it is either upward or
downward monotone.
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Theorem 3. For any monotone tree poset T and ε > 0, there exist δ > 0 and n0

such that for any n ≥ n0 any family F ⊆ 2[n] of size |F| ≥ (h(T ) − 1 + ε)
(

n
�n/2�

)

contains at least δnx(T )
(

n
�n/2�

)
copies of T .

The complete multipartite poset Kr1,r2,...,r�
is a poset on

∑�
i=1 ri elements

ai,j with i = 1, 2, . . . , �, j = 1, 2, . . . , ri such that ai,j < ai′,j′ if and only if i < i′.
The poset K1,r is usually denoted by ∨r, and the poset Kr,1 is denoted by ∧r.
The poset Ks,1,t is a tree poset with x(Ks,1,t) = x∗(Ks,1,t) = s + t.

Theorem 4. For any s, t ∈ N and ε > 0 there exist n0 = nε,s,t and δ > 0 such
that any F ⊆ 2[n] of size at least (2 + ε)

(
n

�n/2�
)
with n ≥ n0 contains at least

δns+t
(

n
�n/2�

)
induced copies of Ks,1,t.

We will consider the supersaturation problem for the generalized diamond
Ds, i.e., the poset on s + 2 elements with a < b1, b2, . . . , bs < c. For any integer
s ≥ 2, let us define ms = log2(s + 2)� and m∗

s = min{m : s ≤ (
m

�m/2�
)}. Clearly,

for any integer s ≥ 2, we have e(Ds) = x(Ds) = ms and e∗(Ds) = x∗(Ds) = m∗
s.

The next theorem establishes a lower bound that is less by a factor of
√

n than
what Conjecture 2 states for diamond posets Ds for infinitely many s.

Theorem 5

(i) If s ∈ [2ms−1 − 1, 2ms − (
ms

� ms
2 �

) − 1], then for any ε > 0 there exists a

δ > 0 such that every F ⊆ 2[n] with |F| ≥ (ms + ε)
(

n
�n/2�

)
contains at least

δ · nms−0.5
(

n
�n/2�

)
copies of Ds.

(ii) For any ε > 0 there exists a δ > 0 such that every F ⊆ 2[n] with |F| ≥
(4 + ε)

(
n

�n/2�
)
contains at least δ · n3.5

(
n

�n/2�
)
induced copies of D4.

(iii) For any constant c with 1/2 < c < 1 there exists an integer sc such that
if s ≥ sc and s ≤ c

( m∗
s

�m∗
s/2�

)
, then the following holds: for any ε > 0 there

exists a δ > 0 such that every F ⊆ 2[n] with |F| ≥ (m∗
s + ε)

(
n

�n/2�
)
contains

at least δ · nm∗
s−0.5

(
n

�n/2�
)
induced copies of Ds.

Let us elaborate on the statement of Theorem 5. Part (i) partitions the inte-
gers according to powers of 2 and states that for every integer k, and for most of
the integers s in the interval [2k − 1, 2k+1 − 2], the poset Ds possesses this weak
supersaturation property. By “most of the integers” we mean that the ratio of
integers for which the statement holds and the length of the interval tends to 1
as k tends to infinity. The smallest value of s that (i) applies to is s = 3 with
ms = 3 as then 3 ∈ [23−1−1, 23−(

3
2

)−1] = [3, 4]. Part (ii) is about supersatura-
tion of induced copies of D4. Part (iii) is similar to (i) but again about induced
copies of Ds. This time positive integers are partitioned into intervals according
to the sequence {(

k
�k/2�

)}∞
k=1, namely {[

(
k

�k/2�
)

+ 1,
(

k+1
�(k+1)/2�

)
]}∞

k=1. As k tends
to infinity, the ratio of right and left endpoints tends to 2. Part (iii) states that
as k tends to infinity, those integers s in the initial segment of the kth interval
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for which Ds has the claimed supersaturation property, take up larger and larger
ratio of the interval.

Let us turn our attention to counting (induced) P -free families. As we men-
tioned earlier, every subfamily of a P -free family is P -free, therefore 2La(n,P ) ≥
2(e(P )+o(1))( n

�n/2�) is a lower bound on the number of such families. Determining
the number of P2-free families has attracted a lot of attention. The upper bound
2(1+o(1))( n

�n/2�), asymptotically matching in the exponent the trivial lower bound
was obtained by Kleitman [11]. After several improvements, Korshunov [12]
determined asymptotically the number of P2-free families.

Conjecture 3. (i) The number of P -free families in 2[n] is 2(e(P )+o(1))( n
�n/2�).

(ii) The number of induced P -free families in 2[n] is 2(e
∗(P )+o(1))( n

�n/2�).

Theorem 6. (i) The number of induced ∨r+1-free families is 2(1+o(1))( n
�n/2�).

(ii) The number of induced Ks,1,t-free families in 2[n] is 2(2+o(1))( n
�n/2�).

As every height 2 poset P is a non-induced subposet of K|P |,1,|P |, Conjecture 3
(i) is an immediate consequence of Theorem 6 for those height 2 posets P for
which e(P ) = 2.

Finally, we turn to random versions of forbidden subposet problems. The
probabilistic version of Sperner’s theorem was proved by Balogh, Mycroft, and
Treglown [1] and Collares and Morris [3–5], independently. It states that if
p = ω(1/n), then the largest antichain in P(n, p) is of size (1 + o(1))p

(
n

�n/2�
)

w.h.p.. This is sharp in the sense that if p = o(1/n) then the asymptotics is
different. Note that as any k-Sperner family is the union of k antichains, the
analogous statement holds for k-Sperner families in P(n, p). Both papers used
the container method. Hogenson in her PhD thesis [16] adapted the method
of Balogh, Mycroft, and Treglown to obtain the same results for non-induced
∨r-free families.

Let us state a general proposition that gives a range of p when one can have
a P -free family in P(n, p) that is larger than p(e(P ) + o(1))

(
[n

�n/2�
)
.

Proposition 2. For any finite connected poset P , the following statements hold.

(i) If p = o(n− x(P )
|P |−1 ) and p

(
n

�n/2�
) → ∞, then the largest P -free family in

P(n, p) has size at least (e(P ) + 1 − o(1))p
(

n
�n/2�

)
w.h.p..

(ii) If p = o(n− x∗(P )
|P |−1 ) and p

(
n

�n/2�
) → ∞, then the largest induced P -free family

in P(n, p) has size at least (e∗(P ) + 1 − o(1))p
(

n
�n/2�

)
w.h.p..

If Mp does not contain a subposet P ′ of P , then it is P -free, thus we have
the following.

Corollary 1. For any finite poset P , let d(P ) = min x(P ′)
|P ′|−1 , where P ′ runs

through all connected subposets P ′ of P with e(P ) = e(P ′). Similarly, let d∗(P ) =
min x∗(P ′)

|P ′|−1 , where P ′ runs through all connected subposets P ′ of P with e∗(P ) =
e∗(P ′). Then the following statements hold.
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(i) If p = o(n−d(P )), then the largest P -free family in P(n, p) has size at least
(e(P ) + 1 − o(1))p

(
n

�n/2�
)
w.h.p.

(ii) If p = o(n−d∗(P )), then the largest induced P -free family in P(n, p) has size
(e∗(P ) + 1 − o(1))p

(
n

�n/2�
)
w.h.p.

We conjecture that the bounds above are sharp.

Conjecture 4. For any finite connected poset P the following statements hold.

(i) If p = ω(n−d(P )), then the largest P -free family in P(n, p) has size (e(P ) +
o(1))p

(
n

�n/2�
)

w.h.p..
(ii) If p = ω(n−d∗(P )), then the largest induced P -free family in P(n, p) has size

(e∗(P ) + o(1))p
(

n
�n/2�

)
w.h.p..

The following theorem verifies Conjecture 4 for the posets ∨r+1 and Ks,1,t.

Theorem 7. If p = ω(1/n), then the following are true.

(i) For any integer r ≥ 0, the largest induced ∨r+1-free family in P(n, p) has
size (1 + o(1))p

(
n

�n/2�
)
w.h.p..

(ii) For any pair s, t ≥ 1 of integers, the largest induced Ks,1,t-free family in
P(n, p) has size (2 + o(1))p

(
n

�n/2�
)
w.h.p..
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Abstract. In 1976, Alspach, Mason, and Pullman conjectured that any
tournament T of even order can be decomposed into exactly ex(T ) paths,
where ex(T ) = 1

2

∑
v∈V (T ) |d+T (v) − d−

T (v)|. We prove this conjecture
for all sufficiently large tournaments. We also prove an asymptotically
optimal result for tournaments of odd order.

Keywords: Tournaments · Decompositions · Paths

1 Introduction

Path and cycle decomposition problems have a long history. For example, the
Walecki construction [9], which goes back to the 19th century, gives a decompo-
sition of the complete graph of odd order into Hamilton cycles (see also [2]). A
version of this for (regular) directed tournaments was conjectured by Kelly in
1968 and proved for large tournaments in [6]. Beautiful open problems in the
area include the Erdős–Gallai conjecture which asks for a decomposition of any
graph into linearly many cycles and edges. The best bounds for this are due to
Conlon, Fox, and Sudakov [5]. Another famous example is the linear arboricity
conjecture, which asks for a decomposition of a d-regular graph into

⌈
d+1
2

⌉
linear

forests. The latter was resolved asymptotically by Alon [1] and the best current
bounds are due to Lang and Postle [7].

1.1 Background

The problem of decomposing digraphs into paths was first explored by Alspach
and Pullman [4], who provided sharp bounds for the minimum number of paths
needed in path decompositions of digraphs. (Throughout this paper, in a digraph,
for any two vertices u �= v, we allow a directed edge uv from u to v as well as a
directed edge vu from v to u, whereas in an oriented graph we allow at most one
directed edge between any two distinct vertices.) Given a digraph D, define the
path number of D, denoted by pn(D), as the minimum integer k such that D
can be decomposed into k paths. Alspach and Pullman [4] proved that, for any
oriented graph D on n vertices, pn(D) ≤ n2

4 , with equality holding for transitive
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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tournaments. O’Brien [10] showed that the same bound holds for digraphs on at
least 4 vertices.

The path number of digraphs can be bounded below by the following quantity.
Let D be a digraph and v ∈ V (D). Define the excess at v as exD(v) = d+D(v) −
d−
D(v). Let ex+

D(v) = max{0, exD(v)} and ex−
D(v) = max{0,−exD(v)} be the

positive excess and negative excess at v, respectively. Then, as observed in [4],
if d+D(v) > d−

D(v), then a path decomposition of D contains at least d+D(v) −
d−
D(v) = ex+

D(v) paths starting at v. Similarly, a path decomposition will contain
at least ex−

D(v) paths ending at v. Thus, the excess of D, defined as

ex(D) =
∑

v∈V (D)

ex+
D(v) =

∑

v∈V (D)

ex−
D(v) =

1
2

∑

v∈V (D)

|exD(v)|,

provides a natural lower bound for the path number of D, i.e. any digraph D
satisfies pn(D) ≥ ex(D). It was shown in [4] that equality is satisfied for acyclic
digraphs. A digraph satisfying pn(D) = ex(D) is called consistent. Clearly, not all
digraphs are consistent (e.g. regular digraphs have excess 0). However, Alspach,
Mason, and Pullman [3] conjectured in 1976 that tournaments of even order are
consistent.

Conjecture 1 ([3]). Any tournament T of even order satisfies pn(T ) = ex(T ).

Note that the results of Alspach and Pullman [4] mentioned above imply that
Conjecture 1 holds for tournaments of excess n2

4 . Moreover, as observed by Lo,
Patel, Skokan, and Talbot [8], Conjecture 1 for tournaments of excess n

2 is equiv-
alent to Kelly’s conjecture on Hamilton decompositions of regular tournaments.
Recently, Conjecture 1 was verified in [8] for sufficiently large tournaments of
sufficiently large excess. Moreover, they extended this result to tournaments of
odd order n whose excess is at least n2− 1

18 .

Theorem 2 ([8]). There exist C, n0 ∈ N such that the following holds. If tour-
nament T on n ≥ n0 vertices such that (i) n is even and ex(T ) ≥ Cn, or (ii)
ex(T ) ≥ n2− 1

18 , then pn(T ) = ex(T )

1.2 New Results

Building on the results and methods of [6,8], we prove Conjecture 1 for large
tournaments.

Theorem 3. There exists n0 ∈ N such that any tournament T of even order n ≥
n0 satisfies pn(T ) = ex(T ).

In fact, our methods are more general and allow us to determine the path
number of most tournaments of odd order, whose behaviour turns out to be
more complex. As mentioned above, not every digraph is consistent.

Let D be a digraph. Let Δ0(D) denote the largest semidegree of D, that is
Δ0(D) = max{d+(v), d−(v) | v ∈ V (D)}. Note that Δ0(D) is a natural lower
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bound for pn(D) as every vertex v ∈ V (D) must be in at least max{d+(v), d−(v)}
paths. This leads to the notation of the modified excess of a digraph D, which
is defined as

ẽx(D) = max{ex(D),Δ0(D)}.

This provides a natural lower bound for the path number of any digraph D.
Namely, any digraph D satisfies pn(D) ≥ ẽx(D).

Observe that, by Theorem 2(ii), equality holds for large tournaments of excess
at least n2− 1

18 . However, note that equality does not hold for regular digraphs.
Indeed, by considering the number of edges, one can show that any path decom-
position of an r-regular digraph will contain at least r + 1 paths. Thus, any
regular digraph satisfies pn(D) ≥ ẽx(D) + 1. Denote by Treg the class of regular
tournaments. Alspach, Mason, and Pullman [3] conjectured that equality holds
for regular tournaments.

There also exist non-regular tournaments T for which pn(T ) > ẽx(T ). Indeed,
let Tapex be the set of tournaments T on n ≥ 5 vertices for which there exists a
partition V (T ) = V0∪{v+}∪{v−} such that T [V0] is a regular tournament on n−2
vertices (and so n is odd), N+

T (v+) = V0 = N−
T (v−), N−

T (v+) = {v−}, and
N+

T (v−) = {v+}. We show that any sufficiently large tournament T ∈ Tapex ∪ Treg

satisfies pn(T ) = ẽx(T ) + 1.

Theorem 4. There exists n0 ∈ N such that any tournament T ∈ Tapex ∪ Treg

on n ≥ n0 vertices satisfies pn(T ) = ẽx(T ) + 1.

We conjecture that these tournaments are the only ones with pn(T ) �= ẽx(T ).

Conjecture 5. There exists n0 ∈ N such that any tournament T /∈ Tapex ∪ Treg

on n ≥ n0 vertices satisfies pn(T ) = ẽx(T ).

We prove an approximate version of this conjecture (see Theorem 7). More-
over, in Theorem 6, we prove Conjecture 5 exactly unless n is odd and T is
extremely close to being a regular tournament (in the sense that the number of
vertices of nonzero excess is o(n), the excess of each vertex is o(n), and the total
excess is n

2 ± o(n)).

Theorem 6. For all β > 0, there exists n0 ∈ N such that the following holds.
If T /∈ Tapex ∪Treg is a tournament on n ≥ n0 vertices such that (i) ẽx(T ) ≥ n

2 +
βn, or (ii) |{v ∈ V (T ) | ex±

T (v) > 0}|+ẽx(T )−ex(T ) ≥ βn, then pn(T ) = ẽx(T ).

Using of the fact that ẽx(T ) = ex(T ) for even n, one can derive Theorem 3
(i.e. the exact solution when n is even) from Theorem 6. We also derive an
approximate version of Conjecture 5 from Theorem 6.

Corollary 7. For all β > 0, there exists n0 ∈ N such that any tournament T
on n ≥ n0 vertices satisfies pn(T ) ≤ ẽx(T ) + βn.

Note that Theorem 6(ii) corresponds to the case where linearly many different
vertices can be used as endpoints of paths in an optimal decomposition. Indeed,
let T be a tournament and P be a path decomposition of T . Then, as mentioned
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above, each v ∈ V (T ) must be the starting point of at least ex+
T (v) paths in P.

Thus, for any tournament T , |{v ∈ V (T ) | ex+
T (v) > 0}| + ẽx(T ) − ex(T ) is the

maximum number of distinct vertices which can be a starting point of a path
in a decomposition of T of size ẽx(T ) and similarly for |{v ∈ V (T ) | ex−

T (v) >
0}| + ẽx(T ) − ex(T ) and the ending points of paths.

2 Proof Overview

2.1 Robust Outexpanders

Our proof of Theorem 6 will be based on the concept of robust outexpanders.
Roughly speaking, a digraph D is called a robust outexpander if, for any set S ⊆
V (D) which is neither too small nor too large, there exist significantly more
than |S| vertices with many inneighbours in S. Any (almost) regular tournament
is a robust outexpander and we will use that this property is inherited by random
subdigraphs. The main result of [6] states that any regular robust outexpander
of linear degree has a Hamilton decomposition. We can apply this to obtain an
optimal path decomposition in the following setting. Let D be a digraph on n
vertices, 0 < η < 1, and suppose that X+ ∪X− ∪X0 is a partition of V (D) such
that |X+| = |X−| = ηn and for each v ∈ V (D),

d+D(v) =

{
ηn − 1 if v ∈ X−,

ηn otherwise,
and d−

D(v) =

{
ηn − 1 if v ∈ X+,

ηn otherwise.
(1)

Then the digraph D′ obtained from D by adding a new vertex v with N±
D′(v) =

X± is ηn-regular. Thus if D is a robust outexpander, then there exists a decom-
position of D′ into Hamilton cycles. This induces a decomposition P of D into ηn
Hamilton paths, where each vertex in X+ is the starting point of exactly one
path in P and each vertex in X− is the ending point of exactly one path in P.
Our main strategy will be to reduce our tournaments to a digraph of the above
form. This will be achieved as follows.

2.2 Simplified Approach for Well Behaved Tournaments

Let 0 < 1
n0

� ε � γ � η � β and T a tournament on n ≥ n0 vertices. Note
that by Theorem 2, we may assume that ẽx(T ) ≤ ε2n2. Moreover, for simplicity,
we first also assume that each v ∈ V (T ) satisfies |exT (v)| ≤ εn (i.e. T is almost
regular), ẽx(T ) = ex(T ), and both |{v ∈ V (T ) | ex±

T (v) > 0}| ≥ ηn.
Firstly, since T is almost regular, it is a robust outexpander and so we can

fix a random spanning subdigraph Γ ⊆ T of density γ such that Γ is a robust
outexpander and T \ Γ is almost regular. The digraph Γ will serve two pur-
poses. Firstly, its robust outexpansion properties will be used to construct an
approximate path decomposition of T . Secondly, provided few edges of Γ are
used throughout this approximate decomposition, it will guarantee that the left-
over (consisting of all of those edges of T not covered by the approximate path
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decomposition) is still a robust outexpander, as required to complete our decom-
position of T in the way described in Sect. 2.1.

Fix X± ⊆ {v ∈ V (T ) | ex±
T (v) > 0} of size ηn and let X0 = V (T )\(X+∪X−).

Our goal is then to find an approximate path decomposition P of T such that
|P| = ẽx(T ) − ηn and the leftover D = T \

⋃
P satisfies the degree conditions

in (1). Thus, it suffices that P satisfies the following. Each v ∈ V (T ) is the
starting point of exactly ex+

T (v) − 1(v ∈ X+) paths, the ending point of exactly
ex−

T (v) − 1(v ∈ X−) paths and the internal vertex of exactly (n−1)−|exT (v)|
2 −

ηn + 1(v ∈ X+ ∪ X−) paths in P.
Recall that, by assumption, T is almost regular. Thus, in a nutshell, we

need to construct edge-disjoint paths with specific endpoints and such that each
vertex is covered by about (12 − η)n paths. To ensure the latter, we will in
fact approximately decompose T into about (12 − η)n spanning sets of internally
vertex-disjoint paths. To ensure the former, we will start by constructing (12−η)n
auxiliary digraphs on V (T ) such that, for each v ∈ V (T ), the total number of
edges starting (and ending) at v is the number of paths that we want to start (and
end, respectively) at v. These auxiliary digraphs will be called layouts. Then, it
will be enough to construct, for each layout L, a spanning set of paths PL, called
a spanning configuration of shape L, such that each path P ∈ PL corresponds
to some edge e ∈ E(L) and the starting and ending points of P equal those of e.

These spanning configurations will be constructed one by one as follows. At
each stage, given a layout L, fix an edge uv ∈ E(L). Then, using the robust
outexpanding properties of (the remainder of) Γ , find short internally vertex-
disjoint paths with endpoints corresponding to the endpoints of the edges in L \
{uv}. Denote by P ′

L the set containing these paths. Then, it only remains to
construct a path from u to v spanning V (T )\V (P ′

L). We achieve this as follows.
Let D′ and Γ ′ be obtained from (the remainders of) (T \ Γ ) − V (P ′

L) and
Γ − V (P ′

L) by merging the vertices u and v into a new vertex w such that
N+(w) = N+(u) and N−(w) = N−(v). Observe that a Hamilton cycle of D′∪Γ ′

corresponds to a path from u to v of T which spans V (T )\V (P ′
L). Of course, one

can simply use the fact that Γ ′ is a robust expander to find a Hamilton cycle.
However, if we proceed in this way, then the robust outexpanding property of Γ ′

might be destroyed before constructing all the desired spanning configurations.
So instead we construct a Hamilton cycle with only few edges in Γ ′ as follows.
Using the fact that T \Γ is almost regular, we first find an almost spanning linear
forest F in D′ which has few components. Then we use the robust outexpanding
properties of Γ ′ to tie up F into a Hamilton cycle of D′ ∪ Γ ′.

2.3 General Tournaments

For a general tournament T , we adapt the above argument as follows. Let W
be the set of vertices v ∈ V (T ) such that |exT (v)| > εn. If W �= ∅, then T is no
longer almost regular and we cannot proceed as above. However, since ex(T ) ≤
ε2n2, |W | is small. Thus, we can start with a cleaning procedure which efficiently
decreases the excess and degree at W by taking out few edge-disjoint paths.
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Then, we apply the above argument to (the remainder of) T −W . We incorporate
all remaining edges at W in the approximate decomposition by generalising the
concept of a layout introduced above.

If |{v ∈ V (T ) | ex+
T (v) > 0}| < ηn but ẽx(T ) = ex(T ), say, then we cannot

choose X+ ⊆ {v ∈ V (T ) | ex+
T (v) > 0} of size ηn. We circumvent this problem

as follows. Select a small set of vertices WA such that
∑

v∈WA
ex+

T (v) ≥ ηn and
let A be a set of ηn edges such that the following hold. Each edge in A starts
in WA and ends in V (T )\WA. Moreover, each v ∈ WA is the starting point of at
most ex+

T (v) edges in A and each v ∈ V (T ) \ WA is the ending point of at most
one edge in A. We will call A an absorbing set of starting edges. Then, let the
ending points of the edges in A play the role of X+ and add the vertices in WA

to W so that, at the end of the approximate decomposition, the only remaining
edges at WA are the edges in A. Thus, in the final decomposition step, we can
use the edges in A to extend the paths starting at X+ into paths starting in WA.
If |{v ∈ V (T ) | ex−

T (v) > 0}| < ηn, then we proceed analogously.
If ẽx(T ) > ex(T ), then not all paths will “correspond” to some excess. For

simplicity, we will choose which additional endpoints to use at the beginning
and artificially add excess to those vertices. This then enables us to proceed
as if ex(T ) = ẽx(T ). More precisely, we will choose a set U∗ ⊆ {v ∈ V (T ) |
exT (v) = 0} of size ẽx(T ) − ex(T ) and we will treat the vertices in U∗ in the
same way as we treat those with ex±

T (v) = 1. Note that selecting additional
endpoints in this way maximises the number of distinct endpoints, which will
enable us to choose X± ⊆ {v ∈ V (T ) | ex±

T (v) > 0} ∪ U∗ when |{v ∈ V (T ) |
ex±

T (v) > 0}| + ẽx(T ) − ex(T ) ≥ ηn and use absorbing edges otherwise, i.e. if
condition (ii) fails in Theorem 6.
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Abstract. We consider sorting by a queue that can apply a permutation
from a given set over its content. This gives us a sorting device QΣ

corresponding to any shuffling method Σ since every such method is
associated with a set of permutations. Two variations of these devices
are considered - Q

′
Σ and Q

pop
Σ . These require the entire content of the

device to be unloaded after a permutation is applied or unloaded by each
pop operation, respectively.

First, we show that sorting by a deque is equivalent to sorting by a
queue that can reverse its content. Next, we focus on sorting by cuts,
which has a significance in genome rearangements and has a natural
interpretation. We prove that the set of permutations that one can sort
by using Q

′
cuts is the set of the 321-avoiding separable permutations. We

give lower and upper bounds to the maximum number of times the device
must be used to sort a permutation.

Furthermore, we give a formula for the number of n-permutations
that one can sort by using Q

′
Σ , for any shuffling method Σ, such that

the permutations associated with it are irreducible. The rest of the work
is dedicated to a surprising conjecture inspired by Diaconis and Graham
which states that one can sort the same number of permutations of any
given size by using the devices Q

pop
In-sh and Q

pop
Monge, corresponding to the

popular In-shuffle and Monge shuffling methods.

Keywords: Sorting · Shuffling · Separable permutation · Pattern
avoidance

1 Introduction and Definitions

A main line of research on the applications of permutation patterns in computer
science is related to sorting of permutations using different sorting devices e.g.,
stacks, queues, deques and their modifications. Knuth [9, Chapter 2.2.1] was
the first one to consider sorting by these classical data structures. The book [8,
Chapter 2] lists several other articles dedicated to the topic.

A completely different, yet connected, line or research investigates shuffling
methods for a given deck of cards or respectively for a given permutation. A shuf-
fling method could be any procedure that will lead to a uniformly shuffled deck
after applying the shuffling method multiple times. Diaconis et al. [3, Section 2.3]
give an overview of the previous work related to shuffling.
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In this work, we relate the areas of sorting devices and shuffling methods by
considering sorting by special type of queues, called shuffle queues, which can
rearrange their content by applying permutations in a given collection over it.
We call any such collection of permutations a shuffling method and we focus
on collections associated with some methods that are popular in the literature.
Only a few previous works investigate sorting by modifications of a queue [1,
5]. Shuffle queues are a natural such modification since a sorting device is a
machine whose sole function is to re-order its input data. These new devices
lead to some surprising enumerative results and raise interesting combinatorial
questions. More motivational points are described in Sect. 1.2.

1.1 Notation

A permutation of size n is a bijective map from [n] = {1, 2, . . . , n} to itself.
Permutations will be presented in one-line notation. Other standard definitions
related to permutation patterns that will be used can be found in [2]. The reverse
of π = π1 · · · πn will be denoted by πr := πn · · · π1. The empty sequence will be
denoted by ε. For a sequence of distinct numbers s, denote by Im(s) the set of
elements of s and let Im(s1, . . . , st) =

⋃t
k=1 Im(sk). Let

T 3
n = {(s1, s2, s3) | Im(si) ∩ Im(sj) = ∅, Im(s1, s2, s3) = [n]}

be the set of triples of sequences having sets of elements forming a partition of
[n]. We will call the elements of T 3

n configurations.
A sorting device D is a tool that transforms a given input permutation

π by following a particular algorithm which could be deterministic or non-
deterministic. The result is an output permutation π′. During the execution
of the algorithm, every device D has a given configuration (sinp, sdev, sout), com-
prised of three sequences (strings) corresponding to the current string in the
input, the device and the output, respectively. Thus, we have a sequence of con-
figurations beginning with (π, ε, ε) and ending with (ε, ε, π′). This sequence will
be called an iteration of D over the input π. Denote by D(π) the set of possi-
ble output permutations, when using a device D on input π. If idn denotes the
identity permutation of size n, then let Sn(D) := {π | π ∈ Sn, idn ∈ D(π)} be
the set of the permutations sortable with D. Furthermore, let pn(D) := |Sn(D)|.

A shuffling method transforms a given input permutation by multiplying it
by another permutation, according to a given distribution over Sn. We will ignore
this distribution and assume that every given shuffling method Σ is defined by a
family of subsets of permutations FΣ = {ΠΣ

n ⊆ Sn | n = 1, 2, . . . }. Each subset
contains the possible multipliers of the input permutation for the corresponding
value of n. We will call the collection of these subsets the permutation family of
the method Σ. Below, we give the permutation family for the shuffling by cuts,
which is a main focus of the present work.

Example 1. Shuffling by cuts:

for all n ≥ 2 : Πcuts
n = {k(k + 1) . . . n12 . . . (k − 1) | k ∈ {2, . . . , n}}. (1)
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For a given shuffling method Σ, we consider a non-deterministic sorting device
QΣ for which at any given step one can apply up to three possible operations
over the current configuration s = (sinp, sdev, sout):

1. Push
Move the first element x of sinp = xs′

inp at the end of sdev.
2. Pop

Move the first element y of sdev = ys′
dev at the end of sout.

3. Shuffle
Pick a permutation σ ∈ Πm

Σ and apply it over sdev,
where |sdev| = m.

We will call the device QΣ a shuffle queue. This work focuses on two natural
variations of the devices QΣ that will be called shuffle queues of type (i) and
type (ii). They are obtained after imposing two additional restrictions:

(i) The entire content of the device must be unloaded after each shuffle.
Denote the corresponding sorting device by Q

′
Σ .

(ii) The entire content of the device must be unloaded by each pop operation.
Denote the corresponding sorting device by Q

pop
Σ . This is the pop-version of

the device QΣ in analogy to the pop version of the stack-sorting device. We
will also call them pop shuffle queues.

1.2 Motivation

We show that sorting by a deque is equivalent to sorting by a simple shuffle
queue (see Sect. 2). In addition, sorting by Qcuts has a simple interpretation
in terms of railway switching networks, similar to those given by Knuth in [9]
for stack, queue and deque. It is not difficult to show that every permutation
can be sorted by Qcuts. Thus, it is reasonable to ask which permutations can be
sorted by cuts (and by other methods) if we consider the two natural restrictions
defining shuffle queues of types (i) and (ii). We also formulate an unexpected
conjecture involving shuffle queues of type (ii) (see Sect. 5). Furthermore, sorting
by cuts is an important problem connected to genome rearrangements and an
object of extensive study from the algorithms community [7].

2 Shuffle Queues Equivalent to Deque and Stack

Definition 1. The sorting devices U and V are equivalent if for every n ≥ 1,

Sn(U) = Sn(V).

We will denote that by writing U ∼= V.

Sorting by a deque turns out to be equivalent to sorting by the shuffle queue of
a very simple shuffling method that can just reverse its content. A deque will be
denoted by Deq.
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Theorem 1. Deq ∼= Qrev, where

Πn
rev = {n(n − 1) · · · 21}, for all n ≥ 2.

.

We were not able to find this surprisingly simple fact in the existing literature.
Perhaps it can be used to make progress on the long-standing problem of finding
the number of permutations sortable by a deque [10, A182216]. A reasonable
next question is whether there exists a shuffle queue that is equivalent to a
stack, denoted by St. We show that such a queue does not exist.

Theorem 2. There is no shuffling method Σ, such that St ∼= QΣ.

3 Sorting by Cuts

One of the simplest known shuffling methods is shuffling with cuts. Its permu-
tation family is given by Eq. (1). Consider the device Q

′
cuts. Below is shown one

possible iteration of Q
′
cuts and the corresponding operations when sorting the

permutation 213564. Each configuration is written in the column form

⎛

⎝
sinp

sdev

sout

⎞

⎠.

Example 2. Iteration of Q′
cuts over 213645:

⎛

⎝
213645

ε
ε

⎞

⎠ push−−−→
⎛

⎝
13645

2
ε

⎞

⎠ push−−−→
⎛

⎝
3645
21
ε

⎞

⎠
shuffle
(cut)−−−−−→

+unload

⎛

⎝
3645

ε
12

⎞

⎠ push−−−→
⎛

⎝
645
3
12

⎞

⎠

pop−−→
⎛

⎝
645
ε

123

⎞

⎠ push−−−→
⎛

⎝
45
6

123

⎞

⎠ push−−−→
⎛

⎝
5
64
123

⎞

⎠ push−−−→
⎛

⎝
ε

645
123

⎞

⎠
shuffle
(cut)−−−−−→

+unload

⎛

⎝
ε
ε

123456

⎞

⎠

Note that we unload the entire content of the device after each shuffle oper-
ation. The fact that the set of the cut-sortable permutations Sn(Q′

cuts) is a
permutation class follows from the observation in the proof of [1, Proposition 1].
With the next theorem, we find this class.

Theorem 3. The permutations sortable by Q
′
cuts are the 321-avoiding separable

permutations [10, A034943]; i.e.,

Sn(Q′
cuts) = Avn(321, 2413, 3142).

The class of separable permutations have an important recursive description and
are enumerated by the Schröder numbers [8, Chapter 2.2.5].

The next fact gives an alternative way to find the total number of sortable
permutations when using cuts and generalizes Theorem3. By IPn, we denote
the set of the irreducible permutations of size n, i.e., those not fixing [1..j] for
any 0 < j < n ([10, A003319]).
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Theorem 4. If Πk
Σ ⊆ IPk for every k ≥ 2 and bk := |Πk

Σ |, then

pn(Q′
Σ) = 1 +

∑

k1+···+kl=n−u
ki≥2,u≥0

(
u + l

l

) l∏

j=1

bkj
.

An analogue of this formula for pop shuffle queues was also established.

4 Permutations of Higher Cost

Not all π ∈ Sn are sortable by Q
′
cuts. However, one can use this device several

times in a row by using the output after one iteration as an input to the next
iteration. Denote the set of permutations that one can obtain after k iterations
of Q′

cuts over a permutation π ∈ Sn by (Q′
cuts)

k(π).

Definition 2 (cost of permutation). The cost of π is the minimum number
of iterations needed to sort π using the device Q

′
cuts, i.e.,

cost(π) := min{m | idn ∈ (Q′
cuts)

m(π)}.

Theorem 3 gives a characterization of the set of permutations of cost 1. In
general, how big can be cost(π), for π ∈ Sn? It is not difficult to obtain that
cost(π) ≤ n. This upper bound is improved significantly with the theorem given
below.

Theorem 5. cost(π) ≤ 
n
2 �, for every π ∈ Sn, where n ≥ 1.

To prove Theorem 5, we show that one can always transform the input permu-
tation, via a few cuts, to one that contains a segment of consecutive elements.
This segment can be treated as a single element, which allows us to apply induc-
tion. The transformation is obtained by using a combination of a few additional
observations that we prove separately.

Theorem 5 is a non-trivial upper bound for the cost function which is tight
since there exist permutations of cost 
n

2 �. The best absolute lower bound is
obviously 0 since cost(idn) = 0, for every n. Let Mn := max

π∈Sn

cost(π). Theorem 5

gives us that Mn ≤ 
n
2 �. We also prove the following lower bound by showing

that the reverse identity idr
n always require at least 
log2 n� iterations to be

sorted.

Theorem 6. Mn ≥ 
log2 n�, for each n ≥ 2.

The bounds established with Theorem5 and Theorem 6 are analogues of the
bounds obtained in [6] for the maximal number of cuts needed to sort a permu-
tation. We finish this section by showing that the permutations in Sn can be
paired up in terms of cost, when using Q

′
cuts. For a permutation π = π1 · · · πn,

let π denote the complement permutation, defined by πi = n + 1 − πi. Set
π∗ = πr = (π)r.

Theorem 7. For any permutation π, cost(π) = cost(π∗).



206 S. Dimitrov

5 A Conjecture on Two Pop Shuffle Queues

In this subsection, we conjecture and investigate a possible connection between
the pop shuffle queues for two of the most popular shuffling methods, namely
the In-shuffle and the Monge shuffling methods.

When using the In-shuffle method, the deck is divided into two halves and
the cards in them are interleaved perfectly, i.e., the first card is coming from one
of the halves, the second from the other half and so on. The original top card
becomes second from top. Some of the mathematical properties of the In-shuffles
are discussed in [4]. The permutation family of the In-shuffle method is:

for all n ≥ 2 : Πn
In-sh =

{
{(k + 1)1(k + 2)2 · · · (2k)k}, if n = 2k, and
{(k + 1)1(k + 2)2 · · · (2k)k(2k + 1)}, if n = 2k + 1.

The Monge shuffle is carried out by successively putting cards over and under.
The top card is taken into the other hand, the next is placed above, the third
below these two cards and so on. The permutation family of the Monge shuffling
method is:

for all n ≥ 2 : Πn
Monge = {· · · 642135 · · · }.

We make the following conjecture.

Conjecture 1. For every n ≥ 1,

pn(Qpop
In-sh) = pn(Qpop

Monge).

First, we prove that Conjecture 1 holds, if one has to use a single pop oper-
ation. Let p1

n(Qpop
Σ ) be the number of permutations of size n sortable by Q

pop
Σ

using only one pop operation.

Theorem 8. For every n ≥ 3,

p1
n(Qpop

In-sh) = p1
n(Qpop

Monge) = an−2,

where a1 = 2, a2 = 4 and an = 3an−2, for n ≥ 3 (sequence A068911 in [10]).

We also give recurrence relations for the number of permutations in Sn(Qpop
Monge)

that end with n and that do not end with n. Similar inequalities were established
for these two subsets of Sn(Qpop

In-sh). By using Theorem 8 and these recurrence
relations and inequalities, we obtain an important necessary condition for Con-
jecture 1 to hold. These facts also allowed us to check with a computer that the
conjecture holds for n < 20.
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Abstract. In this work, we study the notion of circular coloring of
signed graphs which is a refinement of 0-free 2k-coloring of signed graphs.
The main question is that given a positive integer �, what is the small-
est even value f(�) such that for every signed bipartite (simple) planar
graph (G, σ) of negative-girth at least f(�), we have χc(G, σ) ≤ 2�

�−1
. We

answer this question when � is small: f(2) = 4, f(3) = 6 and f(4) = 8.
The results fit into the framework of the bipartite analogue of the Jaeger-
Zhang conjecture.

Keywords: Circular coloring · Homomorphism · Signed bipartite
graphs

1 Introduction

The theory of graph homomorphism is a natural generalization of the notion
of proper coloring of graphs. It’s well-known that the C2k+1-coloring problem
captures the (2k + 1)-coloring problem via a basic graph operation: Given a
graph G, let G′ be the graph obtained from G by subdividing each edge into a
path of length 2k−1. Then G′ admits a homomorphism to C2k+1 if and only if G is
properly (2k+1)-colorable (see [6]). Moreover, a graph admits a homomorphism
to C2k+1 if and only if its circular chromatic number is at most 2k+1

k .
A famous question relevant to the C2k+1-coloring of planar graphs is the

Jaeger-Zhang conjecture (introduced in [17] and studied in [1,5,8,16] among
others):

Conjecture 1. Every planar graph G of odd-girth at least 4k +1 admits a homo-
morphism to C2k+1, or equivalently, χc(G) ≤ 2k+1

k .

Using the notion of circular coloring of signed graphs, we explore the theory
for (negative) even cycles. A signed graph (G, σ) is a graph G (allowing loops
and multi-edges) together with an assignment σ : E(G) → {+,−}. The sign of a
closed walk is the product of signs of all its edges (allowing repetition). Given a
signed graph (G, σ) and a vertex v of (G, σ), a switching at v is to switch the signs
of all the edges incident to v. We say a signed graph (G, σ′) is switching equivalent
to (G, σ) if it is obtained from (G, σ) by a series of switchings at vertices. It’s
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 208–213, 2021.
https://doi.org/10.1007/978-3-030-83823-2_33
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proven in [15] that two signed graphs (G, σ1) and (G, σ2) are switching equivalent
if and only if they have the same set of negative cycles.

A (switching) homomorphism of a signed graph (G, σ) to (H,π) is a mapping
of V (G) and E(G) to V (H) and E(H) (respectively) such that the adjacencies,
the incidences and the signs of closed walks are preserved. When there exists a
homomorphism of (G, σ) to (H,π), we write (G, σ) → (H,π). A homomorphism
of (G, σ) to (H,π) is said to be edge-sign preserving if it, furthermore, preserves
the signs of the edges. When there exists an edge-sign preserving homomorphism
of (G, σ) to (H,π), we write (G, σ)

s.p.−→ (H,π). The connection between these two
kinds of homomorphism is established as follows: Given two signed graphs (G, σ)
and (H,π), (G, σ) → (H,π) if and only if there exists an equivalent signature σ′

of σ such that (G, σ′)
s.p.−→ (H,π).

Observe that the parity of the lengths and the signs of closed walks are
preserved by a homomorphism. Given a signed graph (G, σ) and an element
ij ∈ Z

2
2, we define gij(G, σ) to be the length of a shortest closed walk whose

number of negative edges modulo 2 is i and whose length modulo 2 is j. When
there exists no such a closed walk, we say gij(G, σ) = ∞. By the definition
of homomorphism of signed graphs, we have the following no-homomorphism
lemma.

Lemma 1 [13]. If (G, σ) → (H,π), then gij(G, σ) ≥ gij(H,π) for each ij ∈ Z
2
2.

1.1 Circular Coloring of Signed Graphs

The notion of circular coloring of signed graphs defined in [14] is a common
extension of circular coloring of graphs and 2k-coloring of signed graphs.

Given a real number r, a circular r-coloring of a signed graph (G, σ) is a
mapping ϕ : V (G) → Cr such that for each positive edge uv of (G, σ), ϕ(u) and
ϕ(v) are at distance at least 1, and for each negative edge uv of (G, σ), ϕ(u) and
the antipodal of ϕ(v) are at distance at least 1. The circular chromatic number
of a signed graph (G, σ) is defined as

χc(G, σ) = inf{r ≥ 1 : (G, σ) admits a circular r-coloring}.

For integers p ≥ 2q > 0 such that p is even, the signed circular clique Ks
p;q

has the vertex set [p] = {0, 1, . . . , p−1}, in which ij is a positive edge if and only
if q ≤ |i − j| ≤ p − q and ij is a negative edge if and only if either |i − j| ≤ p

2 − q

or |i − j| ≥ p
2 + q. Moreover, let K̂s

p;q be the signed subgraph of Ks
p;q induced by

vertices {0, 1, . . . , p
2 − 1}. The following statements are equivalent:

1. (G, σ) has a circular p
q -coloring;

2. (G, σ) admits an edge-sign preserving homomorphism to Ks
p;q;

3. (G, σ) admits a homomorphism to K̂s
p;q.

The next lemma is a straightforward consequence of the transitivity of the
homomorphism relation.

Lemma 2. If (G, σ) → (H,π), then χc(G, σ) ≤ χc(H,π).
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1.2 Homomorphism of Signed Bipartite Graphs

Given a signed graph (G, σ), we define Tl(G, σ) to be the signed graph obtained
from (G, σ) by replacing each edge with a path of length l with the sign −σ(uv).
For a non-zero integer �, we denote by C� the cycle of length |�| whose sign
agrees with the sign of �. The negative-girth of a signed graph is defined to
be the shortest length of a negative closed walk of it. In the following lemma,
the k-coloring problem of graphs is captured by C−k-coloring problem of signed
graphs.

Lemma 3 [10]. A graph G is k-colorable if and only if Tk−2(G,+) is C−k-
colorable.

In particular, the 2k-coloring problem of graphs is captured by the C−2k-
coloring problem of signed bipartite graphs. Thus we could restate the Four-
Color Theorem as follows:

Theorem 1. For any planar graph G, the signed bipartite planar graph T2(G,+)
admits a homomorphism to C−4.

Moreover, the problem of mapping signed bipartite graphs to negative even
cycles is equivalent to the question of bounding the circular chromatic number
of signed bipartite graphs.

Proposition 1. A signed bipartite graph (G, σ) admits a homomorphism to C−2k

if and only if χc(G, σ) ≤ 4k
2k−1 .

Proof. Observe that the signed graph K̂s
4k;2k−1 is obtained from C−2k by adding

a negative loop at each vertex and χc(C−2k) = 4k
2k−1 . It suffices to prove that

if χc(G, σ) ≤ 4k
2k−1 , then (G, σ) → C−2k. Let {x1, . . . , x4k} be the vertex set

of Ks
4k;2k−1 and let ϕ be an edge-sign preserving homomorphism of (G, σ) to

Ks
4k;2k−1. For the rest of the proof, addition in indices of vertices are considered

mod 4k.
Recall that in Ks

4k;2k−1, each xi is adjacent with positive edges to three
vertices furthest from it, namely xi+2k−1, xi+2k and xi+2k+1, and it is adjacent
with negative edges to three vertices closest to it, namely xi−1, xi and xi+1.
Let K ′s

4k;2k−1 be the signed graph obtained from Ks
4k;2k−1 by removing negative

loops and positive edges xixi+2k for each i. We claim that (G, σ) → K ′s
4k;2k−1.

Let (A,B) be a bipartition of vertices of (G, σ) and let (X,Y ) be the bipartition
of K ′s

4k;2k−1 where X = {x1, x3, . . . , x4k−1} and Y = {x2, x4, . . . , x4k}. For any
u ∈ V (G) with ϕ(u) = xi, we define φ(u) as follows: If either u ∈ A and i is
even or u ∈ B and i is odd, then φ(u) = xi+1; Otherwise, φ(u) = xi. It’s easy
to verify that φ is an edge-sign preserving homomorphism of (G, σ) to K ′s

4k;2k−1.
Since K ′s

4k;2k−1 → C−2k, it completes the proof.

Restricted to signed planar graphs, there is a bipartite analogue question
of Jaeger-Zhang conjecture proposed in [12]: Given an integer k, what is the
smallest value f(k) such that every signed bipartite planar graph of negative-
girth at least f(k) admits a homomorphism to C−2k?
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2 Circular Coloring of Signed Bipartite Planar Graphs

For a class C of signed graphs, we define χc(C) = sup{χc(G, σ) : (G, σ) ∈ C}. In
the sequel, we denote the class of signed bipartite planar graph of negative-girth
at least 2k by SBP2k. For this special class of signed graphs, some bounds have
been already studied. It has been proved in [14] that χc(SBP4) = 4.

2.1 Signed Bipartite Planar Graphs of Negative-Girth at Least 6

In this section, we will show that every signed bipartite planar graph of negative-
girth at least 6 admits a homomorphism to (K3,3,M) in which the negative edges
form a matching. Its connection with circular coloring of signed bipartite planar
graphs is presented in the following lemma.

Lemma 4. A signed bipartite graph (G, σ) admits a homomorphism to
(K3,3,M) if and only if χc(G, σ) ≤ 3.

Proof. As χc(K3,3,M) = 3, it remains to show that if (G, σ)
s.p.−→ Ks

6;2, then
(G, σ) → (K3,3,M). Let ϕ be an edge-sign preserving homomorphism of (G, σ) to
Ks

6;2 and let (A,B) be the bipartition of (G, σ). Let {x1, x2, . . . , x6} be the vertex
set of Ks

6;2. Let K ′s
6;2 be the signed graph obtained from Ks

6;2 by deleting all the
negative loops and positive edges xixi+2 for all the i (the index addition is taken
(mod 6)). First of all, K ′s

6;2 is bipartite and let (X,Y ) be its bipartition where
X = {x1, x3, x5} and Y = {x2, x4, x6}. Secondly, K ′s

6;2 is switching equivalent to
(K3,3,M).

For any vertex u with ϕ(u) = xi, we define φ to be as follows: if u ∈ A and
i is even or u ∈ B and i is odd, then φ(u) = xi; otherwise, we switch at u and
φ(u) = xi+3. It’s easy to verify that φ is a homomorphism of (G, σ) → K ′s

6;2.
Hence (G, σ) → (K3,3,M).

A Signed Projective Cube of dimension k, denoted SPC(k), is a projective
cube PC(k) (the graph with vertex set Z

k
2 where vertices u and v are adjacent

if u − v ∈ {e1, e2, . . . , ed} ∪ {J}) together with an assignment such that all the
edges uv satisfying that u − v = J are negative. The following result is implied
from an edge-coloring result of [4] and a result of [11]:

Theorem 2. If (G, σ) is a signed planar graph satisfying that gij(G, σ) ≥
gij(SPC(5)), then (G, σ) → SPC(5).

As g10(SPC(5)) = 6 and g01(SPC(5)) = g11(SPC(5)) = ∞, it means that
every signed bipartite planar graph of negative-girth at least 6 admits a homo-
morphism to SPC(5).

Theorem 3 [11]. Let (G, σ) be a signed graph. We have that (G, σ) → SPC(k)
if and only if there exists a partition of the edges of G, say E1, E2, . . . , Ek+1,
such that for each i ∈ {1, 2, . . . , k + 1}, the signature σi which assigns − to the
edges in Ei is switching equivalent to σ.
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We are now ready to prove our main theorem:

Theorem 4. Every signed bipartite planar graph of negative-girth at least 6
admits a homomorphism to (K3,3,M). In other words, χc(SBP6) ≤ 3.

Proof. Let (G, σ) be a signed bipartite planar graph of negative-girth at least 6
with a bipartition (A,B). By Theorem 2, (G, σ) → SPC(5). Thus, by Theorem 3,
there exists a partition of the edges of G, say E1, E2, . . . , E6, such that for each
i ∈ [6], there is a signature σi equivalent to σ satisfying that Ei is the set of all
negative edges in (G, σi).

We consider the signed graph (G, σ1) where the set of negative edges is E1.
Contracting all the negative edges in E1, we obtain a signed graph with only
positive edges, denoted by G′. Observe that G′ might contain parallel edges. It
is also easily observed that a cycle C ′ of G′ is odd if and only if it is obtained
from a negative cycle C of (G, σ) by contraction. Since C must contain at least
one edge from each of E2, E3, . . . , E6, C ′ is of length at least 5. In other words,
G′ is a planar graph with no loops and no triangle.

We conclude that G′ is a triangle-free planar graph. Thus, by the Grötzsch
theorem, G′ admits a 3-coloring, say ϕ : V (G′) → {1, 2, 3}. Let (X,Y ) be a
bipartition of (K3,3,M) where X = {x1, x2, x3} and Y = {y1, y2, y3} such that
{x1y1, x2y2, x3y3} is the set of negative edges. We can now define a mapping ψ
of (G, σ1) to (K3,3,M) as follows:

ψ(u) =

{
xi, if u ∈ A and ϕ(u) = i

yi, if u ∈ B and ϕ(u) = i.

It’s easy to verify that ψ is an edge-sign preserving homomorphism of (G, σ1) to
(K3,3,M). It completes the proof.

Examples of signed bipartite graphs of negative-girth 4 which do not map
to (K3,3,M) are given in [9]. So the negative-girth 6 is the best possible girth
condition for signed bipartite graph (G, σ) to satisfy χc(G, σ) ≤ 3.

2.2 Signed Bipartite Planar Graphs of Negative-Girth at Least 8

In this section, we include the result that every signed bipartite planar graph of
negative-girth at least 8 admits a homomorphism to C−4. Generalizing the notion
of H-critical graph defined by Catlin [2], we say a signed graph (G, σ) is (H,π)-
critical if gij(G, σ) ≥ gij(H,π) for ij ∈ Z

2
2, it does not admit a homomorphism

to (H,π) but any proper subgraph of it does. The girth condition implies, in
particular, that every C−4-critical signed graph is bipartite.

Theorem 5 [10]. If (G, σ) is a C−4-critical signed graph, then |E(G)| ≥
4|V (G)|−1

3 .

Corollary 1 [10]. Every signed bipartite planar graph of negative-girth at least
8 maps to C−4.
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Here the negative-girth condition 8 is the best possible because there exists a
signed bipartite planar graph of negative-girth 6 which does not admit a homo-
morphism to C−4 as shown in [10]. Furthermore, considering the signed bipar-
tite planar graphs Γn introduced in [14], we have lim

n→∞ T2(Γn) = 8
3 . Therefore,

χc(SBP8) = 8
3 .
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5. Dvořák, Z., Postle, L.: Density of 5/2-critical graphs. Combinatorica 37(5), 863–
886 (2016). https://doi.org/10.1007/s00493-016-3356-3
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to signed projective cubes. In: Nešetřil, J., Pellegrini, M. (eds.) The Seventh Euro-
pean Conference on Combinatorics, Graph Theory and Applications. CS, vol. 16,
pp. 271–276. Scuola Normale Superiore, Pisa (2013). https://doi.org/10.1007/978-
88-7642-475-5 44
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Abstract. The range-relaxed graceful game is a maker-breaker game
played in a simple graph G where two players, Alice and Bob, alternately
assign an unused label f(v) ∈ {0, . . . , k}, k ≥ |E(G)|, to an unlabeled
vertex v ∈ V (G). If both ends of an edge vw ∈ E(G) are already labeled,
then the label of the edge is defined as |f(v)−f(w)|. Alice’s goal is to end
up with a vertex labelling of G where all edges of G have distinct labels,
and Bob’s goal is to prevent this from happening. When it is required that
k = |E(G)|, the game is called graceful game. The range-relaxed graceful
game and the graceful game were proposed by Tuza in 2017. The author
also posed a question about the least number of consecutive non-negative
integer labels necessary for Alice to win the game on an arbitrary simple
graph G and also asked if Alice can win the range-relaxed graceful game
on G with the set of labels {0, ..., k+1} once it is known that she can win
with the set {0, ..., k}. In this work, we investigate the graceful game in
Cartesian and corona products of graphs, and determine that Bob has a
winning strategy in all investigated families independently of who starts
the game. Additionally, we partially answer Tuza’s questions presenting
the first results in the range-relaxed graceful game and proving that Alice
wins on any simple graph G with order n, size m and maximum degree Δ,
for any set of labels {0, . . . , k} with k ≥ (n− 1)+2Δ (m − Δ)+ Δ(Δ−1)

2
.

Keywords: Graceful labeling · Graph labeling game · Maker-breaker
game

1 Introduction

In the last decades, many optimization problems have been proposed where it
is required to label the vertices or the edges of a given graph with numbers.
Most of these problems [7–10] emerged naturally from modeling of optimization
problems on networks and one of the oldest and most investigated is the problem
of determining the gracefulness of a graph, proposed by Golomb [7] in 1972.
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Formally, given a simple graph G = (V (G), E(G)), where |V (G)| = n and
|E(G)| = m and a set L ⊂ Z, a labeling of G is a vertex labeling f : V (G) → L
that induces an edge labeling g : E(G) → Z in the following way: g(uv) is a func-
tion of f(u) and f(v), for all uv ∈ E(G), and g respects some specified restric-
tions. Given the set of consecutive integer labels L = {0, . . . , k}, k ≥ |E(G)|, a
labeling f : V (G) → L is graceful if: (i) k = |E(G)|; (ii) f is injective; and (iii) if
each edge uv ∈ E(G) is assigned the (induced) label g(uv) = |f(u) − f(v)|, then
all induced edge labels are distinct. When condition (i) in the above definition
is relaxed so as to allow k ≥ |E(G)|, f is said to be a range-relaxed graceful
labeling (RRG labeling). The least k needed for G to have a labeling f satisfying
conditions (ii) and (iii) in the above definition is called the gracefulness of G and
is denoted by grac(G). Figure 1 exhibits a graceful labeling of complete graph
K4 and a range-relaxed graceful labeling of cycle C5.
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Fig. 1. A graceful labeling of K4 and an RRG labeling of C5.

According to Golomb [7], range-relaxed graceful labelings arise in the follow-
ing practical context: thinking of a graph G as a communication network with n
terminals and m interconnections between terminals, we wish to assign a distinct
non-negative integer to each terminal so that each interconnection is uniquely
identified by the absolute value of the difference between the numbers assigned to
its two end terminals. The objective is to minimize the largest number assigned
to any terminal.

Graceful labelings were introduced by Rosa [14] in 1966 and were so named
by Golomb [7], who also introduced the range-relaxed graceful variation later
investigated by other authors [1,2,15]. Although it is known that the parameter
grac(G) is defined for every simple graph G [7], grac(G) is not yet determined
even for classic families of graphs such as complete graphs [13].

Graph labeling is an area of graph theory whose main concern consists in
determining the feasibility of assigning labels to vertices or edges of a graph sat-
isfying certain conditions. From the literature of graph labeling [6], it is notorious
that labeling problems are usually studied from the perspective of determining
whether a given graph has a required labeling. An alternative perspective is to
analyze labeling problems from the point of view of combinatorial games. In
most combinatorial games, two players—traditionally called Alice and Bob—
alternately select and label vertices or edges (typically one vertex or edge in
each step) in a graph G which is completely known for both players. One of the
first graph combinatorial games is the coloring game [17] conceived by Brams,
firstly published in 1981 by Gardner.
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In 2017, Tuza [16] surveyed the area of labeling games and proposed new
labeling games such as the edge-sum distinguishing and the edge-difference dis-
tinguishing game (range-relaxed graceful game). The author also posed the fol-
lowing questions regarding the range-relaxed graceful (RRG) game:

Question 1. Given a simple graph G and a set of consecutive non-negative inte-
ger labels L = {0, . . . , k}, for which values of k can Alice win the range-relaxed
graceful game?

Question 2. If Alice can win the range-relaxed graceful game on a graph G with
the set of labels L = {0, . . . , k}, can she also win with L = {0, . . . , k + 1}?

The graceful game was later studied by Frickes et al. [4], who investigated
winning strategies (sequence of moves that leads to the victory one of the players)
for Alice and Bob in some classic families of graphs such as paths, complete
graphs, cycles, complete bipartite graphs, caterpillars, trees, gear graphs, helms,
web graphs, prisms, hypercubes, and 2-powers of paths.

In this work, we examine the graceful game and study winning strategies for
Alice and Bob in classes of corona products such as the corona product of cycles
and complete graphs, Cr � Kq, and the corona product of a connected graph G
with at least two vertices and an empty graph Ip with p ≥ 1 vertices, G�Ip. We
also study winning strategies for Alice and Bob in products of graphs, such as
grids (Pr�Pq), generalized book graphs (Pq�Sr), stacked prisms (Pq�Cr), the
Cartesian product of paths and complete graphs, and toroidal grids (Cr�Cq).
We also investigate the classes of crown graphs (the bipartite graph with vertex
set X ∪ Y , where X = {x0, . . . , xn−1} and Y = {y0, . . . , yn−1}, and edge set
{xiyj : 0 ≤ i, j ≤ n − 1, i 	= j}), and circular snake graphs (a connected simple
graph with k ≥ 2 blocks whose block-cutpoint graph is a path and each of the
k blocks is isomorphic to a cycle on s vertices). These results show structural
properties, implied by the graceful labeling constraints, that aim to contribute to
the study of the graceful labeling of graphs in which the gracefulness was not yet
determined. Moreover, we present the first results concerning the range-relaxed
graceful game and show an upper bound on the number of consecutive non-
negative integer labels necessary for Alice to win the game on an arbitrary simple
graph, which gives a partial answer to Questions 1 and 2 posed by Tuza [16]. The
paper is organized as follows: Sect. 2 presents auxiliary results and definitions;
Sects. 3 and 4 show our results on the graceful game and range-relaxed graceful
game, respectively. Finally, we summarize our results in Sect. 5.

2 Basic Notation and Auxiliary Lemmas

Next, we present definitions and results used throughout the text. All graphs
considered in this paper are finite, undirected, and simple. Let G = (V (G), E(G))
be a graph. Two vertices u, v ∈ V (G) are adjacent if uv ∈ E(G); in such a case,
edge e = uv and vertices u and v are called incident, and vertices u and v are also
called neighbors. The set of neighbors of a vertex v ∈ V (G) is usually denoted
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by N(v), this is called the open neighborhood of v. The closed neighborhood of
v is defined as N [v] = {v} ∪ N(v). The degree of a vertex v ∈ V (G) is the
number of edges incident to v and is denoted by dG(v). The maximum degree of
G is the number Δ(G) = max{dG(v) : v ∈ V (G)}. The distance d(u, v) between
u, v ∈ V (G) is the number of edges in a shortest path connecting u and v.

The Cartesian product G1�G2 of two graphs G1 and G2 is the simple graph
with V (G1�G2) = V (G1)×V (G2) such that (u1, v1)(u2, v2) ∈ E(G1�G2) if and
only if either (i) u1u2 ∈ E(G1) and v1 = v2, or (ii) v1v2 ∈ E(G2) and u1 = u2.
Another product of graphs is the corona product of two graphs [5]. Formally,
given a graph G with p vertices and a graph H, the corona product of G and H,
G � H, is the graph obtained from G and p copies of H by joining each vertex
of G to every vertex of its respective copy of H.

In 2017, Tuza [16] proposed the following maker-breaker game inspired on
RRG labelings: given a graph G, two players, Alice and Bob, alternately assign
an unused label f(v) ∈ L = {0, . . . , k}, k ∈ N, to an unlabeled vertex v ∈ V (G).
If both ends of an edge vw ∈ E(G) are already labeled, then the (induced) label
of the edge is defined as g(vw) = |f(v)−f(w)|. We call a vertex of G unlabeled if
no label has been assigned to it. We say that a label assignment (move) is legal if,
after it, all edge labels are distinct. Only legal moves are allowed during the game
and both players play optimally. The game ends if there is no legal move possible
or an RRG labeling is created. Note that after any move, the next player can only
label unlabeled vertices. Alice wins if an RRG labeling of G is created, otherwise
Bob wins. Tuza [16] called such a game edge-difference distinguishing. However,
we call it a range-relaxed graceful game in order to match with the range-relaxed
graceful labeling nomenclature previously established in the literature [1,2,15].
Note that, for the case where k = |E(G)|, Alice’s goal is to end up with a graceful
labeling of G and the game is called graceful game. We observe that not every
graph is graceful and thus, for non-graceful graphs, we establish that Bob is the
winner of the graceful game.

We present below an auxiliary result on the graceful game established by
Frickes et al. [4] and used in our proofs.

Lemma 1 (Frickes et al. [4]). Let G be a simple graph with m edges. In any
step of the graceful game, Alice can only assign the label 0 (resp. m) to a vertex
v ∈ V (G) if v is adjacent to every remaining vertex not yet labeled or v is
adjacent to a vertex already labeled by Bob with m (resp. 0).

Next, we present new structural lemmas on the graceful game that are used
in our proofs.

Lemma 2. If a graph G has two vertices u and v of degree 1 such that d(u, v) ≥
4, then Bob wins the graceful game on G no matter who starts.

Lemma 3. Let G be a simple graph and w ∈ V (G) be the center of an induced
star subgraph, i.e., G[N [w]] ∼= K1,y, 2 ≤ y ≤ Δ(G). Consider that Alice and
Bob start playing the graceful game on G and that, after the third step of the
game, u, v, w ∈ N [w] are the only labeled vertices, such that: Alice assigns label
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� ∈ {1, . . . , m − 1} to v on the first move and assigns m to u on the third move;
and Bob assigns 0 to w on the second move. If there exists a vertex u′, with
u′ 	∈ N(w), such that d(u′, u) ≥ 2, then Bob wins the graceful game.

Lemma 4. Let G be a simple graph with m edges and n ≥ 9 vertices. Let
w ∈ V (G) be a vertex with N(w) = {u, u′, z, z′} such that: u and u′ are adjacent
and N(w) − {u} and N(w) − {u′} are independent sets. Let v ∈ V (G) such that
d(v, w) ≥ 3 and x ∈ N(w) such that x ∈ {u, z}. Consider that Alice and Bob
start playing the graceful game on G and that, after the third move, v, w and x
are the only labeled vertices, such that: Alice assigned label � ∈ {1, . . . , m− 1} to
v on the first move and assigned m to x on the third move; and Bob assigned 0
to w on the second move. If there exists a vertex y in G such that d(y, w) ≥ 3,
y 	= v and y not adjacent to v, then Bob wins the game.

3 Graceful Game on Graph Products

A grid, Pr�Pq, is a simple graph obtained from the Cartesian product of two
paths Pr and Pq, with r, q ∈ N and r, q ≥ 2. Jungreis and Reid [11] proved that
grid graphs are graceful. Theorem 1 characterizes the graceful game for all grids.

Theorem 1. Bob has a winning strategy for the graceful game on every grid
Pr�Pq, for r, q ≥ 2.

The generalized book, Bq,r, is the graph obtained from the Cartesian product
Pq�Sr of a path Pq and a star Sr, where q is the number of vertices of the path
and r is the number of edges of the star.

In 1980, Maheo [12] proved that generalized book graphs of the form B2,2k are
graceful, and Delorme [3] proved that B2,4k+1 are also graceful. Generalized book
graphs B2,4k+3 are not graceful since they do not satisfy Rosa’s parity condition
for Eulerian graphs [14], which says that, if an Eulerian graph G with m edges
is graceful, then m ≡ 0, 3 (mod 4). Corollary 1 characterizes the graceful game
for all generalized book graphs and its proof follows from Theorem 1 since, for
1 ≤ r ≤ 2, G is a grid and, for r ≥ 3, each page of the book (that is, each of its
r induced subgraphs isomorphic to Pq�S1) is a grid.

Corollary 1. Bob has a winning strategy for the graceful game on all generalized
books Pq�Sr, for q ≥ 2 and r ≥ 1.

Besides grid graphs and generalized books, we also characterized the graceful
game for other families of graphs.

Theorem 2. Bob has a winning strategy for: (1) the Cartesian products: stacked
prisms, toroidal grids and cartesian product of paths and complete graphs; (2)
the corona products: Cr � Kq, with r ≥ 4 and q ≥ 1, and the product G � Ip for
G a connected graph with at least two vertices and Ip an empty graph with p ≥ 1
vertices; and (3) for crowns and k-Cn snake graphs.
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4 Results on the Range-Relaxed Graceful Game

Given a simple graph G, its game graceful number, denoted by gracg(G), is
the minimum non-negative integer k such that Alice has a winning strategy
playing the range-relaxed graceful game on G with a set of labels L = {0, . . . , k}.
Theorem 3 partially answers Question 1 posed by Tuza [16] presenting an upper
bound for the value of k, for any simple graph G.

Theorem 3. If G is a simple connected graph on n vertices, m edges and max-
imum degree Δ, then gracg(G) ≤ (n − 1) + 2Δ(m − Δ) + Δ(Δ−1)

2 .

The idea of the proof of Theorem 3 is that, at the beginning of the game,
every vertex v ∈ V (G) has a list of available labels L(v) = {0, . . . , k}. After each
round, the sets L(v) of unlabeled vertices v ∈ V (G) are updated so that, in the
last move, we guarantee that there exists at least one available label in the set
L(v) that can be assigned for the last vertex v in order to obtain a range relaxed
graceful labeling of the graph. From the proof of Theorem 3, it is also possible
to obtain the following result.

Corollary 2. Let G be a simple connected graph on n vertices, m edges and
maximum degree Δ. If Alice can win the range-relaxed graceful game on G with
the set of labels L = {0, . . . , k}, then she also wins with L′ = {0, . . . , k + 1} for
any integer k ≥ (n − 1) + 2Δ(m − Δ) + Δ(Δ−1)

2 .

5 Concluding Remarks

In this work, we show that Bob has a winning strategy for the graceful game on
several families defined by Cartesian and corona products of graphs. We observe
that there exist cases where Alice has a winning strategy for graphs G1 and G2,
but she loses on the product of G1 and G2. For example, Alice wins the graceful
game on C3 and K1 [4], but she loses on the product C3 �K1. Another example
is Pq�Kp, where Alice wins on P2 and K3 [4], but she loses on P2�K3. We
also study the RRG game and present the first upper bound for the parameter
gracg(G) for an arbitrary connected simple graph G.
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Abstract. In this paper we study the modularity of the so called
Johnson graphs, also known as G(n, r, s) graphs. We obtain significant
improvements for this value in case s and r ≥ cs2 are fixed and n tends to
infinity. We also obtain results on the modularity of random subgraphs
of G(n, r, s) in Erdős–Rényi model.
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1 Introduction

In this paper we obtain new bounds on the modularity, a characteristic of graphs
that shows if the vertices of the graph can be partitioned into dense clusters with
connection between the clusters being quite week. This characteristic was first
introduced by Newman and Girvan in [23]. Since that time a lot of clustering
algorithms relying on this value were designed (see [1,4,6,7,12–14,18,19,21,22,
24,25]).

This paper considers the family of graphs known as G(n, r, s) graphs, or
Johnson graphs. These graphs play a huge role in Ramsey theory (see [5,20,28,
29,33,36]), combinatorial geometry (see [2,3,5,15,16,26,27,30–35]) and coding
theory (see [20]). We will also consider random subgraphs of Johnson graphs in
Erdős–Rényi model and provide some results for them.

Let us now give rigorous definitions of the objects we study.

Definition 1. Let A = {A1, A2, ..., Ak} be a partition of the vertices of a graph

G. The edge contribution is then defined as
k∑

i=1

e(Ak)
e(G) , where e(A) = |{(v1, v2) ∈

E(G)|v1, v2 ∈ A}|.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Definition 2. Let A = {A1, A2, ..., Ak} be a partition of the vertices of a graph
G. The value

k∑

i=1

(
∑

v∈Ak
deg(v))2

4e2(G)

is called the degree tax.

Remark 1. Note that for d-regular graphs the degree tax can be rewritten as

k∑

i=1

(|Ak|d)2

(d|G|)2 =
k∑

i=1

|Ak|2
|G|2 .

Definition 3. Let A = {A1, A2, ..., Ak} be a partition of the vertices of a graph
G. The modularity of partition A is defined as the difference between the edge
contribution and the degree tax of this partition:

q(A) =
∑

A∈A

e(A)
e(G)

−
∑

A∈A

(
∑

v∈A deg(v))2

4e2(G)
.

Definition 4. The modularity of graph G is defined as a maximum of modular-
ities over all partitions of the vertices of G:

q∗(G) = max
A

{q(A)}.

Let us also define the family of Johnson graphs.

Definition 5. Let 0 ≤ s < r < n be integers. The G(n, r, s) graph is a graph
with set of vertices being equal to

(
[n]
r

)
and vertices u and v joined by an edge if

and only if |u ∩ v| = s.

Remark 2. It is easy to see that G(n, r, s) is a
(
r
s

)(
n−r
r−s

)
-regular graph with

(
n
r

)

vertices and 1
2

(
r
s

)(
n−r
r−s

)(
n
r

)
edges.

Finally we define random subgraphs of Johnson graphs in the following way.

Definition 6. Let 0 ≤ s < r < n. Gp(n, r, s) is a random element such that
for any graph H that is a spanning subgraph of G(n, r, s) the following equality
holds.

P(Gp(n, r, s) = H) = pe(H)(1 − p)e(G(n,r,s))−e(H).

Modularity of Johnson graphs was studied in [9–11,17]. The following theo-
rems were proved.
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Theorem 1 ([10]). Let r ≥ 2 and 1 ≤ s ≤ [
r
2

]
. Then

lim sup
n→∞

q∗(G(n, r, s)) ≤ 1 −
([ r

2 ]
s

)

2
(
r
s

) .

Theorem 2 ([9]).

q∗(G(n, 2, 1)) =
1
3

+
2w(w − 1)(w − 2)
3n(n − 1)(n − 2)

− w2(w − 1)2

n2(n − 1)2

− 4n − 2
3n(n − 1)

+
w(w − 1)(4w − 2)

3n2(n − 1)2
(1)

for all n ≥ 5, where w = �n
2 � + 1. Its limit with n → ∞ is 17

48 .

Theorem 3 ([17]). Let r > s ≥ 1. Then

lim inf
n→∞ q∗(G(n, r, s)) ≥ s

2r − s

(

1 +
(

r − s

r

) 2r
s

)

.

We have improved the result of Theorem 1 significantly.

Theorem 4. Let ε ∈ (0, 1), s ≥ 1, r ≥ − 1
ln(1−ε)s

2 + 2s − 1. Then

lim sup
n→∞

q∗(G(n, r, s)) ≤ f(ε),

where f(ε) = max
x∈[0,1]

(
1+x−x2

2−x − max
(

x2−εx
1−ε , 0

))
.

The graph below shows how f(ε) behaves.
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We also provide a table with numerical values of f(ε) and bounds on r.

ε r ≥ f(ε)

0.01 99.4992s2 + 2s − 1 0.6246

0.1 9.4912s2 + 2s − 1 0.6469

0.2 4.4814s2 + 2s − 1 0.6783

0.3 2.8037s2 + 2s − 1 0.7195

0.4 1.9576s2 + 2s − 1 0.7750

0.5 1.4427s2 + 2s − 1 0.8333

0.6 1.0914s2 + 2s − 1 0.8857

0.7 0.8306s2 + 2s − 1 0.9308

0.8 0.6213s2 + 2s − 1 0.9667

0.9 0.4343s2 + 2s − 1 0.9909

0.99 0.2171s2 + 2s − 1 0.9999

We will finally mention one particular case to show that the new bounds
are way better than the previous ones. Consider the graphs G(n, r2, r) for big
enough r and n → ∞. In this case the upper bound on the modularity from
Theorem 4 will be approximately 0.9011. At the same time the upper bound

from Theorem 1 is only 1 − ([r2/2]
r )

2(r2
r )

> 1 − 2−r−1.

The main difficulty in the proof of Theorem4 is to bound e(U) in terms of
|U |. The bound we provide is given in the following theorem.

Theorem 5. Let

α, β ∈ (0, 1), α < β2, s ≥ 1, r ≥ − 1

ln
(

1−β
1− α

β

)s2 + 2s − 1,

and also U ⊆ VG, |U | < α
(
n
r

)
. Then e(U) ≤ 1+β−β2

2(2−β)

(
r
s

)(
n−s
r−s

)|U |.
It is also worth mentioning that the result of Theorem5 is not asymptotic

and thus it can be used to obtain bounds on the modularity of G(n, r, s) for fixed
n as well.

The idea of the proof of Theorem5 is to divide the edges between the vertices
in |U | into sets depending on the intersection of vertices these edges connect. We
then prove that most of these sets are small and arrive to the bound mentioned
above.

We also succeeded in proving the probabilistic version of Theorems 3 and 4.

Theorem 6. Let r ≥ 2s, p = p(n) = ω
(
n− r−s−1

2

)
. Then

lim sup
n−>∞

q∗(Gp(n, r, s)) ≤ 1 −
(
[ r
2 ]
s

)

2
(
r
s

) a.s.
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Theorem 7. Suppose r, s, (r, s) �= (2, 1) suite the conditions of Theorem5,
p = p(n) = ω

(
n− r−s−1

2

)
. Then

lim sup
n→∞

q∗(Gp(n, r, s)) ≤ f(ε) a.s.,

where f(ε) = max
x∈[0,1]

(
1+x−x2

2−x − max
(

x2−εx
1−ε , 0

))
.

One can notice that an extra requirement (r, s) �= (2, 1) appeared in Theo-
rem 7 in comparison to those of Theorem 4. This requirement is not so restricting
though, as Theorem6 provides a better bound anyway.

Probabilistic version of Theorem 1 is proved as well, though some extra
assumptions have to be made.

Theorem 8. Let r ≥ max(2s, s + 2), s ≥ 1, p = p(n) = ω
(
n− r−s−1

2

)
, Then

lim inf
n→∞ q∗(Gp(n, r, s)) ≥ s

2r − s

(

1 +
(

r − s

r

) 2r
s

)

a.s.

The proof of all three theorems is similar. The main tool here is the Hoeffding
inequality (see [8]).

Lemma 1 (Hoeffding). Let X1, . . . , Xn be independent random variables.
Assume that for any i there exists a pair of numbers ai, bi, such that P(Xi ∈
[ai, bi]) = 1. Then for Sn = X1 + . . . + Xn the following inequality holds.

P(|Sn − ESn| ≥ εn) < 2 exp

⎛

⎜
⎜
⎝− 2ε2n2

n∑

i=1

(bi − ai)2

⎞

⎟
⎟
⎠ .

Using this theorem we one can prove that both e(U) and
∑

v∈U deg(v) are
very unlikely to deviate from their average even for one big enough U . The only
thing remaining is to handle small parts of the partition, which is not too hard.
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Carme Àlvarez and Arnau Messegué(B)
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Abstract. A connected and undirected graph G of size n ≥ 1 is said to
be a sum basic equilibrium iff for every edge uv from G and any node v′

from G, when performing the swap of the edge uv for the edge uv′ the
sum of the distances from u to all the other nodes is not strictly reduced.
This concept comes from the so called Network Creation Games, a wide
subject inside Algorithmic Game Theory that tries to better understand
how Internet-like networks behave. It has been shown that the diameter
of sum basic equilibria is 2O(

√
log n) in general and at most 2 for trees. In

this paper we see that the upper bound of 2 not only holds for trees but
for bipartite graphs, too. Specifically, we show that the only bipartite
sum basic equilibrium networks are the complete bipartite graphs Kr,s

with r, s ≥ 1.

Keywords: Network creation game · Sum basic · Diameter · Nash
equilibrium

1 Introduction

Definition of the model and context. In the sum basic network creation
game, introduced by Alon et al. in 2010 [2], it is assumed that n ≥ 1 players are
the nodes of an undirected graph of size n. If G is connected and for every edge
uv and every node v′, player u does not strictly reduce the sum of distances to
all the other nodes by performing any single swap of the edge uv for the edge
uv′, then such network is said to be a sum basic equilibrium graph.

Given an undirected graph G and a node u from G, a deviation in u is any
swap of an edge uv from G for any other edge uv′ with v′ �= u, v any other node
from G. The deviated graph associated to any such deviation is the resulting
graph obtained after applying the swap. Furthermore, the cost difference asso-
ciated to any deviation in u is just the difference between the sum of distances
from u to all the other nodes in the original graph minus the sum of the distances
from u to all the other nodes in the deviated graph. Therefore, a connected and
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undirected graph G is a sum basic equilibrium iff for every node u in G the cost
difference associated to every possible deviation in u is non-negative.

This network creation game is inspired by the sum classical network creation
game introduced by Fabrikant et al. in 2003 [4] which is a relatively simple yet
tractable model to better understand Internet-like networks. The main contri-
butions of the several authors investigating the sum classical network creation
game consist in showing improved bounds for the price of anarchy for this model,
a measure that quantifies the loss of efficiency of the system due to the selfish
behaviour of its agents. It turns to be that the price of anarchy in the sum clas-
sical network creation game is related to the diameter of equilibrium networks
in the same model [3]. For this reason, one of the main interests in the sum basic
network creation game is the study of the diameter of equilibrium networks, too.

One of the most important contributions from [2] is an upper bound on
the diameter of any sum basic equilibrium of 2O(

√
log n). However, this bound

can be dramatically reduced if we restrict to the tree topology, in which case
the diameter is shown to be at most 2. Furthermore, in [2] the authors estab-
lish a connection between sum basic equilibria of diameter larger than 2 log n
and distance-uniform graphs. The authors then conjecture that distance-uniform
graphs have logarithmic diameter which would imply, using this connection, that
sum basic equilibria have poly-logarithmic diameter. Unfortunately the conjec-
ture is later refuted in [5]. After some years, in [6], Nikoletseas et al. use the
probability principle to establish structural properties of sum basic equilibria.
As a consequence of some of these properties, in some extremal situations, like
when the maximum degree of equilibrium network is at least n/ logl n with l > 0,
it is shown that the diameter is polylogarithmic.

Our Contribution. In this paper we focus our attention to sum basic equilibria
restricted to bipartite graphs topology. We show that such networks are the
complete bipartite graphs Kr,s with r, s ≥ 1 thus dramatically reducing the
diameter to 2 when restricting to this particular case. Our approach consists
in considering any 2−edge-connected component H of a non-tree sum basic
equilibrium G. In Sect. 2 we consider all the collection of individual swaps uv for
uv′ for each u, v, v′ ∈ V (H) and uv, vv′ ∈ E(H). We show that if diam(H) >
2, then the sum of the cost differences off all these swaps will be < 0, thus
contradicting the fact that G is a sum basic equilibrium. In Sect. 3, we study
further properties of any 2−edge-connected component of any non-tree sum basic
equilibrium that work in general and which allow us to reach the main conclusion.

Notation. In this work we consider mainly undirected graphs G for which we
denote by V (G), E(G) its corresponding sets of vertices and edges, respectively.

Given an undirected graph G and any pair of nodes u, v from G we denote
by dG(u, v) the distance between u, v. In this way, D(u) is the sum of distances
from u to all the other nodes, that is, D(u) =

∑
v �=u dG(u, v) if G is connected or

∞ otherwise. Given a subgraph H from G, noted as H ⊆ G, the i−th distance
layer in H with respect u is denoted as Γi,H(u) = {v ∈ V (H) | dG(u, v) = i}. In
particular, the neighbourhood of u in H, the set of nodes from V (H) at distance
one with respect u, is Γ1,H(u).
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Given an undirected graph G and a property P , we say that H is a maximal
subgraph of G satisfying P when for any other subgraph H ′ of G, if H ′ satisfies
P then H �⊆ H ′. An edge e ∈ E(G) is said to be a bridge if its removal increases
the number of connected components from G. In this way, a 2−edge-connected
component H from G is any maximal connected subgraph of G not containing
any bridge. Moreover, for a given 2-edge-connected component H from G and a
vertex u ∈ V (H), W (u) is the connected component containing u in the subgraph
induced by the vertices (V (G) \ V (H)) ∪ {u}.

Finally, remind that a bipartite graph is any graph for which all cycles, that
is, closed paths, have even length.

2 Local Swap Deviations

Given a non-tree bipartite sum basic equilibrium graph G, let H be any of its
2−edge-connected components. In this section we show that diam(H) = 2.

Given u ∈ V (H) and w ∈ V (G), we define δ−
w (u) the subset of nodes v from

Γ1,H(u) such that dG(w, v) = dG(w, u) − 1 and δ+w (u) the subset of nodes v
from Γ1,H(u) such that dG(w, v) = dG(w, u) + 1. Since G is bipartite, for any
u ∈ V (H) and w ∈ V (G), δ−

w (u) ∪ δ+w (u) = Γ1,H(u).
Moreover, given u ∈ V (H) and w ∈ V (G) such that |δ−

w (u)| = 1, we define
u−

w ∈ δ−
w (u) to be the neighbour of u in H closer from w than u. Recall that, for

any u ∈ V (H) and w ∈ V (G), if |δ−
w (u)| = 1 then clearly δ+w (u) �= ∅ because H

is 2−edge-connected.
Now, let u, v be nodes with u ∈ V (H) and v ∈ Γ1,H(u). We define S(u, v)

to be the sum of the cost differences associated to the swaps of the edge uv by
the edges uv′ with v′ ∈ Γ1,H(v) \ {u} divided over degH(v) − 1. Then we define
S =

∑
u∈V (H)

∑
v∈Γ1,H(u) S(u, v).

Let u, v, w be nodes with u ∈ V (H), v ∈ Γ1,H(u) and w ∈ V (G) and define
Δw(u, v) to be the sum of the distance changes from u to w due to the swaps of
the edge uv by the edges uv′ with v′ ∈ Γ1,H(v) \ {u} divided over degH(v) − 1.
Furthermore, let Δw =

∑
u∈V (H)

∑
v∈Γ1,H(u) Δw(u, v).

In this way we have that S =
∑

w∈V (G) Δw.
Before going to the main result of this section we first find a formula to

compute the value of Δw(u, v) allowing us to obtain an expression for Δw.

Lemma 1. For any nodes u, v ∈ V (H) and w ∈ V (G) such that v ∈ Γ1,H(u):

Δw(u, v) =

⎧
⎪⎨

⎪⎩

−|δ−
w (u−

w)|+|δ+
w(u−

w)|−1
degH(v)−1 If |δ−

w (u)| = 1 and v = u−
w

−|δ−
w (v)|

degH(v)−1 If |δ−
w (u)| > 1 and v ∈ δ−

w (u)
0 otherwise

Proof. If v is further from w than u, then clearly Δw(u, v) = 0. Therefore, since
G is bipartite the remaining case is that v is closer from w than u. We can see
clearly that we need to distinguish the cases |δ−

w (u)| = 1 with v = u−
w and the

case |δ−
w (u)| > 1 with v ∈ δ−

w (u). In the first case the corresponding sum of
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distance changes from u to w could get positive when the set of nodes δ+w (u−
w)

has size at least two. In contrast, in the second case the sum of distance changes
is always no greater than zero because having at least another node distinct than
v in the subset δ−

w (u) guarantees that when making the corresponding deviation
the distance from u to w does not increase.

Now we are ready to show the main result of this section.

Theorem 1. diam(H) ≤ 2.

Proof. First, we claim that for every w ∈ V (G), Δw ≤ 0. Applying Lemma 1:

Δw =
∑

u∈V (H)

∑

v∈Γ1,H(u)

Δw(u, v) =

=

⎛
⎜⎜⎝

∑
{

u∈V (H)∧|δ−
w (u)|=1

}
−|δ−

w (u−
w )| + |δ+w(u−

w )| − 1

degH (u−
w) − 1

+
∑

{
u∈V (H)∧|δ−

w (u)|>1
}

∑

v∈δ
−
w (u)

−|δ−
w (v)|

degH(v) − 1

⎞
⎟⎟⎠ =

=

⎛

⎜
⎝

∑

{u∈V (H)∧|δ−
w (u)|=1}

|δ+w (u−
w)| − 1

degH(u−
w) − 1

+
∑

u∈V (H)

∑

v∈δ−
w (u)

−|δ−
w (v)|

degH(v) − 1

⎞

⎟
⎠

On the one hand:

∑

u∈V (H)

∑

v∈δ
−
w (u)

|δ−
w (v)|

degH (v) − 1
=

∑

v∈V (H)

∑

u∈δ
+
w(v)

|δ−
w (v)|

degH (v) − 1
=

∑

v∈V (H)

|δ−
w (v)||δ+w(v)|

degH(v) − 1

Now, let Zw be the subset of nodes z from V (H) such that δ−
w (z) �= ∅ and

δ+w (z) �= ∅. If z ∈ Zw then clearly |δ−
w (z)||δ+w (z)| ≥ degH(z) − 1. One possible

way to see this is the following. Since H is bipartite, then |δ−
w (z)| and |δ+w (z)|

are positive integers that add up to degH(z). Furthermore, any concave function
defined on a closed interval attains its minimum in one of its extremes. Therefore,
the conclusion follows when combining these two facts to the function f(x) =
x(degH(z) − x) defined in [1, degH(z) − 1]. In this way:

∑

u∈V (H)

∑

v∈δ−
w (u)

|δ−
w (v)|

degH(v) − 1
=

∑

v∈Zw

|δ−
w (v)||δ+w (v)|

degH(v) − 1
≥

∑

v∈Zw

1 = |Zw| (1)

On the other hand for any u such that |δ−
w (u)| = 1:

|δ+w (u−
w)| − 1

degH(u−
w) − 1

≤ 1 (2)

Notice that the equality in (2) holds exactly when δ−
w (u−

w) = ∅. For any
w ∈ V (G) there exists exactly one node tw ∈ V (H) verifying δ−

w (tw) = ∅ which
is the unique node from V (H) such that w ∈ W (tw). Therefore, the equality in
(2) holds exactly for the nodes from Γ1,H(tw).
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In this way:

∑

{u∈V (H)∧|δ−
w (u)|=1}

|δ+w (u−
w)| − 1

degH(u−
w) − 1

≤ |{u ∈ V (H) ∧ |δ−
w (u)| = 1

} | (3)

Notice that since H is bipartite, Γ1,H(tw)⊆{u ∈ V (H) | |δ−
w (u)| = 1}. There-

fore, the equality in (3) holds only when Γ1,H(tw) = {u ∈ V (H) | |δ−
w (u)| = 1},

otherwise, the inequality in (3) is strict.
Now, recall that {u ∈ V (H) ∧ |δ−

w (u)| = 1} ⊆ Zw because H is 2−edge-
connected. Therefore, combining (1) with (3):

Δw ≤ −|Zw| + |{u ∈ V (H) | |δ−
w (u)| = 1

} | ≤ 0

As we wanted to prove.
Now, suppose that diam(H) > 2 and take any path π = x1 − x2 − x3 − ...

of length diam(H) inside H. Then, pick x ∈ W (x1) any node inside W (x1).
Setting w = x we have that x1 = tw and x3 ∈ Zw but x3 �∈ Γ1,H(tw). If
x3 �∈ {u ∈ V (H) | |δ−

w (u)| = 1} then the inclusion {u ∈ V (H) | |δ−
w (u)| = 1} ⊆

Zw is strict and then Δw < 0. Otherwise, x3 ∈ {u ∈ V (H) | |δ−
w (u)| = 1} but

x3 �∈ Γ1,H(tw) so that the inclusion Γ1,H(tw) ⊆ {u ∈ V (H) | |δ−
w (u)| = 1} is strict

and then Δw < 0, too. Therefore, S =
∑

w∈V (G) Δw < 0 and this contradicts
the fact that G is an equilibrium graph.

3 2−Edge-Connectivity in the Sum Basic Equilibria

In this section, we investigate further topological properties of any 2−edge-
connected component H from any sum basic equilibrium G. These properties
help us to derive the main result of this paper.

Lemma 2. If uv ∈ E(G) is a bridge, then deg(u) = 1 or deg(v) = 1.

Proof. Let u1u2 ∈ E(G) be a bridge between two connected components G1, G2

in such a way that u1 ∈ V (G1) and u2 ∈ V (G2). Furthermore, assume wlog
that |V (G1)| ≤ |V (G2)|. If we suppose the contrary, then we can find a node
v ∈ V (G1) such that vu1 ∈ E(G1). Then, let ΔC be the cost difference associated
to the deviation in v that consists in swapping the edge vu1 for the edge vu2.
Clearly, we are getting one unit closer to every node from V (G2) and getting
one unit distance further from at most all nodes in V (G1) except for the node v
itself. Therefore, using the assumption |V (G1)| ≤ |V (G2)|, we deduce:

ΔC ≤ |V (G1)| − 1 − |V (G2)| ≤ −1 < 0

Lemma 3. If H is any 2−edge-connected component of G then there exists at
most one node u ∈ V (H) such that W (u) �= {u}.
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Proof. Suppose the contrary and we reach a contradiction. Let u1, u2 be two
distinct nodes such that W (u1) �= {u1} and W (u2) �= {u2}. Let v1 �= u1 and
v2 �= u2 be two nodes from W (u1) and W (u2) respectively. By Lemma 2, W (u1)
and W (u2) are stars. Assume wlog that D(u1) ≤ D(u2). When swapping the link
v2u2 for the link v2u1 we can reach the nodes from V (G) \ {v1} at the distances
seen by v1 and, also, we are reducing in at least one unit distance the distance
from v2 to v1. Therefore, if ΔC is the cost difference associated to such swap,
then: ΔC ≤ D(u1) − D(u2) − 1 < 0.

Therefore, combining these two lemmas with Theorem 1, we deduce that
every non-tree bipartite sum basic equilibrium is the complete bipartite Kr,s

with some star Sk (the star with a central node and k edges) attached to exactly
one of the nodes from Kr,s, let it be x0 ∈ V (Kr,s). Then, if we consider any path
x0 − x1 − x2 in H of length 2, x2 has an incentive to swap the link x2x1 for the
link x2x0 unless k = 0, that is, unless G = Kr,s.

From here we reach the conclusion of this paper:

Corollary 1. The set of bipartite sum basic equilibria is the set of complete
bipartite graphs Kr,s, with r, s ≥ 1 and therefore the diameter of every bipartite
sum basic equilibrium graph is at most 2.

4 Conclusion

Therefore, the diameter of sum basic equilibria is at most 2 not only when we
consider trees, also when we consider bipartite graphs. Furthermore, notice that
the crucial results in this paper have been obtained considering a sum of the
cost differences associated to a family of deviations. This is nothing more than a
disguised application of the probability principle, a technique used also in [6] for
the same model. These results show that maybe this technique can be further
explored in order to reach new insights for this model or for related ones.
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Abstract. Following the footprints of what have been done with the
algorithm Stacksort, we investigate the preimages of the map associated
with a slightly less well known algorithm, called Queuesort. Our results
include a recursive description of the set of all preimages of a given
permutation, a characterization of allowed cardinalities for preimages,
the exact enumeration of permutations having 0, 1 and 2 preimages,
respectively, and, finally, a closed formula for the number of preimages
of those permutations whose left-to-right maxima are concentrated at
the beginning and at the end.

Keywords: Sorting algorithm · Permutation · Queuesort · Preimage ·
Catalan numbers · Ballot numbers · Derangement numbers

1 Introduction

Stacksort is a classical and well-studied algorithm that attempts to sort an
input permutation by (suitably) using a stack. It has been introduced and first
investigated by Knuth [9] and West [13], and it is one of the main responsible
for the great success of the notion of pattern for permutations. Among the many
research topics connected with Stacksort, a very interesting one concerns the
characterization and enumeration of preimages of the associated map, which is
usually denoted with s (so that s(π) is the permutation which is obtained after
performing Stacksort on π). More specifically, given a permutation π, what is
s−1(π)? How many permutations does it contain? These questions have been
investigated first by Bousquet-Melou [2], and more recently by Defant [4] and
Defant, Engen and Miller [7].

In the present paper we address the same kind of problems for a similar
sorting algorithm. Suppose to replace the stack with a queue in Stacksort.
What is obtained is a not so useful algorithm, whose associated map is the
identity (and so, in particular, the only permutations that it sorts are the identity
permutations). However, if we allow one more operation, namely the bypass of
the queue, the resulting algorithm (which we call Queuesort) is much more
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interesting. This is not a new algorithm, and some properties of it can be found
scattered in the literature [1,8,10,12]. However, to the best of our knowledge,
the problem of studying preimages under the map associated with Queuesort
(similarly to what have been done for Stacksort) has never been considered. Our
aim is thus to begin the investigation of this kind of matters, with a particular
emphasis on enumeration questions.

2 A Recursive Characterization of Preimages

Given a permutation π = π1π2 · · · πn, the algorithm Queuesort attempts to sort
π by using a queue in the following way: scan π from left to right and, called πi

the current element,

– if the queue is empty or πi is larger than the last element of the queue, then
πi is inserted to the back of the queue;

– otherwise, compare πi with the first element of the queue, then output the
smaller one.

When all the elements of π have been processed, pour the content of the queue
into the output. In the following, we will denote with q the map associated with
Queuesort.

Our first important tool is an effective description of the behavior of the
algorithm Queuesort directly on the input permutation, which is based on the
notion of left-to-right maximum. An element πi of a permutation π is called
a left-to-right maximum (briefly, LTR maximum) when it is larger than every
element to its left (that is, πi > πj , for all j < i).

Let π be a permutation of length n, and denote with m1,m2, . . . ,mk its
LTR maxima, listed from left to right. Thus, in particular, mk = n. Then q(π)
is obtained from π by moving its LTR maxima to the right according to the
following instructions:

– for i running from k down to 1, repeatedly swap mi with the element on its
right, until such an element is larger than mi.

For instance, if π = 21543, then there are two LTR maxima, namely 2 and 5;
according to the above instructions, π is thus modified along the following steps:
21543 � 21435 � 12435, and so q(21543) = 12435.

Notice that, as an immediate consequence of the above alternative description
of Queuesort, the set of preimages of a permutation π ∈ Sn is nonempty if and
only if the last element of π is n.

The key ingredient to state our recursive characterization of preimages is a
suitable decomposition of permutations, based on the notion of LTR maximum.
Given a permutation π, we decompose it as π = M1P1M2P2 · · · Mk−1Pk−1Mk,
where the Mi’s are all the maximal sequences of contiguous LTR maxima of
π (and the Pi’s collect all the remaining elements). This decomposition will be
called the LTR-max decomposition of π. In particular, all the Pi’s are nonempty,
and Mi is nonempty for all i �= k. Moreover, mi = |Mi| denotes the length of
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Mi, and analogously pi = |Pi| denotes the length of Pi, for all i. Sometimes we
will also need to refer to the last element of Mi, which will be denoted μi. The
sequence Mi with μi removed will be denoted M ′

i . Also, in some cases we will
use N and R in place of M and P , respectively. In order to avoid repeating the
same things several times, the above notations for the LTR-max decomposition
of a permutation will remain fixed throughout all the paper.

The next theorem contains the announced characterization of the set of
preimages under Queuesort of a given permutation. We warn the reader that,
with a little abuse of notation, we will assume that every finite sequence of
distinct integers is a permutation, by simply rescaling its elements, that is by
replacing the i-th smallest element with i, for all i.

Theorem 1. Let π = M1P1 · · · Mk−1Pk−1Mk ∈ Sn, with Mk �= ∅, and suppose
that π is different from the identity permutation. A permutation σ ∈ Sn is a
preimage of π if and only if exactly one of the following holds:

– σ = τμk−1Pk−1M
′
k, where τ ∈ q−1(M1P1 · · · Mk−2Pk−2M

′
k−1n) denotes a

preimage of M1P1 · · · Mk−2Pk−2M
′
k−1n;

– if π′ is defined by removing n from π and σ′ = N1R1 · · · Ns−1Rs−1Ns is a
preimage of π′, then σ is obtained by inserting n in one of the positions to
the right of Ns−1.

To illustrate the above theorem, we now compute all the preimages of the
permutation 23145. The various steps of the recursive procedure are depicted in
the figure below:

3 Enumerative Results

Our first achievement of the present section is an important feature of the
Queuesort algorithm: the number of preimages of a permutation depends only
on the positions of its LTR maxima, and not on their values. We first need one
more definition.

Given π ∈ Sn, denote with LTR(π) the set of the positions of the LTR
maxima of π, i.e. LTR(π) = {i ≤ n |πi is a LTR maximum of π}.

The proof of the next theorem involves rather technical details, but the strat-
egy is reasonably easy to describe and, in our opinion, quite interesting, so we
have included a few words to illustrate it.
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Theorem 2. Let ρ, π ∈ Sn. If LTR(ρ) ⊆ LTR(π), then |q−1(ρ)| ≤ |q−1(π)|.
Proof. (Sketch). Define a map f : q−1(ρ) → q−1(π) as follows. Given τ ∈ q−1(ρ),
suppose that, performing Queuesort on τ , the LTR maxima of τ in positions
i′1 < · · · < i′h are moved to the right to positions i1 < · · · < ih, respectively.
Define f(τ) = σ as the permutation obtained from π by moving the elements in
positions i1, . . . , ih to the left to positions i′1, . . . , i

′
h, respectively. First of all we

need to prove that f is well defined, i.e. that indeed σ ∈ q−1(π). This can be
done by showing that, performing Queuesort on σ, the only elements that are
moved are precisely those in positions i′1 < · · · < i′h and that such elements are
moved precisely to positions i1 < · · · < ih. The fact that f is injective is easy.

Corollary 1. If two permutations π and ρ have their LTR maxima in the same
positions, then they have the same number of preimages.

We now provide some results concerning permutations with a given number
of preimages. It is easy to see that π ∈ Sn has no preimages if and only if its last
element is different from n. Therefore, setting Q

(k)
n = {π ∈ Sn | |q−1(π)| = k} and

q
(k)
n = |Q(k)

n |, we have that Q
(0)
n = {π ∈ Sn |πn �= 0} and q

(0)
n = (n− 1)! · (n− 1).

The next propositions deal with Q
(1)
n and Q

(2)
n .

Proposition 1. For all n, we have Q
(1)
n = {π ∈ Sn |πn = n and π does not

have two adjacent LTR maxima}. As a consequence,

q(1)n = (n − 1)! ·
n−1∑

i=0

(−1)i

i!
,

that is the (n − 1)-th derangement number (sequence A000166 in [11]).

Proposition 2. For all n, we have Q
(2)
n = {π ∈ Sn |πn = n and π does not have

two adjacent LTR maxima except for the first two elements}. As a consequence,
q
(2)
n satisfies the recurrence relation

q
(2)
n+1 = (n − 1)q(2)n + (n − 1)q(2)n−1, n ≥ 3,

q
(2)
0 = q

(2)
1 = q

(2)
3 = 0, q

(2)
2 = 1.

Sequence q
(2)
n starts 0, 0, 1, 0, 2, 6, 32, 190 . . . and is essentially A055596 in [11].

We thus deduce, for n ≥ 2, the closed formula q
(2)
n = (n − 1)! − 2q

(1)
n (recall

that q
(1)
n equals the (n − 1)-th derangement number), as well as the exponential

generating function
∑

n≥0

q(2)n

xn

n!
=

x(2 − x − 2e−x)
1 − x

.

We have thus seen that there exist permutations having 0, 1 or 2 preimages.
We now show (Propositions 3 and 4) that there exist permutations having any
number of preimages, except for 3.
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Proposition 3. Given n ≥ 2, let π = n(n − 1)(n − 2) · · · 21(n + 2)(n + 3)(n +
1)(n + 4) ∈ Sn+4. Then |q−1(π)| = n + 2.

The previous proposition can be easily extended to the case n = 0, since it is
immediate to check that |q−1(2314)| = 2. However, it does not hold when n = 1,
as |q−1(13425)| = 5. The next proposition shows that this is no accident.

Proposition 4. There exists no permutation π such that |q−1(π)| = 3.

To conclude our paper, we find an expression for the number of preimages
of a generic permutation π of the form π = M1P1M2. To this aim, we need to
consider a statistic on 321-avoiding permutations.

For every n, i ≥ 1, define bn,i = |{π ∈ Sn(321) | πi = n}| = |{π ∈ Sn(321) |
πn = i}|.

It can be shown that the bn,i’s are essentially the well-known sequence of
ballot numbers. To be more precise, bn,i equals the term of indices (n − 1, i − 1)
of sequence A009766 in [11].

Theorem 3. Let π = M1P1M2 ∈ Sn, with M2 �= ∅. Then

|q−1(π)| =
m2∑

i=1

i−1∑

j=0

(
i − 1

j

)
bm1+j+1,m1 · bm2+p1−j,m2−i+1. (1)

Another way to express formula (1) comes from expanding the ballot numbers
of the previous corollary in terms of Catalan numbers.

Corollary 2. For π = M1P1M2 ∈ Sn, the quantity |q−1(π)| can be expressed
as a linear combination of Catalan numbers. More precisely, for any fixed m2 =
|M2|, we have that |q−1(π)| is a linear combination of the Catalan numbers
Cm1 , Cm1+1, . . . Cm1+m2−1 with polynomial coefficients in p1, i.e.:

|q−1(π)| =
m2−1∑

t=0

ωm2,t(p1)Cm1+t,

where ωm2,t(p1) is a polynomial in p1 of degree m2 − t − 1, for all t.

Effective enumerative results can be obtained for small values of the parame-
ter m2 in formula (1). In particular, when m2 = 1, 2, 3, we are able to get simple
closed formulas.

Corollary 3. For π = M1P1M2 ∈ Sn, we get:

– |q−1(π)| = Cm1 , when |M2| = 1;
– |q−1(π)| = Cm1+1 + (p1 + 1)Cm1 , when |M2| = 2;
– |q−1(π)| = Cm1+2 + (p1 + 1)Cm1+1 + 1

2 (p1 + 1)(p1 + 4)Cm1 , when |M2| = 3.

The above corollary, together with some further calculations, seems to suggest
that ωm2,t(p1) = ωm2+1,t+1(p1), for all m2, t. This could clearly simplify the
computations needed to determine |q−1(π)| when m2 increases.
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4 Conclusions and Further Work

In the spirit of previous work on Stacksort, we have investigated the preim-
ages of the map associated with the algorithm Queuesort, obtaining a recursive
description of all preimages of a given permutation and some enumerative results
concerning the number of preimages. Our approach seems to suggest that, in
some sense, the structure of the map associated with Queuesort is a little bit
easier than that of the map associated with Stacksort, which allows us to obtain
nicer results. For instance, we have been able to find a neat result concerning
the possible cardinalities for the set of preimages of a given permutation; the
same thing turns out to be much more troublesome for Stacksort [5].

Our paper can be seen as a first step towards a better understanding of
the algorithm Queuesort, which appears to be much less studied than its more
noble relative Stacksort. Since the structure of Queuesort appears to be slightly
simpler, it is conceivable that one can achieve better and more explicit results.
In this sense, there are many (classical and nonclassical) problems concerning
Stacksort which could be fruitfully addressed also for Queuesort.

For instance, it could be very interesting to investigate properties of the
iterates of the map associated with Queuesort. For any natural number n, define
the rooted tree whose nodes are the permutations of length n, having idn as its
root and such that, given two distinct permutations τ, σ ∈ Sn, σ is a son of τ
whenever q(σ) = τ . Studying properties of this tree could give some insight on
the behavior of iterates of q. For instance, what can be said about the average
depth of such a tree? Can we find enumerative results concerning some interesting
statistic in the set of permutations having a fixed depth?

Another interesting issue could be the investigation of properties of the sets
Q

(k)
n . For instance, how many permutations in Q

(k)
n avoid a given pattern π?

Moreover, following [3], we could consider devices consisting of two queues
(both with bypass) in series, where the content of the first queue is constraint
to avoid some pattern. What can we say about permutations that are sortable
by such devices?

Finally, Defant discovered some surprising connections between Stacksort
and free probability theory [6]. Can we find anything similar for Queuesort?
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Abstract. For two ordered graphs G< and H<, the ordered Ramsey
number r<(G<, H<) is the minimum N such that every red-blue coloring
of the edges of the ordered complete graph K<

N contains a red copy of G<

or a blue copy of H<.
For n ∈ N, a nested matching NM<

n is the ordered graph on 2n vertices
with edges {i, 2n−i+1} for every i = 1, . . . , n. We improve bounds on the
numbers r<(NM<

n ,K<
3 ) obtained by Rohatgi, we disprove his conjecture

about these numbers, and we determine them exactly for n = 4, 5. This
gives a stronger lower bound on the maximum chromatic number of k-
queue graphs for every k ≥ 3.

We expand the classical notion of Ramsey goodness to the ordered
case and we attempt to characterize all connected ordered graphs that
are n-good for every n ∈ N. In particular, we discover a new class of such
ordered trees, extending all previously known examples.

Keywords: Ordered Ramsey number · Ramsey goodness · Nested
matching

1 Introduction

Ramsey theory is devoted to the study of the minimum size of a system that
guarantees the existence of a highly organized subsystem. Given graphs G and H,
their Ramsey number r(G,H) is the smallest N ∈ N such that any two-coloring
of the edges of KN contains either G as a red subgraph or H as a blue subgraph
of KN . The case G = H is called the diagonal case and in this case we use the
abbreviation r(G) = r(G,G).

The growth rate of Ramsey numbers has been of interest to many researchers.
In general, it is notoriously difficult to find tight estimates on Ramsey numbers.
For example, despite many efforts, the best known bounds on r(Kn) are essen-
tially

2n/2 ≤ r(Kn) ≤ 22n (1)

obtained by Erdős and Szekeres [10], although some smaller term improvements
are known. For a more comprehensive survey we can refer the reader to [8].
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In this paper, we study ordered graphs. An ordered graph G< on n vertices
is a graph whose vertex set is [n] := {1, . . . , n} and it is ordered by the stan-
dard ordering < of integers. For an ordered graph G<, we use G to denote its
unordered counterpart. An ordered graph G< on [n] is an ordered subgraph of
another ordered graph H< on [N ] if there exists a mapping φ : [n] → [N ] such
that φ(i) < φ(j) for 1 ≤ i < j ≤ n and also {φ(i), φ(j)} is an edge of H<

whenever {i, j} is an edge of G<. Definitions that are often stated for unordered
graphs, such as vertex degrees, colorings, and so on, have their natural analogues
for ordered graphs. Note that, for every n ∈ N, there is a unique complete ordered
graph K<

n .
Motivated by connections to classical results such as the Erdős–Szekeres the-

orem on monotone subsequences [10], various researchers [2,7] recently initiated
the study of Ramsey numbers of ordered graphs. Given two ordered graphs G<

and H<, the ordered Ramsey number r<(G<,H<) is defined as the smallest
N such that any two-coloring of the edges of K<

N contains either G< as a red
ordered subgraph or H< as a blue ordered subgraph.

Observe that for any two ordered graphs G<
1 and G<

2 on n1 and n2 vertices,
respectively, we have r(G1, G2) ≤ r<(G<

1 , G<
2 ) ≤ r(Kn1 ,Kn2). Thus, by (1), the

number r<(G<
1 , G<

2 ) is finite and, in particular, r<(G<) is at most exponential
in the number of vertices for every ordered graph G<.

It is known that for dense graphs, there is not a huge difference in the growth
rate of their ordered and unordered Ramsey numbers [2,7]. On the other hand,
ordered Ramsey numbers of sparse ordered graphs behave very differently from
their unordered counterparts. For example, Ramsey numbers of matchings (that
is, graphs with maximum degree 1) are clearly linear in the number of their
vertices. However, it was proved independently in [2,7] that there exist ordered
matchings such that their diagonal ordered Ramsey numbers grow superpolyno-
mially.

Theorem 1. [2,7]. There are arbitrarily large ordered matchings M< on n

vertices that satisfy r<(M<) ≥ nΩ( log n
log log n ).

The bound from Theorem 1 is quite close to the truth as Conlon, Fox, Lee
and Sudakov [7] proved that r<(G<,K<

n ) ≤ 2O(d log2 (2n/d)) for every ordered
graph G< on n vertices with degeneracy d. In particular, we have r<(G<) ≤
r<(G<,K<

n ) ≤ nO(log n) if G< has its maximum degree bounded by a constant.
There has also been a keen interest in studying the off-diagonal ordered

Ramsey numbers. Conlon, Fox, Lee and Sudakov [7] proved that there exist
ordered matchings M< such that r<(M<,K<

3 ) = Ω
(
(n/ log n)4/3

)
. On the

other hand, the best known upper bound on r<(M<,K<
3 ) is

r<(M<,K<
3 ) ≤ r<(K<

n ,K<
3 ) = r(Kn,K3) = O

(
n2

log n

)
,

which follows from the well-known result r(Kn,K3) = O
(

n2

log n

)
[1], which is

tight [12]. Note that the first inequality only uses the fact that M< is an ordered
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subgraph of K<
n and does not utilize any special properties of ordered matchings

such as its sparseness. Conlon, Fox, Lee and Sudakov [7] expect that the upper
bound is far from optimal and posed the following problem.

Problem 1. [7]. Does there exist an ε > 0 such that any ordered matching M<

on n ∈ N vertices satisfies r<(M<,K<
3 ) = O

(
n2−ε

)
?

Problem 1 remains open, but there was a recent progress obtained by
Rohatgi [15], who resolved some special cases of this problem. In particular,
he proved that if the edges of an ordered matching M< do not cross, then the
ordered Ramsey number r<(M<,K<

3 ) is almost linear. The basic building block
of the proof of this result is formed by so-called nested matchings. For n ∈ N,
a nested matching (or a rainbow) NM<

n is the ordered matching on 2n vertices
with edges {i, 2n − i + 1} for every i ∈ [n]. Rohatgi [15] determined the off-
diagonal ordered Ramsey numbers of nested matchings up to a constant factor.

Proposition 1. [15]. For every n ∈ N, we have 4n−1 ≤ r<(NM<
n ,K<

3 ) ≤ 6n.

He believed that the upper bound is far from optimal and posed the following
conjecture, which he verified for n ∈ {1, 2, 3}.

Conjecture 1. [15]. For every n ∈ N, we have r<(NM<
n ,K<

3 ) = 4n − 1.

The ordered graphs that do not contain NM<
m as an ordered subgraph

for some m ∈ N are known to be equivalent to so-called (m − 1)-queue
graphs [11] and, in particular, 1-queue graphs correspond to arched-leveled-
planar graphs [11]. As we will see, estimating the ordered Ramsey numbers
r<(NM<

m,K<
n ) is connected to extremal questions about (m − 1)-queue graphs.

In particular, there is a close connection to the problem of Dujmovic̀ and
Wood [9] about determining the chromatic number of such graphs.

Problem 2. [9]. What is the maximum chromatic number χk of a k-queue graph?

Dujmovic̀ and Wood [9] note that χk ∈ {2k + 1, . . . , 4k} and they prove that
the lower bound is attainable for k = 1.

2 Our Results

In this paper, we also focus on off-diagonal ordered Ramsey numbers. In partic-
ular, we improve and generalize the bounds on r<(NM<

n ,K<
3 ) and we disprove

Conjecture 1. We also consider ordered Ramsey numbers r<(G<,Kn) for general
connected ordered graphs G< and we introduce the concept of Ramsey goodness
for ordered graphs.
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2.1 Nested Matchings Versus Complete Graphs

First, we improve the leading constant in the upper bound from Proposition 1
and thus show that the bound by Rohatgi is indeed not tight. However, we
believe that our estimate can be improved as well.

Theorem 2. For every n ∈ N, we have r<(NM<
n ,K<

3 ) ≤ (
3 +

√
5
)
n < 5.3n.

Next, we disprove Conjecture 1 by showing r<(NM<
n ,K<

3 ) > 4n−1 for every
n ≥ 4. For n ∈ {4, 5}, we determine r<(NM<

n ,K<
3 ) exactly.

Theorem 3. For every n ≥ 6, we have r<(NM<
n ,K<

3 ) ≥ 4n + 1. Moreover,
r<(NM<

4 ,K<
3 ) = 16 and r<(NM<

5 ,K<
3 ) = 20.

We prove the lower bound r<(NM<
n ,K<

3 ) ≥ 4n+1 by constructing a specific
red-blue coloring of the edges of K<

4n that avoids a red copy of NM<
n and a blue

copy of K<
3 . To determine r<(NM<

4 ,K<
3 ) and r<(NM<

5 ,K<
3 ) exactly, we use a

computer-assisted proof based on SAT solvers. For more details about the use of
SAT solvers for finding avoiding colorings computationally, we refer the reader
to the bachelor’s thesis of the second author [14]. The utility we developed for
computing ordered Ramsey numbers r<(G<,H<) for small ordered graphs G<

and H< is publicly available [13].
By performing the exhaustive computer search, we know that there are only

326 red-blue colorings of the edges of K<
15 without a red copy of NM<

4 and
a blue copy of K<

3 . They all share the same structure except for 6 red edges
that can be switched to blue while not introducing a blue triangle. Using the
same computer search, we were able to find many red-blue colorings of the edges
of K<

19 without a red copy of NM<
5 and a blue copy of K<

3 , some of which even
had certain symmetry properties. There were no such symmetric colorings on
15 vertices, which suggests that the lower bound on r<(NM<

n ,K<
3 ) might be

further improved for larger values of n.
Using the lower bounds from Theorem 3, we can address Problem 2 about

the maximum chromatic number χk of k-queue graphs. In particular, we can
improve the lower bound χk ≥ 2k + 1 by 1 for any k ≥ 3.

Corollary 1. For every k ≥ 3, the maximum chromatic number of k-queue
graphs is at least 2k + 2.

We recall that the maximum chromatic number χ1 of 1-queue graphs is 3 [9].
We use this result to prove the exact formula for the off-diagonal ordered Ramsey
numbers r<(NM<

2 ,K<
n ) of nested matchings with two edges.

Theorem 4. For every n ∈ N, we have r<(NM<
2 ,K<

n ) = 3n − 2.

For general nested matchings versus arbitrarily large complete graphs, we
can determine the asymptotic growth rate of their ordered Ramsey numbers,
generalizing the linear bounds from Proposition 1 and Theorem 2.

Theorem 5. For every m,n ∈ N, we have r<(NM<
m,K<

n+1) = Θ(mn).
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2.2 Ramsey Goodness for Ordered Graphs

To obtain the lower bound r(G,Kn) ≥ (m−1)(n−1)+1 for a connected graph G
on m vertices, one might consider a simple construction that is usually attributed
to Chvátal and Harary [6]. Take n − 1 red cliques, each with m − 1 vertices,
and connect vertices in different red cliques by blue edges. For some graphs
G, this lower bound is the best possible and such graphs are called (Ramsey)
n-good. That is, a connected graph G on m vertices is n-good if r(G,Kn) =
(m − 1)(n − 1) + 1. We call a graph good if it is n-good for all n ∈ N. A famous
result by Chvátal [5] states that all trees are good.

Studying n-good graphs is a well-established area in extremal combinatorics.
Despite this, to the best of our knowledge, Ramsey goodness has not been con-
sidered for ordered graphs. Motivated by our results from Subsection 2.1, we
thus extend the definition of good graphs to ordered graphs and we attempt to
characterize all good connected ordered graphs. A connected ordered graph G<

on m vertices is n-good if r<(G<,K<
n ) = (m−1)(n−1)+1. A connected ordered

graph is good if it is n-good for all n ∈ N.
A generalization of the well-known Erdős–Szekeres theorem on monotone

subsequences states that r<(P<
m ,K<

n ) = (m − 1)(n − 1) + 1 for every n ∈ N and
every monotone path P<

m [4], which is an ordered path on m vertices where edges
connect consecutive vertices in <. In other words, any monotone path is good,
which gives a first example of good ordered graphs. Note, however, that not all
ordered paths are good, which follows immediately from Theorem 1.

First, we state some basic properties of good ordered graphs, some of them
resembling their unordered counterparts. It can be shown as in the unordered
case that if a connected ordered graph G< is (n + 1)-good, then it is n-good.

Let G< be an ordered graph containing an ordered cycle C< as an ordered
subgraph. It is known that, for every cycle Cl on l ≥ 3 vertices and for n
going to infinity, the Ramsey number r(C,Kn) grows superlinearly with n [3,12].
Since r<(G<,K<

n ) ≥ r<(C<,K<
n ) ≥ r(C,Kn), the number r<(G<,K<

n ) is also
superlinear in n and thus the ordered graph G< cannot be good. We thus obtain
the following result that limits good ordered graphs to ordered trees.

Proposition 2. Every good ordered graph is an ordered tree.

In our attempt to characterize good ordered trees, we discovered a class
of good ordered trees, which significantly extends the example with monotone
paths. In order to describe this new class, we need to introduce some notation.

An ordered star graph S<
l,r is an ordered graph on r + l − 1 vertices such that

the lth vertex in the vertex ordering is adjacent to all other vertices and there
are no other edges. We call an ordered star S<

l,r one-sided if l = 1 or r = 1.
For any two ordered graphs G< and H< on m and n vertices, respectively,

the join G< + H< is an ordered graph on m + n − 1 vertices constructed by
identifying the leftmost vertex of H< with the rightmost vertex of G<. The join
operation is associative and if G< and H< are both connected, then G< + H<

is connected as well. The following result gives a construction of good ordered
graphs based on the join operation.
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Theorem 6. For all n, r, l ∈ N, if a connected ordered graph G< is n-good, then
the ordered graphs G< + S<

1,r, G< + S<
l,1, S<

l,1 + G<, and S<
1,r + G< are also

n-good.

Theorem 6 immediately implies that every ordered star graph is good. More
generally, it follows that all ordered trees from the following class are good.
An ordered graph G< is a monotone caterpillar graph if there exist positive
integers n, l1, . . . , ln, r1, . . . , rn such that li = 1 or ri = 1 for each i ∈ [n] and
G< = S<

l1,r1
+ · · · + S<

ln,rn
. In other words, if G< can be obtained by performing

joins on one-sided ordered star graphs. Note that monotone paths and ordered
stars are all monotone caterpillar graphs.

Corollary 2. All monotone caterpillar graphs are good.

Computer experiments based on our SAT solver based utility [13] showed
that all good ordered graphs up to 6 vertices are monotone caterpillar graphs.
We believe that there are no other good ordered graphs.

To get a better understanding of good ordered graphs, we prove an alternative
characterization of monotone caterpillar graphs stated in terms of the following
four forbidden ordered subgraphs: NM<

2 , K<
3 , and two ordered graphs on the

vertex set {1, 2, 3, 4} with the edge sets {{1, 3}, {2, 4}} and {{1, 2}, {1, 4}, {3, 4}}.
We note that if we assume that G< is an ordered tree, then we can leave out K<

3

and the characterization still holds.
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10. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math.
2, 463–470 (1935)



On Off-Diagonal Ordered Ramsey Numbers of Nested Matchings 247

11. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as
mechanisms for laying out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992)

12. Kim, J.H.: The Ramsey number R(3, t) has order of magnitude t2/ log t. Random
Struct. Algorithms 7(3), 173–207 (1995)

13. Poljak, M.: Ordered Ramsey numbers utility. https://github.com/marismmm/
Ordered-Ramsey-numbers-utility

14. Poljak., M.: Computing and estimating ordered Ramsey numbers (2020)
15. Rohatgi, D.: Off-diagonal ordered Ramsey numbers of matchings. Electron. J. Com-

bin., 26(2), 2.21, 18 (2019)

https://github.com/marismmm/Ordered-Ramsey-numbers-utility
https://github.com/marismmm/Ordered-Ramsey-numbers-utility


Bounds on Half Graph Orders in Powers
of Sparse Graphs

Marek Soko�lowski(B)

University of Warsaw, Warsaw, Poland
marek.sokolowski@mimuw.edu.pl

Abstract. Half graphs and their variants, such as ladders, semi-ladders
and co-matchings, are combinatorial objects that encode total orders in
graphs. Works by Adler and Adler (Eur. J. Comb.; 2014) and Fabiański et
al. (STACS; 2019) prove that in the powers of sparse graphs, one cannot
find arbitrarily large objects of this kind. We provide nearly tight asymp-
totic lower and upper bounds on the maximum order of half graphs,
parameterized on the power, in the following classes of sparse graphs: pla-
nar graphs, graphs with bounded maximum degree, graphs with bounded
pathwidth or treewidth, and graphs excluding a fixed clique as a minor.
As an essential part of this work, we prove a fully polynomial bound on
the neighborhood complexity in planar graphs.

1 Introduction

It is widely known that there is a huge array of algorithmic problems deemed to
be computationally hard. One of the ways of circumventing this issue is limiting
the set of possible instances of a problem by assuming a more manageable struc-
ture. For example, restricting our attention to graph problems, we can exploit the
planarity of the graph instances through techniques such as the planar separator
theorem [3]; analogously, for the graphs with bounded treewidth, we can solve
multiple hard problems by means of dynamic programming on tree decomposi-
tions. These examples present some of the algorithmic techniques which allow
us to utilize the structural sparsity of graph instances.

Nešetřil and Ossona de Mendez have proposed two abstract notions of spar-
sity in graphs: bounded expansion [4] and nowhere denseness [5]. Intuitively,
a class C of graphs has bounded expansion if one cannot obtain arbitrarily dense
graphs by picking a graph G ∈ C and contracting pairwise disjoint connected
subgraphs of G with fixed radius to single vertices. More generally, C is nowhere
dense if one cannot produce arbitrarily large cliques as graphs as a result of
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the same process. For formal definitions of these notions, and for a comprehen-
sive introduction to these classes of graphs, we refer to the book by Nešetřil and
Ossona de Mendez [6] and to the lecture notes from the University of Warsaw [7].

Research in Sparsity provides a plethora of technical tools for structural anal-
ysis of sparse graphs, many of which are in the form of various graph parameters.
In this work, we consider one kind of structural measures that behave nicely in
sparse graphs, which are related to the concepts of half graphs, ladders, semi-
ladders, and co-matchings.

Definition 1. In an undirected graph G = (V,E), for an integer � ≥ 1, 2� dif-
ferent vertices a1, a2, . . . , a�, b1, b2, . . . , b� form:

– a half graph (or a ladder) of order � if for each pair of indices i, j such that
i, j ∈ [1, �], we have (bi, aj) ∈ E if and only if i < j (Fig. 1(a));

– a semi-ladder of order � if we have (bi, aj) ∈ E for each pair of indices i, j
such that 1 ≤ i < j ≤ �, and (bi, ai) /∈ E for each i ∈ [1, �] (Fig. 1(b));

– a co-matching of order � if for each pair of indices i, j such that i, j ∈ [1, �],
we have (bi, aj) ∈ E if and only if i �= j (Fig. 1(c)).

a1

b1

a2

b2

a3

b3

a4

b4

(a)

a1

b1

a2

b2

a3

b3

a4

b4

(b)

a1

b1

a2

b2

a3

b3

a4

b4

(c)

Fig. 1. The objects in Definition 1. Solid lines indicate pairs of vertices connected by
an edge, and dashed edges indicate pairs of vertices not connected by an edge. Note
that there are no restrictions on the existence of edges between the pairs of vertices on
the same side of the objects (i.e., between ai and aj , or between bi and bj).

Naturally, each half graph, ladder, and co-matching is also a semi-ladder.
Hence, if for a class C of graphs, the orders of semi-ladders occurring in any
graph in C are bounded from above by some constant M , then M is also the
corresponding upper bound for orders of half graphs, ladders and co-matchings.
Conversely, uniform upper bounds on the orders of both half graphs and co-
matchings in C imply a uniform upper bound on the orders of semi-ladders [2].

In this work, we consider C to be powers of nowhere dense classes of graphs.
Formally, for an undirected graph G and an integer d, we define the graph Gd

as an undirected graph with the same set of vertices as G, but in which two
vertices u, v are adjacent if and only if distG(u, v) ≤ d. Then, the d-th power of
a class C is defined as Cd = {Gd | G ∈ C}.

Even though Cd may potentially contain dense graphs, it turns out that the
objects from Definition 1 still behave nicely in Cd:

Theorem 1 ([1,2]). For every nowhere dense class C of graphs, there exists a
function f : N → N such that for every d ∈ N, the orders of half graphs and
semi-ladders in graphs from Cd are uniformly bounded from above by f(d).
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It turns out that Theorem 1 has algorithmic implications. For instance,
the Distance-d Dominating Set problem admits a parameterized algorithm
whose time complexity depends hugely on the asymptotic growth of the bound
f [2]. However, the proofs of Theorem 1 are either non-constructive, or rely on
the description of nowhere denseness through uniform quasi-wideness, yielding
suboptimal bounds on the maximum order of half graphs. It is natural to pose
a question: can we find good estimates on the maximum orders of half graphs
occurring in the powers of well-studied classes of sparse graphs?

2 Our Results

We state and prove asymptotic lower and upper bounds on the orders of half
graphs in the d-th powers of the following classes of sparse graphs: graphs with
maximum degree bounded by Δ, planar graphs, graphs with pathwidth bounded
by p, graphs with treewidth bounded by t, and graphs excluding the complete
graph Kt as a minor (Fig. 2). Our results are asymptotically almost tight—they
allow us to understand how quickly the maximum orders of semi-ladders grow,
as functions of d, in these classes of graphs.

Class of graphs Lower bound Upper bound

Degree ≤ Δ ΔΩ(d) Δd + 1

Planar 2� d
2 � dO(d)

Pathwidth ≤ p dp−O(1) (dp)O(p)

Treewidth ≤ t 2d
Ω(t)

dO(dt+1)

Kt-minor-free 2d
Ω(t)

dO(dt−1)

Fig. 2. Bounds on the maximum orders of half graphs proved in this work.

The most important part of our work is the upper bound on the orders of
half graphs in powers of planar graphs (Theorem 2). Here, we employ techniques
of structural graph theory to analyze semi-ladders in planar graphs through the
notion of cages, which expose a topological structure in semi-ladders. Moreover,
as a vital part of the proof, we derive a fully polynomial bound on the neighbor-
hood complexity of planar graphs (Theorem 3).

2.1 Upper Bounds on Half Graphs in Planar Graphs

We begin by stating the dO(d) upper bound on half graphs in the d-th powers
of planar graphs. The result is actually slightly stronger as it provides an upper
bound on the order of semi-ladders (cf. Definition 1). As each half graph is a semi-
ladder, Theorem 2 also yields an upper bound on the order of the half graphs.



Bounds on Half Graph Orders in Powers of Sparse Graphs 251

Theorem 2. There exists a polynomial p of degree 22 such that every semi-
ladder in the d-th power of any planar graph has order at most d · p(d)d.

In the proof, we start with a huge semi-ladder in the d-th power of a chosen
planar graph G. Using this semi-ladder, we find in G objects with more and
more structure, which we call: quasi-cages, cages, ordered cages, identity ordered
cages, neighbor cages, and separating cages, in this order. Each extraction step
requires us to forfeit a fraction of the object, but we give good estimates on the
maximum size loss incurred in the process. After all extractions, we produce a
separating cage of large order; however, it can be proved that no large separating
cages can exist in G. Retracing all the steps, we can easily figure out the upper
bound on the maximum order of a distance-d semi-ladder in the class of planar
graphs, which is of the form d · p(d)d for some polynomial p.

2.2 Fully Polynomial Upper Bound on Neighborhood Complexity

As a crucial part of the proof of Theorem 2, we prove the following fact, implying
a fully polynomial bound on the neighborhood complexity of planar graphs.

Theorem 3. For a planar graph G, a vertex v, integer d, and a set of vertices
A, we define the distance-d profile of v on A: πd[v,A] : A → {0, 1, . . . , d,+∞}
as the function mapping the vertices of A into their distance to v, or +∞ if this
distance exceeds d. Then, the set {πd[v,A] | v ∈ V (G)} of all distinct distance-d
profiles on A has at most 128|A|3(d + 2)7 elements.

Sketch of the Proof. Fix G. We begin by stating the restricted variant of the
theorem where the set A is replaced by a noose: a closed curve in the plane
passing through vertices of G that does not intersect itself or the interiors of any
edges.

Lemma 1. (Noose Profile Lemma, a variant). If A is a non-empty set of
vertices lying on some noose L in G, then the set {πd[v,A] | v ∈ V (G)} contains
at most 2|A|3(d + 2)4 elements.

The proof of Lemma 1 is quite technical, so we omit it in this abstract.
We will now lift the lemma to Theorem 3. We apply an induction on the

size of A, with |A| = 1 being trivial. If A can be partitioned into two non-
empty subsets X and Y so that every two vertices from the different subsets are
at distance at least 2d + 1 from each other, then each distance-d profile on A
is identically equal to +∞ either on X or on Y . By the induction hypothesis
applied to sets X and Y , the statement of the theorem follows.

Otherwise, let T be the Steiner tree of A in G, i.e., the tree of the smallest
possible size which is a subgraph of G and which contains all vertices of A. It
can be argued that T contains at most (|A|−1)(2d+1) edges. We transform the
graph G into G′ by “cutting the plane open” along T (Fig. 3). In G′, the tree T
becomes a noose L containing at most 2(|A|− 1)(2d+1) vertices. Lemma 1 now
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Fig. 3. Cutting the plane open along the Steiner tree T (bold).

applies, yielding the upper bound of at most 128|A|3(d + 2)7 different distance-
d profiles on the vertices of L in G′. Since each distance-d profile on L in G′

uniquely implies the distance-d profile on A in G, our theorem follows.
We remark that it has been known that the neighborhood complexity of pla-

nar graphs (and, more generally, of every class of graphs with bounded expan-
sion) is bounded by a function linear in |A|, but exponential in d [8]. However,
the polynomial dependence on d in Theorem 3 is crucial in the proof of Theo-
rem 2. On a side note, it is an open problem whether there exists a bound on
the neighborhood complexity of planar graphs that is both polynomial in d (as
in Theorem 3) and linear in |A| (as in the work of Reidl et al. [8]).

2.3 Upper Bounds on Half Graphs in Other Classes of Graphs

We move on to the upper bounds for the remaining considered sparse graph
classes, which are proved in the full version of the paper. Again, each of the
results below actually provides an upper bound on the orders of semi-ladders.

Theorem 4. For each Δ ≥ 2, d ≥ 1, every semi-ladder in the d-th power of
a graph with maximum degree bounded by Δ has order at most Δd + 1.

Theorem 5. For p ≥ 1, d ≥ 1, every semi-ladder in the d-th power of a graph
with pathwidth at most p has order at most (2d + 3)(p + 1)![(2d + 3)(d + 2)]p+1.

Theorem 6. For some polynomial p and for all t ≥ 4, d ≥ 2, every semi-ladder
in the d-th power of a Kt-minor-free graph has order at most dp(t)·(2d+1)t−1

.

In the proof of Theorem 6. we utilize the upper bound on the weak coloring
numbers in Kt-minor-free graphs proved by van den Heuvel et al. [10] and the
explicit upper bound on the semi-ladder orders in nowhere dense classes of graphs
(Theorem 1) using the notion of uniform quasi-wideness.

Since graphs with treewidth at most t are Kt+2-minor-free, Theorem 6 yields
a similar upper bound for the class of graphs with bounded treewidth.

2.4 Lower Bounds on Half Graphs

The lower bounds presented in Fig. 2 are achieved by three constructions. Each of
them constructs a family of graphs whose d-th powers contain large half graphs.
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Theorem 7. For every odd d ≥ 1 and even Δ ≥ 4, there exists a graph with
maximum degree bounded by Δ whose d-th power contains a half graph of order
(

Δ
2

)�d/2�
. For Δ = 4, this graph is planar.

Theorem 8. For each d ≥ 1 and p ≥ 0, there exists a graph Pp,d with pathwidth
at most p + 2 whose (4d − 1)-st power contains a half graph of order (2d + 1)p.

Theorem 9. For every even d ≥ 2 and odd t ≥ 3, there exists a graph Tt,d with
treewidth at most t whose d-th power contains a half graph of order 2�t,d where
�t,d =

( 1
2 (d+t−5)

1
2 (t−3)

)
.

In the proofs of Theorems 8 and 9, recursive constructions of the postulated
graphs are presented. In Theorem 8, we construct Pp,d by creating 2d + 1 copies
of Pp−1,d, and linking them together so that the half graphs within each copy
of Pp−1,d are merged into a large half graph within Pp,d. The construction in
Theorem 9 is a bit more involved: Tt,d is created from Tt,d−2 and multiple copies
of Tt−2,d. If done correctly, this yields a graph Tt,d containing a half graph of
order 2�d,t = 2�t,d−2 · 2�t−2,d .

Again, as graphs with treewidth at most t are Kt+2-minor-free, Theorem 9
yields an analogous lower bound for the class of Kt-minor-free graphs.
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Abstract. We prove Engström’s conjecture that the independence com-
plex of graphs with no induced cycle of length divisible by 3 is either
contractible or homotopy equivalent to a sphere. Our result strengthens
a result by Zhang and Wu, verifying a conjecture of Kalai and Meshulam
which states that the total Betti number of the independence complex
of such a graph is at most 1. A weaker conjecture was proved earlier
by Chudnovsky, Scott, Seymour, and Spirkl, who showed that in such a
graph, the number of independent sets of even size minus the number of
independent sets of odd size has values 0, 1, or −1.

Keywords: Independence complexes · Homotopy type · Ternary
graphs

1 Introduction

We assume all graphs are finite and contain no loops and no multiple edges.
A subgraph of a graph G is an induced subgraph if it can be obtained from G
by deleting vertices and all edges incident with those vertices. An induced cycle
is an induced subgraph that is a cycle. An independent set is a set of pairwise
non-adjacent vertices. The independence complex of a graph G is the abstract
simplicial complex I(G) on the vertex set V (G) whose faces are the independent
sets of G. A graph is ternary if it contains no induced cycle of length divisible
by 3.

Here is our main theorem.

Theorem 1. A graph is ternary if and only if every induced subgraph has the
independence complex that is contractible or homotopy equivalent to a sphere.

We can easily deduce the converse of Theorem 1 as follows. Kozlov [7, Proposition
5.2] showed that the independence complex of a cycle is not homotopy equivalent
a sphere if and only if the cycle has length divisible by 3. More precisely, if C�
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is a cycle of length � ≥ 3, then the homotopy type of the independence complex
is given by

I(C�) �
{

Sk ∨ Sk if � = 3k + 3,

Sk if � = 3k + 2 or 3k + 4.
(1)

Therefore, if every induced subgraph of a graph G has the independence complex
that is contractible or homotopy equivalent to a sphere, then G does not contain
an induced cycle of length divisible by 3.

Our main result is motivated from a conjecture by Kalai and Meshulam. For
a simplicial complex K, let H̃i(K) be the i-th reduced homology group of K over
Z and β̃i(K) the i-th reduced Betti number of K, which is the rank of H̃i(K).
Let β(K) be the total Betti number, that is, β(K) =

∑
i≥0 β̃i(K). Decades ago,

Kalai and Meshulam [5] conjectured that the independence complex of every
ternary graph has total Betti number at most 1. This conjecture was recently
proved by Zhang and Wu [8].

In general, for a graph G, β(I(G)) ≤ 1 does not imply that I(G) is con-
tractible or homotopy equivalent to a sphere. To see why, observe that the
barycentric subdivision of any cell complex can be expressed as the indepen-
dence complex of some graph. For example, considering the real projective plane
RP

2, one can find a graph whose independence complex is homotopy equiva-
lent to RP

2, which has the total Betti number 0, but is neither contractible nor
homotopy equivalent to a sphere.

Our result, as well as the result by Zhang and Wu, is a generalization of a
result about the reduced Euler characteristic of the independence complex of
ternary graphs. Given a simplicial complex K, the reduced Euler characteristic
of K is defined as χ(K) =

∑
i≥0(−1)iβ̃i(K). It is a well-known fact in alge-

braic topology that χ(K) =
∑

A∈K(−1)|A| (see [4]). Therefore, for a graph G,
|χ(I(G))| is the difference between the number of independent sets of G of even
size and the number of those of odd size. Kalai and Meshulam [5] also posed
a weaker conjecture that a graph G is ternary if and only if |χ(I(H))| ≤ 1
for every induced subgraph H, and this conjecture was proved by Chudnovsky,
Scott, Seymour and Spirkl [1].

Earlier, Gauthier [3] proved a special case of the conjecture: if a graph
G contains no (not necessarily induced) cycles of length divisible by 3, then
|χ(I(G))| ≤ 1. By extending the work of Gauthier, Engström [2] showed that
the independence complex of such a graph is either contractible or homotopy
equivalent to a sphere. Engström conjectured that his result can be extended to
ternary graphs. Theorem 1 confirms Engström’s conjecture.

Remark 1. This manuscript is an extended abstract. Full proofs and details can
be found in the full paper [6].

2 Preliminaries

In this section, we introduce some topological background (for details, see [4])
and useful lemmas to determine the homotopy type of independence complexes.
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For a graph G and v ∈ V (G), let N(v) := {u ∈ V : uv ∈ E} and N [v] :=
N(v) ∪ {v}. For W ⊂ V (G), let N [W ] := ∪w∈W N [w]. When V (G) = ∅, we call
G the null graph.

2.1 Mayer-Vietoris Sequences

Let G be a graph on V . For each v ∈ V , observe that every independent set of
G containing v is contained in G − N(v). This implies

I(G) = I(G − v) ∪ I(G − N(v)).

Note that I(G − N(v)) is a cone with apex v, thus it is contractible. Finally, we
observe

I(G − v) ∩ I(G − N(v)) = I(G − N [v]).

Then, by applying the Mayer-Vietoris sequence, we obtain the following long
exact sequence:

· · · → H̃i(I(G − N [v])) → H̃i(I(G − v)) → H̃i(I(G)) → H̃i−1(I(G − N [v])) → · · · .
(2)

Let G(X|Y ) be the subgraph of G induced by V − N [X] − Y if X is inde-
pendent and X ∩ Y = ∅, and the null graph otherwise. If X and Y are vertex
subsets where X is independent and X ∩ Y = ∅, and if v �∈ N [X] ∪ Y , then we
obtain the following exact sequence by replacing G with G − N [X] − Y in (2):

· · · → H̃i(I(G(X ∪ {v}|Y ))) → H̃i(I(G(X|Y ∪ {v}))) → H̃i(I(G(X|Y )))

→ H̃i−1(I(G(X ∪ {v}|Y ))) → H̃i−1(I(G(X|Y ∪ {v}))) → H̃i−1(I(G(X|Y ))) → · · · .
(3)

Recalling that H̃i(Sk) = 0 if i �= k and H̃k(Sk) � Z, we can prove the
following lemma.

Lemma 1. Let A,B and C be simplicial complexes such that the following
sequence is exact:

· · · → H̃i(A) → H̃i(B) → H̃i(C) → H̃i−1(A) → · · · .

Suppose A � Sk and B � S� for some non-negative integers k and �. Then the
following hold.

(i) If k > �, then β̃k+1(C) = β̃�(C) = 1.
(ii) If k = �, then either β̃i(C) = 0 for all non-negative integer i or both H̃k+1(C)

and H̃k(C) are non-vanishing.
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2.2 Homotopy Type Theory

Let A and B be two topological spaces.

– A and B are homotopy equivalent if there are continuous maps f : A → B
and g : B → A such that g ◦ f � idA and f ◦ g � idB , where idX is the
identity map on X. We write A � B if A and B are homotopy equivalent. In
particular, if A is contractible, we write A � ∗.

– The wedge sum of A and B is the space obtained by taking the disjoint union
of A and B and identifying a point of A and a point of B. We denote the
wedge sum of A and B by A ∨ B.

– Let ∼ be an equivalence relation on A. Then we denote the quotient space of
A under ∼ by A/ ∼. Let B ⊂ A. Then we define A/B as the quotient space
A/ ∼ where for all a �= b in A, a ∼ b if and only if a, b ∈ B.

– The suspension of A is the quotient space ΣA := A × [0, 1]/ ∼ where for all
(a, s) �= (b, t) in A × [0, 1], (a, s) ∼ (b, t) if and only if either s = t = 0 or
s = t = 1.

Note that if Sn is the n-dimensional sphere, then ΣSn � Sn+1.
Now let K, K1 and K2 be simplicial complexes where K1 ∩ K2 �= ∅, and let

L �= ∅ be a subcomplex of K. Then,

(A) If K = K1 ∪ K2, then K/K2 � K1/(K1 ∩ K2).
(B) Suppose the inclusion map L ↪→ K is homotopic to a constant map c : L →

K, that is, L is contractible in K. Then K/L � K ∨ ΣL. In particular,
K/L � ΣL when K is contractible, and K/L � K when L is contractible.

By applying (B), we can deduce the following well-known statement:

Lemma 2. Let X be a simplicial complex, and Y be a subcomplex of X. If
X � Sk and Y � S� for some non-negative integers k and � with � < k, then
X/Y is homotopic to Sk ∨ S�+1.

By a similar argument as in Sect. 2.1 and by applying (A), we obtain the
following lemma about homotopy equivalence of independence complexes.

Lemma 3. Let G be a graph and v a vertex of G. If X and Y are disjoint subsets
of V (G) such that X is independent, v �∈ N [X] ∪ Y , and N [X] ∪ N [v] ∪ Y �=
V (G), then I(G(X|Y )) � I(G(X|Y ∪ {v}))/I(G(X ∪ {v}|Y )).

3 Proof of Theorem 1

In this section, we prove the main result. By (1), it is sufficient to show the
following.

Theorem 2. Let G be a ternary graph. Then I(G) is either contractible or
homotopy equivalent to a sphere.
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To prove Theorem 2 by contradiction, take a counter-example G on V which
is minimal in the following sense: I(G) is neither contractible nor homotopy
equivalent to a sphere, but I(H) is either contractible or homotopy equivalent
to a sphere for every proper induced subgraph H of G.

Let X and Y be vertex subsets of G such that X ∪Y �= ∅. We define d(X|Y )
as the following:

d(X|Y ) =

{
d if I(G(X|Y )) � Sd,

∗ if either I(G(X|Y )) � ∗ or G(X|Y ) is the null graph.

We first describe all possible types of the triples of the form (d(X|Y ), d(X ∪
{v}|Y ), d(X|Y ∪ {v})) under certain conditions. ]

Lemma 4. Let X and Y be vertex subsets of G such that X ∪Y �= ∅. For every
vertex v �∈ X ∪Y , the triple (d(X|Y ), d(X ∪{v}|Y ), d(X|Y ∪{v})) equals to one
of the following:

(∗, ∗, ∗), (k, ∗, k), (∗, k, k), (k + 1, k, ∗), (0, ∗, ∗)

for some non-negative integer k. In particular, if (d(X|Y ), d(X∪{v}|Y ), d(X|Y ∪
{v})) = (0, ∗, ∗), then N [X] ∪ N [v] ∪ Y = V .

Note that Lemma 4 is a natural analogue of [8, Lemma 3.1], which is about the
dimension that the Betti number of the independence complex is non-vanishing.

Lemma 5. There is a non-negative integer k such that d(∅|v) = d(v|∅) = k for
all v ∈ V .

Proof. Since G is a ternary graph, if N [v] = V for some v ∈ V , we have I(G) �
S0, which is a contradiction to the assumption on G. Thus, we may assume
N [v] �= V for all v ∈ V . Then by Lemma 3, for any vertex v ∈ V , we have

I(G) � I(G(∅|v))/I(G(v|∅)).

Note that each of I(G(∅|v)) and I(G(v|∅)) is either contractible or homotopy
equivalent to a sphere. By (2.2),

– if I(G(v|∅)) � ∗, then I(G) � I(G(∅|v)), and
– if I(G(∅|v)) � ∗, then I(G) � ΣI(G(v|∅)).

In both cases, it is clear that I(G) is either contractible or homotopy equivalent
to a sphere. Thus we may assume both I(G(∅|v)) and I(G(v|∅)) are homotopy
equivalent to spheres, that is, d(v|∅) = � and d(∅|v) = k for some non-negative
integers k and l. We claim k = �.

If k > �, then I(G) � Sk ∨S�+1 by Lemma 2. If k < �, then by Lemma 1, we
have β̃k(I(G)) = β̃�+1(I(G)) = 1. In both cases, we have β(I(G)) ≥ 2, which is
a contradiction to a result by Zhang and Wu [8]: if H is a ternary graph, then
β(I(H)) ≤ 1.
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Now suppose that there exist u, v ∈ V such that d(u|∅) = d(∅|u) = p and
d(v|∅) = d(∅|v) = q for two non-negative integers p, q with p < q. Since q > 0,
by Lemma 4, (d(v|∅), d(u, v|∅), d(v|u)) should be either (q, ∗, q) or (q, q − 1, ∗).
If d(u, v|∅) = q − 1, then (d(u|∅), d(u, v|∅), d(u|v)) = (p, q − 1, d(u|v)) which is
possible only when p = q by Lemma 4. Thus we obtain

(d(v|∅), d(u, v|∅), d(v|u)) = (q, ∗, q).

On the other hand, Lemma 4 implies

(d(u|∅), d(u, v|∅), d(u|v)) = (p, ∗, p).

Therefore, we have

(d(∅|u), d(v|u), d(∅|u, v)) = (p, q, d(∅|u, v)).

However, Lemma 4 implies q = p − 1, which is a contradiction because we have
p < q. ��

Now suppose k ≥ 1. We claim d(u, v|∅) = k − 1 for any two distinct vertices
u, v of G. By Lemma 4, (d(v|∅), d(u, v|∅), d(v|u)) is either (k, ∗, k) or (k, k − 1, ∗)
and (d(∅|u), d(v|u), d(∅|u, v)) is either (k, ∗, k) or (k, k − 1, ∗). Then d(v|u) must
be ∗, and hence we obtain

(d(v|∅), d(u, v|∅), d(v|u)) = (k, k − 1, ∗).

Since d(u, v|∅) = k − 1 ≥ 0, G(u, v|∅) should not be the null graph. Thus
{u, v} is an independent set of G. Since this holds for every pair of two distinct
vertices u and v, we conclude that the whole vertex set V is an independent set of
G. In this case, I(G) is contractible, which is a contradiction to the assumption
on G. Thus we may assume k = 0.

We first claim that N [u] ∪ N [v] = V for any u, v ∈ V with
u �= v. By Lemma 4, (d(v|∅), d(u, v|∅), d(v|u)) is either (0, ∗, ∗) or (0, ∗, 0) and
(d(∅|u), d(v|u), d(∅|u, v)) is either (0, ∗, ∗) or (0, ∗, 0). Then it must be

(d(v|∅), d(u, v|∅), d(v|u)) = (0, ∗, ∗).

Therefore, by Lemma 4, we have N [u] ∪ N [v] = V . Now take x ∈ V . Since
I(G(x|∅)) � S0, I(G(x|∅)) has exactly two connected components, say C1 and
C2. For any choice of u ∈ V (C1) and v ∈ V (C2), we know N [u] ∪ N [v] = V .
However, this cannot be true because V (C1) ∪ V (C2) ⊂ V \ N [x], that is, x is
not adjacent to any of u and v.

In any case, we reach a contradiction, implying that our initial assumption
of G being a counter-example cannot hold. Therefore, if G is ternary, then I(G)
is either contractible or homotopy equivalent to a sphere.
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Abstract. Let f(n,H) denote the maximum number of copies of H
possible in an n-vertex planar graph. The function f(n,H) has been
determined when H is a cycle of length 3 or 4 by Hakimi and Schmeichel
and when H is a complete bipartite graph with smaller part of size 1 or
2 by Alon and Caro. We determine f(n,H) exactly in the case when H
is a path of length 3.

Keywords: Planar graph · Maximal planar graph · Apollonian
networks

1 Introduction

In recent times, generalized versions of the extremal function ex(n,H) have
received considerable attention. For graphs G and H, let N (H,G) denote the
number of subgraphs of G isomorphic to H. Let F be a family of graphs, then
a graph G is said to be F-free if it contains no graph from F as a subgraph.
Alon and Shikhelman [3] introduced the following generalized extremal function
(stated in higher generality in [4]),

ex(n,H,F) = max{N (H,G) : G is an F-free graph on n vertices}.

If F = {F}, we simply write ex(n,H, F ). The earliest result of this type
is due to Zykov [25] (and also independently by Erdős [6]), who determined
ex(n,Ks,Kt) exactly for all s and t. Erdős conjectured that asymptotically
ex(n,C5, C3) = (n

5 )
5 (where the lower bound comes from considering a blown

up C5). This conjecture was finally verified half of a century later by Hatami,
Hladký, Král, Norine and Razborov [19] and independently by Grzesik [16].
Recently, the asymptotic value of ex(n,Ck, Ck−2) was determined for every odd
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J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 262–266, 2021.
https://doi.org/10.1007/978-3-030-83823-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83823-2_41&domain=pdf
https://doi.org/10.1007/978-3-030-83823-2_41


The Maximum Number of Paths of Length Three in a Planar Graph 263

k by Grzesik and Kielak [17]. In the opposite direction, the extremal function
ex(n,C3, C5) was considered by Bollobás and Győri [5]. Their results were sub-
sequently improved in the papers [3,7] and [8], but the problem of determining
the correct asymptotic remains open. The problem of maximizing P� copies in a
Pk-free graph was investigated in [13].

It is interesting that although maximizing copies of a graph H in the class of
F -free graphs has been investigated heavily, maximizing H-copies in other natu-
ral graph classes has received less attention. In the setting of planar graphs such
a study was initiated by Hakimi and Schmeichel [18]. Let f(n,H) denote the
maximum number of copies of H possible in an n-vertex planar graph. Observe
that f(n,H) is equal to ex(n,H,F) where F is the family of K3,3 or K5 subdi-
visions [21]. The case when H is a clique and F is a family of clique minors has
also been investigated (see, for example, [9,20,23]).

Hakimi and Schmeichel determined the function f(n,H) when H is a triangle
or cycle of length four. Moreover, they classified the extremal graphs attaining
this bound (a small correction to their result was given in [1]).

Theorem 1 (Hakimi and Schmeichel [18]). Let G be a maximal planar graph
with n ≥ 6 vertices, then C3(G) ≤ 3n − 8, where C3(G) is the number of cycles
of length 3 in G. This bound is attained if and only if G is a graph is obtained
from K3 by recursively placing a vertex inside a face and joining the vertex to
the three vertices of that face (graphs constructed in this way are referred to as
Apollonian networks).

Theorem 2 (Hakimi and Schmeichel [18], Alameddine [1]). Let G be
a maximal planar graph with n ≥ 5 vertices, then C4(G) ≤ 1

2 (n
2 + 3n − 22),

where C4(G) is the number of cycles of length 4 in G. For n �= 7, 8, the bound is
attained if and only if G is the graph shown in Fig. 1(A). For n = 7, the bound is
attained if and only if G is the graph in Fig. 1(A) or (B). For n = 8, the bound
is attained if and only if G is the graph in Fig. 1(A) or (C).

...

(A) Fn (B) (C)

Fig. 1. Planar graphs maximizing the number of cycles of length 4.

Thus, we have f(n,C3) = 3n−8 when n ≥ 6 and f(n,C4) = 1
2 (n

2+3n−22) for
n ≥ 5. In [14], we extended the results of Hakimi and Schmeichel by determining
f(n,C5) for all n.
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In the case when H is a complete bipartite graph, Alon and Caro [2] deter-
mined the value of f(n,H) exactly. They obtained the following results.

Theorem 3 (Alon and Caro [2]). For all k ≥ 2 and n ≥ 4,

f(n,K1,k) = 2
(

n − 1
k

)
+ 2

(
3
k

)
+ (n − 4)

(
4
k

)
.

Theorem 4 (Alon and Caro [2]).
For all k ≥ 2 and n ≥ 4,

f(n,K2,k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
n−2

k

)
, if k ≥ 5 or k = 4 and n �= 6;

3, if (k, n) = (4, 6);(
n−2
3

)
, if k = 3, n �= 6;

12, if (k, n) = (3, 6);(
n−2
2

)
+ 4n − 14, if k = 2.

Other results in this direction include a linear bound on the maximum num-
ber of copies of a 3-connected planar graph by Wormald [24] and independently
Eppstein [10]. The exact bound on the maximum number of copies of K4 was
given by Wood [22]. Let Pk denote the path of k vertices. It is well-known that
f(n, P2) = 3n−6, and it follows from Theorem 3 that f(n, P3) = n2+3n−16 for
n ≥ 4. The order of magnitude of f(n,H) when H is a fixed tree was determined
in [12]. In particular, for a path on k vertices, we have f(n, Pk) = Θ(n� k−1

2 �+1).
In this paper we determine f(n, P4), the maximum number of copies of a

path of length three possible in n-vertex planar graph. Our main result is the
following.

Theorem 5. We have,

f(n, P4) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

12, if n = 4;
147, if n = 7;
222, if n = 8;
7n2 − 32n + 27, if n = 5, 6 and n ≥ 9.

For integers n ∈ {4, 5, 6} and n ≥ 9, the only n-vertex planar graph attaining
the value f(n, P3) is the graph Fn. For n = 7 and n = 8 the graphs pictured in
Fig. 1(B) and 1(C), respectively are the only graphs attaining the value f(n, P4).

A few words about the proof:
It is known that the minimum degree of a maximal planar graph is at least 3

and at most 5. Proof of the theorem is a very involved mathematical induction
of 14 pages distinguishing these three cases of the minimum degree. The base
cases of the induction have surprisingly complicated proofs too. Details of the
proof can be found in arxiv [15].

The asymptotic value of f(n, P5) was determined, too, it is n3 (see [11]).
However the exact upper bound is not known yet.
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12. Győri, E., Paulos, A., Salia, N., Tompkins, C., Zamora, O.: Generalized planar
Turán numbers. arXiv:2002.04579 (2020)
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Abstract. An orientation of a graph G is Pfaffian if every even cycle
C such that G − V (C) has a perfect matching has an odd number of
edges oriented in either direction of traversal. Graphs that admit a Pfaf-
fian orientation permit counting the number of their perfect matchings
in polynomial time.

We consider a strengthening of Pfaffian orientations. An orientation
of G is strongly Pfaffian if every even cycle has an odd number of edges
directed in either direction of the cycle. We show that there exist two
graphs S1 and S2 such that a graph G admits a strongly Pfaffian ori-
entation iff it does not contain a graph H as a subgraph which can be
obtained from S1 or S2 by subdividing every edge an even number of
times. Combining our main results with a result of Kawarabayashi et
al. we show that given any graph the tasks of recognising whether the
graph admits a strongly Pfaffian orientation and constructing such an
orientation provided it exists can be solved in polynomial time.

Keywords: Graph theory · Perfect matching · Pfaffian orientation

1 Introduction

All graphs considered in this article are finite and do not contain loops. We also
exclude parallel edges, unless we explicitly address the graphs as multi-graphs.
Let G be a graph and F ⊆ E(G) be a set of edges. F is called a matching if no
two edges in F share an endpoint, a matching is perfect if every vertex of G is
contained in some edge of F . A subgraph H of G is conformal if G−V (H) has a
perfect matching, and finally an orientation of G is a digraph G such that (u, v)
or (v, u) is an edge of G iff uv ∈ E(G), and G does not contain (u, v) and (v, u)
at the same time. An even cycle C of G is oddly oriented by an orientation G if it
has an odd number of edges directed in either direction around C. An orientation
G of G is Pfaffian if G has a perfect matching and every even conformal cycle
C is oddly oriented by G. A graph G is called Pfaffian if it admits a Pfaffian
orientation.

Pfaffian orientations are significant as, given that a graph G admits a Pfaffian
orientation, the number of perfect matchings of G can be computed in polynomial
time. In general, the problem of counting the number of perfect matchings in a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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graph is polynomial-time equivalent to computing the permanent of a matrix,
which is known to be �P-hard [9]. By utilising a deep theorem of Lovász [5],
Vazirani and Yannakakis [10] proved that, in terms of complexity, recognising
a Pfaffian graph and finding a Pfaffian orientation can be seen as the same
problem.

Theorem 1 ([10]). The decision problems ‘Is a given orientation of a graph
Pfaffian?’ and ‘Is a given graph Pfaffian?’ are polynomial-time equivalent.

Let H be a graph and e ∈ E(H) be some edge of H. We say that a graph
H ′ is obtained from H by subdividing, or respectively bisubdividing, the edge e,
if H ′ can be obtained from H be replacing e with a path of positive length, or
respectively a path of odd length (possibly length one), whose endpoints coincide
with the endpoints of e and whose internal vertices do not belong to H. A graph
H ′′ is a subdivision, or respectively a bisubdivision, of H if it can be obtained by
subdividing, or respectively bisubdividing, all edges of H. Notably, bisubdivision
preserves path- and cycle-parities.

There exists a precise characterisation of Pfaffian bipartite graphs in terms
of forbidden bisubdivisions.

Theorem 2 ([4]). A bipartite graph G is Pfaffian iff it does not contain a con-
formal bisubdivision of K3,3.

While Theorem 2 characterises all Pfaffian bipartite graphs it does not imme-
diately yield a polynomial time recognition algorithm. Such an algorithm was
later found by McCuaig [6] and, independently, by Robertson et al. [8].

The case of non-bipartite Pfaffian graphs appears to be more illusive, and
it remains an important open problem in graph theory whether Pfaffian graphs
can be recognised in polynomial time. For several graph classes including non-
bipartite graphs characterisations of Pfaffian graphs in these classes are known
(see [1,2]), but whether they can be recognised in polynomial time appears to
be open. Moreover, there is no hope that all non-bipartite Pfaffian graphs can
be described by excluding a finite number of minimal obstructions in a fashion
similar to Theorem 2 [7]. For more Information on Pfaffian orientations and
related problems we refer the reader to [6].

Our Contribution. Inspired by the inherent complexity of Pfaffian orienta-
tions, especially in non-bipartite graphs, we investigate a stronger, and therefore
more restrictive version of Pfaffian orientations.

Definition 1. Let G be a graph. An orientation G of G is strongly Pfaffian if
every even cycle C of G is oddly oriented by G. A graph G that admits a strongly
Pfaffian orientation is called strongly Pfaffian.

For the class of strongly Pfaffian graphs it suffices to exclude bisubdivisions of
S1 and S2 (see Fig. 1), as subgraphs to characterise the entire class.

Theorem 3. A graph G is strongly Pfaffian iff it does not contain a bisubdivi-
sion of S1 or S2 as a subgraph.
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S1 S2

Fig. 1. The two obstructions for strongly Pfaffian graphs.

And furthermore, thanks to the results in [3], Theorem 3 allows us to deduce
that the task of recognising strongly Pfaffian graphs can be performed in poly-
nomial time, since we can simply check for the existence of the bisubdivided
versions of S1 and S2.

Theorem 4 ([3]). Let H be a fixed graph, and for each edge e ∈ E(H) let a
value p(e) ∈ {0, 1} be fixed. There exists a polynomial time algorithm for testing
if a given graph G contains a subdivision of H in which for every e ∈ E(H) the
length of the subdivision-path representing e is congruent to p(e) modulo 2.

Corollary 1. Strongly Pfaffian graphs can be recognised in polynomial time.

Theorem 5. Given a strongly Pfaffian graph, a strongly Pfaffian orientation
can be constructed in polynomial time.

Consequently given a graph G, we can test whether it is strongly Pfaffian
and construct a strongly Pfaffian orientation in polynomial time.

2 A Structural Characterisation of Strongly Pfaffian
Graphs

Let S be the class of graphs which do not contain bisubdivisions of S1 or S2 as
subgraphs. In order to show Theorem 3, we need to show that (1) every strongly
Pfaffian graph is contained in S and (2) every graph in S admits a strongly
Pfaffian orientation.

An important tool when working with strongly Pfaffian orientations is the
switching operation. For this let G be an orientation of a graph G and let v ∈
V (G). Then switching at v in G means reversing all arcs of G incident with v
to obtain a modified orientation of G. We say that two orientations of a graph
are switching-equivalent if one can be obtained from the other by a sequence of
switchings. Observe that if G1 and G2 are switching-equivalent orientations of
the same graph, then G1 is strongly Pfaffian if and only the same holds for G2.
Using this fact we can give a short proof of (1).

Lemma 1. If G is a strongly Pfaffian graph, then G ∈ S.

Proof. Since every subgraph of a strongly Pfaffian graph is strongly Pfaffian, it
suffices to show that no bisubdivision of S1 or S2 is strongly Pfaffian.

First let G be a bisubdivision of S1 and suppose towards a contradiction that
a strongly Pfaffian orientation G of G exists. Let u, v be the unique vertices of
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degree three in G and let P1, P2, P3 be the three disjoint u-v-paths in G. Since G
is a bisubdivision of S1, all three paths P1, P2, P3 have even length. Pause to note
that by applying vertex-switchings, we may find a strongly Pfaffian orientation
G′ of G that is switching-equivalent to G such that P1, P2 − v, P3 − v each form
directed paths in G′ starting at u. Since the cycles P1 ∪ P2 and P1 ∪ P3 must be
oddly oriented by G′, the last edges of both P2 and P3 must start in v. However,
this means that the cycle P2 ∪P3 has an even number of edges oriented in either
direction in G′, a contradiction showing that G is not strongly Pfaffian.

Next suppose that G is a bisubdivision of S2. Let v1, v2, v3, v4 be the vertices
of degree three in G and for i, j ∈ {1, 2, 3, 4}, let Pi,j be the subdivision-path of G
connecting vi and vj . Possibly after relabelling, we may assume that Pj,4 is even
for j ∈ {1, 2, 3} and P1,2, P2,3, P1,3 are odd. Suppose towards a contradiction
that there exists a strongly Pfaffian orientation G of G. Possibly by performing
switchings, we may assume w.l.o.g. that Pj,4 is directed from vj to v4 for j ∈
{2, 3, 4}. For j ∈ {1, 2, 3}, let pj be the number of forward-edges on Pj,j+1

when traversing it from vj to vj+1 (where 3 + 1 := 1). By the pigeon-hole
principle, we have pj ≡ pj+1(mod 2) for some j ∈ {1, 2, 3}, w.l.o.g. j = 1. Now
P1,2∪P2,3∪P3,4∪P4,1 is an even cycle in G with an even number of edges oriented
in either direction. This contradiction shows that G is not strongly Pfaffian. ��

The main work for Theorem 3 needs to be done when proving (2). Here our
approach is as follows: We give an explicit description of all graphs in the class
S and then later construct strongly Pfaffian orientations for all of these graphs.

We start by observing that it is sufficient to prove (2) for 2-vertex-connected
graphs: As is easily noted, a graph is contained in S iff the same is true for
each of its blocks (maximal 2-connected subgraphs). Similarly, given a strongly
Pfaffian orientation of each block of a graph, the union of these orientations
forms a strongly Pfaffian orientation of the whole graph.

As a next step we reduce the proof of (2) to the case of subdivisions of
3-vertex-connected multi-graphs. In order to do so, we consider an operation
that decomposes 2-connected graphs along 2-vertex-separations while preserving
important information concerning parities of path lengths.

Definition 2. Let G be a 2-vertex-connected graph, and let u, v ∈ V (G) be
distinct vertices such that {u, v} forms a separator of G. Let H1,H2 be connected
subgraphs of G such that V (H1) ∪ V (H2) = V (G), V (H1) ∩ V (H2) = {u, v}.
Finally, for i ∈ {1, 2} let Gi be a supergraph of Hi obtained as follows: If there
exists an odd u, v-path in H3−i, then add an edge uv to Hi (unless it already
exists). If there exists an even u-v-path in H3−i, then add a new vertex w /∈
V (Hi) to Hi and connect it to u and v. Perform both operations simultaneously
if both an even and an odd path from u to v in H3−i exists. With these definitions,
we call G a parity 2-sum of the two graphs G1 and G2.

The following result describes how parity sums interact with the class S and
strongly Pfaffian graphs. Due to the space restrictions, we omit its proof.

Lemma 2. Let G be the parity 2-sum of two graphs G1 and G2. Then G ∈ S
iff G1, G2 ∈ S, and G is strongly Pfaffian iff G1 and G2 are strongly Pfaffian.



Strongly Pfaffian Graphs 271

Using Lemma 2, it suffices to prove (2) for 2-vertex-connected graphs that cannot
be written as the parity 2-sum of two smaller graphs. It is not hard to see that
such graphs either have at most 2 vertices of degree larger than two (in this
case, the proof of (2) becomes quite trivial); or they are subdivisions of 3-vertex-
connected multi-graphs such that every subdivision-path has length at most two,
and two parallel subdivision-paths only exist in the form of a direct edge and a 2-
edge-path between the same two branch vertices. Since neither S1 nor S2 use two
parallel subdivision-paths of this type, it turns out that a graph G as described
above is contained in S iff the same is true for every subdivision of a 3-connected
simple graph contained in G (obtained by ignoring one of the two subdivision-
paths of each parallel pair). Hence, in order to describe all such graphs that
are contained in S, we can further reduce to subdivisions of 3-connected simple
graphs. To handle this case, we use the following key lemma.

Lemma 3. Let G ∈ S be a subdivision of a 3-connected simple graph H. Then
(A) V (H) is the disjoint union of two induced cycles whose subdivisions in G
are odd, or (B) for every odd cycle C in G the graph G − V (C) is a forest.

Proof (Sketch). We rely on two central observations. Let G be as in Lemma 3.
First, we observe that if C1 and C2 are respectively even and odd cycles within
G, then V (C1)∩V (C2) 	= ∅. If this was not true consider three internally disjoint
paths connecting C1 and C2 in G, which are guaranteed by the 3-connectivity of
H. Without much effort, it can be deduced that no matter which parities these
three paths respectively possess, we are guaranteed to find a bisubdivision of S1

in G, contradicting G ∈ S.
The second observation is slightly trickier. Let C1 and C2 be two disjoint

odd cycles in G, then we claim that C1 and C2 contain all vertices of degree
three or higher, and the underlying cycles C ′

1 and C ′
2 of C1 and C2 are induced

in H. Consider a vertex v 	∈ V (C1) ∪ V (C2) for which two paths P and Q with
V (P )∩V (Q) = {v} exist such that both P and Q end on Ci and do not intersect
C3−i, for i ∈ {1, 2}. Now clearly Ci ∪ P ∪ Q contains an even cycle disjoint
from C3−i, contradicting our first observation. Thus we already know that the
underlying cycles C ′

1 and C ′
2 of C1 and C2 are induced in H, as we can otherwise

find such a vertex v on a subdivided chord of C1 or C2. (Note in particular
that H is a simple graph and thus no parallel edges will disturb our cycles.)
Finally, if there exists a vertex u of degree three or higher outside V (C1)∪V (C2),
then we can again use the 3-connectedness of H to find three internally disjoint
paths between u and V (C1) ∪ V (C2). By the pigeonhole principle, two of these
paths must now violate the condition we have just established for the vertices
outside of V (C1) ∪ V (C2). From these two observations it is easy to derive the
characterisation presented in the statement of the lemma. ��

Using the two cases suggested by Lemma 3 we can derive a partition of the
graphs in S which are subdivisions of 3-connected graphs into four classes and
a handful of sporadic examples. This process is quite arduous and we omit the
explicit definitions of the graphs from this article and opt instead to provide
examples for each of the classes.
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Fig. 2. Representatives for the four classes. From left to right: (a) prismoid, (b)
wheeloid, (c) C4-cockade with handle, (d) möbioid.

The prismoids (see Fig. 2a), and five of the sporadic examples, all closely
related to the prismoids, correspond to property A mentioned in Lemma 3.
The wheeloids (see Fig. 2b), C4-cockades with handles (see Fig. 2c), möbioids
(see Fig. 2d) and a specific subdivision of K5 all correspond to property B in
Lemma 3. The subdivision of K5 and the möbioids are notably the only non-
planar graphs in S.

Using the structure of each of the classes, we can give concrete proofs for
the existence of strongly Pfaffian orientations for all their members. This can
then easily be extended to subdivisions of 3-connected multi-graphs as described
above, all in all showing that every graph in S admits a Pfaffian orientation.
Using this approach we verify (2) and hence conclude the proof of Theorem 3.
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Abstract. The notion of first order convergence of graphs unifies the
notions of convergence for sparse and dense graphs. Nešetřil and Ossona
de Mendez [J. Symbolic Logic 84 (2019), 452–472] proved that every first
order convergent sequence of graphs from a nowhere-dense class of graphs
has a modeling limit and conjectured the existence of such modeling
limits with an additional property, the strong finitary mass transport
principle. The existence of modeling limits satisfying the strong finitary
mass transport principle was proved for first order convergent sequences
of trees by Nešetřil and Ossona de Mendez [Electron. J. Combin. 23
(2016), P2.52] and for first order sequences of graphs with bounded path-
width by Gajarský et al. [Random Structures Algorithms 50 (2017), 612–
635]. We establish the existence of modeling limits satisfying the strong
finitary mass transport principle for first order convergent sequences of
graphs with bounded tree-width.

Keywords: Combinatorial limit · Graph limit · First order
convergence · Modeling limit

1 Introduction

The theory of combinatorial limits is an evolving area of combinatorics. The most
developed is the theory of graph limits, which is covered in detail in a recent
monograph by Lovász [21]. Further results concerning many other combinatorial
structures exist, e.g. for permutations [12,15,16,20] or for partial orders [14,18].
In the case of graphs, limits of dense graphs [5–7,22,23], also see [8,9] for a
general theory of limits of dense combinatorial structures, and limits of sparse
graphs [1–4,10,13] evolved to a large extent independently.

A notion of first order convergence was introduced by Nešetřil and Ossona
de Mendez [31,33] as an attempt to unify convergence notions in the dense
and sparse regimes. This general notion can be applied in the setting of any
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relational structures, see e.g. [17] for results on limits of mappings. Informally
speaking, a sequence of relational structures is first order convergent if for any
first order property, the density of �-tuples of the elements having this property
converges; a formal definition is given in Sect. 2. Every first order convergent
sequence of dense graphs is convergent in the sense of dense graph convergence
from [6,7], and every first order convergent sequence of graphs with bounded
degree is convergent in the sense of Benjamini-Schramm convergence from [2].

A first order convergent sequence of graphs can be associated with an ana-
lytic limit object, which is referred to as a modeling limit (see Sect. 2 for a formal
definition). However, not every first order convergent sequence of graphs has a
modeling limit [33] and establishing the existence of a modeling limit for first
order convergent sequences of graphs is an important problem in relation to
first order convergence of graphs: a modeling limit of a first order convergent
sequence of dense graphs yields a graphon, the standard limit object for conver-
gent sequences of dense graphs, and a modeling limit of a first order convergent
sequence of sparse graphs that satisfies the strong finitary mass transport princi-
ple (see Sect. 2 for the definition of the principle) yields a graphing, the standard
limit object for convergent sequences of sparse graphs.

Nešetřil and Ossona de Mendez [33] conjectured that every first order con-
vergent sequence of graphs from a nowhere-dense class of graphs has a modeling
limit. Nowhere-dense classes of graphs include many sparse classes of graphs, in
particular, classes of graphs with bounded degree and minor closed classes of
graphs; see [24–27,29] for further details and many applications. The existence
of modeling limits for convergent sequences of graphs from a nowhere-dense class
of graphs was proven in [32].

Theorem 1 (Nešetřil and Ossona de Mendez [32]). Let C be a class of
graphs. Every first order convergent sequence of graphs from C has a modeling
limit if and only if C is nowhere-dense.

Theorem 1 gives little control on the measure of vertex subsets in a modeling
limit, which naturally have the same size in finite graphs, e.g., those joined
by a perfect matching. The strong finitary mass transport principle, vaguely
spoken, translates natural constraints on sizes of vertex subsets to measures of
corresponding vertex subsets in a modeling limit. We refer to Sect. 2 for further
details.

Nešetřil and Ossona de Mendez [32] conjectured that Theorem 1 can be
strengthened by adding a condition that modeling limits satisfy the strong fini-
tary mass transport principle.

Conjecture 1 (Nešetřil and Ossona de Mendez [32, Conjecture 6.1]). Let
C be a nowhere-dense class of graphs. Every first order convergent sequence of
graphs from C has a modeling limit that satisfies the strong finitary mass trans-
port principle.

The existence of modeling limits satisfying the strong finitary mass transport
principle is known for first order convergent sequences of trees of bounded depth
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and more generally sequences of graphs with bounded tree-depth [33], sequences
of trees [31] and sequences of graphs with bounded path-width [11], which can be
interpreted by plane trees. Our main result (Theorem 2) establishes the existence
of modeling limits satisfying the strong finitary mass transport principle for
sequences of graphs with bounded tree-width.

Theorem 2. Let k be a positive integer. Every first-order convergent sequence
of graphs with tree-width at most k has a modeling limit satisfying the strong
finitary mass transport principle.

While it may seem at the first sight that a proof of Theorem 2 can be an easy
combination of a proof of the existence of modeling limits satisfying the strong
finitary mass transport principle for trees from [31] and for graphs with bounded
path-width [11], this is actually not the case. In fact, the argument in [11] is based
on interpretation of modeling limits of so-called plane trees, i.e., the results in
both [11] and [31] on the existence of modeling limits satisfying the strong finitary
mass transport principle do not go significantly beyond the class of trees.

We have not been able to find a first order interpretation of graphs with
bounded tree-width by trees, and we believe that this is related to a possibly
complex structure of vertex cuts in such graphs, which need to be addressed
using a more general approach. Specifically, the proof of Theorem 2 is based
on constructing modeling limits of rooted k-trees, which essentially encode the
universal weak coloring orders studied in relation to sparse classes of graphs [29],
so the proof may be amenable to an extension to graph classes with bounded
expansion in principle.

The proof of Theorem 2, similarly to the proof for the existence of modeling
limits of plane trees in [11], has two steps: the decomposition step, focused on
distilling first order properties of graphs in the sequence, and the composition
step, focused on constructing a modeling limit consistent with the identified first
order properties. These two steps also appear implicitly in [31,33], in particular,
the decomposition step is strongly related to the comb structure results presented
in [31,33]. The arguments of the decomposition step of the proof of Theorem 2
are analogous to those used in [11]. The composition step however requires a
conceptional extension of techniques used for modeling limits of trees as we
had to deal with vertex separations of sizes larger than one. This was achieved
by a careful analysis of different types of paths arising in an analogue of a
weak coloring order. This allows defining the edge set of a modeling limit in a
measurable and consistent way for vertex separations of sizes larger than one.

We remark that our arguments can be easily adapted to show the existence
of modeling limits of first order convergent sequences of graphs with bounded
tree-width that are residual, which then can be combined with the framework
described in [31, Theorem 1] to an alternative proof of Theorem 2.

2 Statement of the Main Result

In order to formally state our results, we need to define the notion of first order
convergence. This notion can be used for all relational structure and beyond, e.g.,
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matroids [19], however, for simplicity, we limit our exposition to graphs, which
may (but need not) be directed and edge-colored. If ψ is a first order formula
with � free variables and G is a (finite) graph, then the Stone pairing 〈ψ,G〉 is the
probability that a uniformly chosen �-tuple of vertices of G satisfies ψ. A sequence
(Gn)n∈N of graphs is first order convergent if the limit lim

n→∞〈ψ,Gn〉 exists for
every first order formula ψ. It follows from a straightforward argument that every
sequence of graphs has a first order convergent subsequence, see e.g. [28,30,33].

A modeling M is a (finite or infinite) graph with a standard Borel space on its
vertex set equipped with a probability measure such that the set of all �-tuples
of vertices of M satisfying a formula ψ is measurable in the product measure
for every first order formula ψ with � free variables. In the analogy to the graph
case, the Stone pairing 〈ψ,M〉 is the probability that a randomly chosen �-tuple
of vertices satisfies ψ. If a finite graph is viewed as a modeling with a uniform
discrete probability measure on its vertex set, then the Stone pairings for the
graph and the modeling obtained in this way evidently coincide. A modeling M
is a modeling limit of a first order convergent sequence (Gn)n∈N if

lim
n→∞〈ψ,Gn〉 = 〈ψ,M〉

for every first order formula ψ.
Every modeling limit M of a first order convergent sequence of graphs satisfies

the finitary mass transport principle. This means that for any two given first
order formulas ψ and ψ′, each with one free variable, such that every vertex v
satisfying ψ(v) has at least a neighbors satisfying ψ′ and every vertex v satisfying
ψ′(v) has at most b neighbors satisfying ψ, it holds that

a〈ψ,M〉 ≤ b〈ψ′,M〉.

For further details, we refer the reader to [31].
A stronger variant of this principle, known as the strong finitary mass trans-

port principle, requires that the following holds for any measurable subsets A
and B of the vertices of M : if each vertex of A has at least a neighbors in B and
each vertex of B has at most b neighbors in A, then

aμ(A) ≤ bμ(B)

where μ is the probability measure of M . Note that the assertion of the finitary
mass transport principle requires this inequality to hold only for first order defin-
able subsets of vertices. The strong finitary mass transport principle is satisfied
by any finite graph when viewed as a modeling but it need not hold for modelings
in general. In particular, the existence of a modeling limit of a first order con-
vergent sequence of graphs does not a priori imply the existence of a modeling
limit satisfying the strong finitary mass transport principle. The importance of
the strong finitary mass transport principle comes from its relation to graphings,
which are limit representations of Benjamini-Schramm convergent sequences of
bounded degree graphs: a modeling limit of a first order convergent sequence
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of bounded degree graphs is a limit graphing of the sequence if and only if M
satisfies the strong finitary mass transport principle.

The proof of Theorem 2 follows from the following result concerning rooted k-
trees, which are defined in a recursive way as follows. Any transitive tournament
with at most k vertices is a rooted k-tree, and if G is a rooted k-tree and vertices
v1, . . . , vk form a tournament, then the graph obtained from G by adding a new
vertex v and adding an edge directed from v to vi for every i ∈ [k] is also a rooted
k-tree. Observe that every rooted k-tree is an acyclic orientation of a k-tree (the
converse need not be true). We will consider rooted k-trees with edges colored
with two colors, which we will refer to as 2-edge-colored rooted k-trees.

Theorem 3. Fix a positive integer k. Every first order convergent sequence of
2-edge-colored rooted k-trees has a modeling limit satisfying the strong finitary
mass transport principle.

Since the tree-width of a graph G is the minimum k such that an orientation
of G is a subgraph of a rooted k-tree, G can be considered as a 2-edge-colored
rooted k-tree, where the coloring interprets the existence of edges in G. Hence,
Theorem 2 follows immediately from Theorem 3.
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Abstract. The loose core in hypergraphs is a structure inspired by loose
cycles which mirrors the close relationship between 2-cores and cycles in
graphs. We prove that the order of the loose core undergoes a phase tran-
sition at a certain critical threshold in the r-uniform binomial random
hypergraph Hr(n, p) for every r ≥ 3. We also determine the asymptotic
number of vertices and edges in the loose core of Hr(n, p). Furthermore
we obtain an improved upper bound on the length of the longest loose
cycle in Hr(n, p).

Keywords: Random hypergraphs · Loose cores · Loose cycles · Factor
graphs · Peeling processes

1 Motivation and Main Results

The k-core of a graph G, defined as the maximal subgraph of minimum degree at
least k, has been studied extensively in the literature (e.g. [3,6,8,9]). In the bino-
mial random graph G(n, p), whp1the k-core is equal to the largest k-connected
subgraph for each k ≥ 3, and therefore it may be seen as a natural generalisation
of the largest component. Among many other applications, cores can be used to
study cycles, since any cycle must lie within the 2-core. In fact, the best known
upper bounds on the length of the longest cycle in a random graph derive from
a careful analysis of the 2-core (e.g. [4]).

There are many different ways of generalising the concept of a k-core to
hypergraphs; some results for these cores can be found e.g. in papers by Molloy [7]
and Kim [5]. However, in the case k = 2, all k-cores which have been studied
so far do not fully capture the nice connection between the 2-core and cycles in
graphs.

One of the most natural concepts of cycles in hypergraphs is loose cycles.
Inspired by the substantial body of research on loose cycles, in this paper we
introduce the loose core, a structure which does indeed capture the connection
with loose cycles.
1 With probability tending to one as n → ∞.
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Definition 1 (Loose cycle). A loose cycle of length � in an r-uniform hyper-
graph is a sequence of vertices v1, . . . , v�(r−1)+1, all of which are distinct
except that v�(r−1)+1 = v1, and a sequence of edges e1, . . . , e�, where ei =
{v(i−1)(r−1)+1, . . . , v(i−1)(r−1)+r} for i ∈ [�] := {1, . . . , �}.
Definition 2 (Loose core). The loose core of an r-uniform hypergraph H is
the unique maximal subhypergraph H ′ of H such that H ′ contains no isolated
vertices and such that every e ∈ E(H ′) contains at least two vertices which have
degree at least two in H ′.

Observe that a loose cycle must be contained in the loose core.
In this extended abstract we determine the asymptotic number of vertices

and edges in the loose core (see Theorem 1) and derive an improved upper
bound on the length of the longest loose cycle (see Theorem 2) in an r-uniform
binomial random hypergraph. The previous best known upper bounds come from
considering either the first moment (see [1]) or isolated vertices (see [2]).

Throughout this extended abstract we fix d > 0 and r ≥ 3 and also fix the
following further parameters. Let p = p(r, n) := d

(n−1
r−1)

. In addition we define

a function F : [0,∞) → R by setting F (x) = Fr,d(x) := exp
(−d

(
1 − xr−1

))

and let ρ∗ = ρ∗(r, d) be the largest solution of the fixed-point equation 1 − ρ =
F (1 − ρ). Define ρ̂∗ := 1 − (1 − ρ∗)r−1 and let

α = α(r, d) := ρ∗
(
1 − d(r − 1)(1 − ρ∗)r−1

)
,

β = β(r, d) :=
d

r

(
1 − (1 − ρ∗)r − rρ∗(1 − ρ∗)r−1

)
,

and
γ = γ(r, d) := 1 − exp(−dρ̂∗) − dρ̂∗ exp(−dρ̂∗).

Let Hr(n, p) denote the r-uniform binomial random hypergraph on vertex set [n]
in which each set of r distinct vertices forms an edge with probability p inde-
pendently. Let v(CH) and e(CH) denote the number of vertices and edges in
the loose core CH of H = Hr(n, p). Our first result concerns the asymptotic
behaviour of v(CH) and e(CH).

Theorem 1. Let H = Hr(n, p). Then whp

v(CH) = (α + o(1)) n and e(CH) = (β + o(1)) n.

We can show that d∗ := 1/(r − 1) is a threshold at which the solution set of
1 − ρ = F (1 − ρ) changes its behaviour from only containing 0 to containing a
unique positive solution and therefore it is also a threshold for the existence of
a loose core of linear size.

Our second main result is an improved upper bound on the length LC of the
longest loose cycle in Hr(n, p).
Theorem 2. Let H = Hr(n, p). Then whp LC ≤ (min{β, γ} + o(1))n. In par-
ticular, if ε > 0 is a constant and p = 1+ε

(r−1)(n−1
r−1)

, then whp
(

ε2

4(r − 1)2
+ O(ε3)

)
n ≤ LC ≤

(
2ε2

(r − 1)2
+ O(ε3)

)
n.
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2 Sketch Proofs of Theorems 1 and 2

Instead of analysing the hypergraph Hr(n, p) directly, it is more convenient to
study its natural representation as a factor graph. Given a hypergraph H, the
factor graph G = G(H) of H is a bipartite graph on vertex classes V := V (H)
and F := E(H), where the vertices of G are the vertices and edges of H (which
we will call variable and factor nodes, respectively), and the edges of G represent
incidences. Let

Gr(n, p) := G(Hr(n, p)),

i.e. the factor graph of the r-uniform binomial random hypergraph Hr(n, p).
Given the loose core CH of a hypergraph H, the vertices of degree one may be

seen as passengers, not playing an active role in helping to fulfil the conditions
of Definition 2. Therefore it is useful to study the (non-uniform) hypergraph
obtained by deleting all vertices of degree 1 in CH , but not the edges in which
they are contained; we call this the reduced core of H. This structure has an easy
description in the factor graph setting: The reduced core R = RG of a factor
graph G is defined as the maximal subgraph of G with no nodes of degree 1.
Note that the reduced core is very similar to the 2-core of G—the only difference
is that we do not delete isolated nodes, so all original nodes are still present,
which will be convenient when describing the degree distribution in RG.

Critically, it is easy to reconstruct the loose core of Hr(n, p) from the reduced
core R of the factor graph Gr(n, p) by moving to the corresponding (non-uniform
multi-)hypergraph, deleting any isolated vertices and empty edges, then adding
distinct vertices into each remaining edge until the hypergraph is r-uniform.
Therefore our main results are implied by the following theorem about the
reduced core RG of the factor graph G = Gr(n, p).

For a non-negative real number λ, let us denote by P̃o the distribution that
is identical to the Po distribution except that values of 1 are replaced by 0. We
define the B̃i distribution analogously.

For each j ∈ N, let ξj and ξ̂j be the proportion of variable nodes and factor
nodes of G = Gr(n, p) respectively which have degree j in the reduced core RG.

Theorem 3. There exists a function ε = ε(n) = o(1) such that whp for any
constant j ∈ N we have

ξj = P(P̃o(dρ̂∗) = j) ± ε and ξ̂j = P(B̃i(r, ρ∗) = j) ± ε.

We prove Theorem 3 in Sect. 3.

Proof (Sketch proof of Theorem 1). By Theorem 3 we know the number of vari-
able nodes in the reduced core RG of G = Gr(n, p). Any variable node of degree
j ≥ 2 in RG also has degree j in the loose core of H. However, when moving
from RG to CH certain isolated vertices receive degree one. Since we know the
degree distribution of factor nodes in RG it is easy to calculate how often this
occurs, which proves the statement on the number of vertices in the loose core
of H. The second statement is proven similarly.
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Proof (Sketch proof of Theorem 2). The length of the longest loose cycle is
bounded both by the number of variable nodes and the number of factor nodes
which are not isolated in RG. The upper bound then follows from Theorem 1.
The lower bound follows from a result of [1] on loose paths together with a
sprinkling argument.

3 Reduced Core: Proof of Theorem 3

In order to prove Theorem 3 we consider the obvious adaptation of the standard
peeling process which gives the reduced core rather than the 2-core. In every
round we check whether the factor graph has any nodes of degree one and delete
edges incident to such nodes. We say that we disable a node if we delete its
incident edges. For � ≥ 0, let G� be the graph obtained from G = Gr(n, p) after
� rounds of this process.

We recall the definition of ξj and ξ̂j before Theorem 3 and observe that

ξj := lim
�→∞

ξ
(�)
j and ξ̂j := lim

�→∞
ξ̂
(�)
j ,

where ξ
(�)
j , ξ̂

(�)
j are the proportions of variable nodes and factor nodes respectively

which have degree j in G� for � ∈ N. Theorem 3 follows immediately from the
following two lemmas. The first describes the asymptotic distribution of ξ

(�)
j and

ξ̂
(�)
j for large �.

Lemma 1. There exist an integer � = �(n) ∈ N and a real number ε1 = ε1(n) =
o(1) such that whp, for any constant j ∈ N

ξ
(�)
j = P(P̃o(dρ̂∗) = j) ± ε1 and ξ̂

(�)
j = P(B̃i(r, ρ∗) = j) ± ε1.

The second lemma states that ξ
(�)
j and ξ̂

(�)
j approximate ξj and ξ̂j , respec-

tively.

Lemma 2. Let �, ε1 be as in Lemma 1 and set ε2 :=
√

ε1. Then, whp, for any
constant j ∈ N we have ξj = ξ

(�)
j ± ε2 and ξ̂j = ξ̂

(�)
j ± 2ε2r

d .

4 CoreConstruct: Proofs of Lemmas 1 and 2

To prove Lemma 1, we introduce a procedure called CoreConstruct, which is
related to the peeling process. We first need some more notation.

Definition 3. Let G be a factor graph with variable node set V and factor node
set F . We denote by dG(u, v) the distance between two nodes u, v ∈ V ∪ F , i.e.
the number of edges in a shortest path between them. For each � ∈ N and each
w ∈ V ∪ F , we define

D�(w) := {u ∈ V ∪ F : dG(w, u) = �} and d�(w) := |D�(w)|.
Let D≤�(w) =

⋃�
i=0 Di(w) and N≤�(w) := G[D≤�(w)], i.e. the subgraph of G

induced on D≤�(w).
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Given a factor graph G on node set V ∪ F and a node w ∈ V ∪ F , we
consider the factor graph as being rooted at w. In particular, neighbours of a
node v which are at distance dG(v, w)+1 from w are called children of v. Starting
at distance � ∈ N and moving up towards the root w, we recursively delete any
node with no (remaining) children; Algorithm 1 gives a formal description of
this procedure. We will denote by D∗

�−i(w) the set of nodes in D�−i(w) which
survive round i and let d∗

i (w) := |D∗
i (w)|.

Algorithm 1: CoreConstruct
Input: Integer � ∈ N, node w ∈ V ∪ F , factor graph N≤�+1(w)
Output: d∗

1(w)
1 D∗

�+1(w) = D�+1(w)
2 for 1 ≤ i ≤ � do

3 D∗
�−i+1(w) ← D�−i+1(w) \

{
v : N(v) ∩ D∗

�−i+2(w) = ∅
}

4 d∗
�−i+1(w) ← |D∗

�−i+1(w)|

CoreConstruct is intended to model the effect of the peeling process on
the degree of w after � steps. Although it does not mirror the peeling process
precisely, we obtain the following important relation.

Lemma 3. Let � ≥ 1 and w ∈ V ∪ F . If there are no cycles in N≤�+1(w),
then the output d∗

1(w) of CoreConstruct with input �, w and N≤�+1(w) satisfies
dG�

(w) = d∗
1(w) if d∗

1(w) 	= 1 and dG�
(w) ≤ d∗

1(w) if d∗
1(w) = 1.

We next describe the survival probabilities of internal (i.e. non-root) variable
and factor nodes in each round of CoreConstruct. Recall that for any i ∈ [�] the
set D∗

�+1−i(w) consists of nodes within D�+1−i(w) which survive the i-th round
of CoreConstruct. We define the recursions ρ0 = 1, ρ̂t = P(Bi(r − 1, ρt−1) ≥ 1)
and ρt = P(Po(dρ̂t) ≥ 1).

Lemma 4. Let w ∈ V ∪ F and � be odd if w ∈ V or even if w ∈ F . Let t ∈ N with
0 ≤ t ≤ �+1

2 be given. If N≤�+1(w) has no cycles, then for each u ∈ D�+1−2t(w)
independently of each other and for each a ∈ D�−2t(w) independently of each
other

P[u ∈ D∗
�+1−2t(w)] = ρt + o(1) and P[a ∈ D∗

�−2t(w)] = ρ̂t+1 + o(1).

A consequence of Lemma 4 is that, if � is large, the distribution of the number
of children of the root w which survive CoreConstruct is almost identical to one
of the claimed distributions in Theorem 3 (depending on whether w is a variable
or factor node). Thus we can asymptotically determine the expected degree
distribution in G�.

Corollary 1. There exist ε = o(1) and � = �(ε) such that for all j ∈ N,

E

(
ξ
(�)
j

)
= P

(
P̃o(dρ̂∗) = j

)
± ε and E

(
ξ̂
(�)
j

)
= P

(
B̃i(r, ρ∗) = j

)
± ε.
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We achieve concentration of ξ
(�)
j and ξ̂

(�)
j around their expectations using an

Azuma-Hoeffding inequality applied to a variant of the vertex-exposure martin-
gale. To ensure a sufficiently strong Lipschitz property, we apply this to the prob-
ability space conditioned on having maximum degree log n, proving Lemma 1.

In order to prove Lemma 2, we also need to show that after some large
number � rounds of the peeling process on G = Gr(n, p) have been completed,
whp very few nodes will be disabled in subsequent rounds (at most ε2n), thus
proving Lemma 2.

Definition 4 (Change process). We will track the changes that the peeling
process makes after reaching round � by revealing information a little at a time as
follows. Reveal the degrees of all nodes. While there are still nodes of degree one,
pick one such node x0. Reveal its neighbour x1, delete the edge x0x1 and update
the degrees of x0, x1. If x1 now has degree one, continue from x1; otherwise find
a new x0 (if there is one).

By Lemma 1, whp at most ε
3/4
1 n vertices will change in round � + 1 of the

peeling process. Each stage of the change process (from a new vertex x0) stops
if we reach a vertex of degree at least 3. Each time we reveal a neighbour, the
probability that it has degree at least 3 is bounded away from 0 by Lemma 1. This
can be modelled by an abstract subcritical branching process which provides an
upper coupling on a stage of the change process. In particular, since whp each of
the at most ε

3/4
1 n stages of the change process will die out quickly, whp the total

number of vertices which change after round � is at most
√

ε1n = ε2n. Some
elementary calculations complete the proof of Lemma 2.
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Abstract. We introduce a class of graphs called OAT graphs that gen-
eralizes P4-sparse, chordal bipartite, and compact graphs. We prove that
if G is a k-colourable OAT graph then G is (k+1)-mixing and the (k+1)-
recolouring diameter of G is O(n2), unifying and extending several results
in the literature. We also identify a mistake in the literature and leave as
an open problem whether a k-colourable P5-free graph is (k+1)-mixing.

Keywords: Reconfiguration · Vertex colouring

1 Introduction

All graphs considered are finite and simple. We use n to denote the number of
vertices of a graph. See [4] for standard graph-theoretic notation.

For a graph G, the reconfiguration graph of the k-colourings, Rk(G), is the
graph whose vertices are the k-colourings of G and two colourings are joined by
an edge in Rk(G) if they differ in colour on exactly one vertex. A graph G is
k-mixing if Rk(G) is connected. In this case the k-recolouring diameter of G is
defined to be the diameter of Rk(G). We say that a graph G is quadratically
k-mixing if G is k-mixing and the diameter of Rk(G) is O(n2).

Bonamy et al. [2] asked whether a k-colourable perfect graph G is quadrat-
ically (k + 1)-mixing. One cannot hope for a smaller diameter since the 3-
recolouring diameter of Pn, the path on n vertices, is Ω(n2) [2]. Bonamy and
Bousquet [1] answered this question in the negative, using an example of Cere-
ceda, van den Heuvel, and Johnson [3], who gave an infinite family of bipartite
graphs that are not k-mixing. Feghali and Fiala [5] found an infinite family of
weakly chordal graphs that are k-colourable but not (k + 1)-mixing. It is known
that a k-colourable graph G is quadratically (k + 1)-mixing if G is chordal,
chordal bipartite [2], or P4-free [1]. Feghali and Fiala introduced a subclass of
weakly chordal graphs called compact graphs that generalizes the class of co-
chordal graphs, and proved that a k-colourable compact graph G is quadratically
(k + 1)-mixing [5].

We introduce a new class of graphs which we call OAT graphs that generalizes
the classes of chordal bipartite, P4-free, and compact graphs. Interestingly, not
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all OAT graphs are perfect, see Fig. 1. We prove that a k-colourable OAT graph
G is quadratically (k + 1)-mixing, thus unifying and extending several results in
the literature. We note that our proof leads to a polynomial time algorithm to
find a path of length O(n2) between two nodes in Rk+1(G).

The third author’s Master’s thesis [7] includes a polynomial time algorithm
to recognize OAT graphs and other details not in this paper.

Definition 1. A graph G is an OAT graph if it can be constructed from single
vertex graphs with a finite sequence of the following four operations. Let G1 =
(V1, E1) and G2 = (V2, E2) be vertex-disjoint OAT graphs.

1. Take the disjoint union of G1 and G2, defined as (V1 ∪ V2, E1 ∪ E2).
2. Take the join of G1 and G2, defined as (V1 ∪ V2, E1 ∪ E2 ∪ {xy | x∈V1,

y ∈V2}).
3. Add a vertex u /∈ V1 comparable to vertex v ∈ V1, defined as (V1 ∪ {u}, E1 ∪

{ux | x ∈ X}), where X ⊆ N(v).
4. Attach a complete graph Q = (VQ, EQ) to a vertex v of G1, defined as (V1 ∪

VQ, E1 ∪ EQ ∪ {qv | q ∈ VQ}).

The following is the main result of this paper.

Theorem 1. Let G be an OAT graph and let k ≥ χ(G). Then G is (k+1)-mixing
and the (k + 1)-recolouring diameter of G is at most 4n2.

Feghali and Fiala asked whether a k-colourable (P5, co-P5, C5)-free graph G
is quadratically (k +1)-mixing. We give a positive answer for the subclass of P4-
sparse graphs, which are exactly the (P5, co-P5, C5, P , co-P , fork, co-fork)-free
graphs [6]: every P4-sparse graph is an OAT graph [7].

Next we remark on the connectivity and diameter of Rk+1(G) for a k-
colourable Pt-free graph G for t ≥ 5. In the case t ≥ 6, the bipartite graph
Bk given by Cereceda, van den Heuvel, and Johnson [3] is not k-mixing, but is
P6-free for every k ≥ 3.

In the case of P5-free graphs, Bonamy and Bousquet [1] thought they had a 4-
colourable P5-free graph G with an isolated vertex in R5(G). This graph is in fact
not P5-free as illustrated in Fig. 2. In addition, Bonamy and Bousquet thought
they had a family of P5-free graphs {Gk | k ≥ 3} where Gk is (k + 1)-colourable
and where R2k(G) has an isolated vertex. The graph Gk also contains an induced
P5 for every k ≥ 3. We leave as an open problem whether a k-colourable P5-free
graph is (k + 1)-mixing.

2 Recolouring OAT Graphs

In this section, we prove Theorem 1. Our strategy uses a canonical χ(G)-
colouring as a central vertex in the reconfiguration graph Rk+1(G). For any
two colourings α and β in Rk+1(G), we show how to transform both into the
canonical χ(G)-colouring γ by recolouring each vertex at most 2n times, so using
at most 2n2 recolouring steps. This is asymptotically optimal since the path Pn

is a 2-colourable OAT graph for which the 3-recolouring diameter is Ω(n2) [2].
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v
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ca

u

Fig. 1. A graph that is not perfect, but is an OAT graph. (Start with b, add v and
{a, c} via attaching complete graphs, then add u, u′ comparable to b.)

Fig. 2. Graphs mistaken to be P5-free [1]. An induced P5 is marked with dashed edges.

Let S be a set of k colours and let α : V (G) → S be a k-colouring of G.
The set S is called the set of permissible colours for α and we denote S by S(α)
when α is not clear from the context. We also call α an S-colouring when we
want to emphasize its set of permissible colours.

Let RS(G) be the graph whose vertices are the S-colourings of G such that
two vertices of RS(G) are adjacent if and only if they differ by colour on exactly
one vertex. If |S| = k then RS(G) is isomorphic to Rk(G).

Let C(α) be the set of colours c that appear in α i.e., α(v) = c for some vertex
v ∈ V (G). Thus C(α) ⊆ S(α) but they need not be equal. We say that a colouring
α of G can be transformed into a colouring β of G in RS(G) if there is a path
from α to β in RS(G). Let H be a subgraph of G. Let nH denote the number of
vertices of H. The projection of α onto H is the colouring αH : V (H) → S(αH)
where αH(v) = α(v) for all v ∈ V (H).

A build-sequence of an OAT graph G is a finite sequence of the four defined
operations that constructs G; we assume in the following that one such build-
sequence σ is fixed. We use σ to define a canonical χ(G)-colouring, which is
unique if we assume that vertices are enumerated in some fixed arbitrary order.

Definition 2. Let G be an OAT graph and let C be an ordered set of χ(G)
colours. The canonical χ-colouring of G with respect to C is the χ(G)-colouring
of G constructed recursively as follows.

1. If G is a single vertex v, then v is coloured with the first colour of C.
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2. If G is the disjoint union of L and R, then take a canonical χ-colouring of L
with respect to the first χ(L) colours of C and a canonical χ-colouring of R
with respect to the first χ(R) colours of C.

3. If G is the join of L and R, then take a canonical χ-colouring of L with
respect to the first χ(L) colours in C and take a canonical χ-colouring of R
with respect to the next χ(R) colours in C (|C| = χ(G) = χ(L) + χ(R)).

4. If G is constructed by adding a comparable vertex u to a vertex v of a graph
H, then take a canonical χ-colouring of H with respect to C and colour u the
same colour as v.

5. If G is constructed by attaching a complete graph Q to a vertex v of a graph H,
then take a canonical χ-colouring of H with respect to the first χ(H) colours
of C. Let the induced order of vertices of Q be {q1, q2, . . .}. Colour the vertices
q1, q2, . . . of Q in order with the first |Q| colours of C \ c where c is the colour
given to v in the canonical χ-colouring of H.

Our proofs use induction to recolour the subgraphs that build up the OAT
graph in a fixed construction. There are generally two steps to these proofs. The
first step is to recolour the vertices so that the partition of vertices into colour
classes is the same as the canonical χ-colouring. The second step is to rename
these colours so that the correct colour appears on the correct colour class. For
this, we rely on the Renaming Lemma. The Renaming Lemma is an adaptation
of an idea that is used in token swapping and was also rediscovered by Bonamy
and Bousquet [1] who rephrased the lemma in terms of recolouring complete
graphs. Our statement is expressed more generally.

Lemma 1 (Renaming Lemma [1]). If α and β are two k-colourings of G
that induce the same partition of vertices into colour classes, and if S is a set of
at least k + 1 colours such that the permissible colours S(α) and S(β) are each
a subset of S, then α can be transformed into β in RS(G) by recolouring each
vertex at most 2 times.

The following lemma is used to prove Theorem 1.

Lemma 2. Let G be an OAT graph. Let S be a set of k + 1 colours where
k ≥ χ(G) and let C be an ordered set of χ(G) colours such that C ⊆ S. Then any
colouring α in RS(G) can be transformed into the canonical χ-colouring γ of G
with respect to C by recolouring each vertex at most 2n times.

Proof. The proof is by induction on the number of vertices n of G. Clearly α
can be recoloured into γ using at most 1 recolouring if n = 1, so assume G was
constructed with one of the four operations defining OAT graphs.

Case 1. Suppose G is constructed as the disjoint union of the graphs L and R.
Note that L and R can be recoloured independently since there are no edges
between L and R. Let αL be the projection of α onto L and define S(αL) = S
to be its set of permissible colours. Clearly χ(G) = max{χ(L), χ(R)}, so αL is
an S-colouring of L with |S| ≥ χ(L) + 1. By the induction hypothesis, we can
transform αL within RS(L) into the canonical χ-colouring of L with respect to
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the first χ(L) colours of C by recolouring each vertex of L at most 2nL < 2n
times. This reconfiguration sequence appears in RS(G) since there are no edges
between L and R. Similarly reconfigure the projection αR of α onto R into the
canonical χ-colouring of R by recolouring each vertex of R at most 2nR < 2n
times. Taking these two reconfiguration sequences consecutively gives the desired
reconfiguration sequence.

Case 2. Suppose G is constructed as the join of the graphs L and R. Let αL

and αR denote the projections of α onto L and R, respectively. Note that C(αL)
is disjoint from C(αR) since there are all possible edges between L and R. We
obtain four subcases by combining: ((1) |C(αL)| = χ(L) OR (2) C(αL)| > χ(L))
AND ((A) |C(αR)| = χ(R) OR (B) C(αR)| > χ(R)). Assume for now that (1B)
does not happen. Recolour L first, using permissible colours S(αL) chosen as
follows. If |C(αL)| > χ(L), then set S(αL) = C(αL). Otherwise (since (1B) does
not happen) |S| > χ(G) = χ(L) + χ(R) = |C(αL)| + |C(αR)|. So some colour
c ∈ S does not appear in α; define S(αL) = C(αL) ∪ {c}. Either way, αL is
an S(αL)-colouring of L and |S(αL)| > χ(L). By the induction hypothesis, αL

can be transformed within RS(αL)(L) into the canonical χ-colouring of L with
respect to the first χ(L) colours of C(αL) by recolouring each vertex at most 2nL

times. Furthermore, by our choice of S(αL), none of the intermediate colourings
of L uses a colour from C(αR) so the same reconfiguration sequence appears
within RS(G).

Since the canonical χ-colouring of L uses χ(L) colours, some colour c′ ∈
S(αL) does not appear in the current colouring of G. Define S(αR) = C(αR)∪{c′}
as the set of permissible colours for αR. Then αR is an S(αR)-colouring of R
and |S(αR)| > χ(R). By the induction hypothesis, αR can be transformed within
RS(αR)(R) into the canonical χ-colouring of R with respect the first χ(R) colours
of C(αR) by recolouring each vertex at most 2nR times. The same reconfiguration
sequence appears within RS(G) since S(αR) is disjoint from the colours that
appear on the vertices of L.

So we now have a colouring α′ of G such that α′
L is a canonical χ(L)-colouring

of L and α′
R is a canonical χ(R)-colouring of R. (If Case (1B) happens, then

we obtain α′ in a symmetric fashion by recolouring R before recolouring L.)
Colouring α′ and the canonical χ(G)-colouring γ of G must partition the vertices
of G into the same colour classes. By Lemma 1, we can transform α′ into γ by
recolouring each vertex at most twice. Therefore we can transform α into γ by
recolouring each vertex of G at most 2max{nL, nR} + 2 ≤ 2n times.

Case 3. Suppose G is constructed by adding a vertex u comparable to a ver-
tex v of the OAT graph H = G \ {u}. First recolour u the same colour as v.
This is possible since u and v are non-adjacent and N(u) ⊆ N(v). Let αH be
the projection of α onto H and define S(αH) = S to be its set of permissible
colours. Clearly χ(H) = χ(G) and so αH is an S-colouring with |S| > χ(H).
By the induction hypothesis, αH can be transformed within RS(H) into the
canonical χ(H)-colouring with respect to C by recolouring each vertex of H at
most 2nH times. To extend this reconfiguration sequence to RS(G), whenever v
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is recoloured, recolour u the same colour. By definition, this colouring of G is the
canonical χ-colouring of G with respect to C. Each vertex of H was recoloured
at most 2nH < 2n times and u was recoloured at most 2nH + 1 < 2n times.

Case 4. Suppose G is constructed by attaching a complete graph Q to some
vertex v of an OAT graph H. Let αH be the projection of α onto H and define
S(αH) = S to be its set of permissible colours. Clearly χ(H) ≤ χ(G) and so
αH is an S-colouring of H with |S| > χ(H). By the induction hypothesis, αH

can be transformed within RS(H) into the canonical χ-colouring γH of H with
respect to the first χ(H) colours of C. To extend this reconfiguration sequence to
RS(G), whenever v is recoloured to some colour c, we may need to first recolour
at most one vertex q of Q that is coloured c. Since χ(G) = max{χ(H), nQ + 1}
and |S| ≥ χ(G) + 1 ≥ nQ + 2, and each vertex of Q has degree nQ, there exists
some colour c′ that does not appear on the neighbourhood of q and is not the
colour c. Recolour q with the colour c′ and then continue by recolouring v with
colour c. Now H is coloured with the canonical χ(H)-colouring γH .

Let c∗ = γH(v) and let α′
Q be the current colouring of Q and define S(α′

Q) =
S \ {c∗} to be its set of permissible colours. Recall that the vertices of Q are
ordered {q1, q2, . . .}. The canonical χ-colouring of Q with respect to C is the
colouring γQ such that qi is coloured the ith colour of C\{c∗}. Since |S| ≥ nQ+2,
then |S \ {c∗}| ≥ nQ + 1. By the Renaming Lemma (Lemma 1), α′

Q can be
transformed within RS(α′

Q)(Q) into γQ by recolouring each vertex of Q at most
twice. Since each vertex of Q is only adjacent to v in H and c∗ was never used
in this recolouring of Q, this reconfiguration sequence can extend to RS(G).
Now by definition, the current colouring of G is the canonical χ-colouring of G
with respect to C. Each vertex of H was recoloured at most 2nH times and each
vertex of Q was recoloured at most 2nH + 2 ≤ 2n times.

We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). Fix S = {1, 2, . . . , k+1} to be the set of permissible
colours used in the colourings of Rk+1(G) and let C be an ordered set of χ(G)
colours such that C ⊆ S. Let α, β : V (G) → S be two (k + 1)-colourings of G.
Then by Lemma 2, we can transform both α and β into the canonical χ-colouring
γ of G with respect to C in RS(G) by recolouring each vertex at most 2n times.
Then to transform α to β, follow the sequence from α to γ and then follow the
sequence from β to γ in reverse. Therefore Rk+1(G) is connected with diameter
at most 4n2.
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Abstract. Let Φ := (φi)i∈ I be a finite collection of linear forms
φi : F

d
p → Fp. We introduce a 2-parameter refinement of Cauchy-

Schwarz (CS) complexity, called sequential Cauchy-Schwarz complexity.
We prove that if Φ has sequential Cauchy-Schwarz complexity at most

(k, �), then |Ex1,...,xd∈Fn
p

∏
i∈ I fi(φi(x1, . . . , xd))| ≤ mini∈I ‖fi‖21−�

Uk+1 for
any 1-boun- ded functions fi : Fn

p → C, i ∈ I. For � = 1, this reduces
to CS complexity, but for larger � the two notions differ. For exam-
ple, let Sk,M := {z ∈ [0, p − 1]M : z1 + · · · + zM < k}, and consider
Φk,M :=

{
φz(x, t1, . . . , tM ) := x + z1t1 + · · · + zM tM | z ∈ Sk,M

}
,

a multivariable generalization of arithmetic progressions. We show that
Φk,M has sequential CS complexity at most (min(k, M(p− 1)+1)− 2, �)
for some finite �, yet can have CS complexity strictly larger than
min(k, M(p − 1) + 1) − 2. Moreover, we show that Φk,M has True com-
plexity min(k, M(p − 1) + 1) − 2.

In [2], we use these results in a new proof of the inverse theorem for
F
n
p .

Keywords: Cauchy-Schwarz complexity · True complexity ·
Generalized Von Newmann

1 Introduction

This paper is a short version of [1].
Let G be a finite abelian group. Given A ⊂ G, a central problem in additive

combinatorics consists in counting the number of solutions of a given system of
linear equations inside A. For example, we may be interested in counting the
number of (non-trivial) arithmetic progressions of length k inside A. To do so,
since the work of Gowers on Szemerédi’s theorem [3] it has become a standard
technique to consider the functional Λk(A) := Ex,r∈G1A(x)1A(x + r) · · · 1A(x +
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(k−1)r), which gives us the (normalized) count of k-term arithmetic progressions
inside A1, and to analyze this quantity using the Gowers uniformity norms.

In this paper we focus on the case G = F
n
p for some prime p. For tech-

nical reasons, one often considers more generally the averages Λ((fi)i∈I :=
Et1,...,td∈Fn

p

∏
i∈[r] fi(φi(t1, . . . , td)) where (fi : Fn

p → C)i∈I are 1-bounded func-
tions and (φi : Fd

p → Fp)i∈I are distinct linear forms. We are then interested in
bounding Λ((fi)i∈I in terms of mini∈[r](‖fi‖Uk+1) where ‖ · ‖Uk+1 is the Gowers
uniformity norm of order k + 1.2 To state the first result in this direction let us
begin with the following definition (introduced by Green and Tao in [8])3:

Definition 1 (Cauchy-Schwarz complexity.). Let (φi : Fd
p → Fp)r

i=1 be a
collection of r distinct linear forms in d variables. Fix some i ∈ [r] and let k ≥ 0
be an integer. We say that this system has Cauchy-Schwarz complexity (or CS
complexity for short) at most k at i if {φ1, . . . , φe} \ {φi} can be partitioned
into at most k + 1 classes such that φi is not contained in the Fp-linear span of
any of these classes. If this holds for all i ∈ [r], we say that the system has CS
complexity at most k.

It is not difficult to extract from (the arguments used in) [8] the following
estimate:

Proposition 1. Let (φi : Fd
p → Fp)r

i=1 be a collection of r distinct linear forms
in d variables4. Suppose that it has CS complexity at most k. Then for every
collection of 1-bounded functions fi : Fn

p → C, i ∈ [r] we have

|Et1,...,td∈Fn
p

∏

i∈[r]

fi(φi(t1, . . . , td))| ≤ min
i∈[r]

(‖fi‖Uk+1).

This result tells us (roughly) that if we control sufficiently well the Uk norms
of the functions fi then we can estimate the densities of various types of linear
configurations. Currently we have a much better understanding of the Uk norms
for small k. If k = 1 this (semi)norm collapses to the absolute value of the mean
of the function. For k = 2 it can be proved that ‖f‖U2(G) = ‖f̂‖l4(G) where
f̂ is the Fourier transform of f (see [12, (11.3)]). Similarly, we have a better
understanding of the U3 norm than of the Uk norm for k > 3, etc., see [4,7,9].

Thus, it is of interest to know which degree of Gowers norm is sufficiently
large to control a given linear configuration. This question was raised by Gowers

1 These arguments appear in [3] for the group Z/pZ, but they easily extend to any
group G such that |G| is coprime with (k − 1)!.

2 For a more detailed account on these norms and how to use them we refer the reader
to [12, Chapter 11] or [8, Appendix B]. However, this paper includes all necessary
results to understand the proof of the main theorem.

3 This notion appeared originally in [8] but we use the name of Cauchy-Schwarz com-
plexity that comes from [5, Definition 1.1].

4 Note that we can regard the functions φi as linear functionals from F
dn
p to F

n
p in the

obvious manner for any n ≥ 1. This assumption will be made throughout the whole
paper.
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and Wolf in [5], where they introduced the following concept (we state here the
adapted version for the group F

n
p ):

Definition 2 (True complexity). Let Φ := (φi : Fd
p → Fp)r

i=1 be a collection
of r distinct linear forms in d variables. The True complexity of Φ is the smallest
k with the following property. For any ε > 0 there exists δ > 0 such that for
any n ≥ 1 and any system of 1-bounded functions (fi : F

n
p → C)i∈[r] with

mini∈[r](‖fi‖Uk+1) < δ we have

|Et1,...,td∈Fn
p

∏

i∈[r]

fi(φi(t1, . . . , td))| < ε.

It is trivial that the CS complexity of a system of linear equations is at
least its True complexity. Surprisingly, it turns out that there are systems of
linear forms with True complexity strictly smaller than CS complexity. In [5]
Gowers and Wolf conjectured a simple algebraic condition to compute the True
complexity of a given linear system, and they proved their conjecture in the case
of True complexity 1 and CS complexity 2. We omit the detailed statement of
this result, as it is not needed for this paper. Let us briefly mention that for
the groups that interest us, i.e. the groups Fn

p , the full conjecture was eventually
proved by Hatami, Hatami and Lovett in [10]. These works relied on the inverse
conjecture for the Gowers norms, and thus they did not give effective bounds
on ε in terms of δ. It was conjectured in [6, Problem 7.8] that the dependence
between ε and δ cannot be too good (in particular, not polynomial) in general.

The only known result (apart from the ones mentioned) that gives good
bounds for this dependence, for certain systems of linear equations, is due to
Manners, who proved in [11, Theorem 1.5] that for 6 linear forms in 3 variables,
if a system of linear equations has CS complexity 2 and True complexity 1, it
is possible to obtain a polynomial dependence between ε and δ as in Definition
2. That is, there exists a constant C > 0 that does not depend on n such that
ε = δC . The proof of this uses only the CS inequality together with clever changes
of variables.

2 New Results

We begin with the following definition:

Definition 3 (Sequential CS complexity). Let Φ := (φi : Fd
p → Fp)r

i=1 be a
collection of r distinct linear forms in d variables. Fix some i ∈ [r]. We say that
Φ has sequential CS complexity at most (k, �) at i, for some integers k ≥ 0 and
� ≥ 1, if there exists a sequence j1, . . . , j� ∈ [r] of indices such that j� = i and
for every e ∈ {1, . . . , �}, the set {φ1, . . . , φr} \ {φj1 , . . . , φje

} can be partitioned
into k + 1 classes such that {φj1 , . . . , φje

} is included in the complement of the
linear span of each of these classes. If this happens for every i ∈ [r] we say that
Φ has sequential CS complexity at most (k, �).
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Note that for � = 1 this definition reduces to Definition 1.
We can now state the main result of this paper:

Theorem 1. Let Φ := (φi : F
d
p → Fp)r

i=1 be a collection of r distinct linear
forms in d variables. Suppose that this system has sequential CS complexity at
most (k, �) for some integers k ≥ 0 and � ≥ 1. Then for every collection of
1-bounded functions (fi : Fn

p → C)i∈[r] we have

|Et1,...,td∈Fn
p

∏

i∈[r]

fi(φi(t1, . . . , td))| ≤ min
i∈[r]

(‖fi‖21−�

Uk+1).

As an application, we prove that this improves Proposition 1 in the sense
that there are systems of linear forms such that their CS complexity is k′ and
their sequential CS complexity is at most (k, �) with k < k′. Let Sk,M := {z ∈
[0, p−1]M : z1+ · · ·+zM < k} (where the sum is in Z). We consider the following
system of linear forms Φk,M :=

{
φz(x, t1, . . . , tM ) := x+ z1t1 + · · ·+ zM tM | z =

(z1, . . . , zM ) ∈ Sk,M

}
, where now these forms are linear functions from F

M+1
p to

Fp. This can be regarded as a multidimensional arithmetic progression of length
k over Fp. Note that for M = 1 this is a regular arithmetic progression of length
k. In this case we can use Proposition 1 to prove that the True complexity of
this system is at most min(k, p − 1) − 2. Indeed it can be proved that this is
the True complexity of the system, and more generally for all M we have the
following (for a proof see [1]):

Proposition 2. Let k,M be positive integers and p a prime number. Then the
system Φk,M has True complexity at least min(k,M(p − 1) + 1) − 2.

Using Theorem 1 we can deduce the following (for a proof see [1]):

Theorem 2. Let k,M be positive integers and p a prime number. Then the
system Φk,M has True complexity equal to k∗ := min(k,M(p − 1) + 1) − 2
and there exists c = ck,M,p ∈ (0, 1] such that for every collection of 1-bounded
functions (fz : Fn

p → C)z∈Sk,M
we have

∣
∣Et1,...,td∈Fn

p

∏

z∈Sk,M

fz(φz(t1, . . . , td))
∣
∣ ≤ min

z∈Sk,M

‖fz‖c
Uk∗+1 . (1)

We can take c = 1 for k ≤ p or k ≥ M(p − 1) + 1 and c = 21−|Sk,M | otherwise.

Note that in the so-called high-characteristic case (k ≤ p) Theorem 2 follows
from Proposition 1, and similarly if k ≥ M(p − 1) + 1.

Finally, let us mention the following result, which proves that in many cases
the CS complexity of the system Φk,M is larger than k − 2 (for a proof see [1]).

Proposition 3. Let p ≥ 5 and M ≥ 2. Then the system Φp+1,M has CS com-
plexity at least p.
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3 Proof of the Main Result

Let Fp denote the field Z/pZ for a prime p. A linear form in F
d
p is a linear map

φ : Fd
p → Fp, (x1, . . . , xd) �→ a1x1 + · · · + adxd for some a1, . . . , ad ∈ Fp. More

generally, we can consider φ as a linear form defined on (Fn
p )d for any n ≥ 1 via

the formula (x1 . . . , xd) ∈ (Fn
p )d �→ a1x1 + · · · + adxd where now xi ∈ F

n
p for all

i = 1, . . . , d. We will use the following fact of linear algebra:

Proposition 4. Let U1, U2 be subspaces of FM
p such that U1∩U2 = 〈v〉 for some

v �= 0. For i = 1, 2 suppose that there is a subspace Di ⊂ Ui with Di ∩〈v〉 = {0}.
Then (D1 + D2) ∩ Ui = Di for i = 1, 2.

We leave the proof of this fact to the reader (it can be found also in [1]).

Proof (of Theorem 1). The proof is by induction on �, the case � = 1 being given
by Proposition 1.

First, assume that the sequence that appears in Definition 3 is precisely
φ1, . . . , φ�. Recall that we are interested in bounding the average Λ((fi)i∈[r]) :=
Et1,...,td∈Fn

p

∏
i∈[r] fi(φi(t1, . . . , td)). We claim that there exists an invertible

matrix T ∈ Md×d(Fp) such that φ1T = (1, 0d−1) (where φ1 is seen as a horizon-
tal vector). Consider the matrix T ∗ ∈ Mnd×nd(Fp) that is obtained by replacing
each entry Ti,j of T by Ti,j · Idn×n (where Idn×n is the identity matrix of dimen-
sion n). It can be proved that det(T ∗) = (det(T ))n so this is indeed a valid
change of variables.

Thus, without loss of generality we can assume that φ1 = (1, 0d−1) and write
Λ((fi)i∈[r]) = Et1∈Fn

p
f1(t1)Et2,...,td∈Fn

p

∏r
i=2 fi(φi(t1, . . . , td)). We apply now the

CS inequality to the t1 variable and we obtain that |Λ((fi)i∈[r])| is bounded by
the square root of

Et1,t2,...,td,t′
2,...,t′

d∈Fn
p

∏

i∈[2,r]

fi(φi(t1, t2 . . . , td))
∏

i∈[2,r]

fi(φi(t1, t′2 . . . , t′d)). (2)

Now we shall write this as an average over 2d − 1 variables and check
that the corresponding system of linear forms has sequential CS complexity
at most (k, � − 1). If we denote by φi,j the j-th entry of the linear form
φi we define φ′

i := (φi+1,1, . . . , φi+1,d, 0d−1) ∈ F
2d−1
p if i ∈ [r − 1] and

φ′
i := (φi−r+2,1, 0d−1, φi−r+2,2, . . . , φi−r+2,d) ∈ F

2d−1
p if i ∈ [r, 2r − 2]. And also,

gi := fi+1 if i ∈ [r − 1] and gi := fi−r+2 if i ∈ [r, 2r − 2]. Thus, (2) equals

Et1,...,t2d−1∈Fn
p

∏

i∈[2r−2]

gi

(
φ′

i(t1, . . . , t2d−1)
)
. (3)

And we just have to show that the system (φ′
i)

2r−2
i=1 has sequential CS complexity

at most (k, � − 1) at � − 1 (recall that we have assumed that this is the index we
are aiming for). Fix some e ∈ [r − 1]. We have to prove that we can partition
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{φ′
1, . . . , φ

′
2r−2} \ {φ′

1, . . . , φ
′
e} into k + 1 classes such that their Fp-span do not

meet {φ′
1, . . . , φ

′
e}.

Note that there are clearly two types of linear forms, the ones for the indices
i ∈ [r − 1] all of which have their last d − 1 coordinates equal to 0 (let us
denote this space by U1) and the remaining forms for i ∈ [r, 2r − 2], all of which
have their second to the d-th coordinate equal to 0 (let us denote this space
by U2). Now, consider the trivial isomorphism between U1 and F

d
p. It is clear

that the forms φ′
1, . . . , φ

′
r−1 correspond to the points φ2, . . . , φr. As {φ1, . . . , φr}

satisfies Definition 3 we can partition {φe+1, . . . , φr} into k +1 classes such that
their linear span do not meet {φ1, . . . , φe}. Let us denote these linear spaces by
L1, . . . , Lk+1 ⊂ F

d
p and consider the corresponding linear spaces seen inside U1

(denote them by L′
1, . . . , L

′
k+1). Now we argue similarly with U2, but this time

we use the linear cover of {φ1, . . . , φr} that excludes just φ1. Thus, in U2 we
have linear subspaces D′

1, . . . , D
′
r that cover every form φ′

i for i ∈ [r, 2r − 2].
The key point now is that as we have eliminated φ1 with the CS inequality, we

can apply Proposition 4 to the pairs L′
j ⊂ U1, D′

j ⊂ U2 for j ∈ [k +1]. Therefore
the subspaces L′

j + D′
j for j ∈ [k + 1] form a covering of {φ′

e+1, . . . , φ
′
2r−2} that

does not meet {φ′
1, . . . , φ

′
e} (as in Definition 3). In other words, this system has

sequential CS complexity at most (k, l − 1) at l − 1 and the result follows by
induction.
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Abstract. Partition functions are an important research object in com-
binatorics and mathematical physics [Barvinok, 2016]. In this work, we
consider the partition function of the Ising antiferromagnet on random
regular graphs and characterize its limiting distribution in the replica
symmetric phase up to the Kesten-Stigum bound. Our proof relies on a
careful execution of the method of moments, spatial mixing arguments
and small subgraph conditioning.

Keywords: Ising antiferromagnet · Small subgraph conditioning

1 Introduction

1.1 Motivation

The Ising model, invented by Lenz in 1920 to explain magnetism, is a cornerstone
in statistical physics. Consider any graph G with vertex set V and edge set E.
Each vertex carries one of two possible spins ±1 and the interactions between
vertices are represented by E. For a spin configuration σ ∈ {±1}V on G, we can
consider the Hamiltonian HG

HG(σ) =
∑

(v,w)∈E

1 + σvσw

2
.

Together with a real parameter β > 0 the Hamiltonian gives rise to a distribution
on spin configurations σ ∈ {±1}V defined by

μG,β(σ) =
exp (−βHG(σ))

ZG,β
where ZG,β =

∑

τ∈{±1}V

exp (−βHG(τ)) . (1)

The probability measure μG,β is known as the Boltzmann distribution with the
normalizing term ZG,β being the partition function. μG,β favors configurations
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with few edges between vertices of the same spin which is known as the anti-
ferromagnetic Ising model. There is a corresponding formulation of (1) where
edges between vertices of the same spin are preferred - the ferromagnetic Ising
model. Both models are of great interest in combinatorics and physics and the
literature on each is vast [7].

In this paper, we study the Ising antiferromagnet on the random d-regular
graph G = G(n, d). One might be tempted to think that the regularities of
this graph model provide a more amenable study object than its well-known
Erdős-Rényi counterpart with fluctuating vertex degrees. However, for the Ising
model the reverse seems to be true. Indeed, the independence of edges in the
Erdős-Rényi-model greatly facilitates deriving the distribution of short cycles in
the planted model and simplifies the calculation of both the first and second
moment.

Clearly, μG,β gives rise to correlations between spins of nearby vertices. The
degree of such correlations is governed by the choice of β. A question which is of
keen interest in combinatorics and statistical physics is whether such correlations
persist for two uniformly sampled (and thus likely distant) vertices. According
to physics predictions, for small values of β we should observe a rapid decay
of correlation [10] and thus no long-range correlations. This regime is known as
the replica symmetric phase. It is suggested that there exists a specific β which
marks the onset of long-range correlations in G. This value is conjectured to be
at the combinatorially meaningful Kesten-Stigum bound [3]

βKS = log
(√

d − 1 + 1√
d − 1 − 1

)
.

The question of long-range correlations is tightly related to the partition func-
tion ZG,β from which also various combinatorially meaningful observables can
be derived. The Max Cut on random d-regular graphs is a case in point due to
the well-known relation

MaxCut(G) =
dn

2
+ lim

β→∞
∂

∂β
log ZG,β .

for any graph G. Thus, it is of key interest to understand the behavior of ZG,β .

1.2 Result

In recent work, [3] were able to pinpoint the replica symmetry breaking phase
transition at the Kesten-Stigum bound, thus charting the replica symmetric
phase for the Ising antiferromagnet on random d-regular graphs. The key feature
of the replica-symmetric phase is that w.h.p. two independent samples σ1,σ2

from the Boltzmann distribution μG,β exhibit an almost flat overlap in the sense
that |σ1 · σ2| = o(n). To be precise, [3] determined ZG,β up to an error term
exp(o(n)) for β < βKS. In this paper, we move beyond this crude approxima-
tion. By deriving the limiting distribution in the replica-symmetric phase, we
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show that ZG,β is tightly concentrated with bounded fluctuations which we can
quantify and attribute to short cycles in G.

Theorem 1. Assume that 0 < β < βKS and d ≥ 3. Let (Λi)i be a sequence of
independent Poisson variables with E [Λi] = λi where λi = (d−1)i

2i . Further, let

δi =
(

e−β−1
e−β+1

)i

. Then as n → ∞ we have

log
(
ZG(n,d),β

) − 1
2

log
(

1 + eβ

2 + deβ − d

)
− n

((
1 − d

2

)
log (2) +

d

2
log

(
1 + e−β

))

d−→ log (W ) where W := exp (−λ1δ1 − λ2δ2)
∞∏

i=3

(1 + δi)
Λi exp (−λiδi) .

The infinite product defining W converges a.s. and in L2.

Taking the expectation of this distribution readily recovers the first part of
the result by [3]. The proof of Theorem 1 relies on the combination of the method
of moments and small subgraph conditioning enriched in our case by spatial
mixing arguments to make the calculation of the second moment tractable.

2 Techniques

2.1 Notation

Let G = G(n, d) denote a random d-regular graph on n vertices. We consider
sparse graphs with constant d as n → ∞. Throughout the paper, we will employ
standard Landau notation with the usual symbols o(·), O(·), Θ(·), ω(·), and Ω(·)
to refer to the limit n → ∞. We say that a sequence of events (En)n holds with
high probability (w.h.p.) if limn→∞ P (En) = 1. When the context is clear we
might drop the index of the expectation. Moreover, we will use the proportional
∝ to hide necessary normalizations.

2.2 Outline

To get a handle on the distribution of ZG,β in the replica symmetric phase, we
need to identify the sources of fluctuations of ZG,β . One obvious source is the
number of short cycles. Since G is sparse and random, standard arguments reveal
that G contains only few short cycles. In the following, let Ci(G) denote the
number of short cycles of length i in a graph G and F� the σ-algebra generated
by the random variables Ci(G) for i ≤ �. A key quantity to consider is the
variance of ZG,β . By standard decomposition, we have

Var [ZG,β ] = E

[
E [ZG,β | F�]

2 − E [ZG,β ]2
]

+ E

[
E

[
Z2
G,β | F�

] − E [ZG,β | F�]
2
]
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for any � ≥ 1. Note that the first term of the r.h.s. describes the contribution to
the variance by the fluctuations in the number of short cycles, while the second
term accounts for the conditional variance given the number of short cycles. It
turns out that as � → ∞ after taking n → ∞, the second summand vanishes. In
other words, the entire variance of ZG,β is due to fluctuations in the number of
short cycles.

To show this property formally, we leverage a result by [8] that stipulates
conditions under which one is able to describe the limiting distribution of ZG,β

(see Theorem 1 in [8]). One ingredient is the distribution of short cycles in G

and a planted model G∗. In G
∗, we first select a spin configuration σ uniformly

at random and subsequently sample a graph G with probability proportional to
exp (−βHG(σ)). While the distribution of short cycles in G is well established,
the distribution of short cycles in the planted model G∗ is a key contribution
of this paper. The second ingredient is a careful application of the method of
moments. Unfortunately, standard results on the first and second moment on
random regular graphs (see i.e. [3]), do not suffice in our case and we have to
sharpen our pencils to yield an error term of order O (exp(1/n)). While the need
for this lower error term prolongs calculations, it also poses some challenges that
we resolve by a careful application of the Laplace’s method as suggested by [5]
and spatial mixing arguments.

2.3 Short Cycles

To get started, let us write

δi =
(

e−β − 1
e−β + 1

)i

and λi =
(d − 1)i

2i
. (2)

The first item on the agenda is to derive the distribution of short cycles in
G. This is a well-established result.

Fact 2 (Theorem 9.5 in [9]) Let Λi ∼ Po(λi) be a sequence of independent
Poisson random variables for i ≥ 3. Then jointly for all i we have Ci(G) d−→ Λi

as n → ∞.

Deriving the distribution of short cycles in the planted model G∗ informally
introduced above requires some more work. Let us start with the definitions.
Given σ ∈ {±1}V and for any β > 0, let us define the distribution of G∗(σ) for
any event A as

P [G∗(σ) ∈ A] ∝ E [exp (−βHG(σ))1 {G ∈ A}] . (3)

This definition gives rise to the following experiment. First, draw a spin con-
figuration σ∗ uniformly at random among all configurations {±1}V . In the next
step, draw G

∗ = G
∗(σ∗) according to (3). Hereafter, G

∗ will be denoted the
planted model.
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Proposition 1. Let Ξi ∼ Po (λi (1 + δi)) be a sequence of independent Poisson
random variables for i ≥ 3. Then jointly for all i we have Ci(G∗) d−→ Ξi as
n → ∞.

Establishing the distribution of short cycles in G
∗ is one of the main contri-

butions of this paper. To this end, we start off with similar arguments as used
in [11], but need to diligently account for the subtle dependencies introduced by
the regularities in G

∗.
Applying Fact 2 and Proposition 1 to Theorem 1 in [8] requires a slight detour

via the Nishimori property. To this end, note that the random graph G induces
a reweighted graph distribution Ĝ which for any event A is defined by

P

[
Ĝ ∈ A

]
∝ E [ZG,β1 {G ∈ A}] . (4)

Moreover, consider the distribution σ̂ on spin configurations defined by

P [σ̂ = σ] ∝ E [exp (−βHG(σ))] (5)

for any β > 0. Ĝ,G∗, σ̂,σ∗, and the Boltzmann distribution from (1) are con-
nected via the well-known Nishimori property.

Fact 3 (Proposition 3.2 in [4]) For any graph G and spin configuration σ ∈
{±1}V we have

P

[
Ĝ = G

]
μG(σ) = P (σ̂ = σ)P (G∗ = G | σ∗ = σ) .

2.4 The First and Second Moment

The second key ingredient towards the proof of Theorem 1 is the method of
moments. As standard random regular graph results are too crude, we need a
more precise calculation. Fortunately, with some patience and equipped with the
Laplace method as stated in [5], the first moment is not too hard to find.

Proposition 2. Assume that 0 < β < βKS and d ≥ 3. Then we have

E [ZG,β ] = exp (−λ1δ1 − λ2δ2 + O (1/n))
√

(1 + eβ) / (2 + deβ − d)

· exp
(
n

(
(1 − d/2) log (2) + d log

(
1 + e−β

)
/2

))

The second moment is not as amenable. The key challenge for applying the
Laplace method is to exhibit that the obvious choice of the optimum is indeed a
global maximum. We resolve this issue by resorting to results on the broadcast-
ing process on an infinite d-regular tree and the disassortative stochastic block
model. This spatial mixing argument allows us to focus our attention on an area
close to the anticipated optimum. To this end, let us exhibit an event O that is
concerned with the location of two typical samples σG,σ′

G
from the Boltzmann

distribution μG,β , i.e.
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O = {E [σG · σ′
G

| G] < εnn} (6)

for a sequence of εn = o(1). Then we can leverage the following result from [3].

Lemma 1. For the event O defined in (6) we have for d ≥ 3, 0 < β < βKS

E [ZG,β1 {O}] = (1 − o(1))E [ZG,β ]

Proof. The statement follows from Lemmas 2.1, 2.3, 2.5, 4.3 and Corollary 4.15
in [3].

Conditioning on O greatly facilitates the calculation of the second moment.

Proposition 3. For 0 < β < βKS and d ≥ 3 we have

E
[
Z2
G,β1 {O}]

= exp

(
λ1 + λ2 − 4λ1

(1 + eβ)2
− 4λ2

(
1 + e2β

)2

(1 + eβ)4
+ O

(
1
n

))

·
(
1 + eβ

)2 exp
(
n

(
(2 − d) log (2) + d log

(
1 + e−β

)))

(deβ − d + 2)
√

2e2β + 2deβ − de2β − d + 2
.

2.5 Proof of Theorem1

We apply Theorem 1 in [8] to the random variable ZG,β1 {O}. Condition (1)
readily follows from Fact 2. For Condition (2) let us write

C(G) = {C1(G) = c1, . . . , C�(G) = c�}

for any graph G. Using standard reformulations and the definition of Ĝ from
(4) we find

E [ZG,β | C(G)]
E [ZG,β ]

=
E [ZG,β1 {C(G)}]
P [C(G)]E [ZG,β ]

=
P

[
C(Ĝ)

]

P [C(G)]
=

Eσ̂

[
P

[
C(Ĝ) | σ̂

]]

P [C(G)]
.

Since a typical sample σ from σ̂ has the property that |σ · 1| = O
(
n2/3

)
, i.e. is

relatively balanced, the Nishimori property (Fact 3) implies

Eσ̂

[
P

[
C(Ĝ) | σ̂

]]
∼ P [C(G∗)] .

Condition (2) now follows from Fact 2 and Proposition 1. For Condition (3)
consider any β = βKS − ε for some small ε > 0. Letting η = η(ε) > 0 a simple
calculation reveals

∑

i≥1

λiδ
2
i ≤

∑

i≥1

λi

(
e−βKS+ε − 1
e−βKS+ε + 1

)2i

=
∑

i≥1

(1 − η)i

2i
< ∞.
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Finally, by Lemma 1, Propositions 2 and 3 and the fact that for any 0 < x < 1
log (1 − x) = −∑

i≥1 xi/i we find for 0 < β < βKS and d ≥ 3

E

[
Z2
G,β1 {O}

]

E [ZG,β1 {O}]2
= (1 + o(1))

E

[
Z2
G,β1 {O}

]

E [ZG,β ]2
= (1 + o(1)) exp

⎛

⎝
∑

i≥3

λiδ
2
i

⎞

⎠

establishing Condition (4) and thus the distribution of ZG,β1 {O}. Since by
Lemma 1 E [ZG,β (1 − 1 {O})] = o (E [ZG,β ]), Theorem 1 follows from Markov’s
inequality.

3 Discussion

Studying partition functions has a long tradition in combinatorics and mathe-
matical physics. k-SAT, q-coloring or the stochastic block model are just some
noteworthy examples where the partition function reveals fundamental and novel
combinatorial insights. Due to its connection to the Max Cut problem and
the disassortative stochastic block model, the Ising antiferromagnet fits nicely
into this list. For random d-regular graphs, Coja-Oghlan et al. [3] pinpointed
its replica symmetry breaking phase transition at the Kesten-Stigum bound.
Using the method of moments and spatial mixing arguments, they determine
ZG,β up to exp(o(n)). In this paper, we move beyond this approximation and
derive the limiting distribution of ZG,β in the replica symmetric regime. We note
that the distribution of ZG,β above the Kesten-Stigum bound is fundamentally
different. A similar analysis for the Erdős-Rényi-model was carried out in [11].

Using the combination of the method of moments and small subgraph con-
ditioning underlying our proof was initially pioneered by Robinson & Wormald
[12] to prove that cubic graphs are w.h.p. Hamiltonian. Janson [8] subsequently
showed that small subgraph conditioning can be used to obtain limiting distri-
butions. This strategy was successfully applied, among others, to the stochastic
block model [11] and the Viana-Bray model [6]. For other problems, the sec-
ond moment appears to be too crude for the entire replica symmetric phase and
enhanced techniques are needed [2]. In this work, we enrich the classical strategy
of the method of moments and small subgraph conditioning by spatial mixing
arguments to cover the entire replica symmetric phase.

An interesting remaining question is to throw a bridge between the prop-
erties of the partition function ZG,β and long-range correlations in G. While it
should be a small step from Theorem 1 to vindicate the absence of long-range
correlations in the replica symmetric phase, proving the presence of long-range
correlations above the Kesten-Stigum bound is a more challenging, yet important
endeavour.
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Abstract. A split graph is a graph whose vertex set can be partitioned
into a clique and a stable set. Given a graph G and weight function
w : V (G) → Q≥0, the Split Vertex Deletion (SVD) problem asks
to find a minimum weight set of vertices X such that G − X is a split
graph. It is easy to show that a graph is a split graph if and only if it
does not contain a 4-cycle, 5-cycle, or a two edge matching as an induced
subgraph. Therefore, SVD admits an easy 5-approximation algorithm.
On the other hand, for every δ > 0, SVD does not admit a (2 − δ)-
approximation algorithm, unless P=NP or the Unique Games Conjec-
ture fails.

For every ε > 0, Lokshtanov, Misra, Panolan, Philip, and Saurabh [9]
recently gave a randomized (2+ ε)-approximation algorithm for SVD. In
this work we give an extremely simple deterministic (2+ε)-approximation
algorithm for SVD.

Keywords: Graph theory · Approximation algorithms · Induced
subgraphs

A graph G is a split graph if V (G) can be partitioned into two sets K and S such
that K is a clique and S is a stable set. Split graphs are an important subclass
of perfect graphs which feature prominently in the proof of the Strong Perfect
Graph Theorem by Chudnovsky, Robertson, Seymour, and Thomas [3].

Given a graph G and weight function w : V (G) → Q≥0, the Split Vertex
Deletion (SVD) problem asks to find a set of vertices X such that G − X is
a split graph and w(X) :=

∑
x∈X w(x) is minimum. A subset X ⊆ V (G) such

that G − X is a split graph is called a hitting set. We denote by OPT(G,w) the
minimum weight of a hitting set.

It is easy to show that G is a split graph if and only if G does not contain
C4, C5 or 2K2 as an induced subgraph, where C� denotes a cycle of length �
and 2K2 is a matching with two edges. Therefore, the following is an easy 5-
approximation algorithm1 for SVD in the unweighted case (the general case

1 An α-approximation algorithm for SVD is a (deterministic) polynomial-time algo-
rithm computing a hitting set X with w(X) � α · OPT(G, w).
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follows from the local ratio method [6]). If G is a split graph, then ∅ is a hitting
set, and we are done. Otherwise, we find an induced subgraph H of G such that
H ∈ {C4, C5, 2K2}. We put V (H) into the hitting set, replace G by G − V (H),
and recurse.

On the other hand, there is a simple approximation preserving reduction from
Vertex Cover to SVD (see [9]). Therefore, for every δ > 0, SVD does not
admit a (2 − δ)-approximation algorithm, unless P=NP or the Unique Games
Conjecture fails [7].

For every ε > 0, Lokshtanov, Misra, Panolan, Philip, and Saurabh [9] recently
gave a randomized (2 + ε)-approximation algorithm for SVD. Their approach
is based on the randomized 2-approximation algorithm for feedback vertex set
in tournaments [8], but is more complicated and requires several new ideas and
insights.

Our main result is a much simpler deterministic (2 + ε)-approximation algo-
rithm for SVD.

Theorem 1. For every ε > 0, there is a (deterministic) (2 + ε)-approximation
algorithm for SVD.

As a quick comparison, the full version of [9] is 27 pages, while our entire
proof fits into this extended abstract. Moreover, as far as we can tell, the easy 5-
approximation described above was the previously best (deterministic) approx-
imation algorithm for SVD. Before describing our algorithm and proving its
correctness, we need a few definitions.

Let G be a graph and H be a family of graphs. We say that G is H-free if
G does not contain H as an induced subgraph for all H ∈ H. We let G be the
complement of G. A cut in a graph G is a pair (A,B) such that A ∪ B = V (G)
and A ∩ B = ∅. The cut (A,B) is said to separate a pair (K,S) where K is a
clique, and S is a stable set if K ⊆ A and S ⊆ B. A family of cuts F is called
a clique-stable set separator if for all pairs (K,S) where K is a clique and S
is a stable set disjoint from K, there exists a cut (A,B) in F such that (A,B)
separates (K,S). For each k ∈ N, let Pk be the path on k vertices.

The main technical ingredient we require is the following theorem of Bous-
quet, Lagoutte and Thomassé [1].

Theorem 2. For every k ∈ N, there exists c(k) ∈ N such that every n-vertex,
{Pk, Pk}-free graph has a clique-stable set separator of size at most nc(k). More-
over, such a clique-stable set separator can be found in polynomial time.

We remark that [1] do not state that the clique-stable set separator can be
found in polynomial time, but this is easy to check, where the relevant lemmas
appear in [2, Theorem 4], [5, Theorem 1.1], and [4, Lemma 1.5]. Note that the
abstract of [1] states that c(k) is a tower function. However, the bound for c(k)
can be significantly improved by using [5, Theorem 1.1] instead of a lemma of
Rödl [10] (which was used in an older version of [2]). The proof of [5, Theorem
1.1] does not use the Szemerédi Regularity Lemma [11], and provides much better
quantitative estimates.

We are now ready to state and prove the correctness of our algorithm.
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Proof. Let G be an n-vertex graph, w : V (G) → Q≥0, and ε > 0. We may
assume that w(v) > 0 for all v ∈ V (G), since we may delete vertices of weight
0 for free. Choose k sufficiently large so that 2k

k−4 ≤ 2 + ε. Let 1 be the weight
function on V (Pk) which is identically 1. Since the largest clique of Pk has size 2
and every vertex cover of Pk has size at least �k/2	, every hitting set of Pk has
size at least k−4

2 . Therefore, |V (Pk)|/OPT(Pk,1) ≤ 2 + ε, and so by the local
ratio method [6], we may assume that G is Pk-free. Note that G is a split graph
if and only if G is a split graph. Thus, we may also assume that G is Pk-free.
Now, by Theorem 2, there exists a constant c(k) such that G has a clique-stable
set separator F such that |F| ≤ nc(k).

For each (A,B) ∈ F , let ρA and ρB be the weights of the minimum vertex
covers of (G[A], w) and (G[B], w). Since there is a 2-approximation algorithm
for vertex cover, for each (A,B) ∈ F , we can find vertex covers XA and XB of
(G[A], w) and (G[B], w) such that w(XA) ≤ 2ρA and w(XB) ≤ 2ρB . Note that
XA ∪ XB is a hitting set. Let X∗ be a minimum weight hitting set for (G,w),
and suppose that V (G − X∗) is partitioned into a clique K∗ and a stable set
S∗. Since F is a clique-stable set separator, there must be some (A∗, B∗) ∈ F
such that K∗ ⊆ A∗ and S∗ ⊆ B∗. Therefore, if we choose (A,B) ∈ F such
that w(XA) + w(XB) is minimum, then XA ∪ XB is a hitting set such that
w(XA ∪ XB) ≤ 2w(X∗). Finally, since |F| ≤ nc(k), our algorithm clearly runs in
polynomial time.
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Abstract. The kite and the dart are the two graphs obtained from a
K4 − e by adding a vertex u and making u adjacent to one vertex of
degree 2 or 3 in K4 − e, respectively. The optimal χ-binding function
f�

F1,F2,...,Fn
: N → N of the class of (F1, F2, . . . , Fn)-free graphs is defined

by
x �→ max{χ(G) : ω(G) = x, G is (F1, F2, . . . , Fn)-free}.

In this work, we prove f�
P5,kite(x) ≤ 2x − 2 for every x ≥ 3 and

f�
P5,dart = f�

3K1 . In other words, we show that every (P5, kite)-free graph,
say, Gkite with clique number at least 3 is (2ω(Gkite)−2)-colourable and
every (P5, dart)-free graph, say, Gdart is f�

3K1(ω(Gdart))-colourable.

Keywords: P5-free graphs · Dart-free graphs · Kite-free graphs ·
Chromatic number · χ-binding function

1 Introduction

We use standard notation and terminology, and denote the chromatic number
and the clique number of a graph G by χ(G) and ω(G), respectively.

The study of χ-binding functions for graph classes is nowadays one central
problem in chromatic graph theory. Gyárfás [9] introduced this concept as fol-
lows: For a graph class G, a function f : N → N is a χ-binding function for G if
χ(G) ≤ f(ω(G)) for every graph G that is an induced subgraph of a graph in G.

Natural classes of graphs for which we study χ-binding functions are heredi-
tary ones, that is, graph classes defined by a set of forbidden induced subgraphs.
As Gyárfás [9] proved, χ-binding functions of graph classes defined by finite sets
of forbidden induced subgraphs exist only if one of the forbidden induced sub-
graphs is a forest, and graph classes defined by a forbidden induced path are
bounded by an exponential one.

On one hand, P4-free graphs are perfect by a result of Seinsche [12]. On the
other hand we still do not know if there is a subexponential χ-binding function
for the class of P5-free graphs. In view of this massive difference, one central
and important problem posed by Gyárfás [9] more than 30 years ago asks for
the order of magnitude of an optimal χ-binding function for the class of P5-free
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 311–317, 2021.
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P5 dart kite 2K2 3K1 K1 ∪ K3 A5 K1 ∪ C5 W5

Fig. 1. Most frequently used forbidden induced subgraphs

graphs. In this context, the optimal χ-bindung function f�
F1,F2,...,Fn

: N → N for
the class of (F1, F2, . . . , Fn)-free graphs with finitely many graphs F1, F2, . . . , Fn

is defined by

x �→ max{χ(G) : ω(G) = x,G is (F1, F2, . . . , Fn)-free}.

As Gyárfás problem seems tough and challenging, subclasses of P5-free graphs
were investigated. However, even for some of such classes, e.g. (P5, C5)-free
graphs as studied by Chudnovsky and Sivaraman [7], the order of magnitude
of all known χ-binding functions is exponential. In contrast, linear χ-binding
functions have been found, e.g., for (P5, gem)-free graphs by Chudnovsky et
al. [5], and quadratic ones have been found, e.g., for (P5, bull)-free graphs by
Chudnovsky and Sivaraman [7] and for (P5, banner)-free graphs in [2].

It is known that f�
P5

is non-linear but to the best of our knowledge it could
be possible that f�

P5
is quadratic. This fact motivates to determine subclasses of

P5-free graphs that have linear and (sub)quadric optimal χ-binding functions.
In this work, we contribute two of these classes. In particular, we show two χ-
binding functions for subclasses of P5-free graphs one of which is optimal and
(sub)quadratic while the other one is linear and thus equals that of an optimal
one in its order of magnitude.

Theorem 1. Let G be a P5-free graph.

1. If G is kite-free and ω(G) ≥ 3, then χ(G) ≤ 2ω(G) − 2.
2. If G is dart-free and ω(G) ≥ 1, then χ(G) ≤ f�

3K1
(ω(G)).

Our result implies f�
P5,kite(x) ∈ Θ(x). Moreover, as every 3K1-free graph is

(P5, dart)-free, we find that f�
P5,dart = f�

3K1
, and so we observe that the inequal-

ity in Property 2 of Theorem 1 is tight. By a result of Kim [10], the maximum
order of a 3K1-free graph with clique number at most x is Θ(x2/ log(x)), and
so f�

P5,dart(x) ∈ Θ(x2/ log(x)). We note that there are just a few of these results
determining a superlinear optimal χ-binding function of a graph class, e.g. [2,3].

2 Sketch of the Proof

As some parts of our proof for Theorem 1 are very long, we omit technical details
and focus on describing the framework and main ideas.

We first need to introduce some further notation and terminology. If S is
a set, then we denote by 2S its power set. Let G be a connected graph and
q : V (G) → N be a vertex weight function.
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The q-clique number ωq(G) of G is the largest weight k of a clique. The
q-chromatic number χq(G) of G is the smallest integer k for which there is
some colouring function L : V (G) → 2{1,2,...,k} such that |L(u)| = q(u) and
L(u) ∩ L(v) = ∅ for every vertex u ∈ V (G) and every neighbour v of u. As we
find that ωq(G) = ω(G) and χq(G) = χ(G) if q(u) = 1 for every vertex u ∈ V (G),
the terminologies of q-clique number and q-chromatic number are generalisations
of the clique number and the chromatic number of a graph, respectively.

The graph G is candled if its vertex set can be partitioned into three sets
X, Y , and Z such that |X| = |Y | ≥ 1, X is an independent set, Y is a clique,
the set of edges between X and Y is a matching of size |X|, no vertex of X
has a neighbour in Z, and every vertex of Y is adjacent to every vertex of Z.
Moreover, G is matched co-bipartite if its vertex set can be partitioned into two
cliques X and Y with |X| ≤ |Y | ≤ |X| + 1 such that the set of edges between X
and Y is a matching of size at least |Y | − 1.

If X is a set of vertices of G, G − X is disconnected, X can be partitioned
into modules X1,X2, . . . , Xn for some integer n ≥ 1, and every vertex of Xi is
adjacent to every vertex of Xj for every two integers i and j, then X is a clique
separator of modules. If |Xi| = 1 for every integer i, then X is a clique separator.

The set G� consists of all connected graphs G of independence number at
least 3 such that, taken an arbitrary cycle C of length 5 in G, we have that the
set of vertices which are non-adjacent to a vertex of C is an independent set, and
there are two non-adjacent vertices on C that have no neighbour in V (G)\V (C)
while the other three vertices of C have the same neighbours in V (G) \ V (C).
We further let G1, G2, G3, and G4 be the four graphs depicted in Fig. 2.

G1 G2 G3 G4

Fig. 2. Graphs G1, G2, G3, and G4

2.1 (P5,Kite)-Free Graphs

We first prove a structure theorem. Let G be a prime (P5, kite)-free graph that
has no clique separator. If G is disconnected, then, as G is prime, it consists of
two non-adjacent vertices only, and so G is (K1 ∪ K3, 2K2)-free. Assume that
G is connected. By a result of Brandstädt and Mosca [1], G is 2K2-free or a
matched co-bipartite graph. In the case where G is 2K2-free, we note that Ḡ
is a prime (fork, C4)-free graph without universal vertices. Hence, a result of
Chudnovsky et al. [4] implies that Ḡ is claw-free or one of {G, Ḡ} is candled. As
G has no clique separator, we find that neither G nor Ḡ is candled. Therefore,
G is (K1 ∪ K3, 2K2)-free and we obtain the following structural result.
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Lemma 1. If H is a prime (P5, kite)-free graph, then H contains a clique sep-
arator or H is a matched co-bipartite graph, or H is (K1 ∪ K3, 2K2)-free.

We are now in a position to prove Property 1 of Theorem 1, and first show

f�
P5,kite(x) ≤ f�

K1∪K3,K1∪C5,2K2
(x) (1)

for every x ≥ 1. We prove this inequality by a minimal counterexample approach
and collect some properties of such a graph G. Clearly, G is connected. By the
following lemma, G has no clique separator of modules.

Lemma 2 ([2]). If H,H1,H2 are three graphs such that H = H1 ∪ H2 and
V (H1) ∩ V (H2) is a clique separator of modules in H, then

χ(H) = max{χ(H1), χ(H2)} and ω(H) = max{ω(H1), ω(H2)}.

Additionally, if G has a module M in G whose vertices are adjacent to all vertices
of G−M , then ω(G) = ω(G[M ])+ω(G−M) and χ(G) = χ(G[M ])+χ(G−M).
As

f�
K1∪K3,K1∪C5,2K2

(x) + f�
K1∪K3,K1∪C5,2K2

(y) ≤ f�
K1∪K3,K1∪C5,2K2

(x + y)

for every x, y ≥ 1, see [2], we have a contradiction to the fact that G is a
minimal counterexample. Thus, we find that there is a vertex u in G − M that
has no neighbour in M for every module M . As our structural characterisation
in Lemma 1 are for prime graphs only, we need to study the modules of G. For
this purpose, we apply a result of [2] that reads for kite-free graphs as follows.

Lemma 3 ([2]). If H is a kite-free graph, then, for each module M in H, H[M ]
is K2-free or NH(M) is a clique separator of modules, or every vertex of H −M
is adjacent to every vertex in M .

As a homogeneous set, say, M of G is independent by Lemma 3 and as two
vertices, say, u1, u2 of M have the same neighbours in G, we find that χ(G) =
χ(G−u1). By this contradiction to the fact that G is a minimal counterexample,
we find that G is prime. By Lemma 1 and as G contains no clique separator (of
modules), G is a matched co-bipartite graph or (K1 ∪ K3, 2K2)-free. In the first
case, it is easily seen that χ(G) = ω(G), and so we find that G is (K1∪K3, 2K2)-
free as χ(G) > ω(G). Note that G − N(u) is bipartite or contains an induced
cycle on 5 vertices for every vertex u ∈ V (G). We prove the following, which
completes our proof for (1).

Proposition 1. If H is a prime (K1 ∪ K3, 2K2)-free graph without clique sep-
arators of modules, then χ(H) ≤ f�

K1∪K3,K1∪C5,2K2
(ω(H)).

It remains to show χ(G′) ≤ 2ω(G′) − 2 for every (K1 ∪ K3,K1 ∪ C5, 2K2)-free
graph G′ with ω(G′) ≥ 3.

We prove this fact by induction. As f�
2K2

(3) = 4 by a result of Gaspers and
Huang [8], we assume ω(G′) ≥ 4. Let W be a clique of size ω(G′) in G′, w be
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a vertex of W , and S = V (G) \ N(w). Note that ω(G′ − S) = ω(G′) − 1 as
W \{w} is a clique of size ω(G′)−1 and every vertex of G′ −S is adjacent to w.
Moreover, as S induces a bipartite graph and as ω(G′ − S) ≥ 3, it follows

χ(G′) ≤ χ(G′ − S) + 2 ≤ 2ω(G′ − S) = 2ω(G′) − 2.

It follows
f�

P5,kite(x) ≤ f�
K1∪K3,K1∪C5,2K2

(x) ≤ 2x − 2

for every x ≥ 3, and our proof of Property 1 of Theorem 1 is complete.

2.2 (P5, Dart)-Free Graphs

We are heading to a structural result that is similar to that of Lemma 1. In
particular, we show the following.

Lemma 4. If H is a prime (P5, dart)-free graph, then H is perfect or H is 3K1-
free or H ∈ G�, or H is isomorphic to an induced subgraph of G1, G2, G3, G4.

As 3K1-free graphs are (P5, dart)-free, we analyse the structure of (P5, dart)-
free graphs with independence number at least 3. We find that such graphs exist
as each of the graphs in {G1, G2, G3, G4} is (P5, dart)-free, connected, prime
and has no clique separator but all these graphs have independence number at
least 3. In view of the desired result, let G be a prime (P5, dart)-free graph that
has three vertices which are pairwise non-adjacent. If G is disconnected, then G
consists of two non-adjacent vertices only, and so we find that G is connected.
Moreover, assume that none of {G1, G2, G3, G4} contains an induced subgraph
isomorphic to G. As G is not isomorphic to G1, we prove and make use of the
following result.

Proposition 2. If H is a prime (P5, dart)-free graph of independence number
at least 3, then either H is W5-free and H̄ is A5-free, or H is isomorphic to G1.

By Proposition 2, we obtain that G is W5-free and Ḡ is A5-free. Natural candi-
dates for graphs that are W5-free and whose complementary graphs are A5-free,
are C5-free graphs. Thus, let us first consider the case where G is C5-free. As G is
P5-free, each induced cycle of G has length at most four. Moreover, by proving
the following result, we find that every induced cycle of odd length in Ḡ is a
triangle, and so G is perfect by the Strong Perfect Graph Theorem [6].

Proposition 3. If H is a prime dart-free graph of independence number at
least 3, then H̄ is (C7, C9, . . .)-free or H contains an induced cycle and an induced
path each of which is of order 5.

In view of the desired result of Lemma 4, we next consider the case where G
has an induced cycle of order 5. Again by Proposition 3, we obtain that Ḡ is
(C7, C9, . . .)-free. We complete our proof of Lemma 4 by showing the following
result as our assumption states that none of {G1, G2, G3, G4} contains an induced
subgraph isomorphic to G.
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Proposition 4. If H is a prime (P5,W5, dart)-free graph that has an induced
cycle of order 5 and for which H̄ is (A5, C7, C9, . . .)-free, then H ∈ G� or H is
isomorphic to an induced subgraph of G2, G3, or G4.

We proceed by colouring (P5, dart)-free graphs, and so we prove Property 2
of Theorem 1. We make use of a result in [2] that applied for our purpose reads
as follows.

Lemma 5 ([2]). Let H be a dart-free graph. If χq(H) ≤ f�
3K1

(ωq(H)) for each
vertex-weight function q : V (H) → N for which H[{u : q(u) > 0}] is prime, then

χ(H) ≤ f�
3K1

(ω(H)).

By Lemma 5, we need to study the q-chromatic number of prime (P5, dart)-free
graphs. Let G be such a graph and q : V (G) → N be an arbitrary vertex weight
function. Let Gq be a graph that is obtained from G be replacing each vertex,
say, v by a clique of size q(v) and adding all edges between two of these cliques
if and only if the corresponding vertices are adjacent. Note that χq(G) = χ(Gq),
ωq(G) = ω(Gq), and Gq is 3K1-free if G is 3K1-free. Moreover, Gq is perfect if
and only if G is perfect as Lovász [11] showed in his famous proof for the Weak
Perfect Graph Theorem. Consequently, χ(Gq) ≤ f�

3K1
(ωq(G)) if G is 3K1-free

or if G is perfect. In view of the desired result and by Lemma 4, it remains
to consider the cases where G ∈ G� or where G is isomorphic to an induced
subgraph of G1, G2, G3, or G4. We prove the following result.

Proposition 5. If H ∈ G� ∪ {G1, G2, G3, G4} and q : V (H) → N, then

χq(H) ≤
⌈

5ωq(H) − 1
4

⌉
.

It remains to show 
(5x−1)/4� ≤ f�
3K1

(x) for every x ≥ 2. Let G : c1c2c3c4c5c1 be
a cycle of length 5 and q : V (G) → N be such that q(c1) = q(c3) = q(c5) = �x/2
and q(c2) = q(c4) = 
x/2�. We find f�

3K1
(x) ≥ χ(Gq) ≥ 
(5x − 1)/4�, which

completes the proof of Property 2 of Theorem 1.
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and Manuel Sorge2,4

1 Department of Mathematics, Simon Fraser University, Burnaby, Canada
2 Faculty of Mathematics, Informatics and Mechanics,

University of Warsaw, Warsaw, Poland
p.rzazewski@mini.pw.edu.pl

3 Faculty of Mathematics and Information Science, Warsaw University of
Technology, Warsaw, Poland

4 Faculty of Informatics, TU Wien, Vienna, Austria

Abstract. The Directed Grid Theorem, stating that there is a function
f such that a directed graph of directed treewidth at least f(k) contains
a directed grid of size at least k as a butterfly minor, after being a con-
jecture for nearly 20 years, has been proven in 2015 by Kawarabayashi
and Kreutzer. However, the function f in the proof is very fast grow-
ing. Here, we show that if we relax directed grid to bramble of constant
congestion, we obtain a polynomial bound. More precisely, we show that
for every k ≥ 1 there exists t = O(k48 log13 k) such that every directed
graph of directed treewidth at least t contains a bramble of congestion
at most 8 and size at least k.
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1 Introduction

The Grid Minor Theorem, proven by Robertson and Seymour [14], is one of the
most important structural characterizations of treewidth. Informally, it asserts
that a grid minor is a canonical obstacle to small treewidth: a graph of large
treewidth necessarily contains a big grid as a minor. The relation of “large”
and “big” in this statement, being non-elementary in the original proof, after a
series of improvements has been proven to be a polynomial of relatively small
degree: For every k ≥ 1 there exists t = O(k9polylogk) such that every graph of
treewidth at least t contains a k × k grid as a minor [2].
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In the mid-90s, Johnson, Robertson, Seymour, and Thomas [6] proposed an
analog of treewidth for directed graphs, called directed treewidth, and conjectured
an analogous statement (with the appropriate notion of a directed grid). After
nearly 20 years, the Directed Grid Theorem was proven by Kawarabayashi and
Kreutzer [8]. However, the proof yields a very high dependency between the
required directed treewidth bound and the promised size of the directed grid.

While searching for better and better bounds for (undirected) Grid Minor
Theorem, researchers investigated relaxed notions of a grid. In some sense, the
“most relaxed” notion of a grid is a bramble: a family B of connected subgraphs
of a given graph such that every two B1, B2 ∈ B either share a vertex or there
exists an edge with one endpoint in B1 and one endpoint in B2. Brambles can
be large; the notion of complexity of a bramble is its order : the minimum size of
a vertex set that intersects every element of a bramble. We also refer to the size
of a bramble as the number of its elements and the congestion of a bramble as
a maximum number of elements that contain a single vertex; note that the size
of the bramble is bounded by the product of its order and congestion.

What links brambles and grids is that a k × k grid contains a bramble of
size k, order �k/2�, and congestion 2 whose elements are subgraphs consisting
of the i-th row and i-th column of the grid for every 1 ≤ i ≤ k. In the other
direction, brambles of small congestion can replace grids if one wants use the grid
as an object that allows arbitrary interconnections of small congestion between
different pairs of vertices on its boundary. This usage appears e.g. in arguments
for the Disjoint Paths problem [1].

Surprisingly, as proven by Seymour and Thomas [15], brambles form a dual
object tightly linked to treewidth: the maximum order of a bramble in a graph
is exactly the treewidth of the graph plus one. However, as shown by Grohe and
Marx [3] and sharpened by Hatzel et al. [5], brambles of high order may need
to have exponential size: while a graph of treewidth k neccessarily contains a
bramble of order ˜Ω(

√
k) of congestion 2 (and thus of size linear in their order),

there are classes of graphs (e.g., constant-degree expanders) where for every 0 <

δ < 1/2 any bramble of order ˜Ω(k0.5+δ) requires size exponential in roughly k2δ.1

In directed graphs, the notion of bramble generalizes to a family of strongly
connected subgraphs such that every two subgraphs either intersect in a vertex,
or the graph contains an arc with a tail in the first subgraph and a head in the
second and an arc with a tail in the second subgraph and a head in the first. The
order of a directed bramble is defined in the same way as in undirected graphs.
We no longer have a tight relation between directed treewidth and maximum
order of a directed bramble, but these two graph parameters are within a con-
stant factor of each other [12]. However, the lower bound of Grohe and Marx [3]
also applies to directed graphs: there are digraph families where a graph of
directed treewidth k contains only brambles of order k0.5+δ of exponential size,
for any 0 < δ < 0.5.

Hence, it is natural to ask what order of a bramble of constant congestion
we can expect in a directed graph of directed treewidth t. The lower bound of

1 The notation ˜Ω and ˜O omits polylogarithmic factors.



320 T. Masař́ık et al.

Grohe and Marx shows that we cannot hope for a better answer than ˜O(
√

t).
Since a directed grid contains a bramble of congestion 2 and order linear in
the size of the grid, the Directed Grid Theorem (resp. a half-integral version)
implies that for every k ≥ 1 there exists t = t(k) such that directed treewidth at
least t guarantees an existence of a bramble of order k and congestion 2 (resp.
congestion 4). However, the function t = t(k) in the known proofs [7,8] is very
fast-growing.

In this work, we show that this dependency can be made polynomial, if we
are satisfied with slightly larger congestion.

Theorem 1. For every k ≥ 1 there exists t = O(k48 log13 k) such that every
directed graph of directed treewidth at least t contains a bramble of congestion at
most 8 and size at least k.

So far, similar bounds were known only for planar graphs, where Hatzel,
Kawarabayashi, and Kreutzer showed a polynomial bound for the Directed Grid
Theorem [4]. Decreasing the congestion in Theorem 1, ideally to 2, while keeping
the polynomial dependency of t on k, remains an open problem. Optimizing the
parameters in the other direction would also be interesting: for all we know,
obtaining the dependency t = ˜O(k2) for constant congestion may be possible.

On the technical level, the proof of Theorem 1 borrows a number of tools
from previous works. From Reed and Wood [13], we borrow the idea of using
Kostochka degeneracy bounds for graphs excluding a minor [9] to ensure the
existence of a large clique minor in an intersection graph of a family of strongly
connected subgraphs, if it turns out to be dense (which immediately gives a
desired bramble). We also use their Lovász Local Lemma-based argument to
find a large independent set in a multipartite graph of low degeneracy. Similarly
as in the proof of Directed Grid Theorem [4,8], we start from the notion of a
path system and its existence (with appropriate parameters) in graphs of high
directed treewidth. Finally, from our recent proof of half- and quarter-integral
directed Erdős-Pósa property [10], we reuse their partitioning lemma, allowing
us to find a large number of closed walks with small congestion. On top of the
above, compared to [4] and [10], the proof of Theorem 1 offers a much more
elaborate analysis of the studied path system, allowing us to find the desired
bramble.

Preliminaries. For integers n ∈ N we use [n] to denote {1, 2, . . . , n}. An undi-
rected graph is d-degenerate if its every subgraph has a vertex of degree at
most d. For a family S of sets, its intersection graph has vertex set S, and two
distinct sets S1, S2 ∈ S are adjacent if S1 ∩ S2 	= ∅.

For A,B ⊆ V (G), such that |A| = |B|, a linkage from A to B in G is a set
of |A| pairwise vertex-disjoint paths in G, each with a starting vertex in A and
ending vertex in B. A set X ⊆ V (G) is well-linked if for every A,B ⊆ X, s.t.
|A| = |B| there are |A| vertex-disjoint A-B-paths in G − (X \ (A ∪ B)).

A threaded linkage is a pair (W,L), where L = {L1, . . . , L�} is a linkage and
W is a walk such that there exist � − 1 paths Q1, . . . , Q�−1 such that W is the
concatenation of L1, Q1, L2, Q2, . . . , Q�−1, L� in that order. A threaded linkage
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(W,L) is untangled if for every i, the path Qi may only intersect the rest of W
in Li or Li+1. The size of an (untangled) threaded linkage (W,L) is the size of
linkage L. The overlap of (W,L) is maxv∈V (G) oc(v,W ), where oc(v,W ) is the
function counting the number of occurrences of vertex v ∈ V (G) on W .

An (a, b)-path system (Pi, Ai, Bi)a
i=1 consists of vertex-disjoint paths

P1, . . . , Pa, and, for every i ∈ [a], sets Ai, Bi ⊆ V (Pi), each of size b, where
every vertex of Bi appears on Pi after all vertices of Ai and

⋃a
i=1(Ai ∪ Bi) is

well-linked in G.

2 Sketch of the Proof of Theorem 1

Let us show some ideas used in the proof of Theorem 1. Let k ∈ N with k > 1
and let G be a graph of directed treewidth t. We show that if t ≥ ct · k48 log13 k
for appropriately chosen constant ct, then G contains a bramble of congestion
at most 8 and size k. We start by fixing the following parameters:

a = ˜Θ(k2), d2 = ˜Θ(k5), d1 = Θ(a2d2) = ˜Θ(k9), b = Θ(a2d21) = ˜Θ(k22).

First, we aim to use the following result of Kawarabayashi and Kreutzer [8].

Lemma 1. There is a constant cKK such that for every a, b ≥ 1 every directed
graph G of directed treewidth at least cKK · a2b2 contains an (a, b)-path system.

By choosing ct appropriately, we ensure that t ≥ cKKa2b2, and thus, by Lemma
1, there is an (a, b)-path system (Pi, Ai, Bi)a

i=1 in G.
Let V = {(i, j) | i, j ∈ [a] ∧ i 	= j}.

Claim 2.1. For all i, j ∈ [a], there exists a linkage Li,j from Bi to Aj and a
threaded linkage (Wi,j ,Li,j) of size b and overlap at most 3.

Proof. For every i, j ∈ [a], we fix a linkage Li,j from Bi to Aj and a linkage
←−L i,j

from Aj to Bi; these linkages exist by well-linkedness of
⋃a

i=1 Ai ∪ Bi.
For every P ∈ Li,j let ρi,j(P ) be the path of

←−L i,j that starts at the ending
point of P and let πi,j(P ) be the path of Li,j that starts at the ending point of
ρi,j(P ). Note that πi,j is a permutation of Li,j . Let Ci,j be the family of cycles
of the permutation πi,j . Observe that every such a cycle corresponds to a closed
walk composed of the paths in Li,j and

←−L i,j .
From every cycle C ∈ Ci,j we arbitrarily select one path; we call it the

representative of C. Let C1, C2, . . . , Cr be the elements of Ci,j in the order of
the appearance of the starting points of their representatives along Pi. Define
the walk Wi,j as follows: follow Pi and for every � ∈ [r], when we encounter
the starting point of the representative of C�, follow the respective closed walk
corresponding to C�, returning back to the starting point of the representative
of C�, and then continue going along Pi. Finally, trim Wi,j so that it starts and
ends with a path of Li,j , as required by the definition of a threaded linkage.

Recall that the size of (Wi,j ,Li,j) is the size of the linkage Li,j , i.e., b. One
can verify that the overlap of (Wi,j ,Li,j) is at most 3. �
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Let us fix some (i, j) ∈ V and denote (W,L) := (Wi,j ,Li,j). Let z be the
length of W . For 1 ≤ p ≤ q ≤ z, by W [p] we will denote the p-th vertex of W
and by W [p, q] we denote the subwalk W [p],W [p + 1], . . . , W [q]. A useful walk
of W is a subwalk W [p, q] of W , such that W [p] = W [q] and W [p, q] contains at
least one path of L as a subwalk. The pair (p, q) is called a useful intersection.

We greedily construct a sequence I1, I2, . . . , I� of useful walks as follows:
I1 = W [p1, q1] is a useful walk of W such that q1 is the smallest possible, and
subsequently Iξ+1 = W [pξ+1, qξ+1] is a useful walk of W such that pξ+1 > qξ

and qξ+1 is the smallest possible. The greedy construction stops when there are
no useful walks starting after q�. Let Z ⊆ V be the set of those (i, j) ∈ V , for
which the above procedure performs at least d1 steps, i.e., � ≥ d1.

Claim 2.2. For each (i, j) ∈ V \ Z there exists an untangled threaded linkage
(W ′

i,j ,L′
i,j) of size Ω(a2d1) and overlap at most 3, such that W ′

i,j is a subwalk
of Wi,j and L′

i,j ⊆ Li,j.

Proof. Let (i, j) ∈ V \Z and for brevity denote (W,L) := (Wi,j ,Li,j). Let � and
d be defined as above; recall that � < d1. We select �+1 subwalks I ′

1, I
′
2, . . . , I

′
�+1

in W as follows. The subwalk I ′
1 is defined as W [1, q1 − 1]. Then, for 2 ≤ ξ ≤ �,

we define I ′
ξ as W [qξ−1 + 1, qξ − 1]. Finally, we define I ′

�+1 := W [q� + 1, z].
By the construction of the walks Iξ, no I ′

ξ contains a useful walk. Further-
more, the union of all walks I ′

ξ covers W , except for q1, . . . , q�. Hence, for at least
|L|−� paths P ∈ L there is ξ ∈ [�−1] such that P is fully contained in I ′

ξ. So there

is some ξ ∈ [� + 1], such that I ′
ξ contains at least |L|−�

�+1 ≥ b−(d1−1)
d1

= Ω(a2d1)
paths of L. Let L′ ⊆ L be the set of paths contained in I ′

ξ and let W ′
i,j be

the walk I ′
ξ, trimmed so that it starts and ends with a path of L′

i,j . Note that
(W ′

i,j ,L′
i,j) is an untangled threaded linkage as I ′

ξ contains no useful intersection.
Moreover, the overlap of (W ′

i,j ,L′
i,j) is at most 3. �

For both � = 1, 2, let E� ⊆ (

V
2

)

be the set of those pairs {(i, j), (i′, j′)} ∈ (

V
2

)

,
for which the intersection graph of L′

i,j and L′
i′,j′ is not d�-degenerate. Define

an undirected graph H� = (V,E�). Since d1 ≥ d2, we have E1 ⊆ E2. Let M1

be a maximum matching in H1 − Z. Let M2 be a maximum matching in the
graph (V,E(H2) \ (

V (M1)∪Z
2

)

), that is, in the graph that results from H2 by
removing all edges with both endpoints in V (M1) ∪ Z. We now observe that we
can distinguish three subsets of V such that one of them is large enough for us.

Claim 2.3. At least one of the following cases occurs:

Case 1. |V \ (V (M1) ∪ Z)| ≥ 0.6|V |;
Case 2. |V (M1) ∪ V (M2) ∪ Z| ≥ 0.6|V |;
Case 3. |V \ V (M2)| ≥ 0.6|V |.
It remains to show that every outcome of Claim 2.3 leads to a large bramble of
congestion at most 8. To give some flavor of our approach, we sketch the proof
of Case 1. The remaining two cases use a similar basic approach but need more
tools to extract brambles from sets of pairs of linkages and make crucial use of
the low overlap in Claims 2.1 and 2.2. See the full version for the details [11].
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Let I := V \ (V (M1) ∪ Z). By the assumption of Case 1 we have |I| ≥
0.6a(a − 1). Observe that for every pair (i, j), (i′, j′) ∈ I the intersection graph
of L′

i,j and L′
i′,j′ is d1-degenerate, and each of these linkages is relatively large.

This allows us to apply the Lovász Local Lemma-based argument by Reed and
Wood [13], in order to obtain a single path Pi,j ∈ Li,j for each (i, j) ∈ I, such
that the paths in {Pi,j}(i,j)∈I are pairwise disjoint.

Consider an auxiliary graph H with vertex set [a] and ij ∈ E(H) if both
(i, j) ∈ I and (j, i) ∈ I. Since |I| ≥ 0.6 · a(a − 1), we have |E(H)| ≥ 0.1 · (

a
2

)

.
By the celebrated result by Kostochka [9], H contains a clique minor of size
p = ˜Ω(a). Without loss of generality, we may assume that p =

(

q
2

)

for some
integer q = Ω(a1/2/ log1/4 a). By appropriate choice of a we ensure that q ≥ k.
Let (Bx,y){x,y}∈([q]2 ) be the family of branch sets of the clique minor of size p in H.

Observe that for every x ∈ [q], the subgraph of H induced by
⋃

y∈[q]\{x} Bx,y is
connected; let Tx be its spanning tree. Note that for every two distinct x, y ∈ [q],
the trees Tx and Ty intersect in Bx,y. On the other hand, every vertex and every
edge of H is contained in at most two trees Tx.

Now we transfer the set of trees above to a bramble in G. For every i ∈ [a],
let ei be the last arc of Pi, whose tail is in Ai. Note that ei is well-defined, as the
set Bi follows Ai on Pi. For every edge e = ij ∈ E(H), let We be a closed walk
in G obtained as follows: Start with Pi,j , and thenfollow Pj until arriving at the
starting vertex of Pj,i. Then follow Pj,i, and then Pi until the walk is closed.
Note that We contains both ei and ej . For every x ∈ [q], define a subgraph Gx of
G as the union of all walks We for all e ∈ E(Tx). Since for every e = ij ∈ E(H),
the walk We contains ei and ej , and Tx is connected, the graph Gx is strongly
connected and contains all edges ei for i ∈ V (Tx). Thus, since every two trees Tx

and Ty intersect in Bx,y, the family (Gx)x∈[q] is a bramble of size q ≥ k. One can
verify that the congestion of the bramble constructed in this case is at most 4.
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Abstract. We study the component behaviour of the binomial random
bipartite graph G(n, n, p) near the critical point. We show that, as is the
case in the binomial random graph G(n, p), for an appropriate range of

p there is a unique ‘giant’ component of order at least n
2
3 and determine

asymptotically its order and excess. Our proofs rely on good enumerative
estimates for the number of bipartite graphs of a fixed order, as well as
probabilistic techniques such as the sprinkling method.

Keywords: Component behaviour · Random bipartite graphs ·
Critical point

1 Introduction

1.1 Background and Motivation

It was shown by Erdős and Rényi [3] that a ‘phase transition’ occurs in the
uniform random graph model G(n,m) when m is about n

2 . This can also be cast
in terms of the binomial random graph G(n, p) at around p = 1

n . More precisely,
they showed that when p = 1−ε

n for some fixed ε > 0, with high probability1

(whp for short) every component of G(n, p) has order at most O(log n); when
p = 1

n whp the order of largest component is Θ
(
n

2
3

)
; and when p = 1+ε

n whp
G(n, p) will contain a unique ‘giant component’ L1(G(n, p)) of order Ω(n).

Whilst it may seem at first that the component behaviour of the model
G(n, p) exhibits quite a sharp ‘jump’ at around this point, subsequent inves-
tigations, notably by Bollobás [1] and �Luczak [6], showed that in fact if one
chooses the correct parameterisation for p, this change can be seen to happen
quite smoothly. In particular, �Luczak’s work implies the following. Throughout
the paper let Li(G) denote the ith largest component of a graph G for i ∈ N.

T. A. Do, J. Erde and M. Kang—Supported by Austrian Science Fund (FWF): I3747,
W1230.
1 With probability tending to one as n → ∞.
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Theorem 1. Let ε = ε(n) > 0 be such that ε3n → ∞ and ε = o(1), and let
p = 1+ε

n . Then whp |L1(G(n, p))| = (1 + o(1))2εn and |L2(G(n, p))| ≤ n
2
3 .

Furthermore, the excess2 of L1(G(n, p)) is (1 + o(1))23ε3n.

Theorem 2. Let ε = ε(n) be such that |ε3|n → ∞ and ε = o(1) and let p = 1+ε
n

and δ = ε − log(1 + ε). Let α = α(n) > 0 be an arbitrary function. Then the
following hold in G(n, p).

(1) With probability at least 1 − e−Ω(α) there are no tree components of order
larger than 1

δ

(
log(|ε|3n) − 5

2 log log(|ε|3n) + α
)
.

(2) With probability at least 1 − e−Ω(α) there are no unicyclic components of
order larger than α

δ .
(3) If ε < 0 then whp there are no complex components.
(4) If moreover ε3n → ∞ then with probability at least 1 − O

(
1

ε3n

)
there are no

complex components of order smaller than n
2
3 .

The aim of this article is to investigate the component behaviour of the binomial
random bipartite graph G(n, n, p), which is the random graph given by taking
two partition classes N1 and N2 of order n, and including each edge between
N1 and N2 independently and with probability p, which has been the object of
recent study [2,4,5].

1.2 Main Results

Our first main result determines asymptotically the existence, order and excess
of the ‘giant’ component in G(n, n, p) near the critical point.

Theorem 3. Let ε = ε(n) > 0 be such that ε4n → ∞ and ε = o(1), p = 1+ε
n

and let Li = Li(G(n, n, p)) for i = 1, 2. Then whp |L1 ∩ N1| = (1 + o(1))2εn and
|L1 ∩ N2| = (1 + o(1))2εn. Furthermore, whp |L2| ≤ n

2
3 and the excess of L1 is

(1 + o(1))43ε3n.

Our next theorem gives a finer picture of the component structure of G(n, n, p)
near the critical point.

Theorem 4. Let ε = ε(n) be such that |ε3|n → ∞ and ε = o(1) and let p = 1+ε
n

and
δ = ε − log(1 + ε). (1)

Let α = α(n) > 0 be an arbitrary function. Then the following hold in G(n, n, p).

(1) With probability at least 1 − e−Ω(α) there are no tree components of order
larger than 1

δ

(
log(|ε|3n) − 5

2 log log(|ε|3n) + α
)
.

(2) With probability at least 1 − e−Ω(α) there are no unicyclic components of
order larger than α

δ .
(3) If ε < 0, then whp there are no complex components.

2 The excess of a connected graph G is |E(G)| − |V (G)|.
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(4) If moreover ε4n → ∞, then with probability at least 1−O
(

1
ε4n

)
there are no

complex components of order smaller than n
2
3 .

The proof of Theorem 4 uses enumerative estimates on the number of bipartite
graphs of a fixed order and excess to bound the probability of certain types of
components existing. Using these estimates and Theorem 4 we can bound quite
precisely the number of vertices contained in large components in G(n, n, p),
those of order at least n

2
3 . Then, using a sprinkling argument, we show that

whp there is a unique large component L1. Given the order of L1 we can use
these enumerative estimates again to give a weak bound on its excess, which we
can then bootstrap to an asymptotically tight bound via a multi-round exposure
argument.

2 Enumerative Estimates

Throughout this section, unless stated otherwise we let ε = ε(n) be such that
|ε3|n → ∞ and ε = o(1) and let p = 1+ε

n . Given i, j ∈ N and � ∈ Z let X(i, j, �)
denote the number of components in G(n, n, p) with i vertices in N1, j vertices
in N2, and excess � and let C(i, j, �) denote the number of connected bipartite
graphs with i vertices in one partition class, j in the second, and i + j + � many
edges. Letting i + j = k we have

E(X(i, j, �)) =
(

n

i

)(
n

j

)
C(i, j, �)pk+�(1 − p)kn−ij−k−�.

We can use this formula to estimate the expected number of tree, unicyclic and
complex components, where a tree component has excess � = −1, a unicyclic
component has excess � = 0 (and hence contains a unique cycle), and a com-
plex component has excess � ≥ 1. Hence, in order to have a good estimate for
E(X(i, j, �)) it will be useful to have good estimates for C(i, j, �).

A classic result of Scoins [8] determines precisely C(i, j,−1).

Theorem 5 [8]. Let i, j ∈ N, then C(i, j,−1) = ij−1ji−1.

We give an exact formula for C(i, j, 0).

Theorem 6. For any i, j ∈ N we have

C(i, j, 0) =
1
2

∑
(i)r(j)r(ij−r−1ji−r + ji−r−1ij−r)

and so in particular if i, j → ∞ and 1
2 ≤ i

j ≤ 2, then

C(i, j, 0) ∼
√

π

8

√
i + jij− 1

2 ji− 1
2 .

Since a unicyclic graph is the union of a cycle and a forest, we are able to
deduce Theorem 6 from a formula for the number of bipartite forests, which we
derive using Prüfer codes. We also give an upper bound for C(i, j, �).
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Theorem 7. There is a constant c such that for i, j, � ∈ N with � ≤ ij − i − j
and 1

2 ≤ i
j ≤ 2,

C(i, j, �) ≤ ij+
1
2 ji+ 1

2 (i + j)
3�+1

2

(
i

j

) i−j
2 (c

�

) �
2

.

Furthermore, if � ≥ i + j, then C(i, j, �) ≤ ij− 1
2 ji− 1

2 (i + j)
3�+1

2 �− �
2 .

For � ≥ i + j Theorem 7 follows from the naive bound C(i, j, �) ≤ (
ij

i+j+�

)
,

whereas for � ≤ i + j we follow an ingenious probabilistic argument of �Luczak
[7] to bound C(i, j, �). We note that for small enough �, for example � = O(1),
the naive bound that follows from

C(i, j, �) ≤ C(i, j, 0)(ij)� ≤
√

i + jij+�− 1
2 ji+�− 1

2

will be more effective than the first part of Theorem 7.
As a consequence, we can derive good estimates for E(X(i, j, �)). To ease

notation we set

S(n, ε, i, j) = exp
(

− (i − j)2

2n
− i3 + j3

6n2
+

εij

n
+ O

(
ij

n2
+

i4 + j4

n3

))
.

Firstly, we can give an asymptotic formula for the expected number of tree and
unicyclic components in G(n, n, p).

Theorem 8. For any i, j ∈ N, δ is as in (1), and letting k = i + j, we have

E(X(i, j,−1)) ∼ ne−δk

2π(ij)
3
2

(
i

j

)j−i

S(n, ε, i, j).

Theorem 9. For any i, j ∈ N with 1
2 ≤ i

j ≤ 2, δ is as in (1), and letting
k = i + j, we have

E(X(i, j, 0)) ∼
√

ke−δk

4
√

2πij

(
i

j

)j−i

S(n, ε, i, j).

Also we can bound from above the expected number of complex components.

Theorem 10. For any i, j ∈ N with 1
2 ≤ i

j ≤ 2, � ≤ ij − i − j, and letting
k = i + j, we have

E(X(i, j, �)) ≤
√

ke−δk+ εk2
4n

(
i

j

) j−i
2

× exp
(
− (i − j)2

2n
+O

(
ij

n2

))(
ck3

�n2

) �
2

exp
(

� log(1 + ε) +
�(1 + ε)

n

)
,

and for � = O(1), and δ is as in (1),

E(X(i, j, �)) = O

(√
k

n�
e−δk+ εk2

4n (ij)�−1

(
i

j

)i−j

exp
(

− (i − j)2

2n
+ O

(
ij

n2

)))
.
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3 A Finer Look at Component Structure of G(n, n, p)

Using the estimates from Sect. 2 we can describe more precisely the component
structure of G(n, n, p).

Below, particularly in Theorems 11–13, we let ε = ε(n) be such that |ε3|n →
∞ and ε = o(1) and let p = 1+ε

n . Let us first consider the number of tree
components. As indicated in Theorem 4 (1), we will show that whp there are no
tree components of order significantly larger than 1

δ (log(|ε|3n)− 5
2 log log(|ε|3n)),

and moreover that the number of components of order around this order will tend
to a Poisson distribution.

Theorem 11.

(1) Given r1, r2 ∈ R
+ with r1 < r2 let Yr1,r2 denote the number of tree compo-

nents in G(n, n, p) of orders between

1
δ

(
log(|ε|3n) − 5

2
log log(|ε|3n) + r1

)

and
1
δ

(
log(|ε|3n) − 5

2
log log(|ε|3n) + r2

)
,

where δ is as in (1), and let λ := 1√
π

(e−r1 − e−r2). Then Yr1,r2 converges
in distribution to Po(λ).

(2) With probability at least 1 − e−Ω(α), G(n, n, p) contains no tree compo-
nents of order larger than 1

δ

(
log(|ε|3n) − 5

2 log log(|ε|3n) + α
)
for any func-

tion α = α(n) > 0.

Similarly, as indicated in Theorem 4 (2), we will show that whp there are
no tree components of order significantly larger than 1

δ , and moreover that the
number of components of order around this order will tend to a Poisson distri-
bution.

Theorem 12.

(1) Given u1, u2 ∈ R
+ with u1 < u2 let Zu1,u2 denote the number of unicyclic

components in G(n, n, p) of orders between u1
δ and u2

δ , where δ is as in (1),
and let ν := 1

2

∫ u2

u1

exp(−t)
t dt. Then Zu1,u2 converges in distribution to Po(ν).

(2) With probability at least 1− e−Ω(α), G(n, n, p) contains no unicyclic compo-
nents of order larger than α

δ for any function α = α(n) > 0.

Finally, as indicated in Theorem 4 (3) & (4), we will show that whp there
are no large complex components, and in fact no complex components at all in
the subcritical regime.

Theorem 13.

(i) If ε < 0 then with probability at least 1 − O
(

1
ε3n

)
, G(n, n, p) contains no

complex components.
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(ii) If in addition ε4n → 0 then with probability at least 1 − O
(

1
ε4n

)
, G(n, n, p)

contains no complex components of order smaller than n
2
3 .

Theorem 4 follows as as a direct consequence of Theorems 11–13.
We now consider the largest and second largest components in G(n, n, p)

in the supercritical regime. Let ε′ be defined as the unique positive solution of
(1 − ε′)eε′

= (1 + ε)e−ε.

Lemma 1. Let ε = ε(n) > 0 be such that ε4n → ∞ and ε = o(1), p = 1+ε
n and

let Li := Li(G(n, n, p)) for i = 1, 2. With probability at least 1 − O
(
(ε4n)− 1

6

)

we have ∣∣∣∣L1 − 2(ε + ε′)
1 + ε

n

∣∣∣∣ <
n

2
3

50
and |L2| ≤ n

2
3 .

Furthermore with probability at least 1 − O
(
(ε3n)− 1

6

)
we have that |L1 ∩ N1| =

(1 ± 2
√

ε)|L1 ∩ N2|.
The first part of Theorem 3 follows directly from Lemma 1 and for the

second part we argue via a multi-round exposure argument, starting with some
supercritical p′ which is significantly smaller than p. Using the bound on |L1|
we can show that the excess of the giant in G(n, n, p′) is o(ε3n), and we can also
estimate quite precisely the change in the excess of the giant between each stage
of the multi-round exposure, leading to the asymptotically tight bound on the
excess of L1.

References

1. Bollobás, B.: The evolution of random graphs. Trans. Am. Math. Soc. 286(1), 257–
274 (1984)

2. Do, T.A., Erde, J., Kang, M.: Planarity and genus of sparse random bipartite graphs.
arxiv.org/abs/2005.03920
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Abstract. We wish to bring attention to a natural but slightly hidden
problem, posed by Erdős and Nešetřil in the late 1980s, an edge version
of the degree–diameter problem. Our main result is that, for any graph
of maximum degree Δ with more than 1.5Δt edges, its line graph must
have diameter larger than t. In the case where the graph contains no
cycle of length 2t+1, we can improve the bound on the number of edges
to one that is exact for t ∈ {1, 2, 3, 4, 6}. In the case Δ = 3 and t = 3, we
obtain an exact bound. Our results also have implications for the related
problem of bounding the distance-t chromatic index, t > 2; in particular,
for this we obtain an upper bound of 1.941Δt for graphs of large enough
maximum degree Δ, markedly improving upon earlier bounds for this
parameter.

Keywords: Degree-diameter problem · Strong cliques · Distance
edge-colouring

1 Introduction

Erdős in [9] wrote about a problem he proposed with Nešetřil:

“One could perhaps try to determine the smallest integer ht(Δ) so that
every G of ht(Δ) edges each vertex of which has degree ≤ Δ contains
two edges so that the shortest path joining these edges has length ≥ t
. . .This problem seems to be interesting only if there is a nice expression
for ht(Δ)”.

Equivalently, ht(Δ)−1 is the largest number of edges inducing a graph of maxi-
mum degree Δ whose line graph has diameter at most t. Alternatively, one could
consider this an edge version of the (old, well-studied, and exceptionally difficult)
degree–diameter problem, cf. [3].

It is easy to see that ht(Δ) is at most 2Δt always, but one might imagine it
to be smaller. For instance, the t = 1 case is easy and h1(Δ) = Δ+1. For t = 2,
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it was independently proposed by Erdős and Nešetřil [9] and Bermond, Bond,
Paoli and Peyrat [2] that h2(Δ) ≤ 5Δ2/4 + 1, there being equality for even Δ.
This was confirmed by Chung, Gyárfás, Tuza and Trotter [7].

For the case t = 3, we suggest the following as a “nice expression”.

Conjecture 1. h3(Δ) ≤ Δ3 − Δ2 + Δ + 2, with equality if Δ is one more than a
prime power.

As to the hypothetical sharpness of this conjecture, first consider the point–
line incidence graphs of finite projective planes of prime power order q. Writing
Δ = q +1, such graphs are bipartite, Δ-regular, and of girth 6; their line graphs
have diameter 3; and they have Δ3−Δ2+Δ edges. At the expense of bipartiteness
and Δ-regularity, one can improve on the number of edges in this construction
by one by subdividing one edge, which yields the expression in Conjecture 1. We
remark that for multigraphs instead of simple graphs, one can further increase
the number of edges by

⌊
Δ
2

⌋−1, by deleting some arbitrary vertex v and replacing
it with a multiedge of multiplicity

⌊
Δ
2

⌋
, whose endvertices are connected with⌊

Δ
2

⌋
and

⌈
Δ
2

⌉
of the original Δ neighbours of v. This last remark contrasts to

what we know for multigraphs in the case t = 2, cf. [4,8].
For larger fixed t, although we are slightly less confident as to what a “nice

expression” for ht(Δ) might be, we believe that ht(Δ) = (1 + o(1))Δt holds for
infinitely many Δ.

We contend that this naturally divides into two distinct challenges, the former
of which appears to be more difficult than the latter.

Conjecture 2. For any ε > 0, ht(Δ) ≥ (1 − ε)Δt for infinitely many Δ.

Conjecture 3. For t �= 2 and any ε > 0, ht(Δ) ≤ (1 + ε)Δt for all large enough
Δ.

With respect to Conjecture 2, we mentioned earlier how it is known to hold for
t ∈ {1, 2, 3}. For t ∈ {4, 6}, it holds due to the point–line incidence graphs of,
respectively, a symplectic quadrangle with parameters (Δ−1,Δ−1) and a split
Cayley hexagon with parameters (Δ − 1,Δ − 1) when Δ − 1 = q is a prime
power. For all other values of t the conjecture remains open. Conjecture 2 may
be viewed as the direct edge analogue of an old conjecture of Bollobás [3]. That
conjecture asserts, for any positive integer t and any ε > 0, that there is a graph
of maximum degree Δ with at least (1 − ε)Δt vertices of diameter at most t for
infinitely many Δ. The current status of Conjecture 2 is essentially the same as
for Bollobás’s conjecture: it is unknown if there is an absolute constant c > 0
such that ht(Δ) ≥ cΔt for all t and infinitely many Δ. For large t the best
constructions we are aware of are (ones derived from) the best constructions for
Bollobás’s conjecture.

Proposition 1. There is t0 such that ht(Δ) ≥ 0.629tΔt for t ≥ t0 and infinitely
many Δ.
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Proof. Canale and Gómez [6] proved the existence of graphs of maximum degree
Δ, of diameter t′, and with more than (0.6291Δ)t′

vertices, for t′ large enough
and infinitely many Δ. Consider this construction for t′ = t − 1 and each valid
Δ. Now in an iterative process arbitrarily add edges between vertices of degree
less than Δ. Note that as long as there are at least Δ + 1 such vertices, then
for every one there is at least one other to which it is not adjacent. Thus by the
end of this process, at most Δ vertices have degree smaller than Δ, and so the
resulting graph has at least 1

2 ((0.6291Δ)t′
Δ − Δ2) edges, which is greater than

(0.629Δ)t for t sufficiently large. Furthermore since the graph has diameter at
most t − 1, its line graph has diameter at most t. ��
By the above argument (which was noted in [17]), the truth of Bollobás’s conjec-
ture would imply a slightly weaker form of Conjecture 2, that is, with a leading
asymptotic factor of 1/2. As far as we are aware, a reverse implication, i.e. from
Conjecture 2 to some form of Bollobás’s conjecture is not known.

1.1 Notation

For a graph G = (V,E), we denote the ith neighbourhood of a vertex v by
Ni(v), that is, Ni(v) = {u ∈ V | d(u, v) = i}, where d(u, v) denotes the distance
between u and v in G. Similarly, we define Ni(e) as the set of vertices at distance
i from an endpoint of e.

Let Tk,Δ denote a tree rooted at v of height k (i.e. the leafs are exactly Nk(v))
such that all non-leaf vertices have degree Δ. Let T 1

k,Δ be one of the Δ subtrees
starting at v, i.e. a subtree rooted at v of height k such that v has degree 1, such
that Nk(v) only contains leaves and all non-leaf vertices have degree Δ.

2 Results

Our main result is partial progress towards Conjecture 3 (and thus Conjecture 1).
In order to discuss one consequence of our work, we can reframe the problem
of estimating ht(Δ) in stronger terms. Let us write L(G) for the line graph of
G and Ht for the t-th power of H (where we join pairs of distinct vertices at
distance at most t in H). Then the problem of Erdős and Nešetřil framed at
the beginning of the paper is equivalent to seeking optimal bounds on |L(G)|
subject to G having maximum degree Δ and L(G)t inducing a clique. Letting
ω(H) denote the clique number of H, our main results are proven in terms of
bounds on the distance-t edge-clique number ω(L(G)t) for graphs G of maximum
degree Δ.

We have settled Conjecture 3 in the special case of graphs containing no cycle
C2t+1 of length 2t + 1 as a subgraph in this more general framework.

Theorem 1. Let t ≥ 2 be an integer. Let G be a C2t+1-free graph with maximum
degree Δ. Then ω(L(G)t) ≤ |E(Tt,Δ)|, in particular the line graph of C2t+1-free
graph of maximum degree Δ with at least |E(Tt,Δ)|+1 edges has diameter greater
than t.
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For t ∈ {1, 2, 3, 4, 6}, the statement is sharp due to the point–line incidence
graphs of generalised polygons. The cases t ∈ {3, 4, 6} are perhaps most enticing
in Conjecture 3, and that is why we highlighted the case t = 3 first in Conjec-
ture 1.

The bound in Theorem 1 is a corollary of the following proposition.

Proposition 2. Let H ⊆ G be a graph with maximum degree ΔH which is a
subgraph of a C2t+1-free graph G with maximum degree Δ. Let v be a vertex
with degree dH(v) = ΔH = j and let u1, u2, . . . , uj be its neighbours. Suppose
that in Lt(G), every edge of H is adjacent to vui for every 1 ≤ i ≤ j. Then
|E(H)| ≤ |E(Tt,Δ)|.

The sketch of the proof is as follows. For fixed Δ, let H and G be graphs
satisfying all conditions, such that |E(H)| is maximised. Note that such a choice
does exist since |E(H)| is bounded, by e.g. Δt+1. With respect to the graph G,
we write Ni = Ni(v) for 0 ≤ i ≤ t + 1. We start proving a claim that makes
work easier afterwards.

Claim. For any 1 ≤ i ≤ t, H does not contain any edge between two vertices of
Ni.

Proof. Suppose it is not true for some i ≤ t − 1. Take an edge yz ∈ E(H)
with y, z ∈ Ni. Construct the graph H ′ with V (H ′) = V (H) ∪ {y′, z′} and
E(H ′) = E(H) \ yz ∪ {yy′, zz′}, where y′ and z′ are new vertices, and let G′ be
the corresponding modification of G. Then H ′ ⊆ G′ also satisfies all conditions
in Proposition 2 and |E(H ′)| = |E(H)| + 1, contradicting the choice of H.

Next, suppose there is an edge yz ∈ E(H) with y, z ∈ Nt. Take a shortest
path from u1 to yz, which is without loss of generality a path Py from u1 to y.
Note that a shortest path Pz from v to z will intersect Py since G is C2t+1-free.
Let w be the vertex in V (Py) ∩ V (Pz) that minimises dG(w, z).

If dG(w, ui) = m − 1 for every 1 ≤ i ≤ j, we can remove yz again and add
two edges yy′ and zz′ to get a graph H ′ satisfying all conditions, leading to a
contradiction again. This is the blue scenario in Fig. 1.

In the other case there is some 1 < s ≤ j such that dG(w, us) > m − 1. Since
dG(us, yz) = t−1, without loss of generality dG(us, z) = t−1, there is a shortest
path from us to z which is disjoint from the previously selected shortest path Py

between u1 and y. Hence together with the edges u1v, vus and yz, this forms a
C2t+1 in G, which again is a contradiction. This is sketched as the red scenario
in Fig. 1. ♦

Now it is handy to track the number of edges incident with certain vertices.
For every 1 ≤ m ≤ t + 1, let Am be the set of all vertices x in Nm such
that dG(v, x) = dG(ui, x) + 1 = m for at least one index 1 ≤ i ≤ j and let
Rm = Nm\Am. Also let A0 = {v}. Let A = ∪t+1

i=0Ai and R = ∪t+1
i=0Ri. By

observing that no edge of H is incident to any vertex in Rt+1, one can find that
the number of edges of H which contain at least one vertex of R can be upper
bounded by |R1| ·

(
|E(T (1)

t,Δ)| − 1
)
, which equals

(deg(v) − ΔH)

(
1

Δ
|E(Tt,Δ)| − 1

)
. (1)
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To count the number of edges adjacent to a vertex in A, we define a weight
function w that helps. Define w on the vertices x in A in such a way that for
every x ∈ Am where 1 ≤ m ≤ t the value w(x) equals the number of paths (in
G) of length m − 1 between x and A1. Then for x ∈ At, by separately analysing
the cases w(x) < j and w(x) ≥ j, we conclude that the number of edges in H
adjacent to x will be bounded by w(x). By doing so we find the desired bound
on |E(H[A])| to conclude.

y

z

w

v

u1

u2

us

uj

Fig. 1. Sketch of some scenarios in Claim 2

For the general case of Conjecture 3, we obtain the following weaker bound.

Theorem 2. ht(Δ) ≤ 3
2Δt + 1.

Theorem 2 is a result/proof valid for all t ≥ 1, but as we already mentioned
there are better, sharp determinations for t ∈ {1, 2}.

We prove Theorem 2 by doing so for the following stronger form.

Theorem 3. For any graph G of maximum degree Δ, it holds that ω(L(G)t) ≤
3
2Δt.

The proof here is an extension of the proof sketched for Theorem 1. So one
can prove the following analog of Proposition 2.

Proposition 3. Let H ⊆ G be a graph with maximum degree ΔH which is a
subgraph of a graph G with maximum degree Δ. Let v be a vertex with degree
dH(v) = ΔH = j and let u1, u2, . . . , uj be its neighbours. Suppose that in Lt(G),
every edge of H is adjacent to vui for every 1 ≤ i ≤ j. Then

|E(H)| ≤
t−1∑
m=1

Δ(Δ − 1)m−1 +
3

2
Δ(Δ − 1)t−1.

Claim 2 is still true in this more general setting, except for i = t. So there are
plausibly some edges between vertices in At. This will imply that we can bound
the number of edges adjacent to vertices in At only by 3

2

∑
a∈At

w(a), resulting in
the weaker bound. Furthermore Proposition 3 itself is sharp, implying that one
needs a more global perspective on the problem to improve on Theorem 3. For
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example when t = 2, the following example (Fig. 2) shows that the blow-up of a
C5 is not extremal anymore when only taking into account the weaker conditions
from Proposition 3. We should remark that Dȩbski and Śleszyńska-Nowak [17]
announced a bound of roughly 7

4Δt. Note that the bound in Theorem 3 can
be improved in the cases t ∈ {1, 2}: ω(L(G)) ≤ Δ + 1 is trivially true, while
ω(L(G)2) ≤ 4

3Δ2 is a recent result of Faron and Postle [10].

Fig. 2. An extremal graph for Proposition 3.

A special motivation for us is a further strengthened form of the problem. In
particular, there has been considerable interest in χ(L(G)t) (where χ(H) denotes
the chromatic number of H), especially for G of bounded maximum degree. For
t = 1, this is the usual chromatic index of G; for t = 2, it is known as the
strong chromatic index of G, and is associated with a more famous problem of
Erdős and Nešetřil [9]; for t > 2, the parameter is referred to as the distance-t
chromatic index, with the study of bounded degree graphs initiated in [13]. We
note that the output of Theorem 3 may be directly used as input to a recent
result [11] related to Reed’s conjecture [15] to bound χ(L(G)t). This yields the
following.

Corollary 1. There is some Δ0 such that, for any graph G of maximum degree
Δ ≥ Δ0, it holds that χ(L(G)t) < 1.941Δt.

Proof. By Theorem 3 and [11, Theorem 1.6],

χ(L(G)t) ≤ ⌈
0.881(Δ(L(G)t) + 1) + 0.119ω(L(G)t

⌉
≤ ⌈

0.881(2Δt + 1) + 0.119 · 1.5Δt⌉ < 1.941Δt

provided Δ is taken large enough. ��
For t = 1, Vizing’s theorem states that χ(L(G)) ≤ Δ + 1. For t = 2, the current
best bound on the strong chromatic index [11] is χ(L(G)2) ≤ 1.772Δ2 for all
sufficiently large Δ. For t > 2, note for comparison with Corollary 1 that the
local edge density estimates for L(G)t proved in [12] combined with the most
up-to-date colouring bounds for graphs of bounded local edge density [11] yields
only a bound of 1.999Δt for all large enough Δ. We must say though that, for
the best upper bounds on χ(L(G)t), t > 2, rather than bounding ω(L(G)t) it
looks more promising to pursue optimal bounds for the local edge density of
L(G)t, particularly for t ∈ {3, 4, 6}. We have left this to future study.
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Last, we mention that through a brief case analysis we also have confirmed
Conjecture 1 in the case Δ = 3.

Theorem 4. The line graph of any (multi)graph of maximum degree 3 with at
least 23 edges has diameter greater than 3. That is, h3(3) = 23.

Here we estimate upper bounds on |E| by performing a breadth-first search
rooted at some specified edge e up to distance 3. This idea implies that a coun-
terexample G is a simple, triangle-free and 3-regular graph. A more thorough
analysis shows that G contains no cycles C4, C5 and finally that there does not
exist a counterexample G.
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Abstract. The following very natural problem was raised by Chung
and Erdős in the early 80’s. What is the minimum of the Turán number
ex(n,H) among all r-graphs H with a fixed number of edges? Their actual
focus was on an equivalent and perhaps even more natural question which
asks what is the largest size of an r-graph that can not be avoided in
any r-graph on n vertices and e edges?

In the original paper they resolve this question asymptotically for
graphs, for most of the range of e. In a follow-up work Chung and Erdős
resolve the 3-uniform case and raise the 4-uniform case as the natural
next step. In this paper we make first progress on this problem in over
40 years by asymptotically resolving the 4-uniform case which gives us
some indication on how the answer should behave in general.

Keywords: Turán numbers · Hypergraphs · Unavoidable graphs

1 Introduction

The Turán number ex(n,H) of an r-graph H is the maximum number of edges in
an r-graph on n vertices which does not contain a copy of F as a subhypergraph.
For ordinary graphs (the case r = 2), a rich theory has been developed (see [28]),
initiated by the classical Turán’s theorem [38] dating back to 1941. The problem
of finding the numbers ex(n,H) when r > 2 is notoriously difficult, and exact
results are very rare (see surveys [27,29,36,37] and references therein).

The following very natural extremal question was raised by Chung and Erdős
[6] almost 40 years ago. What is the minimum possible value of ex(n,H) among
r-graphs H with a fixed number of edges? The focus of Chung and Erdős was
on the equivalent inverse question which is perhaps even more natural. Namely,
what is the largest size of an r-graph that we can not avoid in any r-graph
on n vertices and e edges? This question was repeated multiple times over the
years: it featured in a survey on Turán-type problems [27], in an Erdős open
problem collection [5] and more recently in an open problem collection from
AIM Workshop on Hypergraph Turán problems [32].
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Following Chung and Erdős we call an r-graph H as above (n, e)-unavoidable,
so if every r-graph on n vertices and e edges contains a copy of H. Their ques-
tion now becomes to determine the maximum possible number of edges in an
(n, e)-unavoidable r-graph. Let us denote the answer by unr(n, e). In the graph
case, Chung and Erdős determined un2(n, e) up to a multiplicative factor for
essentially the whole range. In a follow-up paper from 1987, Chung and Erdős
[7] studied the 3-uniform case and identified the order of magnitude of un3(n, e)
for essentially the whole range of e. In the same paper Chung and Erdős raise the
4-uniform case as the natural next step since the 3-uniform result fails to give
a clear indication on how the answer should behave in general. In the present
paper we resolve this question by determining un4(n, e) up to a multiplicative
factor for essentially the whole range of e. Before stating the main result, let us
give some notation.

If a set of vertices S in an r-graph G is contained in at least k edges, we say
that S is k-expanding. For non-negative functions f and g we write either f � g
or f = O(g) to mean there is a constant C > 0 such that f(n) ≤ Cg(n) for
all n; we write f � g or f = Ω(g) to mean there is a constant c > 0 such that
f(n) ≥ cg(n) for all n; we write f ≈ g to mean that f � g and f � g. To simplify
the presentation we write f � g or g � f to mean that f ≥ Cg for a sufficiently
large constant1 C, which can be computed by analysing the argument.

Theorem 1. The following statements hold.

(i) For 1 ≤ e ≤ n2, we have un4(n, e) ≈ 1.
(ii) For n2 ≤ e ≤ n3, we have un4(n, e) ≈ min

{
(e/n2)3/4, (e/n)1/3

}
.

(iii) For n3 < e � (
n
4

)
, we have un4(n, e) ≈ min

{
e4/3/n10/3, e1/4 logn

log((n4)/e)

}
.

The optimal unavoidable hypergraphs, or in other words hypergraphs which
minimise the Turán number, turn out to be certain combinations of sunflowers
of different types. For this reason, it is essential for our proof of Theorem 1 to
have a good understanding of the Turán numbers of sunflowers for a wide range
of parameters. This turns out to be a well-studied problem in its own right.

1.1 Sunflowers

A family A1, . . . , Ak of distinct sets is said to be a sunflower if there exists a
kernel C contained in each of the Ai such that the petals Ai\C are disjoint. The
original term for this concept was “Δ-system”. The more recent term “sunflower”
coined by Deza and Frankl [9] has recently become more prevalent. For r, k ≥ 1,
let fr(k) denote the smallest natural number with the property that any family
of fr(k) sets of size r contains an (r-uniform) sunflower with k petals. The

1 Note here that we are defining �, in a way which is more common in fields outside
of combinatorics, namely f � g does not mean g = o(f) but is more similar to
g = O(f) with the exception that we are allowed to choose the constant in the big
O as small as we like, as long as it remains fixed.
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celebrated Erdős-Rado theorem [15] from 1960 asserts that fr(k) is finite; in
fact Erdős and Rado gave the following bounds:

(k − 1)r ≤ fr(k) ≤ (k − 1)rr! + 1. (1)

They conjectured that for a fixed k the upper bound can be improved to
fr(k) ≤ O(k)r. Despite significant efforts, a solution to this conjecture remains
elusive. The current record is fr(k) ≤ O(k log(kr))r, established in 2019 by Rao
[34], building upon a breakthrough of Alweiss, Lovett, Wu and Zhang [1].

Some 43 years ago, Duke and Erdős [10] initiated the systematic investigation
of a closely related problem. Denote by Sf r(t, k) the r-uniform sunflower with
k petals, and kernel of size t. Duke and Erdős asked for the Turán number of
Sf r(t, k). Over the years this problem has been reiterated several times [5,27]
including in a recent collaborative “polymath” project [33]. The case k = 2 of
the problem has received considerable attention [20,23,25,30,31], partly due to
its huge impact in discrete geometry [24], communication complexity [35] and
quantum computing [3]. Another case that has a rich history [11,13,14,17–19,22]
is t = 0 (a matching of size k is forbidden); the optimal construction in this case
is predicted by the Erdős Matching Conjecture.

For fixed r, t and k with 1 ≤ t ≤ r − 1 and k ≥ 3 Frankl and Füredi [21,
Conjecture 2.6] give a conjecture for the correct value of ex(n,Sf r(t, k)) up to
lower order terms, based on two natural candidates for near-optimal Sf r(t, k)-
free r-graphs. They verify their conjecture for r ≥ 2t+3, but otherwise, with the
exception of a few particular small cases, it remains open in general. If we are only
interested in asymptotic results the answer of ex(n,Sf r(t, k)) ≈ nmax{r−t−1,t}

was determined by Frankl and Füredi [20] and Füredi [26].
Another natural question is what happens if we want to find large sunflowers,

in other words if we only fix the uniformity r and “type” of the sunflower, deter-
mined by its kernel size t, while allowing k to grow with n. Further motivation
for this question is that it is easy to imagine that it could be very useful to know
how big a sunflower of a fixed type we are guaranteed to be able to find in an r
graph with n vertices and e-edges. In particular, it is precisely the type of state-
ment we require when studying the unavoidability problem of Chung and Erdős.
In the graph case r = 2 the question simply asks for the Turán number of a (big)
star and the answer is easily seen to be ex(n,Sf 2(1, k)) ≈ nk. In contrast, the 3-
uniform case is already non-trivial: Duke and Erdős [10] and Frankl [16] showed
ex(n,Sf 3(1, k)) ≈ nk2 while ex(n,Sf 3(2, k)) ≈ n2k. Chung [4] even managed to
determine the answer in the 3-uniform case up to lower order terms, while Chung
and Frankl [8] determined ex(n,Sf 3(1, k)) precisely for large enough n. Chung
and Erdős [7] wrote in their paper that results for such large sunflowers with
uniformity higher than 3 are far from satisfactory. Here we make first progress
in this direction, by solving asymptotically the 4-uniform case.

Theorem 2. For 2 ≤ k ≤ n we have

(i) ex(n,Sf 4(1, k)) ≈ k2n2,
(ii) ex(n,Sf 4(2, k)) ≈ k2n2 and
(iii) ex(n,Sf 4(3, k)) ≈ kn3.
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1.2 General Proof Strategy

Our proof strategy for determining fr(n, e) for most of the range is as follows. In
order to show an upper bound fr(n, e) ≤ D we need to show there is no r-graph
with more than D edges which is contained in every r graph with n vertices and
e edges. With this in mind we consider a number of, usually very structured,
n-vertex r-graphs on e or more edges, and argue they can not have a common
subhypergraph with more than D edges. The hypergraphs we use are often based
on Steiner systems or modifications thereof. A major benefit of this approach is
that our collection of hypergraphs often imposes major structural restrictions on
possible common graphs which have close to D edges as well and tells us where
to look for our optimal examples of unavoidable hypergraphs which we need in
order to show matching lower bounds, by upper bounding their Turán numbers.

2 Turán Numbers of 3-Uniform Sunflowers

For our proof of Theorem 2, we will need the following results about 3-uniform
sunflowers, which were already established by Duke and Erdős [10] and Frankl
[16]. We include our somewhat simpler proofs to illustrate the ideas we will use
in the 4-uniform case. There are only two different types of 3-uniform sunflowers,
namely Sf 3(1, k) and Sf 3(2, k); we consider them in the next two lemmas.

Lemma 1. For 2 ≤ k � n we have ex(n,Sf 3(1, k)) ≈ k2n.

Proof. For the lower bound, we split [n] into disjoint sets: A of size n−k ≥ n/2,
and B of size k. Let our 3-graph consist of all edges with one vertex in A and
two vertices in B. This 3-graph has Ω(k2n) edges and is Sf 3(1, k)-free. Indeed,
if we can find a copy of Sf 3(1, k) each of its edges contains two vertices in B,
one of which is not the common vertex, so it uses at least k + 1 vertices of B,
which has size k, a contradiction. This shows ex(n,Sf 3(1, k)) = Ω(k2n).

For the upper bound, we show that every 3-graph G with 4k2n edges contains
a copy of Sf 3(1, k). Let G be such a 3-graph and suppose towards a contradiction
that it does not contain an Sf 3(1, k). For each v ∈ V (G) let Dv denote the (2)-
graph on V whose edges are the 2k-expanding pairs Y such that v ∪ Y ∈ E(G).
Dv does not contain matchings and stars of size k; if Dv contained a k-matching
then v and this matching would make an Sf 3(1, k) in G; if Dv contained a star
of size k then we can greedily extend each edge of the star by a new vertex to
obtain an Sf 3(1, k), since the edges are 2k-expanding. This implies that Dv can
have at most 2k2 edges. The number of edges of G containing a 2k-expanding
pair is upper bounded by

∑
v |Dv| ≤ 2k2n, so if we delete all such edges we are

left with a 3-graph G′ with at least 2k2n edges with no 2k-expanding pairs of
vertices. Now take a vertex v with degree at least 3|E(G′)|/n ≥ 4k2 in G′; it
cannot have a star of size 2k in its link graph, as then the pair v and centre of
the star would be 2k-expanding. Hence there must be a k-matching in its link
graph, which together with v forms an Sf 3(1, k) in G, so we are done.

Lemma 2. For 2 ≤ k � n we have ex(n,Sf 3(2, k)) ≈ kn2.
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Proof. To prove the lower bound, we consider the linear 3-graph which is a fixed
Steiner triple system S(2, 3, n) on [n] with Ω(n2) edges. Let G be a union of k−1
random copies of S(2, 3, n), where each copy is obtained by randomly permuting
the vertices of S(2, 3, n). Since each pair of vertices lies in at most one edge from
each copy of S(2, 3, n), G does not contain a copy of Sf 3(2, k). A fixed triple is
chosen with probability Ω(1/n) in a random copy of S(2, 3, n), independently
between our k − 1 copies. Thus the probability that a given triple is chosen in
one of our k − 1 copies is at least Ω(k/n) so the expected number of chosen
triples is Ω(kn2), giving ex(n,Sf 3(2, k)) = Ω(kn2). We now turn to the upper
bound. Let G be a 3-graph with kn2 edges. By averaging, there must exist a pair
of vertices belonging to at least k edges, which make a copy of Sf 3(2, k) in G.
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11. Erdős, P.: A problem on independent r-tuples. Ann. Univ. Sci. Budapest 8, 93–95
(1965)
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20. Frankl, P., Füredi, Z.: Forbidding just one intersection. J. Combin. Theory A 39,
160–176 (1985)
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vol. 25, pp. 169–264. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39286-3 7

29. Keevash, P.: Turán, Hypergraph, problems. In: Surveys in Combinatorics 2011,
London Mathematical Society Lecture Note Series, vol. 392, pp. 83–139. Cambridge
University Press, Cambridge (2011)
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Abstract. A 2-distance k-coloring of a graph is a proper k-coloring of
the vertices where vertices at distance at most 2 cannot share the same
color. We prove the existence of a 2-distance (Δ + 1)-coloring for graphs
with maximum average degree less than 18

7
and maximum degree Δ ≥ 7.

As a corollary, every planar graph with girth at least 9 and Δ ≥ 7 admits
a 2-distance (Δ + 1)-coloring. The proof uses the potential method to
reduce new configurations compared to classic approaches on 2-distance
coloring.

Keywords: Sparse graphs · 2-distance coloring · Discharging
method · Potential method

A k-coloring of the vertices of a graph G = (V,E) is a map φ : V → {1, 2, . . . , k}.
A k-coloring φ is a proper coloring, if and only if, for all edge xy ∈ E, φ(x) �= φ(y).
In other words, no two adjacent vertices share the same color. The chromatic
number of G, denoted by χ(G), is the smallest integer k such that G has a proper
k-coloring. A generalization of k-coloring is k-list-coloring. A graph G is L-list
colorable if for a given list assignment L = {L(v) : v ∈ V (G)} there is a proper
coloring φ of G such that for all v ∈ V (G), φ(v) ∈ L(v). If G is L-list colorable
for every list assignment L with |L(v)| ≥ k for all v ∈ V (G), then G is said to
be k-choosable or k-list-colorable. The list chromatic number of a graph G is the
smallest integer k such that G is k-choosable. List coloring can be very different
from usual coloring as there exist graphs with a small chromatic number and an
arbitrarily large list chromatic number.

In 1969, Kramer and Kramer introduced the notion of 2-distance coloring
[20,21]. This notion generalizes the “proper” constraint (that does not allow two
adjacent vertices to have the same color) in the following way: a 2-distance k-
coloring is such that no pair of vertices at distance at most 2 have the same color
(similarly to proper k-list-coloring, one can also define 2-distance k-list-coloring).
The 2-distance chromatic number of G, denoted by χ2(G), is the smallest integer
k so that G has a 2-distance k-coloring.

For all v ∈ V , we denote dG(v) the degree of v in G and by Δ(G) =
maxv∈V dG(v) the maximum degree of a graph G. For brevity, when it is clear
from the context, we will use Δ (resp. d(v)) instead of Δ(G) (resp. dG(v)). One

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 345–350, 2021.
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can observe that, for any graph G, Δ + 1 ≤ χ2(G) ≤ Δ2 + 1. The lower bound
is trivial since, in a 2-distance coloring, every neighbor of a vertex v with degree
Δ, and v itself must have a different color. As for the upper bound, a greedy
algorithm shows that χ2(G) ≤ Δ2 + 1. Moreover, this bound is tight for some
graphs, for example, Moore graphs of type (Δ, 2), which are graphs where all
vertices have degree Δ, are at distance at most two from each other, and the
total number of vertices is Δ2 + 1. See Fig. 1.
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Fig. 1. Examples of Moore graphs for which χ2 = Δ2 +1: a. The Moore graph of type
(2, 2): the odd cycle C5; b. The Moore graph of type (3, 2): the Petersen graph; c.
The Moore graph of type (7, 2): the Hoffman-Singleton graph.

By nature, 2-distance colorings and the 2-distance chromatic number of a
graph depend a lot on the number of vertices in the neighborhood of every
vertex. More precisely, the “sparser” a graph is, the lower its 2-distance chromatic
number will be. One way to quantify the sparsity of a graph is through its
maximum average degree. The average degree ad of a graph G = (V,E) is defined
by ad(G) = 2|E|

|V | . The maximum average degree mad(G) is the maximum, over
all subgraphs H of G, of ad(H). Another way to measure the sparsity is through
the girth, i.e. the length of a shortest cycle. We denote g(G) the girth of G.
Intuitively, the higher the girth of a graph is, the sparser it gets. These two
measures can actually be linked directly in the case of planar graphs.

A graph is planar if one can draw its vertices with points on the plane, and
edges with curves intersecting only at its endpoints. When G is a planar graph,
Wegner conjectured in 1977 that χ2(G) becomes linear in Δ(G):

Conjecture 1 (Wegner [25]). Let G be a planar graph with maximum degree Δ.
Then,

χ2(G) ≤
⎧
⎨

⎩

7, if Δ ≤ 3,
Δ + 5, if 4 ≤ Δ ≤ 7,⌊
3Δ
2

⌋
+ 1, if Δ ≥ 8.

The upper bound for the case where Δ ≥ 8 is tight (see Fig. 2a). Recently,
the case Δ ≤ 3 was proved by Thomassen [24], and by Hartke et al. [17] indepen-
dently. For Δ ≥ 8, Havet et al. [18] proved that the bound is 3

2Δ(1+o(1)), where
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o(1) is as Δ → ∞ (this bound holds for 2-distance list-colorings). Conjecture 1
is known to be true for some subfamilies of planar graphs, for example K4-minor
free graphs [23].

�Δ
2 � − 1 vertices �Δ

2 � vertices

�Δ
2 � vertices

�Δ
2 � − 1 vertices �Δ

2 � vertices

�Δ
2 � vertices

Fig. 2. Graphs with χ2 ≈ 3
2
Δ: a. A graph with girth 3 and χ2 = � 3Δ

2
�+1; b. A graph

with girth 4 and χ2 = � 3Δ
2

� − 1.

Wegner’s conjecture motivated extensive researches on 2-distance chromatic
number of sparse graphs, either of planar graphs with high girth or of graphs
with upper bounded maximum average degree which are directly linked due to
Proposition 1.

Proposition 1 (Folklore).
For every planar graph G, (mad(G) − 2)(g(G) − 2) < 4.

As a consequence, any theorem with an upper bound on mad(G) can be
translated to a theorem with a lower bound on g(G) under the condition that G is
planar. Many results have taken the following form: every graph G of mad(G) ≤
m0 and Δ(G) ≥ Δ0 satisfies χ2(G) ≤ Δ(G) + c(m0,Δ0) where c(m0,Δ0) is
a small constant depending only on m0 and Δ0. Due to Proposition 1, as a
corollary, we have the same results on planar graphs of girth g ≥ g0(m0) where
g0 depends on m0. Table 1 shows all known such results, up to our knowledge, on
the 2-distance chromatic number of planar graphs with fixed girth, either proven
directly for planar graphs with high girth or came as a corollary of a result on
graphs with bounded maximum average degree.

For example, the result from line “7” and column “Δ+1” from Table 1 reads
as follows: “every planar graph G of girth at least 7 and of Δ at least 16 satisfies
χ2(G) ≤ Δ+1”. The crossed out cases in the first column correspond to the fact
that, for g0 ≤ 6, there are planar graphs G with χ2(G) = Δ + 2 for arbitrarily
large Δ [4,16]. The lack of results for g = 4 is due to the fact that the graph in
Fig. 2b has girth 4, and χ2 = � 3Δ

2 	 − 1 for all Δ.
We are interested in the case χ2(G) = Δ + 1 as Δ + 1 is a trivial lower

bound for χ2(G). In particular, we were looking for the smallest integer Δ0 such
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Table 1. The latest results with a coefficient 1 before Δ in the upper bound of χ2

g0 χ2(G)

Δ + 1 Δ + 2 Δ + 3 Δ + 4 Δ + 5 Δ + 6 Δ + 7 Δ + 8

3 – Δ = 3 [17,24]

4 –

5 – Δ ≥ 107 [1] Δ ≥ 339 [15] Δ ≥ 312 [14] Δ ≥ 15 [9] Δ ≥ 12 [8] Δ �= 7, 8 [14] All Δ [13]

6 – Δ ≥ 17 [3] Δ ≥ 9 [8] All Δ [10]

7 Δ ≥ 16 [19] Δ = 4 [11]

8 Δ ≥ 9 [22] Δ = 5 [7]

9 Δ ≥ 8 [2] Δ = 5 [7] Δ = 3 [12]

Δ ≥ 7 (Corollary 1)

10 Δ ≥ 6 [19]

11 Δ = 4 [11]

12 Δ = 5 [19] Δ = 3 [5]

13

14 Δ ≥ 4 [2]

. . .

22 Δ = 3 [19]

that every graph with maximum degree Δ ≥ Δ0 and mad ≤ 18
7 (which contains

planar graphs with Δ ≥ Δ0 and girth at least 9) can be 2-distance colored with
Δ+1 colors. Borodin et al. [6] showed that planar graphs of girth at least 9 and
Δ ≥ 10 are 2-distance (Δ + 1)-colorable in 2008. In 2011, Ivanova [19] improved
on the result with a simpler proof that planar graphs of girth at least 8 and
Δ ≥ 10 are 2-distance (Δ + 1)-colorable. Later on, in 2014, Bonamy et al. [2]
improved on this result once again by proving that graphs with mad < 18

7 and
Δ ≥ 8 are 2-distance Δ + 1-colorable. In this paper, we will improve this result
to graphs with mad < 18

7 and Δ ≥ 7 in Theorem 1. But most importantly,
that breakthrough is obtained by using a new approach based on the potential
method.

All of these results and most of the results in Table 1 are proven using the dis-
charging method. Due to the extensive amount of work done on this subject, the
classic discharging method is reaching its limit. The discharging method assigns
a certain charge to each object (often vertices and faces when the graph is pla-
nar) of a minimal counter-example G to the result we want to prove. Then, using
either Euler’s formula or the upper bound on the maximum average degree, we
can prove that the total amount of charges is negative. However, by redistribut-
ing these charges via discharging rules that do not modify the total sum, we
can prove that we have a nonnegative amount of charges under the reducibility
of some configurations, which results in a contradiction. Since the initial total
amount of charges is fixed, the improvements on these type of results rely on the
reduction of new configurations and reducing a configuration relies on extend-
ing a precoloring of a subgraph of G. Until now, we have always assumed the
worst case scenario for the precoloring. However, these assumptions can only
get us so far when we can find unextendable precolorations. In order to avoid
the worst case scenario, we need to add some vertices and edges to our sub-
graph but we might run into the risk of increasing our maximum average degree.



2-Distance (Δ + 1)-Coloring of Sparse Graphs Using the Potential Method 349

Then came the potential method, which introduces a potential function that can,
more precisely, quantify the local maximum average degree in our subgraph, thus
allowing us to add edges and vertices while staying in the same class of graphs.
This breakthrough allowed for new configurations to become reducible and thus,
improving on the limit of what the classic discharging method was able to reach.

Our main result is the following:

Theorem 1. If G is a graph with mad(G) < 18
7 , then G is 2-distance (Δ(G)+1)-

colorable for Δ(G) ≥ 7.

For planar graphs, we obtain the following corollary:

Corollary 1. If G is a planar graph with g(G) ≥ 9, then G is 2-distance
(Δ(G) + 1)-colorable for Δ(G) ≥ 7.

Since Bonamy, Lévêque, and Pinlou has already proven in [2] that:

Theorem 2 (Bonamy, Lévêque, Pinlou [2]).
If G is a graph with mad(G) < 18

7 , then G is list 2-distance (Δ(G)+1)-colorable
for Δ(G) ≥ 8.

We will prove the following, which is a stronger version with mad(G) ≤ 18
7

instead of mad(G) < 18
7 :

Theorem 3. If G is a graph with mad(G) ≤ 18
7 , then G is 2-distance (Δ(G)+1)-

colorable for Δ(G) = 7.

To prove Theorem 3, let us define the potential function, which is the key to
the potential method.

Let A ⊆ V (G), we define ρG(A) = 9|A| − 7|E(G[A])|. Note that ρG(A) ≥ 0
for all A ⊆ V (G) if and only if mad(G) ≤ 18

7 . We define the potential function
ρ∗

G(A) = min{ρG(S)|A ⊆ S ⊆ V (G)} for all A ⊆ V (G). Since ρG(A) ≥ 0 for all
A ⊆ V (G), the same holds for ρ∗

G(A).
Thus, we will prove the following equivalent version of Theorem 3.

Theorem 4. Let G be a graph such that ρ∗
G(A) ≥ 0 for all A ⊆ V (G), then G

is 2-distance (Δ(G) + 1)-colorable for Δ(G) = 7.
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2. Bonamy, M., Lévêque, B., Pinlou, A.: 2-distance coloring of sparse graphs. J. Graph
Theory 77(3), 190–218 (2014)
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Abstract. Graph searching is one of the simplest and most widely used
tools in graph algorithms. Every graph search method is defined using
some particular selection rule, and the analysis of the corresponding ver-
tex orderings can aid greatly in devising algorithms, writing proofs of
correctness, or recognition of various graph families.

We study graphs where the sets of vertex orderings produced by two
different search methods coincide. We characterise such graph families
for ten pairs from the best-known set of graph searches: Breadth First
Search (BFS), Depth First Search (DFS), Lexicographic Breadth First
Search (LexBFS) and Lexicographic Depth First Search (LexDFS), and
Maximal Neighborhood Search (MNS).

Keywords: Graph search methods · Breadth first search · Depth first
search

1 Introduction

Graph search methods (for instance, Depth First Search and Breadth First
Search) are among essential concepts classically taught at the undergraduate
level of computer science faculties worldwide. Various types of graph searches
have been studied since the 19th century, and used to solve diverse problems,
from solving mazes, to linear-time recognition of interval graphs, finding mini-
mal path-cover of co-comparability graphs, finding perfect elimination order, or
optimal coloring of a chordal graph, and many others [1,2,5,6,9,10,13,14].

In its most general form, a graph search (also generic search [7]) is a method
of traversing vertices of a given graph such that every prefix of the obtained
vertex ordering induces a connected graph. This general definition of a graph
search leaves much freedom for a selection rule determining which node is chosen
next. By defining some specific rule that restricts this choice, various different
graph search methods are defined. Other search methods that we focus on in this
paper are Breadth First Search, Depth First Search, Lexicographic Breadth First
Search, Lexicographic Depth First Search, and Maximal Neighborhood Search.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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This paper is structured as follows. In Sect. 2 we briefly present the studied
graph search methods, and then state the obtained results in Sect. 3. In Sect. 4
we provide a short proof of Theorem 1, as it is the easiest to deal with. Due to
lack of space we omit the proofs of Theorem 2 and 3, and provide some directions
for further work in Sect. 5.

2 Preliminaries

We now briefly describe the above-mentioned graph search methods, and give the
formal definitions. Note that the definitions below are not given in a historically
standard form, but rather as so-called three-point conditions, due to Corneil and
Kruger [7] and also Brändstadt et al. [4].

Breadth First Search (BFS), first introduced in 1959 by Moore [12], is a
restriction of a generic search which puts unvisited vertices in a queue and visits
a first vertex from the queue in the next iteration. After visiting a particular
vertex, all its unvisited neighbors are put at the end of the queue, in an arbitrary
order.

Definition 1. An ordering σ of V is a BFS-ordering if and only if the following
holds: if a <σ b <σ c and ac ∈ E and ab /∈ E, then there exists a vertex d such
that d < a and db ∈ E.

Any BFS ordering of a graph G starting in a vertex v results in a rooted tree
(with root v), which contains the shortest paths from v to any other vertex in
G (see [8]). We use this property implicitly throughout the paper.

Depth First Search (DFS), in contrast with the BFS, traverses the graph as
deeply as possible, visiting a neighbor of the last visited vertex whenever it is
possible, and backtracking only when all the neighbors of the last visited vertex
are already visited. In DFS, the unvisited vertices are put on top of a stack, so
visiting a first vertex in a stack means that we always visit a neighbor of the
most recently visited vertex.

Definition 2. An ordering σ of V is a DFS-ordering if and only if the following
holds: if a <σ b <σ c and ac ∈ E and ab /∈ E, then there exists a vertex d such
that a <σ d <σ b and db ∈ E.

The algorithm for DFS has been known since the nineteenth century as a
technique for threading mazes, known under the name Trémaux’s algorithm
(see [11]).

Lexicographic Breadth First Search (LexBFS) was introduced in the 1970s
by Rose, Tarjan and Lueker [13] as a part of an algorithm for recognizing chordal
graphs in linear time. Since then, it has been used in many graph algorithms
mainly for the recognition of various graph classes.

Definition 3. An ordering σ of V is a LexBFS ordering if and only if the fol-
lowing holds: if a <σ b <σ c and ac ∈ E and ab /∈ E, then there exists a vertex
d such that d <σ a and db ∈ E and dc /∈ E.
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LexBFS is a restricted version of Breadth First Search, where the usual queue
of vertices is replaced by a queue of unordered subsets of the vertices which is
sometimes refined, but never reordered.

Lexicographic Depth First Search (LexDFS) was introduced in 2008 by
Corneil and Krueger [7] and represents a special instance of a Depth First Search.

Definition 4. An ordering σ of V is a LexDFS ordering if and only if the fol-
lowing holds: if a <σ b <σ c and ac ∈ E and ab /∈ E, then there exists a vertex
d such that a <σ d <σ b and db ∈ E and dc /∈ E.

Maximal Neighborhood Search (MNS), introduced in 2008 by Corneil and
Krueger [7], is a common generalization of LexBFS, LexDFS, and MCS, and also
of Maximal Label Search (see [3] for defintion).

Definition 5. An ordering σ of V is an MNS ordering if and only if the follow-
ing statement holds: If a <σ b <σ c and ac ∈ E and ab /∈ E, then there exists a
vertex d with d <σ b and db ∈ E and dc /∈ E.

The MNS algorithm uses the set of integers as the label, and at every step
of iteration chooses the vertex with maximal label under set inclusion.

Corneil [7] exposed an interesting structural aspect of graph searches: the
particular search methods can be seen as restrictions, or special instances of
some more general search methods. For six well-known graph search methods
they present a depiction, similar to the one in Fig. 1, showing how those methods
are related under the set inclusion. For example, every LexBFS ordering is at the
same time an instance of BFS and MNS ordering of the same graph. Similarly,
every LexDFS ordering is at the same time also an instance of MNS, and of
DFS (see Fig. 1). The reverse, however, is not true, and there exist orderings
that are BFS and MNS, but not LexBFS, or that are DFS and MNS but not
LexDFS.

3 Problem Description and Results

Since the connections in Fig. 1 represent relations of inclusion, it is natural to ask
under which conditions on a graph G the particular inclusion holds also in the
converse direction. More formally, we say that two search methods are equivalent
on a graph G if the sets of vertex orderings produced by both of them are the
same. We say that two graph search methods are equivalent on a graph class
G if they are equivalent on every member G ∈ G. Perhaps surprisingly, three
different graph families suffice to describe graph classes equivalent for the ten
pairs of graph search methods that we consider. Those are described in Theorems
1 to 3 below, but first we need a few more definitions.

All the graphs considered in the paper are finite and connected. A k-pan is a
graph consisting of a k-cycle, with a pendant vertex added to it. We say that a
graph is pan-free if it does not contain a pan of any size as an induced subgraph.
A 3-pan is also known as a paw graph.
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Theorem 1. Let G be a connected graph. Then the following is equivalent:

A1. Graph G is {P4, C4, paw, diamond}-free.
A2. Every graph search of G is a DFS ordering of G.
A3. Every graph search of G is a BFS ordering of G.
A4. Any vertex-order of G is a BFS, if and only if it is a DFS.

Theorem 2. Let G be a connected graph. Then the following is equivalent:

B1. Graph G is {pan, diamond}-free.
B2. Every DFS ordering of G is a LexDFS ordering of G.
B3. Every BFS ordering of G is a LexBFS ordering of G.
B4. Every graph search of G is an MNS ordering of G.

Theorem 3. Let G be a connected graph. Then the following is equivalent:

C1. Graph G is {P4, C4}-free.
C2. Every MNS ordering of G is a LexDFS ordering of G.
C3. Every MNS ordering of G is a LexBFS ordering of G.

From Theorems 1 and 2 we can immediately derive similar results for two
additional pairs of graph search methods.

Corollary 1. Let G be a connected graph. Then the following is equivalent:

A1. Graph G is {P4, C4, paw, diamond}-free.
A5. Every graph search of G is a LDFS ordering of G.
A6. Every graph search of G is a LBFS ordering of G.

Generic Search

BFS DFS
MNS

MCSLexBFS LexDFS

Generic Search

BFS DFS
MNS

LexBFS LexDFS

Fig. 1. On the left: Hasse diagram showing how graph searches are refinements of
one another. On the right is a summary of our results: green pairs are equivalent on
{P4, C4}-free graphs. Violet pairs are equivalent on {pan, diamond}-free graphs. Blue
pairs are equivalent on {paw, diamond, P4, C4}-free graphs. (Color figure online)
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4 Proof of Theorem 1

The following lemma investigates the case when an input graph contains an
induced subgraph from {P4, C4, paw, diamond}.

Lemma 1. Suppose either of the following is true:

1. every graph search of G is also a BFS, or
2. every graph search of G is also a DFS, or
3. a vertex-order of G is a BFS, if and only if it is a DFS.

Then G is a {P4, C4, paw, diamond}-free graph (Fig. 2).

a b c d a b

d c

d

b
c

a

a

b d
c

Fig. 2. In the examples above, ordering (c, b, a, d) is not BFS, while ordering (b, c, a, d)
is not DFS. In the two rightmost examples above, ordering (c, b, a, d) is not MNS.

Proof. Suppose that G contains an induced copy of a graph from {P4, C4, paw,
diamond}. In other words, G admits a subgraph H, where V (H) = {a, b, c, d}
and {ab, bc, cd} ⊆ E(G) and ac /∈ E(G). We derive the negations for the three
items from this claim.

1. Consider any generic search order of G starting with (c, b, a, . . . ). Observe
that such a vertex-order violates the BFS search paradigm (see Definition 1)
with the triplet (c, a, d).

2. Now consider any generic search order of G starting with (b, c, a, . . . ). In
this case observe that the prefix (b, c, a) of any such vertex-ordering violates
Definition 2.

3. It is enough to find a vertex-ordering which is exactly of one among types
{BFS, DFS}. To this end consider again any search order of G starting with
(c, b, a), and continuing so that DFS search order is respected. Similarly as in
the item (1) notice that this search again violates the BFS search paradigm
(see Definition 1), with the triplet (c, a, d).

We proceed with the proof of the main claim of this section.

Theorem 1. Let G be a connected graph. Then the following is equivalent:

A1. Graph G is {P4, C4, paw, diamond}-free.
A2. Every graph search of G is a DFS ordering of G.
A3. Every graph search of G is a BFS ordering of G.
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A4. Any vertex-order of G is a BFS, if and only if it is a DFS.

Proof. By Lemma 1 it is clear that Item A1 follows independently from either
Item A2, A3, or A4

We now establish that G is {P4, C4, paw, diamond}-free, if and only if it is
a star, or a clique. The converse direction is trivial, as every star, as well as K3,
are {P4, C4, paw, diamond}-free. For the forward direction assume that G is a
{P4, C4, paw, diamond}-free connected graph. We distinguish two cases:

1. Graph G is triangle-free. Since it is also {P4, C4}-free, G must be a tree of
diameter at most two, which exactly corresponds with the family of stars.

2. Maximal clique C in G is of size at least three. If G itself is a clique we
are done, so suppose that there exists an additional vertex a /∈ C, such that
N(a) ∩ C �= ∅. Let b ∈ N(a) ∩ C and let c ∈ C be such that ac /∈ E(G) (such
a vertex c exists by the maximality of C). Finally, since the C is of size at
least three, let d ∈ C\{b, c} be an arbitrary remaining vertex of C. It remains
to observe that (a, b, c, d) induce a paw, or a diamond.

To conclude the proof, it remains to show that every generic graph search in a
clique or a star is also (both) a BFS as well as DFS search. Since in the clique
all vertex-orderings are isomorphic, we only consider the case of stars. How-
ever, observe that stars only admit two non-isomorphic generic vertex orderings,
namely the one starting in the center, and the one starting in a leaf. Since both
of those vertex-orderings are at the same time also BFS and DFS orders, this
concludes the proof of the claim.

b c

a e

d

σ = (b, c, d, a, e)
a

b

c d e

σ = (d, c, b, e, a)

a

b c

d

e

σ = (c, a, d, e, b)

a

b c

d

e

σ = (a, d, c, e, b)

a

b c

d

e

σ = (e, b, a, d, c)

a

b cd

e
σ = (d, b, e, a, c)

a

b

c

d

e

σ = (a, c, e, d, b)

Fig. 3. Graphs and corresponding orderings that are MNS and not MCS orderings.

5 Conclusion and Further Work

In this paper we consider the major graph search methods and study the graphs
in which vertex-orders of one type coincide with vertex-orders of some other
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type. Interestingly, three different graph families suffice to describe graph classes
equivalent for the ten pairs of graph search methods that we consider, which
provides an additional aspect of similarities between the studied search methods.

Among the natural graph search methods not yet considered in this set-
ting would be the Maximum Cardinality Search (MCS), introduced in 1984
(for definition see Tarjan and Yannakakis [15]). As shown on Fig. 1, every
MCS is a special case of an MNS vertex-order. While it is easy to verify that
{P4, C4,paw, diamond}-free graphs do not distinguish between MNS and MCS
vertex orders, Fig. 3 provides examples of graphs which admit MNS, but not
MCS vertex orders. Characterising graphs equivalent for MNS and MCS remains
an open question.
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Abstract. We prove discrete Helly-type theorems for pseudohalfplanes,
which extend recent results of Jensen, Joshi and Ray about halfplanes.
Among others we show that given a family of pseudohalfplanes H and a
set of points P , if every triple of pseudohalfplanes has a common point in
P then there exists a set of at most two points that hits every pseudohalf-
plane of H. We also prove that if every triple of points of P is contained
in a pseudohalfplane of H then there are two pseudohalfplanes of H that
cover all points of P .

To prove our results we regard pseudohalfplane hypergraphs, define
their extremal vertices and show that these behave in many ways as
points on the boundary of the convex hull of a set of points. Our meth-
ods are purely combinatorial.

Keywords: Pseudohalfplane · Geometric hypergraph · Helly

1 Introduction

Given a (finite) point set P and a family of regions R (e.g., the family of all
halfplanes) in the plane (or in higher dimensions), let H be the hypergraph with
vertex set P and for each region of R having a hyperedge containing exactly the
same points of P as this region. There are many interesting problems that can
be phrased as a problem about hypergraphs defined this way, which are usually
referred to as geometric hypergraphs. This topic has a wide literature, researchers
considered problems where R is a family of halfplanes, axis-parallel rectangles,
translates or homothets of disks, squares, convex polygons, pseudo-disks and so
on. There are many results and open problems about the maximum number of
hyperedges of such a hypergraph, coloring questions and other properties. For a
survey of some of the most resent results see the introduction of [2] and of [3],
for an up-to-date database of such results with references see the webpage [1].

One of the most basic families is the family of halfplanes, about which already
many problems are non-trivial. Among others one such problem was considered

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 359–365, 2021.
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in [8] where they prove that the vertices of every hypergraph defined by half-
planes on a set of points (i.e., P is a finite set of points and R is the family of
all halfplanes) can be k colored such that every hyperedge of size at least 2k+1
contains all colors. In [6] they considered generalizing this result by replacing
halfplanes with the family of translates of an unbounded convex region (e.g.,
an upwards parabola). It turned out that this is true even when halfplanes are
replaced by pseudohalfplanes. The main tool of proving this was an equivalent
combinatorial definition of so called pseudohalfplane graphs, hypergraphs that
can be defined on points with respect to pseudohalfplanes.1 This formulation
had the promise that many other statements about halfplane hypergraphs can
be generalized to pseudohalfplane hypergraphs in the future. While this combi-
natorial formulation has the disadvantage of being less visual and thus somehow
less intuitive than the geometric setting, it has many advantages, among others
covering a much wider range of hypergraphs, also, being purely combinatorial
might have algorithmic applications as well. One recent application is a simi-
lar polychromatic coloring result about disks all containing the origin [3] where
after observing that in every quadrant of the plane the disks form a family of
pseudohalfplanes they can apply the results from [6].

In [6] the equivalent of the convex hull vertices in the plane (more precisely,
the points on the boundary of the convex hull) was defined for pseudohalfplane
hypergraphs and called unskippable vertices and this made it possible to gener-
alize the proof idea of [8] from halfplanes to pseudohalfplane hypergraphs. To
ease intuition, we call unskippable vertices as extremal vertices from here on.
Exact definitions of these notions are omitted from this extended abstract.

Recently Jensen, Joshi and Ray [5] proved discrete Helly-type theorems which
can be formulated in terms of halfplane hypergraphs, their results are detailed
in Sect. 1.2. In this paper we generalize their results to pseudohalfplane hyper-
graphs, in addition we also prove one missing variant for which even the halfplane
counterpart was not considered yet. Again we make use of extremal vertices
defined in [6], but we need to prove many new properties of extremal vertices
which show that extremal vertices behave in many ways as convex hull ver-
tices in the plane (more precisely, as the points on the boundary of the convex
hull). We believe that these properties will be useful also for future research
on pseudohalfplane hypergraphs. We also consider these problems for pseudo-
hemisphere hypergraphs, a natural hypergraph family containing the family of
pseudohalfplane hypergraphs.

We consider the following two types of problems: in a primal discrete Helly
theorem of type k → l let P be a set of n points (resp. vertex set) and F be a fam-
ily of regions (resp. hypergraph). If every k-tuple of regions (resp. hyperedges)
in F intersects at a point (resp. vertex) in P , then there exists a set of l points
(resp. vertices) in P that intersects each F ∈ F . In a dual discrete Helly theorem
of type k → l let P be a finite set of n points (resp. vertices) and F be a family
of regions (resp. hypergraph). If every subset of k points in P belongs to some

1 The exact definition of pseudohalfplanes and pseudohalfplane hypergraphs are post-
poned to Sect. 1.1.
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region (resp. hyperedge) F ∈ F then there exist l regions (resp. hyperedges) in
F whose union covers P .

In Table 1 we summarize our results. For all our results we show that they
are optimal except for the ones about pseudohemispheres.

Proofs are omitted from this extended abstract due to space constraints but
can be found in the full version of this paper [7].

Table 1. Summary of the considered Helly-type results

Halfplane ABA-free Pseudohalfplane Pseudohemisphere

Primal Dual Primal/dual Primal Dual Primal/dual

3 → 2 [5] 3 → 2 [5] 2 → 2 3 → 2 3 → 2 4 → 2

(Theorem 6) (Theorem 4) (Theorem 8, Corollary 9) (Theorem 11) (Theorem 12) (in full version, [7])

2 → 3 2 → 3 [5] 2 → 3 2 → 3

(Theorem 10) (Theorem 5) (Theorem 10) (Theorem 13)

1.1 Pseudohalfplanes and Pseudohalfplane Hypergraphs

Pseudohalfplane Hypergraphs. The definition of pseudohalfplane hyper-
graphs introduced in [6] is based on the definition of ABA-free hypergraphs
and is as follows.

Definition 1 A hypergraph H with an ordered vertex set is called ABA-free if
H does not contain two hyperedges A and B for which there are three vertices
x < y < z such that x, z ∈ A\B and y ∈ B\A.2

Definition 2 A hypergraph H on an ordered set of vertices V is called a pseudo-
halfplane hypergraph if there exists an ABA-free hypergraph F on V such that
H ⊂ F ∪ F̄ .3

Pseudolines. A pseudoline arrangement is a finite collection of simple curves
in the plane such that each curve cuts the plane into two components (i.e.,
both endpoints of each curve are at infinity) and any two of the curves are
either disjoint or intersect once, and in the intersection point they cross. It is
usually also required and so we require as well that they intersect exactly once.4

However, in our case we do not need this restriction and so an arrangement where
not all pairs of pseudolines intersect we call a loose pseudoline arrangement. An
2 We imagine the vertices on a horizontal line, and thus if x < y then we may say that
x is to the left from y and so on.

3 F̄ denotes the family of the complements of the hyperedges of F . It was shown in
[6] that F̄ is also ABA-free if F is ABA-free.

4 They are usually defined in the projective plane, as a collection of simple closed
curves whose removal does not disconnect the projective plane and for which every
pair of the curves meets no more than once (hence exactly once and crossing).
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arrangement of pseudolines is simple if no three pseudolines meet at a point.
Wlog. we can assume that the pseudolines are x-monotone bi-infinite curves (see,
e.g. [6]), such arrangements are sometimes called Euclidean or graphic pseudoline
arrangements. For an introduction into pseudoline arrangements see Chap. 5 of
[4] by Felsner and Goodman.

Pseudohalfplanes. Given a pseudoline arrangement, a pseudohalfplane family
is the subfamily of the above defined components (one on each side of each
pseudoline). A pseudohalfplane family is simple (resp. loose) if the boundaries
form a simple (resp. loose) pseudoline arrangement. A pseudohalfplane family
is upwards if we just take components that are above the respective pseudoline
(here we use that the pseudolines are assumed to be x-monotone).

In [6] it is shown that given a family F of pseudohalfplanes in the plane and
a set of points P then the hypergraph whose hyperedges are the subsets that we
get by intersecting regions of F with P is a pseudohalfplane hypergraph, and
that all pseudohalfplane hypergraphs can be realized this way.5 If F is a family of
upwards pseudohalfplanes then we get the ABA-free hypergraphs. Thus, all our
results about pseudohalfplane hypergraphs implies the respective result about
(loose and not loose) families of pseudohalfplanes where we replace vertices with
points and hyperedges with pseudohalfplanes.

1.2 Helly-Type Theorems for Halfplanes

Helly’s classic theorem in the plane is as follows:

Theorem 3 (Helly for convex sets). Let P be a set of n points and C be a
family of convex sets in the plane. If every subset of 3 points in P belongs to
some convex set C ∈ C then there exists a point (not necessarily in P ) which is
in every convex set of C.

Jensen, Joshi and Ray [5] regarded discrete versions of Helly’s theorem, where
they require that the point one finds also comes from the set P . First, their
following simple construction shows that we cannot require this for convex sets,
even if we replace 3 by some larger value k and we want to find only some
bounded number of vertices that hit all sets: take a set P of n points in convex
position, then every subset of points in P can be separated from the rest of the
points in P by a convex set. Now for some fixed k let C be the family of such
separating convex sets for the subsets of points in P of size more than n − n/k.
Then every subfamily of size k of C has a common point in P , on the other hand
no subset of points in P of size less than n/k hits every set in C.

They show that replacing convex sets with halfplanes yields interesting prob-
lems and prove the following results:

5 In fact they prove that we can realize them with loose simple pseudoline arrange-
ments but their argument can be easily modified to have a realization with a simple
and not loose pseudoline arrangement as well.
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Theorem 4 (Dual Discrete Helly for halfplanes, 3 → 2) [5]. Let P be a
set of n points and H be a family of halfplanes. If every subset of 3 points in
P belongs to some halfplane H ∈ H then there exist two halfplanes in H whose
union covers P .

They given an example that this is tight, that is, 3 cannot be replaced by 2.
They also show the following:

Theorem 5 (Dual Discrete Helly for halfplanes, 2 → 3) [5]. Let P be a set
of n points and H be a family of halfplanes. If every pair of points in P belongs
to some halfplane H ∈ H then there exists 3 halfplanes in H whose union covers
P .

Theorem 6 (Primal Discrete Helly for halfplanes, 3 → 2) [5]. Let P be
a set of n points and H be a family of halfplanes. If every triple of halfplanes
in H intersects at a point in P , then there exists a set of two points in P which
intersects each H ∈ H.

The above two results are implied by their following result about convex
pseudodisks:

Theorem 7 (Primal Discrete Helly for convex pseudodisks, 3 → 2) [5].
Let P be a set of n points and D be a family of convex pseudodisks. If every
triple of pseudodisks in D intersects at a point in P , then there exists a set of
two points in P which intersects each D ∈ D.

1.3 Helly-Type Theorems for Pseudohalfplanes

We aim to prove results about pseudohalfplanes similar to the ones about half-
planes from the previous section. First we show discrete Helly-type results for
ABA-free hypergraphs:

Theorem 8 (Primal Discrete Helly for ABA-free hypergraphs, 2 → 2).
Given an ABA-free H such that every pair of hyperedges has a common vertex,
there exists a set of at most two vertices that hits every hyperedge of H.

As the dual of an ABA-free hypergraph is also an ABA-free hypergraph, this
implies (and is in fact equivalent to):

Corollary 9 (Dual Discrete Helly for ABA-free hypergraphs, 2 → 2).
Given an ABA-free H on vertex set V of size n ≥ 2 such that for every pair of
vertices there is a hyperedge of H containing both of them, there exists at most
two hyperedges of H whose union covers V .

Applying this twice to the two ABA-free parts of a pseudohalfplane hyper-
graph implies easily that 2 → 4 is true for pseudohalfplanes but we can prove a
better bound which is optimal (we note that this was not known earlier even in
the special case of halfplanes):
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Theorem 10 (Primal Discrete Helly for pseudohalfplanes, 2 → 3).
Given a pseudohalfplane hypergraph H such that every pair of hyperedges has
a common vertex, there exists a set of at most 3 vertices that hits every hyper-
edge of H.

We can also prove the following:

Theorem 11 (Primal Discrete Helly for pseudohalfplanes, 3 → 2).
Given a pseudohalfplane hypergraph H such that every triple of hyperedges has a
common vertex, there exists a set of at most 2 vertices that hits every hyperedge
of H.

In the dual setting we have the following results about pseudohalfplanes:

Theorem 12 (Dual Discrete Helly for pseudohalfplanes, 3 → 2). Let V
be an ordered set of n ≥ 3 vertices and H a family of pseudohalfplanes. If every
subset of 3 vertices in V belongs to some halfplane H ∈ H then there exist at
most two pseudohalfplanes in H whose union covers V .

Theorem 13 (Dual Discrete Helly for pseudohalfplanes, 2 → 3).
Let V be an ordered set of n ≥ 2 vertices and H a family of pseudohalfplanes.

If every pair of vertices in V belongs to some halfplane H ∈ H then there exist
at most 3 pseudohalfplanes in H whose union covers V .

Constructions showing that these results are best possible and further results
about pseudohemispheres (see Table 1) can be found in the full version of the
paper [7].
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Abstract. In 1999, Jacobson and Lehel conjectured that for k ≥ 3,
every k-regular Hamiltonian graph has cycles of at least linearly many
different lengths. This was further strengthened by Verstraëte, who asked
whether the regularity can be replaced with the weaker condition that the
minimum degree is at least 3. Despite attention from various researchers,
until now the best partial result towards both of these conjectures was
a

√
n lower bound on the number of cycle lengths. We resolve these

conjectures asymptotically, by showing that the number of cycle lengths
is at least n1−o(1).

Keywords: Cycle spectrum · Cycle lengths · Hamiltonian graph

1 Introduction

The study of cycles in graphs goes back to the early days of graph theory and
has been fundamental ever since. Of particular interest are Hamilton cycles,
i.e. cycles passing through all the vertices of a graph. Starting with the corner-
stone theorem of Dirac [7], there are many results giving sufficient conditions
for a graph to be Hamiltonian, for some other classical examples see [4–6,11,19].
In 1973, Bondy [3] made the “meta-conjecture” that any non-trivial condition
which guarantees the existence of a Hamilton cycle, should also guarantee that
the given graph is pancyclic, i.e. contains cycles of all possible lengths, with
possibly a simple family of exceptions. This assertion turned out to be influen-
tial, and by now there are numerous appealing results of this type. For example,
Bondy himself [2] proved that Ore’s sufficient condition for Hamiltonicity (that
the sum of degrees of any pair of non-adjacent vertices is at least n), implies
that the graph is either pancyclic or isomorphic to the complete bipartite graph
Kn/2,n/2. Bauer and Schmeichel [1], relying on previous results of Schmeichel
and Hakimi [20], have shown that the sufficient conditions for Hamiltonicity of
Bondy [4], Chvátal [5] and Fan [11] all imply pancyclicity, barring a small fam-
ily of exceptions. Jackson and Ordaz [15] conjectured that any graph G whose
connectivity κ(G) is strictly larger than its independence number α(G) must be
pancyclic. This conjecture is motivated by the classical theorem of Chvátal and
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Erdős [6] that a graph with κ(G) ≥ α(G) must be Hamiltonian. An approximate
form of the conjecture was proven by Keevash and Sudakov [16], who showed
that κ(G) ≥ 600α(G) is already sufficient for pancyclicity.

Pancyclicity is just an instance of a wider class of problems, which study
the properties of the set of cycle lengths of a graph with connection to other
graph parameters. The set of cycle lengths of G is called its cycle spectrum, and
denoted C(G). There are by now numerous results relating properties of C(G)
to various graph parameters. For example, Erdős [9] conjectured that a graph
G with girth g and average degree d must satisfy |C(G)| ≥ Ω(d� g−1

2 �). The case
g = 5 was settled by Erdős, Faudree, Rousseau, and Schelp [10]. Later, Sudakov
and Verstraëte [21] proved the full conjecture in a strong form. Another example
is a result of Gould, Haxell and Scott [14] that a graph with minimum degree cn
must have a cycle of any even length between 4 and ec(G) − K, where ec(G) is
the length of a longest even cycle in G and K is a constant depending only on
c. We should also mention the recent work of Gao, Huo, Liu and Ma [12], who
proved several conjectures relating properties of C(G) to the minimum degree,
connectivity or chromatic number of G.

Bondy’s meta-conjecture is about conditions for Hamiltonicity which imply
pancyclicity. A natural question in the opposite direction is as follows: Let us
assume that a graph G is Hamiltonian; under which assumptions can we also
guarantee that G is pancyclic? Since pancyclicity is sometimes too strong of a
requirement, we can relax it and ask to find many cycle lengths. Questions of
this type were first introduced by Jacobson and Lehel at the 1999 conference
“Paul Erdős and His Mathematics”, where they asked for the minimum size
of the cycle spectrum of a k-regular Hamiltonian graph G on n vertices? The
aforementioned result of Bondy [2] implies that if k = �n/2�, then G is pancyclic
unless G = Kn/2,n/2. At the other extreme, if k = 2 then G clearly has just one
cycle. Jacobson and Lehel conjectured that already for k ≥ 3, the number of cycle
lengths should be linear in n. This is best possible, since they also observed that
one cannot expect to have pancyclicity. Indeed, assuming 2k divides n, take n

2k
disjoint copies of Kk,k, ordered in a cycle, remove an edge from each of them,
and add an edge between any two consecutive copies such that the resulting
graph is k-regular. It is not hard to see that in this construction, the possible
cycle lengths are precisely all the even integers between 4 and 2k and between
2n
k and n. This gives in total n

2 · k−2
k + k different lengths.

Soon after the above question was first circulated, Gould, Jacobson and
Pfender proved that |C(G)| ≥ Ω(

√
n) for every k-regular n-vertex Hamilto-

nian graph G (with k ≥ 3). This bound was subsequently obtained by several
other authors. Yet, prior to our work, the

√
n bound was the best known result.

In particular, Girão, Kittipassorn and Narayanan [13] remarked that improv-
ing this estimate would be of considerable interest. Furthermore, the following
strengthening of the above conjecture of Jacobson and Lehel, which replaces the
k-regularity condition with the assumption that the minimum degree is at least
3, was proposed by Verstraëte [25].
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Conjecture 1. An n-vertex Hamiltonian graph G with δ(G) ≥ 3 has Ω(n) differ-
ent cycle lengths.

While the special case of this conjecture for regular graphs already seems
quite challenging, it is natural to expect that the full Conjecture 1 is even harder.
The reason for this is that often problems become more difficult when the regu-
larity requirement is replaced by a minimum degree assumption. One well-known
example is a conjecture of Thomassen [22], that a graph with a large enough min-
imum degree contains a subgraph of large minimum degree and large girth. This
conjecture is open even for girth 7. However, this statement becomes easy if
the given graph is regular, see e.g. [18]. Such situations arise also for questions
related to the one studied here: A classical result of Smith (see [24] and also
[23]) states that every Hamiltonian 3-regular graph G contains a second Hamil-
ton cycle. As was shown by Entringer and Swart [8], this is no longer true if
instead of 3-regularity we assume that δ(G) ≥ 3 (even if all degrees are equal
to 3 or 4). Girão, Kittipassorn and Narayanan [13] required an involved proof
to even show that a Hamiltonian G with δ(G) ≥ 3 contains a second cycle of
length at least n − o(n). In contrast, for regular G this proof can be simplified
considerably and gives a better bound.

It is worth noting that if one replaces the minimum degree requirement
δ(G) ≥ 3, with the requirement that the average degree is at least 3, then the
aforementioned lower bound of Ω(

√
n) is tight. More generally, Milans, Pfender,

Rautenbach, Regen and West [17] have shown that a graph G with n vertices
and m edges satisfies |C(G)| ≥ (1− o(1))

√
m − n, and this is tight. In this paper

we prove the following theorem, which resolves Conjecture 1 asymptotically:

Theorem 1. An n-vertex Hamiltonian graph G with δ(G) ≥ 3 contains cycles
of n1−o(1) different lengths.

2 A Sketch and Main Ideas

The most general overarching idea that we employ is to split the Hamilton cycle
into pieces (usually paths or pairs of paths) and then find paths with lengths on
a different “scale” in different parts. To illustrate what we mean, let us consider
the following situation. Suppose that we managed to split our Hamilton cycle
into two paths P1, P2, such that there are still many chords inside the vertex-set
of each Pi (or, more precisely, that inside each Pi there is a linear number of
vertices touching a chord whose other endpoint is also on Pi). Suppose that we
found k = Ω(

√
n) paths Q1, . . . , Qk between the endpoints of P1 (which only

use the vertices of P1), such that |Q1|, . . . , |Qk| are all different and all belong
to an interval of width

√
n. Suppose further that we found � = Ω(

√
n) paths

R1, . . . , R� between the endpoints of P2 (which only use the vertices of P2),
such that the lengths of any two of these paths are at least

√
n apart, namely,

||Ri| − |Rj || >
√

n for all i �= j. In this situation, we can combine any one of the
Qi’s with any one the Rj ’s, joining them into a cycle of length |Qi| + |Rj |. The
crucial point is that the k� numbers |Qi| + |Rj | are all different. In other words,
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we use the “condensed” lengths Q1, . . . , Qk to “fill in the gaps” between the
“spread-out” lengths R1, . . . , R�. In total, this would give us k� = Ω(n) different
cycle lengths. Hence, achieving both above goals would establish Conjecture 1.

We believe that both above statements should be true, namely, that one
can find both Ω(

√
n) distinct path lengths all contained in an interval of width√

n and Ω(
√

n) path lengths which are
√

n apart. Observe that both of these
statements are essentially implied by Conjecture 1, and that our main result
shows that both hold asymptotically (i.e., with

√
n replaced by n1/2−o(1)). On

the other hand, these statements shift the difficulty from finding many lengths
(note that there have been a number of proofs that there are at least

√
n different

lengths over the years) to controlling what kind of lengths we find.
Our actual strategy for tackling Conjecture 1 is a bit more involved. Instead

of splitting our cycle into just two parts, we split it into a larger number k of
parts (with k to be chosen as roughly

√
log n). Here each part will be a pair

of cycle sections (subpaths of the cycle) with at least n1−o(1) chords between
them, with different section-pairs situated “on top of” each other (see Fig. 1).
Now, with the goal of finding n1−ε different lengths (where ε is an appropriately
chosen vanishing function of n), we shall proceed as follows. Inside the first
of the k parts, we shall find Ω(nε) path lengths all belonging to an interval
of width nε. Then, inside the second part, we shall find about Ω(nε) lengths
�1 < · · · < �t such that any two consecutive lengths are Θ(nε) apart, namely
�i+1 − �i = Θ(nε) for all i. Now, by combining the paths we found in these two
parts, we will get Ω(n2ε) different path lengths, all belonging to an interval of
width O(n2ε), and only using vertices from the first two parts of the partition.
Continuing in this manner, we will find inside the third part Ω(nε) lengths which
are Θ(n2ε) apart, inside the fourth part Ω(nε) lengths which are Θ(n3ε) apart,
and so on. This will always allow us to combine the new lengths we find with
the lengths found so far to get Ω(niε) different path lengths, all belonging to
an interval of width O(niε), only using vertices from the first i parts. In each
iteration we will actually lose a polylogarithmic factor in the number of paths
we find, which will result in the optimal number of iterations being

√
log n

log log n

(this corresponds to having ε =
√

log log n
log n ). After this number of iterations, we

will find n1−o(1) different lengths.
Let us now focus on a single iteration and sketch the main ideas involved.

For simplicity, suppose that this is the third iteration, namely, that our goal
is to find (inside the third of the k parts of the partition) Ω(nε) path lengths
�1 < · · · < �t with �i+1 − �i = Θ(n2ε) for all i. Up to this step, we have already
found Θ(n2ε) path lengths in an interval of width O(n2ε) inside the first two
parts. Now, we consider a maximum collection e1, . . . , em of chords inside the
third part, such that for all i �= j, the lengths of ei and ej differ by at least
n2ε. Each chord ei gives rise to a path inside the third part (namely, the path
that consists of the chord and pieces of the cycle), and the lengths of any two
of these m paths differ by at least n2ε. Now, observe that if m ≥ n1−3ε, then
by combining these paths with the Θ(n2ε) path lengths we found in the first
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two parts of the partition, we obtain altogether m · Ω(n2ε) = Ω(n1−ε) different
cycle lengths, and thus achieve our goal already at this stage. So we may assume
that m ≤ n1−3ε. Since e1, . . . , em is a maximal family, the length of any other
chord must be at distance at most n2ε to that of one of the ei’s. By averaging
(and as each part of the partition contains n1−o(1) chords), we see that there
is a family E of at least n1−o(1)/m ≥ n3ε−o(1) different chords, whose lengths
all belong to an interval of width n2ε. The reason such a family E is useful is
as follows: Suppose we partition the left section of the third part into subpaths
X1,X2, . . . of length n2ε. Then, for any two such subpaths Xi,Xj which are not
consecutive (and hence are at distance larger than n2ε on the path), any chord
touching Xi must interlace (i.e. cross) any chord touching Xj . For if not, then
the difference of the lengths of these two chords is larger than n2ε, contradicting
the fact that both lengths belong to an interval of width n2ε. Letting Yi be the
neighbourhood of Xi on the right side, we see that E decomposes into pairwise-
interlacing pieces Xi, Yi, see Fig. 2 for an illustration. This structure, together
with some additional arguments, then allows us to find the Ω(nε) desired path
lengths �1 < · · · < �t. We remark that while it is not hard to find such lengths
with �i+1 − �i = Ω(n2ε), which already allows us to find Ω(n3ε) lengths, it is
essential for the next iteration that these lengths are not too far apart, in other
words ensuring in addition that �i+1 − �i ≤ O(n2ε) is crucial in order to be able
to continue our argument.

X1

X2

X3

Y1

Y2

Y3

Fig. 1. Parallel subsection pairs

X1

X3

X5 Y1

Y3

Y5

Fig. 2. Interlacing subsection pairs

3 Concluding Remarks

Our main result is that an n-vertex Hamiltonian graph of minimum degree 3 has
cycles of n1−o(1) different lengths, which shows that Conjecture 1 holds asymp-
totically. Moreover, for the original question of Jacobson and Lehel (dealing
with graphs of bounded degree), we can use our ideas to get a better quantita-
tive bound of n

polylog(n) . Still, it would be very interesting to prove a linear bound
on the number of cycles, even in the 3-regular case. Towards this we propose the
following natural intermediate steps:
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Conjecture 2. Every n-vertex Hamiltonian graph with minimum degree 3 has:

1. Ω(
√

n) cycle lengths all belonging to an interval of width O(
√

n).
2. Ω(

√
n) cycle lengths any two of which are at least Ω(

√
n) apart.

Observe first that Conjecture 1 immediately implies Conjecture 2. On the other
hand, we can show that a slight strengthening of Conjecture 2 already implies
Conjecture 1.
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Abstract. Let F ⊂ 2[n] such that the intersection of any two mem-
bers of F has size divisible by �. By the famous Eventown theorem, if
� = 2 then |F| ≤ 2�n/2�, and this bound can be achieved by ‘atomic’
construction, i.e. splitting the ground set into disjoint pairs and taking
their arbitrary unions. Similarly, splitting the ground set into disjoint
sets of size � gives a family with pairwise intersections divisible by � and
size 2�n/��. Yet, for infinitely many �, Frankl and Odlyzko constructed
families F as above of much bigger size 2Ω(n log �/�). On the other hand,
in 1983 they conjectured that for every � there exists some k such that
if any k distinct members of F have an intersection of size divisible by
�, then |F| ≤ 2(1+o(1))n/�. We completely resolve this old conjecture in
a strong form, showing that |F| ≤ 2�n/�� + O(1) holds if k is chosen
appropriately.

Keywords: Extremal combinatorics · Set systems · Intersections

1 Introduction

An eventown is a family F ⊂ 2[n] such that |A ∩ B| is even for any A,B ∈ F .
The famous Eventown theorem of Berkelamp [2], also proved independently by
Graver [6], states that if F ⊂ 2[n] is an eventown, then |F| ≤ 2�n/2�. This
bound is also the best possible, and a simple construction showing this is given
as follows. Say that a family F ⊂ 2[n] is atomic, if there exist disjoint sets
A1, . . . , Ad ⊂ [n] such that F is the family of all sets A satisfying that either
Ai ⊂ A, or Ai ∩ A = ∅ for every i ∈ [d], and A contains no element not covered
by the sets Ai. Also, let S(n, �) be the atomic family for which d = �n/�� and
all Ai, i ∈ [d] have size exactly �. Note that |S(n, �)| = 2�n/��, and the size of
the intersection of any number of sets in S(n, �) is divisible by �. Therefore,
the family S(n, 2) is an eventown of size 2�n/2�. This construction is not unique.
Moreover, any eventown family can be completed to a maximal one of size 2�n/2�,
see e.g. the book of Babai and Frankl [1], which is also a general reference on
intersection problems.

In general, one might be tempted to conjecture that the maximal families
F ⊂ 2[n], whose all pairwise intersections are divisible by �, have size close to
2(1+o(1))n/�. However, this turns out to be far from the truth. Frankl and Odlyzko
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[3] proved that if there exists a Hadamard matrix of order 4�, then there exists
such a family of size 2Ω(n log �/�), and this bound is also the best possible up to
the constant factor. On the other hand, Frankl and Tokushige [4] proved that
if we consider uniform families, that is, F ⊂ [n](r), then |F| ≤ (�n/��

r/�

)
if n

is sufficiently large given r and � | r. This bound is also the best possible as
witnessed by the family F = [n](r)∩S(n, �). Let us emphasize that the condition
that n must be large compared to r is necessary, otherwise this would contradict
the aforementioned construction of Frankl and Odlyzko.

Despite all the above, if we require that the intersection of any number of
sets in F ⊂ 2[n] must have size divisible by �, then it is not difficult to show
that |F| ≤ 2�n/�� for any n and �. Moreover, in this case, F is contained in
some isomorphic copy of S(n, �) (we say that two families in 2[n] are isomorphic
if they are equal up to a permutation of [n]). In 1983, Frankl and Odlyzko [3]
asked whether a similar conclusion holds if we only require that the intersection
of any k distinct sets in F has size divisible by �, where k is some constant
only depending on �. More precisely, they conjectured that for some k, we must
have |F| ≤ 2(1+o(1))n/� for such a family F . Until recently, it was not even
known if the bound 2O(n log �/�) can be improved for any constant k. Indeed,
while there are many tools to handle pairwise intersections as they correspond
to the scalar product of characteristic vectors, k-wise intersections are usually
harder to analyse, see, e.g., [5,7–10] for related results. Also, it was shown in [8]
that if the conjecture is true, k must depend on �. In particular, if � is a power
of 2, there exist families F ⊂ 2[n] such that the intersection of any k sets in F
has size divisible by �, and |F| ≥ 2ckn log �/�, where ck > 0 is a constant only
depending on k. In this paper we resolve the conjecture of Frankl and Odlyzko
in the following strong form.

Theorem 1. Let � be a positive integer, then there exists k = k(�) such that for
every positive integer n the following holds. Let F ⊂ 2[n] such that the inter-
section of any k distinct elements of F is divisible by �. Then |F| ≤ 2�n/�� + c,
where c = c(�, k) is a constant, and c = 0 if � | n and n is sufficiently large.

Note that the error term c is needed if � does not divide n. Indeed, in this
case S(n, �) is not extremal, one can add a constant number of sets contained in
the nonempty set not covered by members of S(n, �) while retaining the property
that the intersection of every k distinct sets has size divisible by �.

Our proof of Theorem 1 will proceed via a stability type argument, which
might be of independent interest. We show that if the dimensions of the subspaces
(over any field F) generated by the characteristic vectors of the elements of F
and F · F = {A ∩ B : A,B ∈ F} do not differ by much, then F must be close to
an atomic family in a certain sense. Let us present some of the key ideas needed
for the proof of Theorem 1.

2 Dimensionality

In this section, we present a theorem which implies Theorem 1 after a small
amount of work. Before we state this theorem, let us introduce some notation.
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For a vector v, we use v(i) to denote the ith coordinate of v. As usual, Z� denotes
the ring of integers modulo �, and if p is a prime, we write Fp instead of Zp to
emphasize that it is also a field. If F ⊂ Z

n
� , then 〈F〉� ⊂ Z

n
� (or simply 〈F〉 if � is

clear from the context) is the set of all linear combinations of the elements of F .
If S ⊂ [n] and v ∈ Z

n
� , then v|S ∈ Z

S
� is the restriction of v to the coordinates in

S, and F|S = {v|S : v ∈ F}. Say that F is non-reducible if F does not vanish on
any of the coordinates (namely, if there is no i such that v(i) = 0 for all v ∈ F).
Finally, let ||v|| =

∑n
i=1 v(i).

Given v, w ∈ Z
n
� , let v · w ∈ Z

n
� be defined as (v · w)(i) = v(i)w(i) for i ∈ [n],

and let vk be defined as vk(i) = v(i)k. Also, if F ,F ′ ⊂ Z
n
� , let F · F ′ = {v · w :

v ∈ F , w ∈ F ′}, and let Fk = F · ... · F , where the product contains k terms.
Say that a set F ⊂ Z

n
� is k-closed if ||v|| = 0 for every 1 ≤ i ≤ k and v ∈ F i.

Note that if v and w are characteristic vectors of sets A and B, then v · w is
the characteristic vector of A ∩ B. We use the following simple, but important
observation repeatedly.

Claim. If F ⊂ Z
n
� is k-closed, then 〈F〉 is also k-closed. Also, if F ,F ′ ⊂ Z

n
� ,

then 〈F · F ′〉 = 〈F〉 · 〈F ′〉.
Let p be a prime, and let F ⊂ F

n
p . Given i, j ∈ [n], say that i and j are

siblings in F if there exists λ ∈ Fp, λ �= 0 such that v(i) = λv(j) for all v ∈ F
and v(i) �= 0 for at least one v ∈ F . Also, if F ⊂ Z

n
� , say that i and j are twins if

v(i) = v(j) for every v ∈ F , and v(i) �= 0 for at least one v ∈ F . If S ⊂ [n], then
say that S is a set of siblings (or twins) if any pair of elements in S are siblings
(or twins), or |S| = 1. Also, say that S is a maximal set of siblings (twins) if it
is maximal with respect to containment.

Let us collect some simple but important properties of siblings and twins.

Claim. Let F ⊂ {0, 1}n.

1. Whether i are j are twins for F over Z� is independent of �.
2. If F is non-reducible, then the maximal sets of twins for F form a partition

of [n].
3. For every � > 1 and k ≥ 1, the families 〈F〉� and

⋃k
i=1 F i have the same sets

of twins (over Z�) as F .
4. If i and j are siblings for F over Fp, then i and j are twins.

The main result of this section is the following variant of Theorem 1. We show
that if F ⊂ 2[n] is such that the intersection of any k not necessarily distinct
elements of F has size divisible by �, then |F| ≤ 2�n/��, given k is sufficiently
large with respect to �. We also show that if F is close to being extremal, then
F must be a subfamily of some isomorphic copy of S(n, �).

Theorem 2. Let � be a positive integer, then there exists k such that the follow-
ing holds. Let F ⊂ {0, 1}n such that F is k-closed over Z�. Then |F| ≤ 2�n/��.
Also, if |F| > 2�n/��−1, then [n] can be partitioned into sets A1, . . . , Ad, A

′ such
that Ai is a maximal set of twins for F for i ∈ [d], |Ai| = �, |A′| ≤ � − 1, and F
vanishes on A′.
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Say that a subspace V < F
n
p of dimension d is atomic if [n] can be partitioned

into d sets of siblings for V . In order to prove Theorem 2, we prove a stability type
result which tells us that if V ⊂ F

n
p and the dimension of 〈V ∪ (V ·V )〉 is not much

larger than the dimension of V , then V must be close to an atomic subspace.

Lemma 1. Let p be a prime, V < F
n
p , d = dim(V ) and dim(〈V ∪ (V · V )〉) =

d + h. Then [n] can be partitioned into d + 1 sets A1, . . . , Ad, B such that Ai is
a maximal set of siblings for V for each i ∈ [d], and dim(V |B) ≤ 2h.

Next, we show that if � = pα is a prime power, and F ⊂ {0, 1}n is k-closed
over Z� for some large constant k, then most sets of maximal twins for F must
have size divisible by �, provided that the dimension of 〈F〉p is large.

Lemma 2. Let p be a prime and α ∈ Z
+. Let F ⊂ {0, 1}n be 2(p + α)-closed

over Zpα , let dim(〈F〉p) = d, and let A1, . . . , Ad, B be a partition of [n] such that
Ai is a set of twins, and dim(〈F|B〉p) ≤ h. Then at least d−2αh of the numbers
|A1|, . . . , |Ad| are divisible by pα.

From this, we deduce the following.

Lemma 3. Let p be a prime, and α, t ∈ Z
+. Let F ⊂ {0, 1}n such that F

is non-reducible and 2t+1(p + α)-closed over Zpα . Let A1, . . . , Ad be the unique
partition of [n] into maximal sets of twins, and let

B =
⋃

i∈[d]
|Ai|�≡0 (mod pα)

Ai.

Then dim(〈F|B〉p) ≤ 6nα
t .

In order to prove Theorem 2, we apply Lemma 3 for the different prime
powers dividing �. We conclude that if F is large, one of the maximal sets of
twins for F must have size divisible by �. From this point, one can easily finish
the proof by induction on n.

In order to prove Theorem 1, we just show that if F ⊂ 2[n] is such that
the intersection of any k distinct members of F has size divisible by �, then
we can find F ′ ⊂ F such that F\F ′ is small, and the intersection of any k, not
necessarily distinct, members of F ′ has size divisible by �. But then |F ′| ≤ 2�n/��

by Theorem 2.
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Abstract. We define a trivariate polynomial combining the NL-coflow
and the NL-flow polynomial, which build a dual pair counting acyclic col-
orings of directed graphs, in the more general setting of regular oriented
matroids.
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1 Introduction

In 1954 Tutte introduced a bivariate polynomial of an undirected graph G and
called it the dichromate of G [9]. Nowadays better known as the Tutte polynomial
it features not only a variety of properties and applications, but also specializes
to many graph-theoretic polynomials. Two of them, the chromatic and the flow
polynomial, counting proper colorings and nowhere-zero flows, build a pair of
dual polynomials in the sense that one polynomial becomes the other one by
taking the dual graph.

Regarding directed graphs, or digraphs for short, acyclic colorings are a nat-
ural generalization of proper colorings. A digraph is acyclically colorable if no
color class contains a directed cycle. This concept is due to Neumann-Lara [8].

In [5] a flow theory for digraphs transferring Tutte’s theory of nowhere-zero
flows to directed graphs has been developed and amplified in [1] and [6], where
the authors introduce a pair of dual polynomials, counting acyclic colorings of a
digraph and the dual equivalent called NL-flows.

In order to combine these two polynomials we will leave the setting of
digraphs and enter the world of oriented matroids. This more general scenery
provides a plethora of useful techniques as well as a common foundation upon
which our new polynomial is built. This foundation is due to a construction
of Brylawski and Ziegler [4] representing a dual pair of oriented matroids as
complementary minors.

Our notation is fairly standard and follows the book of Björner et al. [2] if
not explicitely defined. Due to space restrictions almost all proofs are omitted.
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1.1 Notation and Previous Results

In [6] we found the following representation of the NL-coflow polynomial counting
acyclic colorings in a digraph D = (V,A).

Definition 1. Let μQ be the Möbius function of (Q,⊆) with Q := {B ⊆ A :
D[B] is a totally cyclic subdigraph of D}. Then

ψD
NL(x) =

∑

B∈Q

μQ(∅, B)xrk(A/B)

is called the NL-coflow polynomial of D, where, for Y ⊆ A, rk(Y ) is the rank
of the incidence matrix of D[Y ], which equals |V (Y )| − c(Y ), i.e. the number of
vertices minus the number of connected components of D[Y ].

Recall that in our definition of contraction (see [3]) no additional arcs (elements)
are removed, i.e. parallel arcs and loops can occur. This holds for both the graphic
and the matroid contraction.

We will now define this polynomial in the more general setting of (regular)
oriented matroids. Note, that all of our results also work in the non-regular
case. Since we are not aware of a meaningful interpretation in this case, all our
matroids will be regular, if not explicitely pointed out.

Let M be an oriented matroid on the (finite) groundset E. The covectors
of M , i.e. compositions of (signed) cocircuits, together with the partial order
0 ≤ + and 0 ≤ − form the face lattice L of M with minimal element ∅. Since the
NL-flow polynomial (see [1]) only considers directed cuts, we are only interested
in the nonnegative part of L, which we denote by L+ := L ∩ {0,+}E . By L∗

we denote the face lattice of the dual M∗. Again, we are only interested in
the nonnegative part L∗

+ which in the graphic case corresponds to the set of
totally cyclic subdigraphs partially ordered by inclusion. Let μ and μ∗ denote
the Möbius function of L+ and L∗

+, respectively. By rk and rk∗ we denote the
rank and corank of the respective matroid (minor) and by X we denote the
support of the covector X.

Now we can define the NL-coflow polynomial of an oriented matroid M as

ψM
NL(x) :=

∑

X∈L∗
+

μ∗(∅,X)xrk(M/X).

Dually we define the NL-flow polynomial of M as

φM
NL(x) :=

∑

X∈L+

μ(∅,X)xrk∗(M\X).

It is easy to see that both coflow polynomials coincide in the graphic case.
Our new definition of the NL-flow polynomial also coincides with the graphic
one in [1] since rk∗(Y ) = |Y | − rk(Y ) holds for any minor, in particular for
Y := M\B,B ∈ C1.
1 In [1] the NL-flow polynomial of a digraph D = (V,A) is defined on the poset (C,⊇)
with C := {A\C : ∃ C1, . . . , Cr directed cuts s.t. C =

⋃

i=1...r

Ci}.
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2 Setting

Since our polynomials are defined on different face lattices we have to find a
common lattice including both. In [4] Brylawski and Ziegler give the following
beautiful construction which provides the desired lattice.

Let M be an oriented matroid on the groundset E = {1, . . . , n} with rank r
and M∗ its dual. Suppose that B := {1, . . . , r} is a basis of M and {r+1, . . . , n}
is the corresponding basis of M∗. Furthermore set E1 := B, E2 := E \ B and

Ê := E1 ∪ E2 ∪ A ∪ B = E ∪ A ∪ B

with A := {n + 1, . . . , n + r} and B := {n + r + 1, . . . , 2n} and let M1 be the
oriented matroid on Ê, that is obtained by extending M by elements n + i that
are parallel to the elements i for 1 ≤ i ≤ r and that are loops for r + 1 ≤ i ≤ n.
Similarly, let M2 be the oriented matroid on Ê that is obtained by extending
M∗ by elements n + i that are loops for 1 ≤ i ≤ r and that are parallel to the
elements i for r + 1 ≤ i ≤ n. Then M1 has rank r and M2 has rank n − r. Their
union (see Chap. 7.6 in [2])

M̂ := M1 ∪ M2

has rank n. Note that the construction of the oriented matroid union highly
depends on the choice of the basis B. Due to Theorem 2 in [4] we have

M̂\A/B = M and M̂/A\B = M∗.

In the case where M is realizable, M̂ is also realizable. Namely, if M can be
represented by

(
Ir C

)
, where Ir denotes the identity matrix of rank r, then M1

and M2 are represented by
(
Ir C Ir 0

)
and

(−C� In−r 0 In−r

)
, respectively.

Now let
(−C� In−r 0 In−r

)ε be the matrix obtained by multiplying the i−th
column by ε2n−i for all i ∈ {1, . . . , 2n} and ε > 0 sufficiently small. Then the
combined matrix (

Ir C Ir 0
(−C� In−r 0 In−r)ε

)

represents M̂ (see Proposition 8.2.7 of [2] and [4]). Note that even if M and M∗

are regular, this might not be true for M̂ . However, the face lattice of M̂ , which
we will denote by L̂, will serve our purpose.

In the following subsections we will find a characterization of the covectors
of M and its dual in this supermatroid M̂ .

2.1 Cocircuits and Covectors

Given a cocircuit D in M or in M∗ we find a corresponding cocircuit D̂ in
M̂ such that D ⊆ D̂. Furthermore we will find that, given D− = ∅, then also
D̂− = ∅ holds. Due to the construction of M̂ we will first extend D to a cocircuit
in M1, which then is already a cocircuit in M̂ . For the proof we will first look at
the underlying unoriented matroid and then compute the signatures in a second
step. We write x||y iff x and y are parallel elements as constructed above.
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Lemma 1. Let D be a cocircuit in M and set D1 := {a ∈ A : a||e, e ∈ D ∩ E1}.
Then D̂ := D ∪ D1 is a cocircuit in M1. If D = (D+,D−) is a signed cocircuit
in M with D− = ∅, then D̂ =:= (D+ ∪ D1, ∅) is a signed cocircuit in M1.

We are left to prove that D̂ is also a cocircuit in M̂ . Again, we will first take a look
at the underlying unoriented case, where the oriented matroid union becomes
the usual matroid union. Let I1 and I2 be the independent sets in M1 and M2

respectively. Then M̂ = (Ê, I), where I = {I1 ∪ I2 : I1 ∈ I1 and I2 ∈ I2} are
the independent sets of M̂ . As an immediate result every basis b of M̂ can be
written as b = b1 ∪ b2, where b1 is a basis of M1 and b2 is a basis of M2.

Lemma 2. Let D be a cocircuit in M1. Then D is also a cocircuit in M̂ .
If D = (D+,D−) is a signed cocircuit in M1, then D is a signed cocircuit in

M̂ .

Analogously, one can define D2 := {b ∈ B : b||e, e ∈ D ∩ E2} and prove that if
D = (D+, ∅) is a signed cocircuit in M∗, then D̂ := (D+ ∪ D2, ∅) is a signed
cocircuit in M̂ . Since covectors are compositions of cocircuits, the results above
readily yield:

Proposition 1.

(i) Let X be a covector in M and Ã := {a ∈ A : a||e, e ∈ X ∩ E1}. Then
X̂ := (X+ ∪ Ã, ∅) is a covector in M̂ .

(ii) Let X be a covector in M∗ and B̃ := {b ∈ B : b||e, e ∈ X ∩ E2}. Then
X̂ := (X+ ∪ B̃, ∅) is a covector in M̂ .

2.2 The Face Lattice of M̂

We have already seen that both the covectors of M and of M∗ can be found in the
face lattice of M̂ . In the following we will show the converse: Having a covector
of M̂ of that specific shape we determined in the previous section, its restriction
to E corresponds to a covector of M or of M∗, respectively. Furthermore we will
see that the corresponding Möbius functions coincide. The following lemma will
be crucial for both. Here, (X̂ ∩ A)||(X̂ ∩ E1) means, that for all x ∈ A, y ∈ E1

we have x, y ∈ X̂ if and only if x||y.

Lemma 3. Let X̂ = (X̂+, ∅) be a signed cocircuit of M̂ with X̂ ∩ B = ∅ (X̂ ∩
A = ∅). Then (X̂ ∩ A)||(X̂ ∩ E1) (resp. (X̂ ∩ B)||(X̂ ∩ E2)).

Lemma 4. Let X̂ = (X̂+, ∅) be a signed cocircuit of M̂ .

(i) If X̂ ∩ B = ∅, then X = X̂ ∩ E := (X̂+ ∩ E, X̂− ∩ E) is a signed cocircuit
of M and X− = ∅.

(ii) If X̂ ∩ A = ∅, then X = X̂ ∩ E := (X̂+ ∩ E, X̂− ∩ E) is a signed cocircuit
of M∗ and X− = ∅.
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Again, the previous lemma generalizes naturally to covectors. Let us now take a
look at the corresponding rank functions. By rkL, rkL∗ and rkL̂ we denote the
rank functions of the respective face lattices of M,M∗ and M̂ .

Lemma 5. Let X = (X+, ∅) be a covector of M (of M∗) and let X̂ be the
corresponding covector in M̂ . Then rkL(X) = rkL̂(X̂) (rkL∗(X) = rkL̂(X̂)).

As an immediate result, also the corresponding Möbius functions coincide. Aside
from this we will find a common expression of the exponents of the NL-flow and
the NL-coflow polynomial in terms of the rank in the face lattice of M̂ . In order
to do so we will use Corollary 4.1.15 (i) in [2]:

rkL(X) = rk(M) − rk(M\X) ∀X ∈ L. (1)

Lemma 6. Let X̂ ∈ L̂+ and X := X̂ ∩ E.

(i) If X̂ ∩ A = ∅, then rk(M/X) = rkL̂(X̂) + |E\X| − (n − r).
(ii) If X̂ ∩ B = ∅, then rk∗(M\X) = rkL̂(X̂) + |E\X| − r.

Proof. By Lemma 4, X ∈ L∗
+. Dualizing, (1) and Lemma 5 yield

rk(M/X) = rk∗(M∗\X) = |E\X| − rk(M∗\X)

= |E\X| + rkL∗(X) − rk(M∗) = |E\X| + rkL̂(X̂) − (n − r).

3 A New Polynomial

Finally we are able to define a new polynomial in three variables which somehow
generalizes both, the NL-flow and the NL-coflow polynomial. In order to switch
between the NL-flow and the NL-coflow polynomial we use two of the three
variables as some kind of toggle. Whenever the support of a covector of M̂ is
non-empty in A (or in B resp.), this covector cannot correspond to one of M∗

(or M resp.) and will be rejected. Due to Lemma 4, covectors that correspond
neither to a covector of M nor to one of M∗ will also be rejected, since they
have non-empty support in A as well as in B. This is why we can define our
polynomial on the whole face lattice L̂+.

Definition 2. Let M be a regular, oriented matroid on a finite groundset E, B
the basis of M chosen to construct M̂ and μ̂ the Möbius function of the face
lattice of M̂ . Then we define

ΩM,B
NL (x, y, z) :=

∑

X∈L̂+

μ̂(∅,X)xrkL̂(X)+|E\(X∩E)|y|X∩A|z|X∩B|,

which we call the dichromate of a digraph representing M in the graphic case.

Theorem 1. Let M be a regular, oriented matroid on E with |E| = n and let r
be its rank. Then

ΩM,B
NL (x, 0, 1) = xn−r · ψM

NL(x)

for any basis B of M .
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Proof. By Definition 2 it immediately follows that

ΩM,B
NL (x, 0, 1) =

∑

X∈L̂+
X∩A=∅

μ̂(∅,X)xrkL̂(X)+|E\(X∩E)|

for any basis B of M . Lemma 4 (ii) yields that the sum only considers X ∩ E ∈
L∗
+, since it is a covector of M∗ with positive entries only. The respective Möbius

functions coincide due to Lemma 5. Lemma 6 (i) completes the proof.

Using Lemmas 4 (i), 5 and 6 (ii), the next can be proven completely analogously.

Theorem 2. Let M be a regular, oriented matroid on E with |E| = n and let r
be its rank. Then

ΩM,B
NL (x, 1, 0) = xr · φM

NL(x)

for any basis B of M .

4 Outlook

We are not aware of any meaningful interpretation in the non-regular case. Nev-
ertheless the polynomial exists in this case and since the union does not need to
preserve regularity we have in any event already crossed this line.

Since the contraction of arcs might generate new directed cycles and loops it
is clear that our polynomials do not satisfy the (classical) deletion-contraction
formula. Presumably the most agreed concept of digraph minors in the context
of acyclic colorings are butterfly minors (see [7]). Unfortunately digraphs that
are not butterfly contractible can be arbitrarily complicated.
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Abstract. A set of integers A is said to be Schur if any two-colouring
of A results in monochromatic x, y and z with x + y = z. We study
the following problem: How many random integers from [n] need to be
added to some A ⊂ [n] to ensure that the resulting set is Schur with
high probability? Hu showed in 1980 that when |A| > � 4n

5
�, no random

integers are needed as A is already guaranteed to be Schur. Recently,
Aigner-Horev and Person showed that for any dense set of integers A ⊆
[n], adding ω(n1/3) random integers suffices, noting that this is optimal
for sets A with |A| ≤ �n

2
�. Here we complete the picture by closing the

gap between these two results. We show that if A ⊂ [n], with |A| =
�n
2
� + t < � 4n

5
� then adding ω(min{n1/3, nt−1}) random integers will

result in a set that is Schur with high probability. Our result is optimal
for all t, and we further provide a stability result showing that one needs
far fewer random integers when A is not close in structure to the extremal
example.

Keywords: Randomly perturbed sets · Ramsey theory ·
Combinatorial number theory · Schur triples

1 Introduction

A Schur triple in a set A ⊂ N is a triple (x, y, z) ∈ A3 such that x + y = z. We
say a set A ⊂ N is r-Schur if any r-colouring of the elemtents in A results in a
monochromatic Schur triple. Note that the property of A being 1-Schur is just
the property of containing a Schur triple. We call sets that are not 1-Schur sum-
free. This terminology stems from a classic theorem of Schur [17] which asserts
that for every r, there is some n0 = n0(r) such that [n] is r-Schur for all n ≥ n0.

Given this, it is natural to ask which subsets of [n] are also r-Schur. From
an extremal perspective, this leads to the question of establishing the maximum
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size a subset A ⊂ [n] which is not r-Schur. It is a simple exercise to show that
if |A| >

⌈
n
2

⌉
, A must be 1-Schur, and taking A ⊂ [n] to be the set of all odd

integers shows that this is best possible. For 2-colourings, one can take A to
be all integers in [n] which are not divisible by 5, colouring those which are
congruent to 1 or 4 (mod 5) red and those congruent to 2 or 3 (mod 5) blue.
This colouring gives no monochromatic Schur triples and hence there exists sets
of size

⌈
4n
5

⌉
which are not 2-Schur. Hu [13] showed with an elegant argument

that one can not do better than this.

Theorem 1. For any n ∈ N and A ⊂ [n] with |A| >
⌈
4n
5

⌉
, A is 2-Schur.

For r ≥ 3, it is not known what density forces a subset to be r-Schur. Abbott
and Wang [1] posed this question in 1977 and provided constructions which they
conjecture to be best possible, while some upper bounds have been provided in
[1,12].

Deviating from the problem of determining the size of extremal sets, one can
also study the behaviour of almost all subsets of [n] by adopting a probabilistic
perspective. For this, we fix some probability p = p(n) ∈ [0, 1] and randomly
sparsify the set [n], defining [n]p to be the set obtained by taking each integer
of [n] into [n]p with probability p, independently of the other choices. The goal
is then to understand for what p we can expect the resulting set to be r-Schur.
Here, and throughout, we say an event holds with high probability (whp, for
short) if the probability that it holds tends to 1 as n tends to infinity. Again,
establishing the appearance of Schur triples is an easy task and standard tools
(the first and second moment methods) give that if p = o(n−2/3), then [n]p is
sum-free whp whilst if p = ω(n−2/3) then [n]p will be 1-Schur whp. For more
colours, the behaviour was determined by Graham, Rödl and Ruciński [9] for
r = 2 and by Rödl and Ruciński [16] for r ≥ 3.

Theorem 2. For any 2 ≤ r ∈ N we have that if p = o(n−1/2) then whp [n]p is
not r-Schur whilst if p = ω(n−1/2) then whp [n]p is r-Schur.

For the rest of the paper we restrict to the case r = 2 and say that a set A ⊆ [n]
is Schur if it is 2-Schur.

1.1 Randomly Perturbed Sets of Integers

As a combination of the extremal and probabilistic thresholds, Bohman, Frieze
and Martin [4] initiated the study of combinatorial properties in random per-
turbed graphs by looking at how many random edges need to be added to an
arbitrary dense graph to make it Hamiltonian. This has inspired several subse-
quent results on graphs and hypergraphs, with their Ramsey properties having
been extensively studied (see e.g. [2,6,7,14,15]).

Aigner-Horev and Person were the first ones to transfer this to the setting of
additive combinatorics. From our discussion above, if |A| ≤ 4n

5 , one can ask how
much we need to randomly perturb A in order to obtain a set that is Schur. For
dense sets of integers A, Aigner-Horev and Person [3] showed the following.
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Theorem 3. Let ε > 0. If A ⊆ [n], |A| ≥ εn, and p = ω(n−2/3), then whp
A ∪ [n]p is Schur.

This can be interpreted as saying that any dense set is close to being Schur
as a small random perturbation is enough to force the set to be Schur. From a
probabilistic point of view, one can also see that, in comparison to Theorem 2,
one can save a great deal of randomness by starting with an arbitrary set of
positive density. Note that Theorem 3 is easily seen to be tight for |A| ≤ ⌈

n
2

⌉
;

taking A to be a sum-free set, we can colour A red and [n]p\A blue. Then the
only possible monochromatic Schur triples can come from [n]p, and the threshold
for their appearance is p = n−2/3 as discussed above.

Our main result precisely describes the amount of randomness needed when
the size of the dense set grows beyond n/2.

Theorem 4. Let n and t be positive integers such that
⌈
n
2

⌉
+ t ≤ ⌈

4n
5

⌉
, and

define p(n, t) = min
{
n−2/3, t−1

}
. Then the following statements hold.

(0) There exists a set A ⊆ [n] with |A| =
⌈
n
2

⌉
+ t such that for p = o(p(n, t)),

whp A ∪ [n]p is not Schur.
(1) For all A ⊆ [n] with |A| =

⌈
n
2

⌉
+ t and p = ω(p(n, t)), whp A∪ [n]p is Schur.

In particular, if |A| ≥ n
2 + Ω(n) then adding a super-constant number of

random integers already suffices to force the resulting set to be Schur. Along
with Theorems 1 and 3, this completes our understanding of the behaviour of
perturbed sets of integers when the starting set is dense. This follows a recent
trend in the perturbed setting to look at these kind of transitions in more detail
(see e.g. [5,11]).

Furthermore, we can show stability for Theorem 4, demonstrating that any
set that requires many random integers to be made 2-Schur must be close to the
extremal example from the 0-statement.

Theorem 5. If A ⊆ [n] with |A| =
⌈
n
2

⌉
+ t, and q = ω

(
(nt)−1/2

)
is such that

whp A ∪ [n]q is not 2-Schur, then
∣
∣[⌈n

2

⌉
, n

] \A
∣
∣ = O(q−1).

For t = o(n) such that t = ω(n1/3) we have (nt)−1/2 = o
(
min

{
n−2/3, t−1

})
,

and so this shows that we can make significant savings in the amount of ran-
domness required when the dense set A is far from the extremal construction.

2 Proof Sketch

Tools. Our proof relies on some powerful previously developed theory. We start
with the following arithmetic removal lemma of Green [10].

Theorem 6. For every ε > 0 there is a δ > 0 such that if A ⊆ [n] is a set
containing at most δn2 Schur triples, then there is a sum-free A′ ⊆ A with
|A\A′| ≤ εn.
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The next powerful result we will use is a stability statement for large sum-free
sets due to Deshouillers, Freiman, Temkin and Sós [8].

Theorem 7. If A ⊆ [n] is sum-free and |A| > 2
5n, then either

(i) A only consists of odd numbers, or
(ii) min A > |A|.

We will also often need to find many arithmetic progressions, and the follow-
ing result of Varnavides [18] will be repeatedly applied. A 4-AP in a set S is a
sequence a, a + d, a + 2d, a + 3d ∈ S and d is said to be the difference of the AP.

Theorem 8. For every δ > 0 there is a ξ = ξ(δ) > 0 such that if S ⊂ [m] is a
set with |S| ≥ δm, then S contains at least ξm2 4-APs. In particular, there are
at least ξm distinct differences of 4-APs in S.

Finally, we shall require the following variations of a fact used by Aigner-
Horev and Person [3].

Proposition 1. Each of the following sets are 2-Schur:

(i) L1(a, x, d) = {d, x, x + d} ∪ {a + id, a + x + id : i = 0, 1, 2, 3}, and
(ii) L2(a, x, d) = {d, x − d, x} ∪ {a + id, x − a − id : i = 0, 1, 2, 3}.

Given an element x ∈ A, we define S+
A (x) = {y ∈ A : x + y ∈ A}, S−

A (x) =
{y ∈ A : x − y ∈ A}, and SA(x) = S+

A (x) ∪ S−
A (x). The following result shows

that it will suffice to find some structure in these links of Schur triples in the set
A.

Lemma 1. Suppose we have a set X ⊆ A of size λ, and that, for each x ∈ X,
there is a set Dx of size κ such that for every d ∈ Dx, either S+

A (x) or S−
A (x) con-

tains a 4-AP with common difference d. Then, if p = ω
(
max((λκ)−1/2, κ−1)

)
,

A ∪ [n]p is 2-Schur with high probability.

Let us sketch the proof of this lemma. Take x ∈ X and d ∈ Dx with d the
difference of a 4-AP in S+

A (x). Letting a be the first term of the AP we have
that {a + id : i = 0, 1, 2, 3} ⊆ S+

A (x) ⊆ A, and thus, by definition of S+
A (x), we

also have {a + x + id : i = 0, 1, 2, 3} ⊆ A. Note that P (x, d) := {d, x + d} ⊆ [n]
and L1(a, x, d) \ A ⊆ P (x, d). By Proposition 1 it follows that A ∪ [n]p will be
2-Schur if P (x, d) ⊆ [n]p. In a similar fashion if d is the difference of a 4-AP
in S−

A (x), we obtain a pair of integers P (x, d) := {x, x − d} whose appearance
in [n]p gives a copy of L2(a, x, d) in A ∪ [n]p. One can verify that the map
(x, d) �→ P (x, d) is at most three-to-one and so by the hypothesis of the lemma,
we have Ω(λκ) pairs of integers P (x, d) whose appearance in [n]p gives a Schur
set. The expected number of these pairs that appear is ω(1) and an application
of the second moment method (for which we need p = ω(κ−1)) gives that one
such pair appears whp, settling the lemma.

Proof of the 1-Statement of Theorem 4. We first split into two cases,
depending on the number of Schur triples in A. Fix some small ε > 0 and let
δ > 0 be the resulting value from Theorem 6.



388 S. Das et al.

Case I: A has at least δn2 Schur triples. In this case, we easily find many x ∈ A
for which |S+

A (x)| ≥ 1
2δn and so S+

A (x) contains many 4-APs by Theorem 8. This
allows us to apply Lemma 1.

Case II: A has fewer than δn2 Schur triples. By Theorem 6, we can remove
at most εn elements from A to obtain a sum-free subset A′ ⊆ [n]. It follows
that |A′| ≥ ( 12 − ε)n, and hence we can apply Theorem 7 to obtain structural
information about A′—it either consists entirely of odd integers, or of large
integers.

Case II.1: A′ is contained in the odd integers. In this case we have that A must
contain t even integers x and each of these either has a linearly large set S+

A (x)
or S−

A (x). In either case, we can apply Theorem 8 to find many 4-APs in the
link of x and conclude again by using Lemma 1.

Case II.2: min A′ > |A′|. This case is similar but more technically involved. We
omit the details, simply noting that we take X to be the smallest integers in A,
allowing us to guarantee that the sets S+

A (x) for x ∈ X are sufficiently large. 
�

Finally, we remark that Theorem 5 follows from the proof outlined above,
because if A fell under Cases I or II.1, then p = ω

(
(nt)−1/2

)
would be sufficient

to ensure that A ∪ [n]p is whp Schur.

Proof of the 0-Statement of Theorem 4. In order to show the lower bound
we give an explicit construction. When t = Ω(n), and |A| =

⌈
n
2

⌉
+ t ≤ ⌈

4n
5

⌉
,

we can simply take A to be any set which is not 2-Schur (for example, the con-
struction that removes the integers divisible by 5 discussed in the introduction).
Then for p = o(n−1), an application of Markov’s inequality gives that whp [n]p is
empty and A ∪ [n]p remains 2-colourable without monochromatic Schur triples.

For 1 ≤ t = o(n), let A = [
⌈
n+1
2

⌉ − t, n] and take some p =
o
(
min{n−2/3, t−1})

. Write B = [
⌈
n+1
2

⌉ − t, n − 2t], C = [n − 2t + 1, n], and
R = [n]p\A = [�n

2  − t]p, noting that A ∪ [n]p = B ∪ C ∪ R. We colour B blue
and C ∪ R red. A visualisation can be found in Fig. 1. Note that B is sum-free,
and therefore we have no monochromatic Schur triples in blue. We also have
that C is sum-free, and since min C > 2max R, the only possible monochro-
matic red Schur triples are of the form x + y = z with x, y, z ∈ R or with x ∈ R
and y, z ∈ C. The former amounts to the random set containing a Schur triple,
which we know whp does not happen for p = o(n−2/3). For the latter, we require
the element x to belong to the difference set C − C. Since C is an interval of

nn − 2t�n+1
2 � − t1

B CR

Fig. 1. Visualisation of the lower bound construction
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length 2t, there are 2t − 1 possible differences. As p = o(t−1), whp none of these
elements x appear in R. Thus this colouring has no monochromatic Schur triples
whp, thereby demonstrating that A ∪ [n]p is not 2-Schur.
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10. Green, B.: A Szemerédi-type regularity lemma in abelian groups, with applications.
Geomet. Funct. Anal. 15(2), 340–376 (2005)

11. Han, J., Morris, P., Treglown, A.: Tilings in randomly perturbed graphs: bridg-
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Abstract. We study unit disk visibility graphs, where the visibility rela-
tion between a pair of geometric entities is defined by not only obstacles,
but also the distance between them. This particular graph class models
real world scenarios more accurately compared to the conventional visi-
bility graphs. We first define and classify the unit disk visibility graphs,
and then show that the 3-coloring problem is NP-complete when unit
disk visibility model is used for a set of line segments (which applies to
a set of points) and for a polygon with holes.

Keywords: Unit disk graphs · Visibility graphs · 3-coloring problem ·
NP-hardness

1 Introduction

A visibility graph is a simple graph G = (V,E) defined over a set P =
{p1, . . . , pn} of n geometric entities where a vertex u ∈ V represents a geo-
metric entity pu ∈ P, and the edge uv ∈ E exists if and only if pu and pv are
mutually visible (or see each other). In the literature, visibility graphs were stud-
ied considering various geometric sets such as a simple polygon [14], a polygon
with holes [16], a set of points [2], a set of line segments [6], along with different
visibility models such as line-of-sight visibility [8] and α-visibility [9].

Visibility graphs are used to describe real-world scenarios majority of which
concern the mobile robots and path planning [1]. However, the physical limita-
tions of the real world are usually overlooked or ignored while using visibility
graphs. Since no camera, sensor, or guard (the objects represented by vertices
of a visibility graph) has infinite range, two objects might not sense each other
even though there are no obstacles in-between. Based on such a limitation, we
assume that if a pair of objects are too far from each other, then they do not
see each other. To model this notion, we adapt the unit disk graph model.

G is called a unit disk visibility graph of P if the existence of an edge uv ∈ E
means that the straight line between pu and pv does not intersect any obsta-
cles (e.g., some pw /∈ {pu, pv}), and the Euclidean distance between them is at
most 1 unit. Unit disk point visibility graphs are well-defined by this definition
whereas for unit disk segment graphs and polygon visibility graphs, the addi-
tional constraints are the following: i) the edges of unit disk segment visibility
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graphs cannot intersect any segment, ii) the edges of unit disk polygon visibility
graphs must lie entirely inside the polygon, and iii) the segment lengths and the
length of boundary edges of a polygon are at most 1 unit (Fig. 1).

0 1
0

1

(a)

0 1
0

1

(b)

0 1
0

1

(c)

0 1
0

1

(d)

Fig. 1. Unit disk visibility relations of (a) a set of points, (b) a set of line segments,
(c) a simple polygon, and (d) a polygon with a hole.

The 3-coloring problem [7] is a famous NP-complete problem which asks if a
graph has a (proper) 3-coloring, i.e. all vertices receive one of the three pre-given
colors so that no two adjacent vertices receive the same color. In this paper, we
tackle the 3-coloring problem, and show that it is also NP-complete on unit disk
visibility graphs of a set of line segments, and a polygon with holes.

2 Preliminary Results

In this section, we prove that unit disk visibility graphs are not included in
the (hierarchic) intersection of unit disk graphs and visibility graphs. We first
show that visibility graphs are a proper subclass of unit disk visibility graphs.
We assume that the given geometric set is a set of points, since every visibility
graph considered in this paper can be embedded in the Euclidean plane; points,
endpoints of a set of line segments, and the vertices of a polygon.

Lemma 1. Consider a set P = {p1, . . . , pn} of points, and the visibility graph
G(P ) of P . There exists an embedding of P , such that the Euclidean distance
between every pair p, q ∈ P is at most one unit, preserving the visibility relations.

By Lemma 1, a given set P of points can be scaled down to obtain P ′ so
that every point in P ′ is inside a unit circle, and the visibility graph G(P ) of P
is exactly the same as the unit disk visibility graph of P ′. We get the following.

Lemma 2. If a problem Q is NP-hard for point visibility graphs, then Q is also
NP-hard for unit disk point visibility graphs.

Remark 1. By Lemma 2, the minimum vertex cover, the maximum independent
set and the minimum dominating set problems which have been shown to be NP-
hard for visibility graphs by [11,12] are NP-hard for unit disk visibility graphs.

We now obtain the following classification.
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Lemma 3. Unit disk visibility graphs are not a subclass of unit disk graphs.

The idea used to prove Lemma 3 is that unit disk point, segment and poly-
gon visibility graphs can contain an induced K1,6 which is a forbidden induced
subgraph for unit disk graphs K1,6 [13].

Lemma 4. Unit disk graphs are a proper subclass of unit disk point visibility
graphs, and not a subclass of unit disk segment and polygon visibility graphs.

Proof Sketch. Given a representation of a unit disk graph, we can simply perturb
the disk centers slightly to obtain a set of points in general position in which
no three points are collinear [4], which together with Lemma 3 shows that unit
disk graphs are a proper subclass of unit disk point visibility graphs. However,
unit disk segment visibility graphs require even number of vertices, unit disk
visibility graphs for simple polygons require Hamiltonian cycles, and unit disk
visibility graphs for polygons with holes require induced chordless cycles. Since
these structures need not appear in unit disk graphs, unit disk segment and
polygon visibility graphs are not a subclass of unit disk visibility graphs. ��

3 Main Results

In this section, we mention our NP-hardness reductions. A polynomial-time (NP-
hardness) reduction from a (NP-hard) problem Q to another problem P is to
map any instance Φ of Q to some instance Ψ of P such that Φ is a YES-instance
of Q if and only if Ψ is a YES-instance of P, in polynomial time and polynomial
space. We first show that the 3-coloring problem for unit disk segment visibility
graphs is NP-hard, using a reduction from the Monotone NAE3SAT problem
which is a 3SAT variant [15] with no negated variables, and to satisfy the circuit,
at least one true variable and one false variable must appear in each clause.

Theorem 1. There is a polynomial-time reduction from the Monotone
NAE3SAT problem to the 3-coloring problem for unit disk segment visibility
graphs.

Proof sketch. Three main components of our reduction are as follows.

(1) A long edge shown in Fig. 2c is used to transfer a color from one end to the
other (similar to transferring the truth assignment of a variable). This con-
figuration, no matter how long, has a unique 3-coloring (up to permutation).

(2) A clause gadget shown in Fig. 2d is modeled by three line segments xx′, yy′,
and zz′, not allowing three variables to have the same truth assignment. If
all x, y, z have the same color, then this clause gadget cannot be 3-colored.

(3) An edge crossing gadget shown in Fig. 2e describes a certificate for an edge
crossing in the circuit so that it can be realized as a set of non-intersecting
line segments. It has exactly two distinct 3-colorings (up to permutation).
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Fig. 2. The gadgets used in the proof of Theorem 1.

Given a Monotone NAE3SAT formula with m clauses C1, . . . , Cm and n
variables q1, . . . , qn, we construct the corresponding unit disk segment visibility
graph G as follows:

– For each variable qi, add a vertex vi to G together with a long horizontal edge
Hi transferring its color.

– For each clause Ci and each variable qj in Ci, add a triangle Ti to G together
with a long vertical edge Vj transferring the color of vj .

– For each Vj crossing a Hi, add an edge crossing gadget (certificate) to G
replacing the vertices in the intersection Vj ∪ Hi.
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Since this polynomial-time reduction works correctly, and the Monotone
NAE3SAT problem is NP-complete [15], the 3-coloring problem for unit disk
segment visibility graphs is also NP-complete. ��
Remark 2. The 3-coloring problem for unit disk graphs is NP-complete [10],
and by Lemma 4, it is NP-complete for unit disk point visibility graphs. For an
alternative reduction to [10], our gadgets can be utilized with small modifications.

We now show that the 3-coloring problem for unit disk visibility graphs of
polygons with holes is NP-hard by giving a reduction from the 3-coloring problem
for 4-regular planar graphs [5].

Theorem 2. There is a polynomial-time reduction from the 3-coloring problem
for 4-regular planar graphs to the 3-coloring problem for unit disk visibility graphs
of polygons with holes.

Proof sketch. Two main components of our reduction are as follows.

(1) A corridor shown in Fig. 3a replaces the edges. This gadget makes sure that
the two ends of an edge receive different colors.

(2) A chamber shown in Fig. 3b replaces the vertices. It is an induced subgraph
with 12 vertices. One of them acts as the central vertex, and the bound-
ary vertices act as the openings to the corridors which connect it to other
chambers.

Given a 4-regular planar graph H on n vertices v1, . . . , vn, we construct the
corresponding polygon P with holes as follows:

– For each vertex vi, add a chamber to P whose central vertex is vertex ui.
– For each pair of adjacent vertices (vi, vj), add a corridor to P between the

chambers with central vertices ui and uj .

Since this polynomial-time reduction works correctly, and the 3-coloring
problem for 4-regular planar graphs is NP-complete [5], this problem is also
NP-complete for unit disk visibility graphs of polygons with holes. ��

u v

(a) A corridor modelling the edges in a planar graph.

−1 0 1
−1

0

1

1

1

0

1

(b) The chamber that re-
places the vertices.
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d e

f

(c) An example 4-regular
planar graph.

a
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d e

f
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b c

d e
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(d) The polygon that cor-
responds to (c).

Fig. 3. The gadgets used in the proof of Theorem 2.
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4 Conclusion

We have introduced the unit disk visibility graphs, and proved the following:

– Visibility graphs are a proper subclass of unit disk visibility graphs.
– Unit disk graphs are a proper subclass of unit disk point visibility graphs while

they are neither a subclass nor a superclass of unit disk visibility graphs of a
set of line segments, simple polygons or polygons with holes.

– The 3-coloring problem for unit disk segment visibility graphs and for unit
disk visibility graphs of polygons with holes is NP-complete.

In the gadget used to prove NP-completeness of 3-coloring of unit disk seg-
ment visibility graphs, all line segments can be exactly one unit long except the
edge crossings, and the rest of the gadget contains line segments either horizontal
or vertical. Thus, we pose two interesting questions for reader’s consideration:

Open Problem 1. Is the 3-colorability of unit disk visibility graphs of line seg-
ments NP-hard when all the segments are exactly 1 unit long?

Open Problem 2. Is the 3-colorability of unit disk visibility graphs of line seg-
ments NP-hard when all the segments are either vertical or horizontal?

In [3], it was proven that for visibility graphs of simple polygons, the 4-
coloring problem can be solved in polynomial time, and the 5-coloring problem
is NP-complete. Therefore, we would like to study the chromatic number problem
on unit disk visibility graphs of simple polygons.
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Abstract. Waiter-Client games are played on a hypergraph (X, F),
where F ⊆ 2X denotes the family of winning sets. During each round,
Waiter offers a predefined amount (called bias) of elements from the
board X, from which Client takes one for himself while the rest go to
Waiter. Waiter wins the game if she can force Client to occupy any win-
ning set F ∈ F . In this paper we consider Waiter-Client games played
on randomly perturbed graphs. These graphs consist of the union of a
deterministic graph Gα on n vertices with minimum degree at least αn
and the binomial random graph Gn,p. Depending on the bias we deter-
mine the order of the threshold probability for winning the Hamiltonicity
game and the k-connectivity game on Gα ∪ Gn,p.

Keywords: Waiter-Client games · Randomly perturbed graphs ·
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1 Introduction

In general, a positional game is a perfect information game played by two players
on a hypergraph (X,F). Throughout the game both players occupy elements of
the board X according to some predefined rule, and the winner is determined
through the family of winning sets F . Research over the last decades has gen-
erated many interesting results in the area of positional games (see e.g. the
monographs [1,11]).

In this paper we are interested in Waiter-Client games (see e.g. [3,9,13])
where X is the edge set of a randomly perturbed graph G, and where F is the
family of all Hamilton cycles of G, or all k-vertex-connected spanning subgraphs
of G.
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1.1 Randomly Perturbed Graphs

A randomly perturbed graph is the union of a dense graph and a binomial
random graph. More precisely, let α > 0 be fixed and let Gα be a sequence
of n-vertex graphs with minimum degree at least αn. We consider the model
Gα ∪ Gn,p which was first introduced by Bohman, Frieze, and Martin [5] and
recently attracted a lot of attention (see e.g. [7,10]). We slightly abuse notation
by writing Gα ∪ Gn,p for Gα ∪ G with G ∼ Gn,p.

Bohman, Frieze, and Martin [5] showed that for any α > 0 there exists a
large enough constant C such that it is sufficient to take p ≥ C

n to ensure that
a.a.s.1 Gα ∪ Gn,p is Hamiltonian. In order to see that taking any p = o

(
1
n

)
is

not sufficient, one can consider Gα = Kαn,(1−αn). In that case, we can use at
most 2αn edges of Gα for a Hamilton cycle and a.a.s. Gn,p only adds o(n) edges.
Regarding k-vertex-connectivity, it was shown by Bohman, Frieze, Krivelevich,
and Martin [4] that for any fixed positive integer k the randomly perturbed
graph Gα ∪ Gn,p is k-vertex-connected when p = ω

(
1

n2

)
.

1.2 Waiter-Client Games

A (1 : b) Waiter-Client game on (X,F) is played as follows: In each round,
Waiter offers (b + 1) elements of X. Client chooses one of them for himself, the
remaining b go to Waiter. Waiter wins the game if she can force Client to claim
all elements of a winning set F ∈ F . Otherwise, Client wins. In [3], Bednarska-
Bzdȩga, Hefetz, Krivelevich, and �Luczak showed that for large enough n there
exists a constant c such that Waiter wins the (1 : b) Hamiltonicity game on Kn

if b ≤ cn and otherwise Client wins. Further they showed that the same holds
for the k-vertex connectivity game.

For Waiter-Client games played on a random graph Gn,p, Hefetz, Krivelevich,
and Tan showed in [13], that given a constant b ∈ N Waiter a.a.s. wins the (1 : b)
Hamiltonicity game, if p ≥ (1 + o(1)) ln(n)n . Moreover, it is easy to check with a
variant of Beck’s criterion for Client-Waiter games (see [2] and [3, Theorem 2.2])
that given constants k, b ∈ N there exists a C such that Waiter a.a.s. wins the
(1 : b) Waiter-Client k-connectivity game, if p ≥ C ln(n)

n .

1.3 Our Results

The model of randomly perturbed graphs interpolates between the purely deter-
ministic graph Gα and the random graph model Gn,p. In these models the ln n
term and α ≥ 1

2 are necessary conditions for the graphs to be connected. As dis-
cussed above in Gα ∪ Gn,p this is no longer the case and our goal is to strengthen
the results from [4,5] to the setting of biased Waiter-Client games. We prove the
following theorem for the Hamiltonicity game:

1 Asymptotically almost surely (a.a.s.) is with probability tending to one as n tends
to infinity.
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Theorem 1. For every real α > 0 there exist constants c, C > 0 such that the
following holds for large enough integers n. Let Gα be a graph on n vertices with
δ(Gα) ≥ αn, let b ≤ cn be an integer, and let p ≥ Cb

n . Then a.a.s. the following
holds: playing a (1 : b) biased Waiter-Client game on the edges of Gα ∪ Gn,p,
Waiter has a strategy to force Client to occupy a Hamilton cycle.

Note that the bound on b is optimal up to the constant factor (as shown
in [3]). The bound on p is optimal as well. To see this, consider Gα to be a
complete bipartite graph A ∪ B with |A| = αn and |B| = (1 − α)n. Now, every
Hamilton cycle in Gα ∪ Gn,p needs to contain at least (1 − 2α)n edges within B
and there need to be (1 − 2α)(b + 1)n edges such that Waiter can force Client
to take (1 − 2α)n. However, a.a.s. Gn,p contains fewer edges when p = o( b

n ).
Note that this result also strengthens the result of Bohman, Frieze, and

Martin [5] on the containment of Hamilton cycles. When p ≥ C
n for some large

enough constant C, the graph Gα ∪Gn,p a.a.s. does not only contain a Hamilton
cycle; instead it is so rich of this structure that Waiter even wins the (1 : 1)
Waiter-Client Hamiltonicity game on it.

Further, we prove the following theorem for the k-vertex-connectivity game:

Theorem 2. For every real α > 0 and every integer k there exist constants
C, c > 0 such that the following holds for large enough integers n. Let Gα be a
graph on n vertices with δ(Gα) ≥ αn, let b ≤ cn be an integer, and let p ≥ Cb

n2 .
Then with probability at least 1−exp(−cpn2) the following holds: playing a (1 : b)
Waiter-Client game on the edges of Gα ∪ Gn,p, Waiter has a strategy to force
Client to claim a spanning k-vertex-connected graph.

Again, the bound on b is optimal up to the constant factor [3]. Regarding
the optimality of p, one can look at the graph consisting of (roughly) 1

α disjoint
cliques of size (roughly) αn. For p = o( b

n2 ) a.a.s. there are less than b edges in
Gn,p, and thus, Waiter is not able to connect Client’s graph. Note again that
this theorem strengthens the result on the k-vertex-connectivity of Gα ∪ Gn,p

given in [4].

2 Hamiltonicity Game

In this section, we will sketch the proof of Theorem 1. A more detailed version
of the proof can be found in [8]. We will use different arguments, depending on
the bias b. The first argument works for any b = o(

√
n), while the second can be

applied for all b = Ω(ln n).

2.1 Sketch of the Proof for b ≤ n0.49

This part of the proof relies on the following sufficient condition for a graph to
contain a Hamilton cycle.

Theorem 3 (Theorem 2.5 in [12]). Let 12 ≤ d ≤ √
n and let G be a graph

on n vertices such that the following properties hold:
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(i) |NG(S)| ≥ d|S| for every S ⊂ V (G) of size |S| ≤ n ln d
d lnn ,

(ii) eG(A,B) > 0 for every pair of disjoint sets A,B ⊂ V (G) of size |A|, |B| ≥
n ln d

1035 lnn .

Then, provided that n is large enough, G contains a Hamilton cycle.

We will apply Theorem 3 with d = nδ for some appropriately chosen δ and
state a strategy for Waiter which ensures that Client’s graph C will fulfil the
following properties at the end of the game:

(1) |NC(S)| ≥ nδ|S| for every S ⊂ V (G) of size |S| ≤ δn1−δ,
(2) eC(A,B) > 0 for every pair of disjoint sets A,B ⊂ V (G) of size |A|, |B| ≥ βn

for some appropriately chosen β.

By following that strategy, Waiter wins the Hamiltonicity game according to
Theorem 3.

Let p and Gα be defined as in Theorem 1, and reveal G2 ∼ Gn,p. Let G1 =
Gα\G2. Note that a.a.s. δ(G1) ≥ α

2 n. Waiter first plays on E(G1) in such a way
that Client claims a subgraph with property (1). Afterwards, Waiter plays on
E(G2) in such a way that Client claims a subgraph with property (2). We look
at the games on E(G1) and E(G2) separately.

Game on E(G1): To describe Waiter’s strategy, we first fix a partition
V (G1) = V1 ∪ V2 ∪ V3 ∪ V4 such that for each i ∈ [4] we have |Vi| = n

4 ± 1
and for each v ∈ V (G1) we have

dG1(v, Vj) > α
5
|Vj | > α

25
n.

The existence of such a partition can be guaranteed by looking at a random
partition. We then split G1 into two edge-disjoint subgraphs

G1,1 = G1[V1, V2] ∪ G1[V2, V3] ∪ G1[V3, V4] ∪ G1[V4, V1] and G1,2 = G1[V1, V3] ∪ G1[V2, V4].

On G1,1, Waiter ensures that every vertex will have degree at least αn
200b in

Client’s graph. She can do this by playing as follows: as long as there is some
i ∈ [4] and some vertex v ∈ Vi with dC(v) < αn

200b , she offers (b+1) edges between
v and Vi+1 (with V5 := V1). On G1,2, Waiter ensures that Client claims an edge
in each set contained in

F1 =

{
EG1(A, B) :

∃i, j ∈ [4] with |i − j| = 2,
A ⊂ Vi, B ⊂ Vj , |A| = n0.5 and |B| =

(
1 − α

10

) |Vj |
}

.

One can verify that she is indeed able to do so by applying a variant of Beck’s
criterion for Client-Waiter games (see [2,3]). With the achievements on G1,1 and
G1,2, it follows that Client’s graph also satisfies property (1).

Game on E(G2): Waiter wins the game on E(G2) if she is able to force client
to claim an element from each of the sets contained in

F2 = {EG2(A, B) : A, B ⊂ V (G2) disjoint and |A| = |B| = βn}.

Since a.a.s. for any F ∈ F it holds that |F | ≥ 1
2p(βn)2, we can again apply

the variant of Beck’s Criterion for Client-Waiter games (see [2,3]) to show that
Waiter can indeed reach her goal on E(G2).
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2.2 Sketch of the Proof for b ≥ ln(n)

In this case we use some ideas from [3,14]. The strategy involves forcing Client
to build a connected n

5 -expander in his graph, which is defined as follows:

Definition 1. For an integer R, a graph G is called an R-expander if |NG(A)| ≥
2|A| for every A ⊂ V (G) with |A| ≤ R.

Having built this expander, Waiter can force Client to finish the Hamilton
cycle by only offering boosters in the remaining rounds. A booster for a graph
G is any non-edge e 	∈ E(G) such that G + e is either Hamiltonian or G + e
contains a longer path than G.

Lemma 1 (see e.g. Lemma 8.5 in [6]). If G is a connected non-Hamiltonian
R-expander, then the set of boosters for G has size at least R2

2 .

Let p and Gα be defined as in Theorem 1, and reveal G2 ∼ Gn,p. Let G1 =
Gα\G2. Note that a.a.s. δ(G1) ≥ α

2 n. Before we describe Waiter’s strategy, let
us fix a partition V = V

(1)
1 ∪V

(2)
1 ∪V

(1)
2 ∪V

(2)
2 ∪V

(1)
3 ∪V

(2)
3 with |V (j)

i | = n
6 ± 1,

for every i ∈ [3] and j ∈ [2], such that in G1 every vertex has degree at least αn
25

into each part V
(j)
i . Waiter’s strategy consists of the following three stages.

Stage I: In this stage, Waiter plays on G1 for at most n
ε2 rounds. Here, she

ensures that Client occupies a graph with the following property:

(P) for every i ∈ [3] and every A ⊂ V
(1)
i ∪ V

(2)
i of size at most εn, there are at

least 9|A| neighbours in V
(1)
i+1 ∪V

(2)
i+1 (where we set V

(j)
4 := V

(j)
1 for j = 1, 2).

Waiter can do this by first claiming an edge between any two appropriately
chosen large subsets of V

(1)
i ∪ V

(2)
i and V

(1)
i+1 as in Sect. 2.1 using the variant

of Beck’s Criterion for Client-Waiter games. Afterwards, there cannot be too
many vertices in sets which contradict property (P). By ensuring that those
vertices have pairwise disjoint neighbourhoods of size 9 in V

(2)
i+1, we can repair

the contradicting sets and thus achieve property (P).

Stage II: Waiter plays on G2 for at most 10n
ε2 further rounds. Now she ensures

that Client occupies a graph which has an edge between any two disjoint sets
of size εn. As we have seen in Sect. 2.1, Waiter succeeds in this stage. By the
achievement of the first two stages, one can see that Client’s graph is already a
connected n

5 -expander.

Stage III: By offering only boosters, Waiter turns this expander into a Hamilto-
nian graph within less than n rounds. It remains to be seen that we can actually
offer enough boosters. Following from Lemma 1, Client’s graph contains at least
n2

50 boosters. For any possible expander graph that Client could have claimed
by now, the probability that less than n2p

100 of these boosters are edges of G2 is

at most exp
(
−n2p

400

)
, by an application of Chernoff’s inequality. Taking a union

bound over all potential expanders, we a.a.s. get that there are enough boosters
in G2 independent of the expander Client had claimed by the end of Stage II.
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3 k-connectivity Game

In this section, we will sketch the proof of Theorem 2. Again, a more detailed
version can be found in [8]. Before we describe Waiter’s strategy, we split the
board into suitable subboards. As a first step, we fix a partition V (Gα) = U1 ∪
U2 ∪ · · · ∪ Uk such that

(1) |Ui| = n
k ± 1 for all i ∈ [k],

(2) eGα
(v, Ui) ≥ α

2 |Ui| for all v ∈ V (G) and i ∈ [k].

Next, we additionally split each of the sets Ui, i ∈ [k] to obtain a partition
Ui = Ui,1 ∪ Ui,2 ∪ . . . ∪ Ui,si

such that

(a) |Ui,j | ≥ α
20kn, and

(b) Gα[Ui,j ] is α2

80kn-vertex-connected

for every j ∈ [si]. This partitions and si can be found using [4, Lemma 1]. For
every i ∈ [k] and j ∈ [si], set Gi,j := Gα[Ui,j ]. We further can find a partition
Gi,j = G1

i,j ∪ G2
i,j such that both parts are γn-vertex-connected graphs on Ui,j ,

for some appropriately chosen constant γ.
With the described partition at hand, we reveal the edges G′ ∼ Gn,p and

observe that with probability at least 1 − exp(−cn2p) the following holds:

(c) eG′(Ui,j1 , Ui,j2) ≥ α2

800k2 n2p for every i and j1 	= j2.

We are now ready to describe Waiter’s strategy to force Client’s graph to
contain a k-vertex-connected spanning subgraph of G = Gα ∪ G′. We will split
Waiter’s strategy into the following four stages.

Stage I: In this stage, Waiter plays on GI :=
⋃

i,j E(G1
i,j) to ensures that

Client creates an εn-expander on V (G) as defined in Definition 1. Since Gi,j is
γn-connected for every i, j, we have δ(GI) ≥ γn, and thus can use the same
strategy as in Sect. 2.2. After Waiter succeeds, Client’s graph consists of at most
1
ε components, each of size at least εn, where each of those components is a
subset of some Ui,j with i ∈ [k] and j ∈ [si].

Stage II: Waiter plays on the board GII :=
⋃

i,j E(G2
i,j) in such a way that

Client’s graph becomes connected on each of the sets Ui,j . Since Gi,j is γn-
connected for every i, j, and there are at most 1

ε components within Ui,j she will
always find two components with (b + 1) unclaimed edges between them, which
she then offers.

Stage III: In this stage, Waiter forces Client to make Ui a connected com-
ponent in his graph for every i ∈ [k] by playing on the board GIII :=⋃

i,j1,j2
EG′(Ui,j1 , Ui,j2). By property (c) and an appropriate choice of C, there

are more than (b + 1) edges between Ui,j1 and Ui,j2 for each i ∈ [k] and
j1 	= j2 ∈ [si]. Thus, Waiter can easily reach her goal.

Stage IV: Waiter considers the board GIV :=
⋃

i1,i2
EGα

(Ui1 , Ui2). She ensures,
that by the end of this stage Client’s graph C satisfies the following: eC(v, Ui2) > 0
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for every i1 	= i2 and v ∈ Ui1 . Using property (2), Waiter has enough edges to
choose from to succeed in this stage.

It remains to argue that Client’s graph is indeed k-vertex-connected after
Waiter succeeds in every stage. This can be seen as follows. Let K ⊂ V (G) be
any set of size at most k−1. Then there exists some i ∈ [k] such that Ui ∩ K = ∅.
By Stage III, Ui is a connected component in Client’s graph; lastly by Stage IV,
every other vertex in V \(K ∪ Ui) has a neighbour in Ui; i.e. Client’s graph is
still connected after the removal of K.
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2. Bednarska-Bzdȩga, M.: On weight function methods in Chooser-Picker games.
Theor. Comput. Sci. 475, 21–33 (2013)
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7. Böttcher, J., Montgomery, R., Parczyk, O., Person, Y.: Embedding spanning
bounded degree graphs in randomly perturbed graphs. Mathematika 66(2), 422–
447 (2020)

8. Clemens, D., Hamann, F. Mogge, Y., Parczyk, O.: Positional games on randomly
perturbed graphs. arXiv preprint arXiv:2009.14583 (2020)

9. Dean, O., Krivelevich, M.: Client-Waiter games on complete and random graphs.
Electron. J. Combin. 23(4), P4.38 (2016)

10. Han, J., Morris, P., Trenglown, A.: Tilings in randomly perturbed graphs: bridg-
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Vector Choosability in Bipartite Graphs
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Abstract. The vector choice number of a graph G over a field F, intro-
duced by Haynes et al. (Electron. J. Comb., 2010), is the smallest integer
k such that for every assignment of k-dimensional subspaces of a vector
space over F to the vertices, it is possible to choose nonzero vectors for
the vertices from their subspaces so that the vectors received by adjacent
vertices are orthogonal over F. This work is concerned with the vector
choice number of bipartite graphs over various fields. We first observe
that the vector choice number of bipartite graphs can be arbitrarily large
over any field. We then consider the problem of estimating, for a given
integer k, the smallest integer m for which the vector choice number of
the complete bipartite graph Kk,m over F exceeds k. We prove upper and
lower bounds on this quantity, implying a substantial difference between
the behavior of the (color) choice number and the vector choice number
on bipartite graphs. For the computational aspect, we show a hardness
result for deciding whether the vector choice number of a given bipartite
graph over F is at most k, provided that k ≥ 3 and that F is either the
real field or any finite field.

Keywords: Graph coloring · Graph choosability · Orthogonality
dimension

1 Introduction

Graph coloring is the problem of minimizing the number of colors in a vertex col-
oring of a graph G where adjacent vertices receive distinct colors. This minimum
is known as the chromatic number of G and is denoted by χ(G). Being one of the
most popular topics in graph theory, the graph coloring problem was extended
and generalized over the years in various ways. One classical variant, initiated
independently by Vizing in 1976 [9] and by Erdős, Rubin, and Taylor in 1979 [2],
is that of graph choosability, also known as list coloring, which deals with vertex
colorings with some restrictions on the colors available to each vertex. A graph
G = (V,E) is said to be k-choosable if for every assignment of sets Sv of k colors
to the vertices v ∈ V , there exists a choice of a color cv ∈ Sv for each v ∈ V ,
resulting in a proper coloring of G (that is, cv �= cv′ whenever v and v′ are
adjacent in G). The choice number of a graph G, denoted ch(G), is the smallest
integer k for which G is k-choosable. It is well known that the choice number
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ch(G) behaves quite differently from the standard chromatic number χ(G). In
particular, it can be arbitrarily large even for bipartite graphs (see, e.g., [2]). The
choice number of graphs enjoys an intensive study in graph theory involving com-
binatorial, algebraic, and probabilistic tools (see, e.g., [1]). The computational
decision problem associated with the choice number is unlikely to be tractable,
as it is known to be complete for the complexity class Π2 of the second level of
the polynomial-time hierarchy even for bipartite planar graphs [2–4].

Another interesting variant of graph coloring, introduced by Lovász [6] in the
study of Shannon capacity of graphs, is that of orthogonal representations, where
the vertices of the graph do not receive colors but vectors from some given vector
space. A t-dimensional orthogonal representation of a graph G = (V,E) over R

is an assignment of a nonzero vector xv ∈ R
t to every vertex v ∈ V , such that

〈xv, xv′〉 = 0 whenever v and v′ are adjacent in G.1 The orthogonality dimension
of a graph G over R is the smallest integer t for which there exists a t-dimensional
orthogonal representation of G over R. The orthogonality dimension parameter is
closely related to several other well-studied graph parameters, and in particular,
for every graph G it is bounded from above by the chromatic number χ(G). The
orthogonality dimension of graphs and its extensions to fields other than the reals
have found a variety of applications in combinatorics, information theory, and
theoretical computer science (see, e.g., [7, Chap. 10]). As for the computational
aspect, the decision problem associated with the orthogonality dimension of
graphs is known to be NP-hard [8].

In 2010, Haynes, Park, Schaeffer, Webster, and Mitchell [5] introduced
another variant of the chromatic number of graphs that captures both the choice
number and the orthogonality dimension. In this setting, which we refer to as
vector choosability, each vertex of a graph G is assigned a k-dimensional subspace
of some finite-dimensional vector space, and the goal is to choose for each vertex
a nonzero vector from its subspace so that adjacent vertices receive orthogonal
vectors. The smallest integer k for which such a choice is guaranteed to exist for
all possible subspace assignments is called the vector choice number of the graph
G, formally defined as follows.

Definition 1. For a graph G = (V,E) and a function f : V → N, G is f -
vector choosable over a field F if for every integer t and for every assignment
of subspaces Wv ⊆ F

t with dim(Wv) = f(v) to the vertices v ∈ V (which we
refer to as an f-subspace assignment), there exists a choice of a nonzero vector
xv ∈ Wv for each vertex v ∈ V , such that 〈xv, xv′〉 = 0 whenever v and v′ are
adjacent in G. For an integer k, the graph G is k-vector choosable over F if
it is f-vector choosable over F for the constant function defined by f(v) = k.
The vector choice number of G over F, denoted ch-v(G,F), is the smallest k for
which G is k-vector choosable over F.

1 Orthogonal representations are sometimes defined in the literature with the orthog-
onality constraint on pairs of non-adjacent vertices.
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Here and throughout the paper, we associate with the real field R and with
every finite field F the inner product defined by 〈x, y〉 =

∑
xiyi, whereas for the

complex field C we consider, as usual, the one defined by 〈x, y〉 =
∑

xiyi.
The work [5] has initiated the study of the vector choice number of graphs

over the real and complex fields. Among other things, it is shown there that a
graph is 2-vector choosable over R if and only if it contains no cycles. We note
that this is in contrast to the characterization given in [2] of the (chromatic)
2-choosable graphs, which include additional graphs such as even cycles. This
implies that the choice number and the vector choice number do not coincide
even on the 4-cycle graph. Over the complex field C, however, it was shown in [5]
that a graph is 2-vector choosable if and only if it either contains no cycles or
contains only one cycle and that cycle is even. This demonstrates the possible
effect of the field on the vector choice number.

1.1 Our Contribution

The current work studies the vector choice number of graphs over general fields.
We put our focus on bipartite graphs, whose vector choice number gives rise to
plenty of natural and interesting questions from combinatorial, algebraic, and
computational perspectives.

We start with the observation that the vector choice number of a bipartite
graph can be arbitrarily large over every field. As mentioned earlier, such a
result was shown for the coloring setting by Erdős et al. [2], who proved that the
choice number of the complete bipartite graph Km,m exceeds k for m =

(
2k−1

k

)
.

Here we provide the following analogue result for vector choosability, holding
simultaneously for all fields.

Proposition 1. For every integer k and for every field F, ch-v(Km,m,F) > k

for m =
(
2k−1

k

)
.

Another question on color choosability studied in [2] concerns, for a given
integer k, the choice number of the complete bipartite graphs Kk,m. It was
observed there that the graph Kk,m is k-choosable for every m < kk whereas
ch(Kk,m) = k + 1 for every m ≥ kk. Considering the vector choice number of
these graphs, it can be seen that for every integer m and for every field F, it holds
that ch-v(Kk,m,F) ≤ k + 1. Indeed, given an assignment of (k + 1)-subspaces to
the vertices of Kk,m, every choice of nonzero vectors for the vertices of the left
side can be extended to a proper choice of vectors for the others. We consider
here the problem of identifying the values of m for which this k+1 upper bound
is tight, and as explained below, we discover that the situation is quite different
from the color choosability setting.

For an integer k and a field F, let m(k,F) denote the smallest integer m for
which it holds that ch-v(Kk,m,F) = k + 1. We first prove the following lower
bound.

Theorem 1. For every integer k and for every field F, m(k,F) >
∑k−1

i=1

⌊
k−1
i

⌋
.

In particular, for every field F it holds that m(k,F) = Ω(k · log k).
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We next provide a general approach for proving upper bounds on m(k,F). The
following theorem reduces this challenge to constructing families of vectors with
certain linear independence constraints.

Theorem 2. If there exists a collection of m = k · t + 1 nonzero vectors in F
k

satisfying that every t + 1 of them span the entire space F
k, then m(k,F) ≤ m.

The above theorem allows us to derive upper bounds on m(k,F) for various
fields.

Corollary 1. Let k be an integer and let F be a field.

1. If |F| ≥ k2 − k + 1 then m(k,F) ≤ k2 − k + 1.
2. If F is a finite field of size q ≥ k then m(k,F) ≤ k · qk−1−1

q−1 + 1.

We remark that Item 1 of Corollary 1 is obtained by applying Theorem 2 with
collections of vectors defined as the columns of Vandermonde matrices. It implies
that m(k,F) = O(k2) whenever the field F is infinite or sufficiently large as a
function of k, leaving us with a nearly quadratic gap from the lower bound given
in Theorem 1. Interestingly, our results yield a substantial difference between
the behavior of the choice number and of the vector choice number on bipartite
graphs. Indeed, while the results of [2] imply that ch(Kn,n) = (1 + o(1)) · log2 n,
Corollary 1 shows that ch-v(Kn,n,F) = Ω(

√
n) whenever F is sufficiently large.

We finally consider the computational aspect of the vector choice number
and prove the following hardness result.

Theorem 3. Let k ≥ 3 be an integer and let F be either R or some finite
field. Then, the problem of deciding whether a given bipartite graph G satisfies
ch-v(G,F) ≤ k is NP-hard.

The proof of Theorem 3 is inspired by the approach taken in a proof due to
Rubin [2] for the Π2-hardness of a decision problem associated with the (color)
choice number. His proof involves a delicate construction of several gadget graphs
used to efficiently map an instance of the Π2-variant of the satisfiability problem
to an instance of the color choosability problem. These gadgets, however, do not
fit the setting of vector choosability. In fact, the characterization of 2-vector
choosable graphs over the reals, given in [5], implies that the instances produced
by the reduction of [2] are never vector choosable over this field. To overcome
this difficulty, we construct and analyze a different gadget graph that allows us,
combined with ideas of Gutner and Tarsi [3,4], to obtain the NP-hardness result
stated in Theorem 3. Our analysis involves a characterization, stated below, of
the 2-vector choosable graphs over finite fields, extending the characterizations
given in [5] for the real and complex fields.

Proposition 2. For every finite field F, a graph is 2-vector choosable over F if
and only if it contains no cycles.

While Theorem 3 indicates the hardness of efficiently determining the vector
choice number of bipartite graphs, it would be natural to expect the stronger
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notion of Π2-hardness to hold for this problem. This challenge is left here for
future research.

Due to space limitation, most of the proofs have been deferred to the full
version of this paper. We do include here, though, a proof of Theorem 2 and a
description of the main component used in the proof of Theorem 3.

2 Proof of Theorem 2

Suppose that there exists a collection of m = k · t + 1 nonzero vectors b1, . . . , bm
in F

k satisfying that every t + 1 of them span the space F
k. To prove that

m(k,F) ≤ m, we have to show that it is possible to assign a k-subspace over
F to each vertex of the graph Kk,m so that no choice of a nonzero vector from
each subspace satisfies that the vectors of the left vertices are orthogonal to the
vectors of the right vertices.

Let u1, . . . , uk be the vertices of the left side, and let v1, . . . , vm be the vertices
of the right side. For every i ∈ [k], we assign to the vertex ui the subspace Ui

spanned by the k vectors ei⊗e1, . . . , ei⊗ek of Fk2
. Here, ei stands for the vector

in F
k with 1 on the ith entry and 0 everywhere else, and ⊗ stands for the tensor

product operation of vectors. Viewing the vectors of Fk2
as a concatenation of k

parts of length k, this means that Ui is the k-subspace of all vectors that have
zeros in all parts but the ith one. Then, for every j ∈ [m], we assign to the vertex
vj the subspace Vj spanned by the k vectors e1 ⊗ bj , . . . , ek ⊗ bj of Fk2

. Namely,
Vj is the k-subspace of all vectors in F

k2
consisting of k parts, each of which is

equal to the vector bj multiplied by some element of F.
Assume for the sake of contradiction that there exist nonzero vectors xi ∈ Ui

(i ∈ [k]) and yj ∈ Vj (j ∈ [m]) such that 〈xi, yj〉 = 0 for all i and j. For any
i ∈ [k], let x̃i ∈ F

k be the (nonzero) restriction of the vector xi to the ith part.
For any j ∈ [m], write yj =

∑
i∈[k] αi,j · ei ⊗ bj for some coefficients αi,j ∈ F.

Since all the vectors yj are nonzero, it clearly follows that at least m of the
coefficients αi,j are nonzero. Now, observe that for all i ∈ [k] and j ∈ [m],
〈xi, yj〉 = 0 implies that 〈x̃i, αi,j · bj〉 = 0. However, combining the facts that x̃i

is nonzero and that every t+1 vectors among b1, . . . , bm span F
k, it follows that

for every i ∈ [k], at most t of the coefficients αi,j with j ∈ [m] are nonzero. This
yields that the total number of nonzero coefficients αi,j is at most t · k < m,
providing the desired contradiction. �

3 Hardness Result

The main component of our hardness proof is the ∃-graph defined below, whose
properties are given in Lemma 1 and used in the proofs of Theorems 4 and 3.

Definition 2 (∃-graph). For any integers n1, n2, define the ∃-graph H =
Hn1,n2 and the function fH : V (H) → {2, 3} as follows. The graph consists of a
vertex labelled IN with degree 2, whose two neighbors serve as the starting points
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of two subgraphs to which we will refer as the top and bottom branches. Each
branch is composed of a sequence of 4-cycles connected by edges, as described
in the following figure. In each branch, the vertex of largest distance from IN
in every 4-cycle but the first has a neighbor labelled OUT and another neighbor
separating it from the next 4-cycle (except for the last 4-cycle). The numbers of
OUT vertices in the top and bottom branches are n1 and n2 respectively. The
function fH is defined on the vertices of H as indicated in the figure.
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Lemma 1. The ∃-graph H and the function fH given in Definition 2 satisfy the
following.

1. The graph H is bipartite, and every bipartition of H puts all OUT vertices in
the same part.

2. For every fH-subspace assignment of H over any field F, any choice of a
nonzero vector for IN can be extended to all vertices of each of the branches.

3. For every fH-subspace assignment of H over any field F and for each of
the branches of H, there exists a choice of a nonzero vector for IN which is
compatible with any choice of vectors for the OUT vertices of that branch.

4. Let F be either R or any finite field, and let t ≥ 8 and j ∈ [t] be some integers.
Then, there exists an fH-subspace assignment of H in F

t such that for every
valid choice of vectors for H there exists a branch all of whose OUT vertices
are assigned vectors proportional to ej.

Theorem 4. Let F be either R or any finite field. It is NP-hard to decide given
a bipartite graph G = (V,E) and a function f : V → {2, 3} whether G is f-vector
choosable over F.
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Abstract. For integers d ≥ 2 and k ≥ d + 1, a k-hole in a set S of
points in general position in R

d is a k-tuple of points from S in convex
position such that the interior of their convex hull does not contain any
point from S. For a convex body K ⊆ R

d of unit volume, we study the
expected number EHK

d,k(n) of k-holes in a set of n points drawn uni-
formly and independently at random from K.

We prove an asymptotically tight lower bound on EHK
d,k(n) ≥ Ω(nd)

for all fixed d ≥ 2 and k ≥ d + 1. For small holes, we even determine
the leading constant limn→∞ n−dEHK

d,k(n) exactly. We improve the best

known lower bound on limn→∞ n−dEHK
d,d+1(n) and we show that our

bound is tight for d ≤ 3. We show that limn→∞ n−2EHK
2,k(n) is inde-

pendent of K for every fixed k ≥ 3 and we compute it exactly for k = 4,
improving several earlier estimates.

Keywords: Stochastic geometry · Random point set · Convex
position · Holes
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(GAČR) and by the PRIMUS/17/SCI/3 project of Charles University.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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1 Introduction

For a positive integer d, let S be a set of points from R
d in general position. That

is, for every k ∈ {1, . . . , d − 1}, no k + 2 points from S lie on a k-dimensional
affine subspace of Rd. Throughout the whole paper we only consider point sets
in R

d that are finite and in general position.
A point set P is in convex position if no point from P is contained in the

convex hull of the remaining points from P . For an integer k ≥ d + 1, a k-hole
H in S is a set of k points from S in convex position such that the convex hull
conv(H) of H does not contain any point of S in its interior.

The study of k-holes in point sets was initiated by Erdős [7], who asked
whether, for each k ∈ N, every sufficiently large point set in the plane contains a
k-hole. This was known to be true for k ≤ 5, but, in the 1980s, Horton [11] con-
structed arbitrarily large point sets without 7-holes. The question about the exis-
tence of 6-holes was a longstanding open problem until 2007, when Gerken [10]
and Nicolas [15] showed that every sufficiently large set of points in the plane
contains a 6-hole.

The existence of k-holes was considered also in higher dimensions. Valtr [20]
showed that, for k ≤ 2d+1, every sufficiently large set of points in R

d contains a
k-hole. He also constructed arbitrarily large sets of points in R

d that do not con-
tain any k-hole with k > 2d−1(P (d−1)+1), where P (d−1) denotes the product
of the first d − 1 prime numbers. Very recently Bukh, Chao, and Holzman [6]
improved this construction.

Estimating the number of k-holes in point sets in R
d attracted a lot of atten-

tion; see [1]. In particular, it is well-known that the minimum number of (d+1)-
holes (also called empty simplices) in sets of n points in R

d is of order O(nd). This
is tight, as every set of n points in R

d contains at least
(
n−1

d

)
(d+1)-holes [3,12].

The tight upper bound O(nd) can be obtained by considering random point
sets drawn from a convex body. More formally, a convex body in R

d is a compact
convex subset of R

d with a nonempty interior. We use λd to denote the d-
dimensional Lebesgue measure on R

d and Kd to denote the set of all convex
bodies in R

d of volume λd(K) = 1. For an integer k ≥ d + 1 and a convex
body K ∈ Kd, let EHK

d,k(n) be the expected number of k-holes in a set S of n
points chosen uniformly and independently at random from K. Note that S is
in general position with probability 1.

Bárány and Füredi [3] proved the upper bound EHK
d,d+1(n) ≤ (2d)2d2 · (

n
d

)

for every K ∈ Kd. Valtr [21] improved this bound in the plane by showing
EHK

2,3(n) ≤ 4
(
n
2

)
for any K ∈ K2. Very recently, Reitzner and Temesvari [16,

Theorem 1.4] showed that this bound on EHK
2,3(n) is asymptotically tight for

every K ∈ K2. This follows from their more general bounds

lim
n→∞ n−2EHK

2,3(n) = 2

and
2
d!

≤ lim
n→∞ n−dEHK

d,d+1(n) ≤ d

(d + 1)
κd+1

d−1κd2

κd−1
d κ(d−1)(d+1)

(1)
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for d ≥ 2, where κd = π
d
2 Γ (d

2+1)−1 is the volume of the d-dimensional Euclidean
unit ball. Moreover, the upper bound in (1) holds with equality in the case d = 2,
and if K is a d-dimensional ellipsoid with d ≥ 3. Note that, by (1), there are
absolute positive constants c1, c2 such that

d−c1d ≤ lim
n→∞ n−dEHK

d,d+1(n) ≤ d−c2d

for every d ≥ 2 and K ∈ Kd.
Considering general k-holes in random point sets in R

d, the authors [2]
recently proved that EHK

d,k(n) ≤ O(nd) for all fixed integers d ≥ 2 and k ≥ d+1
and every K ∈ Kd. More precisely, we showed

EHK
d,k(n) ≤ 2d−1

(
2d2d−1

(
k

�d/2�
))k−d−1

n(n − 1) · · · (n − k + 2)
(k − d − 1)! · (n − k + 1)k−d−1

. (2)

In this paper, we also study the expected number EHK
d,k(n) of k-holes in ran-

dom sets of n points in K. In particular, we derive a lower bound that asymptot-
ically matches the upper bound (2) for all fixed values of k. Moreover, for some
small holes, we even determine the leading constants limn→∞ n−dEHK

d,k(n).

2 Our Results

First, we show that for all fixed integers d ≥ 2 and k ≥ d + 1 the number
EHK

d,k(n) is in Ω(nd), which matches the upper bound (2) by the authors [2]
up to the leading constant.

Theorem 1. For all integers d ≥ 2 and k ≥ d + 1, there are constants C =
C(d, k) > 0 and n0 = n0(d, k) such that, for every integer n ≥ n0 and every
convex body K ⊆ R

d of unit volume, we have EHK
d,k(n) ≥ C · nd.

In particular, we see that random point sets typically contain many k-holes
no matter how large k is, as long as it is fixed. This contrasts with the fact that,
for every d ≥ 2, there is a number t = t(d) and arbitrarily large sets of points
in R

d without any t-holes [11,20].
Theorem 1 together with (2) shows that EHK

d,k(n) = Θ(nd) for all fixed
integers d and k and every K ∈ Kd, determining the growth rate of EHK

d,k(n).
We thus focus on determining the leading constants limn→∞ n−dEHK

d,k(n), at
least for small holes.

For a convex body K ⊆ R
d (of a not necessarily unit volume), we use pK

d to
denote the probability that the convex hull of d+2 points chosen uniformly and
independently at random from K is a d-simplex. That is, the probability that
one of the d+2 points falls in the convex hull of the remaining d+1 points. The
problem of computing pK

d is known as the d-dimensional Sylvester’s convex hull
problem for K and it has been studied extensively. Let pd = maxK pK

d , where the
maximum is taken over all convex bodies K ⊆ R

d. We note that the maximum is
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achieved, since it is well-known that every affine-invariant continuous functional
on the space of convex bodies attains a maximum.

First, we prove the following lower bound on the expected number
EHK

d,d+1(n) of empty simplices in random sets of n points in K, which improves
the lower bound from (1) by Reitzner and Temesvari [16] by a factor of d/pd−1.

Theorem 2. For every integer d ≥ 2 and every convex body K ⊆ R
d of unit

volume, we have

lim
n→∞ n−dEHK

d,d+1(n) ≥ 2
(d − 1)!pd−1

.

Using the trivial fact p1 = 1 with the inequality EHK
2,3(n) ≤ 2(1 + o(1))n2

proved by Valtr [21], we see that the leading constant in our estimate is asymp-
totically tight in the planar case. An old result of Blaschke [4,5] implies that
Theorem 2 is also asymptotically tight for simplices in R

3.

Corollary 1. For every convex body K ⊆ R
3 of unit volume, we have

3 ≤ lim
n→∞ n−3EHK

3,4(n) ≤ 12π2

35
≈ 3.38.

Moreover, the left inequality is tight if K is a tetrahedron and the right inequality
is tight if K is an ellipsoid.

Note that, in contrast to the planar case, the leading constant in EHK
3,4(n)

depends on the body K.
By Theorem 2, better upper bounds on pd−1 imply stronger lower bounds

on EHK
d,d+1(n). The problem of estimating pd is equivalent to the problem of

estimating the expected d-dimensional volume EV K
d of the convex hull of d + 1

points drawn from a convex body K ⊆ R
d uniformly and independently at

random, since pK
d = (d+2)EV K

d

λd(K) ; see [14,18]. In the plane, Blaschke [4,5] showed
that EV K

2 is maximized if K is a triangle, which we use to derive the lower
bound in Corollary 1. For d ≥ 3, it is one of the major problems in convex
geometry to decide whether EV K

d is maximized if K is a simplex [19].
We do not have a general upper bound on the probability pd, but we can

determine the growth rate of pK
d for convex bodies K with small diameter.

Proposition 1. Let ε > 0 and let d ≥ 1 be an integer. Let K ⊆ R
d be a convex

body. If there is a volume-preserving affine transformation f : Rd → R
d such that

f(K) has diameter at most d1−ελd(K)1/d, then pK
d ≤ (d+2)d(1−ε)d

d! .

We note that there are convex bodies that do not satisfy the assumption
from Proposition 1, for example the regular d-dimensional simplex.

Besides empty simplices, we also consider larger k-holes. The expected
number EHK

2,4(n) of 4-holes in random planar sets of n points was consid-
ered by Fabila-Monroy, Huemer, and Mitsche [9], who showed EHK

2,4(n) ≤
18πD2n2 + o(n2) for any K ∈ K2, where D = D(K) is the diameter of K.
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Since we have D ≥ 2/
√

π, by the Isodiametric inequality [8], the leading con-
stant in their bound is at least 72 for any K ∈ K2. This result was strengthened
by the authors [2] to EHK

2,4(n) ≤ 12n2 + o(n2) for every K ∈ K2. Here we
determine the leading constant in EHK

2,4(n) exactly.

Theorem 3. For every convex body K ⊆ R
2 of unit area, we have

lim
n→∞ n−2EHK

2,4(n) = 10 − 2π2

3
≈ 3.420.

Our computer experiments support this result. We sampled random sets of
n points from a square and from a disk and the average number of 4-holes was
around 3.42n2 for n = 25000 in our experiments. The source code of our program
is available on the supplemental website [17].

For larger k-holes in the plane, we do not determine limn→∞ n−2EHK
2,k(n)

exactly, but we can show that it exists and does not depend on the convex
body K. We recall that this is not true in larger dimensions already for empty
simplices.

Theorem 4. For every integer k ≥ 3, there is a constant C = C(k) such that,
for every convex body K ⊆ R

2 of unit area, we have limn→∞ n−2EHK
2,k(n) = C.

Open Problems. We determined the leading constants limn→∞ n−dEHK
d,k(n)

exactly for small holes and, in particular, we showed that these limits exist in
such cases. However, we do not have any argument that would yield the existence
of these limits for all values of d and k. It is thus an interesting open problem to
determine whether limn→∞ n−dEHK

d,k(n) exists for all positive integers d and k
with k ≥ d + 1. It follows from a result by Reitzner and Temesvari [16, Theo-
rem 1.4] and from Theorem 4 that this limit exists if k = d + 1 or if k ≥ 3 and
d = 2, respectively.

As we remarked earlier, any nontrivial upper bound on the probability pd−1

translates into a stronger lower bound on limn→∞ n−dEHK
d,d+1(n). However,

we are not aware of any such estimate on pd−1. Kingman [13] found the exact
formula for pBd

d , which is of order d−Θ(d). We conjecture that the upper bound
on pK

d is of this order for any convex body.

Conjecture 1. There is a constant c > 0 such that, for every integer d ≥ 2, we
have pd ≤ d−cd.

We also believe that our lower bound from Theorem 2 is tight for simplices
in arbitrarily large dimension d, not only for d ≤ 3.

Conjecture 2. For every d ≥ 2, if K is a d-dimensional simplex of unit volume,
then limn→∞ n−dEHK

d,d+1(n) = 2
(d−1)!pd−1

.

As remarked earlier, it is widely believed that pK
d is maximized if K is a sim-

plex. If this is true, then it follows from the proof of Theorem 2 that Conjecture 2
is true as well.

It might also be interesting to determine limn→∞ n−2EHK
2,k(n) exactly for

as many values k > 4 as possible. Recall that, by Theorem 4, the number
limn→∞ n−2EHK

2,k(n) is the same for all convex bodies K ∈ K2.
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Abstract. We introduce a new positional game called ‘Toucher-
Isolator’, which is a quantitative version of a Maker-Breaker type game.
The playing board is the set of edges of a given graphG, and the two play-
ers, Toucher and Isolator, claim edges alternately. The aim of Toucher is
to ‘touch’ as many vertices as possible (i.e. to maximise the number of
vertices that are incident to at least one of her chosen edges), and the
aim of Isolator is to minimise the number of vertices that are so touched.

We analyse the number of untouched vertices u(G) at the end of the
game when both Toucher and Isolator play optimally, obtaining results
both for general graphs and for particularly interesting classes of graphs,
such as cycles, paths, trees, and k-regular graphs.

Keywords: Positional games · Maker-Breaker · Graphs

1 Introduction

One of the most fundamental and enjoyable mathematical activities is to play
and analyse games, ranging from simple examples, such as snakes and ladders
or noughts and crosses, to much more complex games like chess and bridge.

Many of the most natural and interesting games to play involve pure skill,
perfect information, and a sequential order of play. These are known formally as
‘combinatorial’ games, see e.g. [4], and popular examples include Connect Four,
Hex, noughts and crosses, draughts, chess, and go.

Often, a combinatorial game might consist of two players alternately ‘claim-
ing’ elements of the playing board (e.g. noughts and crosses, but not chess)
with the intention of forming specific winning sets, and such games are called
‘positional’ combinatorial games (for a comprehensive study, see [3] or [9]). In
particular, much recent research has involved positional games in which the
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board is the set of edges of a graph, and where the aim is to claim edges in order
to form subgraphs with particular properties.

A pioneering paper in this area was that of Chvátal and Erdős [5], in which
the primary target was to form a spanning tree. Subsequent work has then
also involved other standard graph structures and properties, such as cliques [2,
7], perfect matchings [11,14], Hamilton cycles [11,13], planarity [10], and given
minimum degree [8]. Part of the appeal of these games is that there are several
different versions. Sometimes, in the so-called strong games, both players aim to
be the first to form a winning set (c.f. three-in-a-row in a game of noughts and
crosses). In others, only Player 1 tries to obtain such a set, and Player 2 simply
seeks to prevent her from doing so.

This latter class of games are known as ‘Maker-Breaker’ positional games.
A notable result here is the Erdős-Selfridge Theorem [6], which establishes a
simple but general condition for the existence of a winning strategy for Breaker
in a wide class of such problems. A quantitative generalisation of this format
then involves games in which Player 1 aims to form as many winnning sets as
possible, and Player 2 tries to prevent this (i.e. Player 2 seeks to minimise the
number of winning sets formed by Player 1).

In this paper, we introduce a new quantitative version of a Maker-Breaker
style positional game, which we call the ‘Toucher-Isolator’ game. Here, the play-
ing board is the set of edges of a given graph, the two players claim edges
alternately, the aim of Player 1 (Toucher) is to ‘touch’ as many vertices as pos-
sible (i.e. to maximise the number of vertices that are incident to at least one
of her edges), and the aim of Player 2 (Isolator) is to minimise the number of
vertices that are touched by Toucher (i.e. to claim all edges incident to a vertex,
and do so for as many vertices as possible).

This problem is thus simple to formulate and seems very natural, with connec-
tions to other interesting games, such as claiming spanning subgraphs, match-
ings, etc. In particular, we note that it is related to the well-studied Maker-
Breaker vertex isolation game (introduced by Chvátal and Erdős [5]), where
Maker’s goal is to claim all edges incident to a vertex, and it is hence also
related to the positive min-degree game (see [1,9,12]), where Maker’s goal is to
claim at least one edge of every vertex.

Our Toucher-Isolator game can be thought of as a quantitative version of
these games, where Toucher now wants to claim at least one edge on as many
vertices as possible, while Isolator aims to isolate as many vertices as possible.
However, the game has never previously been investigated, and so there is a vast
amount of unexplored territory here, with many exciting questions. What are the
best strategies for Toucher and Isolator? How do the results differ depending on
the type of graph chosen? Which graphs provide the most interesting examples?

2 General Graphs

Given a graph G = (V (G), E(G)), we use u(G) to denote the number of un-
touched vertices at the end of the game when both Toucher and Isolator play



The Game of Toucher and Isolator 419

optimally. We obtain both upper and lower bounds on u(G), some of which are
applicable to all graphs and some of which are specific to particular classes of
graphs (e.g. cycles or trees).

Clearly, one of the key parameters in our game will be the degrees of the
vertices (although, as we shall observe later, the degree sequence alone does not
fully determine the value of u(G)). In our bounds for general G, perhaps the
most significant is the upper bound of Theorem 1. Here, we find that it suffices
just to consider the vertices with degree at most three (we again re-iterate that
all our bounds are tight).

Theorem 1. For any graph G, we have

d0 +
1
2
d1 − 1 ≤ u(G) ≤ d0 +

3
4
d1 +

1
2
d2 +

1
4
d3,

where di denotes the number of vertices with degree exactly i.

Proof (Sketch). Upper bound: Toucher uses a pairing strategy to touch enough
vertices for the statement to hold. We define a collection of disjoint pairs of edges,
and Toucher’s strategy will be to wait (and play arbitrarily) until Isolator claims
an edge within a pair, and then immediately respond by claiming the other edge
(unless she happens to have already claimed it with one of her previous arbitrary
moves, in which case she can again play arbitrarily). This way, Toucher will
certainly claim at least one edge in every pair. To create a pairing, we add
an auxiliary vertex and connect it to all odd degree vertices of G. The graph
created in this way is even, and each of its components has an Eulerian tour. For
each of these Eulerian tours, we then arbitrarily choose one of two orientations.
Removing the auxiliary vertex leaves an orientation of G. Now, for each vertex
that has at least 2 incoming edges, we take two such arbitrary edges and pair
them. Some degree 3 vertices and all vertices of degree at least 4 will be covered
by such pairing, and now we should consider the vertices of degree 1 and 2 and
the remaining vertices of degree 3. We deal with this in the following way: we
collect them and pair them arbitrarily. If their number is odd, Toucher takes one
of these edges in the very first move (before Isolator claimed anything).

Lower Bound: Lower bound is obtained by the fact that Isolator can claim at
least half of all edges whose at least one endpoint has degree 1, including at least
half of the edges whose both endpoints have degree 1. ��

For certain degree sequences, the bounds given in Theorem 1 can be improved
by our next result.

Theorem 2. For any graph G, we have

∑

v∈V (G)

2−d(v) − |E(G)| + 7
8

≤ u(G) ≤
∑

v∈V (G)

2−d(v),

where d(v) denotes the degree of vertex v.
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Equivalently, we have

∑

i≥0

2−idi − |E(G)| + 7
8

≤ u(G) ≤
∑

i≥0

2−idi,

where di again denotes the number of vertices with degree exactly i.

Note also that |E(G)| will be small if the degrees are small, and so Theorem 2
then provides a fairly narrow interval for the value of u(G) (observe that Theo-
rem 1 already provides a narrow interval if the degrees are large).

Proof (Sketch). The proof relies on the approach of Erdős and Selfridge [6] and
their “danger” function, defined as follows:

A vertex touched by Toucher has the danger value 0, while a vertex untouched
by Toucher incident with k free edges (edges unclaimed by anyone) has danger
value 2−k.

The total danger of the graph is the sum of the danger values for all vertices.
When the game is over, the total danger of the graph is precisely the number of
untouched vertices.

When Isolator claims an edge, the total danger increases by the sum of the
dangers of the endpoints of that edge. On the other hand, when Toucher claims
an edge, the total danger decreases by the sum of the dangers of the endpoints
of that edge.

Upper Bound: The upper bound is obtained by adding the strategy of Toucher
to all the aforementioned. Toucher will always choose the edge that maximises
the sum of danger values of the two vertices that are touched. Therefore, after
two consequent moves of Toucher and Isolator, the total danger never increases
throughout the game. The given upper bound follows.

Lower Bound: For the lower bound one has to carefully track change in total
danger value after one round in the game, i.e. the consecutive moves of Isolator
and of Toucher, given that Isolator plays in such a way to maximise the sum of
danger of the endpoints of the claimed edge. The total danger value decreases
by at most 1

4 after one round, and also, after the first move of Toucher, the total

danger decreases by at most one. Noting that there are
⌊

|E(G)|−1
2

⌋
rounds after

first Toucher’s move, the given lower bound follows.
��

Remark 1. Note that the upper bound of Theorem 2 will be better than the
upper bound of Theorem 1 if

∑

i≥4

23−idi < 2d1 + 2d2 + d3.

Remark 2. Note that the lower bound of Theorem 2 will be better than the lower
bound of Theorem 1 if

|E(G)| < 1 +
∑

i≥2

23−idi.
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As 2|E(G)| =
∑

i≥1 idi, this will occur if d2 is sufficiently large (e.g. consider
a path or a cycle, in which case the lower bound of Theorem 1 is ineffective).

3 Specific Graphs

Moving on from these general bounds, it is already interesting to play on re-
latively small graphs (such as cycles, paths and 2-regular graphs), and to try
to determine the optimal strategies and the proportion of untouched vertices.
We again obtain tight upper and lower bounds, both for Cn and for the closely
related game on Pn (the path on n vertices).

Theorem 3. For all n, we have

3
16

(n − 3) ≤ u(Cn) ≤ n

4
.

Theorem 4. For all n, we have

3
16

(n − 2) ≤ u(Pn) ≤ n + 1
4

.

We also extend the game to general 2-regular graphs (i.e. unions of disjoint
cycles). Our main achievement here is to obtain a tight lower bound of u(G) ≥
n−3
6 , which (by a comparison with the lower bound of Theorem 3) also demon-

strates that u(G) is not solely determined by the degree sequence.

Theorem 5. For any 2-regular graph G with n vertices, we have

n − 3
6

≤ u(G) ≤ n

4
.

An interesting and natural extension of the game on paths is obtained by
considering general trees, although this additional freedom in the structure can
make the problem significantly more challenging. Here, we derive the following
tight bounds, and provide the examples of graphs satisfying these bounds exactly.

Theorem 6. For any tree T with n > 2 vertices, we have

n + 2
8

≤ u(T ) ≤ n − 1
2

.

It follows from Theorem 1 that there will be no untouched vertices in k-
regular graphs if k ≥ 4, and it is natural to consider what happens in the
3-regular case.

A direct consequence of Theorem 2 is the following.

Corollary 1. For any 3-regular graph G with n vertices, we have

u(G) ≤ n

8
.



422 C. Dowden et al.

We observe that there are 3-regular graphs for which u(G) = 0, and one might
expect that this could be true for all such graphs. However, we in fact manage to
construct a class of examples for which a constant proportion of vertices remain
out of Toucher’s reach.

Theorem 7. For all even n ≥ 4, there exists a 3-regular graph G with n vertices
satisfying

u(G) ≥
⌊ n

24

⌋
.

4 Concluding Remarks

We cannot hope to obtain exact results just by looking at the degree sequence of
the graph. Hence, we are curious to know if any other properties or parameters
of the graph can be utilised to give more precise bounds.

Finally, what is the largest possible proportion of untouched vertices for a
3-regular graph? By Theorem 7 and Corollary 1, we know that this is between
1
24 and 1

8 .
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Abstract. In the space Hn(q
2) of Hermitian matrices over Fq2 of order n

we can define a d-code as subset C of Hn(q
2) such that rk(A−B) ≥ d for

every A, B ∈ C with A �= B. In Hn(q
2) we give two possible equivalence

definitions:
1) the ones coming from the maps that preserve the rank in F

n×n
q2

;

2) the ones that come from restricting to those maps preserving both
the rank and the space Hn(q

2).
As pointed out by Zhou in [15], there are examples of Hermitian d-
codes C1 and C2 for which there not exist maps of form 2) sending
C1 in C2, but there exists a map ψ of the form 1) such that ψ(C1) =
C2. We prove that when q > 2, d < n and the codes considered are
maximum additive d-codes and (n − d)-designs, these two equivalence
relations coincide. As a consequence, we get that the idealisers of such
codes are not distinguishers, as it usually happens for rank-metric codes.
The results rely on the paper [13].

Keywords: Hermitian matrices · Rank-metric code · Association
scheme

1 Preliminaries on Hermitian Rank-Metric Codes

Let us consider F
n×n
q , the set of the square matrices of order n defined over Fq,

with q a prime power. It is well-known that F
n×n
q equipped with

d(A,B) = rk(A − B),

where A,B ∈ F
n×n
q , is a metric space. If C is a subset of Fn×n

q with the property
that for each A,B ∈ C then d(A,B) ≥ d with 1 ≤ d ≤ n, then we say that C is
a d-code. Furthermore, we say that C is additive if C is an additive subgroup of
(Fn×n

q ,+), and C is Fq-linear if C is an Fq-subspace of (Fn×n
q ,+, ·), where + is

the classical matrix addition and · is the scalar multiplication by an element of
Fq.
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Consider · : x ∈ Fq2 �→ xq ∈ Fq2 the conjugation map over Fq2 . Let A ∈ F
n×n
q2

and denote by A∗ the matrix obtained from A by conjugation of each entry
and transposition. A matrix A ∈ F

n×n
q2 is said Hermitian if A∗ = A. Denote by

Hn(q2) the set of all Hermitian matrices of order n over Fq2 . In [11, Theorem
1], Schmidt proved that if C is an additive d-code contained in Hn(q2), then
|C| ≤ qn(n−d+1). When the parameters of C satisfy the equality in this bound,
we say that C is a maximum (additive) Hermitian d-code.

2 The Association Scheme of Hermitian Matrices

By [1, Section 9.5] we have that Hn(q2) gives rise to an association scheme whose
classes are (A,B) ∈ Ri ⇔ rk(A−B) = i. Let χ : Fq → C be a nontrivial character
of (Fq,+) and let 〈A,B〉 = χ(tr(A∗B)), with A,B ∈ Hn(q2) and tr denotes the
matrix trace. Denoting by Hi the subset of Hn(q2) of matrices having rank equal
to i, the eigenvalues of such association scheme are Qk(i) =

∑
A∈Hk

〈A,B〉, for
B ∈ Hi, with i, k ∈ {0, 1, . . . , n}, see [2,11,12].

Let C ⊆ Hn(q2). The inner distribution of C is (A0, A1, . . . , An) of rational
numbers given by Ai = |(C×C)∩Ri|

|C| . Therefore, C is a d-code if and only if A1 =
. . . = Ad−1 = 0. The dual inner distribution of C is (A′

0, A
′
1, . . . , A

′
n) where

A′
k =

n∑

i=0

Qk(i)Ai.

Also, we have that A′
0 = |C|, A′

k ≥ 0 for each k ∈ {0, 1, . . . , n} and if C is
additive then |C| divides A′

i for each i ∈ {0, . . . , n}.
If A′

1 = . . . = A′
t = 0, we say that C is a t-design. Of course, if C is additive

the Ai’s count the number of matrices in C of rank i with i ∈ {0, 1, . . . , n}.
Moreover, in such a case we can associate with C its dual in Hn(q2); i.e.,

C⊥ = {X ∈ Hn(q2) : 〈X,Y 〉 = 1 for each Y ∈ C},

and it is possible to show that the coefficients A′
k

|C| count exactly the number of
matrices in C⊥ of rank i with i ∈ {0, 1, . . . , n}.

Also in [11] the author proved the following results on combinatorial proper-
ties of maximum additive Hermitian d-codes when d is odd.

Theorem 1. [11, Theorem 1] If C ⊆ Hn(q2) is a Hermitian additive d-code with
odd d, then it is maximum if and only if C is an (n − d + 1)-design.

Consider m and � two non-negative integers, negative q-binomial coefficient
is defined as

[
m
�

]

=
�∏

i=1

(−q)m−i+1 − 1
(−q)i − 1

.
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We will need the following property for negative q-binomial coefficients. Let
k and i be two non-negative integers, then

k∑

j=i

(−1)j−i(−q)(
j−i
2 )

[
j
i

] [
k
j

]

= δk,i, (1)

where δk,i is the Kronecker delta function, see [11, Equation (6)] and [7,
Equation (10)].

If C is a Hermitian additive d-code and a (n − d)-design, then its inner
distribution has beeen determined.

Theorem 2. [11, Theorem 3] If C is a Hermitian additive d-code and a (n−d)-
design, then

An−i =
n−d∑

j=i

(−1)j−i(−q)(
j−i
2 )

[
j
i

] [
n
j

] ( |C|
qnj

(−1)(n+1)j − 1
)

,

for each i ∈ {0, 1, . . . , n − 1}.

3 The Equivalence Issue

For given a ∈ F
∗
q , ρ ∈ Aut(Fq2), A ∈ GL(n, q2) and B ∈ Hn(q2), the map

Θ : C ∈ Hn(q2) �→ aACρA∗ + B ∈ Hn(q2), (2)

where Cρ is the matrix obtained from C by applying ρ to each of its entry,
preserves the rank distance and conversely, see [14]. For two subset C1 and C2

of Hn(q2), if there exists Θ as in (2) such that C2 = {Θ(C) : C ∈ C1} we say
that C1 and C2 are equivalent in Hn(q2). Nevertheless, we may consider the
maps of Fn×n

q2 preserving the rank distance, which by [14] are all of the following
kind Ψ : C ∈ F

n×n
q2 �→ ACσB + R ∈ F

n×n
q2 or Ψ : C ∈ F

n×n
q2 �→ A(Cσ)T B + R ∈

F
n×n
q2 , where A,B ∈ GL(n, q2), σ ∈ Aut(Fq2), R ∈ F

n×n
q2 and CT denotes the

transpose of C. For two subset C1 and C2 of Hn(q2), if there exists Ψ as above
such that C2 = {Ψ(C) : C ∈ C1} we say that C1 and C2 are said extended
equivalent. Clearly, if C1 and C2 of Hn(q2) are equivalent in Hn(q2), they are
also extended equivalent. However, when maximum d-codes are considered, the
converse statement is not true. In fact, from what Yue Zhou points out in [15],
it follows that constructions of commutative semifields exhibited in [3] and in
[16] provide examples of maximum n-codes in Hn(q2) say C, with the property
that there exist A,B ∈ GL(n, q2) such that ACB ⊆ Hn(q2), where A �= aB∗ for
each a ∈ Fq.

Along the lines of what has been done by Zhou in [15], in next section we
will investigate on the conditions that guarantee the identification of the afore-
mentioned types of equivalence for maximum Hermitian d-codes.
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3.1 A Partial Solution for Maximum Additive Hermitian d-codes

In this section we will show that, under some assumptions, the equivalence of
two maximum additive hermitian d-codes in Hn(q2) coincides with extended
equivalence in F

n×n
q2 .

First recall the following incidence structures introduced in [9]

S(∞) = {(0,y) : y ∈ F
n
q2},

S(X) = {(x,xX) : x ∈ F
n
q2}, for X ∈ C.

The kernel K(C) of C is defined as the set of all the endomorphism μ of the
group (F2n

q2 ,+) such that S(X)μ ⊆ S(X) for every X ∈ C ∪ {∞}.
When considering a maximum additive d-code in Hn(q2) the following result

can be proved.

Theorem 3. [13, Theorem 3.3] Let d be a positive integer and let C be a max-
imum additive d-code in Hn(q2). If there exist a ∈ F

∗
q and P ∈ GL(n, q2) such

that In ∈ aP ∗XP , then K(C) is isomorphic to a finite field containing Fq. In
particular, if d < n then K(C) is isomorphic to Fq.

Lemma 1. If C is a Hermitian maximum additive d-code and an (n−d)-design
with d < n. Then there is at least one invertible matrix in C.

Proof. If d = 1, then C = Hn(q2) and the assertion holds. So assume that
1 < d < n: our aim is to prove that An �= 0. By Theorem 2, we have that

An−i =
n−d∑

j=i

(−1)j−i(−q)(
j−i
2 )

[
j
i

] [
n
j

] ( |C|
qnj

(−1)(n+1)j − 1
)

,

for each i ∈ {0, 1, . . . , n − 1}. For i = 0, we get

An =
n−d∑

j=0

(−1)j(−q)(
j
2)

[
j
0

] [
n
j

] ( |C|
qnj

(−1)(n+1)j − 1
)

. (3)

Recalling that |C| = qn(n−d+1), the above formula can be written as follows

An =

n−d∑

j=0

(−1)j(−q)

(
j
2

) [
n
j

] (
qn(n−d−j+1) − 1

)
≡ −

n∑

j=0

(−1)j(−q)

(
j
2

) [
n
j

]
(mod qn−d).

Therefore, by Equation (1) we have An ≡ −1 (mod qn−d), so that An �= 0.

We are ready to prove the main result of this section.

Theorem 4. If C1 and C2 are two maximum additive Hermitian d-codes and
(n − d)-designs with d < n. Then they are equivalent in Hn(q2) if and only if
they are extended equivalent.
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Proof. Clearly, if C1 and C2 are equivalent in Hn(q2) then they are also extended
equivalent. Now assume that C1 and C2 are extended equivalent, i.e. there exist
two invertible matrices A,B ∈ GL(n, q2), ρ ∈ Aut(Fq2) and R ∈ F

n×n
q2 such that

C1 = ACρ
2B +R. Since C1 and C2 are additive, we may assume that R = O, i.e.

C1 = ACρ
2B. We are going to prove that A = zB∗ for some z ∈ F

∗
q . So,

C2 = ACσ
1B = (A(B∗)−1)B∗Cσ

1B = MC3,

where M = A(B∗)−1 and C3 = B∗Cσ
1B ⊆ Hn(q2). As a consequence, we have

that MX ∈ Hn(q2) for each X ∈ C3, i.e. MX = (MX)∗ = XM∗, for all

X ∈ C3. Hence the matrix
(

M O
O M∗

)

∈ K(C3). By Lemma 1, there exists in

C3 an invertible matrix, which implies the existence of a ∈ Fq and D ∈ GL(n, q)
such that In ∈ aD∗C3D. Now, by Theorem 3 we have that K(C3) = Fq and
hence M = zIn for some z ∈ F

∗
q , i.e. A = zB∗.

As a consequence of Theorem 1 we get the following.

Corollary 1. If C1 and C2 are two Hermitian maximum additive d-codes with
d odd, d < n. Then they are equivalent in Hn(q2) if and only if they are extended
equivalent.

4 Idealisers Are Not Distinguishers in Hn(q
2)

In the classical rank-metric context, to establish whether or not two codes are
equivalent could be quite difficult. One of the strongest tool for such issue is
given by the automorphism groups of such codes, which is usually very hard to
determine. In some cases it is enough to study some subgroups of the automor-
phism group which are invariant under the equivalence and which are easier to
calculate, such as the idealisers introduced in [8] and deeply investigated in [9].

Let C be an additive rank-metric code in F
n×n
q , its left idealiser I�(C) is

defined as
I�(C) = {Z ∈ F

n×n
q : ZX ∈ C for all X ∈ C}

and its right idealiser Ir(C) is defined as

Ir(C) = {Z ∈ F
n×n
q : XZ ∈ C for all X ∈ C}.

Idealisers have been used to distinguish examples of MRD-codes, see e.g. [4–
6,10]. In the next we prove that for maximum additive Hermitian d-codes left and
right idealisers are isomorphic to Fq2 , i.e. they cannot be used as distinguishers
in the Hermitian setting.

Theorem 5. Let C be a maximum Hermitian additive d-code and a (n − d)-
design with d < n. Then I�(C) and Ir(C) are both isomorphic to Fq.



428 R. Trombetti and F. Zullo

Proof. Let us consider the left idealiser case and let M ∈ I�(C). We have that
MX ∈ Hn(q2) for each X ∈ C, i.e. MX = (MX)∗ = XM∗ for all X ∈ C. Hence

the matrix
(

M O
O M∗

)

∈ K(C), and as in the proof of Theorem 4, we get that

M = aIn for some a ∈ Fq. Similar arguments can be performed to obtain the
same result for the right idealiser.

As a consequence of Theorem 1 we get that when considering a maximum
Hermitian additive d-code C with d odd, d < n, then I�(C) and Ir(C) are both
isomorphic to Fq.

We conclude this abstract with the following question.

Problem 1. Is it possible to adapt these considerations to the case of skew-
symmetric matrices setting?
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Abstract. Matching minors are a specialised version of minors fit for
the study of graphs with perfect matchings. The first major appearance
of matching minors was in a result by Little who showed that a bipartite
graph is Pfaffian if and only if it does not contain K3,3 as a match-
ing minor. Later it was shown, that K3,3-matching minor free bipartite
graphs are essentially, that is after some clean-up and with a single excep-
tion, bipartite planar graphs glued together at 4-cycles.

We generalise these ideas by giving an approximate description of
bipartite graphs excluding Kt,t as a matching minor in the spirit of the
famous Flat Wall Theorem of Robertson and Seymour. In essence, we
show that every bipartite Kt,t-matching minor free graph is locally K3,3-
matching minor free after removing an apex set of bounded size.

Keywords: Graph theory · Perfect matchings · Bipartite graphs ·
Flat wall

1 Introduction

The aim of Matching Theory is to study the structural properties of graphs with
perfect matchings and, within its context, a plethora of results revealing rich
structural properties of graphs with perfect matchings have appeared. For an
in-depth exhibition of Matching Theory, we refer to [8]. In particular, bipartite
graphs are further well-studied from the scope of Matching Theory [9,10,14].

All graphs considered in this article are finite and do not contain parallel
edges or loops. Let G be a graph and F ⊆ E(G) be a set of edges. F is called
a matching if no two edges in F share an endpoint, a matching is perfect if
every vertex of G is contained in some edge of F . A set X ⊆ V (G) is conformal
if G − X has a perfect matching of subgraph H of G is conformal if V (H) is
conformal. If M is a perfect matching of G and contains a perfect matching of H
we say that H is M -conformal. A bicontraction is the operation of contracting
both edges incident with a vertex of degree two at the same time. Finally, a
matching minor is a graph H that can be obtained by a series of bicontractions
from a conformal subgraph of G.
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The significance of matching minors was first1 discovered by Little who char-
acterised the bipartite Pfaffian graphs as exactly those which exclude K3,3 as
a matching minor [6]. However, this did not yield a polynomial time recogni-
tion algorithm. Pfaffian graphs themselves are of importance as they are a large
canonical class on which the number of perfect matchings can be counted effi-
ciently, a problem which is �P-hard in general [17].

A graph G is called matching covered if it is connected and each of its edges
is contained in a perfect matching. Let G be a graph and X ⊆ V (G). We denote
by ∂(X) the edge cut around X, we call the sets X and V (G) \ X the shores of
∂(X). Let us now assume G to be matching covered. An edge cut ∂(X) is tight
if |∂(X) ∩ M | = 1 for every perfect matching of G and it is trivial if |X| = 1
or |V (G) \ X| = 1. A graph G′ obtained from a graph G by identifying a shore
of a non-trivial tight cut into a single vertex and removing all resulting loops
and parallel edges is called a tight cut contraction of G. A matching covered
bipartite graph without a non-trivial tight cut is called a brace. Please note that
any bipartite matching covered graph G can be decomposed, by repeated tight
cut contractions, into a list of braces, a classic theorem of Lovász shows that
this list of braces is uniquely determined by G [7].

One can observe that for t ≥ 3, Kt,t is a matching minor of a bipartite
matching covered graph G if and only if it is a matching minor of a brace of G
[1], so it suffices to recognise K3,3-matching minor free braces. This was finally
achieved by [10,14] through a structural characterisation. Let G1 and G2 be
braces, each containing a 4-cycle Ci, i ∈ {1, 2}, respectively. We say that the
graph G obtained by identifying the vertices of C1 and C2 and possibly deleting
some of the edges of the resulting cycle is obtained from G1 and G2 by a C4-
sum. If G is a brace obtained by a sequence of C4-sums from planar braces Gi,
1 ≤ i ≤ h ∈ N, then the Gi are called the summands of G.

Theorem 1 ([10,14]). A brace G is K3,3-matching minor free if and only if it
is isomorphic to the Heawood graph (see Fig. 1) or it can be obtained from planar
braces by means of C4-sums.

Fig. 1. The Heawood graph H14.

1 Please note that the term is ‘matching minor’ is much younger.
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2 A Matching Theoretic Version of Flatness

The Flat Wall Theorem of Robertson and Seymour [5,13] describes Kt-minor
free graphs G in one of two ways. Either the treewidth of G is bounded by a
function in t and a parameter r ∈ N, or G contains a set A ⊆ V (G) of size
depending solely on t, and a wall W of height r such that the subgraph of G−A
which attaches to the inside of W can be made planar by means of clique sums
of order at most 32. This property of W in G − A is called ‘flatness’. In order
to obtain a similar result for bipartite graphs with perfect matchings we need
two ingredients: a) A notion of treewidth fit for the study of matching minors,
and b) a matching theoretic version of flatness. Introduced by Norine [11] as a
possible approach to solve the non-bipartite Pfaffian recognition problem which
is still open, the parameter perfect matching width can be seen as the appropriate
version of treewidth. Indeed, it was shown in [3] that, in bipartite graphs, large
perfect matching width forces the existence of a large grid as a matching minor.

A cross over a cycle C is a pair of disjoint paths P1 and P2 with endpoints
a1, b1, a2, and b2 respectively such that a1, a2, b1, and b2 appear on C in the
order listed and P1 and P2 are internally disjoint from C. The famous Two-Paths
Theorem [4,12,15,16] states that a cycle C has no cross in a graph G if and only
of G can be constructed by using clique sums of order at most three from a family
of graphs H1, . . . , Hh such that C ⊆ H1, H1 is planar, and C bounds a face in
H. For a matching theoretic version let G be a brace and C be a four-cycle in
G. A cross P1, P2 over C is conformal if C + P1 + P2 is a conformal subgraph of
G.

Theorem 2. Let G be a brace and C be a four-cycle in G. Then there exists
a conformal cross over C in G if and only if G contains K3,3 as a matching
minor.

Please note that Theorem 2 means that, in case there is no conformal cross
over C, G has a summand H which is planar and contains C, thereby, in some
sense, replicating the Two-Paths Theorem3. Please note that for our application
it suffices to consider 4-cycles, since they can be added as a gadget to allow
checking for the required two disjoint paths.

We can now approach a matching theoretic definition of flatness. In case G
is bipartite, let us denote by V1 and V2 the two colour classes of G and let us
always assume that a bipartite graph G is given with a two-colouring. Let G and
H be bipartite graphs with a perfect matching such that H has a single brace
J that is not isomorphic to C4. We say that H is a J-expansion. A brace B of
G is said to be a host of H if B contains a conformal subgraph H ′ that is a
J-expansion and can be obtained from H by repeated applications of tight cut
contractions. The graph H ′ is called the remnant of H.

2 See [5] for the exact statements and definitions.
3 Further inspection reveals that C bounds a face of H.
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Definition 1. Let G and H be bipartite graphs with perfect matchings and
assume H to be matching covered, planar, and a J-expansion for some planar
brace J . Moreover, let P be a collection of pairwise vertex disjoint faces of H
such that P is a conformal subgraph of H. At last, let A ⊆ V (G) be a conformal
set. Then H is P -flat in G with respect to A if there exists a tuple (X1, Y, Z,X2)
such that

1. X1 ∪ X2 ∪ Y ∪ Z = V (G − A), X1 ∩ X2 = ∅, Xi ∩ (Y ∪ Z) = ∅ for both
i ∈ {1, 2}, and Y ∩ Z ⊆ V (P ),

2. no edge of G−A has an endpoint in Xi∩V3−i and the other in X3−i∪Y ∪Z for
both i ∈ {1, 2}, moreover, no edge of ∂X1 ∪∂X2 belongs to a perfect matching
of G − A,

3. G[Y ∪ Z] is matching covered and conformal in G − A, H is a conformal
subgraph of G[Z], and no edge in G − A has one endpoint in Y \ Z and the
other in Z \ Y , and

4. G[Z] has a brace B that has no K3,3-matching minor, is a host of H, and
B has a planar summand B′ containing a remnant H ′ of H such that every
remnant of a face from P in H ′ bounds a face of B′.

Note that the tuple (Y,Z) works, essentially, as the separation in the original
definition of flatness from [5,13], while the sets X1 and X2 take care of those
portions of the graph which are, in a matching theoretic sense, already discon-
nected by deleting the apex set A. The conditions an the edges from the ∂(Xi)
are consequences of the so called Dulmage-Mendelsohn decomposition [2].

Let G and B be bipartite graphs with perfect matchings such that B is a
conformal subgraph of G. We say that B grasps a brace J as a matching minor
of G if there exists a conformal J-expansion H in G such that every vertex of
degree at least three in H belongs to B and B ∪ H is conformal in G.

3 The Matching Flat Wall Theorem for Bipartite Graphs

What is left is a definition of the walls themselves. The elementary match-
ing k-wall W is defined as the graph with vertex set [k] × [4k] and edge
set {{(i, j), (i′, j′)} : i = i′ and j′ = j + 1 or i′ = i − 1, j′ = j − 1 and j
mod 4 = 0 or i′ = i + 1, j′ = j − 1 and j mod 4 = 2} and its canonical (per-
fect) matching M is the set {{(i, j), (i, j + 1)} : i ∈ [k] and j mod 2 = 1}. The
matching k-wall W ′ is a subdivision of the elementary k-wall W where each
edge is subdivided an even number of times and a perfect matching M ′ of W ′

is canonical if any path Pe corresponding to a subdivided edge e of the under-
lying elementary k-wall is M ′-conformal if e ∈ M and internally M -conformal,
otherwise. The perimeter of a matching k-wall W ′, Per(W ′) is the union of the
outermost and innermost M ′-conformal cycles. See Fig. 2 for an example of the
elementary matching 3-wall, its canonical matching and its perimeter.

With this, we are ready to state our matching theoretic version of the Flat
Wall Theorem.
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(1, 1)

(1, 2)

(1, 3)
(1, 4)

(1, 5)

(1, 6)

(1, 7)

(1, 8)

(1, 9)
(1, 10)

(1, 11)

(1, 12)

Fig. 2. The elementary 3-wall with its canonical matching (red edges) and its perimeter
(marked cycles).

Theorem 3. Let r, t ∈ N be positive integers. There exist functions α : N → N

and ρ : N×N → N such that for every bipartite graph G with a perfect matching
M the following is true: If W is an M -conformal matching ρ(t, r)-wall in G such
that M ∩ E(W ) is the canonical matching of W , then either

1. G has a Kt,t-matching minor grasped by W , or
2. there exist an M -conformal set A ⊆ V (G) with |A| ≤ α(t) and an M -

conformal matching r-wall W ′ ⊆ W − A such that W ′ is Per(W ′)-flat in
B with respect to A.

A Weak Structure Theorem. With Theorem 3 at hand, we can give an
approximate characterisation of all bipartite graphs with perfect matchings that
exclude Kt,t as a matching minor for some t ∈ N. This weak structure theorem
is similar to [5] and in some sense can be seen as a generalisation of Theorem 1
in conjunction with results from [6,10].

Theorem 4. Let r, t ∈ N be positive integers, α and ρ be the two functions from
Theorem 3, and G be a bipartite graph with a perfect matching.

– If G has no Kt,t-matching minor, then for every conformal matching ρ(t, r)-
wall W in G and every perfect matching M of G such that M ∩ E(W ) is the
canonical matching of W , there exist an M -conformal set A ⊆ V (G) with
|A| ≤ α(t) and an M -conformal matching r-wall W ′ ⊆ W − A such that W ′

is Per(W ′)-flat in G with respect to A.
– Conversely, if t ≥ 2 and r ≥ √

2α(t), and for every conformal matching
ρ(r, t)-wall W in G and every perfect matching M of G such that M ∩ E(W )
is the canonical perfect matching of W , there exist an M -conformal set A ⊆
V (G) with |A| ≤ α(t) and an M -conformal matching r-wall W ′ ⊆ W − A
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such that W ′ is Per(W ′)-flat in G with respect to A, then G has no matching
minor isomorphic to Kt′,t′ , where t′ = 16ρ(t, r)2.

Proof. The first part of the theorem follows immediately from Theorem 3, since
in case B does not have Kt,t as a matching minor, the first part of Theorem 3
can never be true and thus every matching ρ(t, r)-wall must be flat in B.

For the reverse, note that an elementary matching ρ(t, r)-wall has exactly
16ρ(t, r)2 vertices. Now suppose B has a matching minor model μ : Kt′,t′ → B4.
Then there exists a perfect matching M such that μ is M -conformal. Indeed,
Kt′,t′ contains an M |Kt′,t′ -conformal elementary matching ρ(t, r)-wall, and thus
μ(Kt′,t′) contains an M -conformal matching ρ(t, r)-wall W . Indeed, for every
vertex w of degree three in W there exists a unique vertex uw ∈ V (Kt′,t′) such
that w ∈ V (μ(uw)), and in case w 
= w′ are both vertices of degree three in
W , then uwNequw′ . Moreover, if P is a path in W whose endpoints w and w′

have degree three in W and all internal vertices are vertices of degree two in W ,
then V (P ) ⊆ V (μ(uw))∪V (μ(uw′)). By assumption there exist an M -conformal
set A ⊆ V (B) and an M -conformal matching r-wall W ′ ⊆ W such that W ′ is
Per(W ′)-flat in B with respect to A. Now W ′ has 16r2 many vertices of degree
three in W ′, 16r of which lie on Per(W ′). Since r ≥ √

2α(t), we have at least
32α(t) many such degree three vertices. Thus, with |A| ≤ α(t) and t ≥ 2, there
exist w1, . . . , w6 ∈ V (W ′−Per(W ′)) such that V (μ(uwi

))∩A = ∅ for all i ∈ [1, 6].
This, however, means that for every conformal and matching covered subgraph
H ⊆ G − A that contains W ′ as a conformal subgraph, every brace J of H that
is a host of W ′ must contain K3,3 as a matching minor. Hence W ′ cannot be
Per(W ′)-flat in B with respect to A and we have reached a contradiction. ��
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Abstract. Using the Carlson–Simpson theorem, we give a new general
condition for a structure in a finite binary relational language to have
finite big Ramsey degrees.

Keywords: Structural ramsey theory · Big ramsey degrees · Dual
ramsey theorem

1 Introduction

We consider standard model-theoretic (relational) structures in finite binary lan-
guages formally introduced below. Such structures may be equivalently seen as
edge-labelled digraphs with finitely many labels, however the notion of structures
is more standard in the area. Structures may be finite or countably infinite. Given
structures A and B, we denote by

(
B
A

)
the set of all embeddings from A to B.

We write C −→ (B)Ak,l to denote the following statement: for every colouring χ

of
(
C
A

)
with k colours, there exists an embedding f : B → C such that χ does

not take more than l values on
(
f(B)
A

)
. For a countably infinite structure B and

its finite substructure A, the big Ramsey degree of A in B is the least number
l′ ∈ N ∪ {∞} such that B −→ (B)Ak,l′ for every k ∈ N. We say that the big
Ramsey degrees of B are finite if for every finite substructure A of B the big
Ramsey degree of A in B is finite.

We focus on structures in binary languages L and adopt some graph-theoretic
terminology. Given a structureA and distinct vertices u and v, we say that u and
v are adjacent if there exists R ∈ L such that either (u, v) ∈ RA or (v, u) ∈ RA.
A structure A is irreducible if any two distinct vertices are adjacent. A sequence
v0, v1, . . . , v�−1, � ≥ 3, of distinct vertices of a structure A is called a cycle if vi

is adjacent to vi+1 for every i ∈ {0, . . . , � − 2} as well as v0 adjacent to v�. A
cycle is induced if none of the other remaining pairs of vertices in the sequence
is adjacent.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 436–441, 2021.
https://doi.org/10.1007/978-3-030-83823-2_68
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Following [8, Section 2], we call a homomorphism f : A → B (see Sect. 2) a
homomorphism-embedding if f restricted to any irreducible substructure of A is
an embedding. The homomorphism-embedding f is called a (strong) completion
of A to B provided that B is irreducible and f is injective.

Our main result, which applies techniques developed by the third author
in [7], gives the following condition for a given structure to have finite big Ramsey
degrees.

Theorem 1. Let L be a finite language consisting of unary and binary symbols,
and let K be a countably-infinite irreducible structure. Assume that every count-
able structure A has a completion to K provided that every induced cycle in A
(seen as a substructure) has a completion to K and every irreducible substructure
of A of size at most 2 embeds into K. Then A has finite big Ramsey degrees.

This can be seen as a first step towards a structural condition implying
bounds on big Ramsey degrees, giving a strengthening of results by Hubička
and Nešetřil [8] to countable structures.

The study of big Ramsey degrees originates in the work of Laver who in 1969
showed that the big Ramsey degrees of the ordered set of rational numbers are
finite [11, Chapter 6]. The whole area has been revitalized recently; see [6,7] for
references. Our result can be used to identify many new examples of structures
with finite big Ramsey degrees. Theorem 1 is particularly fitting to examples
involving metric spaces. In particular, the following corollary may be of special
interest.

Corollary 1. The following structures have finite big Ramsey degrees:

(i) Free amalgamation structures described by forbidden triangles,
(ii) S-Urysohn space for finite distance sets S for which S-Urysohn space

exists,
(iii) Λ-ultrametric spaces for a finite distributive lattice Λ [3],
(iv) metric spaces associated to metrically homogeneous graphs of a finite diam-

eter from Cherlin’s list with no Henson constraints [5].

Vertex partition properties of Urysohn spaces were extensively studied in
connection to oscillation stability [10] and determining their big Ramsey degrees
presented a long standing open problem: Corollary 1 (i) is a special case of
the main result of [12], (ii) is a strengthening of [7, Corollary 6.5 (3)], (iii)
strengthens [9] and (iv) is a strengthening of [1] to infinite structures.

To see these connections, observe that a metric space can be also represented
as an irreducible structure in a binary language having one relation for each
possible distance. Possible obstacles to completing a structure in this language to
a metric space are irreducible substructures with at most 2 vertices and induced
non-metric cycles. These are cycles with the longest edge of a length exceeding
the sum of the lengths of all the remaining edges; see [1].

Note that all these proofs may be modified to yield Ramsey classes of finite
structures. Thus, for example, (ii) generalizes [8, Section 4.3.2].
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Our methods yield the following common strengthening of the main results
from [12] and Theorem 1. To obtain this result, which is going to appear in [2],
we found a new strengthening of the dual Ramsey theorem.

Theorem 2. Let L be a finite language consisting of unary and binary symbols,
and let K be a countably-infinite irreducible structure. Assume that there exists
c > 0 such that every countable structure A has a completion to K provided that
every induced cycle in A has a completion to K and every irreducible substructure
of A of size at most c embeds into K. Then A has finite big Ramsey degrees.

2 Preliminaries

A relational language L is a collection of (relational) symbols R ∈ L, each having
its arity. An L-structure A on A is a structure with the vertex set A and with
relations RA ⊆ Ar for every symbol R ∈ L of arity r. If the set A is finite,
then we call A a finite structure. A homomorphism f : A → B is a mapping
f : A → B such that for every R ∈ L of arity r we have (x1, x2, . . . , xr) ∈
RA =⇒ (f(x1), f(x2), . . . , f(xr)) ∈ RB. A homomorphism f is an embedding
if f is injective and the implication above is an equivalence. If the identity is
an embedding A → B, then we call A a substructure of B. In particular, our
substructures are always induced.

Hubička [7] connected big Ramsey degrees to an infinitary dual Ramsey theo-
rem for parameters spaces. We now review the main notions used. Given a finite
alphabet Σ and k ∈ ω ∪ {ω}, a k-parameter word is a (possibly infinite) string
W in the alphabet Σ ∪ {λi : 0 ≤ i < k} containing all symbols λi : 0 ≤ i < k
such that, for every 1 ≤ j < k, the first occurrence of λj appears after the first
occurrence of λj−1. The symbols λi are called parameters. Given a parameter
word W , we denote its length by |W |. The letter (or parameter) on index j with
0 ≤ j < |W | is denoted by Wj . Note that the first letter of W has index 0. A
0-parameter word is simply a word. Let W be an n-parameter word and let U
be a parameter word of length k ≤ n, where k, n ∈ ω ∪ {ω}. Then W (U) is the
parameter word created by substituting U to W . More precisely, W (U) is created
from W by replacing each occurrence of λi, 0 ≤ i < k, by Ui and truncating it just
before the first occurrence of λk in W . Given an n-parameter word W and a set
S of parameter words of length at most n, we define W (S) := {W (U) : U ∈ S}.

We let [Σ]
(
n
k

)
be the set of all k-parameter words of length n, where k ≤

n ∈ ω ∪ {ω}. If k is finite, then we also define [Σ]∗
(
ω
k

)
:=

⋃
k≤i<ω [Σ]

(
i
k

)
. For

brevity, we put Σ∗ := [Σ]∗
(
ω
0

)
.

Our main tool is the following infinitary dual Ramsey theorem, which is a
special case of the Carlson–Simpson theorem [4,11].

Theorem 3. Let k ≥ 0 be a finite integer. If [∅]∗(ω
k

)
is coloured by finitely many

colours, then there exists W ∈ [∅] (ω
ω

)
such that W

(
[∅]∗(ω

k

))
is monochromatic.

Definition 1 ([7]). Given a finite alphabet Σ, a finite set S ⊆ Σ∗ and d > 0,
we call W ∈ [∅]∗(ω

d

)
a d-parametric envelope of S if there exists a set S′ ⊆ Σ∗
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satisfying W (S′) = S. In such case the set S′ is called the embedding type
of S in W and is denoted by τW (S). If d is the minimal integer for which a
d-parameter envelope W of S exists, then we call W a minimal envelope.

Proposition 1 ([7]). Let Σ be a finite alphabet and let k ≥ 0 be a finite integer.
Then there exists a finite T = T (|Σ|, k) such that every set S ⊆ Σ∗, |S| = k, has
a d-parameter envelope with d ≤ T . Consequently, there are only finitely many
embedding types of sets of size k within their corresponding minimal envelopes.
Finally, for any two minimal envelopes W , W ′ of S, we have τW (S) = τW ′(S).

We will thus also use τ(S) to denote the type τW (S) for some minimal W .

3 Proof of Theorem 1

The proof is condensed due to the space limitations, but we believe it gives an
idea of fine interplay of all building blocks. Throughout this section we assume
that K and L are fixed and satisfy the assumptions of Theorem 1. Following
ideas from [7, Section 4.1], we construct a special L-structure G with finite big
Ramsey degrees and then use G to prove finiteness of big Ramsey degrees for K.

Lemma 1. Let h : A → B be a homomorphism-embedding. If B has a comple-
tion c : B → K, then there exists a completion d : A → K.

Proof. It is clearly enough to consider the case where c is the identity and h is
surjective and almost identity, that is, there is a unique vertex v ∈ A such that
h(v) �= v. Let B′ be the structure induced by K on B. We create a structure
B′′ from B′ by duplicating the vertex h(v) to v′ and leaving h(v) not adjacent
to v′. Since B′ is irreducible, it is easy to observe that all induced cycles in
B′′ are already present in B′. By the assumption on K, there is a completion
c′ : B′′ → K. Now, the completion d : A → K can be constructed by setting
d(v) = c′(v′) and d(u) = c′(u) for every u ∈ A \ {v}.

We put Σ = {A : A = {0, 1} and there exists an embedding A → K}. For
U ∈ Σ∗, we will use bold characters to refer to the letters (e.g.U0 is the structure
corresponding to the first letter of U) to emphasize that Σ consists of structures.

Given A,B,C ∈ Σ, there is at most one structure D with the vertex set
{u, v, w} satisfying the following three conditions: (i) mapping 0 �→ u, 1 �→ v is
an embedding A → D, (ii) the mapping 0 �→ v, 1 �→ w is an embedding B → D,
and (iii) the mapping 0 �→ u, 1 �→ w is an embedding C → D. If such a structure
D exists, we denote it by (A,B,C) (since A,B,C form a triangle). Otherwise
we leave (A,B,C) undefined.

Definition 2. Let G be the following structure.

1. The vertex set G consists of all finite words W of length at least 1 in the
alphabet Σ that satisfy the following condition.

(A1) For all i and j with 0 ≤ i < j < |W |, the structure induced by Wi on {1}
is isomorphic to the structure induced by Wj on {1}.
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2. Let U, V be vertices of G with |U | < |V | that satisfy the following condition.
(A2) The structure (Ui,V|U |,Vi) is defined for every i with 0 ≤ i < |U | and

it has an embedding to K.
Then the mapping 0 �→ U, 1 �→ V is an embedding of type V|U | → G.

3. There are no tuples in the relations RG, R ∈ L, other than the ones given
by 2.

Lemma 2. Every induced cycle in G has a completion to K. Since every irre-
ducible substructure of size at most 3 embeds into K there is a completion
G → K.

Proof. Suppose for contradiction that there exists � and a sequence U0, U1, . . . ,
U �−1 forming an induced cycle C in G such that C has no completion to K.
Without loss of generality, we assume that |U0| ≤ |Uk| for every 1 ≤ k < �. We
create a structure D from C by adding precisely those tuples to the relations
of D such that the mapping 0 �→ U0, 1 �→ Uk is an embedding from Uk

|U0| to D
for every k satisfying 2 ≤ k < � and |U0| < |Uk|.

For simplicity, consider first the case that we have |U0| < |Uk| for every
1 ≤ k ≤ � − 1. In this case, we produced a triangulation of D: all induced
cycles are triangles containing the vertex U0. It follows from the construction
of G that, for every 2 ≤ k ≤ �, the triangle induced by D on U0, Uk and
Uk+1 is isomorphic either to (Uk

|U0|,U
k+1
|Uk|,U

k+1
|U0|) (if |Uk| < |Uk+1|) or to

(Uk+1
|U0|,U

k
|Uk+1|,U

k
|U0|). By (A2) the triangle has an embedding to K, hence

all induced cycles in D have a completion to K, which implies that D has a
completion c : D → K. We get completion c : C → K, a contradiction.

It remains to consider the case that there are multiple vertices of D of length
|U0|. We then set M := {Uk : |Uk| = |U0|}. By the construction of G, the
vertices in M are never neighbours. Moreover, for every U, V ∈ M , the structure
induced on {U} by C is isomorphic to structure induced on {V } by C, which,
by (A2), is isomorphic to the structure induced on {0} by W|U0| for every
W ∈ C \ M . Consequently, it is possible to construct a structure E from D by
identifying all vertices in M and to obtain a homomorphism-embedding f : D →
E. Observe that the structure E is triangulated and every triangle is known to
have a completion to K. By Lemma 1, D also has a completion to K.

The following result follows directly from the definition of substitution.

Observation 4. For every W ∈ [∅] (ω
ω

)
and all U, V ∈ G, the structure induced

by G on {U, V } is isomorphic to the structure induced by G on {W (U),W (V )}.
Without loss of generality we assume that K = ω \ {0}. Let K′ be the struc-

ture K extended by the vertex 0 such that there exists an embedding K′ → K.
Such a structure K′ exists, because duplicating the vertex 1 does not introduce
new induced cycles. We define the mapping ϕ : ω \{0} → G by setting ϕ(i) = U ,
where U is a word of length i defined by setting, for every 0 ≤ j < i, Uj as the
unique structure in Σ such that 0 �→ j, 1 �→ i is an embedding Uj → K′. It is
easy to check that ϕ is an embedding ϕ : K → G. We prove Theorem 1 in the
following form.
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Theorem 5. For every finite k ≥ 1 and every finite colouring of subsets of G
with k elements, there exists f ∈ (

G
G

)
such that the colour of every k-element

subset S of f(G) depends only on τ(S) = τ(f−1[S]).

By Proposition 1, we obtain the desired finite upper bound on the number of
colours. By the completion c : G → K given by Lemma 2, the colouring of sub-
structures of K yields a colouring of irreducible substructures of G. Embedding
f ∈ (

G
G

)
can be restricted f ′ ∈ (

G
K

)
and gives c ◦ f ′ ∈ (

K
K

)
and thus Theorem 5

indeed implies Theorem 1.

Proof (Sketch). Fix k and a finite colouring χ of the subsets of G of size k.
Proposition 1 bounds number of embedding types of subsets of G of size k.
Apply Theorem 3 for each embedding type. By Observation 4, we obtain the
desired embedding; see [7, proof of Theorem 4.4] for details.
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Abstract. A 4-uniform tight cycle is a 4-uniform hypergraph with a
cyclic ordering of its vertices such that its edges are precisely the sets
of 4 consecutive vertices in that ordering. We prove that the Ramsey
number for the 4-uniform tight cycle on 4n vertices is (5 + o(1))n. This
is asymptotically tight.

Keywords: Ramsey number · Hypergraph · Tight cycle

1 Introduction

For k-graphs H1, . . . , Hm, the Ramsey number r(H1, . . . , Hm) is the smallest
integer N such that any m-edge-colouring of the complete k-graph K

(k)
N contains

a monochromatic copy of Hi in the i-th colour for some 1 ≤ i ≤ m. If H1, . . . , Hm

are all isomorphic to H then we let rm(H) = r(H1, . . . ,Hm) and call it the m-
colour Ramsey number for H. We also write r(H) for r2(H) and simply call it
the Ramsey number for H.

The Ramsey number for cycles in graphs has been determined in [2,3] and
[15]. In particular, for n ≥ 5, we have

r(Cn) =
{

3
2n − 1, if n is even,
2n − 1, if n is odd.

Note that there is a dependence on the parity of the length of the cycle. For the
m-colour Ramsey number, Jenssen and Skokan [8] proved that for m ≥ 2 and
any large enough odd integer n we have rm(Cn) = 2m−1(n − 1) + 1.

Some Ramsey numbers for k-graphs have also been studied. A k-uniform
tight cycle C

(k)
n is a k-graph on n vertices with a cyclic ordering of its vertices

such that its edges are the sets of k consecutive vertices. The Ramsey number of
the 3-uniform tight cycle on n vertices C

(3)
n was determined asymptotically by

Haxell, �Luczak, Peng, Rödl, Ruciński and Skokan, see [6] and [7]. They showed
that r(C(3)

3n ) = (1 + o(1))4n and r(C(3)
3n+i) = (1 + o(1))6n for i ∈ {1, 2}.

We define the k-uniform tight path on n vertices P
(k)
n to be the k-graph

obtained from C
(k)
n+1 by deleting a vertex. Using the bound on the Turán number

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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for tight paths that was recently shown by Füredi, Jiang, Kostochka, Mubayi
and Verstraëte [4], we deduce that r(P (k)

n ) ≤ k(n − k + 1) for any even k ≥ 2.
The Ramsey number for loose cycles have also been studied. We denote

by LC
(k)
n , where n = �(k−1), the k-uniform loose cycle on n vertices, that is the

k-graph with vertex set {v1, . . . , vn} and edges ei = {v1+i(k−1), . . . , vk+i(k−1)}
for 0 ≤ i ≤ � − 1, where indices are taken modulo n. Gyárfás, Sárközy and
Szemerédi [5] showed that

r(LC(k)
n ) = (1 + o(1))

2k − 1
2k − 2

n.

Recently, the exact values of Ramsey numbers for loose cycles have been deter-
mined for various cases, see [16] for more details.

Another problem of interest in this area is determining the Ramsey number
of a complete graph and a cycle. For graphs, Keevash, Long and Skokan [9]
showed that there exists an absolute constant C ≥ 1 such that

r(C�,Kn) = (� − 1)(n − 1) + 1provided � ≥ C
log n

log log n
.

Analogous problems for hypergraphs have also been considered. See [12,13] and
[14] for the analogous problem with loose, tight and Berge cycles, respectively.

We will consider the Ramsey number for tight cycles. We determine the
Ramsey number for the 4-uniform tight cycle on n vertices C

(4)
n asymptotically

in the case where n is divisible by 4.

Theorem 1. Let ε > 0. For n large enough we have r(C(4)
4n ) ≤ (5 + ε)n.

It is easy to see that this is asymptotically tight.

Proposition 1. For n, k ≥ 2, we have that r(C(k)
kn ) ≥ (k + 1)n − 1.

Proof. Let N = (k+1)n−2. We show that there exists a red-blue edge-colouring
of K

(k)
N that does not contain a monochromatic copy of C

(k)
kn . We partition the

vertex set of K
(k)
N into two sets X and Y of sizes n − 1 and kn − 1, respectively.

We colour every edge that intersects the set X red and any other edge blue. It
is easy to see that this red-blue edge-colouring of K

(k)
N does not even contain a

monochromatic matching of size n and thus also cannot contain a monochromatic
copy of C

(k)
kn . There is no red matching of size n since every red edge must

intersect X and |X| = n− 1. Moreover, there is no blue matching of size n since
all blue edges are entirely contained in Y and |Y | = kn − 1. ��

Theorem 1 also implies the following corollary about the Ramsey number for
the 4-uniform tight path.

Corollary 1. We have r(P (4)
n ) = (5/4 + o(1))n.
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1.1 Sketch of the Proof of Theorem 1

We now sketch the proof of Theorem 1. We use a hypergraph version of the
connected matching method of �Luczak [11] as follows. We consider a red-blue
edge-colouring of K

(4)
N for N = (5/4+ε)n. We begin by applying the Hypergraph

Regularity Lemma. More precisely, we use the Regular Slice Lemma of Allen,
Böttcher, Cooley and Mycroft [1]. This gives us a reduced graph R, which is a
red-blue edge-coloured almost complete 4-graph on (5/4+ε)n′ vertices. To prove
Theorem 1, it now suffices to find a monochromatic tightly connected matching of
size n′/4 in R. A monochromatic tightly connected matching is a monochromatic
matching M such that for any two edges f, f ′ ∈ M , there exists a tight walk1

in R of the same colour as M connecting f and f ′.
Let γ be a constant such that 0 < γ � ε and let M be a maximal monochro-

matic tightly connected matching in R. Suppose that M has size less than n′/4
and is red. We show that we can find a monochromatic tightly connected match-
ing of size at least γn′ greater than M . By iterating this we get our desired result.
(We actually find a fractional matching instead. Note that by taking a blow-up
of R we can then convert it back to an integral matching.) For simplicity, let us
further assume that R has only one red and one blue tight component2. Then
any monochromatic matching is tightly connected. Consider an edge f ∈ M
and a vertex w not covered by M . Observe that if all the edges in R[f ∪ {w}]
are red, then we get a larger red fractional matching. Thus for almost all the
edges f ∈ M there is a blue edge f ′ such that |f ∩ f ′| = 3. This gives us a blue
matching M ′ of almost the same size as M . Note that the set of leftover vertices
W = V (R)\V (M ∪M ′) has size at least εn′. By the maximality of M , any edge
in R[W ] must be blue. So we can extend M ′ by adding a matching in W to get
the desired matching.

However, R may contain many monochromatic tight components (instead
of just two). Hence we need to choose monochromatic tight components care-
fully. To do this we use a novel auxiliary graph called the blueprint which the
authors introduced in [10]. The blueprint is a graph with the key property that
monochromatic connected components in it correspond to monochromatic tight
components in the 4-graph we are considering. Since the blueprint is red-blue
edge-coloured and almost complete, it contains an almost-spanning monochro-
matic tree. Using the key property of blueprints this shows that R contains a
large monochromatic tight component.
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number for 3-uniform tight hypergraph cycles. Comb. Probab. Comput. 18(1–2),
165–203 (2009)

8. Jenssen, M., Skokan, J.: Exact Ramsey numbers of odd cycles via nonlinear opti-
misation. Adv. Math. 376(46), 107444 (2021)

9. Keevash, P., Long, E., Skokan, J.: Cycle-complete Ramsey numbers. Int. Math.
Res. Not. IMRN 1, 277–302 (2021)

10. Lo, A., Pfenninger, V.: Towards Lehel’s conjecture for 4-uniform tight cycles. arXiv
e-prints, arXiv:2012.08875 (2020)

11. �Luczak, T.: R(Cn, Cn, Cn) ≤ (4 + o(1))n. J. Comb. Theory Ser. B 75(2), 174–187
(1999)

12. Méroueh, A.: The Ramsey number of loose cycles versus cliques. J. Gr. Theory
90(2), 172–188 (2019)
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Abstract. We highlight some results from studying chip-firing on the
the complete split graph [5]. In this work it is shown that recurrent
states can be characterised in terms of Motzkin words and can also be
characterised in terms of a new type of parking function that we call a
tiered parking function. These new parking functions arise by assigning
a tier (or colour) to each of the cars, and specifying how many cars of a
lower-tier one wishes to have parked before them.
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1 Introduction

The complete split graph is a bipartite graph consisting of two distinct parts, a
clique part in which all distinct pairs of vertices are connected by a single edge,
and an independent part in which no two vertices are connected to an edge. There
is precisely one edge between every vertex in the clique part and every vertex
in the independent part. We denote the complete split graph which has vertices
{v1, . . . , vm} in the clique part and vertices {w1, . . . , wn} in the independent
part by Sm,n. The graph S5,4 is illustrated in Fig. 1. The graph Sm,n contains
the complete graph Km as a subgraph, but is also a bipartite graph in its own
right, and it is this dual feature that we find interesting to examine in terms of
chip-firing.

Chip-firing has been studied on several classes of graphs, and rich connections
to other combinatorial structures have been established in each of the cases.
Cori and Rossin [3] showed that the set of recurrent states of chip-firing on
the complete graph are in one-to-one correspondence with parking functions
of order n. The author in collaboration with others [1,6–8] showed that the
set of recurrent states of chip-firing on the complete bipartite graph admits a
characterization in terms of planar animals called parallelogram polyominoes.
Cori and Poulalhon in [2] showed that the recurrent states of chip-firing on the
complete tri-partite graph K1,p,q admits a description in terms of a parking
function for cars of two different colours.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Fig. 1. The complete split graph S5,4

We will highlight some of the results from our paper [5] that characterizes
recurrent states of chip-firing on the complete split graph. The characterization is
in terms of Motzkin words and we give a second characterisation of the recurrent
states in terms of a new type of parking function that we call a tiered parking
function. These parking functions are characterised by assigning a tier (or colour)
to each of the cars, and specifying how many cars of a lower-tier one wishes to
have parked before them in a one-way street.

2 Recurrent States for Chip-Firing on a Graph

The chip-firing game, also known as the Abelian sandpile model (ASM) in the
literature, may be defined on any undirected graph G with a designated vertex s
called the sink. A configuration on G is an assignment

c : Vertices(G)\{s} �→ N = {0, 1, 2, . . .}.

The number c(v) is sometimes referred to as the number of grains at vertex v.
Given a configuration c, a vertex v is said to be stable if the number of grains
at v is strictly smaller than the threshold of that vertex, which is the degree of
v, denoted deg(v). Otherwise v is unstable. A configuration is called stable if all
non-sink vertices are stable.

If a vertex is unstable then it may topple, which means the vertex donates
one grain to each of its neighbors. The sink vertex has no height associated with
it and it only absorbs grains, thereby modelling grains exiting the system. Given
this, it is possible to show that starting from any configuration c and toppling
unstable vertices, one eventually reaches a stable configuration c′. Moreover, c′

does not depend on the order in which vertices are toppled in this sequence. We
call c′ the stabilisation of c. We use the notation ASM(G, s) to indicate that we
are considering the Abelian sandpile model as described here on the graph G
with sink s.
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Starting from the empty configuration, one may indefinitely add any number
of grains to any vertices in G and topple vertices should they become unstable.
Certain stable configurations will appear again and again, that is, they recur,
while other stable configurations will never appear again. These recurrent config-
urations are the ones that appear in the long term limit of the system. In [4, Sec.
6], Dhar describes the so-called burning algorithm, which establishes whether a
given stable configuration is recurrent:

Proposition 1 ([4], Sect. 6.1). Let G be a graph with sink s. A stable configu-
ration c on G is recurrent if and only if there exists an ordering v0 = s, v1, . . . , vn
of the vertices of G such that, starting from c, for any i ≥ 1, toppling the vertices
v0, . . . , vi−1 causes the vertex vi to become unstable.

A configuration on ASM(Sm,n, s) is a vector c = (c1, . . . , ci−1,−, ci+1,
. . . , cm+n−1) whereby ci represents the number of chips/grains at the ith vertex
in the sequence (v1, . . . , vm, w1, . . . , wn). The dash indicates the location corre-
sponding to the sink. We will use a semi-colon in the configurations to distinguish
between the clique and independent parts, e.g. c = (a1, . . . , am−1,−; b1, . . . , bn).
Let Rec(ASM(Sm,n, s)) be the set of recurrent states of the model. We will restrict
our analysis to those configurations that are weakly decreasing with respect to
vertex labels. This restriction will allow us to focus our analysis to consider char-
acterizing all those ‘different’ configurations, and from which we can generate
all configurations through permutations.

3 Motzkin Words and Recurrent States for a Clique-Sink

We will use Motzkin words for the characterisation of recurrent states. A Motzkin
path P of length p is a lattice path in the plane from (0, 0) to (p, 0) which never
passes below the x-axis and whose permitted steps are the up step U = (1, 1),
the down step D = (1,−1), and the horizontal step H = (1, 0). An example of a
Motzkin path is given in Fig. 2a. The Motzkin word of a path is a listing of the
p steps of the path in the order they appear from left to right, e.g. the Motzkin
word of Fig. 2a is α = HUHHUDHUDD.

v1

v2

v3

v4

v5

v6v7

v8

v9

Fig. 2. (a) Example of a Motzkin path of length 10 (b) A spanning tree of the complete
split graph S5,4

Definition 1. A Motzkin word is a word α consisting of the letters U , D, H
with the properties (i) in counting α from left to right the U count is always
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greater than or equal to the D count, and (ii) the total U count is equal to the
D count. Let Motzkinm,n be the set of Motzkin words with m occurrences of U
and n occurrences of H.

The deletion of the H letters in a Motzkin word gives a Dyck word and,
conversely, a Motzkin word with m occurrences of U and n occurrences of H
is obtained by taking a Dyck word with m occurrences of U and inserting n
occurrences of H in any positions in this word. This decomposition provides an
enumeration of such words: |Motzkinm,n| = 1

m+1

(
2m
m

)(
2m+n

n

)
.

Definition 2. To any Motzkin word α ∈ Motzkinm−1,n we associate a configu-
ration f(α) = (a1, . . . , am−1,−; b1, b2, . . . , bn) on Sm,n as follows:

– ai is such that ai + 1 is equal to the number of occurrences of the letter D
plus the number of occurrences of the letter H appearing in α after the i-th
occurrence of the letter U .

– bi is equal to the number of occurrences of the letter D appearing after the
i-th occurrence of the letter H in α.

Observe that, by construction, the sequences (a1, . . . , am−1) and (b1, . . . , bn) are
weakly decreasing. For the Motzkin word example above, the associated config-
uration on ASM(S4,4, v4) is f(α) = (5, 3, 1,−; 3, 3, 3, 2).

Theorem 1. A weakly decreasing stable configuration c = (a1, . . . , am−1,−;
b1, . . . , bn) on ASM(Sm,n, vm) is recurrent iff it corresponds, via the construc-
tion f , to a unique Motzkin word α in Motzkinm−1,n.

Since the number of such decreasing recurrent configurations is equal to the
number |Motzkinm−1,n|, we have the number of weakly decreasing recurrent con-
figurations on Sm,n with sink vm is 1

m

(
2m−2
m−1

)(
2m−2+n

n

)
.

3.1 Prüfer Code Decomposition for Spanning Trees of Sm,n

It is a well established fact the the number of recurrent states of the Abelian
sandpile model on a graph is equal to the number of spanning trees of that graph.
We will enumerate the set of recurrent states by enumerating the spanning trees
of the complete split graph. We will do this by presenting a bijective proof that
uses the Prüfer code of the spanning trees.

To do this we use a different labelling of the vertices of the complete split
graph. Let Sm,n have clique vertices {v1, v2, . . . , vm} and independent vertices
{vm+1, . . . , vm+n}. Suppose these vertex labels are totally ordered:

v1 < v2 < · · · < vm < vm+1 < · · · < vm+n.

Any spanning tree T of Sm,n is a tree with vertices labelled v1, . . . , vm+n such
that for any edge (vi, vj) of T , one has i ≤ m or j ≤ m.

The Prüfer code of this tree is obtained by successively deleting the leaves
of T with minimal label and recording the vertex to which they were attached,
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until T has only one edge. The unique edge that is obtained at the end of the
procedure is (vm+n, vi) where i ≤ m. Two words f, g may be built using the
alphabet consisting of the labels of the vertices. Initially both f and g are empty,
and at each step of the procedure a letter is added either to f or to g. It is added
to f if the leaf deleted is a clique vertex and added to g if it is an independent
vertex. The letter added is the label of the vertex neighbour of the deleted leaf.

For the tree given in Fig. 2b, the vertices are deleted in the following order

v1, v2, v6, v8, v5, v3, v7.

The Prüfer code of the tree is v5, v7, v3, v5, v3, v7, v4 and the construction of the
two words f and g gives

f = v5, v7, v3, v7 g = v3, v5, v4.

Proposition 2. There is a bijection between spanning trees of Sm,n and pairs
of words (f, g) such that f has length m − 1 and has letters in the alphabet
{v1, . . . , vm+n}, while g has n − 1 letters in the alphabet {v1, . . . , vm}.
Corollary 1. The number of spanning trees of Sm,n is (m + n)m−1mn−1 and,
consequently, this is the number of recurrent configurations of the Abelian sand-
pile model on the complete split graph Sm,n.

4 Tiered Parking Functions

We may also offer the following definition of recurrent configurations as a new
type of parking function that we will call a tiered parking function. Parking
functions were mentioned earlier in the paper in relation to the recurrent states
of the sandpile model on the complete graph. Moreover, the G-parking functions
of Postnikov and Shapiro [9] provide a useful language in which an alternative
description of recurrent states of the sandpile model on a general graph may be
given.

The application of G-parking functions to the complete split graph is different
to what we present in this section. Our aim is to provide a new ‘type’ of parking
function, and provide a setting in which recurrence is quite easily established in
this new context. We refer the interested reader to Yan [11] for a discussion of
G-parking functions and their relation to the ASM. Our definition is inspired by
Cori and Poulalhon’s [2] concept of (p, q)-parking functions.

Definition 3 (k-tiered parking function). Let m1, . . . ,mk be a sequence
of positive integers with m1 + . . . + mk = M . Suppose that there are mi cars
of colour/tier i and there are M parking spaces. We will call a sequence P =
(m1;P2, . . . , Pk) of sequences Pi = (p(i)1 , . . . , p

(i)
mi) a k-tiered parking function of

order (m1, . . . ,mk) if there exists a parking configuration of the M cars that
satisfies the following preferences for all drivers:

the driver of the jth car having colour i > 1 asks that there
be at least p

(i)
j cars of colours {1, . . . , i − 1} parked before him.
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Drivers of cars having colour 1 have no preferences with regard to other coloured
cars, which is why we only list their number m1 in P .

Example 1. The sequence P = (4; (2, 1, 0, 4, 2), (8, 2, 1, 2), (4, 10, 8)) is a 4-tiered
parking function of order (4, 5, 4, 3). This is realised by the following parking
configuration where the leftmost entry represents the first parking spot, and the
colour of the parked car is indicated.

−→ direction of traffic −→
2 3 1 3 4 3 2 1 2 4 2 1 4 1 3 2

Example 2. The sequence P = (9; (8, 2, 9, 4, 6, 9, 7, 8, 2, 7, 9, 4), (18, 2, 14, 6, 21,
13, 7, 13, 3)) is a 3-tiered parking function of order (9, 12, 9). This is realised
by the following parking configuration:

−→ direction of traffic −→
1 2 3 2 3 2 1 2 3 2 3 2 1 1 2 1 2 3 3 2 3 1 2 2 1 3 2 2 2 3

We now connect these tired parking functions to the recurrent states of the
sandpile model for the complete split graph.

Theorem 2. A configuration c = (a1, . . . , am−1,−; b1, . . . , bn)
on ASM(Sm,n, vm) is recurrent iff there exists a 3-tiered parking function of
order (m − 1, n,m − 1) with P = ((b1, . . . , bn), (a1 + 1, . . . , am−1 + 1)).
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Abstract. A well known conjecture of Alon and Tarsi (1985) states that
every bridgeless graph admits a cycle cover of length not exceeding 7

5
·m,

where m is the number of edges. Although there exist infinitely many
cubic graphs with covering ratio 7/5, there is an extensive evidence that
most cyclically 4-edge-connected cubic graphs have covering ratio close to
the natural lower bound of 4/3. In line with this observation, Brinkmann
et al. (2013) proposed a conjecture that every cyclically 4-edge-connected
cubic graph has a cycle cover of length at most 4

3
m+o(m). In this paper

we disprove the conjecture.

Keywords: Cycle cover · Cubic graph · Perfect matching · Snark

1 Introduction

A cycle cover of a graph G is a collection of cycles (even subgraphs) such that
each edge of G belongs to at least one member of the collection. The problem is
to find, for a given graph G, a cycle cover with minimum total number of edges.
In 1985, Alon and Tarsi [2] (and independently Jaeger) proposed the following
conjecture, which quickly took its place among the most important problems in
graph theory.

Conjecture 1. (Shortest cycle cover conjecture) Every bridgeless graph G has a
cycle cover of length at most 7

5 · |E(G)|.
The conjecture has the form of an optimisation problem, nonetheless, its

validity would have very strong structural implications. For example, the con-
jecture, if true, would imply the assertion of the celebrated cycle double cover
conjecture [11]. Several other problems, such as the Chinese postman problem or
the Petersen colouring conjecture, are also closely related to the 7/5 conjecture
[9,10].

In 1983, Bermond et al. [3] and in 1985 Alon and Tarsi [2] independently
proved that every bridgeless graph G has a cycle cover of length at most 5

3 ·|E(G)|.
In spite of a great effort (see for example [7,12,13]) this result remains the best
general approximation of the shortest cycle cover conjecture to date.
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As with other problems related to cycles and flows in graphs, cubic graphs
are crucial for the shortest cycle cover problem. In particular, the largest known
values of covering ratio occur among cubic graphs. Besides the exceptional
Petersen graph whose covering ratio equals 7/5 there exist infinite families of
2-connected and 3-connected cubic graphs reaching the same value (see, for
example, [3]). However, all such examples can be obtained from the Petersen
graph in a straightforward manner.

For cyclically 4-edge-connected cubic graphs the situation is quite different.
Note that the covering ratio of any cubic graph must be at least 4/3, because at
least one third of the edges must be covered more than once. It is known [8,16]
that the value 4/3 is met by cubic graphs whose edges can be covered with at
most four perfect matchings. This set includes all 3-edge-colourable cubic graphs
as well as a significant portion of snarks (2-connected non-3-edge-colourable
cubic graphs). Cyclically 4-edge-connected cubic graphs whose covering ratio is
strictly greater than 4/3 are therefore very difficult to find. Among the millions
of cyclically 4-edge-connected cubic graphs of girth at least 5 on up to 36 vertices,
generated in [4], there are only two graphs whose covering ratio is greater than
4/3, the Petersen graph and a graph on 34 vertices (see [4, Figure 3]). In both
cases the minimum length of a cycle cover equals 4

3m + 1, where m denotes the
number of edges. The first infinite family of cyclically 4-edge-connected cubic
graphs whose shortest cycle cover has length at least 4

3m + 1 was constructed
by Esperet and Mazzuoccolo [6] in 2014. The same authors also constructed
a cyclically 4-edge-connected cubic graph on 106 vertices whose shortest cycle
cover has length 4

3m + 2, see [6, Figure 8].
The difficulties to find cyclically 4-edge-connected cubic graphs with covering

ratio significantly greater than 4/3 seem to suggest that the value by which the
length of their shortest cycle cover exceeds 4

3m should be small with respect
to m. This is exactly what is formally expressed by the following conjecture,
proposed Brinkmann et al. in [4] and is additionally supported by results of [8]
and [16, Section 2.C].

Conjecture 2. The length of a shortest cycle cover of any cyclically 4-edge-
connected cubic graph with m edges is bounded above by 4

3 · m + o(m).

The aim of the present paper is to disprove Conjecture 2 by establishing the
following result.

Theorem 1. For every integer k ≥ 2 there exists a cyclically 4-edge-connected
cubic graph Gk on 46k vertices whose shortest cycle cover has length at least

(
4
3

+
1
69

)
· |E(Gk)|.

The graphs Gk are in fact nontrivial snarks (which means that they have
cyclic connectivity at least 4 and girth at least 5); the smallest graph of the
family is shown in Fig. 1. Since the length of a shortest cycle cover of each Gk is
greater than 4

3 · |E(Gk)|, the results of [8, Theorem 5.4] and [16, Theorem 3.1]
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Fig. 1. The graph G2 from Theorem 1

imply that each Gk requires at least five perfect matchings to cover all its edges.
Theorem 1 thus provides a new family of snarks whose perfect matching index
is greater than 4. Other such families can be found in [1,5,6].

2 Results

The family (Gk)k≥2 will be assembled from smaller building blocks, called multi-
poles. Multipoles are similar to graphs, except that they are permitted to contain
edges having one end-vertex and one free end. Such edges are called dangling
edges. Dangling edges of a multipole can be grouped into pairwise disjoint sets,
called connectors. A multipole with exactly two connectors of equal size is called
a dipole. One of its connectors is chosen to be the input connector, the other
connector is its output connector. A dipole where the size of each connector is
m is called an (m,m)-pole.

Cycle covers of our graphs will be usually composed from cycle covers of the
constituting multipoles. Cycle covers of multipoles are defined similarly as for
graphs, with a slightly different definition of a circuit. A circuit of a multipole M
is a connected 2-regular subgraph of M . Observe that a circuit of a multipole is
either a circuit in the usual sense or a path starting and ending with a dangling
edge. A cycle of M is an edge-disjoint union of circuits. The length of a cycle is
the number of its edges. The length of a cycle cover C, denoted by �(C), is the
sum of lengths of the cycles from C.

Consider a cubic graph G with a fixed cycle cover C; clearly, G is bridgeless.
The weight of an edge e with respect to C, denoted by w(e), is the number of
cycles of C that contain e. The weight of a vertex v, denoted by w(v), is the sum
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of weights of all edges incident with v. Observe that with respect to any cycle
cover the weight of a vertex must be a positive even integer.

Let scc(G) denote the minimum length of a cycle cover of G. As previously
noted, scc(G) ≥ 4

3 · |E(G)| for every bridgeless cubic graph G. Cubic graphs
where the equality is attained are exactly those for which there exists a cycle
cover with every vertex of weight 4; such a cycle cover will be called light.

In this paper we focus on cubic graphs that do not admit light cycle covers.
Take such a graph G and form a (2, 2)-pole X by removing from G a pair of
adjacent vertices and by putting the edges formerly incident with the same vertex
into the same connector. We say that the dipole X obtained in this way is robust.
The basic robust dipole arises from the Petersen graph; it will be denoted by Q.

In general, robust dipoles may admit light cycle covers. An example of such
a dipole is the dipole Q obtained from the Petersen graph. However, as we shall
see, robust dipoles may be combined into structures that fail to have light cycle
covers. One such example is the dipole Z(X1,X2,X3,X4) represented in Fig. 2,
where X1, X2, X3, and X4 denote arbitrary robust dipoles (with input edges
drawn bold). The smallest such dipole is obtained by taking the dipole Q for
each Xi. The resulting dipole Z = Z(Q,Q,Q,Q) has 46 vertices.

X1 X4X3X2

Fig. 2. The basic building block for (Gk)k≥2

Proposition 1. If X1, X2, X3, and X4 are robust (2, 2)-poles, then the (2, 2)-
pole Z(X1,X2,X3,X4) has no light cycle cover.

The proof of this result is by contradiction and requires a careful analysis of
how a hypothetic light cycle cover of Z(X1,X2,X3,X4) could traverse individual
parts of Z(X1,X2,X3,X4). The following lemma is the main tool of the analysis.

Lemma 1. If C is a light cycle cover of a cubic graph G, then every vertex v
of G is traversed by exactly two cycles D1 and D2 of C in such a way that one
edge incident with v is contained only in D1, another edge incident with v is
contained only in D2, and the third edge at v is contained in both D1 and D2.
In particular, w(e) ≤ 2 for each edge e of G.

We defer a detailed proof of Proposition 1 to our paper [15]. A significantly
easier task than to prove Proposition 1 is to show that the Z(X1,X2,X3,X4)
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cannot be covered with four perfect matchings. As mentioned earlier, the lat-
ter property is a necessary condition for a graph (or a multipole) not to have
a light cycle cover (see [8, Theorem 5.4] and [16, Theorem 3.1]). The fact that
Z(X1,X2,X3,X4) cannot be covered with four perfect matchings can be estab-
lished with the help of the theory of tetrahedral flows developed by the present
authors in [14]. Theorem 8.6 and Corollary 5.5 from [14] are particularly useful
for this purpose.

We proceed to the construction of the family (Gk)k≥2.

Construction. Let Bk be an arbitrary 4-edge-connected 4-regular graph with
k ≥ 2 vertices; parallel edges are not excluded. Replace each vertex v of Bk

with a copy Zv of Z(Q,Q,Q,Q), where Q is the robust dipole on eight vertices
constructed from the Petersen graph, and identify the four dangling edges of
Zv with the four edges of Bv incident with v arbitrarily. Finally, for each edge
e = uw of Bk glue the dangling edge of Zu corresponding to e with that of Zw.
Since each Zv has 46 vertices, the resulting graph Gk = G(Bk) has order 46k.
The simplest choice for the base graph Bk is the graph C

(2)
k obtained from the

k-cycle Ck by doubling each edge. Clearly, C
(2)
k is 4-edge-connected.

Now we are ready for the proof of our main result.

Proof of Theorem 1. Let us consider the graph Gk for an arbitrary fixed
integer k ≥ 2. Obviously, Gk contains k vertex-disjoint copies of the dipole
Z = Z(Q,Q,Q,Q).

First of all, it is not difficult to check that each Gk is cyclically 4-edge-
connected. Indeed, the edge-cut that separates any copy of Z(Q,Q,Q,Q) from
the rest of Gk is cycle-separating (that is, both components resulting from the
removal of the cut contain cycles) and has size 4. On the other hand, from the
construction of Gk it is clear that Gk has no bridges, 2-edge-cuts, and nontrivial
3-edge-cuts.

Next we show that every cycle cover of Gk has length at least
(
4
3 + 1

69

) ·
|E(Gk)|. To this end, recall that Z does not admit a light cycle cover, by Propo-
sition 1. Let C be an arbitrary cycle cover of Gk. Every copy of Z in Gk contains at
least one vertex of weight at least 6 with respect to C. Thus there will be at least
k pairwise distinct vertices of weight at least 6 in Gk, one in each copy of Z. Since
each vertex of Gk has weight at least 4, we have �(C) ≥ (4 · 46k + 2k)/2 = 93k.
As Gk has 3

2 · 46k = 69k edges, we obtain

�(C) ≥ 93
69

· |E(Gk)| =
(

4
3

+
1
69

)
· |E(Gk)|,

as required. �

3 Concluding Remarks

The constant 4
3 + 1

69 occurring in the statement of Theorem 1 is very unlikely
to be best possible. We therefore propose the following problem.
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Problem 1. What is the supremum of covering ratios of all cyclically 4-edge-
connected cubic graphs different from the Petersen graph?

Another natural question arises if connectivity 4 is raised to 5.

Problem 2. Does there exist a cyclically 5-edge-connected cubic graph different
from the Petersen graph whose covering ratio is strictly greater than 4/3?
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Abstract. The Pósa-Seymour conjecture asserts that every graph on
n vertices with minimum degree at least (1 − 1/(r + 1))n contains the
rth power of a Hamilton cycle. Komlós, Sárközy and Szemerédi famously
proved the conjecture for large n. The notion of discrepancy appears in
many areas of mathematics, including graph theory. In this setting, a
graph G is given along with a 2-coloring of its edges. One is then asked
to find in G a copy of a given subgraph with a large discrepancy, i.e.,
with many more edges in one of the colors. For r ≥ 2, we determine
the minimum degree threshold needed to find the rth power of a Hamil-
ton cycle of large discrepancy, answering a question posed by Balogh,
Csaba, Pluhár and Treglown. Notably, for r ≥ 3, this threshold approx-
imately matches the minimum degree requirement of the Pósa-Seymour
conjecture.

Keywords: Graph theory · Discrepancy · Hamilton cycles

1 Introduction

Classical discrepancy theory studies problems of the following kind: given a
family of subsets of a universal set U , is it possible to partition the elements of
U into two parts such that each set in the family has roughly the same number
of elements from each part? One of the first significant results in this area is a
criterion for a sequence to be uniformly distributed in the unit interval proved
by Hermann Weyl. Since then, discrepancy theory has had wide applicability in
many fields such as ergodic theory, number theory, statistics, geometry, computer
science, etc. For a comprehensive overview of the field, see the books by Beck
and Chen [3] and by Chazelle [5].

This paper studies a problem in the discrepancy theory of graphs. To discuss
the topic, we start with a definition.

Definition 1. Let G = (V,E) be a graph and f : E → {−1, 1} a labelling of its
edges. Given a subgraph H of G, we define its discrepancy f(H) as

f(H) =
∑

e∈E(H)

f(e).

Furthermore, we refer to the value |f(H)| as the absolute discrepancy of H.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 459–464, 2021.
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One of the central questions in graph discrepancy theory is the following.
Suppose we are given a graph G and a spanning subgraph H. Does G, for every
edge labelling f : E(G) → {−1, 1}, contain an isomorphic copy of H of high
absolute discrepancy with respect to f? Erdős, Füredi, Loebl and Sós [6] proved
the first result of this kind. They show that, given a tree on n vertices Tn with
maximum degree Δ and a {−1, 1}-coloring of the edges of the complete graph
Kn, one can find a copy of Tn with absolute discrepancy at least c(n − 1 − Δ),
for some absolute constant c > 0.

A commonly studied topic in extremal combinatorics are Dirac-type problems
where one is given a graph G on n vertices with minimum degree at least αn
and wants to prove that G contains a copy of a specific spanning subgraph H.
In the discrepancy setting it is natural to ask whether we can also find a copy of
H with large absolute discrepancy. Balogh, Csaba, Jing and Pluhár studied this
problem for spanning trees, paths and Hamilton cycles. Among other results,
they determine the minimum degree threshold needed to force a Hamilton cycle
of high discrepancy.

Theorem 1 (Balogh, Csaba, Jing and Pluhár[1]). Let 0 < c < 1/4 and
n ∈ IN be sufficiently large. If G is an n-vertex graph with

δ(G) ≥ (3/4 + c)n

and f : E(G) → {−1, 1}, then G contains a Hamilton cycle with absolute dis-
crepancy at least cn/32 with respect to f. Moreover, if 4 divides n, there is an
n-vertex graph with δ(G) = 3n/4 and an edge labelling f : E(G) → {−1, 1} such
that any Hamilton cycle in G has discrepancy 0 with respect to f.

Very recently, Freschi, Hyde, Lada and Treglown [7], and independently, Gish-
boliner, Krivelevich and Michaeli [8] generalized this result to edge-colorings with
more than two colors.

A fundamental result in extremal graph theory is the Hajnal-Szemerédi
theorem. It states that if r divides n and G is a graph on n vertices with
δ(G) ≥ (1 − 1/r)n, then G contains a perfect Kr-tiling, i.e. its vertex set can be
partitioned into disjoint cliques of size r. Balogh, Csaba, Pluhár and Treglown
[2] proved a discrepancy version of this theorem.

Theorem 2 (Balogh, Csaba, Pluhár and Treglown[2]). Suppose r ≥ 3
is an integer and let η > 0. Then there exists n0 ∈ IN and γ > 0 such that the
following holds. Let G be a graph on n ≥ n0 vertices where r divides n and where

δ(G) ≥
(

1 − 1
r + 1

+ η

)
n.

Given any function f : E(G) → {−1, 1} there exists a perfect Kr-tiling T in G
so that ∣∣∣

∑

e∈E(T )

f(e)
∣∣∣ ≥ γn.
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The rth power of a graph G is the graph on the same vertex set in which two
vertices are joined by an edge if and only if their distance in G is at most r. The
Pósa-Seymour conjecture asserts that any graph on n vertices with minimum
degree at least (1 − 1/(r + 1))n contains the rth power of a Hamilton cycle.
Komlós, Sárközy and Szemerédi [12] proved the conjecture for large n. In [2] the
authors posed the question of determining the minimum degree needed to force
the rth power of a Hamilton cycle with absolute discrepancy linear in n. Because
the rth power of a Hamilton cycle contains a (almost) perfect (r +1)-tiling, they
suggested the minimum degree required should be (1−1/(r +2)+η)n, based on
their result for Kr-tilings. We prove this value is correct for r = 2. However, we
show that for r ≥ 3, a minimum degree of (1−1/(r+1)+η)n, for arbitrarily small
η > 0, is sufficient, approximately matching the minimum degree required for
finding any rth power of a Hamilton cycle. As far as the author knows, this is the
first Dirac-type discrepancy result in which the threshold for finding a spanning
subgraph of large discrepancy is the same, up to an arbitrarily small linear term,
as the minimum degree required for finding any copy of the subgraph.

Theorem 3. For any integer r ≥ 3 and η > 0, there exist n0 ∈ IN and γ >
0 such that the following holds. Suppose a graph G on n ≥ n0 vertices with
minimum degree δ(G) ≥ (1 − 1/(r + 1) + η)n and an edge coloring f : E(G) →
{−1, 1} are given. Then in G there exists the rth power of a Hamilton cycle Hr

satisfying ∣∣∣
∑

e∈E(Hr)

f(e)
∣∣∣ ≥ γn.

Interestingly, the minimum degree needed for finding the rth power of a
Hamilton cycle of large discrepancy is the same for r ∈ {1, 2, 3} and equals
(34 + η)n. The cases r = 1, 3 being resolved in [1] and by the previous theorem,
respectively, we also prove this for r = 2.

Theorem 4. For any η > 0, there exist n0 ∈ IN and γ > 0 such that the
following holds. Suppose a graph G on n ≥ n0 vertices with minimum degree
δ(G) ≥ (3/4 + η)n and an edge coloring f : E(G) → {−1, 1} are given. Then in
G there exists the square of a Hamilton cycle H2 satisfying

∣∣∣
∑

e∈E(H2)

f(e)
∣∣∣ ≥ γn.

These results are tight in the following sense. If we weaken the minimum
degree requirement by replacing the term ηn with a sublinear term, then there
are examples in which any rth power of a Hamilton cycle has absolute discrepancy
o(n).

2 Lower Bound Examples

We present simple lower bound constructions showing our results are best possi-
ble in a certain sense. For η = η(n) = o(1), the condition δ(G) ≥ (1 − 1

r+1 + η)n



462 D. Bradač

when r ≥ 3 or δ(G) ≥ (3/4 + η)n when r = 2, is not enough to guarantee an
rth power of a Hamilton cycle with absolute discrepancy linear in n. Moreover,
for η = 0, there exists a graph in which every rth power of a Hamilton cycle has
discrepancy 0.

First consider r ≥ 3. We construct a graph G as follows. Let t be even and
V1, . . . , Vr+1 disjoint clusters of size t. Additionally, let V0 be a cluster of size m.

We construct a graph on the vertex set V =
.⋃r+1

i=0 Vi. We put an edge between
any two vertices from different clusters and we put all edges connecting two
vertices in V0. Let n = |V0| = (r + 1)t + m and note that δ(G) = rt + m =(
1 − 1

r+1 + m
(r+1)((r+1)t+m)

)
n.

Next we describe the coloring f of the edges. We color the edges incident
to vertices in V0 arbitrarily. For each Vi, i ≥ 1 we denote half of its vertices
as positive and the other half as negative. For a vertex v ∈ Vi and any vertex
u ∈ Vj where 1 ≤ j < i we set f(v, u) = 1 if v is positive and f(v, u) = −1 if v
is negative.

Let Hr be an rth power of a Hamilton cycle in G viewed as a 2r-regular
subgraph of G. Call a vertex v ∈ V \ V0 a bad vertex if at least one of its
neighbours in Hr is from the cluster V0, otherwise call it good. If a vertex v ∈ Vi

is good then in Hr it has precisely two neighbours from each of the clusters
Vj , 1 ≤ j ≤ r + 1, j �= i. Note that for i ≥ 1 at most 2 vertices from Vi can
be adjacent to a vertex v ∈ V0, so there are at most 2m bad vertices in Vi.
Now consider only positive good vertices and their edges towards vertices from
clusters with a smaller index. Thus, the number of edges labelled 1 in Hr is at
least

r+1∑

i=1

2(i − 1)(t/2 − 2m) = r(r + 1)(t/2 − 2m).

Hence, we have

f(Hr) ≥ −nr + 2r(r + 1)(t/2 − 2m) ≥ −5r(r + 1)m.

Completely analogously, f(Hr) ≤ 5r(r + 1)m. Therefore, if m = 0, we have
f(Hr) = 0 and if m = o(n), we get |f(Hr)| = o(n).

For r = 2, the following construction was given in [1], where the case r = 1
was considered. Let G be the 4-partite Turán graph on n = 4k vertices, so
δ(G) = 3

4n. Color all edges incident to one of the parts with −1 and the rest
with 1. Any square of a Hamilton cycle contains 4k edges labelled −1, exactly
4 edges for each vertex in the special class. As it has a total of 8k edges, its
discrepancy is 0. Similarly as above, we can add m = o(n) vertices connected
to every other vertex and still any square of a Hamilton cycle has absolute
discrepancy o(n).

3 Outline of the Proofs

Our proof follows a very similar structure to that of Balogh, Csaba, Pluhár and
Treglown [2] for perfect Kr-tilings.
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We start by applying the regularity lemma on G to obtain the reduced graph
R and the corresponding edge labelling fR.

Before proving the conjecture for large n, Komlós, Sárközy and Szemerédi
[11] proved an approximate version, namely they proved it for n-vertex graphs
with minimum degree at least (1−1/(r+1)+ε)n. We make slight modifications
to their proof to establish two important claims.

We prove that a perfect Kr+1-tiling of R with linear discrepancy with respect
to fR can be used to construct an rth power of a Hamilton cycle in G with linear
discrepancy with respect to f. Combined with Theorem 2, this is enough to
deduce the case r = 2 (Theorem 4).

To discsuss the second claim, we need a definition.

Definition 2 (Cr-template). Let F be a graph. A Cr-template of F is a col-
lection F = {C1, C2, . . . , Cs} of not necessarily distinct cycles whose rth powers
are subgraphs of F. In a Cr-template each vertex appears the same number of
times. Moreover, we require that each cycle Ci has length between r+1 and 10r2.
The discrepancy of a Cr-template is given as f(F) =

∑s
i=1 f(Cr

i ), where for a
cycle C = (v1, . . . , vk), we define

f(Cr) =
k∑

i=1

r∑

j=1

f(vi, vi+j),

where we identify vk+j = vj , 1 ≤ j ≤ r.

In our context, a Cr-template can be viewed as a generalization of a Kr+1-
tiling. We prove a very useful property of R: suppose that F is a small subgraph
of R and there are two Cr-templates of F covering the vertices the same number
of times, but having different discrepancies with respect to fR. Then in G there
exists the rth power of a Hamilton cycle with linear discrepancy with respect
to f.

From this point on, we only ‘work’ on the reduced graph R. To use the last
claim, we need a subgraph F on which we can find two different Cr-templates,
so the simplest subgraph we can study is an (r + 2)-clique. We prove that every
(r+2)-clique in R is either monochromatic or such that one of the colors induces
a copy of K1,r+1 and the other a copy of Kr+1. As R has large minimum degree,
every clique of size k ≤ r+2 can be extended to a clique of size r+2. This shows
that every clique of size k ≤ r+2 is of the same form: either it is monochromatic,
or one of the colors induces a copy of K1,k−1 and the other a copy of Kk−1.

We assume G has no rth power of a Hamilton cycle with large absolute
discrepancy. By the Hajnal-Szemerédi theorem, we can find a perfect Kr+1-tiling
T of R. The previous arguments show that only four types of cliques appear in T
and T has a small discrepancy with respect to fR. This tells us that the numbers
of each of the four types of cliques in T are balanced in some way.

We consider two cliques in T of different types. For several relevant cases
when there are many edges between the two cliques, we construct two Cr-
templates of different discrepancies, which contradicts our assumption by the
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claim about Cr-templates. Finally, this restricts the number of edges between
different cliques which leads to a contradiction with the minimum degree assump-
tion on R.
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to the problem, helpful discussions and many useful comments. Additionally, the author
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Abstract. Let D be a division ring, n a positive integer, and GLn(D)
the set of invertible square matrices of size n and values in D, called the
general linear group. We address the intersection graph of subgroups of
GLn(D) and prove that it has diameter at most 3. Two particular cases
of its induced subgraphs are then investigated: by cyclic subgroups, and
by almost subnormal subgroups. We prove that the latter case results
in a connected graph whose diameter is sharply bounded by 2. In the
former case, we completely characterise the connectivity of the induced
graph with respect to D, where, in case of connectivity, we prove that it
has diameter at most 7 in general, and at most 5 if D is a locally finite
field of characteristic not 2 different from F3 and F9.

Keywords: Division ring · Intersection graph · Graph connectivity

1 Introduction

Geographically, human activities can naturally be embedded into an Euclidean
space R

n with n = 3 or n = 2, by extending infinitely the region on Earth
under study and by projecting latitude, longitude and altitude coordinates of
that region on the space. We formalise graphs arising from Euclidean spaces
as in the sense of intersection graphs [18]: given a set of geometric objects in
the space, the corresponding intersection graph has these objects as vertices,
and the vertices are adjacent if and only if the objects have a non-trivial non-
empty intersection. When the space is a plane, that is, n = 2, intersection graph
theory sows the way for important research results: social network simulations
can stem from the assumption where adjacency likeliness increases in function of
the geographic distance of disks in the space [21], planar graph characterisation
and coloring can rely on intersection of segments in the space [6,20], and RNA
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structures can benefit from approximations using the proximity of intervals (and
pairs of intervals) on a line [7,12].

More generally, geometric graphs are well captured in the (d, e)-subspace
intersection model proposed in Laison-Qing’s classification [17]. Following these
termes, d denotes the space dimension and e the dimension of the geometric
objects: Penrose’s random geometric networks belong to (2, 2)-subspace intersec-
tion graphs, Scheinerman planar graph characterisation to (2, 1)-subspace inter-
section graphs, and RNA approximations to (1, 1)-subspace intersection graphs.

Generalising further, an important step has been taken by Yaraneri’s studies
on submodules [22]. Here, the real field R is left behind in favor of ring struc-
tures. Rings are important because cryptosystems can rely on hardness results
of their isomorphisms [16] in order to define new cybersecurity schemes [4,13].
Historically, studying intersection graphs of elements of a ring has been initiated
by Bosák [3] and further developed with Csákány-Pollák’s theorems [8]. Follow-
ing these works, many research efforts have been put in studying the structure
of intersection graphs stemming from group structures [5,11]. However, to the
best of our knowledge, very little results are known for the most general case of
a division ring D. This is precisely the shortage where Yaraneri’s results help
rectifying when studying the intersection graph of submodules of a (left/right)
module over a division ring D. For a simpler introduction, let us ignore the case
of infinite dimension, and define Dn

R as a right D-module of dimension n. Then,
in a nut shell, column vectors of module Dn

R over ring D are natural extensions
of vectors of space Rn over the field R of real numbers. This way, one can retrieve
most of the nice topology results from the segments of a plane in the submodules
of a module [22]. However, Yaraneri left unstudied the extension of column vec-
tors to matrices over D. In particular, the graph structure of ring morphisms is
not well understood. In this paper, we help paving the road toward this research
direction with invertible square matrices.

More precisely, we lift the intersection model of geometric graphs to the
algebraic graph defined by non-trivial intersections of proper subgroups of the
general linear group GLn(D), that we denote by graph Γ (GLn(D)). Here, the
general linear group is the set of invertible square matrices of size n. Its subgroups
are sets of invertible square matrices closed under multiplication and inversion.
When n ≥ 2 and D = F is a field with at least 3 elements, Bien and Viet recently
proved that Γ (GLn(F )) has diameter either 2 or 3 [2].

In Sect. 2, we extend Bien-Viet’s theorem from fields to arbitrary division
rings, and prove furthermore for n = 1 that Γ (GL1(D)) with D infinite has
diameter at most 3, and exactly 2 when D is so-called weakly locally finite.
Proving these results requires a careful analysis of namely the non-central sub-
groups of GLn(D). Thus, we push further in Sect. 3 our analysis on prominent
ring structures with a non-trivial center. One of our major results is that they
need not be complex: the non-central almost subnormal subgroups, when exist,
always induce a clique, while the almost subnormal subgroups induce a sub-
graph of diameter bounded by a surprisingly sharp 2. We then investigate the
subgraph Γc(GLn(D)) induced by cyclic subgroups of GLn(D), and found a very
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close relationship with the proper power graph P ∗(GLn(D)). This helps char-
acterising the graph’s connectivity, in which case we show that it has diameter
at most 7. Examining particular cases, when n = 2 and D is either Galois fields
F3 or F9, we prove that Γc(GLn(D)) is not connected. Surprisingly, when n ≥ 3
and D is either above Galois fields, we result in that Γc(GLn(D)) is connected,
therefore, has diameter at most 7. Except for the previous cases, when n ≥ 2 and
D = F is a locally finite field of characteristic not 2, we prove that the diame-
ter of Γc(GLn(D)) is at most 5. In Sect. 4, we close the paper with concluding
remarks and perspectives for research on algebraic graphs. By space restriction,
properties marked with (�) are given without a proof.

2 General Linear Groups

For a loopless simple undirected (not necessarily finite) graph Γ , we note V (Γ )
its vertex set, E(Γ ) ⊆ (

V (Γ )
2

)
its edge set, and u ∼ v every edge {u, v} ∈ E(Γ ).

A path joining u to v of length k is a sequence of k +1 distinct vertices u = v0 ∼
v1 ∼ v2 ∼ · · · ∼ vk = v. The geodesic distance d(u, v) between u and v is +∞ if
no such path exists, and the minimum length of such a path otherwise. Graph
Γ is connected if there exists a path joining any pair of its vertices. When Γ is
connected, if moreover the set {d(u, v) | u, v ∈ V, u �= v} is bounded, then we
define the diameter of Γ as diam(Γ ) = max{d(u, v) | u, v ∈ V, u �= v}.

The intersection graph Γ (G) of a group G has as vertex set the non-trivial
proper subgroups of G. Two vertices of Γ (G) are adjacent if and only if their
intersection is not reduced to {1G}. A division ring D is a ring where every
non-zero element is invertible. In particular, D can as well be non-commutative
or commutative, where it is called a field. The general linear group GLn(D) is
the set of invertible square matrices of size n ≥ 1 and values in D. The center
of D is its subset containing every element c ∈ D with cx = xc for every x ∈ D.
When n = 1, the general linear group coincides with the multiplicative group,
and is noted D∗ = GL1(D). The Galois field with q elements is noted Fq.

Theorem 1 (�). Let D be a division ring whose center F contains at least 3
elements, and n an integer. When n = 1, assume additionally that D is infinite.
Then, for every n ≥ 1, the intersection graph Γ (GLn(D)) of subgroups of the
general linear group GLn(D) has diameter at most 3. Moreover, if n ≥ 2, then
Γ (GLn(D)) has diameter at least 2. When n = 1, the requirement for D to be
infinite cannot be relieved: Γ (F∗

7 = GL1(F7)) is not a connected graph.

In the sequel, we compare Theorem 1 with known results when D = F is
a field [2]. A division ring D with center F is weakly locally finite if for every
finite subset S of D the division subring F (S) generated by S over F is a finite
dimensional vector space over its center [9]. Theorem 2 below generalizes [2,
Theorem 4.2], which holds for n ≥ 2 and D = F a field. Both theorems contrast
sharply with the finite case of a field D = F with D∗ = GL1(D) of prime order,
where the diameter is exactly 3 instead of 2 [2, Proposition 3.5]. We stress that
every locally finite division ring is weakly locally finite [14, Theorem 4], however,
the converse is not necessarily true, for infinitely many instances [10].
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Theorem 2 (�). Let D be an infinite weakly locally finite division ring. For
every n ≥ 1, Γ (GLn(D)) has diameter exactly 2.

3 Almost Subnormal Subgroups and Cyclic Subgroups

A subgroup N of a group G is almost subnormal if there exists a sequence of
subgroups N = Nr < Nr−1 < Nr−2 < · · · < N1 < N0 = G such that for every
r ≥ i > 0, either Ni is a normal subgroup of Ni−1, noted Ni �Ni−1, or the index
[Ni−1 : Ni] is finite, as in the sense of [15]. Following a previous work [19], we
conjecture that the almost subnormal subgroups of GLn(D) induce a clique in
Γ (GLn(D)). When n ≥ 2, [19, Theorem 3.3] implies that the almost subnormal
subgroups of GLn(D) are also normal subgroups, and the conjecture follows.
Unfortunately, for n = 1 the almost subnormal subgroups are not necessarily
normal subgroups, leaving the conjecture whether they form a clique in D∗ =
GL1(D) unanswered. Our main contribution in this topic is a tailored proof for
below Theorem 3, bridging the gap for n = 1 with a positive answer.

Theorem 3 (�). For any division ring D, the family of non-central almost sub-
normal subgroups of D∗ = GL1(D) is closed under intersection. It induces a
clique in Γ (D∗) when not empty. The family of almost subnormal subgroups of
D∗ induces a connected subgraph of diameter at most 2. The bound is sharp.

•X24
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•X26
•X27

•X1

•X18

•X19

•X20

•X21
•X22

•X23

•X12 •X13 •X14 •X15

•X16

•X8

•X7 •X6 •X5

•X4

•X9
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•X11

•X3

•X2

•X17

Fig. 1. Graph Γc(GL2(F3)).

The cyclic subgroup intersection graph Γc(G) of a group G is the subgraph
of Γ (G) induced by all cyclic subgroups of G. A field is said to be locally finite
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if every finitely generated subfield over its prime subfield is finite. Theorem 4
below goes over our results on cyclic subgroups. In particular, for every n ≥ 3 we
found that Γc(GLn(F3)) has diameter at most 7. However, we result surprisingly
in that Γc(GL2(F3)) is disconnected, cf. Fig. 1.

Theorem 4 (�). Let n ≥ 2 be an integer and D a division ring of characteristic
not 2. If Γc(GLn(D)) is connected, then D is a locally finite field. Conversely,
if F is a locally finite field whose characteristic is not 2, then the following
statements hold.

1. Both Γc(GL2(F3)) and Γc(GL2(F9)) are disconnected.
2. If n ≥ 3, then both Γc(GLn(F3)) and Γc(GLn(F9)) have diameter at most 7.
3. In all other cases, Γc(GLn(F )) has diameter at most 5.

The characteristic requirement cannot be omitted: Γc(GL2(F2)) is disconnected.

Theorem 4 also helps answering positively to below Question 1 when the
group is the general linear group. The power graph P(G) of a group G has G as
vertex set, and two distinct vertices are adjacent if and only if one of them is a
positive power of the other. The proper power graph P∗(G) of G is the subgraph
of P(G) induced by all non-identity elements of G. Note for a periodic group G
that P(G) has diameter at most 2 since every vertex is connected to 1G. However,
P∗(G) is not necessarily connected, for instance when G = S3 is the symmetric
group of degree 3.

Question 1. [1, Question 39] Which groups do have the property that the proper
power graph is connected?

Theorem 5 (�). Given an integer n ≥ 2 and let D be a division ring of char-
acteristic not 2. Then, the following conditions are equivalent:

1. The graph P∗(GLn(D)) is connected.
2. The graph Γc(GLn(D)) is connected.
3. D = F is a locally finite field, and GLn(F ) �= GL2(F3);GL2(F9).

4 Conclusion and Perspectives

We show that most intersection graphs of subgroups of the general linear group
over a division ring have a low diameter. We hope this can help understanding
ring morphisms and leave open the question whether cyclic subgroups induce
clique-like components, like those of GL2(F3) presented in Fig. 1.

Acknowledgements. We are grateful to the anonymous reviewers for their helpful
insights and pointers.
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Abstract. The 4-coloring problem is NP-complete for P7-free graphs
whereas the 3-coloring problem can be solved in quasi-polynomial time
on Pt-free graphs for any fixed t. We consider circular coloring to locate
precisely the complexity gap between 3 and 4 colors: for every fixed
integer m ≥ 2, the 3+1/m-coloring problem is NP-complete on P30-free
graphs.

Keywords: Graph homomorphism · NP-completeness

1 Introduction

We consider the complexity of coloring problems restricted to hereditary graph
classes.

Theorem 1. [6] Let H be a (fixed) graph, and let k ≥ 3. If the k-coloring
problem can be solved in polynomial time when restricted to the class of H-free
graphs, then every connected component of H is a path.

Thus if H is connected, then the question of determining the complexity of k-
coloring H-free graph is reduced to studying the complexity of k-coloring Pt-free
graphs for certain t. Let us review the main results obtained on this topic.

Theorem 2. [2,5] For all k ≥ 5, the k-coloring problem can be solved in poly-
nomial time for the class of P5-free graphs and is NP-complete for the class of
P6-free graphs.

Theorem 3. [3,5] The 4-coloring problem can be solved in polynomial time for
the class of P6-free graphs and is NP-complete for the class of P7-free graphs.

Theorem 4. [1,7] The 3-coloring problem can be solved in polynomial time for
the class of P7-free graphs. For every fixed t, the 3-coloring problem can be solved
for the class of Pt-free graphs in nO(log2 n).
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Thus, for every integer t ≥ 7, the k-coloring problem on Pt-free graphs is
NP-complete for k ≥ 4 and seems easier for k = 3. We narrow this complexity
gap between k = 3 and k = 4 using the framework of circular coloring.

Recall that if q = n
d is a rational number, then the circular clique Kq is the

graph with vertex set {x0, x1, · · · , xn−1} such that xu and xv are adjacent if and
only if d ≤ |u− v| ≤ n− d. The circular chromatic number χc(G) is the smallest
q such that G admits a homomorphism to Kq.

Theorem 5. For every fixed integer m ≥ 2, deciding whether a P30-free graph
maps to K

3+
1
m

is NP-complete.

2 Proof

We reduce from 3-SAT. Let x0, · · · , x3m be the vertices/colors of the target
graph K

3+
1
m

in cyclic order. The pseudo distance between two vertices xi and

xj is the distance in the chordless cycle x0, ...i3m. Two vertices of K
3+

1
m

are

consecutive if their pseudo distance is 1. A k-vertex is a vertex of degree k. We
split the proof into the cases m ≥ 3 and m = 2. In each case, we construct a
graph G from an instance I of 3-SAT.

The case m ≥ 3.

(1) For every variable v of I, the variable gadget consists of two non-adjacent
vertices v and v called variable-literals as they correspond to the literals of
the variable v.

(2) For every clause c of I, the clause gadget is a copy of a 9-cycle with vertices
c0,m1,m2, c3,m4,m5, c6,m7,m8. The vertices ci are called clause-literals
and correspond to the three literals of the clause c. The vertices mi are
called middle vertices.

(3) Every middle vertex is adjacent to every variable-literal.
(4) Every clause-literal is joined to the corresponding variable gadget by a

literal-gadget depicted in Fig. 1. The literal-gadget consists of a copy of
K

3+
1
m

represented by a dotted circle and two vertices of degree 1 and 2. The

two-headed arrows indicate the pseudo distance between the considered ver-
tices of K

3+
1
m

. The 1-vertex labelled � is identified with the clause-literal.

If � = v, then the other vertex labelled � in K
3+

1
m

is identified with the

variable-literal v and the vertex labelled � is identified with the variable-
literal v. And vice-versa if � = v.

(5) Finally, G contains a copy of K
3+

1
m

called the synchronizer. The vertices x0

and x3m of the synchronizer are adjacent to every middle vertex. For every
clause-literal ci, we add a new 2-vertex adjacent to ci and to the vertex
xm+1 of the synchronizer.
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�

�

�

1

m + 1

variable-literals

2m − 1

clause-literal

Fig. 1. The literal-gadget for m ≥ 3.

Let h be a homomorphism from G to K
3+

1
m

. Without loss of generality we

can assume that every vertex xi of the synchronizer maps to the vertex xi of
K

3+
1
m

. The graph induced by the middle vertices is a matching. By (5), every

edge of this matching maps to the edge xmx2m. For every variable v, the variable-
literals v and v satisfy {h(v), h(v)} ⊂ {x0, x3m} by (3). Since v or v occurs
in at least one clause, v and v are consecutive in at least one literal-gadget.
Thus {h(v), h(v)} = {x0, x3m}. Assigning true (resp. false) to the variable v
corresponds to setting h(v) = x0 and h(v) = x3m (resp. h(v) = x3m and h(v) =
x0). By (5), every clause-literal ci is connected to xm+1 via a walk of length two,
so that h(ci) ∈ {x0, x1, · · · , x2m+1, x2m+2}. If a literal is assigned true, then
the clause-literal forces the same coloring constraints as the synchronizer on ci,
that is, h(ci) ∈ {x0, · · · , x2m+2}. If a literal is assigned false, then the coloring
constraints due to the clause-literal on ci are symmetrical to the constraints due
to the synchronizer with respect to the involution which maps xi to x3m−i. In
this case, h(ci) ∈ {x0, · · · , x2m+2} ∩ {xm−2, · · · , x3m} = {xm−2, · · · , x2m+2}.

Now we argue that I is satisfiable if and only if G maps to K
3+

1
m

. It is

sufficient to check that a clause is satisfied if and only if the clause gadget maps to
K

3+
1
m

. If a clause is satisfied, then at least one literal, say the one corresponding

to c0, is true. So we can set h(c0) = x0, h(m1) = h(c3) = h(m5) = h(m7) = xm,
and h(m2) = h(m4) = h(c6) = h(m8) = x2m. If a clause is not satisfied, then in
particular the 9-cycle of the clause gadget has to map to the subgraph of K

3+
1
m

induced by {xm−2, · · · , x2m+2}. If m ≥ 5, the contradiction is straightforward
since this subgraph is bipartite. In the general case m ≥ 3, recall that the three
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edges of the clause gadget whose extremities are middle vertices must map to
the edge xmx2m. So at least one of the clause-literals, say c0, is adjacent to a
middle vertex colored xm and a middle vertex colored x2m. This implies that
h(c0) ∈ {x0, x3m}, which contradicts that h(ci) ∈ {xm−2, · · · , x2m+2}.

The case m = 2. It corresponds to the homomorphism to K 7
2
, which is known to

be NP-complete for planar graphs [4]. The previous construction does not work
with m = 2 because the constraint h(ci) ∈ {xm−2, · · · , x2m+2} for a false literal
becomes h(ci) ∈ {x0, · · · , x3m}, which gives no constraint.

We consider the graph N depicted in Fig. 2. Every homomorphism h of N to
K 7

2
satisfies h(x) �= h(y). Conversely, for every distinct vertices a and b in K 7

2
,

N admits a homomorphism h such that h(x) = a and h(y) = b. We say that N
links two vertices of G if one vertex is identified with x and the other vertex is
identified with y.

yx

Fig. 2. The graph N .

We use the previous construction of G with m = 2, except for the following
modifications.

(a) The variable gadget consists of a copy of K 7
2

with two specified consecutive

vertices as the variable-literals v and v.
(b) The literal-gadget consists of a copy of N linking the clause-literal corre-

sponding to � and the variable-literal corresponding to �.
(c) For every clause-literal ci, we add a copy of N linking ci and the vertex x6

of the synchronizer.

Again, true corresponds to x0 and false corresponds to x6. If ci is assigned to
true, then h(ci) ∈ {x0, · · · , x5} and h(ci) ∈ {x1, · · · , x5} otherwise. Every edge
whose extremities are middle vertices must map to the edge x2x4. If a clause
is satisfied, then at least one literal, say c0, is true. So we can set h(c0) = x0,
h(m1) = h(c3) = h(m5) = h(m7) = x2, and h(m2) = h(m4) = h(c6) = h(m8) =
x4. If a clause is not satisfied, then at least one of the clause-literals, say c0,
is adjacent to a middle vertex colored x2 and a middle vertex colored x4. This
implies that h(c0) ∈ {x0, x6}, which contradicts that h(ci) ∈ {x1, · · · , x5}.
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Pt-freeness. In our construction of G, we have not tried to minimize the length of
the longest induced path. Also, we do not try to determine exactly the smallest
t such that G is Pt-free, which should depend on m anyway. We only sketch the
arguments that G is P30-free for every m.

We say that a vertex of G is gentle if it is a variable-literals or x0 or x3m of
the synchronizer. If H is a copy of K

3+
1
m

in G, we say that a vertex v of H is a

gate if v has a neighbor outside of H.
It is not hard to check that K

3+
1
m

is 3K2-free. In particular, it is P8-free.

Also, every copy H of K
3+

1
m

in G has at most 3 gates, two of them being gentle.

If an induced path of G contains a ≥ 1 middle vertices and b ≥ 1 gentle
vertices, then a + b ≤ 3, since otherwise the path would contain K1,3 or C4 as
a subgraph. So G cannot contain a very long path, since it would have to go
through many clause gadgets and variable gadgets.
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Abstract. We prove a conjecture of Schmidt–Tuller on the optimal cov-
ering of Z by translated copies of a three-point set. We relate linear cov-
erings to some problems in high-dimensional geometric Ramsey theory.
More concretely, we obtain several essentially tight bounds on the chro-
matic number of Rn with the max-norm for a large class of forbidden
monochromatic configurations.
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1 Integer Covering Problems

Covering problems are among the most important elements that forms the view
of modern combinatorial geometry. The main question here is the following: given
S, T ⊂ R

d, what is the ‘economical’ way to cover T by the translates of S? This
question has been extensively studied in case when T = R

d and S is a bounded
convex body by Rogers [20], Erdős and Rogers [6], Tóth [25], Kuperberg [12]
and many others.

In the present paper we deal with another important case of this general
problem, namely when T is Z

d and S is a finite nonempty subset of T (see,
e.g., Newman [16,17], Schmidt and Tuller [22,23], and Bollobás, Janson, and
Riordan [3]). In this setting, a set A ⊂ Z

d is called S−covering if S + A = Z
d,

where S + A = {s + a : s ∈ S, a ∈ A}. Similarly, a set A ⊂ Z
d is called

(S,−S)−covering if both sets S + A and −S + A coincide with Z
d. We define

the values dc(Zd;S) and dc(Zd;S,−S) as the minimum possible lower density
of S−covering and (S,−S)−covering sets respectively. Note that since every
(S,−S)−covering set is clearly also S−covering by definition, it is easy to see
that

dc(Zd;S) ≤ dc(Zd;S,−S)

for all d ∈ N and for all finite nonempty S ⊂ Z
d.

In case d = 1 Newman [17] showed that for all finite nonempty S ⊂ Z the
value dc(Z;S) is achieved on some periodic S−covering subset which period is
bounded in terms of S. In particular, the value dc(Z;S) is always rational. The
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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same argument goes for dc(Z;S,−S) as well. Recently Bhattacharya [2] proved
the similar statement in case d = 2. In case d ≥ 3 there are partial results due
to Szegedy [24] and Greenfeld and Tao [9]. However, the conjecture that for all
d ∈ N and for all finite nonempty S ⊂ Z

d, the value dc(Zd;S) is rational remains
widely open.

A simple averaging argument implies that dc(Zd;S) ≥ 1
|S| . Moreover, this

bound is sometimes tight. Indeed, in case S = [k] = {1, 2, . . . , k}, A = kZ we
have S + A = Z and −S + A = Z. Hence, dc(Z; [k]) = dc(Z; [k],−[k]) = 1

k .
As for the upper bounds, Newman [16] showed that dc(Z;S) ≤ 2

5 for all three-
point S ⊂ Z and provided an example S = {0, 1, 3} showing that this result
is tight. Newman also conjectured that the tight upper bound for four-point
S ⊂ Z is 1

3 (see [26]). This conjecture has been recently proven by Axenovich et
al. [1]. In case |S| = 5 or 6 Bollobás et al. [3] conjectured that the tight upper
bounds are 3

11 and 1
4 respectively, but their conjecture remains open. For large

|S| Newman [16] showed that dc(Zd;S) ≤ ln |S|+O(1)
|S| . The proof was simplified

by Bollobás et al. [3]. We slightly modify their ideas to show that the same bound
holds for dc(Zd;S,−S) as well. Moreover, we show that the ‘worst case’ is when
S is one-dimensional.

Proposition 1. Given d ∈ N and a finite subset S′ ⊂ Z
d, there is S ⊂ Z

of the same cardinality such that dc(Zd;S′) ≤ dc(Z;S) and dc(Zd;S′,−S′) ≤
dc(Z;S,−S).

Proposition 2. There are positive constants C1, C2 such that the following two
statements hold. First, for all k ∈ N and for all S ⊂ Z such that |S| = k, one has
dc(Z;S,−S) ≤ ln k+C2

k . Second, for all k ∈ N, there is S ⊂ Z such that |S| = k

and dc(Z;S,−S) ≥ ln k+C1
k .

The problem of finding the explicit expression for dc(Z;S) and dc(Z;S,−S) is
probably very hard in general. In case |S| = 2 it is almost obvious that dc(Z;S) =
dc(Z;S,−S) = 1

2 . Schmidt and Tuller [22] stated a conjecture concerning the
value of this function for |S| = 3 (depending on S). We confirm their conjecture.

Theorem 1. Let λ′
1, λ

′
2 be two integers, μ be their greatest common divider, and

S = {0, λ′
1, λ

′
1 + λ′

2} be a thee-point set of a general form. Set λ1 = λ′
1

μ , λ2 = λ′
2

μ .
Then

dc(Z;S) = dc(Z;S,−S) = min
(� 1

3 (λ1 + 2λ2)�
λ1 + 2λ2

,
� 1
3 (2λ1 + λ2)�
2λ1 + λ2

)
.

In the next section, we discuss the relation between dc(Z;S,−S) and a certain
class of geometric Ramsey-type questions.

2 Max-Norm Ramsey Theorems

The well-known problem of Nelson about finding the chromatic number χ(Rn)
of the n−dimensional Euclidean space can be generalized in many ways. One
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of them is the following: given a subset S ⊂ R
d (with induced metric), find the

minimum number of colors χ(Rn;S) needed to color all points of the Euclidean
space R

n with no monochromatic isometric copy S′ ⊂ R
n of S. A set S is called

Ramsey if χ(Rn;S) → ∞ as n → ∞.
A systematic study of such questions on the interface of geometry and Ram-

sey theory, called Euclidean Ramsey theory, begins with the paper [4] of Erdős,
Graham, Montgomery, Rothschild, Spencer, and Straus. They showed that each
Ramsey set must be finite and spherical and conjectured that this criterion is
sufficient. Recently Leader, Russell and Walters [14] proposed a ‘rival’ conjec-
ture that S is Ramsey if and only if it is subtransitive, but the problem remains
widely open.

Relatively few sets are known to be Ramsey. Frankl and Rödl [8] proved that
the vertex sets of simplices and hyperrectangles are Ramsey. Kř́ıž [10] showed
that each ‘fairly symmetric’ set is Ramsey, e.g., the set of vertices of each regular
polytope in any dimension.

The best know lower and upper bounds on χ(Rn;S) for these S are relatively
far from each other. For example, in the simplest two cases, when S is a pair
of points (clearly, in this case χ(Rn;S) = χ(Rn)) or S is a set of vertices of an
equilateral triangle Δ it is only known that

(1.239... + o(1))n ≤ χ(Rn) ≤ (3 + o(1))n
,

(1.01446... + o(1))n ≤ χ(Rn;Δ) ≤ (2.732... + o(1))n
,

as n → ∞. The lower and upper bounds on χ(Rn) are due to Raigorodskii [19]
and Larman and Rogers [13] respectively. The lower and upper bounds on
χ(Rn;Δ) are due to Naslund [15] (see also the paper [21] of the third author)
and Prosanov [18] respectively.

The last two authors [11] recently showed that such questions become
much simpler if we replace the Euclidean n−dimensional space R

n by the
n−dimensional space R

n
∞ with the max-norm, defined for all x,y ∈ R

n as

‖x − y‖∞ = max
1≤i≤n

{|xi − yi|} .

Theorem 2. ([11]). Any finite metric space S is exponentially Ramsey in the
max-norm, i.e., there is a constant χS > 1 such that the minimum number
of colors χ(Rn

∞;S) needed to color all points of R
n
∞ with no monochromatic

isometric copy of S satisfies χ(Rn
∞;S) > (χS + o(1))n as n → ∞.

In the upcoming paper of all three authors [7] we prove several following
explicit results that extend Theorem 2. First of all, we find the optimal value χS

for all ‘one-dimensional’ metric spaces in the notation of the first section.

Theorem 3. Let k ∈ N and λ1, . . . , λk ∈ N be a sequence of positive integers.
Set S = {0, λ1, λ1 + λ2, λ1 + · · · + λk}. Then

χ(Rn
∞;S) =

(
1

1 − dc(Z;S,−S)
+ o(1)

)n

as n → ∞.
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We find the base of the exponent of χ(Rn
∞;S) for ‘non-integer’ one-

dimensional finite sets too, but the exact statement is rather cumbersome, so we
present only two of its corollaries here.

Corollary 1. Let k ∈ N be an integer, and λ1, . . . , λk be a set of linearly inde-
pendent over Z real numbers. Set S = {0, λ1, λ1 + λ2, λ1 + · · · + λk}. Then

χ(Rn
∞;S) =

(
1 +

1
k

+ o(1)
)n

as n → ∞.

Corollary 2. There is a constant C > 0 such that for all S ⊂ R of cardinality
k, one has

(
1 +

1
k

+ o(1)
)n

≤ χ(Rn
∞;S) ≤

(
1 +

ln k + C

k
+ o(1)

)n

as n → ∞. So, the base of the exponent of χ(Rn
∞;S) tends to 1 with ‘almost

linear’ speed as |S| tends to infinity.

We also determine the base of the exponent of χ(Rn
∞;S) for several families of

higher-dimensional sets S. The hyperrectangles are among the most interesting
of them.

Theorem 4. Let S ⊂ R
d
∞ be a set of vertices of a hyperrectangle. Then

χ(Rn
∞;S) = (2 + o(1))n

as n → ∞.

However, there is a special class of problems that become more difficult in the
max-norm setting in comparison with the Euclidean one. It is known (see [5])
that for all n ∈ N and for all infinite S ⊂ R

n we have χ(Rn;S) = 2 in the
Euclidean case. We prove the following analogue of this statement for the max-
norm, but the general picture is not yet clear.

Theorem 5. For all n ∈ N and for all infinite S ⊂ R
n
∞, we have χ(Rn

∞;S) ≤
n + 1. Moreover, this bound is tight, i.e., for all n ∈ N, there is an infinite
S ⊂ R

n
∞ such that χ(Rn

∞;S) = n + 1.
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Unit Disks Hypergraphs
Are Three-Colorable
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Abstract. We prove that any finite point set P in the plane can be
three-colored so that every unit disk intersecting P in at least 1025 points
contains points of at least two different colors.

Keywords: Discrete geometry · Geometric hypergraph coloring ·
Decomposition of multiple coverings

1 Introduction

Coloring problems for hypergraphs defined by geometric range spaces have been
studied extensively in different settings [1–21]. A pair (P,S), where P is a set
of points in the plane and S is a family of subsets of the plane (the range space),
defines a (primal) hypergraph H(P,S) whose vertex set is P, and edge set is
{S ∩ P | S ∈ S}. Given any hypergraph G, a planar realization of G is defined
as a pair (P,S) for which H(P,S) is isomorphic to G. If G can be realized with
some pair (P,S), where S is from some family F , then we say that G is realizable
with F .

It is an easy consequence of the properties of Delaunay-triangulations and
the Four Color Theorem that the vertices of any hypergraph realizable with
disks can be four-colored such that every edge that contains at least two vertices
contains two differently colored vertices. But are less colors sufficient if all edges
are required to contain at least m vertices for some large enough constant m?
The authors settled this question recently [6], showing that three colors are not
enough for any m, i.e., for any m, there exists an m-uniform hypergraph that is
not three-colorable and that permits a planar realization with disks.

For unit disks in arbitrary position, Pach and Pálvölgyi [16] showed that for
any m, there exists an m-uniform hypergraph that is not two-colorable and that
permits a planar realization with unit disks. Our main result is showing that for
large enough m three colors are sufficient for unit disks.

Theorem 1. Any finite point set P can be three-colored such that any unit disk
that contains at least 1025 points from P contains two points colored differently.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 483–489, 2021.
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2 Hypergraph Colorings

It is important to distinguish between two types of hypergraph colorings that
we will use, the proper coloring and the polychromatic coloring.

Definition 1. A hypergraph is properly k-colorable if its vertices can be colored
with k colors such that each edge contains points from at least two color classes.
Such a coloring is called a proper coloring.

Definition 2. A hypergraph is polychromatic k-colorable if its vertices can be
colored with k colors such that each edge contains points from each color class.
Such a coloring is called a polychromatic coloring.

Polychromatic colorability was studied for many geometric families. For
hypergraphs determined by pseudohalfplanes (defined as the regions on one side
of each pseudoline in some pseudoline arrangement) the following is known.

Theorem 2. (Keszegh-Pálvölgyi [12]). Given a finite collection of points and
pseudohalfplanes, the points can be k-colored such that every pseudohalfplane that
contains at least 2k − 1 points contains all k colors.

Polychromatic colorability is a much stronger property than proper colorabil-
ity. Any polychromatic k-colorable hypergraph is proper 2-colorable. We gener-
alize this trivial observation to the following statement about unions of poly-
chromatic k-colorable hypergraphs.

Theorem 3. Let H1 = (V,E1), . . . ,Hk−1 = (V,Ek−1) be hypergraphs on a com-
mon vertex set V . If H1, . . . ,Hk−1 are polychromatic k-colorable, then the hyper-

graph
k−1⋃

i=1

Hi = (V,
k−1⋃

i=1

Ei) is proper k-colorable.

Proof. Let ci : V → {1, . . . , k} be a polychromatic k-coloring of Hi. Choose
c(v) ∈ {1, . . . , k} such that it differs from each ci(v). We claim that c is a proper

k-coloring of
k−1⋃

i=1

Hi. To prove this, it is enough to show that for every edge

H ∈ Hi and for every color j ∈ {1, . . . , k − 1}, there is a v ∈ H such that
c(v) �= j. We can pick v ∈ H for which ci(v) = j. This finishes the proof.

Theorem 3 is sharp in the sense that for every k there are k−1 polychromatic
k-colorable hypergraphs such that their union is not properly (k − 1)-colorable.

3 Proof of Theorem1

Let P denote the points and let D denote the unit (radius) disks that contain
at least 1025 points from P.

The first step of the proof is a classic divide and conquer idea [15]. Divide
the plane into a grid of squares of side length 1√

10
≈ 0.31 such that no point of P

falls on the boundary of a grid square. Since a square of side length two intersects
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at most eight rows and eight columns of the grid, each unit disk intersects at
most 641 squares. Let D ∈ D be one of the unit disks. Since D contains at least
1025 = 64 · 16 + 1 points from P, by the pigeonhole principle there is a square
S such that S ∩ D contains at least 17 points from P.

Hence it is enough to show the following theorem. Applying it separately
for the points in each square of the grid provides a proper three-coloring of the
whole point set.

Lemma 1. Suppose P is a finite point set inside a square of side length 1√
10

.
Then we can color the points of P by three colors such that any unit disk, that
contains at least 17 points from P, will contain points from all three colors.

Proof. Since 2 · ( 1√
10

)2 < 1, if the center of a unit disk lies in the square, then
the disk contains the whole square. As we will use more than one color to color
the points in the square, such disks cannot be monochromatic. The sidelines
of the square divide the plane into nine regions. Denote the unbounded closed
quadrant regions by Q1, Q2, Q3, Q4 and the unbounded open half-strip regions
by S1, S2, S3, S4, numbered in a clockwise order, according to Fig. 1. We need to
assure that no matter in which of these eight regions the center of a unit disk
lies, it is not monochromatic.

Let �x be a horizontal halving line for P, that is, a horizontal line such that
both (closed) halfplanes bounded by �x contain at least |P|

2 points. Similarly, let
�y be a vertical halving line for P and let O denote the intersection of �x and �y.
These lines divide the square into four (closed) rectangular regions R1, R2, R3,
R4, indexed according to Fig. 1. The usefulness of this further subdivision comes
from the following observation.

Observation 1. If the center of a unit disk lies in Qi and the disk contains O,
then the disk contains the whole region Ri.

S3

R3

R4R1

S4

Q3Q2

S2

QB
1
QA

1

Q4S1

R2

O

Fig. 1. Regions around a grid square.

1 In fact less, but we are not trying to optimize our constants.
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We will color the four regions R1, . . . , R4 separately, but Observation 1
reduces the number of disks that have to be considered for each region.

Let Di ⊂ D denote the disks that contain at least 5 point from Ri ∩ P.
We will color the points of Ri with three colors such that for each D ∈ Di the
following holds: either D∩Ri ∩P is not monochromatic or D contains the whole
region Ri+2 (indexed modulo 4).

By symmetry it is enough to consider R1. If |R1 ∩ P| ≤ 4, then Di is empty
and we are done. Otherwise we divide the disks in Di into three groups. The line
of the diagonal from the bottom-left corner of the square to its top-right corner
splits Q1 into two parts, as marked with a dashed line on Fig. 1. Denote by QA

1

the bottom-right part of Q1 and by QB
1 its upper-left part. Let A ⊂ D1 be the

disks whose center lies in QA
1 ∪ S1 ∪ Q4 ∪ S4. Let B ⊂ D1 be the disks whose

center lies in QB
1 ∪ S2 ∪ Q2 ∪ S3. Let C ⊂ D1 be the disks whose center lies in

the closed quadrant Q3.
If a disk is in C, then it contains O, thus by Observation 1 it also contains the

whole region R3, and the coloring of the points P ∩R3 will ensure that it cannot
be monochromatic. Hence, it is enough to properly three-color the hypergraph
H(R1 ∩ P,A ∪ B). First we show that both H(R1 ∩ P,A) and H(R1 ∩ P,B) are
realizable with pseudohalfplanes. We use the following geometric lemma.

Lemma 2. If we take two disks from A, or two disks from B, their boundaries
intersect at most once inside R1.

Proof. Let R = ∪4
i=1Ri denote the square and define two trapezoidal regions

around R as follows. Denote by X∗ the reflection of any region X to the bottom-
right corner of the square R. One trapezoid is (QA

1 ∪ S1) ∩ S∗
4 , and the other is

(QA
1 ∪ S1)∗ ∩ S4, see the shaded regions on Fig. 2. The trapezoids have 45◦, 90◦

and 135◦ degree angles and the ratio of their sides is 1 : 1 : 2 :
√

2.
Let D1 and D2 be two disks from A and let o1, o2 denote their centers. If

the boundaries of D1 and D2 intersect twice inside R, then the midpont of o1o2
falls into R. It is easy to see that this implies that o1 and o2 must be located in
the shaded regions shown in Fig. 2. If we place o1 outside of the shaded region,
then the possible locations for o2 fall outside of QA

1 ∪ S1 ∪ Q4 ∪ S4. On the
other hand if o1, o2 are in the shaded region, then D1 and D2 contains R as
( 3√

10
)2 + ( 1√

10
)2 = 1. This contradicts that their boundaries intersect inside R.

R
1

QA
1

S1 Q4

S4

Fig. 2. Locations for two points in QA
1 ∪ S1 ∪ Q4 ∪ S4 whose midpoint lies in R.
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A similar argument holds for B, finishing the proof of Lemma2.
We remark that Lemma 2 holds also for squares of side length 1√

5
with a

more careful argument.

Therefore, H(R1 ∩P,A) and H(R1 ∩P,B) are hypergraphs that can be real-
ized by pseudohalfplanes. By definition each edge in these hypergraphs contains
at least 5 vertices. Thus by Theorem 2 they are polychromatic three-colorable,
and by Theorem 3, H(R1 ∩ P,A ∪ B) is proper three-colorable.

We apply the previous argument for each Ri. To see that the resulting col-
oring is good, take any disk D ∈ D. Since D contains at least 17 = 4 · 4 + 1
points from P, there is a region Ri such that D contains at least 5 points from
Ri ∩ P, that is D ∈ Di. Therefore either D contains two points of different
colors in Ri, or D contains the whole region Ri+2. Since �x and �y are halving
lines |P ∩ Ri| = |P ∩ Ri+2| (indexed modulo 4). Hence region Ri+2 contains at
least 5 point from P. The points inside Ri+2 are not monochromatic, hence D
is not monochromatic in either case.

4 Concluding Remarks

Let the m-fat edges of a hypergraph be those edges whose cardinality is at least
m. We can restate Theorem 1 the following way. If P is a set of point in the plane
and S is a set of unit disks, then the m-fat edges of the hypergraph H(P,S)
form a hypergraph that is properly three-colorable.

One can consider other geometric families for S. For example, let C be a
convex compact set whose boundary is smooth and let S be a family of translates
of C. A small refinement of the argument above shows that there is an m = m(C)
such that the m-fat edges of H(P,S) form a three-colorable hypergraph. It was
shown in [16] that for every smooth compact set C and for every m there is a
non-two-colorable hypergraph that can be realized by C. We can show that this
result extends to several sets whose boundary is only partly smooth, such as a
halfdisk, answering an open problem from [16]. The construction is essentially
the same as in [13,16,19], using the arrangement shown in Fig. 3 for the recursive
step.

p (root)
P ( − 1)

P (k − 1 )

Fig. 3. Recursive step for the non-two-colorable half disk construction.
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Abstract. A square is a concatenation of two identical words. A long-
standing open conjecture is that the number of distinct squares in a word
is bounded by its length. When two squares start at a location for the
last time in a word, the longer square is called FS-double square. One
way to increase the number of distinct squares in a word is to add as
many FS-double squares as possible. For any FS-double square, the first
letter always adds two distinct squares. However, the last letter can be in
at most two distinct squares. We give a structure of an FS-double square
where removing any of the terminal letters removes two distinct squares.
We show that the maximum number of such FS-double squares that are
adjacent to each other in a word w is less than |w|

11
. We also show that

the distinct squares introduced by the terminal letters of an FS-double
square are conjugates.

Keywords: Distinct squares · FS-double squares · Bordered FS
squares

1 Introduction

Repetitions in words are used to find the properties of words and is a well-
researched topic in word combinatorics. There are different definitions of repe-
titions, and each is explored in detail [2–4]. A square is a repetition of the form
xx where x is a non-empty word. Frankel et al. [4] conjectured that the number
of distinct squares in a word is always less than its length. The existing bounds
for the conjecture are based on the result that a location in a word can start
with at most two rightmost squares. When a location starts with two rightmost
squares, the longer square is named FS-double square [2]. A word of length n can
accommodate a maximum of 5n

6 FS-double squares and, therefore, the number
of distinct squares in a word is less than 11n

6 [2].
In this work, we explore properties of FS-double squares that can possibly

be used to get a better bound for the square conjecture. To do so, we find the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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structure of words where both the first and the last letters are part of two distinct
squares. We then count the maximum number of such letters in a prefix and in
a suffix of a word. Similar to our study, the structure of words that begins with
two squares has been explored in [1,3,5] to find the occurrences of neighbouring
squares. A case study with 14 partially solved cases is done in [5] and the results
are used for efficient computation of the repetitions in a word. The results of
this paper can be further extended to solve some of the unsolved cases specified
in [5]. The main contributions of our work are listed below.

(a) We identify the structure of an FS-double square in which terminal letters
are part of two distinct squares,

(b) We compute the length of the longest sequence of consecutive FS-double
squares where the square follows the structure mentioned in (a), and

(c) We describe the types of distinct squares introduced by terminal letters of
an FS-double square.

The rest of the paper is organized as follows. The next section gives definitions
and the existing results that are used later in the paper. In Sect. 3, we find
the structure of an FS-double square where the terminal letters are part of two
distinct squares. In Sect. 4, we explore the properties of words with adjacent
FS-double squares. Using these properties, we count the maximum number of
consecutive FS-double squares that have the structure identified in Sect. 3.

2 Background

We use Σ to denote an alphabet. A word is a concatenation of letters drawn
from Σ. The length of a word w is the number of letters in it and is denoted by
|w|. The length of an empty word is zero. For a non-empty word w = xyz, the
words x and z are called prefix and suffix, respectively. Here, x, z are terminal
letters when |x| = |z| = 1. We use LCP (x, y) to denote the longest prefix that is
common in words x and y. If a word u is both a prefix and a suffix of word w, we
refer to it as a border of w. The symbol B(w) represents a set of borders of word
w. We refer conjugate of a word w = w1w2 by a word w2w1 where w1, w2 ∈ Σ+.

A repetition is the word of the form xk where x ∈ Σ+ and the value of
integer k is greater than one. A square is a word obtained with k = 2. We write
the square xx as x2 and refer to the word x as a base of the square. The set
DS(w) contains all the distinct squares that are present in a non-empty word w.
A word w is a primitive word if w = xk implies k = 1. Every repetition can be
represented using a primitive word. In such a representation, the primitive word
is called primitive root. If the base of a square is primitive, we call it a primitive
square. Otherwise, the square is a non-primitive square.

The square conjecture predicts that the number of distinct squares in a word
is always less than its length [4]. The lower bound for the square conjecture
is obtained by exploring the properties of primitive words [6] while the upper
bound is given by mapping the rightmost occurrences of distinct squares with
the locations of words [2,4]. Given a location that starts with two such squares,
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Deza et al. [2] referred to the longer square as FS-double square and its structure
is given in Lemma 1.

Lemma 1 (FS-double square [2]). Let SQ2 be an FS-double square that
begins with another shorter square sq2 such that |sq| < |SQ| < 2|sq|. Then,
SQ = (xy)p1(x)(xy)p2 , where x, y are non-empty words and p1, p2 are integers
such that p1 ≥ p2 ≥ 1. Here, xy is a primitive word and sq2 = ((xy)p1(x))2 is a
unique square in SQ2.

In the rest of the paper, we refer to the structure given in Lemma 1 for an FS-
double square SQ2 unless mentioned otherwise. In the next section, we explore
the structure of an FS-double square that ends with two distinct squares.

3 FS-Double Squares Ending with Two Distinct Squares

An FS-double square, SQ2, begins with two distinct squares and these squares
end after the first instance of SQ. In this section, we identify the structure of
FS-double squares, where each of the terminal letters belongs to two distinct
squares. Moreover, the lengths of these squares are greater than |SQ|. For exam-
ple, consider an FS-double square SQ2 = awb where a, b ∈ Σ,w ∈ Σ+. The
difference between the number of distinct squares in SQ2 and the same in aw
(or wb) must be two. We use some of the existing results of FS-double squares
and properties of primitive words to obtain such words. The following lemma
describes the types of squares that start at the beginning of an FS-double square.

Lemma 2 ([1]). The following statements hold for an FS-double square SQ2.
(a) SQ2 is a primitive square, and (b) sq2 is a primitive square for p2 > 1.

Lemma 3. Every conjugate of a primitive word is distinct.

Fan et al. [3] gave “The new periodicity lemma” that classifies the squares in
an FS-double square based on their structures and locations. This lemma is
revisited in [1] and is given as follows.

Lemma 4 ([1]). Let u2 be a square in an FS-double square SQ2. Then, one of
the statements holds: (a) |u| = |SQ|, (b) |u| < |sq|, (c) If |SQ| > |u| ≥ |sq|, then
the primitive root of u is a conjugate of xy.

We find the structure of FS-double squares that ends with two distinct squares
in Theorem 1. The results shown in Lemmas 5 to 7 are used to prove the theorem.

Lemma 5. Let SQ2 be an FS-double square that ends with a square, v2, such
that |SQ| < 2|v| and p1 = p2 = 1. Then, |v| = |sq| and x ∈ B(xy).

Proof. We omit the proof of this lemma due to space restrictions.
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Lemma 6. Let v2 be a suffix of an FS-double square, SQ2, where 2|v| > |SQ|.
If p1 = p2, then x ∈ B(xy) and |v| = |sq|.
Proof. The given statement holds for p1 = p2 = 1 (refer Lemma 5). There are
five possibilities for v2 to start in SQ2 as shown in Fig. 1 for p1 = p2 = p > 1.
The number in the figure indicates the beginning of v2 in SQ2 and the respective
case number. As v2 is a suffix of SQ2 and |v| > p|xy|, the second occurrence of v
in all of the five cases ends with (xy)p. The first occurrence of v ends with either
of the suffixes: (a) xy, (b) y2xy1 where y = y1y2 or, (c) x2yx1 where x = x1x2.
According to Lemma 4, the primitive root of v is a conjugate of xy. Thus, the
relations obtained in cases (b) and (c) imply that two conjugates of xy are equal.
This contradicts Lemma 3, so we discard the words with these two cases. The
possible structures of v2 for case (a) are verified in Table 1 where |v| = |sq| is
the only valid case. The structure of v2 in this case implies x ∈ B(xy).

(xy)p x (xy)p (xy)p x (xy)p

1 2 3 4 5

Fig. 1. Starting location of v2 in SQ2 for p1 = p2 = p

Table 1. First occurrences of v ending with xy in SQ2

Case No. Possible structure of base v Condition Remark

1 v = (xy)q(x)(xy)p(xy)s = (xy)s(xy)q(x)(xy)p p > q > s > 0 xy = yx

2 v = x(xy)p(xy)q = (xy)qx(xy)p p > q > 0 xy = yx

3 v = x2(xy)
p(xy)q = (xy)p−q(x1x2)(xy)

p p, q, p − q > 0 xy = yx

4 v = (xy)p(xy)s = (xy)p−sx(xy)p p, s, p − s > 0 xy = yx

5 v = y2(xy)
p = x(xy)p p > 0 x ∈ B(xy)

Lemma 7. Given an FS-double square SQ2 with p1 > p2 > 1 that ends with v2

where |SQ| < 2|v|. Then, |v| = |SQ|.
Proof. Assume p2 = p and p1 = p + q for some positive integers p, q. In Fig. 2,
we marked all the possible starting locations of v2 in SQ2. Here, we show that
every case leads to the relation xy = yx and the relation contradicts Lemma 3.
Similar to Lemma 6, the first occurrence of v ends with either x2yx1, y2xy1 or
xy assuming x = x1x2, y = y1y2. We discard the first two types of squares since
occurrences of v′s violate Lemma 3. The first occurrence of v that starts at one
of the marked locations 1, 3, 5, 7 or 8 never ends with xy. If v2 begins at location
2, 4 or 6, then equating the structures of two v′s always gives xy = yx.
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(xy)q (xy)p x (xy)q (xy)p (xy)p x (xy)p

1 2 3 4 5 6 7 8 9

Fig. 2. Beginning of v2 in SQ2 where p1 > p2

Theorem 1 (Bordered FS Square). Let SQ2 = s.a be an FS-double square,
where s ∈ Σ+ and a ∈ Σ. Then, |DS(SQ2)| − |DS(s)| = 2 iff SQ2 ends with a
conjugate of sq2.

Proof. (If) The statement follows from Lemma 6 and 7.
(Only if) The last letter of every FS-double square is a part of the FS-square
itself. We assume SQ2 ends with a conjugate of sq2, say v2. So, xy in Eq. (1)
ends with x. Thus, we can write xy = y′x for y′ ∈ Σ+ and |y′| = |y|. Now,
the reverse of SQ2 is a word that starts with two distinct squares, and these
two squares satisfy the premise of Lemma 1. Thus, v2 is a unique square and
removing the last letter of SQ2 removes two distinct squares.

SQ2 = (xy)p(x)(xy)p−1 xy.(xy)p(x)(xy)p
︸ ︷︷ ︸

y′v2

(1)

4 Consecutive Bordered FS Squares

A primitive square can be extended with its prefix to get consecutive equal
length squares [4,6]. With the same approach, it is possible to add letters to an
FS-double square and get a sequence of consecutive FS-double squares. The next
lemmata explain the characteristics of consecutive squares of equal lengths.

Lemma 8. If u2 and v2 be two equal length squares that start at adjacent loca-
tions, then u and v are conjugates and u2 is appended by its prefix.

Proof. Let a letter ‘a’ be the prefix of u2 that ends before v2 such that u = au′.
Similarly, v = v′b assuming v ends with a letter ‘b’. So, the first occurrences of
u, v give ub = av. This shows that u is followed by ‘b’ in u2 implying u = bu′.
Hence, a = b. Also, we get au′a = av′a implying u = au′, v = u′a.

Lemma 9. Let w begins with two equal length consecutive FS-double squares,
SQ2 followed by SQ

2
. Then, the respective shorter squares, sq2 and sq2, are

conjugates.

Proof. We know, SQ = (xy)p1(x)(xy)p2 and sq = (xy)p1(x). Assume SQ starts
with a letter ‘a’ such that x = ax′. We get SQ = (x′ya)p1(x′a)(x′ya)p2 (see
Lemmas 6 and 8). The structure of SQ implies sq = (x′ya)p1(x′a).

Lemma 10 (Consecutive FS-double square). Let SQ2 be an FS-double
square with p1 = p2 = p. Then, the maximum number of consecutive FS-double
squares of length 2|SQ| is min(|LCP (xy, yx)|, |x|).
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Proof. The shorter squares of consecutive FS-double squares are conjugates
(refer Lemma 9). Further, Lemma8 and the highlighted part (after sq2) in
Eq. (2) show that k = |LCP (xy, yx)|. However, sq2 reappears if SQ2 is
extended with more than |x| letters violating Lemma 1. Thus, a word can have
min(|LCP (xy, yx)|, |x|) consecutive FS-double squares.

SQ2 = (xy)p(x)(xy)px(yx)p(xy)p (2)

Lemma 11. Let w begins with k equal length consecutive bordered FS squares.
If the first bordered FS square is SQ2 = (xyxxy)2, then k = |LCP (x, y)|+1 and
|y| > |x|.
Proof. Given SQ2 = (xyxxy)2 and Theorem 1 shows that x ∈ B(xy). So, either
x is a suffix of y or |y| < |x|. Let SQ2 and SQ

2
be two consecutive bordered

FS squares. Assume x begins with a letter ‘a’ such that x = ax′. So, SQ =
(x′ya)(x′a)(x′ya) and x′a ∈ B(x′ya). The latter condition holds provided y
begins with ‘a’ (refer the prefix in bold in the structure of SQ) and ya ends with
x′a. Thus, the value of |LCP (x, y)| must be at-least one to get two consecutive
bordered FS squares. Similarly, the conjugate of SQ

2
adjacent to it is bordered

FS square if |LCP (x, y)| = 2. Thus, k consecutive bordered FS squares are
possible when |LCP (x, y)| = k − 1. In case of |y| < |x|, the two bases SQ and
SQ are non-primitive. This contradicts Lemma 2. So, |y| > |x|.
We compute the maximum number of equal length consecutive bordered FS
squares in Theorem 2. The proof of the theorem is based on the properties of
bordered FS squares that are explained in Lemma11.

Theorem 2. Let w contains k equal length consecutive bordered FS squares.
Then, 11k < |w|.
Proof. The value of k

|w| is maximum if k consecutive bordered FS squares are
at the beginning of w and kth bordered FS square is a suffix of w. So, assume
w begins with an FS-double square SQ2 followed by k − 1 consecutive bordered
FS squares of size 2|SQ|. From Eq. (3), the value of k

|w| is maximum for p = 1.
Lemma 10 shows that SQ2 can be extended with at-most |x|−1 letters to obtain
consecutive FS-double squares. Here, k = |x| and SQ = (xy′x)(x)(xy′x) where
y′ is some non-empty word (refer Lemma 11). The ratio is computed below.

k

|w| =
|x|

2((p + 1)|x| + p|y|) + |x| − 1
<

|x|
2(5|x| + 2|y′|) + |x| − 1

<
1
11

(3)
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Abstract. In this paper, we prove that for any k ≥ 3, there exist
infinitely many minimal asymmetric k-uniform hypergraphs. This is in a
striking contrast to k = 2, where it has been proved recently that there
are exactly 18 minimal asymmetric graphs.

We also determine, for every k ≥ 1, the minimum size of an asymmet-
ric k-uniform hypergraph.

Keywords: Asymmetric hypergraphs · k-uniform hypergraphs ·
Automorphism

1 Introduction

Let us start with graphs: A graph G is called asymmetric if it does not have
a non-identical automorphism. Any non-asymmetric graph is also called sym-
metric graph. A graph G is called minimal asymmetric if G is asymmetric and
every non-trivial induced subgraph of G is symmetric. (Here G′ is a non-trivial
subgraph of G if G′ is a subgraph of G and 1 < |V (G′)| < |V (G)|.) In this paper
all graphs are finite.

It is a folkloristic result that most graphs are asymmetric. In fact, as shown
by Erdős and Rényi [2] most graphs on large sets are asymmetric in a very
strong sense. The paper [2] contains many extremal results (and problems),
which motivated further research on extremal properties of asymmetric graphs,
see e.g. [5,10]. This has been also studied in the context of the reconstruction
conjecture [4,6].

The second author bravely conjectured long time ago that there are only
finitely many minimal asymmetric graphs, see e.g. [1]. Partial results were given
in [7,8,11]. Recently this conjecture has been confirmed by Pascal Schweitzer
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the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No 810115 – Dynasnet).
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and Patrick Schweitzer [9] (the list of 18 minimal asymmetric graphs has been
isolated in [7]):

Theorem 1 [9]. There are exactly 18 minimal asymmetric undirected graphs
up to isomorphism.

An involution of a graph G is any non-identical automorphism φ for which
φ◦φ is an identity. It has been proved in [9] that all minimal asymmetric graphs
are in fact minimal involution-free graphs.

In this paper, we consider analogous questions for k-graphs (or k-uniform
hypergraphs), i.e. pairs (X,M ) where M ⊆ (

X
k

)
= {A ⊆ X; |A| = k}. Induced

subhypergraphs, asymmetric hypergraphs and minimal asymmetric hypergraphs
are defined analogously as for graphs. Instead of hypergraphs we often speak just
about k-graphs.

We prove two results related to minimal asymmetric k-graphs.
Denote by n(k) the minimum number of vertices of an asymmetric k-graph.

Theorem 2. n(2) = 6, n(3) = k + 3, n(k) = k + 2 for k ≥ 4.

Theorem 2 implies the existence of small minimal asymmetric k-graphs. Our
second result disproves analogous minimality conjecture (i.e. a result analogous
to Theorem 1) for k-graphs.

Theorem 3. For every integer k ≥ 3, there exist infinitely many k-graphs that
are minimal asymmetric.

In fact we prove the following stronger statement.

Theorem 4. For every integer k ≥ 3, there exist infinitely many k-graphs
(X,M ) such that

1. (X,M ) is asymmetric.
2. If (X ′,M ′) is a k-subgraph of (X,M ) with at least two vertices, then (X ′,M ′)

is symmetric.

Such k-graphs we call strongly minimal asymmetric. So strongly minimal
asymmetric k-graphs do not contain any non-trivial (not necessarily induced)
asymmetric k-subgraph. Note that some of the minimal asymmetric graphs fail
to be strongly minimal.

Theorem 4 is proved by constructing a sequence of strongly minimal asym-
metric k-graphs. We have two different constructions of increasing strength: In
Sect. 3 we give a construction with all vertex degrees bounded by 3. A stronger
construction which yields minimal asymmetric k-graphs (k ≥ 6) with respect to
involutions is not presented due to space limitations (see the arXiv version [3]).



On Asymmetric Hypergraphs 499

2 The Proof of Theorem2

Lemma 1. For k ≥ 3, we have n(k) ≥ k + 2.

Proof. Assume that there exists an asymmetric k-graph (X,M ) with |X| =
k + 1. If for each vertex u ∈ X, there is a hyperedge M ∈ M such that u /∈ M ,
then M =

(
X
k

)
, which is symmetric. Otherwise there exists u, v ∈ X such that

{u, v} ⊂ M for every edge M ∈ M , or there exist u′, v′ ∈ X and M1,M2 ∈ M
such that u′ /∈ M1 and v′ /∈ M2. In the former case, there is an automorphism
φ of (X,M ) such that φ(u) = v and φ(v) = u. In the later case there is an
automorphism φ of (X,M ) such that φ(u′) = v′ and φ(v′) = u′. In both cases
we have a contradiction. ��

For a k-graph G = (X,M ), the set-complement of G is defined as a (|X|−k)-
graph Ḡ = (X, M̄ ) = (X, {X − M |M ∈ M }). Denote by Aut(G) the set of all
the automorphisms of G and thus we have Aut(G) = Aut(Ḡ). We define the
degree of a vertex v in a k-graph G as dG(v) = |{M ∈ M ; v ∈ M}|.
Lemma 2. For k ≥ 4, we have n(k) = k + 2.

(a) (b)

Fig. 1. The asymmetric graphs (a) X1, (b) Tk+2

Proof. First, we construct an asymmetric k-graph (X,M ) with |X| = k + 2 for
each k ≥ 4. Examples of such graphs X1 and Tk+2 are depicted in Fig. 1.

For k = 4, take the set-complement of X1. For every k ≥ 5, take the set-
complement of Tk+2. It is known that X1 and Tk+2 (k ≥ 5) are asymmetric.
Thus set-complements X̄1 and T̄k+2 (k ≥ 5) are also asymmetric k-graphs.

Let H be any of these set-complements. H is minimum as any non-trivial
induced sub-k-graph H ′ ⊂ H has no more than k +1 elements. Thus we can use
Lemma 1. ��

The case k = 3 (i.e. proof of n(3) = 6) is a (rather lenghthy) case analysis
which has to be ommitted here.
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3 Proofs of Theorem4

In this section, we outline two different proofs of Theorem4.
Firstly, we give a proof with bounded degrees.
For k ≥ 3, t ≥ k − 2, we define the following k-graphs.

Gk,t = (Xk,t,Ek,t),
Xk,t = {vi; i ∈ [tk]} ∪ {ui; i ∈ [tk]} ∪ {vj

i ; i ∈ [tk], j ∈ [k − 3]}},
Ek,t = {Ei; i ∈ [tk]} ∪ {Ei,j ; j ∈ [k − 3], i = j + sk, s ∈ {0, 1, 2, · · · , t −

1}}, where Ei = {vi, ui, v
1
i , v

2
i , · · · , vk−3

i , vi+1}, Ei,j = {vj
i , v

j
i+1, · · · , vj

i+k−1}
and ytk+t = yt for every y ∈ {v, u, v1, v2, · · · , vk−3}.

G◦
k,t = {Xk,t ∪ {x},Ek,t ∪ {E}}, where E = {v1, u1, v

1
1 , v

2
1 , · · · , vk−3

1 , x}.

The k-graphs Gk,t and G◦
k,t are schematically depicted in Fig. 2.

(a) (b)

Fig. 2. The k-graphs (a) Gk,t, (b) G
◦
k,t

The proof of Theorem4 follows from the following two lemmas. The proofs
are ommitted due to space limitations:

Lemma 3. 1) The k-graph Gk,t is symmetric and every non-identical automor-
phism φ of Gk satisfies that there exists an integer c (which does not divide
tk) such that for every i ∈ [tk], j = i + c − 
 i+c

tk �, φ(Ei) = Ej (i.e. for each
vertex v ∈ Ei, φ(v) ∈ Ej).

2) The only automorphism of Gk,t which leaves the set E1 invariant (i.e. for
each vertex v ∈ E1, φ(v) ∈ E1) is the identity.

3) Every non-trivial k-subgraph of Gk,t containing the vertices in E1 has a non-
identical automorphism φ which leaves the set E1 invariant.

Lemma 4. 1) The k-graph G◦
k,t is asymmetric.

2) Every non-trivial k-subgraph of G◦
k,t has a non-identical automorphism.
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It is easy to observe that the k-graphs G◦
k,t have vertex degree at most 3.

However note that in this construction, some of the strongly minimal asymmetric
k-graphs G◦

k,t are not minimal involution-free. In fact, when k ≥ 3, t ≥ k − 2 is
odd, the k-subgraph G◦

k,t − x of G◦
k,t is involution-free. However the most inter-

esting form of Theorem 4 relates to minimal asymmetric graphs for involutions.
This can be stated as follows:

Theorem 5. For every k ≥ 6, there exist infinitely many k-graphs (X,M ) such
that

1. (X,M ) is asymmetric.
2. If (X ′,M ′) is a k-subgraph of (X,M ) with at least two vertices, then (X ′,M ′)

has an involution.

This is more involved and the proof is omitted due to space limitations.

4 Concluding Remarks

Of course one can define the notion of asymmetric graph also for directed graphs,
binary relations and k-nary relations R ⊆ Xk.

One has then the following analogy of Theorem1: There are exactly 19 min-
imal asymmetric binary relations. (These are symmetric orientations of 18 mini-
mal asymmetric (undirected) graphs and the single arc graph ({0, 1}, {(0, 1)}).)

Here is a companion problem about extremal asymmetric oriented graphs
and one of the original motivation of the problem [1]:

Let G = (V,E) be an asymmetric graph with at least two vertices. We say
that G is critical asymmetric if for every x ∈ V the graph G−x = (V \{x}, {e ∈
E;x /∈ e}) fails to be asymmetric. An oriented graph is a relation not containing
two opposite arcs.
Conjecture 1. Let G be an oriented asymmetric graph. Then it fails to be
critical asymmetric. Explicitly: For every oriented asymmetric graph G, there
exists x ∈ V (G) such that G − x is asymmetric.

Wójcik [11] proved that a critical oriented asymmetric graph has to contain
a directed cycle.

This research indicates a particular role of binary structures with respect to
automorphism and asymmetry. While for higher arities there are infinitely many
minimal asymmetric graphs, for binary structures this may be always finite. We
formulate this in graph language as follows:

Let L be a finite set of colours. An L-graph is a finite graph where each edge
gets one of the colours from L. Automorphisms are defined as colour preserving
automorphisms. The following is a problem which generalizes the problem (and
its solution [7]) which motivated the present note:
Conjecture 2. For every finite L, there are only finitely many minimal asym-
metric L-graphs.

This is open for any |L| > 1. By results of this paper we know that for
non-binary languages the analogous problem has negative solution.
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Matoušek, J., Thomas, R., Valtr, P. (eds.) Topics in Discrete Mathematics, pp. 613–
627. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/3-540-33700-
8 30
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11. Wójcik, P.: On automorphisms of digraphs without symmetric cycles. Comment.
Math. Univ. Carolin. 37(3), 457–467 (1996)

https://doi.org/10.1007/3-540-33700-8_30
https://doi.org/10.1007/3-540-33700-8_30
http://arxiv.org/abs/2105.10031


On Multicolour Ramsey Numbers and
Subset-Colouring of Hypergraphs

Bruno Jartoux1, Chaya Keller2, Shakhar Smorodinsky3,
and Yelena Yuditsky4(B)

1 Department of Computer Science, Ben-Gurion University of the Negev,
Be’er-Sheva, Israel

jartoux@post.bgu.ac.il
2 Department of Computer Science, Ariel University, Ariel, Israel

chayak@ariel.ac.il
3 Department of Mathematics, Ben-Gurion University of the Negev,

Be’er-Sheva, Israel
shakhar@math.bgu.ac.il

4 Département de Mathématique, Université libre de Bruxelles, Brussels, Belgium
Yelena.Yuditsky@ulb.ac.be

Abstract. For n ≥ s > r ≥ 1 and k ≥ 2, write n → (s)rk if every k-
colouring of all r-subsets of an n-element set has a monochromatic subset
of size s. Improving upon previous results by Axenovich et al. (Discrete
Mathematics, 2014) and Erdős et al. (Combinatorial set theory, 1984) we
show that

if r ≥ 3 and n � (s)rk then 2n � (s + 1)r+1
k+3.

This yields an improvement for some of the known lower bounds on
multicolour hypergraph Ramsey numbers.

Given a hypergraph H = (V, E), we consider the Ramsey-like problem
of colouring all r-subsets of V such that no hyperedge of size ≥ r + 1
is monochromatic. We give upper and lower bounds on the number of
colours necessary in terms of the chromatic number χ(H). We show that
this number is O(log(r−1)(rχ(H)) + r).

Keywords: Ramsey numbers · Hypergraph colouring · Stepping-up
lemma

1 Introduction

Even though Ramsey theory has attracted much attention from its inception
almost a century ago, many questions remain elusive.

An extended preprint is available at https://arxiv.org/abs/2103.12627.
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Notations. For any natural number n ∈ N, put �n� = {0, . . . , n−1}. For any set
S and k ∈ N, the set [S]k is {T ⊂ S : |T | = k}, i.e., the set of all k-subsets of S.
We write P(S) for the powerset of S. If f : A → B is a function and X ⊂ A, we
write f "X = {f(x) : x ∈ X} instead of the more usual (outside set theory) but
ambiguous f(X). Throughout the paper, log is the binary logarithm (although
the choice of base is inconsequential in most places).

Definition 1 (Rado’s arrow notation). Given k ≥ 2, n > r ≥ 1, an r-
subset k-colouring of �n� is a function f : [�n�]r → �k�. A set X ⊂ �n� is
monochromatic (under f , in the colour i ∈ �k�) if [X]r ⊂ f−1(i), or equiva-
lently f " [X]r = {i}. For k integers (si)i∈�k� all satisfying n ≥ si > r, we
write

n → (s0, . . . , sk−1)r,

or more concisely n → (si)ri∈�k�, to mean that for every f : [�n�]r → �k� there
is a colour i ∈ �k� in which a subset of �n� of size si is monochromatic. When
s0 = s1 = · · · = sk−1 = s (the diagonal case) this is further abbreviated to
n → (s)rk.

The logical negation of any arrow relation is written similarly, replacing →
with �.

Let n ≥ s > r ≥ 1 and k ≥ 2. The (multicolour, hypergraph, diagonal)
Ramsey number1 rk(s; r) is the smallest n for which n → (s)rk. The fact that
these numbers exist is Ramsey’s 1930 theorem [11].

1.1 Previous Results

The values of rk(s; r) remain unknown except for several simple cases; in fact,
for r ≥ 3 only r2(4; 3) = 13 is known [9]. See the book by Graham, Rothschild
and Spencer [8] for background on finite Ramsey theory and the survey by
Radziszowski [10] for recent bounds.

Some lower bounds on Ramsey numbers are obtained through stepping-up
lemmata such as the following:

if r ≥ 3 and n � (s)rk then 2n
� (s + 1)r+1

k′ , (1)

for any k′ ≥ 2k + 2r − 4 [1] or k′ ≥ k + 2r + 2r−1 − 4 [7, Lemma 24.1].

2 A Stepping-Up Lemma

Our first and main result is that (1) still holds with k′ ≥ k + η(r), with the
number of additional colours

η(r) =

⎧
⎪⎨

⎪⎩

1 if r = 3,
2 if r > 3 is even,
3 if r > 3 is odd.

(2)

1 Different authors use different notations: cf. rk(K
r
s ) [1], rr(s; k) [3], Rk(s; r) [10].
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(This improvement also extends to transfinite cardinals, strengthening results
of Erdős et al. [6, Chap. 24] in certain ranges of parameters.)

Our main result is as follows.

Theorem 1. Fix integers k ≥ 2 and n > r ≥ 3 and k integers (si)i∈�k� all
satisfying n ≥ si ≥ r + 1.

If n � (si)ri∈�k� then 2n
� (s0 + 1, . . . , sk−1 + 1, r + 2, . . . , r + 2

︸ ︷︷ ︸
η(r) terms,
each r + 2

)r+1,

with the integer η(r) ≤ 3 defined above in (2).

To prove Theorem 1 let k, n, r, (si)i∈�k� be as in the hypotheses. In particular,
there exists fr : [�n�]r → �k� under which, for every i ∈ �k�, no set of size si is
monochromatic in colour i. We use fr to construct fr+1 : [�2n�]r+1 → �k+ η(r)�
under which, for every i ∈ �k�, no set of size si + 1 is monochromatic in colour
i, and no set of size r + 2 is monochromatic in either of the additional colours
k, k + 1, . . . , k + η(r) − 1.

2.1 Description of the Colouring

Splitting Indices. For every natural number n, let d(n) ⊂ N be the unique finite
set of integers such that n =

∑
i∈d(n) 2

i. In other words, d(n) is the set of non-zero
indices in the binary representation of n. Given a finite set S of natural numbers,
|S| ≥ 2, its first splitting index is s(S) = max{i ∈ N : ∃x, y ∈ S : i ∈ d(x)\d(y)}.
That is, s(S) is the index of the most significant digit where two elements in S
differ in their binary representation.

The first splitting index partitions S into two disjoint, non-empty subsets
S0 = {x ∈ S : s(S) /∈ d(x)} and S1 = {x ∈ S : s(S) ∈ d(x)} with maxS0 <
minS1. This partition is unique and exists as soon as |S| ≥ 2; we denote it by
S = (S0 | S1).

Caterpillars and Types. Consider the following process: if S = (L|R) and |L| = 1
recurse on R, or if |R| = 1 recurse on L. This process either ends at a singleton,
and we say that S is a caterpillar, or at (L |R) with |L|, |R| ≥ 2, and we say that
the type t(S) = (|L|, |R|). Thus each finite set of natural numbers that is not a
caterpillar has a type in N×N. For example, t({0, 1, 2, 3, 4, 8}) = t({0, 1, 2, 3}) =
(2, 2). Let C denote the set of all caterpillars.

To each caterpillar S ∈ C we associate δ(S) = {s({x, y}) : x, y ∈ S, x �= y}.
For example, the reader may check that δ({1, 3, 6, 31}) = {1, 2, 4}.

Description. We can now define our colouring fr+1 : [�2n�]r+1 → �k + 3�. Let
S ∈ [�2n�]r+1.
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If S ∈ C then δ(S) ∈ [�n�]r, and we let fr+1(S) = fr(δ(S)) ∈ �k�. Otherwise
S /∈ C has a type t(S) = (p, q) with p, q ≥ 2 and p + q ≤ r + 1, and we let

fr+1(S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k if p + q = r + 1, p even,

k + 1 if p + q < r + 1, p + q even,

0 if p + q = r + 1, p odd and r odd,

k + 2 if p + q = r + 1, p odd and r even,

1 if p + q < r + 1, p + q odd.

Claim. For every i ∈ �k�, no set of size si is monochromatic in colour i under
fr+1.

3 Lower Bounds on Multicolour Hypergraph Ramsey
Numbers

Erdős, Hajnal and Rado obtained the first bounds on rk(s; r) [5,6]. Here the
tower functions are defined by twr1(x) = x and twrr+1(x) = 2twrr(x).

Theorem 2 (Erdős, Hajnal and Rado). Let r ≥ 2. There exists s0(r) such
that:

– For any s > s0, we have rk(s; r) ≥ twrr(c′k),
– For any s > r, we have rk(s; r) ≤ twrr(ck log k),

where c′ = c′(s, r) and c = c(s, r) ≤ 3(s − r).

Unlike the upper bound, the lower bound holds only for sufficiently large values
of s. Duffus, Leffman and Rödl [4] gave a tower-function lower bound for all
s ≥ r + 1, but said bound, twrr−1(c′′k), is significantly weaker than the bound
of Theorem 2. Conlon, Fox, and Sudakov [3] proved that the lower bound of
Theorem 2 holds whenever s ≥ 3r. Axenovich et al. [1] matched the lower bound
of Theorem 2 for all s > r, but only for sufficiently large k.

Theorem 3 (Axenovich et al.). For any s > r ≥ 2 and any k > r2r, we
have

rk(s; r) > twrr

(
k

2r

)

.

In particular the results of [3] give rk(s; 3) ≥ 22
c′k

for some constant c′ whenever
s ≥ 9, and the results of [1] give rk(4; 3) > 22

k/8
for all k > 24.

As a consequence of Theorem 1, we prove that the lower bound of Theorem 2
holds for values of k much closer to r than in Theorem 3, and also improve the
constant inside the tower function.
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Corollary 1. There are absolute constants α 	 1.678 and β such that for r = 3
and any k ≥ 4 or for r ≥ 4 and k ≥ 
5r/2� − 5, we have:

rk(r + 1; r) > twrr

(
α

2
·
(

k − 5r
2

)

+ β

)

, (3)

and for r = 3 and any k ≥ 2 or for r ≥ 4 and k ≥ 
5r/2� − 7,

rk(r + 2; r) > twrr

(

α ·
(

k − 5r
2

)

+ β

)

. (4)

To the best of our knowledge, the current best lower bound for rk(5; 3) (for
large k) is twr3(k+O(1)) [2]. Compare with our rk(5; 3) > twr3(1.678k+O(1)).

4 Subset Colouring in Hypergraphs

Our second result addresses a hypergraph colouring problem. Given a hyper-
graph H and r ∈ N, we are interested in the smallest number k = k(H; r) for
which there exists a k-colouring of all r-subsets of vertices without any monochro-
matic hyperedge of size ≥ r + 1. Note that if all the hyperedges in H are of size
at least 2, then k(H; 1) = χ(H), the standard vertex chromatic number of H
(i.e. the least number of colours in a colouring of V in which no hyperedge is
monochromatic).

In his work on simplicial complexes, Sarkaria related this quantity (as the
weak r-th chromatic number) to embeddability properties [12–14].

We show that for any H, the number of colours k(H; r) is not much larger
than the corresponding number of colours for the complete (r+1)-uniform hyper-
graph with the same vertex chromatic number, that is, k(K(r+1)

rχ(H); r). Hence find-
ing k(n, r) = max{k(H; r) : χ(H) = n} for any n, r, is essentially equivalent to
the problem of finding the Ramsey number rk′(r+1; r) for an appropriate value
of k′.

Theorem 4. For any positive integers n and r,

k(K(r+1)
rn ; r) ≤ k(n, r) ≤ k(K(r+1)

rn ; r) + 5. (5)

Together with our lower bound on multicolour Ramsey numbers and the
previously known upper bound, we obtain:

Ω

(
log(r−1)(rn)

log(r)(rn)

)

< k(n, r) < O
(
log(r−1)(rn) + r

)
.

Theorem 4 mostly follows from Theorem 5 below.
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Theorem 5. Let r, k ≥ 2 and let n be such that n � (r+1)rk. If the hypergraph
(V,E) admits a vertex-colouring V → �n� under which no hyperedge of size
≥ r+1 is monochromatic, then there is an r-subset colouring [V ]r → �k+ f(r)�
such that no hyperedge of size ≥ r + 1 is monochromatic. Here

f(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if r = 2,
3 if r = 3,
4 if r ≥ 4 and r + 1 is prime,
5 otherwise.
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József Balogh1, Felix Christian Clemen1(B), and Bernard Lidický2
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Abstract. A well-known conjecture by Erdős states that every triangle-
free graph on n vertices can be made bipartite by removing at most n2/25
edges. This conjecture was known for graphs with edge density at least
0.4 and edge density at most 0.172. Here, we will extend the edge density
for which this conjecture is true; we prove the conjecture for graphs with
edge density at most 0.2486 and for graphs with edge density at least
0.3197. Further, we prove that every triangle-free graph can be made
bipartite by removing at most n2/23.5 edges improving the previously
best bound of n2/18.

Keywords: Extremal combinatorics · Graph theory · Triangle-free
graphs

1 Introduction

How many edges need to be removed from a triangle-free graph on n vertices
to make it bipartite? Erdős [2] asked this question and conjectured that n2/25
edges would always be sufficient. This would be sharp as the balanced blow-up of
C5 with class sizes n/5 needs at least n2/25 edges removed to be made bipartite.
For a graph G, denote D2(G) the minimum number of edges which have to be
removed to make G bipartite.

Conjecture 1. (Erdős [2]) For every triangle-free graph G on n vertices

D2(G) ≤ n2

25
. (1)

An elementary probabilistic argument (see e.g. [5]) resolves Conjecture 1 for
graphs G with at most 2/25n2 edges: Take a random bipartition where each
vertex, independently from each other, is placed with probability 1/2 in one
of the two classes. The expected number of edges inside both of the classes is
|E(G)|/2. Thus, there exists a bipartition with at most |E(G)|/2 edges inside the
classes. Note that this argument does not use that G is triangle-free. Erdős, Fau-
dree, Pach and Spencer [4] slightly improved this random cut argument utilizing
triangle-freeness.
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Theorem 1 (Erdős, Faudree, Pach, Spencer [4]). For every triangle-free
graph with n vertices and m edges

D2(G) ≤ min
{

m

2
− 2m(2m2 − n3)

n2(n2 − 2m)
,m − 4m2

n2

}
≤ n2

18
. (2)

This confirmed Conjecture 1 for graphs with roughly at most 0.086n2 edges and
graphs with at least n2/5 edges. It also gives the current best bound on the
Erdős problem; one can remove at most n2/18 edges to make a triangle-free
graph bipartite. We improve this result and extend the range for which Erdős’
conjecture is true.

Theorem 2. Let G be a triangle-free graph on n vertices. Then, for n large
enough,

(a) D2(G) ≤ n2

23.5 ,

(b) D2(G) ≤ n2

25 when |E(G)| ≥ 0.3197
(
n
2

)
,

(c) D2(G) ≤ n2

25 when |E(G)| ≤ 0.2486
(
n
2

)
.

Sudakov studied a related question; he [12] determined the maximum number
D2(G) for K4-free graph G. Recently, Hu, Lidický, Martins, Norin and Volec [7]
announced a proof for determining the maximum number D2(G) for n-vertex K6-
free graphs G. They use the method of flag algebras, developed by Razborov [11],
to describe local cuts which leads to the solution. We use a similar idea of
encoding local cuts.

Our proof of Theorem 2 also extends on the ideas from Erdős, Faudree, Pach,
Spencer [4]. While their proof uses two different ways of finding bipartitions, our
proof uses many ways. In order to handle a large amount of bipartitions, we use
the method of flag algebras. It relies on formulating a problem as a semidefinite
program and then using a computer to solve it.

We will handle graphs with edge density close to 2/5 (the density of the
conjectured extremal example) separately. In this range we use standard tech-
niques from extremal combinatorics, such as a minimum degree removing algo-
rithm. Additionally, we will make use of the following result by Erdős, Győri
and Simonovits [5].

A C5-blow-up H is a graph with vertex set V (H) = A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5

and edges xy ∈ E(H) iff x ∈ Ai and y ∈ Ai+1 for some i ∈ [5], where A6 := A1.

Theorem 3 (Erdős, Győri and Simonovits [5]). Let G be a K3-free graph
on n vertices with at least n2/5 edges. Then there exists an unbalanced blow-up
of C5 H such that

D2(G) ≤ D2(H). (3)

Note that this result recently was extended to cliques by Korándi, Roberts and
Scott [8] confirming a conjecture from [1].

There is a local version of Conjecture 1.
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Conjecture 2. (Erdős [2]) Every triangle-free graph on n vertices contains a
vertex set of size �n/2� that spans at most n2/50 edges.

Erdős [3] offered $250 for the first solution of this conjecture. As pointed out by
Krivelevich [9], for regular graphs Conjecture 2 would imply Conjecture 1. We
are wondering if similar methods we are using could be used to make progress
towards proving Conjecture 2.

This extended abstract is organized as follows. In Sect. 2.1 we present our
setup for flag algebras to give a sketch of the proof of the main part of Theorem 2.
In Sect. 2.2 we sketch the proof of Conjecture 1 in the edge range slightly below
edge density 2/5.

2 Proof Sketch of Theorem 2

2.1 Setup for Flag Algebras

Towards contradiction assume that there is a triangle-free graph G on n vertices
with D2(G) ≥ n2/25. This means that whenever we create a bipartition of V (G),
then it has at least n2/25 edges inside the two parts. Using flag algebras, one
can define bipartitions and count edges inside of the two parts.

For example, in a graph G one could fix a vertex v and define the bipartition
of G as V (G) = N(v)∪N(v). If one uses this bipartition, all edges in N(v) need
to be removed while N(v) is independent since G is triangle-free. This can be
written in flag algebras in the following way

(4)

where the depicted graph represents its expected induced density when
unordered pair of black vertices is picked uniformly at random while the yel-
low vertex is fixed. In proving Theorem 1, Erdős, Faudree, Pach, Spencer [4]
used this cut and the following cut. Let uv be two adjacent vertices. Let N(u)
be one part and N(v) be the other part. The remaining vertices in N(u) ∪ N(v)
are partitioned uniformly at random with probability 1/2 to either of the two
parts. Since G is K3-free, one obtains the following equation for flag algebras

(5)

This idea of defining cuts can be generalized by rooting on more vertices.
Pick a copy of a labeled graph H on k vertices in G. This will partition the rest
of V (G) into classes X1, . . . , X2k based on the adjacencies to the fixed k vertices.
Now we construct a bipartition of V (G) into sets A and B. For each class Xi fix
pi ∈ [0, 1] and for each vertex in Xi we put it to A with probability pi and to
put it to B otherwise, i.e., with probability (1 − pi).
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This creates a bipartition and it is possible to count the edges that need to
be removed using flag algebras. We can include all cuts rooted on at most 4
vertices and C5.

1. |V (H)| ≤ 2 and pi ∈ {0, 0.5, 1}, gives 10 cuts,
2. |V (H)| ≤ 3 and pi ∈ {0, 0.5, 1}, gives 108 cuts,
3. |V (H)| = 4 and pi ∈ {0, 1}, gives 953 cuts,
4. H = C5, and pi ∈ {0, 1}, gives 125 cuts.

However, for k ≥ 6, there are more possible inequalities than computers can
reasonably handle. Therefore we have to decide on which we want to use. We
will present two particular important ones here.

Norin and Ru Sun [10] observed that the Clebsch graph, see Fig. 1, is par-
ticularly unfriendly when applying local cuts. We add cuts that are specially
designed to cut the Clebsch graph. The root is a 4-cycle v0v1v2v3v0 and two
additional vertices v4 and v5 with edges v4v0 and v1v5. Although this is a bipar-
tite graph, we create a bipartition as if v1, v2, v5 and v1, v3, v4 were in the same
parts respectively.

Fig. 1. Clebsch graph and its cutting

Another inequality that made a big difference is an extension of (5). While (5)
partitions neighbors of the chosen two vertices very well, the non-neighbors can
be partitioned better. In particular, we pick another K2 in the non-neighborhood
and do the same partition once more. This results in rooting on K2 ∪ K2 ∪ K2.

Our flag algebra proof cannot deal with the density range close to 2/5, i.e.
close to the conjectured extremal example. In the following section we explain
how this density range can be handled.

2.2 High Density Range

In this section we provide a sketch of the proof of Erdős’ conjecture for graphs
with edge density slightly below 2/5.
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Theorem 4. There exists n0 such that for all n ≥ n0 the following holds. Let
G be an n-vertex triangle-free graph with |E(G)| ≥ (0.2 − ε)n2 edges, where
ε = 10−8. Then D2(G) ≤ n2/25.

Let Gn := G be a triangle-free graph on n vertices with |E(G)| ≥ (0.2 − ε)n2

edges. Assume, towards contradiction, D2(G) > n2/25. We iteratively remove a
vertex of minimum degree from G. This means Gi = Gi+1 − x, where deg(x) =
δ(Gi+1). We stop this algorithm if δ(Gi) > 3

8 i or after �5 · 10−7n� rounds. Let
m be the stage in which the algorithm stops.

Lemma 1. We have

D2(G) ≤ 3
32

(n2 − m2 + n − m) + D2(Gm). (6)

This Lemma can be verified by taking a smallest cut of Gm and adding the
remaining vertices to the set where they have smaller neighborhood in.

Depending on when the algorithm stops we perform a different analysis. If
the algorithm stops “late”, then Gm has edge density of slightly more than 2/5.
By Lemma 1, we can assume that

D2(Gm) ≥ n2

25
− 3

32
(n2 − m2 + n − m). (7)

By Theorem 3 we can find a C5-blow-up H on m vertices with classes A1, A2, A3,
A4, A5 satisfying |E(H)| ≥ |E(Gm)| and D2(H) ≥ D2(Gm). In fact, it can also
be assumed that the class sizes of H are symmetric, that is |A2| = |A5| + o(n)
and |A3| = |A4| + o(n). A straight-forward optimization of the number of edges
in H gives a contradiction with |E(H)| ≥ |E(Gm)|.

If the algorithm stops early, we make use of a result by Häggkvist [6] who
proved that every triangle-free graph on n vertices with minimum degree more
than 3n/8 is a subgraph of a C5-blow-up. Having this particular structure, it
can be calculated that D2(G) ≤ n2/25, we omit the detailed computations.

2.3 Concluding Remarks

Note that Theorem 2 only holds for n ≥ n0 for some n0 large enough. However,
this is not an actual restriction towards proving Conjecture 1. Assuming Conjec-
ture 1 were to hold for all n ≥ n0, then it actually holds for all n by the following
argument. Let G be a triangle-free graph on n < n0 vertices and assume, towards
contradiction, that D2(G) > n2/25. Consider the blow-up G′ of G, where each
vertex is replaced by an independent set of size �n0

n 	 and two vertices in different
sets are made adjacent iff the corresponding vertices in G were adjacent. This
new graph G′ is still triangle-free and has at least n0 vertices. A result by Erdős,
Győri and Simonovits [5, Theorem 7] gives

D2(G′)(�n0
n 	n)2 ≥ D2(G)

n2
>

1
25

, (8)
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contradicting that we assumed Conjecture 1 holds for all n ≥ n0 and therefore
in particular for G′.

We believe Theorem 2 can be improved by adding more cuts to the calculation
and possibly lead to the proof of Conjecture 1. Adding more cuts lead to marginal
improvements so far. We are looking at other cuts as well but the time needed to
perform the calculations grows quickly and it may take a while until a significant
improvement is obtained.
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Abstract. The metric dimension dim(G) of a graph G is the minimum
cardinality of a subset S of vertices of G such that each vertex of G
is uniquely determined by its distances to S. The zero forcing number
Z(G) of G is the minimum cardinality of a subset S of black vertices of
G such that all the vertices will be turned black after applying finitely
many times the following rule: a non black vertex is turned black if it is
the only non black neighbor of a black vertex .

Eroh, Kang and Yi conjectured in 2017 that, for every graph G,
dim(G) ≤ Z(G) + c(G) where c(G) is the cycle-rank of G. We prove
a weaker version of the conjecture: dim(G) ≤ Z(G) + 6c(G) holds for
any graph. We also prove that the conjecture is true for cactus graphs.

Keywords: Graph theory · Metric dimension · Zero-forcing number

1 Introduction

A zero forcing set is a subset of vertices colored in black which colors the whole
vertex set in black when we iteratively apply the following rule: A vertex is
colored black if it is the unique non black neighbor of a black vertex (see Fig. 1
for an illustration). The zero forcing number of a graph is the minimal size of a
zero forcing set, denoted by Z(G). The zero forcing number has been introduced
to bound the rank of some families of adjacency matrices in [3]. Deciding if the
zero forcing number of a graph is at most k is NP-complete [7].

Fig. 1. Iterations of the change color rule. On the graph on the left, the three black
vertices form a zero forcing set.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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A resolving set of a graph G is a subset S of vertices of G such that any vertex
of G is identified by its distances to the vertices of S. In Fig. 2, the set {A,B} is a
resolving set of the graph because all the vertices have a different distance vector
to {A,B}, so the knowledge of the distance to A and B identifies uniquely a
vertex. The metric dimension of G, denoted by dim(G), is the minimum size of
a resolving set. A vertex w resolves a pair of vertices (u, v) if d(w, u) �= d(w, v).
A set of vertices S resolves a set W if S resolves all the pairs of W . A set S
is a resolving set if S resolves V . This notion has been introduced by Slater [2]
for trees and by Harary and Melter [4] for graphs. Since its introduction the
notion became an important notion in graph theory and has been widely studied.
Resolving sets and related notions have many applications e.g. the navigation of
a robot in an Euclidean space [5]. Determining the minimum size of a resolving
set is NP-complete [6] even restricted to planar graphs [8].

Fig. 2. The black vertices form a resolving set. For each vertex x the vector next to x,
(d(A, x), d(B, x)) is unique.

In general, the gap between metric dimension and zero-forcing number can
be arbitrarily large. But for some restricted sparse graph classes like paths or
cycles, both the parameters and optimal sets are the same. Eroh, Kang and
Yi have started a systematic comparison between them in [1]. They proved that
dim(G) ≤ Z(G) when G is a tree and that dim(G) ≤ Z(G)+1 when G is unicyclic
(G is a tree plus an edge). On the other hand, dim(G) can be arbitrarily larger
than the zero forcing number when the number of cycles increases. They made
the following conjecture:

Conjecture 1 (Cycle-rank conjecture [1]). Every connected graph G satisfies
dim(G) ≤ Z(G) + c(G) where c(G) is the minimal number of edges that have to
be removed from G to obtain a tree.

Conjecture 1 is tight for infinitely many graphs. Consider the graph Gc com-
posed of a path of 3 vertices plus c cycles of size 4 intersecting in the central
vertex of the path (see Fig. 3). Then dim(Gc) = 2c + 1 and Z(Gc) = c + 1.
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Fig. 3. Tightness of Conjecture 1

Towards this conjecture, Eroh et al. proved in [1] that dim(G) ≤ Z(G)+2c(G)
when G has no even cycles.

In this paper, we prove Conjecture 1 in several particular cases and prove a
weaker version of the conjecture in general. We first give a proof of Conjecture 1
for unicyclic graphs which is much shorter and simpler than the one of [1]. We
also show that dim(G) ≤ Z(G) when the unique cycle of G has odd length.
We then prove Conjecture 1 for cactus graphs (graphs with edge-disjoint cycles)
which generalizes the result for unicyclic graphs (and in particular prove the
conjecture for graphs without even cycles, improving the result of [1]).

We finally prove a weaker version of Conjecture 1 which is our main result:

Theorem 1. For every graph G of cycle-rank at least one, we have

dim(G) ≤ Z(G) + 6c(G) − 5.

As far as we know, it is the first upper bound of dim(G) of the form Z(G) +
f(c(G)). One can wonder if the dependency on c(G) can be removed and if
dim(G) can be upper bounded by a function of Z(G) only. The answer is nega-
tive: for Gn a path of length n connected to a universal vertex, Z(Gn) = 2 for
any n ≥ 2 but dim(Gn) is a linear function in n.

In our proof of Theorem 1, feedback vertex sets (subsets of vertices whose
deletion leave an acyclic graph) are playing an important role. Actually, our
result is even stronger since we prove that

dim(G) ≤ Z(G) + min{5c(G) + τ(G); 3c(G) + 5τ(G)} − 5

where τ(G) is the size of a minimum feedback vertex set in G.
We raise the following question, which is a weakening of Conjecture 1:

Conjecture 2. There exists a function f such that, for any connected graph G,
dim(G) ≤ Z(G) + c(G) + f(τ(G)) where c(G) is the minimal number of edges
that have to be removed from G to obtain a tree and τ(G) is a minimum size of
a feedback vertex set of G.
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2 Cactus Graphs

For acyclic graphs, the following holds:

Lemma 1. [1] For every tree T , dim(T ) ≤ Z(T ).

Conjecture 1 is proved in [1] for unicyclic graphs. We give a shorter proof of this
result. The main ingredient of our proof is the following lemma.

Lemma 2. Let G = (V,E) be a graph which is not a tree and C ⊆ V a cycle in
this graph. Then, there exists an edge e ∈ E(C) such that Z(G − e) ≤ Z(G).

Proof. Let Z ⊆ V be a minimum zero forcing set of G. For e = uv ∈ E we say
e is a forcing edge if at some step u is black and v is the only white neighbor of
u. Let F ⊆ E be the forcing edges in a sequence starting from Z.

We claim that at least one edge of C is not in F . Indeed, if u forces v then
u is turned black before v. So the first vertex w of the cycle that is turned
black cannot be turned black because of an edge of C. Let w1, w2 be the two
neighbors of w on C. The vertex w can force at most one of its two neighbors.
So without loss of generality, w2 is not forced by w and is turned black after
w. So removing the edge e = ww2 leaves a forcing set of G − e where the same
sequence of applications of the color change rule turns G into black. Therefore
Z(G − e) ≤ Z(G).

Lemma 1 together with the following lemma will allow us to prove Conjec-
ture 1 for unicyclic graphs.

Lemma 3. [1] Let G = (V,E) be a graph and C be a cycle of G and let
V (C) = {v0, v1, ...vk} be the vertices of C. Denote by Gi = (Vi, Ei) the con-
nected component of the vertex ui in G \ E(C). If, for every i �= j, Vi ∩ Vj = ∅
then for any e ∈ E(C), dim(G) ≤ dim(G − e) + 1.

Corollary 1. Let G be a unicyclic graph. Then, dim(G) ≤ Z(G) + 1.

Proof. A unicyclic graph contains exactly one cycle C. Let e be an edge of C
such that Z(G − e) ≤ Z(G). Such an edge exists by Lemma 2. By Lemma 3,
dim(G) ≤ dim(G − e) + 1. Moreover, by Lemma 1, dim(G − e) ≤ Z(G − e)
since G−e is a tree. The combination of these three inequalities gives dim(G) ≤
Z(G) + 1.

We also give a more precise result in the case where the cycle has odd length.

Theorem 2. Let G be a unicyclic graph, if its cycle has odd length, then
dim(G) ≤ Z(G).

This result is tight and cannot be extended to unicyclic graphs with an even
cycle as shown in Fig. 4.

We prove Conjecture 1 is true for cactus graph. We prove this result by
induction on the cycle-rank using similar arguments than for the unicyclic case.
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Fig. 4. Black vertices form respectively a metric basis and a minimal zero forcing set.

Theorem 3. Let G = (V,E) be a cactus graph. Then, dim(G) ≤ c(G) + Z(G).

It improves a result of [1] that ensures that dim(G) ≤ Z(G) + 2c(G) for G
with no even cycles. Indeed graphs without even cycles are cactus graphs since
if a graph contains two odd cycles that share one edge, it also contains an even
cycle.

3 General Bound

We sketch the proof of the following theorem that implies Theorem 1 since
τ(G) ≤ c(G).

Theorem 4. Let G = (V,E) be a graph of cycle rank at least one. Then,

dim(G) ≤ Z(G) + min(5c(G) + τ(G) − 5, 3c(G) + 5τ(G) − 5).

The main idea to prove Theorem 4 is to remove a small number of vertices
M of G in order to guarantee that G\M is a forest where each tree is connected
to at most two vertices of M . To construct M , we start with a minimal feedback
vertex set X of G and add few vertices to X in the following way. For each
connected component Gi of G\X, let Ni be the subset of vertices of Gi adjacent
to X in G. Let Ti be the minimal subtree of Gi containing Ni. Let Mi be the
set of vertices of Ti of degree at least three and let M =

⋃
i(Mi) ∪ X. Then, any

component of G \ M is connected to M by at most two edges.
Then, to construct a resolving set of G, the idea is to take M and resolving

sets in all the trees of G \ M . However, this is not enough to identify in which
connected component of G \ M a vertex belongs to. For that, we need a set of
vertices P constructed as follows. Let H be a connected component of G\M with
exactly two edges between H and G\H. Let x and y be the two endpoints of the
edges between H and M . Let ρH be a vertex on the middle of the path between
x and y in H. In other words, ρH must satisfy |dH(x, ρH) − dH(y, ρH)| ≤ 1. Let
P be the union of the vertices ρH .

We can now find a resolving set in G. For each connected component Gi of
G \ X, let Si be a metric basis of Gi.

Lemma 4. The set S = M ∪ P ∪ (
⋃

i Si) is a resolving set of G. In particular,
dim(G) ≤ |M | +

∑
i |Si| + |P |.
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The size of P and M are bounded by functions of c(G) and τ(G):

Lemma 5. We have |P | ≤ c(G) + |M | − 1 and |M | ≤ min{2c(G) − 2; c(G) +
2τ(G) − 2}.
Proof. We give the proof for the first inequality. The second one is proved in a
similar way. Let K be the multigraph (with loops) with vertex set M and an edge
between two vertices x and y if and only if there exists in G \ M a connected
component H adjacent to x and y. One can easily notice that in K there is
an edge xy with multiplicity k if and only if in G \ M there are k connected
components attached to x and y. This give an isomorphism between P and the
edges of K. Since K is a minor of G, c(K) ≤ c(G). As K contains |M | vertices
it contains at most c(G) + |M | − 1 edges. So we have |P | ≤ c(G) + |M | − 1.

Finally, we prove that a zero-forcing set of G is almost a zero-forcing set in
each tree of G \ M . Using Lemma 1, it leads to the following bound:

Lemma 6. |⋃i Si| − τ(G) ≤ Z(G).

Proof. Let Z be a minimal zero forcing set for G. Let F be a sequence of forcings
that turns G into black starting from Z. Let Z ′ be the set of vertices turned black
in F because of a vertex of X. Note that |Z ′| ≤ τ(G). Let Gi be a connected
component of G[V \ X]. We claim that (Z ∪ Z ′) ∩ V (Gi) is a zero-forcing set of
Gi. So, by Lemma 1, we have |SGi

| ≤ |Z ′ ∩ Gi|. When we consider the union
over all the components, it gives |Z ∪ Z ′| ≥ ∪i|SGi

|. Since Z ′ has size at most
τ(G), we have Z(G) ≥ |⋃i SGi

| − τ(G).

Theorem 4 is a direct consequence of Lemmas 4, 5 and 6.
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Abstract. A basic result in graph theory says that any n-vertex tour-
nament with in- and out-degrees larger than n−2

4
contains a Hamilton

cycle, and this is tight. In 1990, Bollobás and Häggkvist significantly
extended this by showing that for any fixed k and ε > 0, and sufficiently
large n, all tournaments with degrees at least n

4
+ εn contain the k-th

power of a Hamilton cycle. Given this, it is natural to ask for a more
accurate error term in the degree condition.

We show that if the degrees are at least n
4

+ cn1−1/�k/2� for some con-
stant c = c(k), then the tournament contains the k-th power of a Hamil-
ton cycle. We also present a construction which, modulo a well-known
conjecture on Turán numbers for complete bipartite graphs, shows that
the error term must be of order at least n1−1/�(k−1)/2�, which matches
our upper bound for all even k. For k = 3, we improve the lower bound
by constructing tournaments with degrees n

4
+ Ω(n1/5) and no cube of

a Hamilton cycle.

1 Introduction

Hamiltonicity is one of the most central notions in graph theory, and it has been
extensively studied by numerous researchers. The problem of deciding Hamil-
tonicity of a graph is NP-complete, but there are many important results which
derive sufficient conditions for this property. One of them is the classical Dirac’s
theorem [4], which states that every graph with minimum degree at least n

2 con-
tains a Hamilton cycle, and that this is tight. Another natural and more general
property is to contain the k-th power of a Hamilton cycle. Extending Dirac’s
theorem and confirming a conjecture of Seymour [13], Komlós, Sárközy and Sze-
merédi [10] determined the minimum degree condition for a graph to contain
the k-th power of a Hamilton cycle. They proved that for large n, a minimum
degree of kn

k+1 is enough.
Clearly, one can ask similar questions for directed graphs (see [12]), which

tend to be more difficult. In 1979, Thomassen [14] asked the question of deter-
mining the minimum semidegree δ0(G) (that is, the minimum of all in- and out-
degrees) which implies the existence of a Hamilton cycle in an oriented graph
G. This was only answered thirty years later by Keevash, Kühn and Osthus
[8], who showed that δ0(G) ≥ 3n−4

8 forces a Hamilton cycle, which is tight by
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a construction of Häggkvist [7]. Already the problem for squares of Hamilton
cycles is not well understood. Treglown [15] showed that δ0(G) ≥ 5n

12 is neces-
sary, which was subsequently improved by DeBiasio (personal communication).
He showed that δ0(G) ≥ 3n

7 − 1 is needed, using a slightly unbalanced blowup
of the Paley tournament on seven vertices. It would be interesting to determine,
even asymptotically, the optimal value of δ0(G) which implies the existence of
the square of a Hamilton cycle. For clarity, by the k-th power of the directed
path Pl = v0 . . . vl we mean the directed graph P k

l on the same vertex set with
an edge vivj if and only if i < j ≤ i + k. The k-th power of a directed cycle is
similarly defined.

Due to the difficulty of these problems in general, it is natural to ask what
happens in tournaments. It is a very basic result that every tournament with
minimum semidegree n−2

4 has a Hamilton cycle and that this is best possible.
By how much do we need to increase the degrees in order to guarantee a k-th
power? The remarkable result by Bollobás and Häggkvist [2] given below says
that a little bit is already enough.

Theorem 1. For every ε > 0 and k, there exists a n0 = n0(ε, k) such that every
tournament T on n ≥ n0 vertices with δ0(T ) ≥ n

4 + εn contains the k-th power
of a Hamilton cycle.

This theorem suggests two questions. For fixed ε, how large should n0 be as a
function of k and what is the correct order of magnitude of the additive error
term in the degree condition? The proof of Bollobás and Häggkvist needs n0 to
grow faster than t(�log2(1/ε)� + 2), where t is a tower-type function defined by
letting t(0) = 2k and t(i + 1) = 1

2 (2ε)−t(i). It also does not give any additional
information about the error term, apart from showing that it is o(n).

In this paper we address both these questions, resolving the first one and
obtaining nearly tight bounds for the second one. We start with the additive
error in the degree condition.

Theorem 2. There exists a constant c = c(k) > 0 such that any tournament T
on n vertices with δ0(T ) ≥ n

4 +cn1−1/�k/2� contains the k-th power of a Hamilton
cycle.

In particular, we show that a constant error term is enough for the tournament
to contain the square of a Hamilton cycle.

It appears that this theorem is nearly tight. This follows from a somewhat
surprising connection between our question and the Turán problem for complete
bipartite graphs. Indeed, suppose that v is a vertex in some tournament T and
is such that the bipartite graph with parts N−(v) and N+(v) (respectively, the
in and out-neighbourhoods of v) generated by the edges in T which are directed
from N−(v) to N+(v) is Kr,r-free. Then, it is easy to see that T cannot contain
the 2r-th power of a Hamilton cycle. Using this observation, the next result
gives a construction of tournaments with large minimum semidegree which do
not contain the k-th power of a Hamilton cycle. As usual, for a fixed graph H
we let ex(n,H) denote the maximal number of edges in a n-vertex graph which
does not contain H as a subgraph.
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Theorem 3. Let k ≥ 2 and r = �k−1
2 �. For all sufficiently large n = 3 (mod 4),

there exists a n-vertex tournament T with δ0(T ) ≥ n+1
4 + Ω

(
ex(n,Kr,r)

n

)
which

does not contain the k-th power of a Hamilton cycle.

Modulo a well-known conjecture on Turán numbers for complete bipartite
graphs, this result implies that in addition to n/4, the semidegree bound must
have an additive term of order at least n1−1/�(k−1)/2�, which matches the bound
in Theorem 2 for all even k. Indeed, the celebrated result of Kövári, Sós and
Turán [11], says that ex(n,Kr,r) = O(n2−1/r) and this estimate is widely believed
to be tight. Moreover, for unbalanced complete bipartite graphs, it was proven
by Alon, Kollár, Rónyai and Szabó [1,9] that ex(n,Kr,s) = Ω(n2−1/r) when
s > (r − 1)!. It is also known that ex(n,Kr,r) = Ω(n2−1/r) for r = 2, 3 [3,6],
which corresponds to k = 4, 6 in our problem.

For odd values of k there is still a small gap between the results in Theorems 2
and 3, which would be interesting to bridge. We make a step in this direction,
showing that for k = 3, the constant error term in Theorem 3 can be improved
to a power of n.

Theorem 4. For infinitely many values of n, there exists a tournament on n
vertices with minimum semidegree n

4 +Ω(n1/5) and no cube of a Hamilton cycle.

In the next section, we will give a sketch of the proof of the main theorem
and in the final section, we will make some concluding remarks.

2 Proof Outline of Theorem 2

The main idea is based on a dichotomy that occurs in the structure of tour-
naments. We say that a tournament T is δ-cut-dense if any balanced partition
(X,Y ) of V (T ) is such that −→e (X,Y ) ≥ δ|X||Y |. Note in particular, that every
tournament with minimum semidegree at least n

4 + δn
2 is δ-cut-dense.

We will first consider tournaments which are cut-dense and show that they
contain the k-th power of a Hamilton cycle even if the minimum semidegree is
slightly below n

4 . After this, we consider a tournament which has a balanced cut
that is sparse in one direction. An overview of what we do for each case is given
below.

Cut-Dense Tournaments

The following theorem deals with the case of cut-dense tournaments and also
provides an answer to the first question raised in the introduction. It shows that
the Bollobás-Häggkvist theorem holds already when n is exponential in k.

Theorem 5. Let k ≥ 2, δ > 0 and n ≥ (
3
δ

)1000k. Then, any δ-cut-dense tour-
nament T such that δ0(T ) ≥ n

4 − δn
200 has the k-th power of a Hamilton cycle.
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As noted above, tournaments with minimum semidegree at least n
4 + εn are 2ε-

cut-dense. Thus, this result implies that we can take n0 = ε−O(k) in Theorem 1.
On the other hand, using the observation mentioned before Theorem 3, it is not
difficult to see that this behaviour of n0 is optimal.

The first idea in the proof of the above theorem is to partition the tourna-
ment into so-called chains C, which are ordered structures with the following
properties:

– Robustness. C is such that even if we delete some of its vertices which are
somewhat sparsely distributed in C, we get a structure which contains the
k-th power of a path.

– Large neighborhoods. The first k vertices in C have a large common in-
neighborhood, and the last k have a large common out-neighborhood.

In order to find this partition into chains we use the recent result in [5], which
shows that one can always find the k-th power of a long path in a tournament.
We apply this iteratively, until a certain constant number of vertices is left. By
using the semidegree condition, we also absorb these vertices into other chains.
Call the obtained (disjoint) chains C = {C1, . . . , Ct}. To finish the proof, we
“link” the chains, by always connecting the last k vertices of Ci to the first k
vertices of Ci+1 (and Ct to C1) with k-th powers of paths. In order to create
the links between the chains, we are free to use the internal vertices of the other
chains in C, but in such a way that the robustness property ensures that after
deleting the used vertices from the chains in C, we still have k-th powers of paths.
This gives the desired k-th power of a Hamilton cycle.

The rough idea behind how two chains are linked is the following. Suppose
we want to link Ci to Ci+1. We consider the set of vertices A which are in some
sense reachable by k-th powers of paths starting at the set of last k-vertices in
Ci; similarly, we consider the set B of vertices which can reach the first k vertices
of Ci+1. Because of the minimum semidegree condition, A and B will be of sizes
close to n/2. Then we consider two cases. Either the intersection S = A ∩ B
is large, and thus we can find a connection between Ci and Ci+1 which passes
through S; or S is small, and then we can use the δ-cut-dense property of T ,
to find a connection between A and B, and consequently establish a connection
between Ci and Ci+1.

Tournaments with a Sparse Cut

In the second part of the proof, we consider the case of T having a balanced
cut which is sparse in one of the directions, that is, the number of edges in this
direction is o(n2). The first thing to do is to convert this cut into sets A,B,R
which partition the vertex set and are such that |R| = o(n) and both tournaments
T [A], T [B] are almost regular, of size n

2 − o(n) and such that −→e (A,B) = o(n2).
Let’s first consider the case when R = ∅ and |A| = |B| = n

2 in order to
give a rough outline of some ideas. As a preliminary, note that since the average
out-degree in T [A] is at most n

4 , we have that −→e (A,B) ≥ c|A|n1−1/�k/2� =
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Ω(n2−1/�k/2�). Naturally, the first step is to find a way to cross from A to B
and from B to A. Specifically, we will want to find transitive subtournaments
A1, A2 ⊆ A and B1, B2 ⊆ B of size k such that (A1, B1) forms a k-th power of a
path of size 2k starting at A1 and ending at B1 and (B2, A2) forms a k-th power
starting at B2 and ending at A2. Now, since the density from B to A is 1− o(1),
finding A2 and B2 is not difficult. The bottleneck of the problem is in finding
A1 and B1, which is heavily dependent on the number of edges going from A to
B.

Indeed, assume that such A1 and B1 exist and define A′
1 to be the set of

last �k/2� vertices of A1 and B′
1 the set of first �k/2� vertices of B1. Then,

we have that every vertex in A′
1 dominates every vertex in B′

1, which creates a
K�k/2�,�k/2� in the graph formed by the edges going from A to B. Therefore, in
general, to find such sets A1 and B1 we would need the number of edges from
A to B to be at least the Turán number of K�k/2�,�k/2�, which is believed to
be Θ(n2−1/�k/2�). In fact, we are able to show that this number of edges is also
sufficient to find A1, B1 as above.

After constructing the sets A1, A2, B1, B2, it is simple to finish. Recall that
T [A] and T [B] are almost regular. Therefore, T [A\(A1∪A2)] and T [B\(B1∪B2)]
are 1

4 -cut-dense tournaments and so, by Theorem 5 they contain spanning chains
CA and CB . We can link the end of the chain CA to A1, then link B1 to the
start of CB , the end of CB to B2 and finally link A2 to the start of CA. This
produces the k-th power of a Hamilton cycle.

The general case builds on the above approach. The main goal will be to cover
the set R with a collection B of o(n) many vertex-disjoint structures, which we
will call bridges. Informally, a bridge is the k-th power of a path which intersects
A ∪ B in at most 4k vertices, such that the sets of first k vertices and last k are
contained entirely in A or B. We will say that a bridge goes from B to A, for
example, if the first k vertices are in B and the last k are in A. We also want these
first k to have large common in-neighborhood in B (so that it can be linked later
to the rest of B) and the last k to have large common out-neighborhood in A.
Finally, we will crucially need the collection B to satisfy the following property.
The number of bridges going from A to B is positive and equal to the number
of them going from B to A. Indeed, note that if this is the case, we can then
construct the k-th power of a Hamilton cycle by using these bridges to cover
R and then using the almost regularity of both T [A] and T [B] to link them to
the rest of the vertices in A and B, like we did in the case R = ∅. Since the
number of bridges going from A to B is positive, we are able to cross from A to
B at least once, and further, since we have the same number of bridges going
from B to A, we are able to cross the same number of times from B to A. The
construction of bridges is delicate and requires several ideas.

3 Concluding Remarks

We resolved, for all even k, the question of determining the minimum semidegree
condition which ensures that a tournament contains the k-th power of a Hamilton
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cycle. For odd k, although we made a very significant improvement on what was
previously known, there is still a small gap between our bounds and it would be
very interesting to close it. Here, the first open case is k = 3. In this case, our
Theorem 4 gives a lower bound of order n1/5 on the additive error term. On the
other hand, the upper bound in this case, coming from Theorem 2, has order√

n and it is not clear what the truth should be.
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10. Komlós, J., Sárközy, G.N., Szemerédi, E.: Proof of the Seymour conjecture for large
graphs. Ann. Comb. 2, 43–60 (1998)
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Abstract. We study structural conditions in dense graphs that guar-
antee the existence of vertex-spanning substructures such as Hamilton
cycles. Recall that every Hamiltonian graph is connected, has an almost
perfect matching and, excluding the bipartite case, contains an odd cycle.
Our main result states that any large enough graph that robustly satis-
fies these properties must already be Hamiltonian. Moreover, the same
holds for powers of cycles and the bandwidth setting subject to natural
generalizations of connectivity, matchings and odd cycles.

This solves the embedding problem that underlies multiple lines of
research on sufficient conditions for Hamiltonicity. As an application, we
recover several old and new results, and prove versions of the Bandwidth
Theorem under Ore-type degree conditions, Pósa-type degree conditions,
deficiency-type conditions and for balanced partite graphs.

Keywords: Hamilton cycles · Bandwidth · Degree conditions

1 Introduction

An old question in discrete mathematics is to understand the presence of certain
vertex-spanning substructures in graphs, such as Hamilton cycles. Since the cor-
responding decision problems are often computationally intractable, we do not
expect to find ‘simple’ characterisations of the graphs that contain a particu-
lar spanning structure. The extremal approach to these questions has therefore
focused on easily-verifiable sufficient conditions. A classic example in this direc-
tion is Dirac’s theorem (1952), which states that every graph on n vertices and
minimum degree at least n/2 contains a Hamilton cycle. Since its inception,
Dirac’s theorem has been extended in numerous ways [7,15]. Here we propose a
general framework that covers many of these extensions and also leads to new
ones.

It is natural to ask whether the assumptions of Dirac’s theorem can be weak-
ened. A simple example shows that a minimum degree of n/2 is best-possible.
However, as it turns out, not all of the vertices need to have this degree to ensure
that the graph is Hamiltonian. A well-known theorem of Ore (1960) states that
a graph on n vertices contains a Hamilton cycle if deg(u) + deg(v) � n for all
non-adjacent vertices u and v. Pósa (1962) extended this by showing that a
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graph on n vertices contains a Hamilton cycle provided that its degree sequence
d1 � . . . � dn satisfies di � i + 1 for all i � n/2.1 Later on, Chvátal (1972) gave
a complete characterisation of the degree sequences that guarantee Hamiltonic-
ity. More recently, conditions such as local density together with large minimum
degree or inseparability [5,18] and deficiency [16] have been investigated.

Another way to generalize Dirac’s theorem is to strengthen its outcome by
embedding more complex substructures, such as clique factors and powers of
cycles. A k-clique factor in a graph G consists of pairwise disjoint k-cliques
(complete graphs on k vertices) that cover all vertices of G (the case k = 2
corresponds to perfect matchings). It was conjectured by Erdős and proved by
Hajnal and Szemerédi [8] that graphs on n vertices with n divisible by k and
minimum degree at least (k − 1)n/k have a k-clique factor. Similarly, the notion
of cycles can be generalised in terms of their powers. The kth power (or square
when k = 2) of a graph G is obtained from G by joining any two vertices of
distance at most k. Pósa (for k = 3) and Seymour (for k � 3) conjectured that
any graph on n vertices with minimum degree at least (k − 1)n/k contains the
(k−1)th power of a Hamilton cycle. This was confirmed by Komlós, Sárközy and
Szemerédi [12–14] for sufficiently large n. While powers of cycles might appear
to be a somewhat particular class of graphs, their embedding turned out to
be an important milestone with regards to embedding the much richer class of
k-colourable graphs with bounded degree and sublinear bandwidth (as defined
below). This last result is known as the Bandwidth Theorem and was proved by
Böttcher, Schacht and Taraz [3].

In the recent years there has been a surge of activity in combining the above
detailed weaker assumptions with stronger outcomes, such as obtaining powers of
cycles under Pósa-type degree conditions. (We will survey some of these results
later.) Many of these results are proved using similar embedding techniques, but
differ in their structural analysis. One might therefore wonder whether there is a
common structural base that ‘sits between’ all of these assumptions and (varia-
tions of) Hamiltonicity. The purpose of this article is to propose such a structural
base, which we call a Hamilton framework. Our main result states that graphs
that have a robust Hamilton framework are (in a strong sense) Hamiltonian. As
an application we can easily recover many of the above mentioned contributions
and also prove several new results.

2 Results

To provide an overview of our outcomes, we introduce some further notation.
A graph H admits an ordering with bandwidth at most b if the vertices of H
can be labelled with {1, . . . , n} such that |i − j| � b for all edges ij. A β-block
of {1, . . . , n} is an interval of the type {(i − 1)�βn� + 1, . . . , i�βn�} for some
1 � i � β−1. A (k + 1)-colouring χ : {1, . . . , n} → {0, 1, . . . , k} is said to be
(z, β)-zero-free if, among every z consecutive β-blocks, at most one of them uses
1 Indeed, a quick exercise shows that every graph satisfying the conditions of Ore’s

theorem also satisfies the conditions of Pósa’s theorem.
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the colour 0. Intuitively, in those (k + 1)-colourings there is one colour that is
used only in few vertices. A graph G on n vertices is (z, β,Δ, k)-Hamiltonian if
G contains every graph H on n vertices with Δ(H) � Δ which admit an ordering
with bandwidth at most βn and a (z, β)-zero-free (k + 1)-colouring. Note that
(z, β,Δ, k)-Hamiltonicity yields the existence of (k − 1)th powers of Hamilton
cycles for Δ = 2k, z = 1, any β > 0, and n large enough.

2.1 Ore-Type Conditions

Kierstead and Kostochka [9] gave optimal Ore-type conditions which ensure the
existence of k-clique factors. For sufficiently large graphs, Châu [4] proved a
generalisation of Ore’s theorem for squares of Hamilton cycles.

Châu [4] also conjectured generalizations of this for all k � 4. The following
result proves this conjecture in a strong sense. The result is tight up to the μn
term, as witnessed by k-colourable Turán graphs.
Theorem 1 (Bandwidth theorem for Ore-type conditions). For k,Δ ∈ N

and μ > 0 there are z, β > 0 and n0 ∈ N with the following property. Let G be a
graph on n � n0 vertices with deg(x) + deg(y) � 2k−1

k n + μn for all xy /∈ E(G).
Then G is (z, β,Δ, k)-Hamiltonian.

2.2 Pósa-Type Conditions

Balogh, Kostochka and Treglown [1,2] raised the question of which type of degree
conditions would guarantee the existence of clique factors and powers of Hamil-
ton cycles. Treglown [19] proved a Pósa-type theorem for clique factors under
optimal conditions. Balogh, Kostochka and Treglown [1] asked whether one could
improve the degree sequences which ensure the existence of (k − 1)th power of a
Hamilton cycle, by allowing a non-negligible number of vertices to have degree
less than (k−1)n/k. Staden and Treglown [17] answered this question for k = 3,
showing that the same Pósa-type conditions that guarantee the existence of a
triangle factor also imply the existence of a squared Hamilton cycle. They also
conjectured that this can be extended to all k � 4 [17].

We confirm these conjectures in a strong sense by showing them in the band-
width setting. Here, Knox and Treglown [11] had previously proved a bandwidth
theorem for degree sequences in the case of k = 2. Staden and Treglown [17] con-
jectured such a result could be true for k = 3, and Treglown [20] extended the
conjecture to all k � 3, so our results confirm these conjectures as well.

Theorem 2 (Bandwidth theorem for Pósa-type conditions). For k,Δ ∈
N and μ > 0 there are z, β > 0 and n0 ∈ N with the following property. Let G be
a graph with degree sequence d1, . . . , dn such that di � k−2

k n + i + μn for every
i � n/k. Then G is (z, β,Δ, k)-Hamiltonian.

We remark that the degree conditions are essentially tight: by adapting exam-
ples of Balogh, Kostochka and Treglown [1], we can show Theorem 2 becomes
false if μn is replaced by o(n1/2). Finally, let us mention that (unlike the case for
Hamilton cycles), the conditions of Theorem 2 and of Theorem 1 do not imply
each other, as constructions show.
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2.3 Other Results

We also show bandwidth theorems under conditions of local density and insep-
arability. This recovers the work of Ebsen, Maesaka, Reiher, Schacht and
Schülke [5], which itself extended work of Staden and Treglown [18]. We also con-
sider so-called deficiency conditions introduced by Nenadov, Sudakov and Wag-
ner [16]. We show that, up to a lower order term, the conditions ensuring k-clique
factors yield already (k −1)th powers of Hamilton cycles, and the corresponding
bandwidth versions. This extends results of Freschi, Hyde and Treglown [6] for
k = 2. Finally, we generalise the results of Keevash and Mycroft [10] on degree
conditions which yield k-clique factors in balanced partite graphs, again showing
that the same conditions yield already the corresponding powers of cycles and
bandwidth versions.

3 Hamilton Frameworks

To motivate the following definitions in a simpler setting, consider a non-bipartite
Hamiltonian graph G. Then G must be connected and have a perfect frac-
tional matching. Since G is not bipartite, it must also contain an odd cycle.
We call a graph that satisfies these properties a Hamilton framework. Is this
property equivalent to Hamiltonicity? The answer is no, as witnessed by two
vertex-disjoint odd cycles joined by a single edge. On the other hand, the prop-
erties of this graph are somewhat fragile. Deleting few vertices or few edges
(at every vertex) quickly leads to a disconnected graph, or a graph without an
almost perfect matching. To exclude examples like this, we could restrict our
attention to Hamilton frameworks are robust against such operations and ask
again whether this already guarantees the existence of a Hamilton cycle. As it
turns out, this the case. In fact, the same conditions allow us to even embed
2-colourable graphs H of bounded bandwidth and maximum degree into robust
Hamilton frameworks G. If G has in addition a triangle, this can be extended
to graphs H with suitable zero-free 3-colourings. (Note that this condition is
necessary at least in some sense, since such graphs might contain triangles.)
This discussion corresponds to the case k = 2. In the following we introduce the
terminology to formalize these ideas for k � 3.

The general definition of Hamilton frameworks takes place in the hypergraph
setting. A k-graph is a hypergraph where every edge has exactly k vertices. A
tight (Hamilton) cycle C ⊆ G is a (spanning) subgraph whose vertices can be
cyclically ordered such that its edges consist precisely of all k consecutive vertices
under this ordering. For an (ordinary) graph G, we write Kk(G) to mean the
k-clique k-graph of G, which is the k-graph with vertex set V (G) and a k-edge
X whenever X is a k-clique in G. Observe that G contains the (k − 1)th power
of a Hamilton cycle if and only if Kk(H) contains a tight Hamilton cycle.

A (closed) tight walk in a k-graph G is a (cyclically) ordered multi-set of
vertices such that every interval of k consecutive vertices forms an edge of G.
Note that vertices and edges are allowed to be visited more than once in a
closed tight walk. The length of a tight walk is its number of vertices. Finally,
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a subgraph C of a k-graph G is tightly connected, if there is a closed tight walk
that contains all edges of C.

A matching M in a k-graph G is a subgraph of vertex disjoint edges. We can
define a linear programming relaxation of this as follows. A perfect fractional
matching is an edge weighting w : E(G) → {0, 1} such that

∑
e�v w(e) = 1 for

every vertex v ∈ V (H).

Definition 1 (Hamilton framework). A pair (G,H), where G is a graph
and H ⊆ Kk(G), is a zero-free Hamilton framework, if

(F1) H is contained in a tightly connected subgraph of Kk(G), (connected)
(F2) H admits a perfect fractional matching, (matchable)
(F3) H contains a (k + 1)-clique. (zero-freeness)

Next, we formalize the notion of robustness. For two k-graphs G1 = (V1, E1)
and G2 = (V2, E2), we write G1 ∩ G2 = (V1 ∩ V2, E1 ∩ E2).

Definition 2 (Robustness). A Hamilton framework (G,H) on n vertices is
μ-robust, if the following holds. For every subgraph G′ ⊆ G with

(i) degG′(v) � degG(v) − μn for all v ∈ V (G′) and
(ii) |V (G′)| � (1 − μ)n,

the pair (G′,H ∩ Kk(G′)) is a zero-free Hamilton framework.

Finally, we call an edge e in a k-graph a second neighbour of a vertex v /∈ e,
if there is an edge f with v ∈ f and |e ∩ f | = k − 1. Now we can state our main
result from which the outcomes in Sect. 2 can be derived.

Theorem 3. For k,Δ ∈ N and μ > 0 there are β, z > 0 and n0 ∈ N with the
following property. Let G be a graph on n � n0 vertices. Suppose there exists a k-
uniform μ-robust zero-free Hamilton framework (G,H), and suppose that every
vertex of G has at least μnk second neighbours in H. Then G is (z, β,Δ, k)-
Hamiltonian.

We also obtain results under weaker assumptions on G, e.g. if Kk(G) contains
walks of length coprime to k (but not (k +1)-cliques) or whenever G is balanced
k-partite. In those cases, we can still embed suitably-defined families of graphs
of low bandwidth (including (k − 1)th powers of Hamilton cycles).

To illustrate the method, we sketch a proof of Theorem 2 using Theorem 3.
We are given a graph G which satisfies the Pósa-type degree conditions with an
added μn in the degree. Set H = Kk(G). For appropriate ν � μ, the Graph
Removal Lemma shows that there are at least νnk second neighbours in H for
every vertex in V (G). To apply Theorem 3, it remains to show that (G,Kk(G)) is
a ν-robust zero-free Hamilton framework. Now consider an arbitrary G′ ⊆ G as
in Definition 2, with ν instead of μ, and let H ′ = Kk(G′). To show that (G′,H ′)
is a zero-free Hamilton framework, we have to check connectivity, matchability
and zero-freeness from Definition 1. The key point is that such graphs G′ will
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inherit, up to a small error term, the Pósa-like degree conditions of G. So, for
instance, the fractional matching can be deduced quickly from the results of
Treglown [19], and the (k+1)-clique is similarly easy. The only missing ingredient
is connectivity, which we obtain from an elementary (but non-trivial) argument
using induction on k.
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Theory Ser. B 114, 187–236 (2015)

11. Knox, F., Treglown, A.: Embedding spanning bipartite graphs of small bandwidth.
Comb. Probab. Comput. 22(1), 71–96 (2013)
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Graph Theory 29(3), 167–176 (1998)
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Abstract. A pattern P of a graph F is a partition of its edge set. Given
a family P whose elements are pairs (F, P ), where F is graph and P is
a pattern of F , we consider n-vertex graphs with the largest number of
r-edge-colorings that avoid copies of F colored according to the pattern
P , for any (F, P ) ∈ P. In particular, if k ≥ 3 and Pk is a family of
patterns of Kk that contains the rainbow pattern, there is r0(Pk) such
that the Turán graph Tk−1(n) admits the largest number of colorings for
r ≥ r0 and large n. We find bounds on r0(Pk) for several families Pk.

Keywords: Edge-coloring · Erdős-Rothschild problem · Turán
problem

1 Introduction

There has been a lot of progress in the Erdős-Rothschild problem and its vari-
ations in the last years. The original version was first stated in a paper by
Erdős [6]. Given an integer r ≥ 2 and a fixed graph F , Erdős and Rothschild
considered the maximum number of r-edge-colorings1 of an n-vertex graph G
that avoid monochromatic copies of F . Among other things, they asked whether,
for all or almost all choices of graph F and any ε > 0, every large n-vertex graph
G admits at most r(1+ε)ex(n,F ) distinct r-colorings with no monochromatic copy
of F . As usual, ex(n, F ) denotes the maximum number of edges in an F -free n-
vertex graph, that is, in an n-vertex graph G with no copy of F as a subgraph.

This question may be restated more generally in terms of graph patterns. For
a fixed graph F , a pattern P of F is a partition of its edge set. Let γ(P ) denote
the number of classes in this partition. An r-coloring of a graph G is said to be
(F, P )-free if G does not contain a copy of F in which the partition of the edge

1 For simplicity, we will henceforth refer to them as r-colorings.
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set induced by the coloring is isomorphic to P . In particular, the original Erdős-
Rothschild question is concerned with the pattern PM

F of F given by {E(F )},
so that γ(PM

F ) = 1. Another pattern that has attracted considerable attention
is the rainbow pattern PR

F = {{e} : e ∈ E(F )}, which satisfies γ(PR
F ) = |E(F )|.

Here, we consider a yet more general problem dealing with colorings that
avoid patterns in a pattern family P, namely a set of pairs (F, P ) for which
F is a graph and P is a pattern of F . An r-colored graph ̂G is P-free if ̂G is
(F, P )-free for all pairs (F, P ) ∈ P. Given such a pattern family P, an integer
r ≥ 2, and a graph G, let Cr,P(G) be the set of all P-free r-colorings of a graph
G. We write cr,P(G) = |Cr,P(G)| and

cr,P(n) = max {cr,P(G) : |V (G)| = n } . (1)

An n-vertex graph G is (r,P)-extremal if cr,P(n) = cr,P(G). Solving this ver-
sion of the Erdős-Rothschild problem consists of determining cr,P(n) and the
corresponding (r,P)-extremal graphs. The question of Erdős and Rothschild
mentioned above could be asked in the following more general terms. For which
values of r, graphs F and families PF of patterns of F , does the following hold
for all ε > 0 and sufficiently large n:

cr,P(n) ≤ r(1+ε)ex(n,F ) ? (2)

In addition to generalizing the original Erdős-Rothschild problem, the frame-
work of (1) clearly generalizes the classical Turán problem: for a graph F , con-
sider the pattern family PF that contains all possible patterns of F . Clearly,
a graph G admits a PF -free coloring if and only if it is F -free, in which case
cr,PF

(G) = r|E(G)|. Thus G is (r,PF )-extremal if and only if it is F -extremal for
the Turán problem.

To refer to previous results, we go back to pattern families with a single
pattern. Several results have been obtained for the complete graph F = Kk

on k-vertices with pattern PM
k = PM

F . As usual, given n ≥ � ≥ 2, the Turán
graph T�(n) is the balanced, complete, �-partite graph on n vertices. Yuster [11]
showed that T2(n) is the only (2, (K3, P

M
3 ))-extremal graph on n vertices for all

n ≥ 6. This result has been extended by Alon, Balogh, Keevash, and Sudakov [1],
who proved that Tk−1(n) is the only n-vertex (r, (Kk, PM

k ))-extremal graph for
large n and r ∈ {2, 3}. Note that these results give graphs F and values of
r for which the upper bound in (2) holds in the case (F, PM

F ). On the other
hand, the results in [1] also imply that this upper bound does not hold for
(F, PM

F ) whenever r ≥ 4 and F is not bipartite. For more information about
(r, (Kk, PM

k ))-extremal graphs when r ≥ 4, see [5] and [10], and their references.
With regard to rainbow patterns, Odermann and two of the current

authors [9] proved that, for k ≥ 4, Tk−1(n) is the only n-vertex (r, (Kk, PR
k ))-

extremal graph for r ≥ r0 =
(

k
2

)8k−4
and large n. They also showed that the

version of this result for k = 3 holds for all r ≥ 5. This has been extended
to r = 4 by Balogh and Li [3], which is best possible. The authors of [9] have
shown that some of their results could be extended to other forbidden graphs
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and patterns. In a different direction, they proved that there exists r1 such that
for all r ≥ r1, there is ε0 > 0 with the following property. There exist n-vertex
graphs of arbitrarily large order that admit more than r(1+ε0)ex(n,Kk) distinct
r-colorings such that every copy of Kk is assigned the rainbow pattern.

2 Main Results

Regarding general pattern families, some results follow immediately from the def-
inition of (r,P)-extremality. Given a pattern family P, let γmin(P) and χmin(P)
be the minima of γ(P ) and χ(F ) over all (F, P ) ∈ P, where χ(F ) denotes the
(vertex) chromatic number of F .

Proposition 1. Let P1 and P2 be pattern families, and let n, r ≥ 2 be integers.
If r < γmin(P1), then cr,P1(n) = r(

n
2) and Kn is the unique (r,P1)-extremal

graph. If P1 ⊆ P2, then cr,P1(n) ≥ cr,P2(n). Moreover, if s = χmin(P2) − 1 and
the Turán graph Ts(n) is (r,P1)-extremal, then Ts(n) is also (r,P2)-extremal.

This paper is particularly concerned with pattern families Pk whose elements
are patterns of Kk for a fixed integer k ≥ 3. The results in [9] mentioned in the
introduction and Proposition 1 immediately imply the following.

Proposition 2. Let k ≥ 3 and let Pk be a pattern family whose elements are
patterns of Kk. There exists r0 such that Tk−1(n) is (r,Pk)-extremal for all
r ≥ r0 and sufficiently large n if and only if PR

k ∈ Pk.

For each family Pk with PR
k ∈ Pk, let r0(Pk) be the least r0 satisfying the

property in Proposition 2. It is clear that r0(Pk) ≤ r0({PR
k }).

In this paper, we give a general result about (r,Pk)-extremal graphs when
r < r0 or PR

k /∈ Pk, and we find upper bounds on r0(Pk) for a class of pattern
families that contain PR

k . The first result, which generalizes [4, Theorem 1.1],
shows that we may always find a complete multipartite (r,P)-extremal n-vertex
graph G = (V,E), i.e., one with a partition V = V1 ∪ · · · ∪ V� such that E =
{{u, v} : u ∈ Vi, v ∈ Vj , i �= j}.

Theorem 1. Let P be a pattern family whose elements are patterns of complete
graphs and let r ≥ 2 be an integer. For any positive integer n, there exists an
n-vertex complete multipartite graph G∗ that is (r,P)-extremal.

Our proof of Theorem 1 [8] has the following useful consequence.

Corollary 1. Let P be a pattern family of complete graphs and n, r ≥ 2 be
integers. If there exists an (r,P)-extremal graph that is not complete multipartite,
then there exist at least two non-isomorphic (r,P)-extremal complete multipartite
graphs on n vertices.

Our second result improves the upper bound on r0({PR
k }) given in [9],

and identifies weakly-rainbow pattern families Pk of Kk for which much better
bounds, or even the actual value of r0(Pk) may be computed. Let k ≥ 3, r ≥ 2
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and s ≤ (

k
2

)

be positive integers, and let P≥s
k be the pattern family that con-

tains all patterns of Kk with s or more classes. The statement splits the interval
2 ≤ s ≤ (

k
2

)

into three intervals for which bounds of different orders of magnitude
are obtained. The third interval includes s =

(

k
2

)

, for which P≥s
k = {(Kk, PR

k )}.
In order to specify r0(P≥s

k ) = r0(k, s), it is convenient to use the following
quantity. For j ∈ {2, . . . , k − 1}, let A(k, j) =

(

k
2

) − ex(k,Kj+1) which is the
minimum number of edges that must be deleted from a complete graph Kk to
make it j-partite. Let

s0(k) = A(k, 2) + 2 =
(

k

2

)

−
⌊

k

2

⌋

·
⌈

k

2

⌉

+ 2, and s1(k) =
(

k

2

)

−
⌊

k

2

⌋

+ 2.

For s ≤ s0(k), let i∗ be the least integer i such that A(k, k− i) ≥ s−2, which
implies i∗ ≤ min{s − 2, k − 2}. Let r0(k, s) be the least integer greater than

(s − 1)
k−1
k−2

i∗
∏

i=2

(s − A(k, k − i + 1) − 1)
1

(k−i−1)(k−i) . (3)

For 3 ≤ s ≤ s0(k), we have r0(k, s) ≤ (s − 1)2. For s > s0(k), we set

r0(k, s) = s7 if s ≤ s1(k) and r0(k, s) = s

4(k−1)

(k2)−s+2
+2

if s > s1(k). (4)

This shows that r0(k, s) is bounded above by a polynomial in s whenever s ≤ s1.
Moreover, r0(k,

(

k
2

)

) ≤ k4k/22k, which improves on the bound in [9].

Theorem 2. Let k ≥ 4 and 2 ≤ s ≤ (

k
2

)

be integers. Fix r ≥ r0(k, s), defined
above. There is n0 = n0(r, k, s) for which the following holds. Every graph
G = (V,E) on n > n0 vertices satisfies |C

r,(Kk,P≥s
k )

(G)| ≤ rex(n,Kk). Moreover,
equality holds if and only if G is isomorphic to Tk−1(n).

Our proof of Theorem 2 is based on the stability method. Precisely, it relies
on the following colored stability result.

Theorem 3. Let k ≥ 3 and 2 ≤ s ≤ (

k
2

)

be integers. Fix r ≥ r0(k, s), defined
above. For any δ > 0, there is n0 = n0(δ, r, k, s) such that the following holds. If
G = (V,E) is a graph on n > n0 vertices such that |C

r,(Kk,P≥s
k )

(G)| ≥ rex(n,Kk),
then there is a partition V = W1 ∪ · · · ∪ Wk−1 such that at most δn2 edges have
both endpoints in a same class Wi.

The proof of Theorem 3 is involved and uses the regularity lemma combined with
a linear programming approach. The values of s0(k), s1(k), r0(k, s) are based
on the solutions to linear programs that appear in our proof of Theorem 3.
Improvements to the values r0(k, s) would typically lead to improvements in the
statement of Theorem 2.

As it turns out, the values of r0(k, s) in (4) can be improved using more
involved formulas [7]. Table 1 gives the best values of r0(k, s) for which the
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statement of Theorem 2 is currently known to hold, for a few values of k and s.
The symbols ∗ and ♣ are used to indicate the first value of s such that s > s0
and such that s > s1. For comparison, it is easy to see that, if r ≤ r1(k, s) =

(s − 1)(k−1)/(k−2) − 1�, then |Cr,(Kk,≥s)(Kn)| > |Cr,(Kk,≥s)(Tk−1(n))| for large
values of n, so that Theorem 2 cannot possibly be extended to such values of r
(see Table 2). Note that, for any fixed s, we have limk→∞ r1(k, s) = s − 1 and,
by (3), limk→∞ r0(k, s) = s. This raises the natural question of whether the
behavior observed for k = 3, where Kn is (r, (K3, P

R
3 ))-extremal for r ≤ 3 and

T2(n) is (r, (K3, P
R
3 ))-extremal for r ≥ 4, also holds for larger values of r and s,

for all sufficiently large n.

Table 1. r0(k, s) for some small values of k and s.

k\s 2 3 4 5 6 7 8 9 10 12 13 15

4 2 3 8 222∗ 5434

5 2 3 5 11 19 457∗ 3270 55507 218896

6 2 3 5 7 15 24 35 606∗ 3528 309393 933907 1.44 · 1012♣

Table 2. r1(k, s) for some values of k and s.

k\s 3 4 5 6 7 8 9 10 12 13 15

4 2 5 7 11

5 2 4 6 8 10 13 15 18

6 2 3 5 7 9 11 13 15 20 22 27

To conclude the paper, we sketch the proof of Theorem 2 (see [7]).

Proof. Let k ≥ 4 and 2 ≤ s ≤ (

k
2

)

be integers. Fix r ≥ r0(k, s), with r0 defined
in (3) and (4) for s ≤ s0(k), s0(k) < s ≤ s1(k) and s > s1(k), respectively. Fix
a sufficiently small positive constant δ. Fix n0 = n0(δ, r, k, s) as in Theorem 3.

To reach a contradiction, suppose that there is an n-vertex graph G = (V,E)
that is (r,Kk,P≥s

k )-extremal, but G �= Tk−1(n). By Corollary 1, we may assume
that G is a complete multipartite graph. Let V = V ′

1 ∪ · · · ∪ V ′
p be the multipar-

tition of G, where p ≥ k.
Let V = V1 ∪ · · · ∪ Vk−1 be a partition of the vertex set of G such that

∑k−1
i=1 e(Vi) is minimized, so that

∑k−1
i=1 e(Vi) ≤ δn2 by Theorem 3, which implies

|Vi −n/(k −1)| ≤ √
2δn. The minimality of this partition ensures that, if v ∈ Vi,

then |Vj ∩ N(v)| ≥ |Vi ∩ N(v)|, for every j ∈ [k − 1], where N(v) denotes the set
of neighbors of v. Given that p > k − 1, there must be an edge {x, y} ∈ E whose
endpoints are contained in the same class of the partition, say x, y ∈ Vk−1. Since
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x and y are in different classes of V ′
1 ∪ · · · ∪ V ′

p , any z ∈ Vk−1 − {x, y} must
be adjacent to x or y. We conclude that x or y are adjacent to the majority of
vertices in their own class. This restricts the number of (Kk,P≥s

k )-free r-colorings
of G. For 2 ≤ s ≤ (

k−1
2

)

+1, counting arguments show that the number of suitable
r-colorings of G is less than rex(n,Kk), which contradicts our choice of G hence
p = k − 1. For s >

(

k−1
2

)

+ 1, we suppose that G has rex(n,Kk−1)+m distinct
(Kk,P≥s

k )-free colorings, where m ≥ 0. We then prove that the graph G − x
must have at least rex(n−1,Kk)+m+1 such colorings. This conclusion will lead to
the desired contradiction, as we could apply this argument iteratively until we
obtain a graph G′ on n0 vertices with at least rex(n0,Kk)+m+n−n0 > rn2

0 ≥ r|E(G′)|

many (Kk,P≥s
k )-free colorings. ��

3 Concluding Remarks

In this paper we considered pattern families Pk of the complete graph Kk con-
taining the rainbow pattern PR

k . Our focus was on the value of r0(Pk), which is
the least value of r0 such that (2) holds for all r ≥ r0.

The version of the Erdős-Rothschild problem considered here raises several
other natural questions. For instance, if Pk is a pattern family of Kk such that
PR

k /∈ Pk, there may be r ≥ 2 such that (2) holds. This is true for r ∈ {2, 3}
if PM

k ∈ Pk. The results in [2] imply that (2) holds for r = 2 and any Pk that
contains a pattern with two classes. In these situations, determining the largest
value of r for which (2) holds is an interesting question.

The same questions would be interesting for fixed non-complete graphs F
with χ(F ) ≥ 3. In particular, we can ask whether, for any family P of patterns
of F containing FR, there exists r0 such that, if r ≥ r0, then (2) holds for
any ε > 0 and large n. More generally, for any family P of patterns of F , can
one ensure the existence of complete multipartite (r,P)-extremal graphs for any
fixed r ≥ 2 and n sufficiently large?
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Abstract. We develop a framework to study minimum d-degree con-
ditions in k-uniform hypergraphs, which guarantee the existence of a
tight Hamilton cycle. Our main theoretical result deals with the typi-
cal absorption, path-cover and connecting arguments for all k and d at
once, and thus sheds light on the underlying structural problems. Build-
ing on this, we show that one can study minimum d-degree conditions
of k-uniform tight Hamilton cycles by focusing on the inner structure of
the neighbourhoods. This reduces the matter to an Erdős–Gallai-type
question for (k − d)-uniform hypergraphs.

As an application, we derive two new bounds. First, we generalize a
classic result of Rödl, Ruciński and Szemerédi for d = k − 1, and deter-
mine asymptotically best possible degree conditions for d = k − 2 and
all k � 3. This was proved independently by Polcyn, Reiher, Rödl and
Schülke.

Secondly, we also provide a general upper bound of 1 − 1/(2(k − d))
for the tight Hamilton cycle d-degree threshold in k-graphs, narrowing
the gap to the lower bound of 1 − 1/

√
k − d due to Han and Zhao.

Keywords: Hamilton cycles · Degree conditions · Hypergraphs

1 Introduction

A widely researched question in modern graph theory is whether a given graph
contains certain vertex-spanning substructures such as a perfect matching or a
Hamilton cycle. Since the corresponding decision problems are usually compu-
tationally intractable, we do not expect to find a ‘simple’ characterisation of
the (hyper)graphs that contain a particular spanning structure. The extremal
approach to these questions has therefore focused on easily verifiable sufficient
conditions. A classic example of such a result is Dirac’s theorem [5], which states
that a graph, whose minimum degree is at least as large as half the size of the
vertex set, contains a Hamilton cycle. Since its inception, Dirac’s theorem has
been generalised in numerous ways [9,12]. Here we study its analogues for hyper-
graphs.

To formulate Dirac-type problems in hypergraphs, let us introduce the cor-
responding degree conditions. In this paper, we consider k-uniform hypergraphs
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(or shorter k-graphs), in which every edge consists of exactly k vertices. The
degree, written deg(S), of a subset of vertices S in a k-graph H is the number of
edges which contain S. We often find convenient to state results and problems
in terms of the relative degree deg(S) = deg(S)/

(
n−d
k−d

)
, where n is the number

of vertices of H and d is the size of S. Note that 0 � deg(S) � 1 for all S.
The minimum relative d-degree of a k-graph H, written δd(H), is the minimum
of deg(S) over all sets S of d vertices. The case of d = k − 1 is also known
as the minimum codegree. Observe that minimum degrees exhibit a monotone
behaviour:

δk−1(H) � · · · � δ1(H).

It is therefore not surprising that minimum degree conditions for the existence
of Hamilton cycles were first studied for the structurally richer settings when d
is close to k. Before we come to this, let us specify the notion of cycles that we
are interested in.

Cycles in hypergraphs have been considered in several ways. The oldest vari-
ant are Berge cycles [2], whose minimum degree conditions were studied by
Bermond, Germa, Heydemann and Sotteau [3]. In the last two decades, how-
ever, research has increasingly focused on a stricter notion of cycles introduced
by Kierstead and Katona [11]. A tight cycle in k-graph is a cyclically ordered
set of vertices such that every interval of k subsequent vertices forms an edge.

Asymptotic Dirac-type results for hypergraphs can be stated compactly using
the notion of thresholds.

Definition 1 (Threshold for tight Hamilton cycles). For k � 2 and 1 �
d � k − 1, the minimum d-degree threshold for tight Hamilton cycles, denoted
by hcd(k), is the smallest number δ > 0 with the following property:

For every μ > 0 there is an n0 ∈ N such that every k-graph H on n � n0

vertices with δd(H) � δ + μ contains a tight Hamilton cycle.

For instance, we have hc1(2) = 1/2 by Dirac’s theorem. Codegree thresholds for
tight Hamilton cycles of larger uniformity were first investigated by Katona and
Kierstead [11], who showed that 1/2 � hck−1(k) � 1−1/(2k) and conjectured the
threshold to be hck−1(k) = 1/2. This was confirmed in a seminal contribution by
Rödl, Ruciński and Szemerédi [20,21]. For k = 3 and large enough hypergraphs,
the same authors also obtained an exact result [22]. For more background on
these problems and their history, we refer the reader to the surveys of Zhao [24]
and Simonovits and Szemerédi [23].

2 Results

Here, we investigate the thresholds hcd(k) when 1 � d � k − 2. As noted by
Kühn and Osthus [12] and Zhao [24], it appears that the problem gets signif-
icantly harder in this setting. After preliminary results of Glebov, Person and
Weps [8], Rödl and Ruciński [18], Rödl, Ruciński, Schacht and Szemerédi [19]
and Cooley and Mycroft [4], it was shown by Reiher, Rödl, Ruciński, Schacht



542 R. Lang and N. Sanhueza-Matamala

and Szemerédi [16] that hc1(3) = 5/9, which resolves the case of d = k − 2 when
k = 3. With regards to general bounds, Rödl and Ruciński [17] conjectured that
the threshold hcd(k) coincides with the analogous threshold guaranteeing perfect
matchings. However, this conjecture was disproved by Han and Zhao [10]. Their
constructions imply (amongst other things) that hcd(k) � 1 − 1/

√
k − d. As a

consequence, we have hcd(k) → 1 when the difference k −d goes to infinity. This
behaviour differs from the Dirac-type matching thresholds, which are known to
be bounded away from 1, independent of k and d (see Ferber and Jain [6]).

Before our work, the best general upper bound for hd(k) was due to Glebov,
Person and Weps [8], who proved that hcd(k) � hc1(k) � 1 − 1/(Ck3)k−1 for
some C > 1 independent of d and k. Note that this is a function of k only. Given
the known lower bounds, it is natural to ask whether hcd(k) can be bounded by
a function of k − d instead. Here we answer this question in the affirmative.

Theorem 1. For all k � 2 and 1 � d � k − 1, we have hcd(k) � 2− 1
k−d �

1 − 1/(2(k − d)).

We remark that Theorem 1 gives the currently best-known results for hcd(k)
for all k � 4 and all d � k − 3. For instance, in the smallest unsolved case k = 4
and d = 1, we now know that hc1(4) � 2−1/3 ≈ 0.7937. The best-known lower
bounds [10] give hc1(4) � 5/8.

In the particular case of k � 3 and d = k − 2, the construction of Han and
Zhao shows that hck−2(k) � 5/9. Very recently, Polcyn, Reiher, Rödl, Ruciński,
Schacht and Schülke [13] proved that hc2(4) = 5/9. They also conjectured that
hck−2(k) = 5/9 for all k � 5 [15]. Here we resolve this problem.

Theorem 2. For all k � 3, we have hck−2(k) = 5/9.

We remark that the last result has also been obtained independently by
Polcyn, Reiher, Rödl and Schülke [14].

2.1 Overview of Our Methods

The above presented bounds on the tight Hamilton cycle thresholds follow from
a method that is suitable to approach these issues in a general manner. The
argument has three parts, which we sketch now.

First, it is shown that thresholds of tight Hamilton cycles can be studied in
a structurally cleaner setting related to what we call Hamilton frameworks. In
broad terms, a Hamilton framework is a k-graph that exhibits some of the key
properties of k-uniform Hamilton cycles (such as tight connectivity and a perfect
fractional matching) and in addition to this has a sufficiently large vertex degree.
To obtain Hamilton cycles from a Hamilton framework, we deploy a (rather
involved) combination of hypergraph regularity and the absorption method.

Secondly, we reduce the task of finding k-uniform Hamilton frameworks under
minimum d-degree conditions to an Erdős–Gallai-type question for (k−d)-graphs
(by which we mean finding a large tight cycle in subgraphs, given density con-
ditions), which is of independent interest. To show this, we use techniques from
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hypergraph Turán-type problems together with ideas of Alon, Frankl, Huang,
Rödl, Ruciński and Sudakov [1] on the Erdős Matching Conjecture.

Finally, we use the previous reductions to derive Theorem 1 and 2 by means of
two short solutions to the respective Erdős–Gallai-type problems. Here, we rely
on results and methods from extremal set theory such as the Kruskal–Katona
theorem and results by Frankl [7] on hypergraph matchings.

3 Open Problems

In light of our work, the most basic question is how the minimum d-degree
threshold of k-uniform tight Hamilton cycles behaves for k − d � 3. The con-
struction of Han and Zhao [10] together with Theorem 1 shows that there are
constants c, C > 0 such that 1 − c(k − d)−1/2 � hcd(k) � 1 − C(k − d)−1

for all k > d � 1. In our view, the left side of these two inequalities is more
likely to reflect reality. In order to understand the asymptotic behaviour of the
tight Hamilton cycle threshold it would be interesting to investigate whether
hcd(k) � 1 − C ′(k − d)−1/2 for some C ′ > 0.

A more challenging task consists in determining exact bounds for hcd(k). In
context of this, let us review the construction of Han and Zhao [10].

Construction 1. For 1 � d � k − 2, let � = k − d. Choose 0 � j � k such that
(j − 1)/k < ��/2�/(� + 1) < (j + 1)/k. Let H be a k-graph on n vertices and a
subset of vertices X with |X| = ��/2�n/(� + 1), such that H contains precisely
the edges S for which |S ∩ X| 	= j.

Consider a k-graph H as in the Construction 1. By design, there is no tight
walk between the edges S which satisfy |S ∩ X| > j and the edges S′ which
satisfy |S′ ∩X| < j. On the other hand, a simple averaging argument shows that
a tight Hamilton cycle must contain an edge of each (intersectional) type. Hence
H does not admit a tight Hamilton cycle. Computing the minimum degree of
H, we obtain for instance that hcd(k) � 5/9, 5/8, 408/625 for k − d = 2,
3, 4, respectively. (It can be shown that the value of j and the size of X in
the construction maximises these bounds.) We believe that the lower bounds
obtained by Han and Zhao are best possible.

Conjecture 1. The minimum d-degree threshold for k-uniform tight Hamilton
cycles coincides with the lower bounds given by Construction 1.

As mentioned earlier, our results also allow us to reduce the problem of finding
tight Hamilton cycles to an Erdős–Gallai-type question. This is formalized as
follows. A tight walk in a k-graph G is a sequence of vertices such that every
interval of k consecutive vertices forms an edge. We say that G is tightly connected
if any two edges are on a common tight walk.1

1 It is not hard to see that this is equivalent to the line graph L(G) being connected,
where L(G) has vertex set E(G) and an edge ef whenever |e ∩ f | = k − 1.
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Definition 2. For � ∈ N, let eg(�) be the smallest number δ > 0 such that, for
every μ > 0, there are γ > 0 and n0 ∈ N with the following property.

Suppose that G is an �-graph on n � n0 vertices with at least (δ + μ)
(
n
�

)

edges. Then there is a subgraph C ⊆ G which is

(i) tightly connected, (connectivity)
(ii) has a fractional matching of density 1/(� + 1) + γ and (space)
(iii) has edge density at least 1/2 + γ. (density)

It turns out that these properties (applied to auxiliary (k − d)-graphs) are
sufficient to construct Hamilton frameworks in k-graphs H with δd(H) � eg(k−
d). Thus we obtain the following results as a corollary of our previous reductions.

Corollary 1. For 1 � d � k − 1, we have hcd(k) � eg(k − d).

We believe that this is tight when k − d is odd.

Conjecture 2. If k − d is odd, then hcd(k) = eg(k − d).

A first step towards this conjecture would be to show that eg(3) = 5/8,
where the lower bound follows from (the link graphs of) Construction 1. Finally,
let us remark that a similar (but notationally more involved) conjecture can be
formulated for even k − d.
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ings in uniform hypergraphs and the conjecture of Erdős and Samuels. J. Combin.
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13. Polcyn, J., Reiher, C., Rödl, V., Ruciński, A., Schacht, M., Schülke, B.: Minimum
pair-degree for tight Hamiltonian cycles in 4-uniform hypergraphs. Acta Mathe-
matica Hungarica (2020, accepted)
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17. Rödl, V., Ruciński, A.: Dirac-type questions for hypergraphs - a survey (or more
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Abstract. Let A and B be randomly chosen s-subsets of the first n
integers such that their sumset A + B has size at most Ks. We show
that asymptotically almost surely A and B are almost fully contained
in arithmetic progressions PA and PB with the same common difference
and cardinalities approximately Ks/2. The result holds for s = ω(log3 n)
and 2 ≤ K = o(s/ log3 n). Our main tool is an asymmetric version of the
method of hypergraph containers which was recently used by Campos to
prove the result in the special case A = B.
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1 Introduction and Main Result

The general framework of problems in additive combinatorics is to ask for the
structure of a set A subject to some additive constraint in an additive group.
The celebrated theorem of Freiman [5] provides such a structural result in terms
of arithmetic progressions when the sumset A + A is small. Classical results like
the Kneser theorem in abelian groups or the Brunn–Minkowski inequality in
Euclidian spaces naturally address a similar problem for the addition of distinct
sets A and B. The proof by Ruzsa of the theorem of Freiman does provide the
same structural result for distinct sets A,B with the same cardinality when their
sumset is small. When the sumset A + A is very small, then another theorem of
Freiman shows that the set is dense in one arithmetic progression, and this result
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has been also extended to distinct sets A and B by Lev and Smeliansky [10] show-
ing that both sets are dense in arithmetic progressions with the same common
difference. Discrete versions of the Brunn–Minkowski inequality have also been
addressed for distinct sets by Ruzsa [12] and Gardner and Gronchi [6].

Motivated by the Cameron-Erdős conjecture on the number of sum-free sets
in the first N integers, there has been a quest to analyze the typical structure
of sets satisfying some additive constraint. One of the most efficient techniques
to address this problem is the method of hypergraph containers first introduced
explicitly by Balogh, Morris and Samotij [2] and independently by Saxton and
Thomason [13], which has been successfully applied to a number of problems of
this flavour.

A conjecture by Alon, Balogh, Morris and Samotij [1] on the number of
sets A of size s ≥ C log n contained in the first N integers which have sumset
|A+A| ≤ K|A|, K ≤ s/C was proved by Green and Morris [7] for K constant and
recently extended by Campos [3] to K = o(s/(log n)3). These counting results
are naturally connected to the typical structure of these sets, showing that they
are almost contained in an arithmetic progression of length (1 + o(1))Ks/2. We
build on the later work by Campos to adapt the result to distinct sets. Our main
result is the following.

Theorem 1. Let s and n be integers and K ≥ 2 such that

s = ω((log n)3) and K = o(s/(log n)3).

Let A,B ⊂ [n] be a uniformly chosen pair of sets satisfying

|A| = |B| = s and |A + B| ≤ Ks.

Then asymptotically almost surely, there exist arithmetic progressions P and Q
with the same common difference of size at most

|P |, |Q| ≤
(

1
2

+ o(1)
)

Ks

such that |A ∩ P | ≥ (1 − o(1))s, and similarly, |B ∩ Q| ≥ (1 − o(1))s.

An example discussed in [3] that can easily be adapted to the asymmetric
case shows that the range of K for which a closely related counting statement
holds cannot be improved to K ≥ s/ log n. It is not clear whether the same
holds true for the structure theorem, and an interesting question would be to
investigate whether Theorem 1 might be true for any K = o(s). On the other
hand, one should keep in mind the strength of the current statement. If s = nα

for some 0 < α ≤ 1/2, then K = nα(1−ε) = s1−ε is a valid choice for any fixed
ε > 0, and hence Theorem 1 states that for almost every pair of sets A,B of size
s = nα such that |A + B| ≤ s2−ε, both A and B are (essentially up to scaling
and translating) almost contained in an interval of size O(nα(2−ε)) = o(n).
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2 An Overview of the Proof

One of the key techniques used in [3] is based on an asymmetric version of the
container lemma introduced by Morris, Samotij and Saxton [11] which allows for
applications to forbidden structures with some sort of asymmetry. This asym-
metry can be interpreted as considering bipartite hypergraphs. The first key
component to prove Theorem 1 is to further extend this bipartite version to a
multipartite one as follows.

Let r be a positive integer. For an r-vector x = (x1, . . . , xr) we call an
r-partite hypergraph H with vertex set V (H) = V1 ∪ · · · ∪ Vr x-bounded if
|E ∩ Vi| ≤ xi for every hyperedge E ∈ E(H) and every 1 ≤ i ≤ r. Denote by I
the family of independent sets of H, and for any m ∈ N, define

Im(H) := {I : I ∈ I and |I ∩ Vr| ≥ |Vr| − m} .

For a subset of vertices L ⊂ V (H), the codegree is defined as

dH(L) = |{E ∈ E(H) : L ⊂ E}|.

Also, given a vector v = (v1, v2, . . . , vr) ∈ Z
r, denote

Δv(H) := max{d(L) : L ⊂ V (H), |L ∩ Vi| = vi, 1 ≤ i ≤ r}.

Finally, for any vector y, |y| will denote its 1-norm
∑ |yi|.

Theorem 2. For all non-negative integers r, r0 and each R > 0 the following
holds. Suppose that H is a non-empty r-partite (1, . . . , 1, r0)-bounded hypergraph
with V (H) = V1 ∪ V2 ∪ . . . ∪ Vr, m ∈ N, w = (|V1|, |V2|, . . . , |Vr−1|,m) and b, q
are integers with b ≤ mini wi and q ≤ m, satisfying

Δv(H) ≤ R

(
r∏

i=1

wvi
i

)−1

b|v|−1e(H)
(

m

q

)1[vr>0]

for every vector v = (v1, v2, . . . , vr) ∈
(∏r−1

i=1 {0, 1}
)

× {0, 1, . . . , r0}. Then there

exists a family S ⊂ ∏r
i=1

(
Vi

≤b

)
and functions f : S → ∏r

i=1 2Vi and g : Im(H) →
S, such that, letting δ = 2−(r0+r−1)(2r0+r)R−1, the following three things are
true.

(i) If f(g(I)) = (A1, A2, . . . , Ar) with Ai ⊂ Vi, then I ∩ Vi ⊂ Ai for all 1 ≤ i ≤
r.

(ii) For every (A1, A2, . . . , Ar) ∈ f(S), either |Ai| ≤ (1 − δ)|Vi| for some 1 ≤
i ≤ r − 1, or |Ar| ≤ |Vr| − δq.

(iii) If g(I) = (S1, S2, . . . , Sr) and f(g(I)) = (A1, A2, . . . , Ar), then Si ⊂ I ∩ Vi

for all 1 ≤ i ≤ r. Furthermore, |Si| > 0 only if |Aj | ≤ |Vj | − δwj for some
j ≥ i.
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The iterated application of Theorem 2 to the hypergraph described below
provides the appropriate setting to prove the main result. It is formulated in
the context of general groups (not necessarily abelian) and iterated sumsets (not
only two summands) as our main project is to address the problem in this more
general setting.

For a group G and finite subsets F1, . . . , Fr ⊂ G, define the r-partite
and (1, . . . , 1)-bounded hypergraph H(F1, . . . , Fr) as follows. It has vertex set⊔

i∈[r] Fi and for any collection of r − 1 elements f1, . . . , fr−1 with fi ∈ Fi, if
their product fr = f1f2 · · · fr−1 is contained in Fr, then {f1, . . . , fr} is an edge.
Note that the sets Fi need not actually be disjoint.

Theorem 3. Let G be a group, h ≥ 2 an integer and ε > 0. Suppose n, m,
s1, . . . , sh are integers such that log n ≤ max si ≤ m ≤ log n(min si)h, and
let F1, . . . , Fh be subsets of G of cardinality |Fi| = n with product set F =
F1F2 · · · Fh. Then there exists a family A ⊂ ∏

i∈[h] 2
Fi × 2F of (h + 1)–tuples

(A1, . . . , Ah, B) of size

|A| ≤ exp
(
2(h+1)(h+5)ε−hm1/h(log n)(2h−1)/h

)

such that the following two things are true:

1. For all Xi ⊂ Fi, Y ⊂ F with |Xi| = si, X1X2 · · · Xh ⊆ Y and |Y | ≤ m,
there exists a tuple (A1, . . . , Ah, B) ∈ A such that B ⊂ Y and Xi ⊂ Ai for
all i ∈ [h].

2. For every (A1, . . . , Ah, B) ∈ A it holds that |B| ≤ m and either maxi |Ai| <
m/ log n or there are at most εh

∏ |Ai| tuples (a1, . . . , ah) ∈ ∏
Ai such that

a1a2 · · · ah 
∈ B.

One can now analyze the structure of the containers using supersaturation
and stability results. For the former, we utilize the following statement that
essentially was already present in Campos’ original result.

Proposition 1. Let A1, A2, B ∈ Z be finite and non-empty sets and 0 < ε <
1/2. If |A1| + |A2| ≥ (1 + 2ε)(|B| + 1), then there are at least ε2|A1||A2| pairs
(a1, a2) ∈ A1 × A2 such that a1 + a2 
∈ B.

For the stability statement, results in the literature were mainly concerned
with handling the case of sets having the same cardinality. The problem here is
that while the pairs of sets that are counted in Theorem 1 have the same size, the
containers obtained via Theorem 3 might differ slightly. We modify the recently
obtained robust version of Freiman’s 3k−4 theorem by Shao and Xu [15], which
itself built on earlier work by Lev [9] to handle this, and obtain the following
result.

Proposition 2. Let ε > 0 and U, V ⊂ Z finite sets with |V | ≤ |U |. If there
exists a set Γ ⊂ U × V with |Γ | ≥ (1 − ε)|U ||V | and

|U Γ
+ V | < (1 − 13ε1/2)|U | +

3
2
|V |,
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then there are arithmetic progressions P and Q of the same common difference
and length |P | ≤ (1 + 5ε1/2)|U |, |Q| ≤ |V | + 5ε1/2|U | such that |P ∩ U | ≥
(1 − ε1/2)|U | and |Q ∩ V | ≥ (1 − ε1/2)|V |.

The containers we need to apply this to will have size roughly (1+o(1))Ks/2,
which results in the following statement.

Corollary 1. Let 0 < ε ≤ 2−9. If A1, A2, B ⊂ Z, such that

(1 − ε)|B| ≤ |A1| + |A2| and max{|A1|, |A2|} ≤ (1 + 2
√

ε)|B|/2.

Then one of the following holds:

1. There are at least ε2|A1||A2| pairs (a1, a2) ∈ A1 × A2 such that a1 + a2 
∈ B.
2. There are arithmetic progressions P1, P2 of length at most |B|/2 + 4

√
ε|B|

with the same common difference such that Pi contains all but at most ε|Ai|
points of Ai.

The further direction is now clear. The second property of Theorem 3 tells us
that essentially, case one of Corollary 1 cannot happen, and hence the containers
either have a structure as outlined in the second case, or one of the requirements
of the corollary must not be satisfied, that is, either the sum of cardinalities of
the containers is very small, or they must be somewhat unbalanced.

Both of the latter two situations are handled by counting all pairs of s-
subsets of such containers, irrespective of whether they correspond to sets with
small sumset. This is done via standard inequalities for binomial coefficients and
products thereof, with the result being that there are o(1)

(
Ks/2

s

)2
of such pairs.

What remains is the case that the containers themselves are close to being
contained in arithmetic progressions. But if this happens, we argue that there
cannot be many pairs of s-subsets not satisfying a slightly weaker containment,
since any of the bad points of a set in such a pair would need to be chosen from
the exceptional set of its container, which we know is small. The final conclusion
is that in this case, the number of pairs of s-subsets not satisfying a containment
as stated in Theorem 1 will also be o(1)

(
Ks/2

s

)2
.

On the other hand, there are clearly at least
(
Ks/2

s

)2
good pairs, since one

can fix a single pair of disjoint arithmetic progressions of size Ks/2 and take any
pair of s-subsets of them.

3 Conclusions

The set up for the proof of the main result is devised to address a number
of additional applications. On one hand the setting allows to handle multiple
set addition: if A1, . . . , Ak is a family of independently chosen random sets of
integers with cardinality s among those satisfying a constraint on their sumset,
say |A1 + · · · + Ak| ≤ Ks then with high probability each of the sets is almost
contained in an arithmetic progression of size Ks/k having the same common
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difference. The quantitative aspects of the statement depend on the strength of
supersaturation and stability results analogous to Propositions 1 and 2, which
can likely be derived from the generalized Kneser theorem of DeVos, Goddyn,
and Mohar [4] and the structural results for multiple set addition of Lev [8].

A second direction is to consider the problem in general abelian groups, not
only in the integers. In the symmetric case A = B, Campos addresses this case
providing a counting result. More precisely, he shows that if X is a set of size
n in an abelian group G, then number of sets A ⊂ X of size s having doubling
at most K is at most 2o(s)

(
(Ks+β)/2

s

)
, where β is a parameter that measures

the largest subgroup of G still smaller than Ks. A similar result should hold
in our setting as well. Getting a structural result akin to Theorem 1 seems to
be more challenging, although the recent robust version of the Balog-Szemerédi-
Gowers theorem obtained by Shao [14] might allow one to prove it for specific
groups other than the integers. A less explored direction would be to address
the problem in general groups, not necessarily abelian.

Finally, there are specific substructures that might be interesting to investi-
gate. Note that Campos’ version of Theorem 1 handling the case A = B does
not directly follow from ours, since the theorem only compares the number of
pairs (A,B) satisfying some structural statement to those that do not, but it
is not clear a priori that it will hold in a relative sense when only looking at
pairs (A,A). The same is true for other instances of specific pairs (A,B). One
interesting problem is the case of B = λ ∗ A, the dilation of A by some factor λ.
It is known that A + λ ∗ A has size at least (λ + 1)|A|, and in cases where λ is
prime the structure of extremal cases is known. Can one prove an approximate
structure result similar in scope to Theorem 1 for this specific situation?
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Abstract. We classify which local problems with inputs on oriented
paths have so-called Borel solution and show that this class of problems
remains the same if we instead require a measurable solution, a factor of
iid solution, or a solution with the property of Baire.

Together with the work from the field of distributed computing [Balliu
et al. PODC 2019], the work from the field of descriptive combinatorics
[Gao et al. arXiv:1803.03872, Bernshteyn arXiv:2004.04905] and the work
from the field of random processes [Holroyd et al. Annals of Prob. 2017,
Greb́ık, Rozhoň arXiv:2103.08394], this finishes the classification of local
problems with inputs on oriented paths using complexity classes from
these three fields.

A simple picture emerges: there are four classes of local problems and
most classes have natural definitions in all three fields. Moreover, we
now know that randomness does not help with solving local problems on
oriented paths.

Keywords: Descriptive combinatorics · Factors of iid processes ·
Distributed algorithms

1 Introduction

The full version of this paper is available online [15].
Locally checkable problems (LCLs) is a class of graph problems where the

correctness of a solution can be checked locally. This class includes problems
like vertex or edge coloring, perfect matching or a maximal independent set,
as well as problems with inputs such as list colorings etc. In this paper, we
study LCLs on oriented paths from three different perspectives: the perspective
of descriptive combinatorics, distributed algorithms, and random processes. Each
perspective offers different procedures and computational power to solve LCLs,
as well as different scales to measure complexity of LCLs. In particular, the
notion of easy/local vs hard/global problems varies in different settings.
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In this work we completely describe the connections between these complexity
classes and show that the problem of deciding to what class a given LCL belongs
is decidable. This extends the known classification of LCLs without inputs on
oriented paths (see the full version) and is in contrast with the fact that on Z

d,
where d > 1, this problem is not decidable.

Moreover, we hope that our work helps to clarify the relationships between
the three different perspectives and, since the situation is both non-trivial and
well understood, may serve as a basis of a common theory. We note that for differ-
ent class of graphs, i.e., grids, regular trees, etc., describing possible complexity
classes of LCLs and the relationship between them is not known, is already much
harder and contains many exciting questions, see [16].

We will now briefly explain all three fields and then the particular setup of
LCLs on paths that we are interested in. Then we state Theorem 1, our main
theorem that, together with previous work, gives a classification of complexity
classes of LCL problems on oriented paths that relates the three different per-
spectives to each other. To make the presentation more precise, we introduce
the formal definition of LCLs.

Definition 1 (LCLs on oriented paths). A locally checkable problem (LCL)
on an oriented path is a quadruple Π = (Σin, Σout, r,P), where Σin and Σout

are finite sets, r is a positive integer, and P is a finite collection of finite rooted
Σin-Σout-labeled paths of diameter (at most) r.

A correct solution of an LCL problem Π in a Σin-labeled oriented path G
(finite cycle or infinite path) is a map f : V (G) → Σout such that the Σin-Σout-
labeled rooted r-neighborhood of every node v ∈ V (G) is in P. Every such f is
called a Π-coloring.

Example of an LCL problem is k-coloring: there, Σin = ∅, Σout =
{1, 2, . . . , k}, r = 1, and P contains all pairs (σ1, σ2) ∈ Σ2

out such that σ1 �= σ2.
Other examples of problems without inputs are: maximal independent set, edge
coloring, or perfect matching. Problems with inputs include for example list
coloring (we formally require the set of all colors in the lists to be finite).

The fact that we allow for input labelling is important. Without it, the prob-
lem is substantially simpler. The reason we care about inputs is twofold. First,
problems with inputs contain more general setups such as the setup in the circle
squaring problem that we discuss next. Second, understanding problems on lines
with inputs serves as an intermediate step towards understanding problems on
trees, at least in the distributed computing area [1,8].

Distributed Algorithms. The study of the LOCAL model of distributed algorithm
[20] is motivated by understanding distributed algorithms in huge networks. The
LOCAL model formalizes this setup: there is a graph such that each of its nodes
at the beginning knows only its size n, and perhaps some other parameter like
the maximum degree Δ. Moreover, each node starts with a unique identifier
from a range polynomial in the size of the graph n. In one round, each node
can exchange any message with its neighbors and can perform an arbitrary
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computation. We want to find a solution to a problem in as few communication
rounds as possible.

Importantly, there is an equivalent view of t-round LOCAL algorithms: such
an algorithm is simply a function that maps all possible t-hop neighbourhoods
to the final output. An algorithm is correct if and only if applying this function
to the t-hop neighborhood of each node solves the problem.

The simplest possible setting to consider in the LOCAL model is if one
restricts their attention to the simplest graph: a sufficiently long consistently
oriented cycle. This graph is the simplest model, since all local neighborhoods of
it look like an oriented path. This case is very well understood: It is known that
any LCL problem can have only one of three complexities on oriented paths and
the randomized complexity is always the same as the deterministic one. First,
there are problems solvable in O(1) local computation rounds – think of the prob-
lems like “color all nodes with red color” or “how many different input colors
are there in my 5-hop neighborhood?”. Second, there is a class of basic sym-
metry breaking problems solvable in Θ(log∗ n) rounds – this includes problems
like 3-coloring, list-coloring with lists of size at least 3, or maximal independent
set. Finally, there is a class of “global” problems that cannot be solved in o(n)
rounds – these include e.g. 2-coloring or perfect matching.

Descriptive Combinatorics. In 1990s Laczkovich resolved the famous Circle
Squaring Problem of Tarski[19]: A square of unit area can be decomposed into
finitely many pieces that can be translated to form a disk of unit area. This
result was improved in recent years to make the pieces measurable in various
sense [14,22,23]. This theorem and its subsequent strengthenings are the high-
lights of a field nowadays called descriptive combinatorics [18,24] that has close
connections to distributed computing as was shown in an insightful paper by
Bernshteyn [2].

The simplest non-trivial setup of descriptive combinatorics is the following
[24]. Consider the unit cycle S

1 in R
2, i.e., the set of pairs (x, y) such that

x2 + y2 = 1. Imagine rotating this cycle by a rotation α > 0 that is irrational
with respect to the full rotation, i.e., α/(2π) �∈ Q. This rotation naturally induces
a directed graph Gα = (S1, E) on the cycle S

1 where a directed edge in E points
from (x, y) to (x′, y′) if one gets (x′, y′) by rotating (x, y) by α. This graph has
uncountably many connected components, each of which is a directed path going
to infinity in both directions.

We could now ask questions like: What is the chromatic number of G? If
there were no other restrictions, the answer is 2, i.e., color each path separately.
However, for this type of argument we implicitly use the axiom of choice. The
main goal of descriptive combinatorics is to understand what happens if some
additional definability/regularity requirements are posed on the colorings. That
is, what if we require each color class to be an interval, open, Borel, or Lebesgue
measurable set? With any of those requirements, the chromatic number of G
now increases to 3.
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For a general LCL without input labelings the situation is completely under-
stood. It turns out that problems solvable on G (with the additional definability
requirements) are exactly those that have local complexity O(log∗ n).

Our main theorem generalizes to the setup with input labels. In the example
with S

1 this means that adversary first partitions S
1 into sets that are indexed

by input labels, i.e., S1 =
⊔

σ∈Σin
Aσ. Again, we require each input color class

to satisfy some definability properties, e.g., union of intervals, open, Borel, or
Lebesgue measurable set. We may view any such partition as labeling of nodes
simply by thinking that a node x ∈ S

1 is labeled by σ if x ∈ Aσ. This induces a
labeling of each oriented doubly infinite path of the graph G. Now we ask for a
definable coloring with colors from Σout that would solve Π. As we demonstrate
more LCL problems can be solved in this setup than with local algorithms.
However, the picture is still very clean and in our view nicely explains the power
of descriptive combinatorics when compared with distributed algorithms.

Factors of iid Processes. The third field that offers a yet different view on local
problems is the area of randomized processes where one studies whether a solu-
tion can be constructed as a so-called factor of iid process. We describe this area
only in the full version [15], due to space constraints.

1.1 Our Contribution

We extend the classification of LCLs on oriented paths from the perspective of
distributed algorithms [1] to the perspective of descriptive combinatorics and
random processes. A simple picture emerges. We find that with inputs the latter
setups offer more complexity classes than distributed algorithms.

We now state our main theorem and its corollary which is a classification
of LCL problems from three different perspectives. It contains several classes,
some of which we introduce only in the full version. One should think of the
class BOREL as in the example where the adversary partitions the circle to
Borel measurable pieces and our final solution needs to be Borel measurable.
The classes MEASURE, BAIRE are traditionally studied in descriptive combina-
torics and the class fiid is studied in the area of random processes. These classes
offer more computational power. Intuitively, the additional power of MEASURE
and fiid when compared with BOREL is the same as the additional power of a
randomized algorithm when compared with a deterministic one.

Theorem 1. For the classes of LCL problems on infinite oriented lines we have
that

BOREL = MEASURE = fiid = BAIRE.

Moreover, deciding whether Π ∈ BOREL is a PSPACE-complete problem.

As a corollary, this finishes the classification of complexity classes coming
from the three analysed areas. The big picture containing all relevant classes
is given in Fig. 1. It follows from the work in distributed algorithms [1,5,6,8],
descriptive combinatorics [2,3,12], and finitary factors of iid processes [4,16,17].
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This classification is complete in the sense that we are not aware of other used
classes of problems. It describes an unified picture of locality for one particular
class of graphs and it helps to clarify the computational powers and limits of
different approaches.

Fig. 1. The figure shows a classification of LCL problems on paths from all three
considered perspectives. A clear picture emerges. There are four classes of problems.
First, there is class that contains trivial problems such as “how many different input
colors are there in my 5-hop neighborhood”. Then, there is a class of basic symmetry
breaking problems such as 3-coloring or MIS. Then, there is a class of problems that we
can solve with basic symmetry breaking tools, but we cannot do it locally. An example
problem is the 3-coloring-of-blocks problem described in the full version. Finally, there
is a class of “global” problems that contain e.g. 2-coloring. We do not discuss all classes
present in the picture. They are discussed in [16] for the more general setup of grids.

Derandomization Perspective. The relation of classes MEASURE and fiid to
BOREL is analogous to the relation of randomized algorithms to determinis-
tic algorithms. This means that Theorem 1 can be seen as a derandomization
result. The topic of derandomization is of a big interest in distributed algorithms
[6,9,10,13,25] and in complexity theory in general. We are not aware of similar
derandomization results in the area of descriptive combinatorics, except the case
of LCLs without inputs on paths (see full version). For concrete problems, like
the famous circle squaring problem, the derandomization of the construction
(that is, replacing measurable pieces by borel measurable pieces) was done in
the work of [23] that improved the previous “measurable version” [14].
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In general, it is known that randomness helps if we do not bound the expan-
sion of the graph class under consideration. As an example we recall that proper
vertex 3-coloring or perfect matching is not in the class BOREL for infinite 3-
regular trees [21]. This implies no nontrivial deterministic local algorithm. On the
other hand, the two problems are in the class MEASURE and BAIRE [7] and the
3-coloring problem, in fact, admits a nontrivial randomized local algorithm [11].
What if the graph family is of subexponential growth? The popular conjecture of
Chang and Pettie that the deterministic complexity of the Lovász Local Lemma
(LLL) problem is O(log n) would imply that if the graph class is of subexponen-
tial growth, the class of “LLL-type problems”, the only local class where ran-
domness helps essentially, is not present [6,8]. We conjecture that it is a general
phenomenon that randomness does not help in graphs of subexponential growth.
In particular, we conjecture that our result that BOREL = MEASURE = fiid on
paths holds for all graphs of subexponential growth. We note that this is not
known even for 2-dimensional grids, see [16].

The classification from Fig. 1 is decidable, though, in fact, PSPACE-hard (this
follows from Theorem 1 and [1]). We think it is an exciting complexity-theoretic
problem to understand whether it is in fact PSPACE-complete [1]. The fact that
the classification from Fig. 1 is decidable corresponds to the fact that there is a
reasonable combinatorial classification of problems in each class in Fig. 1.

Acknowledgment. The first author was supported by Leverhulme Research Project
Grant RPG-2018-424. This project has received funding from the European Research
Council (ERC) under the European Unions Horizon 2020 research and innovation pro-
gramme (grant agreement No. 853109).

References

1. Balliu, A., Brandt, S., Chang, Y.-J., Olivetti, D., Rabie, M., Suomela, J.: The
distributed complexity of locally checkable problems on paths is decidable. In:
Proceedings of the 2019 ACM Symp. on Principles of Distributed Computing,
PODC 2019, pp. 262–271. ACM, New York (2019)

2. Bernshteyn, A.: Distributed algorithms, the Lovász Local Lemma, and descriptive
combinatorics (2020)

3. Bernshteyn, A.: Probabilistic constructions in continuous combinatorics and a
bridge to distributed algorithms (2021)

4. Brandt, S., Greb́ık, J., Grunau, C., Rozhoň, V.: The landscape of distributed com-
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Abstract. We show that plane bipolar posets (i.e., plane bipolar orien-
tations with no transitive edge) and transversal structures can be set in
correspondence to certain (weighted) models of quadrant walks, via suit-
able specializations of a bijection due to Kenyon, Miller, Sheffield and
Wilson. We then derive exact and asymptotic counting results, and in
particular we prove that the number tn of transversal structures on n+2
vertices satisfies (for some c > 0) tn ∼ c (27/2)nn−1−π/arccos(7/8), which
also ensures that the associated generating function is not D-finite.

Keywords: Bijections · Oriented planar maps · Quadrant walks

1 Introduction

The combinatorics of planar maps (i.e., planar multigraphs endowed with an
embedding on the sphere) has been a very active research topic ever since the
early works of W.T. Tutte. In the last few years, after tremendous progress
on the enumerative and probabilistic theory of maps, the focus has started to
shift to planar maps endowed with constrained orientations. Indeed constrained
orientations capture a rich variety of models [7] with connections to (among
other) graph drawing, pattern-avoiding permutations, Liouville quantum grav-
ity, or theoretical physics. From an enumerative perspective, these new families
of maps are expected to depart (e.g. [6]) from the usual algebraic generating func-
tion pattern followed by many families of planar maps with local constraints [11].
From a probabilistic point of view, they lead to new models of random graphs
and surfaces, as opposed to the universal Brownian map limit capturing earlier
models. Both phenomena are first witnessed by the appearance of new critical
exponents α �= 5/2 in the generic γnn−α asymptotic formulas for the number of
maps of size n.

A fruitful approach to oriented planar maps is through bijections (e.g. [1])
with walks with a specific step-set in the quadrant, or in a cone, up to shear
transformations. We rely here on a recent such bijection [10] that encodes plane
bipolar orientations by certain quadrant walks (so-called tandem walks): we show
in Sect. 2 that it can be furthermore adapted to other models by introducing
properly chosen weights. Building on these specializations, in Sect. 3 we obtain
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exact enumeration results for plane bipolar posets and transversal structures. In
particular we show that the number bn of plane bipolar posets on n+2 vertices is
equal to the number of plane permutations of size n recently studied in [4], and
that a reduction to small-steps quadrant walks models (which makes coefficient
computation faster) can be performed for the number en of plane bipolar posets
with n edges and the number tn of transversal structures on n + 2 vertices. In
Sect. 4 we obtain asymptotic formulas for the coefficients bn, en, tn all of the form
cγnn−α with c > 0 and with γ, α �= 5/2 explicit, and by the approach of [3] we
deduce from these estimates that the generating functions for en and tn are not
D-finite.

Note: An extended version on these results is available at arXiv:2105.06955.

2 Oriented Planar Maps and Quadrant Tandem Walks

A plane bipolar orientation B is a planar map endowed with an acyclic orienta-
tion having a single source S and a single sink N , which both lie in the outer
face, see Fig. 1(a). It is known that the contour of each face f of B (including the
outer one) splits into a left lateral path Lf and a right lateral path Rf (which
share the same origin and end); the type of f is the pair (i, j) where i + 1 (resp.
j +1) is the length of Lf (resp. Rf ). The outer type of B is the type of the outer
face. The pole-type of B is the pair (p, q) such that p + 1 is the degree of S and
q + 1 is the degree of N .

S

N

f

(0, 1) → (1, 0) → (1, 2)
SE (0, 2)

→ (0, 2) → (1, 1) → (1, 1)
SE (0, 0)(-1, 0)

→ (2, 0) → (2, 1) → (3, 0)
SE (0, 1) SE

→ (1, 1) → (2, 0)
(-2, 1) SE

S

N

S′

N ′

(a) (b) (c) (d)

S

N

W

E

Fig. 1. (a) A plane bipolar orientation of outer type (1, 2) (the marked inner face f
has type (2, 1)). (b) A quadrant tandem walk from (0, 1) to (2, 0) (actually the one
associated to (a) by the KMSW bijection). (c) From a plane bipolar orientation (round
vertices) with n edges and f + 2 vertices to one of the associated plane bipolar posets
(square vertices) with n + 2 vertices and f inner faces. (d) A 4-triangulation endowed
with a transversal structure (blue edges are dashed).

On the other hand, a tandem walk (see Fig. 1(b)) is defined as a walk on Z
2

with steps in SE ∪ {(−i, j), i, j ≥ 0}; it is a quadrant walk if it stays in N
2 all

along. Every step (−i, j) in such a walk is called a face-step, and the pair (i, j)
is called its type. We will crucially rely on the following bijective result:

http://arxiv.org/abs/2105.06955
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Theorem 1 (KMSW bijection [10]). Plane bipolar orientations of outer type
(a, b) with n + 1 edges are in bijection with quadrant tandem walks of length n
from (0, a) to (b, 0). Every non-pole vertex corresponds to a SE-step, and every
inner face corresponds to a face-step, of the same type.

An edge e = (u, v) ∈ B is called transitive if there is a path from u to v
avoiding e. If B has no transitive edge it is called a plane bipolar poset.

Remark 1. Let B be a plane bipolar orientation. Then B is a plane bipolar poset
iff it has no inner face whose type has a zero entry. Hence the KMSW bijection
specializes into a bijection (with same parameter-correspondence) between plane
bipolar posets of outer type (a, b) and quadrant tandem walks from (0, a) to (b, 0)
such that the type of every face-step has no zero-entry.

In Remark 1 the primary parameter of the poset (the one corresponding to
the walk length) is the number of edges (minus 1). We will see below another way
to relate plane bipolar posets to (weighted) quadrant tandem walks, this time
with the number of vertices as the primary parameter. Other oriented maps to be
related below to weighted quadrant tandem walks are transversal structures [8].
A 4-triangulation is a map whose outer face contour is a (simple) 4-cycle and
whose inner faces are triangles; the outer vertices are denoted W,N,E, S in
clockwise order, and V denotes the set of inner vertices. A transversal structure
on such a map (see Fig. 1(d)) is an orientation and bicoloration of its inner edges
(in blue or red) so that red (resp. blue) edges form a bipolar poset with V as the
set of non-pole vertices and (S,N) (resp. (W,E)) as the pair (source,sink), and
moreover any intersection of a blue path with a red path is a crossing where the
blue path arrives from the left side of the red path.

For w a function from N
2 to N, a w-weighted plane bipolar orientation is a

bipolar orientation where every inner face f carries an integer ι(f) in [1..w(i, j)]
with (i, j) the type of f . A w-weighted tandem walk is a tandem walk where
every face-step s carries an integer ι(s) in [1..w(i, j)] with (i, j) the type of s.

Proposition 1. For w : (i, j) → (
i+j

i

)
, plane bipolar posets of pole-type (p, q),

with n + 2 vertices and f inner faces, are in bijection with w-weighted plane
bipolar orientations of outer type (p, q), with n edges and f + 2 vertices. These
correspond (via KMSW) to w-weighted quadrant tandem walks of length n − 1
from (0, p) to (q, 0) with f SE-steps.

For w : (i, j) → (
i+j−2

i−1

)
(with w(i, j) = 0 if i = 0 or j = 0), transversal

structures having n inner vertices and m blue edges are in bijection with w-
weighted plane bipolar posets of outer type (1, 1) having n+4 vertices and m+4
edges. These correspond (via KMSW) to w-weighted quadrant tandem walks from
(0, 1) to (1, 0) of length m + 3 with n + 2 SE-steps.

Proof. The first correspondence (see Fig. 1(c)) is adapted from [9]. Starting from
a plane bipolar orientation B, insert a square vertex in the middle of each edge
(these are to be the non-pole vertices of the bipolar poset). Then in each inner
face f , with (i, j) its type, insert i + j + 1 non-crossing edges from the square



On the Enumeration of Plane Bipolar Posets and Transversal Structures 563

vertices on L(f) to the square vertices on R(f); there are precisely w(i, j) =
(
i+j

i

)

ways to do so (so the chosen way can be encoded by an integer ι(f) ∈ [1..w(i, j)]).
Finally create a square vertex S′ (resp. N ′) in the left (resp. right) outer face
and connect it to all square vertices on the left (resp. right) lateral path of B.
Then the bipolar poset is obtained by erasing the vertices and edges of B in the
obtained figure.

The second correspondence relies on the fact that a transversal structure is
completely encoded by its red bipolar poset (augmented by the 4 outer edges
oriented from S to N) and the knowledge of how each inner face is transversally
triangulated by blue edges: if the face has type (i, j) then there are precisely(
i+j−2

i−1

)
ways to do so.

3 Exact Counting Results

Let Pw
a (x, y) denote the generating series of w-weighted quadrant tandem walks

starting in position (0, a), with respect to the number of steps (variable t),
end positions (variables x and y) and number of SE steps (variable u). A last
step decomposition immediately yields the following master equation in the ring
Q((x̄))[[y, t]] of formal power series in t and y with coefficients that are Laurent
series in x̄ = 1/x, where Wk(x̄, y) =

∑
i≥k,j≥0 w(i, j)yj

xi :

Pw
a (x, y) = ya + tu

x

y
(Pw

a (x, y) − Pw
a (x, 0)) + tW0(x̄, y)Pw

a (x, y)

− t
∑

k≥0

Wk+1(x̄, y)xk[xk]Pw
a (x, y).

In the case of plane bipolar posets enumerated by vertices, we have (cf.
Proposition 1) w(i, j) =

(
i+j

i

)
for i, j ≥ 0, so that Wk(x̄, y) = 1

1−(x̄+y)
x̄k

(1−y)k
in

Q[[y, x̄]]. For B(x, y) ≡ Pw
0 (x, y) the master equation then rewrites

B(x, y)=1+ t
x

y
(B(x, y)−B(x, 0))+

t

1−y

1

x− 1
1−y

(
xB(x, y) − 1

1−y
B

(
1

1−y
, y

))
.

Let bn denote the number of plane bipolar posets with n+2 vertices. It is also,
by adding a new sink of degree 1 (connected to the former sink), the number
of plane bipolar posets of pole-type (0, b) with n + 3 vertices and arbitrary
b ≥ 0, so that bn = [tn]B(1, 0). Then we prove1 that bn is also the number of
plane permutations of size n which are studied in [4]: to see this let S(u, v) :=
x(B(x, y) − 1) under the change of variable relation {y = 1 − ū, x = v} (note
that B(1, 0) = 1+S(1, 1)), and observe that the equation for S derived from the
above equation for B is exactly [4, Eq. (2)] (they use (x, y, z) for our (t, u, v)).
Furthermore B(1, 0) = 1 + S(1, 1) is D-finite [4, Proposition 13], and there are
single sum expressions for bn [4, Theorem 14]).

1 Our proof relies on generating function manipulations, but a similar bijective app-
roach as in [2] also applies, as detailed in the extended version.
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The case of bipolar posets counted by edges corresponds to having w(i, j) =
1i�=0,j �=0 (cf. Remark 1). By some manipulations on the functional equation in
that case, we can show that the number en of plane bipolar orientations with n
edges coincides with the number of quadrant excursions of length n−1 with steps
in {0, E, S,NW,SE}. While the series

∑
n entn is non D-finite (as discussed in

the next section) the reduction to a quadrant walk model with small steps allows
to compute the sequence e1, . . . , en with time complexity O(n4) using O(n3) bit
space. The sequence starts as 1, 1, 1, 2, 5, 12, 32, 93, 279, 872, 2830, . . ..

The case of transversal structures corresponds to having w(i, j) =
(
i+j−2

i−1

)
for

i, j ≥ 1, 0 otherwise. The corresponding weighted quadrant walks can be turned
into unweighted quadrant walks with small steps (see the extended version for
details), ensuring that the number tn of transversal structures on n + 2 vertices
is equal to the coefficient d3n−2(1, 0), where dn(i, j) and un(i, j) are coefficients
specified by the recurrence
{

dn(i, j) = dn−1(i−1, j+1) + un−1(i−1, j+1),
un(i, j) = dn−2(i+1, j−1) + un−2(i+1, j−1) + un−1(i+1, j) + un−1(i, j − 1),

with boundary conditions dn(i, j) = un(i, j) = 0 for any (n, i, j) with n ≤ 0 or i <
0 or j < 0, with the exception (initial condition) of d0(0, 1) = 1. The recurrence
allows us again to compute the sequence t3, . . . , tn with O(n4) bit operations
using O(n3) bit space, giving an alternative to the recurrence in [12] (again the
series of tn is non D-finite). The sequence starts as 1, 2, 6, 24, 116, 642, 3938, . . ..

4 Asymptotic Counting Results

We adopt here the method by Bostan, Raschel and Salvy [3] (itself relying on
results by Denisov and Wachtel [5]) to obtain asymptotic estimates for the count-
ing coefficients of plane bipolar posets (by vertices and by edges) and transversal
structures (by vertices). Let S = SE ∪ {(−i, j), i, j ≥ 0} be the tandem step-
set. Let w : N2 → R+ satisfying the symmetry property w(i, j) = w(j, i). The
induced weight-assignment on S is w(s) = 1 for s = SE and w(s) = w(i, j)
for s = (−i, j). Let a

(w)
n be the weighted number (i.e., each walk σ is counted

with weight
∏

s∈σ w(s)) of quadrant tandem walks of length n, for some fixed

starting and ending points. Let S(z;x, y) := x
y z−2 +

∑
i,j≥0 w(i, j)yj

xi z
i+j , let

S(z) := S(z; 1, 1), and let ρ be the radius of convergence (assumed here to be
strictly positive) of S(z) − z−2. Let w̃(s) := 1

γ w(s)zy(s)−x(s)
0 be the modified

weight-distribution where γ, z0 > 0 are adjusted so that w̃(s) is a probability
distribution (i.e.

∑
s∈S w̃(s) = 1) and the drift is zero, which is here equiva-

lent to having z = z0 ∈ (0, ρ) solution of S′(z) = 0 (one solves first for z0
and then takes γ = S(z0)). Then according to [3] we have, for some c > 0,

a
(w)
n ∼ c γn n−α, where α = 1 + π/arccos(ξ), with ξ = −∂x∂yS(z0;1,1)

∂x∂xS(z0;1,1) .
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Plane bipolar posets counted by vertices correspond to w(i, j) =
(
i+j

i

)
, giv-

ing S(z;x, y) = x
y z−2+ 1

1−z/x−zy , z0 = 3−√
5

2 ≈ 0.38, γ = 1
2 (11 + 5

√
5) ≈ 11.09 ,

ξ = 1
4 (1 +

√
5) ≈ 0.81 , and α = 6 . We recover, as expected in view of the pre-

vious section, the asymptotic constants γ and α for plane permutations, which
were obtained in [4] (where c was also explicitly computed).
Plane bipolar posets counted by edges correspond to taking w(i, j) =
1i�=0,j �=0, which gives S(z;x, y) = x

y z−2+ z/x
1−z/x

zy
1−zy . We find that z0 ≈ 0.54 is the

unique positive root of z4 +z3 −3z2 +3z −1, γ = 5z30 + 7z20 − 13z0 + 9 ≈ 4.80 ,

ξ = 1 − z0/2 ≈ 0.73 , and α ≈ 5.14 . With the method in [3] one can also check
that α is irrational (this amounts to checking that the minimal polynomial P (X)
of ξ is such that no prime factor of P (12 (X + 1/X)) is cyclotomic) so the gener-
ating function of plane bipolar posets by edges is not D-finite.

Finally for transversal structures we take w(i, j) =
(
i+j−2

i−1

)
but to count

by vertices we aggregate the steps into groups formed by a SE step followed by
a (possibly empty) sequence of non-SE steps. The series for one (aggregated)
step is S(z;x, y) = xy−1z−2

1−yx−1z2/(1−zx−1−zy) , which gives z0 = 1/3, γ = 27/2 ,

ξ = 7/8 , and α ≈ 7.21 . Again the method of [3] ensures that the associated
series is not D-finite. Another consequence of our estimate is that the coding
procedure in [12] can be made asymptotically optimal, as it yields the bound
γ ≤ 27/2.
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Abstract. Let Kk be the family of connected graphs G whose sandpile
groups have minimal number of generators equal to |G| − k − 1, where
|G| is the number of vertices of G. We survey previous result on the
characterization of K1 and K2, including complete characterizations for
both cases. Furthermore, we shed some light on the characterization of
K3. Particularly, we give a minimal list of graphs that are forbidden for
the regular graphs in K3 and we use them to give a characterization of
the regular graphs in K3.

Keywords: Characteristic ideal · Sandpile group · Forbidden induced
subgraph

1 Introduction

The dynamics of the Abelian sandpile model was firstly studied by Bak, Tang and
Wiesenfeld in [4]. The sandpile group has been studied under different names, for
example: chip-firing game, critical group, group of components, Jacobian group,
Laplacian unimodular equivalence, or Picard group. We recommend the reader
the book [6] which is an excellent reference on the theory of chip-firing game
and its relations with other combinatorial objects like rotor-routing, hyperplane
arrangements, parking functions and dominoes.

Recall the Laplacian matrix L(G) of a graph G is given such that the (u, v)-
entry of L(G) is defined as

L(G)u,v =

{
degG(u) if u = v,

−m(u, v) otherwise,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 567–573, 2021.
https://doi.org/10.1007/978-3-030-83823-2_91
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where m(uv) is the number of edges between u and v. We will introduce the
Smith normal form (SNF) of a matrix, since in our context the SNF is relevant to
compute the structure of the sandpile group, which is isomorphic to the torsion
part of the cokernel of the Laplacian matrix of G, see [6, Chapter 4]. In the
following, let K(G) denote the sandpile group of G.

Two matrices M and N are said to be equivalent if there exist P,Q ∈ GLn(Z)
such that N = PMQ, and denoted by N ∼ M . Given a square integer matrix M ,
the SNF of M is the unique equivalent diagonal matrix diag(d1, d2, . . . , dn) whose
non-zero entries are non-negative and satisfy di divides di+1 whenever di > 0.
The diagonal elements of the SNF are known as invariant factors or elementary
divisors. This is because if N ∼ M , then coker(M) = Z

n/ImM ∼= Z
n/ImN =

coker(N). In particular, the fundamental theorem of finitely generated Abelian
groups states coker(M) ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdr

⊕ Z
n−r, where r is the rank

of M . Therefore, the structure of K(G) is obtained by the invariant factors of
L(G). The minimal number of generators of the torsion part of the cokernel of
M equals the number of invariant factors of SNF(M) greater than 1. One of
the interesting features of the sandpile group of connected graphs is that the
order |K(G)| is equal to the number τ(G) of spanning trees of the graph G. Let
f1(G) and φ(G) denote the number of invariant factors of L(G) equal to 1 and
the minimal number of generators of K(G), respectively. If G is a graph with n
vertices and c connected components, then n − c = f1(G) + φ(G).

The characterization of the n-vertex graphs having sandpile group with n−3
and n − 4 minimal number of generators has been of great interest. Note this is
the same that the characterization of the family Kk of simple connected graphs
such that the SNFs of their Laplacian matrices have k invariant factors equal
to 1, where k is either 2 or 3, respectively. Probably, it was initially posed
by R. Cori1. However, the first result appeared in 1991 when D. Lorenzini [8]
and A. Vince [11] noticed, independently, that the graphs in K1 consist only of
complete graphs. After, C. Merino in [9] posed interest on the characterization
of K2 and K3. In this extended abstract, we survey previous results on the topic,
and introduce our recent contribution [1] on this problem: the characterization
of the regular graphs in K3.

2 Previous Sandpile Groups Characterizations

In the following, we will consider only connected graphs. Given two graphs G
and H, the disjoint union will be denoted by G+H and the join by G∨H, that
is the graph obtained from G + H when each vertex in G is adjacent with each
vertex in H.

Trees and complete graphs are extremes on the whole spectrum of sandpile
groups possibilities. It is an standard exercise to verify that the complete graph
Kn with n vertices has K(Kn) ∼= ⊕n−2

i=1 Zn and φ(Kn) = n − 2. On the other
hand, the sandpile group of any tree T consists of only one element. This inspired

1 Personal communication with C. Merino.
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two questions. Which graphs have cyclic sandpile group? And which n-vertex
graphs have sandpile group with n−3 and n−4 minimal number of generators?

Fig. 1. Scaled number of connected graphs with n vertices and f1 invariant factors
equal to 1

In [7] and [12] D. Lorenzini and D. Wagner, based on numerical data, sug-
gested we could expect to find a substantial proportion of graphs having a cyclic
sandpile group. The reader might appreciate in Fig. 1 how the number of n-vertex
connected graphs with n − 2 invariant factors equal to 1 grows as n increase.
Based on this, D. Wagner conjectured [12] that almost every connected simple
graph has a cyclic sandpile group. A recent study [13] concluded that the prob-
ability that the sandpile group of a random graph is cyclic is asymptotically at
most 0.7935212, differing from Wagner’s conjecture.

In the following we will focus on the second question. This can be rephrased
as which graphs are in K2 and K3? Our first reaction might be to ask for the
graphs belonging to K1. This was answered independently by D. Lorenzini and
A. Vince.

Proposition 1 [8,11]. The family K1 consists of complete graphs.

Now, let us focus on results on the family K2. In the following, we will denote
by di(G), the i-th invariant factor of the SNF of the Laplacian matrix of graph
G.

Let G and H be two graphs. The one point union G • H of G and H is the
graph obtained from the union of G and H and identifying a vertex of G with a
vertex of H. In [5], it was noticed that the graphs in K2 with a cut vertex must
be isomorphic to Kn • Km such that gcd(n,m) > 1. Then we should focus on
the 2-connected simple graphs.

We already noticed that complete graphs with n ≥ 3 vertices have d3 = n. In
[10], it was characterized the graphs in K2 whose third invariant factor is equal
to n, n − 1, n − 2, or n − 3.
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Proposition 2 [10]. Let G be a simple connected graph with n ≥ 5 vertices such
that G �= Kn. Let d3 be the third invariant factor of SNF(L(G)). Then

(a) d3 = n if and only if G = Kn − e, where e is an edge of Kn,
(b) d3 = n − 1 if and only if G is Kn−1 with an additional vertex adjacent with

a vertex in Kn−1,
(c) d3 = n − 2 if and only if G is either K5 − 2e or K5 − C4,
(d) d3 = n − 3 if and only if G is one of the following graphs: K2,3, K5 − C3,

K6 − C3, K7 − 2C3, K3,3 or K7 − K3,3.

One disadvantage of the family Kk, that make difficult its characterization,
is that it is not closed under induced subgraphs. For instance, consider the cone
c(S3) of the star with 3 leaves, we have K(c(S3)) ∼= Z2 ⊕ Z10 and c(S3) ∈ K2,
but S3 belongs to K3. Similarly, K6 \{2P2} belongs to K3 meanwhile K5 \{2P2}
belongs to K2. Moreover, if H is an induced subgraph of G it is not always true
that K(H) � K(G). However, in [5] it was proved that the graphs shown in
Fig. 2 are induced forbidden subgraphs for graphs in K2. Then, Hou, Shiu and
Chan noticed that graphs in K2 must have diameter at most 2, and characterized
the complete multipartite graphs in K2.

P4 X-house diamond+ K2 P4 + P2

Fig. 2. Some forbidden graphs for K2

Proposition 3. Let G be a complete multipartite graph on n > 3 vertices. Then,
G ∈ K2 if and only if G is one of the following graphs:

(a) K2,n−2,
(b) Kn1,n2 with 2 < n1 ≤ n2 and gcd(n1, n2) > 1,
(c) Kn1,n2,n3 with 2 ≤ n1 ≤ n2 ≤ n3 and n ≡ ni mod 2 for i = 1, 2, 3,
(d) K1,n1,n2 with gcd(n1 + 1, n2 + 1) > 1,
(e) Kn−2 ∨ K2,
(f) K2 ∨ Kn−2,
(g) Kn−l ∨ Kl with l ≤ 3, n ≤ 6 and gcd(n, l) > 1.

Note the list of forbidden graphs in Fig. 2 can be refined, for instance by
removing red nodes from P4 + P2, we obtain P4. In [2] there were found that
the minimal forbidden induced graphs for K≤2 (the family of simple connected
graphs such that the SNFs of their Laplacian matrices have at most 2 invariant
factors equal to 1) are P4, X-house, K6 \ M2, cricket and dart, see Fig. 3.

By using the minimal forbidden graphs for K≤2, a complete characterization
of K2 was obtained in [2].
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K6 \M2 cricket dart

Fig. 3. More forbidden graphs for K2

Proposition 4. Let G be a simple graph. Then G ∈ K2 if and only if G is one
of the following:

(a) Kn1,n1,n3 with n1 ≥ n2 ≥ n3 satisfying the following conditions:
(i) n1 = 2 and n2 = 1,
(ii) n1 ≥ 2 = n2 and n3 = 0,
(ii) n1, n2 ≥ 2, n3 = 0 and gcd(n1, n2) �= 1,
(iii) n1 ≥ 3 and n2 = n3 = 1,
(iv) n1, n2 ≥ 3, n3 = 1 and gcd(n1 + 1, n2 + 1) �= 1, or
(v) n1, n2, n3 ≥ 2 with the same parity.

(b) (nK1) ∨ (Km1 + Km2) with m1 ≥ m2 and n satisfying the following condi-
tions:
(i) n ≥ 2 = m1 and m2 = 0,
(ii) n = 2, m1 ≥ 3 and m2 = 0,
(iii) n,m1 ≥ 3, m2 = 0 and gcd(n,m1) �= 1,
(iv) n ≥ 1 and m1 = m2 = 1,
(v) m1 ≥ 1 and n = m2 = 1,
(vi) n,m1 ≥ 2, m2 = 1 and gcd(n − 1,m1 + 1) �= 1,
(vii) n = 1, m1,m2 ≥ 2 and gcd(m1 + 1,m2 + 1) �= 1, or
(viii) n,m1,m2 ≥ 2 with the same parity.

In [3], there were found 49 forbidden graphs for K3. However, a complete
characterization of K3 seems to be a hard problem.

3 Regular Graphs in K3

Recently, in [1] we approach the characterization of the regular graphs in K3. For
this, we first obtained a set of minimal forbidden induced graphs for the regular
graphs in K≤3 (the family of simple connected graphs such that the SNFs of
their Laplacian matrices have at most 3 invariant factors equal to 1), see Fig. 4.
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fork 4-pan bull dart P5 co-4-pan 3-fan

kite S6 + e diamond+ K2 K3,3 + e P3 + P3 K1,1,1,2,2 K1,1,1,1,4

Fig. 4. The family of graphs F .

Then, we obtained a characterization of the regular graphs in K≤3. The proof
can be found in the full version [1] of this extended abstract.

Theorem 1 [1]. Let G be a connected simple regular graph. Then G ∈ K≤3 if
and only if G is one of the following:

(a) C5,
(b) K3�K2,
(c) a complete graph Kr,
(d) a regular complete bipartite graph Kr,r,
(e) a regular complete tripartite graph Kr,r,r,
(f) a regular complete 4-partite graph Kr,r,r,r,
(g) C

(−r,−r,−r,−r)
4 , for any r ∈ N.

where C
(−r,−r,−r,−r)
4 is the graph obtained by replacing the vertices in C4 for

cliques of size r and preserving adjacency.

Acknowledgements. We are grateful to the Graduate Research Workshop in Com-
binatorics (GRWC) 2018 for allowing the initial framework for this collaboration.
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Abstract. This paper provides upper and lower bounds on the kissing
number of congruent radius r > 0 spheres in hyperbolic H

n and spherical
S
n spaces, for n ≥ 2. For that purpose, the kissing number is replaced

by the kissing function κH(n, r), resp. κS(n, r), which depends on the
dimension n and the radius r.

After we obtain some theoretical upper and lower bounds for κH(n, r),
we study their asymptotic behaviour and show, in particular, that
κH(n, r) ∼ (n−1)·dn−1 ·B(n−1

2
, 1
2
)·e(n−1)r, where dn is the sphere pack-

ing density in R
n, and B is the beta-function. Then we produce numeric

upper bounds by solving a suitable semidefinite program, as well as lower
bounds coming from concrete spherical codes. A similar approach allows
us to locate the values of κS(n, r), for n = 3, 4, over subintervals in [0, π]
with relatively high accuracy.

Keywords: Sphere packing · Kissing number · Semidefinite
programming

1 Preliminaries

The kissing number κ(n) is the maximal number of unit spheres that can simulta-
neously touch a central unit sphere in n-dimensional Euclidean space Rn without
pairwise overlapping. The research on the kissing number leads back to 1694,
when Isaac Newton and David Gregory had a discussion whether κ(3) is equal
to 12 or 13 [6].

The exact value of κ(n) is only known for n = 1, 2, 3, 4, 8, 24, whereas for
n = 1, 2 the problem is trivial. In 1953, Schütte and van der Waerden proved
that κ(3) = 12 [24]. Furthermore, Delsarte, Goethals, and Seidel [9] developed
a linear programming (LP) bound, which was used by Odlyzko and Sloane [22]
and independently by Levenshtein [18] to prove κ(8) = 240 and κ(24) = 196560.
Later, Musin [21] showed that κ(4) = 24 by using a stronger version of the LP
bound.

The study of the Euclidean kissing number and the contact graphs of kissing
configurations in R

n is still an active area in geometry and optimisation, with a
few recent developments [2,3,10,16].
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In this work we consider an analogous problem in n-dimensional hyperbolic
space H

n, as well as in n-dimensional spherical space S
n. In these cases we are

able to reduce our consideration to the Euclidean picture, and it turns out that
the kissing number for all of these spaces equals the maximal cardinality of a
spherical code with certain minimal angular distance. Then the classical spherical
cap method [13, § X.50] can be applied, as well as the recent approaches using
semidefinite programs (SDP) as exemplified in the works of Bachoc and Vallentin
[1], Mittelmann and Vallentin [20], and Machado and Oliveira [19].

Some other non-Euclidean geometries, notably the ones on Thurston’s list of
the eight 3-dimensional model spaces, have been studied in [25,26].

By a sphere of radius r in the hyperbolic space Hn we mean the set of points
at a given geodesic distance r > 0 from a specific point, which is called the centre
of the sphere.

In a kissing configuration each sphere in H
n has the same radius. Unlike in

Euclidean spaces, the kissing number in H
n depends on the radius r, and we

denote it by κH(n, r).
The kissing number in S

n is denoted by κS(n, r), and also depends on the
radius r of the spheres in kissing configuration, although here r belongs to the
bounded interval (0, π]. Since Sn is a compact metric space, κS(n, r) is a decreas-
ing function of r, while κH(n, r) increases with r exponentially fast.

The proofs of all theorems are contained in the expanded version of the paper
available on the arXiv [11]. The accompanying computer code [12] accompanying
the paper allows to reproduce our numerical results obtained via semidefinite
programming.

2 Kissing Number in Hyperbolic Space

In this section we present some theoretical upper and lower bounds for the
kissing function κH(n, r), so that we can analyse its asymptotic behaviour in the
dimension n, and in the radius r, for large values of the respective parameters.
We refer the reader to [23, § 2.1] and [23, § 4.5] for the necessary facts about
hyperbolic and spherical geometry.

2.1 Upper and Lower Bounds

The principal tool in the proof of the upper bound is passing to the Euclidean
setting and then using the classical “spherical cap” method, cf. [13, § X.50].

Theorem 1. For any integer n ≥ 2 and a non-negative number r ≥ 0, we have
that

κH(n, r) ≤ 2B
(

n−1
2 , 1

2

)

B
(

sech2r
4 ; n−1

2 , 1
2

) ,

where B(x; y, z) =
∫ x

0
ty−1(1 − t)z−1dt, for all x ∈ [0, 1] and y, z > 0, is the

incomplete beta-function, and B(y, z) = B(1; y, z).
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By using a purely Euclidean picture of the arrangement of k ≤ κH(n, r)
spheres of radius r in H

n seen in the Poincaré ball model, we obtain that the
kissing number in H

n coincides with the maximal number of spheres of radius
1
2

(
tanh 3r

2 − tanh r
2

)
that can simultaneously touch a central sphere of radius

tanh r
2 in R

n without pairwise intersecting. This is the main observation that
allows us to obtain the upper bound on κH(n, r). An analogous lower bound for
κH(n, r) also holds.

Theorem 2. For any integer n ≥ 2 and a non-negative number r ≥ 0, we have
that

κH(n, r) ≥ 2B
(

n−1
2 , 1

2

)

B
(
sech2r − sech4r

4 ; n−1
2 , 1

2

) ,

where B(x; y, z) =
∫ x

0
ty−1(1 − t)z−1dt, for all x ∈ [0, 1] and y, z > 0, is the

incomplete beta-function, and B(y, z) = B(1; y, z).

2.2 Asymptotic Behaviour

One of the main corollaries of the above bounds is that they are asymptotically
sharp and produce the following corollary.

Theorem 3. As r → ∞, the following asymptotic formula holds:

kH(n, r) ∼ (n − 1) dn−1 B

(
n − 1
2

,
1
2

)
e(n−1)r,

where dn be the best packing density of Rn by unit spheres.

Note, that the exponential asymptotic behaviour of the kissing number
κH(2, r), as r → ∞, follows readily from the work by Bowen [5].

3 Kissing Number in Spherical Space

As the standard sphere S
n can be considered as a submanifold of Rn+1 with

the induced metric of constant sectional curvature +1, one can also use the
corresponding Euclidean picture in order to obtain the following upper and lower
bounds for the spherical kissing number κS(n, r).

Theorem 4. For any integer n ≥ 2 and a non-negative number r ≤ π
3 , we have

that

κS(n, r) ≤ 2B
(

n−1
2 , 1

2

)

B
(
sec2 r

4 ; n−1
2 , 1

2

) ,

where B(x; y, z) =
∫ x

0
ty−1(1 − t)z−1dt, for all x ∈ [0, 1], and y, z > 0, is the

incomplete beta-function, and B(y, z) = B(1; y, z).
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Theorem 5. For any integer n ≥ 2 and a non-negative number r, we have that

κS(n, r) ≥

⎧
⎪⎪⎨

⎪⎪⎩

2B(n−1
2 , 12 )

B
(
sec2 r− sec4 r

4 ;n−1
2 , 12

) , if 0 ≤ r ≤ π
4 ,

2B(n−1
2 , 12 )

2B(n−1
2 , 12 )−B

(
sec2 r− sec4 r

4 ;n−1
2 , 12

) , if π
4 ≤ r ≤ π

3 .

where B(x; y, z) =
∫ x

0
ty−1(1 − t)z−1dt, for all x ∈ [0, 1], and y, z > 0, is the

incomplete beta-function, and B(y, z) = B(1; y, z).

4 Semidefinite Programming Bounds

In order to obtain much more precise upper bounds for κH(n, r), we adapt the
SDP by Bachoc and Vallentin [1]. On the other hand, concrete kissing configura-
tions provide lower bounds. A great deal of the latter is taken from the spherical
codes produced and collected by Hardin, Smith, and Sloane [17], which often
turn out to be optimal.

For n ≥ 3, let Pn
k (u) denote the Jacobi polynomial of degree k and parameters

((n−3)/2, (n−3)/2), normalized by Pn
k (1) = 1. If n = 2, then Pn

k (u) denotes the
Chebyshev polynomial of the first kind of degree k. For a fixed integer d > 0, we
define Y n

k to be a (d−k+1)×(d−k+1) matrix whose entries are polynomials on
the variables u, v, t defined by (Y n

k )i,j(u, v, t) = Pn+2k
i (u)Pn+2k

j (v)Qn−1
i (u, v, t),

for 0 ≤ i, j ≤ d − k, where

Qn−1
k (u, v, t) = ((1 − u2)(1 − v2))k/2Pn−1

k

(
t − uv

√
(1 − u2)(1 − v2)

)

.

The symmetric group on three elements S3 acts on a triple (u, v, t) by per-
muting its components. This induces the action σp(u, v, t) = p(σ−1(u, v, t)) on
R[u, v, t], where σ ∈ S3. By taking the group average of Y n

k , we obtain the matrix
Sn

k (u, v, t) = 1
6

∑
σ∈S3

σY n
k (u, v, t), whose entries are invariant under the action

of S3.
Let A(n, θ) be the maximal number of points on the unit sphere with minimal

angular distance θ. In [1], Bachoc and Vallentin proved the following theorem,
where J denotes the “all 1’s” matrix.

Theorem 6. Any feasible solution of the following optimisation program gives
an upper bound on A(n, θ):

min 1 +
d∑

k=1

ak + b11 + 〈J, F0〉,

ak ≥ 0 for k = 1, . . . , d,
(

b11 b12
b21 b22

)

 0,

Fk ∈ R
(d−k+1)×(d−k+1) and Fk 
 0 for k = 0, . . . , d,
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d∑

k=1

akPn
k (u) + 2b12 + b22 + 3

d∑

k=0

〈Sn
k (u, u, 1), Fk〉 ≤ −1 for (u, u, 1) ∈ �0,

b22 +
d∑

k=0

〈Sn
k (u, v, t)Fk〉 ≤ 0 for (u, v, t) ∈ �,

where Δ0 ⊂ R
3 and Δ ⊂ R

3 are certain domains determined by the geometry of
the problem.

We show that the following modifications of the SDP in Theorem 6 give the
upper bounds on the non-Euclidean kissing numbers κH(n, r) and κS(n, r).

Theorem 7. Any feasible solution of the optimisation program in Theorem 6
with � =

{
(u, v, t) ∈ R

3 : −1 ≤ u ≤ v ≤ t ≤ 1 − 1
1+cosh(2r) and 1 + 2uvt − u2−

v2 − t2 ≥ 0
}
and �0 =

{
(u, u, 1) : −1 ≤ u ≤ 1 − 1

1+cosh(2r)

}
provides an upper

bound on κH(n, r).

For certain dimensions and radii, we compute the lower bounds by using
the results of Sect. 2, and the upper bounds due to Levenshtein [18] and Coxeter
[4,7,15]. Then, we compare them with the lower bounds given by concrete kissing
configurations and with the SDP upper bounds, respectively.

Theorem 8. Any feasible solution of the optimisation program in Theorem 6
with � =

{
(u, v, t) ∈ R

3 : −1 ≤ u ≤ v ≤ t ≤ 1 − 1
1+cos(2r) and 1 + 2uvt − u2−

v2 − t2 ≥ 0
}

and �0 =
{
(u, u, 1) : −1 ≤ u ≤ 1 − 1

1+cos(2r)

}
provides an upper

bound on κS(n, r).

The “jumps” for the kissing number kS(3, r) can be computed by using the
solutions of Tammes’ problem [8,14,24]. In order to compute the approximate
shape of κS(4, r), we need the upper bounds from SDPs, and lower bounds from
concrete configurations [17]. For each radius r of these exact spherical codes, we
compute the lower bound given by Theorem 5, as well as the upper bound by
the SDP, together with the bounds due to Levenshtein [18] and Coxeter [4,7,15].
The tables with the data are voluminous and can be accessed in the expanded
version of the paper available on the arXiv [11]. The computer code used to
produce the results (written in SageMath and Julia) is available on GitHub [12].

References

1. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite
programming. J. Am. Math. Soc. 21, 909–924 (2008)

2. Bezdek, K.: Contact numbers for congruent sphere packings in Euclidean 3-space.
Discret. Comput. Geom. 48, 298–309 (2012)

3. Bezdek, K., Reid, S.: Contact graphs of unit sphere packings revisited. J. Geom.
104, 57–83 (2013)



Kissing Number in Non-Euclidean Spaces 579
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groups. Beiträge Algebra Geom. 52, 413–430 (2011)

http://arxiv.org/abs/2003.11832
http://arxiv.org/abs/2003.05547
https://github.com/sashakolpakov/non-euclidean-kissing-number
http://neilsloane.com/packings/
http://neilsloane.com/packings/


Decomposing Cubic Graphs with Cyclic
Connectivity 5
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Abstract. Let G be a cyclically 5-connected cubic graph with a cycle
separating 5-edge-cut separating G into two components G1 and G2.
We prove that each component Gi can be completed to a cyclically 5-
connected cubic graph by adding three vertices, unless Gi is a cycle of
length five. Our work extends similar results proved by Andersen et al.
for cyclic connectivity 4 in 1988.

Keywords: Cubic graphs · Decomposition · Cyclic connectivity ·
Girth

1 Introduciton

An edge-cut of a connected graph G, or a cut for short, is any set S of edges
of G such that G − S is disconnected. An edge-cut is cycle-separating if at least
two components of G − S contain a cycle.

We say that a connected graph G is cyclically k-edge-connected if it con-
tains no cycle-separating edge-cut consisting of fewer than k edges. The cyclic
edge-connectivity of G, denoted by ζ(G), is the largest number k ≤ β(G), where
β(G) = |E(G)| − |V (G)| + 1 is the cycle rank of G, for which G is cyclically
k-edge-connected (cf. [9,10]). Note that the graphs K4 and K3,3 are cyclically
k-edge-connected for every positive integer k because they contain no cycle sep-
arating cut, although ζ(K4) = 3 and ζ(K3,3) = 4.

The cyclic connectivity of every cubic graph G is bounded above by the girth
of G, denoted by g(G), which is the length of a shortest cycle in G [9,10]. One can
easily check that for a cubic graph G with ζ(G) ≤ 3, the value ζ(G) is equal to
the usual vertex-connectivity and edge-connectivity of G. Furthermore, the cyclic
edge-connectivity and the cyclic vertex-connectivity, which is defined in a similar
manner, of every cubic graph coincide. Therefore, we shall use terms cyclically
k-connected and cyclic connectivity instead of cyclically k-edge-connected and
cyclic edge-connectivity. Note that for a cubic graph G a cycle-separating cut S
of minimum size consists of independent edges and that G − S has exactly two
components called cyclic parts or fragments.

Cubic graphs offer a convenient approach to several widely-open conjectures
such as the Tutte’s 5-flow conjecture, the cycle double cover conjecture, or the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 580–585, 2021.
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Berge-Fulkerson conjecture. It is known that minimal counterexamples to these
conjectures are cubic and also not 3-edge-colourable. Such graphs are commonly
called snarks. Moreover, it has been proven that the minimal counterexample
to the 5-flow conjecture is cyclically 6-connected [6]; it is cyclically 4-connected
for the cycle double cover conjecture [12], and cyclically 5-connected for the
Berge-Fulkerson conjecture [7]. On the other hand, Jaeger and Swart conjectured
that there are no cyclically 7-connected snarks [2]. Cyclic connectivity almost
inevitably emerges in the study of many other problems concerning cubic graphs.
For instance, it is fundamental in an approach to a conjecture that every Cayley
graph (of order more than two) has a Hamilton cycle [3], and to Tutte’s 3-edge-
colouring conjecture [11]. Hence, cyclic connectivity plays a crucial role in the
study of aforementioned conjectures.

Small edge-cuts in cubic graphs enable us to use inductive arguments. If G is a
graph from some class C with a small cycle-separating cut, it is useful, if possible,
to decompose G along the cut into two smaller graphs contained in C. Andersen et
al. [1] established such results for the class of cyclically 4-connected cubic graphs.
They showed that each cyclic part of a cyclically 4-connected cubic graph can
be extended to a cyclically 4-connected cubic graph by adding a pair of adjacent
vertices and restoring 3-regularity. Moreover, they characterised graphs where
it is sufficient to add only two additional edges. Using this result they proved a
lower bound on the number of removable edges in a cyclically 4-connected cubic
graph [1]. Later, Goedgebeur et al. constructed and classified all snarks with
cyclic connectivity 4 and oddness 4 up to order 44 [4,5].

In this paper, we examine how a cyclic part H of a cubic graph with cyclic
connectivity 5 can be completed to a cyclically 5-connected cubic graph. For
more detailed proofs, we refer the reader to [8].

2 Preliminaries

All graphs considered here are simple and cubic; subcubic graphs occur as sub-
graphs of cubic graphs. A subgraph of a graph G induced by a set of vertices X
is denoted by G[X]. The set of edges of the graph G that have one end in X and
the other in V (G) − X is denoted by δG(G[X]), or δG(X). In this notation, we
omit the graph G whenever it is clear from the context. Also, we will write only
degX(v) instead of degG[X](v) to denote the degree of vertex v in the induced
subgraph G[X].

The following proposition [9, Proposition 4] of Nedela and Škoviera implies
that each cyclic part of a cyclically 5-connected graph is 2-connected.

Proposition 1. Let G be a connected cubic graph. Then each cyclic part of G
is connected. Moreover, if ζ(G) > 3. then each cyclic part is 2-connected.

If H is a non-empty induced subgraph of a cyclically 5-connected cubic graph
G, then it is either cyclic, and thus |δG(H)| ≥ 5, or H is acyclic. In the latter
case the relation between the number |δG(H)| and the number of vertices of H is
determined by following well-known lemma. Since H is non-empty, we get bound
on |δG(H)|.
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Lemma 1. Let M be a connected acyclic induced subgraph of a cubic graph G.
Then |δG(M)| = |V (M)| + 2.

Corollary 1. If M is a non-empty induced subgraph of a cyclically 5-connected
cubic graph G, then |δG(M)| ≥ 3.

In general, a cyclic induced subgraph H of a cyclically 5-connected cubic
graph with |δG(H)| = 6 needs not to be 2-connected, since H may contain
a bridge. However, then H contains only one bridge which is additionally in
a special position.

Lemma 2. Let H be a connected induced subgraph of a cyclically 5-connected
cubic graph G such that |δG(H)| = 6. Then exactly one of the following condi-
tions holds:

(i) H is acyclic;
(ii) H contains exactly one bridge whose one end x is incident with two edges

from δG(H) and H − x is a 2-connected cyclic part of G;
(iii) all the edges from δG(H) are independent and H is 2-connected.

Finally, we formalise the process of completing a cyclic part to a cubic graph
by adding three new vertices lying on a path of length two.

Definition 1. Let H be a cyclic part of a cubic graph G with ζ(G) = 5 and
let a1, a2, a3, a4, and a5 be the vertices of H of degree 2. We add to H three
vertices x, y and z and edges xy, yz, xa1, xa2, ya3, za4, and za5. We denote
the graph obtained in this way by H(a1, a2, a3, a4, a5). Throughout this paper, the
three newly added vertices will be consistently denoted by x, y and z.

3 Extensions Without Small Cycles

In this section we show that each cyclic part H �∼= C5 of a cubic graph with
ζ(G) = 5 can be extended to a cubic graph H̄ = H(a1, a2, a3, a4, a5) which has
girth at least 5.

Lemma 3. Let H be a cyclic part of a cubic graph with ζ(G) = 5 which is not
a 5-cycle and let A be the set of vertices of H of degree 2. Then each vertex from
A has at most one neighbour in A.

Proof. Suppose that a1 is a vertex from A with two neighbours a2 and a3 in A.
Then the induced subgraph G[V (H)−{a1, a2, a3}] has only four outgoing edges,
hence it is acyclic and contains only two vertices due to Lemma 1. Therefore,
H is a 5-cycle; a contradiction.

Lemma 4. Let H be a cyclic part of a cubic graph G with ζ(G) = 5 that is not
a 5-cycle. Then there exists a permutation a1a2a3a4a5 of vertices of H of degree
2 such that H(a1, a2, a3, a4, a5) has girth at least five.
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Proof. Let A = {a1, a2, a3, a4, a5} be the set of the five degree 2 vertices of
H. Furthermore, let D be the graph with vertex set A where aiaj ∈ E(D) if
distH(ai, aj) = 2 for each ai, aj ∈ A. Note that if aiaj ∈ E(D), then there exist
exactly one path aivaj in H. Observe that the graph H(a1, a2, a3, a4, a5) has
girth at least five if and only if

degA(a3) = 0 and a1a2, a4a5 /∈ E(D) ∪ E(H[A]).

By Lemma 3, there are at most two edges between the vertices from A. We
divide the proof into three cases according to the number of edges in H[A].

Case (i). Assume that the induced subgraph H[A] contains two edges, say a1a5

and a2a4. We show that all the vertices a1, a2, a4, and a5 have at most one neigh-
bour in D among the vertices {a1, a2, a4, a5}. Hence, there exists a permutation
b2b4 of {a2, a4} such that a1b2, a5b4 /∈ E(D) and thus g(H(a1, b2, a3, b4, a5)) ≥ 5.

Case (ii). Let H[A] contain only one edge, which we denote by a1a5 in such
a way that degD(a5) ≤ degD(a1). We show that degD(a1) ≤ 2. It follows that
one of the edges a5a4 and a5a3, say it is a5a4, is not in E(D) and then the graph
H(a1, a2, a3, a4, a5) has girth at least five.

Case (iii). Finally, assume that H[A] contains no edges. We show that one can
choose four distinct vertices b1, b2, b4, b5 ∈ V (D) such that b1b2, b4b5 /∈ E(D).
It is a simple matter to verify that if this is not possible, then D contains K4

as a subgraph, or it contains two vertices of degree 4. One can easily show that
both alternatives lead to a contradiction.

The graph H(a1, b2, a3, b4, a5) from the previous lemma need not to be cycli-
cally 5-connected. However, if it is not, due to its girth, we are able to specify
the position of a small cut. Other positions of a small cut lead to a subgraph
with at most four outgoing edges, necessarily acyclic, which produces together
with the vertex x or z a small cycle.

Lemma 5. Let H be a cyclic part of a cubic graph G with ζ(G) = 5 and let
a1, a2, a3, a4, and a5 be the vertices of degree 2 in H. Assume that the graph
H̄ = H(a1, a2, a3, a4, a5) has girth 5 and that H̄ contains a minimum cycle-
separating cut S of size smaller than 5. Then |S| = 4 and the cut S separates
{a1, a2, x} from {a4, a5, z}.

4 Main Result

Theorem 1. Let H be a cyclic part of a cubic graph G with ζ(G) = 5. If H
is not a cycle of length five, then H can be extended to a cyclically 5-connected
cubic graph by adding three new vertices on a path of length two and by restoring
3-regularity.
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Proof (sketch). By Lemma 4, the graph H1 = H(a1, a2, a3, a4, a5) has girth 5
for some permutation a1a2a3a4a5 of the degree 2 vertices of H. If ζ(H1) ≥ 5,
we are done, so we assume that H1 contains a cycle-separating cut S1 whose
removal leaves components C ′

1 and C ′
2. According to Lemma 5 we know that

|S1| = 4, and without loss of generality a1, a2 ∈ C ′
1 and a3, a4, a5 ∈ C ′

2. Put
C1 = C ′

1 − {x, y, z} and C2 = C ′
2 − {x, y, z}.

Since H1 has girth at least 5, the subgraphs C1 and C2 have to be cyclic
for otherwise their vertices together with x or z would produce a short cycle.
According to Lemma 2, the component C2 is 2-connected or contains a bridge
incident with some ai and C2 − ai is 2-connected.

Suppose that C2 is 2-connected. We choose {i, j, k} = {3, 4, 5} in such a way
that aiaj , aiak /∈ E(H), which is possible due to Lemma 3. It follows that the
graph H2 = H(a1, aj , ai, a2, ak) has girth at least 5 (see Fig. 1a).

We show that the graph H2 is cyclically 5-connected. Suppose that S2 is
a smallest cut of H2 of size at most 4. From Lemma 5 we know that S2 separates
{x, a1, aj} from {z, a2, ak}. Therefore S2 contains one of the edges xy and yz.
Moreover, since a1 and a2 lie in the component C1, which is 2-connected, S2

contains at least two edges from C1. Similarly, S2 contains at least two edges
from the 2-connected component C2. Therefore |S2| ≥ 5, which is a contradiction.

If the subgraph C2 contains a bridge connecting a2 to the 2-connected sub-
graph D2 = C2 − a, then we put Hb = H(a1, aj , ai, ak, a2) (see Fig. 1b) and
proceed analogously.

a1

a2

aj
ai
ak

x

y

z

C1

C2

(a) C2 is 2-connected

a1

a2

ai

aj

ak

x

y

z

C1

D2

C2

(b) C2 contains a bridge

Fig. 1. Completions of the cyclic part H to a cyclically 5-connected cubic graph

5 Concluding Remarks

There is only one way how a cyclic part H of a cubic graph with cyclic connec-
tivity 5 can be completed to a cubic graph by adding fewer than three vertices.
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Namely, we can add one new vertex and connect it to three 2-valent vertices of
H, and add one new edge between the remaining two 2-valent vertices. Assume
that H contains three vertices a1, a2 and a3 of degree 2 such that all of them
have some common neighbour v, or there is a 6-cycle a1v1a2v2a3v3 in H (cf. [1,
Lemma 9]). Then, in every case, two of the vertices a1, a2 and a3 are connected
by an edge or are connected to the newly added vertex which yields a 3-cycle
or a 4-cycle, respectively. Thus, the cyclic part H cannot be completed to a
cyclically 5-connected cubic graph by adding only one vertex. Clearly, there are
infinitely many cyclic parts satisfying one of the two aforementioned conditions.
This stands in contrast to the only exception (the 5-cycle) for completing H by
adding a path of length two. It remains an open problem to characterise all such
cyclic parts that cannot be completed by adding only one new vertex.
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7. Máčajová, E., Mazzuoccolo, G.: Reduction of the berge-fulkerson conjecture to
cyclically 5-edge-connected snarks. Proc. Am. Math. Soc. 148, 4643–4652 (2020).
https://doi.org/10.1090/proc/15057
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Abstract. We prove that for fixed k, every k-uniform hypergraph on
n vertices and of minimum codegree at least n/2 + o(n) contains every
spanning tight k-tree of bounded vertex degree as a subgraph. This gener-
alises a well-known result of Komlós, Sárközy and Szemerédi for graphs.
Our result is asymptotically sharp.

Keywords: Hypergraphs · Trees

1 Introduction

Forcing spanning substructures with minimum degree conditions is a central
topic in extremal graph theory. For instance, a classic result of Dirac [5] from 1952
states that any graph on n � 3 vertices with minimum degree at least n/2
contains a Hamilton cycle. In the same spirit, Bollobás [2] conjectured in the
1970s that all graphs on n vertices with minimum degree at least n/2 + o(n)
would contain every n-vertex tree of bounded maximum degree as a subgraph.
Komlós, Sárközy and Szemerédi [6] proved this conjecture in 1995, introducing
a prototype version of what is now known as the Blow-Up Lemma.

In recent years, many efforts have been made to extend Dirac’s theorem to
k-uniform hypergraphs, also called k-graphs, using various notions of degrees
or cycles. Notably, Rödl, Ruciński and Szemerédi [9] proved that k-graphs with
minimum codegree at least n/2 + o(n) contain a tight Hamiltonian cycle. For
more results, we refer the reader to [10] and the references therein.

Our main result is an extension of the Komlós–Sárközy–Szemerédi theorem
to k-graphs. There is more than one definition of ‘hypergraphs trees’ in the lit-
erature, and we will focus on the one most appropiate to our context, the tight
k-trees, which we call here simply k-trees. Their definition is a simple generali-
sation of defining (non-trivial) trees in graphs: a k-tree is a k-graph whose edges
can be ordered in such a way that every edge e, except the first one, contains a
vertex v which is not in any previous edge, and furthermore, e\{v} is contained
in some previous edge.

To state our main result, we need two more definitions. For a k-graph H, the
maximum 1-degree Δ1(H) is the maximum number m such that some vertex
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 586–592, 2021.
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of H is contained in m edges. The minimum codegree δk−1(H) is the largest m
such that every set of k − 1 vertices is contained in at least m edges of H.

Theorem 1. For all k,Δ � 2 and γ > 0 there is n0 such that every k-graph
H on n � n0 vertices with δk−1(H) � (1/2 + γ)n contains every k-tree T on n
vertices with Δ1(T ) � Δ.

Observe that, for k = 2, this yields the aforementioned result of Komlós,
Sárközy and Szemerédi [6] about spanning bounded-degree trees in graphs.

The full proof of Theorem 1 can be found in [8]. It relies on the absorption
method, combined with structural results about bounded-degree k-trees which
allow us to decompose a large k-tree into smaller k-trees of controlled size. A
sketch of our proof is given in Sects. 3 and 4.

We remark that the condition on δk−1(H) in Theorem 1 is best possible,
up to the term γn and a term depending on k only. The constructions exhibiting
these lower bounds will be presented in the next section.

Proposition 1. For every k � 2 and for every k-tree T on n � k vertices, there
exists f(T ) � 2k + k − 1 and a k-graph H on n vertices not containing T , with
δk−1(H) � �n/2� − f(T ). Moreover, there are k-trees T with f(T ) = k − 1.

2 Lower Bounds

To show Proposition 1, we need a basic fact about k-trees. We say that a k-graph
H is k-partite if there is a partition {V1, . . . , Vk} of V (H) such that |e ∩ Vi| = 1
for each e ∈ E(H) and i ∈ [k]. Using induction on the number of vertices, it is
easy to show that every k-tree is k-partite with a unique possible k-partition.

We will use the following family of k-graphs.

Definition 1. For disjoint sets A,B, and 0 � i � k, let Hi = {e ⊆ A ∪ B :
|e| = k, |e ∩ A| = i}, and I = {i ∈ {0, . . . , k} : i �≡ �k/2� mod 2}. Define
H(A,B) :=

⋃
i∈I Hi.

Assuming that |A ∪ B| � k, note that δk−1(H(A,B)) � min{|A|, |B|} −
k + 1. There are not many ways to embed a k-tree into H(A,B). Essentially,
the k-partition of a k-tree must respect the partition {A,B} of H(A,B) in any
embedding, as shown in the following lemma.

Lemma 1. Let k, n ∈ N, let H(A,B) be as in Definition 1, with |A∪B| = n � k.
Let T be a k-tree, with a unique k-partition V1 ∪ · · · ∪ Vk, and an embedding
φ : V (T ) → V (H(A,B)). Then, for each 1 � i � k either φ(Vi) ⊆ A or
φ(Vi) ⊆ B.

Now we are ready for the proof of Proposition 1.
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Proof (of Proposition 1). Given T , let {V1, . . . , Vk} be the unique partition of
V (T ) which makes it k-partite. Let a(T ) be the largest integer such that a(T ) �
n/2 and a(T ) �= |⋃j∈J Vj | for all J ⊆ [k]. The definition clearly implies a(T ) �
�n/2� − 2k. Set f(T ) = �n/2� − a(T ) + k − 1.

Let A, B be disjoint sets such that |A| = a(T ) and |A∪B| = n, and consider
the k-graph H(A,B) as in Definition 1. Then δk−1(H(A,B)) � a(T ) − k + 1 =
�n/2� − f(T ) (by the observation after Definition 1), and T does not embed in
H(A,B) because of Lemma 1.

To finish, note that a(T ) = �n/2� for some trees. An example are star-like
k-trees with n � 2k, consisting of a (k − 1)-set which is contained in n − k + 1
many edges.

3 The Structure of Tight Hypertrees

We will make a quick overview of how k-trees can be decomposed into smaller
hypertrees of controlled size. To do that, we will formalise the inductive definition
of k-trees presented in the introduction, and introduce new definitions.

By definition, every k-tree T on n vertices has orderings e1, . . . , en−k+1 of
its edges, and v1, . . . , vn of its vertices such that e1 = {v1, . . . , vk}, and for all
i ∈ {k + 1, . . . , n},

(a) {vi} = ei−k+1\
⋃

1�j<i−k+1 ej , and
(b) there exists j ∈ [i − 1] such that ei−k+1\{vi} ⊆ ej .

Clearly, an ordering of the edges implies an ordering of the vertices (and vice
versa). Any ordering of E(T ) or V (T ) with properties (a) and (b) will be called
a valid ordering. Note that a k-tree on n vertices has exactly n−k+1 � 1 edges.
If j ∈ [i − 1] is the smallest index such that (b) holds for ei and vi then we call
ej the parent of ei−k+1 and ei−k+1 a child of ej .

A k-subtree of T is a k-tree T ′ such that T ′ ⊆ T . For instance, given 1 �
r � n − k + 1, the first r edges in a valid ordering of T induce a k-subtree. In
particular, the tree T − vn obtained by removing vn and en−k+1 from T is a
k-subtree of T .

Our objective is to partition a large k-tree into a constant number of smaller
k-subtrees, in a similar way as has been done for trees in graphs [1] to tackle
embedding problems. More precisely, we will show that for any β > 0, one can
partition the edges of any k-tree with n edges into at most β−1 parts, so that
each of these parts spans a k-tree of size O(βn). Under a suitable definition of
‘rooted k-tree’, we will show that the parts can be ordered and each of them can
be rooted so that the first � parts, for any �, form a connected k-subtree, which
contains the root of part � + 1.

The key object in our proof will be the layering of a k-tree T . This is a
vertex-partition of T , corresponding to a fixed initial (k − 1)-subset r of some
edge of T . More precisely, r is an ordered set, so r = (r1, . . . , rk−1). A layering
for this choice of (T, r) is a partition {V1, . . . , V�} of V (T ) such that (among
other properties), ri ∈ Vi for all 1 � i < k, and every edge of T intersects k
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consecutive sets Vi. Also, in the layering, no edge e of T can lie strictly ‘above’
the edges of the unique path connecting e and r. With this concept, we can now
sketch the construction of the desired partition into bounded-size trees. We will
transverse a tree according to the ordering given by a layering (T, r). At each
step we find a k-subtree of appropriate size, ‘rooted’ at some (k − 1)-set which
is ‘far away from r’ in the layering order. We remove the small k-subtree and
iterate. For details, see [8].

4 Sketch of the Proof of Theorem 1

Given a k-graph H with δk−1(H) � (1/2 + γ)n and a k-tree T with Δ1(T ) � Δ
as in Theorem 1, the embedding of T into H will be performed in three steps. In
the first step, we embed a small k-subtree T ′ of T into vertices of H that have
some special properties. More precisely, T ′ will contain our desired ‘absorber’.
In the second step we embed the bulk of T − T ′, by using the decomposition in
small trees sketched in the previous section. In the third step, there only remains
a few vertices of T to be embedded. At this point, we use the absorber included
in T ′ to embed the few missing vertices.

4.1 Step One: The Absorber

We first select a k-subtree T ′ ⊆ T on Ω(n) vertices and embed it carefully in
H to use absorption. The design of our absorbers is inspired by constructions
appearing in [3,4].

Given a k-graph H and a vertex v, the link graph H(v) of v in H is the
(k − 1)-graph consisting of the (k − 1)-sets f such that f ∪ {v} ∈ H. The key
observation is that in a k-tree all its link graphs are (k − 1)-trees. Since T ′ has
bounded vertex-degree we will be able to find a (k − 1)-tree X such that, for
Ω(n) vertices v ∈ V (T ′), the link graph of v in T ′ is isomorphic to X. A pair of
such (v,H(v)) will be called an X-tuple in T ′.

We will also find X-tuples in H, meaning vertices whose link-graphs in H
contain copies of X as well. An X-tuple in H is a pair (v,Xv), where v ∈ V (H)
and Xv is a fixed copy of X in H(v). Each k-tuple of vertices in H has an
associated set of absorbing X-tuples (more about the absorbing mechanism will
be said in the third step). Using a probabilistic argument, we find a family A of
vertex-disjoint X-tuples in H, having the property that every k-tuple in H has
many absorbing X-tuples in A. Using the codegree conditions of H, we are able
to embed T ′ in H, mapping the X-tuples in T ′ to the X-tuples in A.

4.2 Step Two: Embedding the Bulk of the Tree

To embed the bulk of T − T ′, we start by decomposing T − T ′ into a constant
number of smaller k-subtrees, as described in the previous section. Recall that
the k-subtrees can be ordered, and each of them can be rooted, so that the first
� parts, for any �, form a connected k-subtree which contains the root of part
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� + 1. The idea is to proceed by embedding these small k-trees T1, . . . , Tt one by
one, following the given ordering. We will also make sure the embedding connects
correctly with the previously embedded k-subtree T ′, which is achieved by fixing
the embedding of the root of T − T ′. Thus in each step, the part of the k-tree
which is currently embedded forms a connected k-subtree of T which includes
T ′.

Our plan to embed the small parts is to locate in H a matching M consisting
of ‘regular tuples’ of k disjoint sets of vertices, which together cover most of H.
We apply the Weak Regularity Lemma for hypergraphs, and then find the desired
matching by using the codegree condition on H. At this point we remark that,
in contrast with other approaches to hypergraph embedding, we do not need the
strength of the more advanced versions of hypergraph regularity. In fact, if the
host hypergraph H satisfies some mild conditions of ‘quasirandomness’ we do
not need regularity at all, and an arbitrary partition will suffice.

We then embed the parts T1, . . . , Tt successively. At each step, we embed
one part Ti (except its root, which is already embedded). For each Ti we find
a suitable edge {Vi1 , . . . , Vik} ∈ M with sufficient free space and convenient
density. We embed a constant number of layers ‘between’ the already embedded
root of Ti and the edge {Vi1 , . . . , Vik} (see the next paragaph). We then embed
the remainder of Ti (which is actually most of Ti) into Vi1 ∪ · · · ∪Vik . Because of
the way we chose this edge, this can be done using a simple greedy argument.

In order to make the connections between the already embedded root of Ti

and the target edge, we use a part of H that we have separated earlier only for
this purpose (making all such connections). This is the reservoir, a very small
set R ⊆ V (H) having (among others) the property that every (k − 1)-set has
several neighbours in R. The reservoir is found using a probabilistic argument. A
Connecting Lemma will then allow us to find many short walks between arbitrary
pairs of ordered (k − 1)-sets, whose internal vertices are all inside the reservoir.
An enhanced version of this lemma allows us to embed not only walks or paths
but instead bounded-size k-trees of bounded degree into the reservoir, joining
given pairs of (k − 1)-edges. This is what we need to finish the connection step
described in the previous paragraph, and thus the embedding of Ti.

4.3 Step Three: Finalising the Embedding

Finally, after embedding almost all of T , we use an Absorbing Lemma. We can
assume that the now-embedded k-subtree can be completed to an embedding
of T by adding leaves, one at a time (as in the definition of k-trees). Suppose
we want to add a leaf vi+1 such that {u1, . . . , uk−1} ∈ ∂T is already embedded
and {vi+1, u1, . . . , uk−1} ∈ T . Let us denote by ϕi the current embedding. Given
an unused vertex xi+1 ∈ V (H), we find an absorbing X-tuple (u∗,Xu∗) ∈ A
for {xi+1, ϕi(u1), . . . , ϕi(uk−1)} which was used in ϕi for an X-tuple of T ′. The
absorbing X-tuple (u∗,Xu∗) satisfies the following two properties:
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– Xu∗ ⊆ H(u∗) ∩ H(xi+1), and
– {u∗, ϕi(u1), . . . , ϕi(uk−1)} ∈ H.

Now we can exchange xi+1 with u∗ in order to embed vi+1. More precisely, we
can set ϕi+1(ϕ−1

i (u∗)) = xi+1 and ϕi+1(vi+1) = u∗, and ϕi+1(v) = ϕi(v) for all
other vertices v. We thus obtain a new embedding ϕi+1 in which an extra vertex
of T is now incorporated. Iterating this argument, adding a vertex at a time, we
can complete the embedding of T .

5 Open Questions

It remains open to consider embedding of trees of unbounded degree. Komlós,
Sarközy and Szemerédi [7] showed the following strenghtening of the main result
of [6], which ensures the existence of an even larger family of spanning trees
under the same conditions in the host graph.

Theorem 2 (Komlós, Sarközy and Szemerédi [7]). For all γ > 0 there is
n0 and c > 0 such that every graph H on n � n0 vertices with δ(H) � (1/2+γ)n
contains every tree T on n vertices with Δ1(T ) � cn/ log n.

The value cn/ log n is best possible, as witnessed by the case where H is a dense
random graph and T is as follows: it is an n vertex tree consisting of a root
r with Θ(log n) children, and each of the remaining vertices is distributed as
evenly as possible as children of the children of r. An adaptation of this example
to k-graphs [8, Sect. 12.2] shows that there are k-trees with Δ1(T ) = Ω(n/ log n)
which are not present in all k-graphs H satisfying δk−1(H) � (1/2 + o(1))n.
It would be interesting to determine the largest class of hypertrees which are
present as spanning subgraphs in the setting of Theorem 1.
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Abstract. An outer 1-string graph is the intersection graph of curves
contained in a disk with one endpoint in its boundary, such that two
curves intersect at most once. In an attempt to tackle a problem by Kos-
tochka and Nešetřil (European J. of Comb. 19, 1998), we study coloring
of outer 1-string graphs with girth g ≥ 5. In the process, we generalize
the results of Ageev (Discrete Math. 195, 1999), and Esperet and Ochem
(Discrete Math. 309, 2009) on circle graphs.

Keywords: String graphs · Chromatic number · Girth

1 Overview

The main purpose of this work1 is to attack a problem by Kostochka and
Nešetřil [8] on coloring 1-string graphs of girth five. In this regard, we show
that outer 1-string graphs of girth g at least five and minimum degree at least
two have (g − 4) vertices of degree two, which induce a path. This leads to the
first step towards our main goal. Furthermore, our result seems to be a natural
milestone as it generalizes similar results on circle graphs, by Ageev [1], and by
Esperet and Ochem [5]. We begin with some definitions.

The intersection graph of a family of sets S is the graph with vertex set S
and edge set {XY | X,Y ∈ S ,X �= Y,X ∩ Y �= ∅}. Here S is the intersection
representation of the intersection graph. A curve or string2 is a homeomorphic
image of the interval [0, 1] in the plane. A 1-string graph is the intersection graph
of a finite collection of strings such that two curves intersect at most once. We
assume that whenever two strings intersect, they cross each other. When the
strings in a 1-string representation are contained in a disk with one endpoint in
the boundary of the disk, the resulting intersection graphs are known as outer
1-string graphs. Circle graphs are intersection graphs of chords of a circle. We

1 The result of this paper was presented in EuroCG ’21 for outerstring graphs [4].
Here we present the result for outer 1-string graphs, which has simpler definitions
and is easier to verify; although, the proof strategy is the same for both classes.

2 We can safely assume that the strings are simple (non self-intersecting).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 593–598, 2021.
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denote the class of 1-string graphs by S1, and the class of outer 1-string graphs
by OS1.

Many interesting problems on the vertex chromatic number (denoted χ) of
intersection graphs of geometric objects have been studied. One such class of
problems explores its dependence on girth [1,2,5,7–9].

Given a class of intersection graphs G and a positive integer k, with k ≥ 4,
find or bound χ(G , k), where

χ(G , k) := max
G∈G

{χ(G) | girth(G) ≥ k}.

One of the popular problems in this regard was posed by Erdős (see [6,
Problem 1.9]) in the 1970s3. His question can be translated to the following: Is
χ(I, 4) < ∞ (Problem 1 in [8]), where I is the class of intersection graphs of line
segments in the plane. Further Kratochv́ıl and Nešetřil asked a similar problem
(see [7]): Is χ(S1, 4) < ∞? (Problem 2 in [8].)

However, these questions were recently resolved in the negative in a break-
through paper by Pawlick et al. [9]. They proved that χ(I, 4) can be arbitrarily
large, by constructing triangle-free segment intersection graphs with an arbitrar-
ily high chromatic number.

Earlier, motivated by the above problems, Kostochka and Nešetřil [8] stud-
ied 1-string graphs with girth at least five. In particular, they proved that
χ(S1, 5) ≤ 6. They also posed if χ(S1, 5) > 3. Hence, the best known bounds
are 3 ≤ χ(S1, 5) ≤ 6.

Our main objective is to improve the bounds of χ(S1, 5). A standard approach
in handling such problems is via proving degeneracy of graphs in such classes.
A graph is k-degenerate if every subgraph has a vertex with degree at most k.
A greedy coloring scheme implies that a k-degenerate graph is (k +1)-colorable.
In our context, we begin by studying outer 1-string graphs of girth at least five.

Theorem 1. Every outer 1-string graph with girth at least five is 2-degenerate.

Studying degeneracy in outer 1-string graphs is a natural approach in improv-
ing the upper bound of χ(S1, 5) due to the following reason. Given a 1-string
representation (with girth g ≥ 5), we can treat its outer envelope as the bound-
ary of the disk containing the outer 1-string representation. The graph induced
by the other strings intersecting this boundary is an outer 1-string graph. As
we shall see, the target string (corresponding to the vertex with degree at most
two) in an outer 1-string representation is in some sense closest to the boundary.
This would result in finding a degree three vertex in the 1-string graph (because
of the girth restriction), proving them to be 4-colorable. There are some hidden
details. We shall address this in future work.

The next corollary follows from Theorem 1, as all odd cycles are outer 1-string
graphs.
3 An approximate date was confirmed in a personal communication with András
Gyárfás and Janós Pach to the authors of [9] (Pawlick et al.). See footnote 2 in
[9].
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Corollary 1. χ(OS1, 5) = 3.

In this article, we further strengthen Theorem 1. Our main result on outer
1-string graphs generalizes similar results on circle graphs (intersection graphs
of chords of a circle), first by Ageev [1], and then by Esperet and Ochem [5].

Ageev [1] proved the following result on degeneracy in circle graphs.

Theorem 2 (Ageev [1]). Every circle graph with girth at least five is 2-
degenerate.

Esperet and Ochem [5] generalized Theorem 2 by proving the following.

Theorem 3 (Esperet and Ochem [5]). Every circle graph with girth g ≥ 5 and
minimum degree at least two contains a chain of (g − 4) vertices of degree two.

We first prove the following extension of Theorem 3 to outer 1-string graphs.
Outer 1-string graphs generalize circle graphs. See Fig. 1 for a separating example
between circle graphs and outer 1-string graphs with girth five and minimum
degree two. See [3] for a proof.
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v2

v3

v4

v5

v9

v8

v7

v6

v10

(a) (b)

Fig. 1. (a) Separating example and (b) its Outer 1-string representation.

Theorem 4. Every outer 1-string graph with girth g ≥ 5 and minimum degree
at least two contains a chain of (g − 4) vertices of degree two.

We shall only prove Theorem 4, as Theorem 1 directly follows from it. Also,
it suffices to consider only connected outer 1-string graphs.

2 Definition and Notations

Basic Definitions. Henceforth, we use the following equivalent4 definition of
outer 1-string graphs. An outer 1-string graph is the intersection graph of curves
that pairwise intersect at most once and are contained in a halfplane with one
4 Define a homeomorphism from a closed half-plane to a closed disk minus one bound-
ary point.
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endpoint in the boundary of the halfplane. We call this boundary the stab line of
the representation. For an outer 1-string graph OS1, we denote its outer 1-string
representation as OS1.

The outer 1-string representation induced by a subset of strings in OS1 is
called its sub-representation. We assume the stab line in OS1 to be the Y-axis
and the strings lie in the halfplane x ≤ 0. For each string si in OS1, its endpoint
on the stab line is its fixed end and the other endpoint is its free end. We can
safely assume that all the free ends of the strings are intersection points. We
relax the crossing assumption at these points. Since the stab line is the Y-axis,
we can order all the fixed ends of strings; so the terms above, below, topmost and
bottommost are well defined.

A region A ⊂ R
2 is arc-connected if for any two points in A there is a curve

lying completely in A that connects them. A face in OS1 is a maximal arc-
connected component of R2\ ⋃

si. (Here the ambient space is R
2, and not only

the halfplane x ≤ 0.) An arrangement induced by a set of curves in R
2 is the

embedding of these curves in R
2.

A n-chain in OS1 is a path of length n + 1 in OS1, whose n internal vertices
have degree two in OS1. By abuse of notation, we shall also call the corresponding
representation in OS1 as a n-chain.

Left Envelope. In OS1, let t0 (respectively, b0) be the topmost fixed end
(respectively, bottommost fixed end) of OS1. Let t0b0 be the line segment (on
the stab line) from t0 to b0. Consider the arrangement induced by the strings
in OS1 and t0b0 in R

2. Consider the unbounded face of this arrangement. The
left envelope of OS1 is the part of the boundary of this unbounded face after
removing t0b0 except its end points. We say a string s belongs to the left envelope
E if s ∩ E �= ∅. Similarly, we can define the left envelope of a sub-representation
of OS1.

Zone. This region is about a collection of faces in the arrangement induced by
the strings of OS1 and the stab line, specific to any two intersecting strings. In an
outer 1-string representation, given two intersecting strings st and sb, the zone
of st and sb in OS1 is the bounded closed face in R

2\{st, sb, tb} that contains tb
in its boundary. The strings st and sb are called as the defining strings of this
zone: with st as its top defining string and sb as its bottom defining string. Thus,
every pair of intersecting strings corresponds to a zone.

A zone Z of st and sb is filled if there exists a string s in OS1 whose fixed
end is in Z, and s does not intersect with st and sb. Thus, s ∩ Z = s and
s ∩ st = s ∩ sb = ∅: we say that Z supports s.

k-Face. In an outer 1-sting graph OS1 with girth g ≥ 5, let F be a bounded
face in OS1. Form the cyclic sequence of strings encountered while traversing the
boundary of F with the following restriction. Ignore the strings that contribute
just a point in the boundary of F . Soon we shall prove that the strings in this
sequence do not repeat (see proof of Observation 5). We call these strings as
bounding strings. We say F is a k-face if it has k bounding strings. One can
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check that k ≥ g. Next, we show that the cycle contributed by the k-face F is
an induced cycle in OS1. See [3] for a proof.

Observation 5. The vertices corresponding to the bounding strings of a k-face
F in OS1 of an outer 1-string graph OS1 (with girth g ≥ 5) form an induced
cycle in OS1.

Extended Face. In an outer 1-string graph OS1 with girth g ≥ 5, consider
an induced cycle C on k vertices. As the strings corresponding to the adjacent
vertices intersect, we can find a closed curve in OS1 using the parts of strings
corresponding to the vertices of C. Since C is an induced cycle, this closed curve
is a Jordan curve. Furthermore, this Jordan curve is unique as a pair of strings
intersect at most once. We call the closed inside region of this Jordan curve as
the extended face of C.

3 Outline of Proof of Theorem 4

The proof of Theorem 4 consists of three parts. See [3] for a proof. Here we give
a detailed outline. The main proof is by strong induction. To this end, first, we
need to study the outer 1-string representations of cycles (for the base step in
induction). Then we study some basic properties of outer 1-string representa-
tions, followed by the outline of the main proof.

Cycle Representations: Consider an outer 1-string representation C of a cycle
C on n ≥ 5 vertices. We first prove that if C has a filled zone Z, then every
string s in C, other than the defining strings of Z, has an intersection point in
Int(Z). Then we prove the following.

Claim (3). There is at least one filled zone in C. Every filled zone in C contains
a (n − 4)-chain.

We call such strings that are supported by the filled zone as intermediate
strings. These intermediate strings induce a (n−4)-chain. While proving Claim 3,
we found that C can have either one or three filled zones depending on the
number of intersection points in its left envelope. See [3] for details.

Some Basic Properties of Outer 1-string Representations: Consider an
outer 1-string graph OS1 with girth g ≥ 5 and minimum degree δ ≥ 2. Let Z
be a filled zone in OS1. Such a filled zone always exists (see Claim 3). We prove
the following.

Subclaim 6. For every filled zone Z in OS1, there exists a k-face in Z.

A key argument used in the proof of Subclaim 6, as well as in the main
proof, is called the branching argument. If a filled zone is not allowed to have
a k-face in it and δ ≥ 2, then consider the forest/tree induced by the strings
supported by the zone. The leaves (except one) of this tree have degree one in
OS1, else a k-face is formed in the filled zone. This contradicts our minimum
degree restriction. Hence Subclaim 6 follows.

Finally, we prove the following stronger version of Theorem 4.
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Claim (7). Given an outer 1-string graph OS1 with girth g ≥ 5 and δ ≥ 2, any
filled zone Z in OS1 completely contains a (g − 4)-chain, that is, the strings in
this chain are supported by Z.

3.1 Outline of Proof of Claim 7

We proceed by strong induction on the number of vertices of OS1. The base
case is easy to verify, as it is a cycle on g vertices (see Claim 3). Now assume
the induction hypothesis: in any outer 1-string graph on less than l vertices with
girth g ≥ 5 and δ ≥ 2, every filled zone contains a (g − 4)-chain in its outer
1-string representation.

Let OS1 be an outer 1-string graph on l vertices with girth g ≥ 5 and δ ≥ 2,
with outer 1-string representation OS1. Consider a filled zone Z in OS1: Z exists
as OS1 has a cycle in it (see Claim 3). Let st and sb be the top and bottom
defining strings of Z, respectively.

Subclaim 7. We can safely assume that every string in OS1 has an intersection
point in Int(Z).

Next, we can also assume that OS1 is not isomorphic to the cycle on l vertices.
Indeed, we have proved Claim 7 for cycles (see Claim 3). Hence there are at least
two (induced) cycles in OS1. Next, we prove the following.

Subclaim 8. OS1 has at least two filled zones.

Using this, we show that two filled zones are restricted to attain one of two
possible configurations. In each of these configurations, we exhaustively study
all cases and exhibit a filled zone and a string that does not have an intersection
point in the interior of the filled zone, in each of these cases, thereby contradicting
Subclaim 7. This completes the proof of Claim 7. 
�
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Abstract. The rainbow Turán number ex∗(n, H) of a graph H is the
maximum possible number of edges in a properly edge-coloured n-vertex
graph with no rainbow subgraph isomorphic to H. We prove that for
any integer k ≥ 2, ex∗(n, C2k) = O(n1+1/k). This is tight and establishes
a conjecture of Keevash, Mubayi, Sudakov and Verstraëte. We use the
same method to prove several other conjectures in various topics.

For example, we answer a question of Jiang and Newman by show-
ing that there exists a constant c = c(r) such that any n-vertex graph
with more than cn2−1/r(logn)7/r edges contains the r-blowup of an
even cycle. We also prove that the r-blowup of C2k has Turán number

O(n2− 1
r
+ 1

k+r−1+o(1)), which can be used to disprove an old conjecture of
Erdős and Simonovits.

Keywords: Turán number · Even cycles · Proper edge-colouring

1 Introduction

In this paper we develop a method that allows us to find cycles with suitable
extra properties in graphs with sufficiently many edges. We give applications in
three different areas, which are introduced in the next three subsections. For the
full version of this paper, see [10].

1.1 Rainbow Turán Numbers

For a family of graphs H, the Turán number (or extremal number) ex(n,H) is
the maximum number of edges in an n-vertex graph which does not contain any
H ∈ H as a subgraph. When H = {H}, we write ex(n,H) for the same function.
This function is determined asymptotically by the Erdős–Stone–Simonovits [6,7]
theorem when H has chromatic number at least 3. However, for bipartite graphs
H, even the order of magnitude of ex(n,H) is unknown in general. For example,
a result of Bondy and Simonovits [2] states that ex(n,C2k) = O(n1+1/k), but a
matching lower bound is only known when k ∈ {2, 3, 5}.

A variant of this function was introduced by Keevash, Mubayi, Sudakov and
Verstraëte in [14]. In an edge-coloured graph, we say that a subgraph is rainbow

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 599–604, 2021.
https://doi.org/10.1007/978-3-030-83823-2_96
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if all its edges are of different colour. The rainbow Turán number of the graph H
is then defined to be the maximum number of edges in a properly edge-coloured
n-vertex graph that does not contain a rainbow H as a subgraph. This number is
denoted by ex∗(n,H). Clearly, ex∗(n,H) ≥ ex(n,H) for every n and H. Keevash
et al. [14] proved, among other things, that for any non-bipartite graph H, we
have ex∗(n,H) = (1 + o(1))ex(n,H). Hence, the most challenging case again
seems to be when H is bipartite. Keevash et al. showed that ex∗(n,Ks,t) =
O(n2−1/s), which is tight when t > (s − 1)! [1,15]. The function has also been
studied for trees (see [8,12,13]). About even cycles, Keevash et al. proved the
following lower bound.

Theorem 1 (Keevash–Mubayi–Sudakov–Verstraëte [14]). For any inte-
ger k ≥ 2,

ex∗(n,C2k) = Ω(n1+1/k).

They conjectured that this is tight.

Conjecture 1 (Keevash–Mubayi–Sudakov–Verstraëte [14]). For any integer k ≥
2,

ex∗(n,C2k) = Θ(n1+1/k).

They have verified their conjecture for k ∈ {2, 3}. For general k, Das, Lee
and Sudakov proved the following upper bound.

Theorem 2 (Das–Lee–Sudakov [4]). For every fixed integer k ≥ 2,

ex∗(n,C2k) = O
(
n1+

(1+εk) ln k

k

)
,

where εk → 0 as k → ∞.

In this paper we prove Conjecture 1 by establishing the following result.

Theorem 3. For any integer k ≥ 2, we have

ex∗(n,C2k) = O(n1+1/k).

The theta graph θk,t is the union of t paths of length k which share the same
endpoints but are pairwise internally vertex-disjoint. We remark that our proof
can be easily modified to show that ex∗(n, θk,t) = O(n1+1/k) for any fixed k and
t.

Keevash et al. also asked how many edges a properly edge-coloured n-vertex
graph can have if it does not contain any rainbow cycle. They constructed
such graphs with Ω(n log n) edges. Note that this is quite different from the
uncoloured case, since any n-vertex acyclic graph has at most n − 1 edges. Das,
Lee and Sudakov proved that if η > 0 and n is sufficiently large, then any
properly edge-coloured n-vertex graph with at least n exp

(
(log n)

1
2+η

)
edges

contains a rainbow cycle. We prove the following improvement.

Theorem 4. There exists an absolute constant C such that if n is sufficiently
large and G is a properly edge-coloured graph on n vertices with at least
Cn(log n)4 edges, then G contains a rainbow cycle of even length.
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1.2 Colour-Isomorphic Even Cycles in Proper Colourings

Conlon and Tyomkyn [3] have initiated the study of the following problem. We
say that two subgraphs of an edge-coloured graph are colour-isomorphic if there
is an isomorphism between them preserving the colours. For an integer r ≥ 2
and a graph H, they write fr(n,H) for the smallest number C so that there
is a proper edge-colouring of Kn with C colours containing no r vertex-disjoint
colour-isomorphic copies of H. They proved various results about this function,
such as the bound f2(n,C6) = Ω(n4/3).

One of the several open problems they posed is the following question.

Question 1 (Conlon–Tyomkyn [3]). Is it true that for every ε > 0, there exists
k0 = k0(ε) such that, for all k ≥ k0, f2(n,C2k) = Ω(n2−ε)?

Later, Xu, Zhang, Jing and Ge made a more precise conjecture.

Conjecture 2 (Xu–Zhang–Jing–Ge [16]). For any k ≥ 3, f2(n,C2k) = Ω(n2− 2
k ).

We prove this conjecture in a more general form.

Theorem 5. Let k, r ≥ 2 be fixed integers. Then fr(n,C2k) = Ω
(
n

r
r−1 · k−1

k

)
.

1.3 Turán Number of Blow-Ups of Cycles

For a graph F , the r-blowup of F is the graph obtained by replacing each vertex
of F with an independent set of size r and each edge of F by a Kr,r. We write
F [r] for this graph. The systematic study of the Turán number of blow-ups
was initiated by Grzesik, Janzer and Nagy [9]. They proved that for any tree
T we have ex(n, T [r]) = O(n2−1/r). They have also made the following general
conjecture.

Conjecture 3 (Grzesik–Janzer–Nagy [9]). Let r be a positive integer and let F
be a graph such that ex(n, F ) = O(n2−α) for some 0 ≤ α ≤ 1 constant. Then

ex(n, F [r]) = O(n2− α
r ).

Their result mentioned above proves this conjecture when F is a tree. It is
easy to see that the conjecture holds also when F = Ks,t and α = 1/s.

In the case of forbidding all r-blowups of cycles, an earlier question was
formulated by Jiang and Newman [11]. To state this question, we write C[r] =
{C2k[r] : k ≥ 2}.

Question 2 (Jiang–Newman [11]). Is it true that for any positive integer r and
any ε > 0, ex(n, C[r]) = O(n2− 1

r +ε)?

We answer this question affirmatively in a stronger form.

Theorem 6. For any positive integer r,

ex(n, C[r]) = O(n2−1/r(log n)7/r).
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Random graphs show that ex(n, C[r]) = Ω(n2−1/r). It would be interesting
to decide whether the logarithmic factor in Theorem 6 can be removed.

Finally, we establish an upper bound for the Turán number when only one
blownup cycle is forbidden.

Theorem 7. For any integers r ≥ 1 and k ≥ 2, we have

ex(n,C2k[r]) = O
(
n2− 1

r +
1

k+r−1 (log n)
4k

r(k+r−1)

)
.

This is still quite a long way from the conjectured ex(n,C2k[r]) =
O(n2− 1

r +
1

kr ). However, it can be used to disprove the following conjecture of
Erdős and Simonovits.

Conjecture 4 (Erdős–Simonovits [5]). Let H be a bipartite graph with minimum
degree s. Then there exists ε > 0 such that ex(n,H) = Ω(n2− 1

s−1+ε).

To see that this is false, note that the graph C2k[r] has minimum degree
2r, but, by Theorem 7, for any δ > 0, we have ex(n,C2k[r]) = O(n2− 1

r +δ)
for sufficiently large k. This means that there exists, for any even s ≥ 4 and
any δ > 0, a bipartite graph H with minimum degree s which has ex(n,H) =
O(n2− 2

s+δ), disproving Conjecture 4 for all even s ≥ 4. On the other hand, a
simple application of the probabilistic method shows that if H is a bipartite
graph with minimum degree s ≥ 2, then there exists ε > 0 such that ex(n,H) =
Ω(n2− 2

s+ε).
In the next section we present the key lemma which is used in the proof of

Theorem 3 and Theorem 4.

2 Bounding Non-rainbow Homomorphic Cycles

In what follows, for graphs H and G we write hom(H,G) for the number of
graph homomorphisms V (H) → V (G). Pk will denote the path with k edges
and we use the convention C2 = P1. For vertices x, y ∈ V (G), homx,y(P�, G)
denotes the number of walks of length 	 in G between x and y. We write Δ(G)
for the maximum degree of G.

With a slight abuse of terminology, we call a homomorphism H → G a
homomorphic copy of H in G. That is, a homomorphic copy of C2� is a tuple
(x1, . . . , x2�) ∈ V (G)2� such that x1x2, x2x3, . . . , x2�x1 ∈ E(G). A rainbow
homomorphic copy of H is one in which the images of distinct edges of H have
different colour. Our key lemma is an upper bound on the number of those
(homomorphic) 2	-cycles which are not rainbow.

Lemma 1. Let 	 ≥ 2 be a positive integer and let G be a properly edge-coloured
graph. Then the number of homomorphic copies of C2� which are not rainbow is
at most

16	 (	Δ(G) hom(C2�−2, G) hom(C2�, G))1/2
.
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Proof. Let c(e) be the colour of the edge e ∈ E(G). We want to prove
that the number of (x1, x2, . . . , x2�) ∈ V (G)2� with x1x2, . . . , x2�x1 ∈
E(G) such that c(x1x2), . . . , c(x2�x1) are not all distinct is at most
16	 (	Δ(G) hom(C2�−2, G) hom(C2�, G))1/2. By symmetry, it suffices to prove
that the number of (x1, x2, . . . , x2�) ∈ V (G)2� with x1x2, . . . , x2�x1 ∈ E(G)
for which there exists 2 ≤ i ≤ 	 + 1 such that c(x1x2) = c(xixi+1) is at most
8 (	Δ(G) hom(C2�−2, G) hom(C2�, G))1/2.

For a positive integer s, let αs be the number of walks of length 	 − 1 in
G whose endpoints y and z have 2s−1 ≤ homy,z(P�−1, G) < 2s and let βs be
the number of walks of length 	 in G whose endpoints y and z have 2s−1 ≤
homy,z(P�, G) < 2s. Clearly,

∑
s≥1

αs2s−1 ≤ hom(C2�−2, G) (1)

and ∑
s≥1

βs2s−1 ≤ hom(C2�, G). (2)

For positive integers s and t, write γs,t for the number of homomorphic copies
x1x2 . . . x2�x1 of C2� for which there exists 2 ≤ i ≤ 	 + 1 such that c(x1x2) =
c(xixi+1), 2s−1 ≤ homx1,x�+2(P�−1, G) < 2s and 2t−1 ≤ homx2,x�+2(P�, G) < 2t.
Observe that

γs,t ≤ αs · Δ(G) · 2t. (3)

Indeed, if x1x2 . . . x2�x1 is a homomorphic C2� with 2s−1 ≤
homx1,x�+2(P�−1, G) < 2s and 2t−1 ≤ homx2,x�+2(P�, G) < 2t, then there
are at most αs ways to choose (x�+2, x�+3, . . . , x2�, x1), given such a choice there
are at most Δ(G) choices for x2, and given these there are at most 2t choices
for (x3, . . . , x�+1). On the other hand,

γs,t ≤ βt · 	 · 2s. (4)

Indeed, there are at most βt ways to choose (x2, . . . , x�+2). Given such a choice,
there are at most 	 possibilities for x1, since c(x1x2) = c(xixi+1) for some 2 ≤ i ≤
	+1, the edges x2x3, . . . , x�+1x�+2 are already fixed and c is a proper colouring.
Finally, there are at most 2s ways to complete this to a suitable homomorphic
copy of C2�.

Clearly, the total number of homomorphic copies x1x2 . . . x2�x1 of C2� with
c(x1x2) = c(xixi+1) for some 2 ≤ i ≤ 	+1 is

∑
s,t≥1 γs,t. We give an upper bound

for this sum as follows. Let q be the integer for which ( � hom(C2�,G)
Δ(G) hom(C2�−2,G) )

1/2 ≤
2q < 2( � hom(C2�,G)

Δ(G) hom(C2�−2,G) )
1/2. Now, using Eqs. (4) and (2),

∑
s,t:s≤t−q

γs,t ≤ 	
∑

s,t:s≤t−q

2sβt ≤ 	 ·
∑
t≥1

2t−q+1βt ≤ 	 · 2−q+2 hom(C2�, G)

≤ 4(	Δ(G) hom(C2�−2, G) hom(C2�, G))1/2.
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Also, using Eqs. (3) and (1),
∑

s,t:s>t−q

γs,t ≤ Δ(G)
∑

s,t:s>t−q

2tαs ≤ Δ(G)
∑

s≥1

2s+qαs ≤ Δ(G)2q+1 hom(C2�−2, G)

≤ 4(�Δ(G) hom(C2�−2, G) hom(C2�, G))1/2.

Thus, ∑
s,t≥1

γs,t ≤ 8(	Δ(G) hom(C2�−2, G) hom(C2�, G))1/2.

This completes the proof.
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Abstract. We prove that there exists C > 0 such that any (n + Ck)-
vertex tournament contains a copy of every n-vertex oriented tree with k
leaves, improving the previously best known bound of n+O(k2) vertices
to give a result tight up to the value of C. Furthermore, we show that,
for each k, there exists n0, such that, whenever n � n0, any (n+ k− 2)-
vertex tournament contains a copy of every n-vertex oriented tree with
at most k leaves, confirming a conjecture of Dross and Havet.

Keywords: Tournament theory · Median orders · Sumner’s conjecture

1 Introduction

The study of trees in tournaments has been motivated largely by Sumner’s uni-
versal tournament conjecture from 1971, which states that every (2n−2)-vertex
tournament should contain a copy of every n-vertex oriented tree (see, e.g., [12]).
In 1991, Häggkvist and Thomason [5] gave the first proof that O(n) vertices in
a tournament are sufficient to find any n-vertex oriented tree. Following several
subsequent improvements to the implicit constant [4,7,9], Dross and Havet [3]
recently showed that

⌈
21
8 n − 47

16

⌉
vertices are in fact sufficient, giving the best

known bound which holds for all n. On the other hand, Sumner’s conjecture is
known to be true for sufficiently large n, as shown in 2010 by Kühn, Mycroft
and Osthus [11], using regularity methods.

If true, Sumner’s conjecture would be tight for each n, as demonstrated by the
n-vertex star with every edge oriented out from the root vertex. The appearance
of many trees can, however, be ensured with far fewer than 2n−2 vertices in the
tournament. Indeed, confirming a conjecture of Rosenfeld [14], Thomason [15]
showed in 1986 that there is some n0 such that, whenever n � n0, any n-vertex
tournament contains a copy of every n-vertex oriented path. In 2000, Havet and
Thomassé [10] showed that the optimal value of n0 is 8, a result recently given
a shorter proof by Hanna [6].

Answering the natural question arising from the different behaviour here
between stars and paths, Häggkvist and Thomason [5] showed in 1991 that the
number of additional vertices required in the tournament can be bounded by the
number of leaves in the tree. That is, for each k, there is some smallest g(k) such
that every (n + g(k))-vertex tournament contains a copy of every n-vertex tree
with k leaves. The upper bound shown by Häggkvist and Thomason on g(k) is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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exponential in k3, but was recently improved to 144k2 − 280k + 124 by Dross
and Havet [3]. Havet and Thomassé [8] conjectured in 2000 that g(k) ≤ k − 1
for each k ≥ 2. That is, generalising Sumner’s conjecture, they conjectured that
every (n + k − 1)-vertex tournament contains a copy of every n-vertex oriented
tree with k leaves.

In this paper, we give the first linear bound on g(k), as follows.

Theorem 1. There is some C > 0 such that every (n + Ck)-vertex tournament
contains a copy of every n-vertex oriented tree with k leaves.

If true, Havet and Thomassé’s conjecture would be tight whenever k = n− 1
(i.e., whenever it is covered by Sumner’s conjecture), but for general n and k,
we only have examples showing that the tournament may need to have at least
n+k−2 vertices (as described below). From the result of Havet and Thomassé [10]
on oriented paths we know that n + k − 2 is best possible if k = 2 and n ≥ 8,
while Ceroi and Havet [2] proved that n+k −2 is also best possible if k = 3 and
n ≥ 5. Dross and Havet [3] conjectured that, for each k, if n is sufficiently large
then n + k − 2 is best possible.

In this paper, we confirm this conjecture, as follows.

Theorem 2. For each k, there is some n0 such that, for each n � n0, every
(n + k − 2)-vertex tournament contains a copy of every n-vertex oriented tree
with k leaves.

The following well-known example shows that this is best possible. Form a
tree Tn,k by taking a directed path P with n − k + 1 vertices and attaching
k − 1 out-leaves to the last vertex of P . The resulting oriented tree Tn,k has n
vertices and k leaves. Construct the following (n + k − 3)-vertex tournament G.
Let V (G) = A ∪ B, where |A| = n − k, and |B| = 2k − 3. Orient the edges of G
so that G[B] is a regular tournament, G[A] is an arbitrary tournament, and all
edges are directed from A to B. As d+G(v) = k−2 for each v ∈ B, if G contains a
copy of Tn,k then the last vertex of P must be copied to A. Then, as every edge
between A and B is oriented into B, every vertex of P must be copied into A,
a contradiction as |A| = n − k. Thus the n-vertex tree Tn,k with k leaves does
not appear in the (n + k − 3)-vertex tournament G.

The proofs for Theorems 1 and 2 are sketched in Sects. 3 and 4, while the
full proofs can be found in [1]. Both proofs make use of median orders, a tool
discussed in Sect. 2. We have not optimised the value of C reachable with our
methods as this will not reach a plausibly optimal bound, but we show that
Theorem 1 holds for some C < 500.

2 Median Orders

Median orders were first used to embed trees in tournaments by Havet and
Thomassé [9]. Given a tournament G, an ordering σ = v1, . . . , vn of V (G) is a
median order if it maximises the number of pairs i < j with vivj ∈ E(G). The
following lemma gives two simple fundamental properties of median orders (see,
e.g., [3, Lemma 9]).
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Lemma 1. Let G be a tournament and v1, . . . , vn a median order of G. Then,
for any two indices i, j with 1 � i < j � n, the following properties hold.

i) vi, vi+1, . . . , vj is a median order of the subtournament induced by G on
{vi, . . . , vj}.

ii) vi dominates at least half of the vertices vi+1, vi+2, . . . , vj, and vj is dominated
by at least half of the vertices vi, vi+1, . . . , vj−1. In particular, each vertex vi,
1 � i < n, dominates its successor vi+1.

In both proofs, we will take a median order of a tournament, and carefully
partition this order into intervals before embedding different parts of the tree into
each interval. The parts embedded into each interval will then need connecting
paths attached to them, to recover a copy of the tree.

For connecting paths that are directed, we embed along the path into a
consistent order under σ. From Lemma 1, it can be deduced that there is a
directed path of length at most 2 from any vertex to any vertex appearing later
in a median order. The following lemma shows that directed paths are still
possible across intervals of a median order containing some forbidden vertices.

Lemma 2. Suppose G is an n-vertex tournament with a median order σ =
v1, . . . , vn. Then, for any set A ⊂ V (G)\{v1, vn} with |A| ≤ (n − 8)/6, there is
a directed v1, vn-path in G − A with length 3.

In order to embed connecting paths that are not directed, we may instead
use a suitable application of the following result of Thomason [15].

Theorem 3. ([15, Theorem 5]). Let P be a oriented path of order n � 5,
which changes direction at its first internal vertex, and also at its last internal
vertex. Let G be a tournament of order n+2 and X and Y be two disjoint subsets
of V (G) of order at least 2. Then there is a copy of P in G with first vertex in
X and last vertex in Y .

Median orders have been used particularly effectively to embed arborescences
in tournaments. An out-arborescence (respectively, in-arborescence) is an ori-
ented tree T with a root vertex t ∈ V (T ) such that, for every v ∈ V (T ), the
path between t and v in T is directed from t to v (respectively, from v to t).
Dross and Havet [3] used median orders to prove that any (n + k − 1)-vertex
tournament contains a copy of any n-vertex arborescence with k leaves. We will
use their result in the following slightly stronger form (see [3, Theorem 12]).

Theorem 4. Let A be an n-vertex out-arborescence with k � 1 out-leaves and
root r. Let G be a tournament on n + k − 1 vertices and let σ = v1, . . . , vn+k−1

be a median order of G. Then, there is an embedding φ of A in G such that
φ(r) = v1.

We will also need some linear bound on the number of vertices required in
a tournament, which we then apply for small trees. Any linear bound would
suffice, but here we quote a result of El Sahili [4].

Theorem 5. For each n ≥ 2, every (3n−3)-vertex tournament contains a copy
of every n-vertex oriented tree.



608 A. Benford and R. Montgomery

3 Sketch Proof of Theorem 1

To prove Theorem 1, we first show that it is enough to prove the case where
all bare paths of T are directed. That is, we reduce the proof to showing the
following result.

Theorem 6. There is some C > 0 such that each (n + Ck)-vertex tournament
contains a copy of every n-vertex oriented tree with k leaves in which every bare
path is a directed path.

Sketch Proof of Theorem 1 Using Theorem 6. Let T be an n-vertex tree with
k leaves. For each maximal bare path of T with several changes of direction,
remove most of the middle section, and duplicate each new leaf created by this
removal. Calling the resulting forest T ′, if we have an embedding of T ′ then the
duplication of a leaf gives us two options to embed the original vertex from T .
Therefore, by Theorem 3, the removed paths may be reattached to T ′, giving a
copy of T .

Not every maximal bare path in T ′ will be directed, but each such path
will have only a few changes of direction. Adding a dummy leaf at any vertex
where the path direction changes will give a forest T ′′ containing T ′ whose
maximal bare paths are all directed, allowing us to apply Theorem 6 to each
component. Importantly, T ′, and hence T ′′, will still have O(k) leaves. Therefore,
by Theorem 6, any (n + O(k))-vertex tournament contains a copy of T ′′, and
hence a copy of T .

Sketch Proof of Theorem 6. Let T be an n-vertex tree with k leaves, in which
every bare path is a directed path. Remove long directed paths to leave a forest
T ′ with |T ′| = O(k). Take consecutive intervals V1, U1, V2, U2, . . . , Vs−1, Us−1, Vs

of a median order, with sizes chosen carefully. We then embed components of
T ′ into the intervals V1, . . . , Vs, such that, if some removed path was directed
from component T1 ⊆ T to component T2 ⊆ T , then there is some i ∈ [s − 1] for
which T1 is embedded into Vi and T2 is embedded into Vi+1. Because |T ′| = O(k),
Theorem 5 shows this is possible, provided

∑s
i=1 |Vi| = C ′k for some absolute

constant C ′.
All that remains is to reattach the long directed paths removed to obtain T ′,

by disjointly copying their internal vertices to intervals U1, . . . , Us−1 as appro-
priate. Most vertices of these paths can be embedded efficiently in parallel along
a median order, by modifying an algorithm of Dross and Havet [3]. When we
near the end of each path, it is necessary to connect the path to its desired end-
point, which can be handled using Lemma 2. The number of forbidden vertices
when applying Lemma 2 can be shown to be O(k) (essentially, the only vertices
we must avoid are those in the intervals V1, . . . , Vs, which is O(k), plus a con-
stant multiple of the number of paths being embedded in parallel, which is O(k)
in total). Therefore, the number of extra vertices required in the tournament for
the embedding procedure to be successful is also O(k), completing the proof.
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4 Sketch Proof of Theorem 2

As an illustrative case, let us sketch Theorem 2 for trees consisting of a directed
path between two arborescences. Suppose we have a directed path P , an in-
arborescence S1 with root the first vertex of P , and an out-arborescence S2

with root the last vertex of P , and suppose that S1 ∪ P ∪ S2 is an oriented
tree with n vertices. Say S1 has k1 in-leaves and S2 has k2 out-leaves, and
the tournament G has m := n + k1 + k2 − 2 vertices and a median order
v1, . . . , vm. Using Lemma 1 i) and Theorem 4 (via directional duality), we
can embed S1 into G[{v1, . . . , v|S1|+k1−1}] with the root vertex embedded to
v|S1|+k1−1. Similarly, we can embed S2 into G[{vm−|S2|−k2+2, . . . , vm}] with the
root vertex of S2 embedded to vm−|S2|−k2+2. Finally, by Lemma 1 ii), we have
v|S1|+k1−1 → v|S1|+k1 → . . . → vm−|S2|−k2+2, so we can use this path to embed
the n − |S1| − |S2| + 2 = m − |S1| − |S2| − k1 − k2 + 4 vertices of P and complete
an embedding of T into G.

Essentially, all our embeddings will look like this, where P will be a very long
path, but with some additional subtrees and paths found within the interval we
use to embed P . For example, suppose now the tree T also has a subtree F which
shares one vertex, t say, with S1, where t only has out-neighbours in F . If P is a
long path (compared to |F |, |S1|, |S2|) then we can embed T = F ∪ S1 ∪ P ∪ S2

into a tournament G with m := |T |+k1+k2−2 vertices as follows. Carry out the
above embedding of S1 and S2 into the start and end respectively of a median
order v1, . . . , vm of G and note that the path Q := v|S1|+k1−1 → v|S1|+k1 →
. . . → vm−|S2|−k2+2 has |F |−1+ |P | vertices. If s is the embedding of t ∈ V (S1),
then by Lemma 1 ii) and as |Q| ≥ |P | − 1 	 |F |, |S1|, s will have many out-
neighbours in this path, enough that we can easily embed F − t among the
out-neighbours of s in Q (using, in particular, Theorem 5). However, we wish
to do this so that there is a directed path between v|S1|+k1−1 and vm−|S2|−k2+2

covering exactly the |Q| − (|F | − 1) = |P | vertices of V (Q) which are not used
to embed F − t.

To do this, before embedding F , we first use a random procedure to find
a short directed v|S1|+k1−1, vm−|S2|−k2+2-path R with vertices in V (Q) so that
every vertex in V (Q) has at least one out-neighbour on R occurring after some
in-neighbour on R. The path R will be short enough that we can embed F − t
in the out-neighbours of s in V (Q) while avoiding V (R). Once F − t has been
embedded, we slot the remaining vertices in V (Q) into R one by one. Note that,
in the language of absorption (as codified by Rödl, Ruciński and Szemerédi [13]),
R is a path which can absorb any set of vertices from the interval of the median
order between its first and last vertex.

More generally, we can embed small trees attached with an out-edge from
S1 ∪ P ∪ S2, as long as the attachment point is not too late in P , or in S2, by
embedding such small trees within the interval for the path P . Similarly, we can
embed small trees attached with an in-edge from S1 ∪ P ∪ S2, as long as the
attachment point is not too early in P , or in S1. We can also use Lemma 2 to
add short paths between vertices in the interval from P that are not too close
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together. This allows us to embed a class of digraphs which can be constructed
in this way, called good decompositions.

The method to prove Theorem 2 is then as follows. Given an n-vertex tree
T with k leaves, where 1/n 
 1/k, we will be able to assume, using Theorem 3,
that T mostly consists of directed bare paths. When this is the case, then, with
the possible addition of some dummy edges, we will be able to construct a good
decomposition D containing T , where the arborescences S1, S2 are subtrees of T .
From the discussion above, a copy of D may be found in any (n + k1 + k2 − 2)-
vertex tournament, where k1 is the number of in-leaves of S1, and k2 is the
number of out-leaves of S2. Because the total number of leaves of T is at least
k1 + k2, and T ⊆ D, we may conclude that any (n + k − 2)-vertex tournament
contains a copy of T .

References

1. Benford, A., Montgomery, R.: Trees with few leaves in tournaments. arXiv preprint
arXiv:2103.06229 (2021)

2. Ceroi, S., Havet, F.: Trees with three leaves are (n+1)-unavoidable. Discrete Appl.
Math. 141, 19–39 (2004)

3. Dross, F., Havet, F.: On the unavoidability of oriented trees. Electron. Notes Theor.
Comput. Sci. 346, 425–436 (2019)

4. El Sahili, A.: Trees in tournaments. J. Comb. Theory Ser. B 92, 183–187 (2004)
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Abstract. A system of linear equations L over Fq is common if the
number of monochromatic solutions to L in any two-colouring of Fn

q

is asymptotically at least the number of monochromatic solutions in a
random two-colouring of Fn

q . The line of research on common systems
of linear equations was recently initiated by Saad and Wolf. They were
motivated by existing results for specific systems (such as Schur triples
and arithmetic progressions), as well as extensive research on common
and Sidorenko graphs. Building on earlier work, Fox, Pham and Zhao
characterised common linear equations. For systems of two or more equa-
tions, only sporadic results were known.

We prove that any system containing an arithmetic progression of
length four is uncommon, confirming a conjecture of Saad and Wolf. This
follows from a stronger result which allows us to deduce the uncommon-
ness of a general system from considering certain one- or two-equation
subsystems.

Keywords: Ramsey theory · Linear systems · Fourier analysis

1 Introduction

A classical theorem of Goodman states that over all 2-edge-colourings of the
complete graph Kn, the number of monochromatic triangles is asymptotically
minimised by a random 2-colouring. Erdős conjectured that in Goodman’s result,
the triangle can be replaced by any fixed clique Ks, and Burr and Rosta extended
the conjecture to any fixed graph. Erdős’ conjecture was disproved by Thoma-
son, motivating numerous results on common and Sidorenko graphs, including
the famous Sidorenko conjecture. In the arithmetic setting, Graham, Rödl and
Ruciński asked about the minimal number of Schur triples (triples satisfying
x + y − z = 0) in 2-colourings of [n] = {1, 2, . . . , n}. Questions of this type for
linear systems of equations were studied more systematically in [1,4,7], and we
continue this line of research.
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Following Fox, Pham and Zhao [4], we work in the finite field model – we fix
a finite field Fq, where q is a prime power, and consider a linear homogeneous
system L on k variables with coefficients in Fq. We say that the system L is
common if the number of monochromatic solutions in any two-colouring of Fn

q

is asymptotically at least the number of monochromatic solutions in a random
two-colouring of Fn

q . Formal definitions will be given later. Let us briefly discuss
systems consisting of a single equation a1x1 + · · · + akxk = 0 with coefficients
ai ∈ Fq\{0}, which are now completely characterised. Cameron, Cilleruelo and
Serra [1] showed that in fact, any such linear equation with an odd number of
variables k is common. For even k, Saad and Wolf [7] proved that the equation
is common whenever a1, . . . , ak can be partitioned into pairs, each pair summing
to zero. They conjectured that when k is even, this sufficient condition is also
necessary, which was confirmed by Fox, Pham and Zhao [4].

Much less is known when L consists of more than one equation. Saad and
Wolf [7] showed that arithmetic progressions of length four (4-APs) over F5 are
uncommon, and conjectured that any system containing a 4-AP is uncommon.
Their conjecture can be seen as an analogue of the famous result of Jagger,
Šťov́ıček and Thomason [6], showing that any graph containing a K4 is uncom-
mon. Fox, Pham and Zhao [4] asked for a characterisation of common systems of
equations, hoping that it might lead to a better understanding of the analogous
properties for graphs and hypergraphs, but noted that they do not have a guess
for such a characterisation.

Confirming the conjecture of Saad and Wolf, we show that any system L
containing a 4-AP is uncommon. This result follows from a more general theorem
which provides a sufficient condition for a system to be uncommon, based on
certain one- or two-equation subsystems of L. Using this theorem, we display
two large classes of uncommon systems. The reduction to one- or two-equation
systems opens up avenues for using discrete Fourier analysis in studying systems
with two or more equations.

We also give examples of common systems based on intricate relations
between the condensed equations, indicating that a characterisation of common
systems might be rather elusive.

2 Results

Before stating our results, let us introduce some notation. In a slight abuse of
notation, we identify a system L with an m × k matrix L, so that the solution
set of L in Fn

q is

sol(L) = {x = (x1, . . . , xk) ∈ (Fn
q )k : LxT = 0}.

We state the definitions and results in terms of functions f : Fn
q → R,

rather than subsets of Fn
q . This is standard in arithmetic combinatorics, since a

function can be used to sample a random subset of Fn
q , and thus the commonness

property for sets is equivalent to its functional version. This correspondence
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between functions and sets is explained in more detail in [4]. The density of
solutions to a system L in f is

ΛL(f) =
1

|sol(L)|
∑

x∈sol(L)

f(x1)f(x2) . . . f(xk).

We refer to a system L with k variables and m equations as an m×k system
or a k-variable system, and we have m ≤ k throughout. An m × k system is
non-degenerate if its rank is m and there are no variables xi and xj such that
the equation xi = xj can be derived from the system. A non-degenerate m × k
system is common if for every f : Fn

q → [0, 1]

ΛL(f) + ΛL(1 − f) ≥ 21−k.

Note that the right-hand side is the expected density of monochromatic solutions
in a random two-colouring of Fn

q , and if f is the indicator function of a set A,
then ΛL(f) is the density of solutions in A. Hence this definition corresponds to
the intuitive definition given above. Any degenerate system can be easily reduced
to the corresponding non-degenerate system, so we restrict our attention to non-
degenerate systems throughout the note.

Consider a k-variable system L and a 4-variable system M (such as a 4-AP).
We say that L contains M if there are coordinates a, b, c, d ∈ [k], such that
whenever (x1, . . . , xk) ∈ (Fn

q )k is a solution to L, (xa, xb, xc, xd) is a solution
to M . This is equivalent to saying that the equations for M (with relabelled
variables) can be derived from L using elementary row operations. We can now
state our first result, which confirms a conjecture of Saad and Wolf [7], when the
system M is taken to be a 4-AP.

Theorem 1. Let M be a non-degenerate 2×4 system. Any non-degenerate sys-
tem containing M is uncommon.

Even the fact that a four-variable system M itself is uncommon is a new result,
and finding a function ψ which certifies that (for any M) is not straightforward.
Indeed, previously it was only known that 4-APs are uncommon over F5 and
ZN [5,7], and the functions used there rely on the geometric structure of 4-APs.
For a system L containing a 4-variable system M , we start with the above-
mentioned function ψ, and turn it into a ‘uniform’ function using a trick due to
Gowers [5], which in some sense isolates the contribution of the system M .

For our second result, we will introduce the notion of condensed equations of a
system L, which turn out to be the crucial equations ‘forcing’ the uncommonness
of L. A specific example can be found in Sect. 2.1. In reducing the properties of
L to its condensed equations, we build on the key idea from [4], where a random
function f is specified by sampling its Fourier coefficients.

Let L be an m × k matrix, which corresponds to an m × k system of m
equations on k variables. We call a set B ⊆ [k] generic if the matrix obtained
from L by removing the columns corresponding to B has rank m. We define s(L)
to be the minimal order of a non-generic set. For example, when L is a 4-AP,
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we have s(L) = 3 as all column sets of order two are generic. Our next theorem
deals with the systems L with s(L) even, for which we define a collection of
critical sets

C(L) = {B ⊆ [k] : |B| = s(L) and B is not generic}.

Note that for B ∈ C(L), the rank of the matrix obtained from L after removing
the columns corresponding to B is m − 1. Hence there is a unique equation
LB (up to rescaling) derived from L by eliminating the variables xi for i /∈ B.
This equation is called the condensed equation for B, denoted LB . The following
theorem describes a rather general class of uncommon systems L with even s(L).

Theorem 2. Let L be a system with s(L) even. Suppose that for every set B ∈
C(L), the condensed equation LB is uncommon. Then the system L is uncommon.

Recall that a single equation LB of even length is only common if its coeffi-
cients can be partitioned into pairs, each summing to zero. Thus in some sense, a
‘typical’ equation is uncommon, so we may say that a ‘typical’ system with s(L)
even is uncommon. The hypothesis that s(L) is even is more than an artefact of
our proofs, and is implicitly present in the results of [1,4,5].

2.1 A General Theorem and an Example

We will now describe our main theorem whose consequences are Theorem 1 and
Theorem 2. For this purpose, we need to generalise our notion of condensed
systems. Recall that s(L) is the minimal order of a non-generic set B. We define
a collection of sets

C(L) =

{
{B ⊆ [k] : |B| = s(L) and B is not generic}, if s(L) is even,

{B ⊆ [k] : |B| = s(L) + 1 and B is not generic}, if s(L) is odd
.

Each set B ∈ C(L) corresponds to a condensed system LB consisting of one or
two equations. We do not define LB here, but it has the key property that any
solution (xi : i ∈ B) to LB extends to a solution to L.

Recall the definition of ΛL(f). Our main theorem reduces the uncommonness
of an m×k system L to the ‘cumulative’ uncommonness of its condensed systems.

Theorem 3. Let L be a non-degenerate m×k system over Fq. L is uncommon
whenever there is a positive integer n and a function f : Fn

q → [− 1
2 , 1

2

]
with

Ef = 0 and ∑

B∈C(L)

ΛLB
(f) < 0.

We finish with examples of common systems which will hopefully motivate
further research and unveil some subtle phenomena. For instance, unlike in the
single-equation case [4], the multiplicative structure of the field plays an impor-
tant role in commonness.
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Example 1. We consider a class L(q) consisting of 2 × 5 systems L over Fq

with s(L) = 4. (Note that s(L) = 4 is equivalent to the property that all 2 × 2
determinants of L are non-zero). In this case, we can also deduce the commonness
of L from considering its condensed equations. Systems in L(q) have five critical
sets C(L) = {B ⊂ [5] : |B| = 4} and five corresponding condensed equations.

1. Let M be the system whose matrix is
(

1 −1 1 −1 0
1 2 −1 0 −2

)
.

The remaining condensed equations are
⎛

⎝
0 −1 −2 1 2
2 −3 0 −1 2

−1 0 −3 2 2.

⎞

⎠ .

If q ∈ {5, 7} the system is common as 3 can be written as −2 or −22

respectively, so the coefficients ‘align’ in a peculiar way for an application
of Cauchy’s inequality. For q > 7, the system is uncommon.

2. The system L generated by the equations 2x1 + x2 + 3x4 − 6x5 = 0 and
x1 +2x2 +3x3 − 6x5 = 0 is common over all fields Fq with q ≥ 5. We suspect
that there are no ‘similar’ systems L

3. If all five condensed equations of L ∈ L(q) are uncommon, the system is
uncommon by Theorem 2. There is also an abundance of uncommon systems
with one common condensed equation. One example is x1+3x2−x3−3x4 = 0,
x1 − 2x2 − 3x3 + 4x5 = 0.

3 Remarks and Open Problems

There are numerous avenues for further exploration. We select several of the
problems which we find most interesting, and state only the simplest open case.

Systems with Many Uncommon Condensed Equations. Theorem 2 states
that if s(L) is even and all the condensed equations are uncommon, then L is
uncommon. Our computational tests confirm the intuition that the conclusion
holds even if the ‘majority’ of the condensed equations are uncommon. In the
following conjecture, we propose such a class of two-equation systems.

Conjecture 1. For odd k ≥ 20, any 2×k system L with s(L) = k−1 is uncommon.

Partition Regularity for Linear Systems. For simplicity, we discuss sys-
tems with integer coefficients. A system L is 2-partition-regular if any 2-colouring
of Z contains a monochromatic solution to L. The famous theorem of Rado char-
acterises partition-regular systems for many colours, but 2-partition regularity
seems to be much less understood. Two classes of known 2-partition regular
systems are (i) single equations with at least three variables and (ii) translation-
invariant systems [2].

Question 1. Is there a system L with s(L) ≥ 3 which is not 2-partition-regular?
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Commonness and Translation-Invariance. Translation-invariance is a suf-
ficient condition for 2-partition regularity, but certainly not necessary (e.g. all
one-equation systems of odd length are common). Still, it seems difficult to con-
struct a larger common systems which is not translation-invariant.

Question 2. Is there a system with at least two equations which is common, but
not translation-invariant?

How Uncommon Can An Equation Be? Even if a system is uncommon, it is
still natural to enquire about the minimum density of monochromatic solutions.
For single equations, this minimum density can be expressed as an apparently
simple optimisation problem in terms of Fourier coefficients (see, e.g., Eq. (3)
in [4]). This leads to the following question.

Question 3. Let Lk be the collection of equations of length k over Fq. What is
the asymptotically minimal density of monochromatic solutions to L, over all
colourings of Fn

q and all L ∈ L2k?

Note that for odd k and all L ∈ Lk, the density of monochromatic solutions
depends only on the size of the colour classes. The analogous question for graphs
has also been investigated [3].

Finally, many of the previous results have been generalised to the setting of
arbitrary abelian groups [1,8]. We have not attempted to extend our results in
this direction.
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Abstract. In a recent breakthrough, Adiprasito, Avvakumov, and
Karasev constructed a triangulation of the n-dimensional real projec-
tive space with a subexponential number of vertices. They reduced the
problem to finding a small downward closed set-system F covering an
n-element ground set which satisfies the following condition: For any two
disjoint members A,B ∈ F , there exist a ∈ A and b ∈ B such that either
B∪{a} ∈ F and A∪{b}\{a} ∈ F , or A∪{b} ∈ F and B∪{a}\{b} ∈ F .
Denoting by f(n) the smallest cardinality of such a family F , they proved

that f(n) < 2O(
√

n log n), and they asked for a nontrivial lower bound. It
turns out that the construction of Adiprasito et al. is not far from opti-
mal; we show that 2(1.42+o(1))

√
n ≤ f(n) ≤ 2(1+o(1))

√
2n log n.

We also study a variant of the above problem, where the condition
is strengthened by also requiring that for any two disjoint members
A,B ∈ F with |A| > |B|, there exists a ∈ A such that B ∪ {a} ∈ F . In
this case, we prove that the size of the smallest F satisfying this stronger
condition lies between 2Ω(

√
n log n) and 2O(n log log n/ log n).

Keywords: Extremal combinatorics · Set-systems · Exchange
property

1 Introduction

It is an old problem to find a triangulation of the n-dimensional real projec-
tive space with as few vertices as possible. Recently, Adiprasito, Avvakumov,
and Karasev [1] broke the exponential barrier by finding a construction of size
2O(

√
n log n). For the proof, they considered the following problem in extremal set

theory.
What is the minimum cardinality of a system F of subsets of [n] =

{1, 2, . . . , n}, which satisfies three conditions:

1. F is atomic, that is, ∅ ∈ F and {a} ∈ F for every a ∈ [n];
2. F is downward closed, that is, if A ∈ F , then A′ ∈ F for every A′ ⊂ A;
3. for any two disjoint members A,B ∈ F\{∅}, there exist a ∈ A and b ∈ B

such that
either B ∪ {a} ∈ F and A ∪ {b}\{a} ∈ F ,
or A ∪ {b} ∈ F and B ∪ {a}\{b} ∈ F .

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Letting f(n) denote the minimum size of a set-system F with the above three
properties, Adiprasito et al. proved

f(n) ≤ 2(1/2+o(1))
√

n log n, (1)

where log always denotes the base 2 logarithm. They used the following
construction. Let s, t > 0 be integers, n = st. Fix a partition [n] = X1 ∪ . . . ∪ Xt

of the ground set into t parts of equal size, |X1| = . . . = |Xt| = s. Let

F = ∪t
i=1Fi, where Fi = {F ⊆ [n] : |F ∩ Xj | ≤ 1 for every j 	= i}, (2)

for 1 ≤ i ≤ t. (In the definition of Fi, there is no restriction on the size of
F ∩ Xi.) It is easy to verify that F meets the requirements. We have

|F| = (t2s − (s + 1)(t − 1))(s + 1)t−1 < 2s+t log(s+1)+log t.

Substituting s = (1/
√

2 + o(1))
√

n log n and t = (
√

2 + o(1))
√

n/ log n, we
obtain that

f(n) ≤ 2(1/
√
2+o(1))

√
n log n+(

√
2+o(1))

√
n/ log n·log √

n = 2(1+o(1))
√
2n log n. (3)

This is slightly better than (1). (The authors of [1] remarked that their bound
can be improved by a “subpolynomial factor.”) Any further improvement on the
upper bound would result in a smaller triangulation of the projective space.

Our first theorem implies that (3) is not far from optimal.
The rank of a set-system F , denoted by rk(F), is the size of the largest set

F ∈ F ; see, e.g., [2].
We denote by �x� the integer closest to x.

Theorem 1. Let F be an atomic system of subsets of [n], such that for any two
disjoint members A,B ∈ F , either there exists a ∈ A such that B ∪ {a} ∈ F , or
there exists b ∈ B such that A ∪ {b} ∈ F . Then we have

(i) |F| ≥ e(2e−1/
√

2+o(1))
√

n ≥ 2(1.42+o(1))
√

n;
(ii) rk(F) ≥ �√2n�, and this bound is best possible.

It follows from part (i) that f(n) ≥ 2(1.42+o(1))
√

n.
We remark that the assumptions of Theorem 1 are weaker than those made by

Adiprasito et al., in two different ways: we do not require that F is downward
closed (which is their condition 2), and the exchange condition between two
disjoint sets is also less restrictive than condition 3. Nevertheless, we know no
significantly smaller set-systems satisfying these weaker conditions than the ones
described in (2), for which |F| = 2(1+o(1))

√
2n log n. Note that if we assume that F

is downward closed, then rk(F) ≥ �√2n� immediately implies that |F| ≥ 2�√
2n�.

However, this is slightly weaker than the lower bound stated in part (i).

While part (ii) of Theorem1 is tight, we suspect that part (i) and the lower
bound f(n) ≥ 2Ω(

√
n) can be improved. As a first step, we slightly strengthen

the assumptions of Theorem 1, in order to obtain a better lower bound on |F|.
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Theorem 2. Let F be an atomic system of subsets of [n], such that for any two
disjoint members A,B ∈ F , either there exists a ∈ A such that B ∪ {a} ∈ F , or
there exists b ∈ B such that A ∪ {b} ∈ F . Moreover, suppose that if |A| < |B|,
then the second option is true. Then we have |F| ≥ 2(1/2+o(1))

√
n log n.

This lower bound exceeds the upper bound in (3). Therefore, construction
(2) cannot satisfy the stronger assumptions in Theorem2. For example, set

A = {a1} ∪ {a2, a
′
2} ∪ {∅} ∪ . . . ∪ {∅} ∈ F2 ⊂ F ,

B = (X1\{a1}) ∪ ∅ ∪ {∅} ∪ . . . ∪ {∅} ∈ F1 ⊂ F ,

where a1 ∈ X1 and a2, a
′
2 ∈ X2. If s > 4, then |A| < |B|, but there is no element

of B that can be added to A such that the resulting set also belongs to F . If
s ≤ 4, then the conditions of Theorem2 are satisfied, but the construction is
uninteresting, as |F| = 2Θ(n) and rk(F) = Θ(n). A nontrivial construction is
given here.

Theorem 3. There exists an atomic downward closed set-system F ⊂ 2[n] with
the property that for any two disjoint members A,B ∈ F with |A| ≤ |B|, there
is b ∈ B such that A ∪ {b} ∈ F , and

(i) |F| ≤ 2(2+o(1))n log log n/ log n,
(ii) rk(F) ≤ (2 + o(1))n/ log n.

The proofs of Theorems 1, 2, and 3 are presented in Sects. 2, 3, and 4, respec-
tively.

2 Proof of Theorem 1

We start with a statement which immediately implies the inequality in part (ii).

Lemma 2.1. Let k ≥ 1 be an integer, n >
(
k
2

)
, and let F be an atomic family

of subsets of [n] satisfying the condition in Theorem1.
Then we have rk(F) ≥ k. This bound cannot be improved.

Proof. By induction on k. For k = 1, the claim is trivial. Suppose that k > 1
and that the lemma has already been proved for k − 1.

Let F ⊂ 2[n] be an atomic family, where n >
(
k+1
2

)
. By the induction hypoth-

esis, there is a member A ∈ F of size at least k. If |A| ≥ k + 1, we are done.
Suppose that |A| = k, and consider the family F ′ = {F ∈ F : F ∩ A = ∅}.
Obviously, F ′ is an atomic family on the ground set [n]\A, and we have
|[n]\A| >

(
k+1
2

) − k =
(
k
2

)
. Hence, we can apply the induction hypothesis to

F ′ to find a set B ∈ F ′ of size at least k which is disjoint from A. Using the
exchange property in Theorem 1 for the sets A and B, at least one of them can
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be enlarged to obtain a member of F with at least k + 1 elements. Therefore,
we have rk(F) ≥ k + 1, as required.

To show the tightness, let X1, . . . , Xk−1 be pairwise disjoint sets with |Xi| =
i, for every i. Then V = X1 ∪ . . . ∪ Xk−1 is a set of

(
k
2

)
elements. For i =

1, . . . , k − 1, define

Fi = {F ⊆ V : |F ∩ Xj | = 0 for every j < i and |F ∩ Xj | ≤ 1 for every j > i}.
(4)

In the definition of Fi, there is no restriction on the size of F ∩ Xi. Let F =
F1∪. . .∪Fk−1. Obviously, every member of Fi has at most |Xi|+k−1−i = k−1
elements, which yields that rk(F) = maxk

i=1 rk(Fi) = k − 1. Furthermore, F is
atomic and any two disjoint members of F satisfy the exchange condition in
Theorem 1. Hence, the lemma is tight. �

We remark that the maximal sets in the above F form the same hypergraph
as the one defined in Example 3 of [4] for v = 1.

To prove the inequality rk(F) ≥ �√2n� in part (ii) of Theorem1, we have
to find the largest k for which we can apply Lemma2.1. It is easy to verify by
direct computation that

max{k :
(

k

2

)
< n} = �

√
2n�.

If n =
(
k
2

)
for some k ≥ 1, then the tightness of part (ii) of Theorem1

follows from the tightness of Lemma 2.1. Suppose next that
(
k
2

)
< n <

(
k+1
2

)
.

Let X1, . . . , Xk be pairwise disjoint sets with |Xi| = i for every i < k and let
|Xk| = n−(

k
2

)
. Set V = X1∪. . .∪Xk. For i = 1, . . . , k, define Fi as in (4), and let

F = F1 ∪ . . . ∪ Fk. Then F has the exchange property and rk(F) = k = �√2n�.
This proves part (ii) of Theorem1.

It remains to establish part (i). Let F be a family of subsets of [n] satisfying
the conditions. To each F ∈ F with |F | ≥ k, assign a k-element subset F ′ ⊆ F .
Let F ′ denote the k-uniform hypergraph (i.e., family of k-element sets) consisting
of all sets F ′.

The independence number α(H) of a hypergraph H is the maximum cardinal-
ity of a subset of its ground set which contains no element (hyperedge) of H. It
follows from Lemma 2.1 that any subset S ⊆ [n] of size |S| =

(
k
2

)
+ 1 contains at

least one element of F whose size is at least k. Therefore, any such set contains
at least one element of F ′, which means that α(F ′) ≤ (

k
2

)
.

We need a result of Katona, Nemetz, and Simonovits [3] which is a general-
ization of Turán’s theorem to k-uniform hypergraphs.

Lemma 2.2 [3]. Let H be a k-uniform hypergraph on an n-element ground set.
If the independence number of H is at most α, then we have

|H| ≥
(

n

k

)/(
α

k

)
.
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Applying Lemma 2.2 to the hypergraph H = F ′ with k = (
√

2e−1/
√
2 +

o(1))
√

n and α =
(
k
2

)
, we obtain

|F| ≥ |F ′| ≥ e(2e−1/
√

2+o(1))
√

n ≥ 2(1.42+o(1))
√

n,

completing the proof of part (i). This bound is slightly better than the inequal-
ity |F| ≥ 2�√

2n�, which immediately follows from part (ii), under the stronger
assumption that F is downward closed.

3 Proof of Theorem 2

Let F be an atomic set-system on an n-element ground set X, where n is large,
and let s and t be two positive integers to be specified later. We describe a
procedure to identify

∑t
i=0 si distinct members of F . To explain this procedure,

we fix an s-ary tree T of depth t. At the end, each of the st root-to-leaf paths
in T will correspond to a unique member of F .

Each non-leaf vertex v will be associated with an s-element subset
X(v) ⊂ X such that along every root-to-leaf path p = v0v1 . . . vt, the sets
X(v0),X(v1), . . . , X(vt−1), associated with the root and with the internal ver-
tices of p, will be pairwise disjoint. See Fig. 1 for an example.

Each edge e = vu of T will be labelled with an element x(e) ∈ X(v), in such
a way that every edge from v to one of its s children gets a different label. Thus,

{x(vu) : u is a child of v} = X(v).

Denoting the root by v0, we choose X(v0) to be an arbitrary s-element subset
of the ground set X, and set F (v0) = ∅ ∈ F . For any non-root vertex v, let

F (v) = {x(e) : e is an edge along the root-to-v path}.

We will choose X(v) such that F (v) ∈ F for every v. All of the sets F (v) will
be distinct, as any two different paths starting from the root diverge somewhere,
unless one contains the other.

Suppose that we have already determined the set X(u) for all ancestors of
some non-leaf vertex v at level � < t of T . At this point, we already know the set
F (v) ∈ F , where |F (v)| = �, and we want to determine X(v). The next lemma
guarantees that there is a good choice for X(v).

Lemma 3.1. There is an s-element subset X(v) ⊂ X such that for every x ∈
X(v), we have F (v) ∪ {x} ∈ F .

Proof. Let Z = ∪{X(u) : u lies on the root-to-v path, u 	= v}. If v is at level
� < t, we have |Z| = �s ≤ (t − 1)s. Let

Y = {y ∈ X\Z : F (v) ∪ {y} /∈ F}.
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X(v0)=
{a,b,c}

X(v1)=
{d,e,f}

X(v2)=
{g,h,i}

F (v3) = {a, d, g} {a, d, h} {a, d, i}

. . . . . .

. . . X(v1)=
{d,h,i}

. . . . . . X(v2)=
{e,f,g}

{c, i, e} {c, i, f} F (v3) = {c, i, g}

a

d

g h i

e f

b c

d h i

e f g

Fig. 1. Construction of the auxiliary tree T for the proof of Theorem2.

In other words, Y consists of all elements of X\Z that cannot be added to F (v)
to obtain a set in F .

Consider the atomic family F ′ = {F ∈ F : F ⊆ Y }. If |Y | >
(

t
2

)
, then

Lemma 2.1 implies that rk(F ′) ≥ t. Thus, there is a set B ∈ F ′ with |B| ≥ t >
|F (v)|. In this case, we can apply the exchange condition in Theorem2 to the
sets F (v) and B, to conclude that there exists b ∈ B for which F (v) ∪ {b} ∈ F .
However, this contradicts the fact that b ∈ Y .

Thus, we can assume that |Y | ≤ (
t
2

)
. Now we have

|(X\Z)\Y | ≥ n − (t − 1)s −
(

t

2

)
.

If the right-hand side of this inequality is at least s, there is a proper choice for the
set X(v). For this, it is enough if n ≥ t2

2 +ts, or, equivalently, 2 ≥ ( t√
n
)2+ t√

n
s√
n
.

To achieve this, let n be large, s = �√n/ log2 n�, and t = �(1 − 1/ log n)
√

2n�. �

By the above procedure, we can recursively assign a different set F (v) ∈ F
to each vertex v of T . This gives the desired

|F| ≥
t∑

i=0

si ≥ (n1/2/ log2 n)(1−o(1))
√
2n = n

√
(1/2+o(1))n.

4 Proof of Theorem 3

Assume for simplicity that n is a multiple of k, and fix a partition [n] = X1∪. . .∪
Xn/k into n/k parts, each of size k. That is, let |X1| = · · · = |Xn/k| = k, where
k is the largest number for which 2k−2 ≤ n/k; this gives k = (1+ o(1)) log n. We
will also assume n, k ≥ 3.
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For any A ⊂ [n] and 0 ≤ i ≤ k, let pA(i) and sA(i) denote the number of parts
Xt which intersect A in precisely i elements and in at least i elements, respec-
tively. Thus, we have sA(i) =

∑k
j=i pA(j) and |A| =

∑k
i=1 ipA(i) =

∑k
i=1 sA(i).

Define the profile vector of A, as

pA = (pA(k), pA(k − 1), . . . , pA(0)),

and let
sA = (sA(k), sA(k − 1), . . . , sA(0)).

That is, pA(0) is the number of parts that are disjoint from A, while sA(0)
is always equal to n/k. We claim that the set-system

F = {A ⊆ [n] : sA(k) ≤ 1 and sA(i) ≤ 2k−1−i for every 2 ≤ i ≤ k − 1}
meets the requirements of the theorem. Notice that for i = 0 and i = 1, there
is no restriction on sA(i) other than the trivial bounds 0 ≤ sA(i) ≤ n/k. In
particular, if A is an element of F with maximum cardinality, we have

sA = (1, 1, 21, 22, 23, . . . , 2k−3, n/k, n/k), and
pA = (1, 0, 1, 21, 22, . . . , 2k−4, n/k − 2k−3, 0).

Here, we used that 2k−3 ≤ n/k, by assumption. Thus, the size of such a largest
set is

rk(F) = |A| =
k∑

i=1

sA(i) = n/k +

k−1∑

i=1

2k−i−1 + 1 = n/k + 2k−2 ≤ 2n/k = (2 + o(1))n/ log n.

This also gives the following simple bound on the size of the family.

|F| ≤
rk(F)∑

i=0

(
n

i

)
≤

2n/k∑

i=0

(
n

i

)
≤

(
en

2n/k

)2n/k

≤
(

e log n

2

)(2+o(1))n/ log n

≤ 2
(2+o(1))n log log n/ log n

.

The proof that F meets the requirements of the theorem can be found in the
full version of this paper.

5 Concluding Remarks

If we strengthen the condition of our results by requiring that for any two non-
empty disjoint members A,B ∈ F , there exist a ∈ A and b ∈ B such that
B ∪ {a} ∈ F and A ∪ {b} ∈ F both hold, then the problem becomes trivial. Any
atomic set-system F ⊂ 2[n] with this property must contain all subsets of [n].
Indeed, every set F = {x1, . . . , xk} can be built up, sequentially applying the
condition to the sets {x1, . . . , xi} and {xi+1}, for i = 1, . . . , k − 1.

In Theorems 1 and 2, we only assume that F is atomic. However, our best
constructions have the stronger property that F is downward closed. Could we
substantially strengthen these results under the stronger assumption? The proof
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of the bound |F| ≥ 2�√
2n�, which is only slightly weaker that Theorem1 (i),

becomes much easier if we assume that F is downward closed, and the proof of
Theorem 2 can also be simplified if F is downward closed.

The property of the set-system described in Theorems 2 and 3 is reminiscent
of the independent set exchange property of matroids; see [5]. A common gener-
alization of these two properties would be to require that for any two members
A,B ∈ F , if either |A| = |B| and A ∩ B = ∅, or |A| < |B| (but they are not
necessarily disjoint), then there exists b ∈ B such that A∪{b} ∈ F . A downward
closed set-system F has this property if and only if F is the family of indepen-
dent sets in a matroid in which no subspace has two disjoint generators A and
B, i.e., A∩B = ∅ and rk(A) = rk(B) = rk(A∪B) is forbidden. We do not know
whether this question has been studied before.
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Abstract. The k-sample G(k,W ) from a graphon W : [0, 1]2 → [0, 1]
is the random graph on {1, . . . , k}, where we sample x1, . . . , xk ∈ [0, 1]
uniformly at random and make each pair {i, j} ⊆ {1, . . . , k} an edge with
probability W (xi, xj), with all these choices being mutually independent.
Let the random variable Xk(W ) be the number of edges in G(k,W ).

Vera T. Sós asked in 2012 whether two graphons U,W are necessarily
weakly isomorphic provided the random variables Xk(U) and Xk(W )
have the same distribution for every integer k � 2. This question when
one of the graphons W is a constant function was answered positively by
Endre Csóka and independently by Jacob Fox, Tomasz �Luczak and Vera
T. Sós. Here we investigate the question when W is a 2-step graphon
and prove that the answer is positive for a 3-dimensional family of such
graphons.

We also present some related results.

Keywords: Graphons · Weak isomorphism · Sample

1 Introduction

The k-sample G(k,W ) from a graphon W (i.e. a measurable symmetric function
[0, 1]2 → [0, 1]) is the random graph on [k] := {1, . . . , k} obtained by sampling
x1, . . . , xk ∈ [0, 1] uniformly at random and making each pair {i, j} ⊆ [k] an edge
with probability W (xi, xj), with all these choices being mutually independent.
The (homomorphism) density t(F,W ) of a graph F on [k] in W is the probabil-
ity that E(F ) ⊆ E(G(k,W )), that is, every adjacent pair in F is also adjacent
in G(k,W ). Equivalently, t(F,W ) :=

∫
[0,1]k

∏
{i,j}∈E(F ) W (xi, xj) dx1 . . . dxk.

Let us call two graphons U and W weakly isomorphic if the random graphs
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G(k, U) and G(k,W ) have the same distribution for every k ∈ N. This is equiv-
alent to t(H,U) = t(H,W ) for every connected graph H. Borgs, Chayes and
Lovász [1] showed that all graphons in the weak isomorphism class of W can,
roughly speaking, be obtained from W by applying measure-preserving trans-
formations of the variables.

A graphon parameter f is a function that assigns to each graphon W a
real number or a real vector f(W ) such that f(W ) = f(U) whenever U and
W are weakly isomorphic. We say that a family (fi)i∈I of graphon parameters
forces a graphon W if every graphon U with fi(U) = fi(W ) for every i ∈ I is
weakly isomorphic to W . For example, the famous result of Chung, Graham and
Wilson [2] on p-quasirandom graphs states, in this language, that the constant-p
graphon is forced by t(K2, ·) and t(C4, ·), i.e. by the edge and 4-cycle densities.

Call a family (fi)i∈I of graphon parameters forcing if it forces every
graphon W . For example, the densities t(F, ·), where F ranges over all con-
nected graphs, form a forcing family. The authors are not aware of any results
where a substantially smaller set of parameters than the densities of all con-
nected graphs is shown to be forcing. Vera T. Sós [9] posed some questions in
this direction, and in particular considered the following problem. For a graphon
W and an integer k ∈ N, let Xk(W ) := |E(G(k,W ))| be the size of, i.e. number
of edges in, the k-sample G(k,W ) from W . We identify the random variable
Xk(W ) with the vector of probabilities P(Xk(W ) = i) for 0 � i �

(
k
2

)
, viewing

it as a graphon parameter. Let WS be the family of graphons W that are forced
by the sequence (Xk(W ))k∈N, i.e. by the distributions of sizes of samples from
W .

Question 1 (Size Forcing Question (Sós [9])). Is every graphon in WS?

Alon (unpublished, see [4]) and independently Sliacan [8] proved that the
constant- 12 graphon is in the family WS . Then Csóka [4] and independently Fox,
�Luczak and Sós [5] proved that constant-p graphon is in the family WS for any
p ∈ (0, 1). A natural next step would be to try to determine whether W ∈ WS

when W is a 2-step graphon, i.e. we have a partition of [0, 1] into measurable sets
A and B such that W is constant on each of the sets A2, B2 and (A×B)∪(B×A).
We need four parameters to describe a 2-step graphon: the measure of A as well
as the three possible values of W . We can prove that W ∈ WS for the following
3-dimensional subset of 2-step graphons.

Theorem 1. Let W be the 2-step graphon with parts A := [0, a) and B := [a, 1]
such that its values on A2, (A×B)∪(B×A) and B2 are respectively 0, p ∈ (0, 1]
and q ∈ (0, 1]. If (1 − a)q � (1 − 2a)p, then W ∈ WS.

We can also answer Question 1 for some other families of 2-step graphons.
We present two further examples (Theorems 2 and 3) where a finite set of some
natural real-valued parameters suffices. The first is motivated by the result of
Csóka [4] who in fact proved that the constant-p graphon is forced by X4 alone.

Theorem 2. Let p ∈ [0, 1] and let W be the graphon which is 0 on [0, 1/2)2 ∪
[1/2, 1]2 and p everywhere else. Then W is forced by X5 alone.
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Let the independence ratio α(W ) of a graphon W be the supremum of the
measure of A ⊆ [0, 1] such that W (x, y) = 0 for a.e. (x, y) ∈ A2. As was observed
by Hladký, Hu and Piguet [6, Lemma 2.4], the supremum is in fact a maximum
(that is, it is attained by some A). Also, the clique ratio ω(W ) := α(1 − W ) is
the maximum measure of A ⊆ [0, 1] with W being 1 a.e. on A2.

Theorem 3. Given a, p ∈ [0, 1], set A := [0, a) and B := [a, 1], and let W be
the graphon which is 0 on A2, 1 on B2, and p everywhere else. Then W is forced
by (α, ω,X4).

By using a basic version of the container method, we show that the value of
α (and thus of ω) is determined by any infinite subsequence of (Xk)k∈N. More
precisely, the following holds.

Theorem 4. α(W ) = limk→∞
(
P(Xk(W ) = 0)

)1/k for every graphon W .

We note that Theorem 4, by relating α(W ) to graph densities, fills one missing
entry in [7, Table 1].

By combining Theorems 3 and 4, we directly obtain the following result.

Corollary 1. Let W be a graphon as in Theorem3 (that is, W is 0 on [0, a)2,
1 on [a, 1]2, and p everywhere else). Then W ∈ WS. ��

Call a family F of graphs forcing if the corresponding family of parameters
(t(F, ·))F∈F is forcing. Sós [9] also asked if one can find substantially smaller
forcing families than taking all connected graphs. We show that two natural
examples, namely the family of all cycles and the family of all complete bipartite
graphs, do not suffice.

Proposition 1. (i) The family of all connected graphs with at most one cycle is
not forcing. In particular, the family of all cycles is not forcing.

(ii) For every integer d, the family of all graphs of diameter at most d is not
forcing. In particular, the family of all complete bipartite graphs is not forc-
ing.

Full proofs of all the results stated in this extended abstract can be found
in [3].

2 Some Auxiliary Results

We first present some known or easy auxiliary results that we need for the proofs
of the main results. For graphs H1,H2, let H1 � H2 denote their disjoint union.
Let Gk,m consist of isomorphism classes of all graphs with at most k vertices
and exactly m edges that do not contain any isolated vertices. For example,
G5,3 = {K3, P4, P3 � K2,K1,3}.

Lemma 1. (i) For any graphon W and for any graphs H1 and H2, we have
t(H1 � H2,W ) = t(H1,W ) t(H2,W ).

(ii) If W is a p-regular graphon and F ′ is obtained from a graph F by attaching
a pendant edge then t(F ′,W ) = p t(F,W ).

The following result implicitly appears in Csóka [4] (see also [3, Lemma 12]).
Let (r)k := r(r − 1) . . . (r − k + 1) denote the falling factorial.
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Lemma 2. Let integers k and m satisfy 1 � m �
(
k
2

)
. Then for every graphon

W we have
E ((Xk(W ))m) =

∑

F∈Gk,m

ck,F t(F,W ),

where ck,F > 0 is the number of graphs on [k] that, after discarding isolated
vertices, are isomorphic to F .

A useful consequence, which we will apply frequently, is that if two graphons
U,W have k-samples Xk(U),Xk(W ) with identical distributions, and if t(F,U) =
t(F,W ) for all F ∈ Gk,m except for some F0, then the F0-densities are also equal.

We will also need the following bipartite analogue of the Chung-Graham-
Wilson Theorem, which can be proved either by passing to finite graphs converg-
ing to U (and adapting the original proof of Chung, Graham and Wilson [2]) or,
using analytic methods, by dealing directly with graphons (see [3, Lemma 14]).

Lemma 3. Let A and B be sets of measure a and b respectively that parti-
tion [0, 1]. (Thus a + b = 1.) Let p ∈ [0, 1]. Let U be a graphon taking value 0 on
A2 ∪ B2 such that t(K2, U) = 2abp and t(C4, U) = 2a2b2p4. Then U(x, y) = p
for a.e. (x, y) ∈ (A × B) ∪ (B × A).

The following result can be proved using the container method (see [3, The-
orem 15]). Let I(G) denote the family of all independent sets in a graph G and
let Ik(G) := {I ∈ I(G) : |I| = k} consist of all independent sets of size k.

Theorem 5. For every δ > 0 there exists ε > 0 such that for any k � 1/ε there
exists n0 such that for every graph G on n � n0 vertices and every real α, if
|Ik(G)| � (α − ε)k

(
n
k

)
, then there exists A ⊆ V (G) with |A| � (α − δ)n and

e(G[A]) � δn2.

3 Proof Outlines of Main Results

Proof of Theorem 2. Let U be an arbitrary graphon such that the distribution
of X5(U) is the same as the distribution of X5(W ). Let us denote this common
distribution by X5. The aim is to successively prove the following properties of
U ; each step is individually relatively easy to prove given the previous properties.

• U is (p/2)-regular, i.e. degU (x) :=
∫ 1

0
U(x, y) dy = p/2 for a.e. x ∈ [0, 1].

• If t(H,U) = t(H,W ) for some graph H, then t(H ′, U) = t(H ′,W ) for any
graph H ′ that is obtained from H by adding a pendant edge.

• t(H,U) = t(H,W ), where H is any one of K1,3, P4, P2 � K2,K3, C4, C4 with
a pendant edge, C5,K2,3.

• Let the random variable Z be codegU (x, y) :=
∫ 1

0
U(x, z)U(z, y) dz, the den-

sity of copies of P2 which have x, y as endpoints, where x and y are chosen
uniformly and independently from [0, 1]. Then P(Z = 0) = P(Z = p2/2) = 1

2 .
• Let C consist of those (x, y) ∈ [0, 1]2 for which codegU (x, y) = p2/4 and let

degC(x) denote the measure of NC(x) := {y : (x, y) ∈ C}, for x ∈ [0, 1]. Then
degC(x) = 1/2 for a.e. x ∈ [0, 1].

• For a.e. x ∈ [0, 1], the set NC(x) is independent in U .
• U is weakly isomorphic to W .
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Proof of Theorem 4. For k ∈ N, let αk(W ) := P(Xk(W ) = 0). It is easy to see
that the limit α∞(W ) := limk→∞(αk(W ))1/k exists. Clearly, α∞(W ) remains
the same if we replace W by any weakly isomorphic graphon.

The inequality α∞(W ) � α(W ) is easy to prove by picking an independent
set A ⊆ [0, 1] in W of measure λ(A) = α(W ) (which exists by [6, Lemma 2.4])
and observing that Pr(Xk(W ) = 0) � λ(A)k.

To show the converse inequality, we pick sufficiently large k � n (so in
particular αk(W ) ≈ α∞(W )) and let G ∼ G(n,W ) be the n-sample from W .
We consider the step graphon WG encoding the adjacency relation in G. In an
appropriate sense, a typical outcome WG is “close” to W , and therefore it suffices
to show that G contains an almost independent set of size close to αk(W ) · n,
which will then transfer to an independent set in W of size close to αk(W ). The
existence of this almost independent set can be proved by applying Theorem5.

Proof of Theorem 1. Let U be an arbitrary graphon such that for every k ∈ N
the distributions of Xk(U) and Xk(W ) are the same; let us denote this random
variable by Xk.

By Theorem 4, U contains an independent set of measure a, which we may
assume is A = [0, a).

We next claim that for almost every x ∈ B, we have degUA(x) � ap. This can
be proved by contradiction: if there is a set B′ ⊂ B of measure at least ε such
that each point in B′ has A-degree at most ap− ε, then some careful calculation
shows that αk(U) � αk(W ) for sufficiently large k, which is a contradiction.

Let U ′ be the graphon obtained from U by averaging it over (A×B)∪(B×A)
and over B2. A further averaging argument considering the density of P3 and
applying the Cauchy-Schwarz inequality shows that in fact U ′ = W .

Next, we show that for almost every (x, y) ∈ B2, we have that codegUA(x, y) =
ap2 where we denote codegUA(x, y) :=

∫
A

U(x, z)U(y, z) dz. If this were not true,
then some careful calculation shows that P(Xk(U) � 1) > P(Xk(W ) � 1) for
sufficiently large k, which is a contradiction.

We next deduce that the triangle densities in U,W are identical even if we
specify which vertices are in A and B, and that the same is true for triangles with
a pendant edge. It follows from Lemma 2 that U and W have the same density of
4-cycles. Since due to codegree considerations U and W have the same densities
of ABAB-cycles, Lemma 3 implies that U is constant p on A×B. Finally, since
we know the densities of all types of 4-cycles except those lying inside B, we also
know the density of these 4-cycles, and the Chung-Graham-Wilson Theorem
implies that U is also constant on B, so U = W .

Proof of Theorem 3. There are subsets C,D ⊆ [0, 1] of measures a and 1 − a
respectively such that U is 0 on C2 a.e. and U is 1 on D2 a.e., and we may
assume that C = A and D = B.

We first show that degUB(x) = (1−a)p for a.e. x ∈ A by showing that, viewed
as a random variable when x is chosen uniformly at random from A, the first and
third moments are (1−a)p and ((1−a)p)3 respectively, which is only possible if
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the random variable is constant (1 − a)p a.e. on A. Similarly we can show that
degUA(x) = ap for a.e. x ∈ B.

Let K−
4 be the 4-clique minus an edge, the unique graph on 4 vertices with

5 edges. A 4-sample from U can only form a K−
4 if it has either two or three

vertices in B. Since we know the density of the second type, and the densities
of K−

4 in U and W are identical, we can also deduce the density of the second
type, which exactly matches the density of ABAB-cycles in both U and W . It
follows that U is constant a.e. on A×B, and therefore weakly isomorphic to W .

Proof of Proposition 1. To prove (i), take the unit vectors

x1 :=
1√
3

⎛

⎝
1
1
1

⎞

⎠ , x2 :=
1√
2

⎛

⎝
1

−1
0

⎞

⎠ , and x3 :=
1√
6

⎛

⎝
2

−1
−1

⎞

⎠ ,

let ε := 1/4 and set

A := x1x
T
1 + εx2x

T
2 and A′ := x1x

T
1 + εx3x

T
3 .

Let W and W ′ be the 3-step graphons, with steps of measure 1/3, whose
values are given by the symmetric matrices A,A′ ∈ [0, 1]3×3. It is simple to
calculate that W,W ′ have the same densities of k-cycles for every k, and indeed
the same densities of all unicyclic graphs, but are not weakly isomorphic since
their limiting density of Kk as k → ∞ is different.

To prove (ii), let G := Pd+2 � Pd+2 and G′ := Pd+3 � Pd+1, and let W,W ′ be
the step graphons with 2d + 4 steps of equal measure encoding their adjacency
relations. They are not weakly isomorphic because the induced density of Pd+3

is zero in W but not in W ′, but their densities of any graph of diameter at most
d are identical, so this family is not forcing.
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Abstract. In this work we consider arc criticality in colourings of ori-
ented graphs. We study deeply critical oriented graphs, those graphs for
which the removal of any arc results in a decrease of the oriented chro-
matic number by 2. We prove the existence of deeply critical oriented
cliques of every odd order n ≥ 9, closing an open question posed by
Borodin et al. [Journal of Combinatorial Theory, Series B, 81(1):150–
155, 2001 ]. Additionally, we prove the non-existence of deeply critical
oriented cliques among the family of circulant oriented cliques of even
order.

Keywords: Oriented graph · Oriented chromatic number · Deeply
critical graphs · Circulant graphs

1 Introduction and the Main Results

In 1994, Courcelle [3] defined oriented colouring as part of his seminal work on
the monadic second order logic of graphs in which he established the illustrious
Courcelle’s Theorem [4]. In the years following, oriented colouring and the ori-
ented chromatic number gained popularity and developed into an independent
field of research. We refer the reader to Sopena’s updated survey [9] for a broad
overview of the state of the art.

An oriented graph
−→
G is a directed graph without any directed cycle of length

one or two. That is, it is a directed graph that is irreflexive and anti-symmetric.
We denote the set of vertices and arcs of an oriented graph

−→
G by V (

−→
G) and

A(
−→
G), respectively. Its underlying simple graph is denoted by G.
By generalizing to oriented graphs the interpretation of graph colouring as

homomorphism to a complete graph, one arrives at the following definition of
oriented graph colouring.

An oriented k-colouring of an oriented graph
−→
G is a function φ : V (

−→
G) →

{1, 2, . . . k} so that

S. Sen—Research partially supported by IFCAM MA/IFCAM/18/39 and SRG/2020/
001575.
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(i) φ(x) �= φ(y) for all xy ∈ A(
−→
G); and

(ii) for all xy, uv ∈ A(
−→
G), if φ(x) = φ(v), then φ(y) �= φ(u).

The vertices of the target of homomorphism correspond to the colours. Condition
(i) ensures that the target of the homomorphism is irreflexive. Condition (ii)
ensures that the target of the homomorphism is anti-symmetric.

When y = u, condition (ii) implies vertices connected by a directed path of
length 2 (i.e., a 2-dipath) must receive different colours.

The oriented chromatic number χo(
−→
G) of an oriented graph

−→
G is the mini-

mum k for which
−→
G admits an oriented k-colouring.

A major theme in oriented colourings research is the study of analogous ver-
sions of graph colouring concepts for oriented graphs. In 2004 Klostermeyer and
MacGillivray [7] generalized the notion of clique to oriented colouring, studying
those oriented graphs for which χo(

−→
G) = |V (

−→
G)|. This work was continued by

Nandi, Sen, and Sopena [8]. Such oriented graphs are called absolute oriented
cliques and admit the following classification.

Theorem 1 (Klostermeyer and MacGillivray). An oriented graph is an
absolute oriented clique if and only if every pair of non-adjacent vertices are
connected by a 2-dipath.

In 2001 Borodin et al. [1], extended the notion of arc criticality for graph
colouring to oriented colourings. Notably they gave examples of oriented graphs
for which the removal of any arc decreases the oriented chromatic number by 2,
the maximum possible. Formally, a deeply critical oriented graph is an oriented
graph

−→
G for which

χo(
−→
G − xy) = χo(

−→
G) − 2

for each arc xy ∈ A(
−→
G).

Borodin et al. [1] gave an infinite family of deeply critical oriented graphs
that were also absolute oriented cliques. For convenience, we refer to such an
oriented graph as a deeply critical oriented clique. By way of example, we invite
the reader to verify that the directed cycle on 5 vertices is a deeply critical
oriented clique.

Theorem 2 (Borodin et al. [1]). There exists a deeply critical oriented clique
of order n for every n = 2 · 3m − 1, where m ≥ 1.

In their work Borodin et al. [1] speculated the existence of deeply critical oriented
cliques of odd order n for all n ≥ 33 and left it open. We close this long-standing
open problem by proving the following result.

Theorem 3. Let n be a positive odd integer. There exists a deeply critical ori-
ented clique of order n, if and only if n ≥ 5, and n �= 7.

We outline the proof of this theorem in Sect. 2.
A curious aspect of the study of deeply critical oriented cliques is a lack

of examples of such oriented graphs of even order, despite intensive computer
search. We conjecture such deeply critical oriented cliques not to exist.
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Conjecture 4. There exists a deeply critical oriented clique of order n, if and
only if n is odd, n ≥ 5, and n �= 7.

Let n be an integer and let S ⊆ Zn so that for all k ∈ Zn if k ∈ S, then
−k �∈ S. Recall that the oriented circulant graph

−→
C (n, S) is the oriented graph

with vertex set Zn so that ij ∈ A(
−→
C (n, S)) when j − i is congruent modulo n to

an element of S.
We provide further evidence towards Conjecture 4 by proving no deeply criti-

cal oriented clique appears among the family of oriented circulant graphs of even
order.

Theorem 5. There does not exist any deeply critical oriented circulant clique
of even order.

Our work proceeds as follows. We provide outlines of the proofs of Theorems 3
and 5 in Sects. 2 and 3, respectively. In the former section we provide a method to
construct a deeply critical oriented clique for any odd integer n ≥ 5, exclusive of
n = 7. In the latter section we give a full classification of deeply critical oriented
circulant cliques. We provide concluding remarks and suggestions for future work
in Sect. 4. We refer the reader to [2] for definitions of standard graph theoretic
terminology and notation not defined herein. For full proofs of the results in
Sect. 2 and 3 see [5].

2 Proof of Theorem3

We begin by defining the following terms and notations. Let
−→
G be an oriented

graph. An extending partition of
−→
G is a partition of its set of vertices V (

−→
G) =

X1 � X2 � X3 so that

(i) there is no arc from a vertex of Xi+1 to a vertex of Xi, for all i ∈ {1, 2, 3};
(ii) for each u ∈ Xi, there exists a vertex v ∈ Xi+1 such that N−(v)∩Xi = {u},

for all i ∈ {1, 2, 3}; and
(iii) for each v ∈ Xi+1, there exists a vertex u ∈ Xi such that N+(u) ∩ Xi+1 =

{v}, for all i ∈ {1, 2, 3},

where addition in indices is taken modulo 3.
We say an oriented graph is extendable when it admits an extending partition.

For such graphs we define the following supergraphs. Let
−→
G be an oriented graph

with extending partition V (
−→
G) = X1 � X2 � X3. The 6-extension of

−→
G is the

graph
−→
G6 constructed from

−→
G as follows (see Fig. 1):

– Include six new vertices x−
1 , x+

1 , x−
2 , x+

2 , x−
3 , x+

3 to the graph
−→
G , and add

the arcs x−
1 x+

2 , x+
1 x−

2 , x−
2 x+

3 , x+
2 x−

3 , x−
3 x+

1 , and x+
3 x−

1 .
– Add all the arcs of the form x−

1 x and xx+
1 for all x ∈ X1.

– Add all the arcs of the form x−
2 x and xx+

2 for all x ∈ X2.
– Add all the arcs of the form x−

3 x and xx+
3 for all x ∈ X3.
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x−
1

x+
1 x−

2

x+
2

x−
3x+

3

X1 X2

X3

Fig. 1. Construction of
−→
G6. Thickened arcs indicate the existence of all possible arcs

between the vertex and the set Xi. Arcs between sets of vertices are not shown.

Following the definition of 6-extension, we define two further extensions of−→
G , which arise as induced subgraphs of

−→
G6. The 4-extension of

−→
G is the graph

obtained by deleting the vertices x+
1 and x−

2 from
−→
G6. The 2-extension of

−→
G is

the graph obtained by deleting the vertices x−
1 , x+

2 , x−
3 and x+

3 from
−→
G6.

Lemma 1. Let
−→
G be an extendable deeply critical oriented clique. The 2-

extension, 4-extension, and the 6-extension of
−→
G are deeply critical oriented

cliques.

Lemma 1 implies that given an oriented deeply critical oriented clique on n
vertices, one may construct deeply critical oriented cliques on n + 2, n + 4 and
n + 6 vertices. We note, however that computer search yields many examples
of deeply critical oriented cliques that do not arise as an extension of a smaller
deeply critical oriented clique. Figure 2 gives such an example. Curiously, though
generated by computer search, the oriented graph in Fig. 2 does arise as a 6-
extension of a directed three cycle.

Given
−→
G , a deeply critical oriented clique with extending partition V (

−→
G) =

X1 �X2 �X3, one may verify V (
−→
G6) = X ′

1 �X ′
2 �X ′

3 where X ′
i = Xi ∪{x−

i , x+
i }

for all i ∈ {1, 2, 3} is an extending partition of
−→
G6.

Lemma 2. The 6-extension of an extendable deeply critical oriented clique is
extendable.

With these two lemmas in place, we provide a proof of Theorem3.

Proof (Theorem 3). The directed cycle on 5 vertices is a deeply critical oriented
clique. By computer search there is no deeply critical oriented clique on 7 vertices.

The oriented graph given in Fig. 2 is a deeply critical oriented clique with
9 vertices. This oriented graph admits the following extending partition: X1 =
{6, 2, 7},X2 = {1, 5, 0},X3 = {4, 8, 3}. The result now follows inductively from
the following observation: by Lemmas 1 and 2, if

−→
H is an extendable deeply

critical oriented clique with n vertices, then there exists deeply critical oriented
clique on n + 2 and n + 4 vertices, and an extendable deeply critical oriented
clique on n + 6 vertices. 
�
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82

7

0 1

4

36

Fig. 2. A deeply critical oriented clique on 9 vertices.

3 Proof of Theorem5

We provide a proof of Theorem5 by first giving a full classification of deeply
critical oriented circulant cliques.

Lemma 3. The circulant graph
−→
C (n, S) is a deeply critical oriented clique if

and only if for every k ∈ Zn

(a) there exists x, y ∈ S ∪ {0} so that k ≡ x + y (mod n) or k ≡ −(x + y)
(mod n); and

(b) if k is even and k
2 ∈ S then the only way to express k as in (a) is by taking

x = y = k
2 , and writing k ≡ (x + y) (mod n).

Part (a) of the lemma ensures that
−→
C (n, S) is an absolute oriented clique.

As circulant oriented graphs are vertex transitive we need only verify that (a)
is equivalent to vertex 0 being either adjacent or connected by a 2-dipath to
every vertex in

−→
C (n, S). When k ≡ x + y (mod n) or k ≡ −(x + y) (mod n)

and x, y �= 0, there is a 2-dipath, in some direction, between 0 and k. Otherwise
if x = 0 or y = 0, then 0 and k are adjacent.

Part (b) of the lemma ensures
−→
C (n, S) is deeply critical. We appeal to vertex

transitivity and use the stated condition to verify that for all vertices k not
adjacent to 0 there is exactly one 2-dipath between 0 and k.

Proof (Proof of Theorem 5). Let
−→
C (n, S) be an oriented circulant graph so that−→

C (n, S) is an absolute clique and n is even. As n is even we have n
2 ≡ −n

2
(mod n). Therefore n

2 �∈ S. Subsequently vertices 0 and n
2 are not adjacent in−→

C (n, S).
Since

−→
C (n, S) is an absolute clique, by Theorem 1 there is a 2-dipath con-

necting vertices 0 and n
2 . Thus, there exists x, y ∈ S satisfying (x + y) ≡ n

2
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(mod n) or −(x + y) ≡ n
2 (mod n). Therefore, 2x ≡ x + x ≡ −(y + y) (mod n)

or −2x ≡ −x − x ≡ y + y (mod n), violating part (b) of Lemma 3. Therefore,−→
C (n, S) is not a deeply critical oriented clique. 
�

4 Conclusions and Outlook

Work in [1] and herein provide examples of infinite families of deeply critical
oriented cliques. These constructions and extensive computer search have yielded
no examples of deeply critical oriented cliques of even order. These observations
together with the result of Theorem 5 lend support the statement of Conjecture 4.

Our computer search has yielded surprising insight into the density of deeply
critical oriented cliques among the family of absolute oriented cliques. We iden-
tified 9917 examples of previously unknown sporadic deeply critical oriented
cliques on up to 17 vertices. In addition to these examples, our search of oriented
circulants found 28 examples of previously unknown deeply critical circulant ori-
ented cliques on up to 49 vertices. A classification of odd orders for which there
exists a deeply critical circulant oriented clique remains open.

A result of Erdös [6] implies that asymptotically almost surely, every oriented
graph is an absolute oriented clique. Though attempts to extend this result to
deeply critical oriented cliques of odd order have so far been unsuccessful, it is
possible that an analogous statement is true for deeply critical oriented cliques.

Remark: The proofs of Lemmas 1, 2, and 3 are omitted due to space constraint.
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Abstract. As a result of 33 intercontinental Zoom calls, we characterise
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1 Introduction

Given partial orders A and B, we denote by
(
B
A

)
the set of all embeddings from

A to B. We write C −→ (B)Ak,l to denote the following statement: for every
colouring χ of

(
C
A

)
with k colours, there exists an embedding f : B → C such

that χ does not take more than l values on
(
f(B)
A

)
. For a countably infinite partial

order B and its finite suborder A, the big Ramsey degree of A in B is the least
number l ∈ N ∪ {∞} such that B −→ (B)Ak,l for every k ∈ N.

A partial order is homogeneous if every isomorphism between two of its finite
suborders extends to an automorphism. It is well known that up to isomorphism
there is a unique homogeneous partial order P = (P,≤P) such that every count-
able partial order has an embedding to P. The order P is called the generic
partial order. We refine the following recent result.

Theorem 1 (Hubička [4]). The big Ramsey degree of every finite partial order
in the generic order P is finite.

We characterise the big Ramsey degrees of P using special sets of finite words.
Our characterisation also leads to a big Ramsey structure with applications
in topological dynamics [7].
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Currently, there are only relatively few classes of structures where big Ram-
sey degrees are fully understood. The Ramsey theorem implies that the big
Ramsey degree of every finite linear order in the order of ω is 1. In 1979, Devlin
refined upper bounds by Laver and characterised big Ramsey degrees of the
order of rationals [2,6]. Laflamme, Sauer and Vuksanović characterised big Ram-
sey degrees of the Rado (or random) graph and related random structures in
binary languages [5]. Recently, a characterisation of big Ramsey degrees of the
triangle-free Henson graph was obtained by Dobrinen [3] and independently by
the remaining authors of this abstract. See also [1]. Here, we characterize the
structures that give the big Ramsey degrees for the generic partial order.

Our construction makes use of the following partial order introduced in [4]
(which is closely tied to the order of 1-types within a fixed enumeration of P).
Let Σ = {L,X,R} be an alphabet ordered by <lex as L<lexX<lexR. We denote
by Σ∗ the set of all finite words in the alphabet Σ, by ≤lex their lexicographic
order, and by |w| the length of the word w (whose characters are indexed by
natural numbers starting at 0). For w,w′ ∈ Σ∗, we set w ≺ w′ if and only if
there exists i such that 0 ≤ i < min(|w|, |w′|), (wi, w

′
i) = (L,R), and wj ≤lex w′

j

for every 0 ≤ j < i. It is not difficult to check that (Σ∗,�) is a partial order and
that (Σ∗,≤lex) is one of its linear extensions [4].

We write w ⊥ w′ if wi<lexw
′
i and w′

j<lexwj for some 0 ≤ i, j < min (|w|, |w′|).
Note that it is not necessarily true that (w 
� w′ ∧ w′ 
� w) ⇐⇒ w ⊥ w′, as,
for example, LR � RL, LR ⊥ RL, X 
� R, X 
⊥ R. However, we will construct
subsets of Σ∗ where this is satisfied. We call words w and w′ related if one of
expressions w � w′, w′ � w or w ⊥ w′ holds, otherwise they are unrelated.

Given a word w and an integer i ≥ 0, we denote by w|i the initial segment
of w of length i. For S ⊆ Σ∗, we let S be the set {w|i : w ∈ S, 0 ≤ i ≤ |w|}.
The set Σ∗ can be seen as a rooted ternary tree and sets S = S ⊆ Σ∗ as its
subtrees. Given i ≥ 0, we let Si = {w ∈ S : |w| = i} and call it the level i of
S. A word w ∈ S is called a leaf of S if there is no word w′ ∈ S extending w.
Let L(S) be the set of all leafs of S. Given a word w and a character c ∈ Σ, we
denote by w�c the word created from w by adding c to the end of w. We also
set S�c = {w�c : w ∈ S}.

To characterise big Ramsey degrees of P, we introduce the following technical
definition, whose intuitive meaning is explained at the end of this section.

Definition 1. A set S ⊆ Σ∗ is called a poset-type if S = S and precisely one
of the following four conditions is satisfied for every i with 0 ≤ i < maxw∈S |w|:
1. Leaf: There is w ∈ Si related to every u ∈ Si\{w} and Si+1 = (Si\{w})�X.
2. Branching: There is w ∈ Si such that

Si+1 = {z ∈ Si : z<lexw}�X ∪ {w�X, w�R} ∪ {z ∈ Si : w<lexz}�R.
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3. New ⊥: There are unrelated words v<lexw ∈ Si such that

Si+1 = {z ∈ Si : z<lexv}�X ∪ {v�R}
∪{z ∈ Si : v<lexz<lexw and z ⊥ v}�X
∪{z ∈ Si : v<lexz<lexw and z 
⊥ v}�R
∪{w�X} ∪ {z ∈ Si : w<lexz}�R.

Moreover, the following assumption is satisfied:
(A) For every u ∈ Si, v<lexu<lexw implies that at least one of u ⊥ v or u ⊥ w

holds.
4. New �: There are unrelated words v<lexw ∈ Si such that

Si+1 = {z ∈ Si : z<lexv and z ⊥ v}�X ∪ {z ∈ Si : z<lexv and z 
⊥ v}�L
∪{v�L} ∪ {z ∈ Si : v<lexz<lexw}�X ∪ {w�R}
∪{z ∈ Si : w<lexz and w ⊥ z}�X
∪{z ∈ Si : w<lexz and w 
⊥ z}�R.

Moreover, the following assumptions are satisfied:
(B1) For every u ∈ Si such that u<lexv, at least one of u � w or u ⊥ v holds.
(B2) For every u ∈ Si such that w<lexu, at least one of v � u or w ⊥ u holds.

Given a finite partial order Q, we let T (Q) be the set of all poset-types S
such that (L(S),�) is isomorphic to Q. As our main result, we determine the
big Ramsey degrees of P.

Theorem 2. For every finite partial order Q, the big Ramsey degree of Q in
the generic partial order P equals |T (Q)| · |Aut(Q)|.

Here, we only outline the main constructions giving the lower bound on big
Ramsey degrees of P; see Sect. 2. The upper bound follows from a refinement
of [4] and will appear in the full version of this abstract.

Poset-types, which can be compared to Devlin types [6], have a relatively
intuitive meaning that we now outline. Words u≤lexv are compatible if there is
no i < min(|u|, |v|) such that (ui, vi) = (R,L), and if there exists j < min(|u|, |v|)
such that (uj , vj) = (L,R) then u ≺ v and u 
⊥ v. Conditions (A), (B1) and (B2)
from Definition 1 originate from the following properties of compatible words.

Proposition 1. Let u≤lexv≤lexw≤lexz be mutually compatible words from Σ∗
i

for some i ∈ ω.

1. If v ≺ w then the following two conditions are satisfied: (a) at least one of
u ≺ w and u ⊥ v holds; (b) at least one of v ≺ z and w ⊥ z holds.

2. If u ⊥ z and u<lexv<lexz then at least one of u ⊥ v and v ⊥ z is satisfied.

Proof. To prove 1(a), we choose j such that (vj , wj) = (L,R). Now, if uj = L,
we have uj ≺ wj by compatibility. If uj ∈ {X,R}, we have u ⊥ v, since u<lexv.
Part 1(b) follows from symmetry.

For part 2, we choose j such that zj<lexuj . If u is unrelated to v or if u � v, we
have zj<lexuj≤lexvj (by compatibility) and, since v<lexz, it follows that v ⊥ z.
The case when v is unrelated to z or v � z follows analogously. ��
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One can view a poset-type S as a binary branching tree and each level Si

as a structure Si = (Si,≤lex,�,⊥). It follows that all words in S are mutually
compatible and comparing with Proposition 1 one can verify that if a level Si is a
leaf level, then Si+1 is isomorphic to Si with one vertex removed. If a level Si is a
branching level, then Si+1 is isomorphic to Si with one vertex w ∈ Si duplicated
to w�X, w�R ∈ Si+1. Observe also that w�X and w�R are unrelated. If a
level Si has new � (or ⊥), then Si+1 is isomorphic to Si extended by one pair
in the relation � (or ⊥).

2 The Lower Bound

Without loss of generality, we can assume that P = ω and thus we fix an
(arbitrary) enumeration of P. We define a function ϕ : ω → Σ∗ by mapping
j ∈ P to a word w of length 2j + 2 defined by putting (w2j , w2j+1) = (L,R)
and, for every i < j, (w2i, w2i+1) to (L,L) if j ≤P i, (R,R) if i ≤P j and (X,X)
otherwise. We set T = ϕ[P ]. The following result is easy to prove by induction.

Proposition 2 (Proposition 4.7 of [4]). The function ϕ is an embedding P →
(Σ∗,�). Moreover, ϕ(v) is a leaf of T for every v ∈ P , all words in T are
mutually compatible, and if v, w ∈ P are incomparable, we have ϕ(v) ⊥ ϕ(w).

We will need the following refinement of this embedding.

Theorem 3. There exists an embedding ψ : P → (Σ∗,�) such that Q = ψ[ω] is
a poset-type and ψ(i) is a leaf of Q for every i ∈ P .

Proof. We proceed by induction on levels of T . For every �, we define an integer
N� and a function ψ� : T� → Σ∗

N�
. We will maintain the following invariants:

1. The set ψ�[T�] satisfies the conditions of Definition 1 for all levels with the
exception of N� − 1.

2. If � > 0, then, for every u ∈ T�, the word ψ�(u) extends ψ�−1(u|�−1).

We let N0 = 0 and put ψ0 to map the empty word to the empty word.
Now, assume that N�−1 and ψ�−1 are already defined. We inductively define a
sequence of functions ψi

� : T� → Σ∗
N�−1+i. Put ψ0

� (u) = ψ�−1(u|�−1). Now, we
proceed in steps. At step j, apply the first of the following constructions that
can be applied and terminate the procedure if none of them applies:

1. If there are distinct words w,w′ from T� such that ψj−1
� (w) = ψj−1

� (w′) and
w′|j−1 = w|j−1, we construct ψj

� by extending each word in ψj−1
� [T�] by an

additional character so that the conditions on the branching of ψj−1
� (w) in

Definition 1 are satisfied.
2. If there are words w and w′ with w<lexw

′ such that w ⊥ w′ and ψj−1
� (w) 
⊥

ψj−1
� (w′) and condition (A) is satisfied for the value range of ψj−1

� , we con-
struct ψj

� to satisfy the conditions on new ⊥ for ψj−1
� (w) and ψj−1

� (w′) as
given by Definition 1.
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3. If there are words w and w′ with w<lexw
′ such that w ≺ w′ and ψj−1

� (w) 
≺
ψj−1

� (w′) and conditions (B1) and (B2) are satisfied for the value range
of ψj−1

� , we construct ψj
� to satisfy the conditions on new ≺ for ψj−1

� (w)
and ψj−1

� (w′) as given by Definition 1.

Let J be the last index j for which ψj
� is defined. It is possible to prove that

ψJ
� is actually an isomorphism (T�,≤lex,�,⊥) → (ψJ

� [T�],≤lex,�,⊥). To do so,
we need to verify that the procedure does not terminate early. Clearly, all the
branching can be realized since there are no conditions on step 1. We also have
ψJ

� (w) ⊥ ψJ
� (w′) =⇒ w ⊥ w′ and ψJ

� (w) � ψJ
� (w′) =⇒ w � w′ for w,w′ ∈ T�.

To see that these implications are in fact equivalences, we define the distance
of w and w′ as |{u : u ∈ T�, w<lexu≤lexw

′}|. By Proposition 1, one can add
all pairs to the relation ⊥ in the order of increasing distances to ensure that
condition (A) is satisfied and then it is possible to add all pairs of � in the order
of decreasing distances so that conditions (B1) and (B2) are satisfied.

Finally, we put N� = |ψJ
� (w)| for some w ∈ T� and ψ� = ψJ

� . Once all
functions ψ� are constructed, we can set ψ(i) = ψi(i). ��

Given S ⊆ Σ∗, we call a level Si interesting if the structure Si = (Si,≤lex,�,
⊥) is not isomorphic to Si+1 = (Si+1,≤lex,�,⊥) or there exist incompatible
u, v ∈ Si+1 such that u|i and v|i are compatible. Let I(S) be the set of all
interesting levels in S. Let τS : S → Σ∗ be a mapping assigning every w ∈ S the
word created from w by deleting all characters with indices not in I(S). Define
τ(S) = τS [S] and call it the embedding type of S. The following observation,
which is a direct consequence of Definition 1, establishes that a sub-type of a
poset-type is also a poset-type.

Observation 4. For a poset-type S and S′ ⊆ L(S), τ(S′) = τ(S′) is a poset-
type. ��

Given a finite partial order A, we construct a function (colouring) χA :
(
P
A

) →
T (A) by setting χA(f) = τ(ψ[f [A]]) for every f ∈ (

P
A

)
. We show that χA is an

unavoidable coloring in the following sense, which then implies Theorem 2.

Theorem 5. For every finite partial order A and every f ∈ (
P
P

)
, we have{

χA[f ◦ g] : g ∈ (
P
A

)}
= T (A).

We outline the proof of Theorem 5 in the rest of this Section. We fix f ∈(
P
P

)
and an arbitrary embedding f ′ : (Σ∗,�) → f [P] (which exists, as every

countable partial order embeds to P). We set h = ψ ◦ f ′ and observe that it is
an embedding (Σ∗,�) → (Σ∗,�). By Theorem 3 and Observation 4, we know
that τ(h(Σ∗)) is a poset-type and images of Σ∗ correspond to its leafs. We will
show a way to embed an arbitrary poset-type to τ(h(Σ∗)).

We adapt a proof by Laflamme, Sauer and Vuksanović [5]. A word u ∈ Σ∗

is a successor of w ∈ Σ∗ if |u| ≥ |w| and u||w| = w. A subset A ⊆ Σ∗ is dense
above u if every successor u′ of u has a successor in A. Given u, v ∈ Σ∗, we say
that v is u-large if the set {u′ : h(u′) is a successor of v} is dense above u.
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Observation 6. Let u, v ∈ G be vertices such that v is u-large. Then

(i) v is u′-large for every successor u′ of u, and
(ii) for every � > |v| there exists a successor v′ of v of length � and a successor

u′ of u such that v′ is u′-large. ��
Proof (of Theorem 5, Sketch). We construct functions α : Σ∗ → Σ∗, β : Σ∗ →
Σ∗ and sequences of integers Mi and Ni, i ∈ ω, satisfying:

(I) For every i ∈ ω, u, v ∈ Σ∗
i it holds that Mi < |α(u)| ≤ Mi+1, Ni < |β(u)| ≤

|h(α(u))| ≤ Ni+1 and if u<lexv, then |h(α(u))| < |β(v)|.
(II) For every u, v ∈ Σ∗ and every j < min(|α(u)|, |α(v)|) such that α(u)j 
=

α(v)j there exists i < min(|u|, |v|) satisfying Mi = j, α(u)j = ui−1 and
α(v)j = vi−1.

(III) For every u ∈ Σ∗ it holds that β(u) is α(u)-large and h(α(u)) is a successor
of β(u).

(IV) For every u, u′ ∈ Σ∗ such that u is a successor of u′ it holds that α(u) is a
successor of α(u′) and β(u) is a successor of β(u′).

Functions α and β are built by an induction on levels of Σ∗ by repeated applica-
tions of Observation 6. By (III) the partial maps α, β always extend. Moreover:

Claim. For every poset-type S and every i > 0, the structures Si = (Si,≤lex,�,
⊥), S′

i = (α[Si],≤lex,�,⊥) and S′′
i = (β[Si],≤lex,�,⊥) are mutually isomorphic.

Using the Claim, it is possible to verify that for every poset-type S it holds that
τ(h[α[L(S)]]) = S. From this, Theorem 5 follows: For every type S ∈ T (A) we
have that h(α(L(S))) gives a copy of A within f(P) of the given type.

Acknowledgement. J. H. and M. K. are supported by the project 21-10775S of the
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The Square of a Hamilton Cycle
in Randomly Perturbed Graphs
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Abstract. We investigate the appearance of the square of a Hamilton
cycle in the model of randomly perturbed graphs, which is, for a given
α ∈ (0, 1), the union of any n-vertex graph with minimum degree αn
and the binomial random graph G(n, p). This is known when α > 1/2,
and we determine the exact perturbed threshold probability in all the
remaining cases, i.e., for each α ≤ 1/2. Our result has implications on
the perturbed threshold for 2-universality, where we also fully address
all open cases.

Keywords: Randomly perturbed graphs · Square of Hamilton cycle

1 Introduction

Our goal is to completely settle the question when the square of a Hamilton cycle
appears in randomly perturbed graphs. Given a graph H and a non-negative
integer m ∈ N, the m-th power Hm of H is the graph on vertex set V (H) in
which two vertices are adjacent if and only if their distance in H is at most
m. As randomly perturbed graphs interpolate between random graph theory
and extremal graph theory, before stating our results, we recall what is already
known in these two fields on the containment problem for Cm

n , the m-th power
of a cycle on n vertices.

We start with the binomial random graph G(n, p). Since the expected number
of copies of Cm

n in G(n, p) is 1
2 (n−1)!pnm, the threshold for the appearance of a

copy of Cm
n is at least n−1/m. For m = 1, a famous result by Pósa [16] shows that

the threshold for the containment of a Hamilton cycle is n−1 log n. For m ≥ 3
a more general result of Riordan [17], that is proved using the second moment
method, gives that n−1/m is indeed the threshold. The case of the square is
more subtle: applications of the second moment method for p = Θ(n−1/2) were
not successful and variants of the absorption technique only gave the threshold
within a polylog-term. It was only recently proved by Kahn, Narayanan, and
Park [12] that also in this case the lower bound from above is the truth.
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J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 644–650, 2021.
https://doi.org/10.1007/978-3-030-83823-2_103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83823-2_103&domain=pdf
https://doi.org/10.1007/978-3-030-83823-2_103


The Square of a Hamilton Cycle in Randomly Perturbed Graphs 645

Let us now turn to minimum degree conditions in dense graph. Given 0 ≤
α ≤ 1, let Gα be any n-vertex graph with minimum degree δ(Gα) ≥ αn. For
fixed m ∈ N, we are interested in conditions on α that guarantee the containment
of Cm

n in any such graph Gα. The case m = 1 is Dirac’s theorem [8]: α ≥ 1/2
suffices and is best possible. For larger values of m, it was conjectured by Pósa
that α ≥ 2/3 suffices when m = 2, and this conjecture was further generalised
by Seymour to all m with α ≥ m

m+1 . The conjecture is tight and was solved for
all m by Komlós, Sarközy, and Szemerédi [13] for large enough n (depending
on m).

One question that recently obtained quite some attention is how many ran-
dom edges need to be added to any graph Gα with α ≥ m

m+1 to guarantee the
containment of an even larger power of a Hamilton cycle. We formalise this ques-
tion and state related results for the model of randomly perturbed graphs, which
was introduced by Bohman, Frieze, and Martin [5] and allows to investigate how
containment properties change if random edges are added. A randomly perturbed
graph Gα ∪G(n, p) is the graph obtained by adding to a deterministic graph Gα

on n vertices with minimum degree at least αn a random graph graph G(n, p)
on the same vertex set.

Definition 1 (perturbed threshold). Let m > 0 be an integer and let α ∈
(0, 1). The perturbed threshold for the containment of the m-th power of a
Hamilton cycle is p̂ = p̂(n, α,m) if there exist constants C and c (depending on
m and α) such that the following holds. For any p ≥ Cp̂ and for any sequence of
graphs Gn with δ(Gn) ≥ αn we have limn→∞ P

(
Cm

n ⊆ Gn ∪ G(n, p)
)

= 1, and
for any p ≤ cp̂ there exists a sequence of graphs Gn with δ(Gn) ≥ αn such that
limn→∞ P

(
Cm

n ⊆ Gn ∪ G(n, p)
)

= 0.

Bohman, Frieze, and Martin studied when Hamilton cycles appear in ran-
domly perturbed graphs. They showed in [5] that for any α ∈ (0, 1/2), there is
a constant C such that a.a.s. for any n-vertex graph Gα, the perturbed graph
Gα ∪ G(n, p) is Hamiltonian, provided p ≥ C/n. Moreover, this condition on p
is optimal as the graph Kαn,(1−α)n has minimum degree αn and misses a linear
number of edges to be Hamiltonian. Therefore, using the notation of Defini-
tion 1, they showed that p̂(n, α, 1) = n−1 for any α ∈ (0, 1/2). For higher powers
of Hamilton cycles, one of the first results was obtained in [6], which showed
that for any α ∈ (0, 1) there exists η > 0 such that p̂(n, α,m) ≤ n−1/m−η, and
asked for the optimal η.

In the range α ∈ (1/2, 2/3), Bennett, Dudek, and Frieze [4] showed that
p̂(n, α, 2) ≤ n−2/3(log n)1/3. This was improved and generalised by Dudek, Rei-
her, Ruciński, and Schacht [9]. They showed that for α ∈ ( m

m+1 , m+1
m+2 ), not only

Gα contains the m-th power of a Hamilton cycle, but adding a linear number of
random edges suffices to get the (m + 1)-st power, that is, p̂(n, α,m + 1) = n−1.
Nenadov and Trujić [14] then proved that in fact, with α in the same range, this
suffices for the (2m + 1)-st power and thus p̂(n, α, 2m + 1) = n−1. They also
conjectured that p̂(n, m

m+1 , 2m + 1) = n−1 log n for α = m
m+1 . When α > 1/2,

even higher powers have been studied by Antoniuk, Dudek, Reiher, Ruciński,
and Schacht [3], who proved that in many cases the threshold is guided by the
largest clique required from G(n, p).
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Observe that the exact results obtained so far all deal with the range α ∈
(1/2, 1) and already [3] asked for similar exact results for the case α ∈ (0, 1/2]
and, in particular, for m = 2. We give the first optimal results on the perturbed
threshold of the square of a Hamilton cycles for α ∈ (0, 1/2], answering the
questions from [3] in a strong from.

Theorem 1. We have

p̂(n, α, 2) =

{
n−1 for α ∈ ( 13 , 2

3 ) ,

n−1 log n for α = 1
3 .

Note that our result allows α ∈ (1/2, 2/3), but this was already covered in [9].
Theorem 1 has immediate consequences for the 2-universality of randomly per-
turbed graphs, that is, the containment of all graphs of maximum degree two.
Indeed, it is easy to see that the square of the Hamilton cycle on n vertices
contains each n-vertex graph with maximum degree two as a subgraph. This
significantly strengthens one of our results from [7] on the containment of a
triangle factor under the same conditions, and is optimal (see the discussion
after Theorems 1.3 and 2.2 in [7]). The threshold for 2-universality in randomly
perturbed graphs was studied in [15], which showed that for α ∈ (0, 1/3) the per-
turbed threshold is n−2/3. In G(n, p) alone, Ferber, Kronenberg, and Luh [10]
showed that the threshold is n−2/3(log n)1/3. Moreover, Aigner and Brandt [1]
showed that for α ≥ 2/3, the graph Gα is already 2-universal. Thus, our Theo-
rem 1, together with these results, fully solves the question for 2-universality in
randomly perturbed graphs.

When α gets smaller than 1/3, the thresholds for the square of a Hamilton
cycle and that for 2-universality behave differently, as in the former case we need
to increase the probability to ensure that we can find many copies of the square
of a short path (see also the beginning of Sect. 2). However, we are still able to
determine precisely the perturbed threshold for the square of a Hamilton cycle
for all remaining α.

Theorem 2. For any integer k ≥ 2 we have

p̂(n, α, 2) =

{
n−(k−1)/(2k−3) for α ∈ ( 1

k+1 , 1
k ) ,

n−(k−1)/(2k−3)(log n)1/(2k−3) for α = 1
k+1 .

Observe that Theorem 1 is a direct consequence of Theorem 2 and [9]. In
the next section we provide an overview of the proof of this result and also
explain what is the intuition behind the probabilities appearing there. Our the-
orem shows that the perturbed threshold p̂(n, α, 2), regarded as a function of α,
exhibits countable many jumps at α = 2/3 and α = 1/k for each integer k ≥ 2.
Moreover for α tending to zero (i.e. for k tending to infinity), p̂(n, α, 2) tends
to n−1/2, which is precisely the threshold for the square of a Hamilton cycle in
G(n, p) alone as discussed above.

It would be interesting to investigate larger powers of Hamilton cycles for
α ≤ 1/2. A natural candidate to start with is the third power of a Hamilton
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cycle, for α ≥ 1/4 and p ≥ Cn−1/2. However, this seems to be a more challenging
problem, as it requires working with the square of a Hamilton cycle in G(n, p)
at the threshold of appearance.

2 Proof Overview

In this section we will sketch the proof of Theorem 2. We start with some nota-
tion, discuss the idea of our embedding strategy and explain how this leads to
the threshold probabilities given in Theorem 2. We then turn to the arguments
for the lower bound on p̂(n, α, 2), and afterwards split the upper bound into two
theorems depending on the structure of the dense graph Gα.

Let F be the square of a path P 2
k with vertices v1, v2, . . . , vk and edges vivj ,

1 ≤ |i − j| ≤ 2. We call (v1, v2) the start-tuple of F and (vk−1, vk) the end-tuple
of F . We also refer to vi as the i-th vertex of F . Given k ≥ 2, α, p ∈ [0, 1], and
any n-vertex graph G with minimum degree αn, we want to find the square of a
Hamilton cycle C2

n in the graph G ∪ G(n, p). We now describe a decomposition
of the edges of the square of a long path or a cycle into deterministic edges
(to be embedded to G) and random edges (to be embedded to G(n, p)) that we
will use in our proof(s). We would like vertex disjoint copies F1, . . . , Ft of the
square of a path on k vertices P 2

k in the random graph G(n, p) such that the
following holds. For each i = 1, . . . , t−1, if we denote by (xi, yi) and (ui, wi) the
start-tuple and end-tuple of Fi, then wixi+1 is also an edge in G(n, p). Moreover,
there exist t − 1 additional vertices v1, . . . , vt−1 such that, for i = 1, . . . , t − 1,
all four edges viui, viwi, vixi+1, viyi+1 are edges in G. This gives the square of a
path on t(k + 1) − 1 vertices with edges of G ∪ G(n, p). Note that by requiring
the edge wtx1 from G(n, p) and adding another vertex vt joined to ut, wt, x1, y1
in G, we get the square of a cycle on t(k + 1) vertices. In order to find C2

n and
for some technical reasons, our proof(s) will allow some of F1, . . . , Ft to be the
squares of paths of different lengths.

This decomposition already justifies the probabilities that appear in The-
orem 2. Indeed, n−(k−1)/(2k−3) is the threshold in G(n, p) for a linear num-
ber of copies of P 2

k (by a standard application of Janson’s inequality), while
n−(k−1)/(2k−3)(log n)1/(2k−3) is the threshold in G(n, p) for the existence of a
P 2

k -factor (this follows from a general result of Johannson, Kahn, and Vu [11]).

2.1 Lower Bounds

For any α ∈ (0, 1/2), let Hα be the complete bipartite n-vertex graph with vertex
classes A and B of size αn and (1−α)n, respectively. We start with a sketch for
the lower bound on p̂(n, α, 2) for α ∈ ( 1

k+1 , 1
k ). We want to argue that for some

constant c ∈ (0, 1) depending on α and p ≤ cn−(k−1)/(2k−3) a.a.s. Hα ∪ G(n, p)
does not contain C2

n. In B there are a.a.s. at most 2cn copies of P 2
k (by an upper

tail bound on the distribution of small subgraphs [18]) and at most o(n) copies
of P 2

k+1 (by the first moment method). On the other hand, in any embedding
of C2

n into Hα ∪ G(n, p), an α-fraction of the vertices is mapped into A and,
because of the bound on the number of P 2

k+1 in B, two such vertices can only
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rarely be of distance more than k +1. From this it follows that there are at least
1−αk

2 n copies of P 2
k in B, which is a contradiction if c < 1−αk

4 .
We argue similarly for the lower bound of p̂(n, 1

k+1 , 2). We show that with
p ≤ 1

2n−(k−1)/(2k−3)(log n)1/(2k−3) a.a.s. H1/(k+1) ∪ G(n, p) does not contain
C2

n. Indeed, in this regime with c = 1
2k , a.a.s. (by the first moment method) at

least n1−2c vertices from B are not contained in any copy of P 2
k within B and

B contains at most n1−c copies of P 2
k+1. Therefore, in any embedding of C2

n,
the distance between two vertices mapped into A can only n1−c often be larger
thank k + 1, but exactly one in k + 1 vertices is mapped into A. This implies
that all but n1−c vertices from B are contained in a copy of P 2

k within B, which
gives a contradiction.

2.2 Stability

It turns out that the additional (log n)1/(2k−3)-term in p̂(n, 1
k+1 , 2) is only neces-

sary if the deterministic graph G is really close to H1/(k+1). The next definition
formalises what we mean by close.

Definition 2. For α, β > 0 we say that an n-vertex graph G is (α, β)-stable if
there exists a partition of V (G) into two sets A and B of size |A| = (α ± β)n
and |B| = (1 − α ± β)n such that the minimum degree of the bipartite subgraph
G[A,B] of G induced by A and B is at least 1

4αn, all but at most βn vertices
from A have degree at least |B| − βn into B, all but at most βn vertices from B
have degree at least |A| − βn into A, and G[B] contains at most βn2 edges.

We can prove the following stability version for the upper bound on
p̂(n, 1

k+1 , 2) in Theorem 2.

Theorem 3. For every k ≥ 2 and every 0 < β < 1
6k , there exists γ > 0 and

C > 0 such that the following holds. Let G be any n-vertex graph with minimum
degree at least ( 1

k+1 − γ)n that is not ( 1
k+1 , β)-stable. Then a.a.s. G ∪ G(n, p)

contains the square of a Hamilton cycle, provided that p ≥ Cn−(k−1)/(2k−3).

Only when the graph G is stable we need the (log n)1/(2k−3)-term. This case
is treated by the following theorem.

Theorem 4. For every k ≥ 2 there exists β > 0 and C > 0 such that the
following holds. Let G be any n-vertex graph with minimum degree at least 1

k+1n

that is ( 1
k+1 , β)-stable. Then a.a.s. G∪G(n, p) contains the square of a Hamilton

cycle, provided that p ≥ Cn−(k−1)/(2k−3)(log n)1/(2k−3).

We sketch the ideas for the proof of these two theorems in the following two
subsections. Together with the lower bounds, Theorem 3 and 4 imply Theorem 2.

2.3 Extremal Case

We now sketch the proof of Theorem 4. Suppose that G is an n-vertex ( 1
k+1 , β)-

stable graph, and let p ≥ C(log n)1/(2k−3)n−(k−1)/(2k−3). From the stability we
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get a partition A ∪ B of V (G) as in Definition 2. We would like to embed copies
Fi of P 2

k into B and vertices vi into A, as described in the decomposition above.
However this is only possible if |B| = k|A| and, therefore, we first embed squares
of short paths of different lengths to ensure this is the case. Moreover, we cover
similarly all vertices in A and B that do not have high degree to the other part.
Then we cover the remaining vertices in B with copies of P 2

k , which is possible
by [11] with our p. We let F be the set of the copies of squares of paths that we
obtain during these steps and for each F ∈ F , denote its start-tuple by (xF , yF )
and its end-tuple by (uF , wF ).

To turn this into an embedding of the square of a Hamilton cycle, we now
reveal additional edges of G(n, p) and encode this in an auxiliary directed graph
T on vertex set F as follows. There is a directed edge (F, F ′) if and only if the
edge wF xF ′ appears in G(n, p). It is easy to see that all directed edges in T
are revealed with probability p independently of all the others and, therefore,
with [2], we can find a directed Hamilton cycle

−→
C in T . We finally match to

each edge (F, F ′) of
−→
C a vertex v ∈ A not yet covered by any F ∈ F such that

uF , wF , xF ′ , yF ′ are all neighbours of v in the graph G. Owing to the minimum
degree conditions, this easily follows from Hall’s matching theorem. Thus we get
the square of a Hamilton cycle, as desired.

2.4 Non-extremal Case

We now turn to the proof of Theorem 3. Assume that G is not ( 1
1+k , β)-stable

and let p ≥ Cn−(k−1)/(2k−3). After applying the regularity lemma to G, with
the help of a variant of [7, Lemma 4.4] is not hard to show that the reduced
graph R can be vertex-partitioned into copies of stars K1,k and matching edges
K1,1, such that there are not too many stars. We would like to cover each such
star and matching edge with the square of a Hamilton path, and then connect
these paths to get the square of a Hamilton cycle. However since we do not have
an additional log-term in p, we need the centre cluster of each star to be larger
than the other clusters. Moreover, to ensure that we can connect the Hamilton
paths, we need to setup some connections between the stars and matching edges
in advance.

Therefore, we first remove some vertices from the leaf cluster of each star to
make it unbalanced and ensure that all pairs are super-regular. We then label
the stars and matching edges arbitrarily as S1, . . . , Ss and for i = 1, . . . , s find
the square of a short path, that we denote by Qi, with start- and end-tuple
in leaf clusters of Si and Si+1 (where indices are modulo s). We let V0 be the
sets of vertices not any more contained in any of the stars or matching edges.
We cover V0 by appending its vertices to the paths Qi. Here we use that any
vertex v ∈ V0 has degree at least ( 1

k+1 − α)n in G and, as we do not have too
many stars, v has also many neighbours in some clusters which are not centres
of stars. This is crucial to ensure that in each star the centre cluster from each
star remains large enough in comparison to the leaf clusters.
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Then, for any star Si, we connect the end-tuple of Qi−1 with the start-tuple
of Qi while covering all vertices in all clusters of Si. We emphasise again that,
since our p does not have log-terms, this is only possible since each centre cluster
is larger than the leaf-clusters and so we do not need to cover all vertices in the
leaf clusters with copies of P 2

k . For any matching edge Si, we split its clusters and
obtain two stars K1,k that also allow us to connect Qi−1 to Qi and covering all
vertices of Si, as before. This gives the square of a Hamilton cycle in G∪G(n, p)
we wanted.
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Abstract. Given two non-negative integers n and s, define m(n, s) to
be the maximal number m such that every hypergraph H on n vertices
and with at most m edges has a vertex x such that |Hx| ≥ |E(H)| − s,
where Hx = {H \ {x} : H ∈ E(H)}. The problem of determining the

limit m(s) = limn→∞
m(n,s)

n
was posed by Füredi and Pach and by

Frankl and Tokushige. While the first results were only for specific small
values of s, Frankl determined m(2d−1 − 1) for all d ∈ N. Here we prove

that m(2d−1 − c) = (2d−c)
d

for every c, d ∈ N with d ≥ 4c and give an
example showing that this equality does not hold anymore for d = c.

The other line of research on this problem is to determine m(s) for
small values of s. In this line, our second result determines m(2d−1 − c)
for c ∈ {3, 4}. This solves more instances of the problem for small s and
in particular solves a conjecture by Frankl and Watanabe.

Keywords: Extremal set theory · Traces of sets · Abstract simplicial
complexes

1 Introduction

A hypergraph H is a pair (V,F) where V is the set of vertices and F ⊆ 2V is the
set of edges. In the literature, the problems we consider in this work are often
presented in the context of families rather than hypergraphs. If not necessary, it
is then not distinguished between the family F ⊆ 2V and the hypergraph (V,F).
We will follow this notational path.

Let V be an n-element set and let F be a family of subsets of V . For a
subset T of V , define the trace of F on T by F|T = {F ∩ T : F ∈ F}. For
integers n, m, a, and b, we write

(n,m) → (a, b)

if for every family F ⊆ 2V with |F| ≥ m and |V | = n, there is an a-element
set T ⊆ V such that |F|T | ≥ b (we also say that (n,m) arrows (a, b)).

In this context, Füredi and Pach [5] and, more recently, Frankl and Tokushige
[3] posed the following problem1:
1 There have been slightly different versions in use for the arrowing notation and for

what we denote by m(n, s). In this work, we follow the notation in [3].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Problem 1. Given non-negative integers n and s, what is the maximum value
m(n, s) such that for every m ≤ m(n, s), we have

(n,m) → (n − 1,m − s).

As described in the short abstract, this problem can also be formulated as
finding the maximal number m(n, s) such that the following holds. In every
hypergraph H with some n-set V as vertex set and with at most m(n, s)
edges, there is a vertex x such that |Hx| ≥ |H| − s, where Hx = H|V \{x} =
{H \ {x} : H ∈ H}.

A family F is hereditary if for every F ′ ⊆ F ∈ F , we have that F ′ ∈ F . In [2],
Frankl proves that among families with a fixed number of edges and vertices, the
trace is minimised by hereditary families. Thus, the problems considered here,
and in particular Problem1, can be reduced to hereditary families. Note that in
hereditary families, Problem1 is asking for the maximum number of edges such
that there is always a vertex of small degree (as usual, we define the degree of a
vertex v as the number of edges that contain v).

The investigation of this problem started with Bondy [1] and Bollobás [7]
determining m(n, 0) and m(n, 1), respectively. Later Frankl [2] and Frankl and
Watanabe [4] proved the following identities

m(n, 2d−1 − 1) =
n

d
(2d − 1) and m(n, 2d−1 − 2) =

n

d
(2d − 2) (1)

for d, n ∈ N and d | n.
Consider a family consisting of a set of size d and all possible subsets,

and take n/d vertex disjoint copies of it. The resulting family has minimum
degree 2d−1 and n

d (2d − 1) + 1 edges. Thus, this family is an extremal construc-
tion for the first identity of (1). By taking out all sets of size d, we obtain an
extremal construction for the second one.

More generally, for an integer c ≥ 1, if we arbitrarily take out (c − 1) sets in
each of those d-sets, then the minimum degree is at least 2d−1 − c + 1 and the
number of edges is n

d (2d − c)+1. More precisely for an arbitrary family A ⊆ 2[d]

of size (c − 1) we consider the family

Fc(A) =
{

F + (i − 1)d : F ∈ 2[d] \ A and i ∈
[n

d

]}
⊆ 2[n].

These families show that m(n, 2d−1−c) ≤ n
d (2d −c). The following theorem says

that in fact we have equality as long as c ≤ d
4 .

Theorem 1. (Main theorem). Let d, c, n ∈ N with d ≥ 4c and d|n. Then

m(n, 2d−1 − c) =
n

d
(2d − c).

Remark 1. In fact, our proof yields that for d ≥ 4c and m ≤ n
d (2d − c), we

have (n,m) → (n − 1,m − (2d−1 − c)) without any divisibility conditions on n.
The assumption d|n is only necessary for the extremal constructions showing the
maximality of n

d (2d − c). Analogous remarks hold for the identities in (1) above
and Theorem 2 below.
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One might also try to solve Problem1 for small values of s. Apart from the
aforementioned results by Bondy and Bollobás, progress was made by Frankl [2],
Watanabe [11,12], and by Frankl and Watanabe [4]. In [4], they conjectured
that m(n, 12) = (28/5 + o(1))n. Theorem 1 does not consider cases for which d
is very small in terms of c. The following results extend the identities in (1)
for c = 3 and c = 4 and every d ≥ 5 (for smaller d the respective m(n, s)
is not defined or has been determined previously). In particular, it proves the
conjecture of Frankl and Watanabe for s = 12 in a strong sense.

Theorem 2. Let d, n ∈ N with d ≥ 5 and d|n. Then
1. m(n, 2d−1 − 3) = n

d (2d − 3) and
2. m(n, 2d−1 − 4) = n

d (2d − 4). In particular, m(n, 12) = 28
5 n.

Note that for larger d, this theorem is of course a special case of Theorem 1.

2 Idea of the Proof

Here we present a sketch of the proof. For the complete proof we refer the reader
to [8].

We need to show that for every hereditary hypergraph F on n vertices with
minimum degree at least 2d−1 − c + 1, we have that

|F| ≥ n

d
(2d − c) + 1.

In the proofs of the identities in (1) in [2,4], they observe that by double counting
we have |F \ {∅}| =

∑
v∈V

∑
H∈Lv

1
|H|+1 , where Lv = {A ⊆ V : A ∪ {v} ∈ F}

is the link of the vertex v. Subsequently, they used a generalised form of the
Kruskal-Katona Theorem to obtain a lower bound for

∑
H∈Lv

1
|H|+1 which is

the same for every vertex v. Due to the aforementioned double counting this in
turn yields the lower bound on the number of edges.

For c ≥ 3, there are extremal families which show that a general bound
on

∑
H∈Lv

1
|H|+1 for every vertex v is not sufficient to provide the desired bound

on the number of edges. To overcome this difficulty, first observe that the dou-
ble counting argument can be generalised by interpreting

∑
H∈Lv

1
|H|+1 as the

weight wF (v) of a vertex v. We will refer to this weight as uniform weight since
it can be imagined as uniformly distributing the unit weight of an edge to each
of its vertices. In contrast, to prove Theorems 1 and 2, we will use non-uniform
weights. Moreover, instead of bounding the weight of single vertices we will
bound the weight of sets of vertices.

To this end, take a maximal set L of “light” vertices with neighbourhoods2 of
size at most d − 1 such that the neighbourhoods of all vertices in L are pairwise
disjoint. For all v ∈ L, we call the set Vv = N(v)∪{v} cluster. Observe that if the
size of the neighbourhood of a vertex is at most d − 1, then it has to intersect

2 For v ∈ V , the neighbourhood of v is N(v) = {w ∈ V \ {v} : ∃A ∈ F : {v, w} ⊆ A.
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one of the clusters. For vertices whose neighbourhood does not intersect any
cluster (and which therefore have a neighbourhood of size at least d), we use the
uniform weight. To bound these uniform weights, we introduce a “local” lemma
which is a close relative to a general form of the Kruskal-Katona theorem. Given
a vertex of fixed degree, it provides a lower bound on the uniform weight and
furthermore the minimum weight surplus if its link deviates enough from the
minimising link. Since the link of every vertex whose neighbourhood does not
intersect any cluster indeed deviates enough from the minimising link (because
their neighbourhood contains at least d vertices), the lemma then gives that
these vertices will have a large uniform weight.

The next step is to bound the weight of vertices in the clusters. The difficulty
is that the weights of different vertices in a cluster might vary. Here, the first key
idea is used. Instead of bounding the weight of each single vertex, we bound the
average weight of the vertices in a cluster. Even if the number of edges inside a
cluster is not large enough, F being hereditary and the minimum degree of F still
provide some lower bound for the number of edges in each cluster. Then a second
local lemma yields that there are several vertices within that cluster whose degree
with respect to the cluster is not the minimum degree in F . Therefore, there exist
several crossing edges, i.e., edges containing vertices from both the inside and
the outside of the cluster. If we use the uniform weight, these crossing edges will
contribute enough to the weight of the cluster, even more than needed.

At this point, we still need to bound the weight of vertices with neighbour-
hoods of size at most d − 1 lying outside of any cluster. As mentioned above,
the neighbourhood of every such vertex intersects some cluster, meaning every
such vertex is contained in a crossing edge. Recall that in fact, a uniform weight
on crossing edges would contribute more weight than needed for the inside of a
cluster. Now the second idea comes into play: the unit weight of these edges will
be distributed non-uniformly among its vertices. Hence, when splitting the unit
weight of such a crossing edge according to the aforementioned imbalance, both
sides will get a share that is big enough.

We remark that this strategy is in some sense compatible with the extremal
constructions in so far as that those are composed of disjoint copies of almost
complete families on d vertices (corresponding to the clusters in the proof).

3 Further Remarks and Open Problems

As in the abstract, consider m(s) to be the following limit

m(s) := lim
n→∞

m(n, s)
n

.

It is not difficult to check that m(s) is well-defined (see [4]). Rephrased by
means of this definition, Theorem1 implies that for c ≤ d/4, we have that
m(2d−1 − c) = 2d−c

d . Further, given d ≥ 1, define c�(d) to be the maximum
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integer such that for every c ≤ c�(d),

m(2d−1 − c) =
2d − c

d
. (2)

In view of Theorem 1 we have that c�(d) ≥ 
d
4�. The following construction

shows that for d ≥ 5, c�(d) < d.

Construction 1. Let k be a positive integer and set n = 2dk. Take V to be a
set of n vertices. Consider U1, . . . , U2k to be a partition of V into sets of size d,
and for every set Ui, arbitrarily pick a vertex xi ∈ Ui. Define

G = {S ⊆ V : ∃i ∈ [2k] with S ⊆ Ui and |S| ≤ d − 2} ,

H = {Ui \ {xi} : i ∈ [2k]} , and
I = {{xi, xi+1} : i ∈ {1, 3, 5, . . . , 2k − 1}}.

One can check that the number of edges of the family F = G ∪H ∪I is given by

|G| + |H| + |I| =
2d − d − 2

d
n + 1 +

n

d
+

n

2d
=

2d − d − 1
2

d
n + 1.

Finally, since every vertex in V has degree s = 2d−1 − d + 1, we obtain

m(n, 2d−1 − d) ≤ n

d

(
2d − d − 1

2

)
<

n

d

(
2d − d

)
,

and so c�(d) < d follows.

It would be interesting to understand the behaviour of m(2d−1 −c) for c > d.
To this end, we suggest the following three problems.

Problem 2. Given ε > 0 sufficiently small, determine m(2d−1 − c) for all d ∈ N

and c ∈ N with d < c ≤ (1 + ε)d.

Problem 3. Given ε > 0 sufficiently small, determine m(2d−1 − c) for all d ∈ N

and c ∈ N with d < c ≤ d1+ε.

The following problem seems very difficult, and even estimates might be
interesting.

Problem 4. Given ε > 0 sufficiently small, determine m(
(1−ε)2d−1�) for all d ∈
N.
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Problèmes Comb, et Théorie des Graphes 257–258 (1978)

7. Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam
(1979)

8. Piga, S., Schülke, B.: On extremal problems concerning the traces of sets. J. Comb.
Theory Ser. A 182, 105447 (2021)

9. Shelah, S.: A combinatorial problem; stability and order for models and theories
in infinitary languages. Pac. J. Math. 41(1), 247–261 (1972)

10. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequen-
cies of events to their probabilities. Meas. Complex. 11–30 (2015)

11. Watanabe, M.: Some best possible bounds concerning the traces of finite sets II.
Graphs Comb. 11(3), 293–303 (1995)

12. Watanabe, M.: Arrow relations on families of finite sets. Discrete Math. 94(1),
53–64 (1991)



The Chromatic Number of Signed Graphs
with Bounded Maximum Average Degree

Fabien Jacques(B) and Alexandre Pinlou

LIRMM, Univ Montpellier, CNRS, Montpellier, France
{fabien.jacques,alexandre.pinlou}@lirmm.fr

Abstract. A signed graph is a simple graph with two types of edges:
positive and negative. A homomorphism from a signed graph G to
another signed graph H is a mapping ϕ : V (G) → V (H) that pre-
serves vertex adjacencies and balance of closed walks (the balance is the
parity of the number of negative edges). The chromatic number χs(G)
of a signed graph G is the order of a smallest signed graph H such that
there is a homomorphism from G to H.

The maximum average degree mad(G) of a graph G is the maximum
of the average degrees of all the subgraphs of G.

The girth g(G) of a graph G is the length of a shortest cycle of G.
In this paper, we consider signed graphs with bounded maximum aver-

age degree and we prove that:
– If mad(G) < 20

7
and g(G) ≤ 7 then χs(G) ≤ 5.

– If mad(G) < 17
5

then χs(G) ≤ 10.
– If mad(G) < 4 − 8

q+3
then χs(G) ≤ q + 1 where q is a prime power

congruent to 1 modulo 4.
The first result implies that the chromatic number of planar signed
graphs of girth at least 7 is at most 5.

Keywords: Signed graph · Chromatic number · Homomorphism ·
Maximum average degree · Planar graph

1 Introduction

There exist several notions of colorings of signed graphs which are all natural
extensions and generalizations of colorings of simple graphs. It is well-known
that a (classical) k-coloring of a graph is no more than a homomorphism to
the complete graph on k vertices. Using the notion of homomorphism of signed
graphs introduced by Guenin [9] in 2005, a corresponding notion of coloring of
signed graphs can be defined. This has attracted a lot of attention since then and
the general question of knowing whether every signed graph of a given family
admits a homomorphism to some H has been extensively studied. We can for
example cite the papers by Naserasr et al. [11,12] in which they develop many
aspects of this notion.

Coloring planar graphs has become a famous problem in the middle of the
19th century thanks to the Four Color Theorem, that states that four colors are
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 657–662, 2021.
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enough to color any simple planar graph. Various branches of this topic then
arose, one of which being devoted to the coloring of sparse planar graphs. A
way to measure the sparseness of a planar graph is to consider its girth (i.e.
the length of a shortest cycle): the higher the girth is, the sparser the graph is.
Colorings of signed sparse planar graphs have already been considered in the
last decade (see e.g. [1,4,10,11,13,14]).

A way to get results on sparse planar graphs is to consider graphs (not
necessarily planar) with bounded maximum average degree thanks to the well-
known relation that links the maximum average degree and the girth of a planar
graph: Every planar graph of girth at least g has maximum average degree less
than 2g

g−2 .
In this paper, we consider homomorphisms of signed graphs with bounded

maximum average degree.

Signed Graphs. A signed graph G = (V,E, s) is a simple graph (V,E) (we
do not allow parallel edges nor loops) with two kinds of edges: positive and
negative edges. The signature s : E(G) → {−1,+1} assigns to each edge its
sign. Switching a vertex v of a signed graph corresponds to reversing the signs of
all the edges that are incident to v. Two signed graphs G and G′ are switching
equivalent if it is possible to turn G into G′ after some number of switches. The
balance of a closed walk of a signed graph is the parity of its number of negative
edges; a closed walk is said to be balanced (resp. unbalanced) if it has an even
(resp. odd) number of negative edges. We can note that a switch does not alter
the balance of any closed walk since a switch reverses the sign of an even number
of edges of a closed walk. Therefore, Zaslavsky [16] showed the following:

Theorem 1 (Zaslavsky [16]). Two signed graphs are switching equivalent if
and only if they have the same underlying graph and the same set of balanced
cycles.

Homomorphisms of Signed Graphs. Given two signed graphs G and H, the
mapping ϕ : V (G) → V (H) is a homomorphism if ϕ preserves vertex adjacencies
(i.e. ϕ(u)ϕ(v) ∈ E(H) whenever uv ∈ E(G)) and the balance of closed walks
(i.e. the closed walk ϕ(v1)ϕ(v2) . . . ϕ(vk) in H has the same balance as the closed
walk v1v2 . . . vk in G). In that case we write G → H. This type of homomorphism
was introduced by Guenin [9] in 2005 and arises naturally from the fact that the
balance of closed walks is central in the field of signed graphs.

There exists an alternate way to define homomorphisms of signed graphs
using the notion of sign-preserving homomorphims. Given two signed graphs G
and H, the mapping ϕ : V (G) → V (H) is a sign-preserving homomorphism
(sp-homomorphism for short) if ϕ preserves vertex adjacencies and the signs of
edges. In that case we write G

sp−→ H. Naserasr et al. [12] showed that, given
two signed graphs G and H, we have G → H if and only if there exists a signed
graph G′ switching equivalent to G such that G′ sp−→ H.

The chromatic number χs(G) (resp. sign-preserving chromatic number
χsp(G)) of a signed graph G is the order of a smallest graph H such that G → H
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(resp. G
sp−→ H). The (sign-preserving) chromatic number χs/sp(C) of a class of

signed graphs C is the maximum of the (sign-preserving) chromatic numbers of
the graphs in the class. Clearly, an sp-homomorphism is a homomorphism and
thus χs(G) ≤ χsp(G) for any signed graph G.

If G admits a (sp-)homomorphism ϕ to H, we say that G is H(-sp)-colorable
and that ϕ is an H(-sp)-coloring of G.

0

1

23

4

Fig. 1. SP5, the signed Paley
graph on 5 vertices.

Target Graphs. Let q be a prime power with
q ≡ 1 (mod 4). Let Fq be the finite field of
order q. The signed Paley graph SPq has ver-
tex set V (SPq) = Fq. Two vertices u and
v ∈ V (SPq), u �= v, are connected with a pos-
itive edge if u− v is a square in Fq and with a
negative edge otherwise. See Fig. 1 for a pic-
ture of the signed Paley graph on five vertices.

Notice that this definition is consistent
since q ≡ 1 (mod 4) ensures that −1 is always
a square in Fq and if u − v is a square then
v − u is also a square.

Given a signed graph SPq, we denote by SP−
q the graph obtained from SPq by

removing any vertex (SPq is vertex-transitive) and by SP+
q the graph obtained

from SPq by adding a vertex that is connected with a positive edge to every
other vertex.

Such graphs SPq, SP+
q and SP−

q have remarkable structural properties but
due to lack of space, we will not list them (see [14] for more details). We use
these target graphs to obtain our results.

2 State of the Art and Results

Let us denote by Pg the class of planar signed graphs of girth at least g and by
Md the class of signed graphs with maximum average degree less than d.

Table 1. Known results on the chromatic number of signed planar graphs with given
girth and signed graphs with bounded maximum average degree.

Graph families χs Remarks Refs

P3 10 ≤ χs ≤ 40 [10,13]

P4 6 ≤ χs ≤ 25 [14]

M 10
3

χs ≤ 10 P5 ⊂ M 10
3

[10]

M3 χs ≤ 6 P6 ⊂ M3 [10]

M 18
7

χs = 4 P9 ⊂ M 18
7

[6]

Note first that for planar graphs, the gap between the lower and upper bounds
is huge (10 ≤ χs(P3) ≤ 40) and in 2020, Bensmail et al. [2] conjectured that
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χs(P3) = 10. Recently, Bensmail et al. [1] proved that if this conjecture is true,
then the target graph is necessarily SP+

9 . This question remains widely open.
Finally, note that for maximum average degree less than 10

3 , 3, and 18
7 (lines

4–6 of Table 1), this gives bounds for planar graphs of girth at least 5, 6, and 9.
Note that since unbalanced even cycles have chromatic number 4 (see [8]), the
bound for maximum average degree 18

7 is tight.
In this paper, we prove the following theorem, improving several above-

mentioned results:

Theorem 2. Let G be a signed graph.

(1) If G ∈ M4− 8
q+3

, then G → SP+
q . Thus χs(G) ≤ q + 1, with q ≡ 1 (mod 4)

and q is a prime power.
(2) If G ∈ M 17

5
, then G → SP+

9 . Thus χs(G) ≤ 10.
(3) If G ∈ M 20

7
and g(G) ≥ 7, then G → SP5. Thus χs(G) ≤ 5.

It is not hard to see that signed cliques in which each edge is subdivided
once have a maximum average degree that tends to 4 as the number of vertices
grows. Such signed graphs have unbounded chromatic number and Theorem 2(1)
gives an upper bound on the chromatic number of signed graphs of maximum
average degree 4−ε in function of ε. Theorem 2(2) improves the previous known
result of Montejano et al. [10] saying that χs(M 10

3
) ≤ 10 by reaching the same

upper bound for a superclass of graphs (M 10
3

⊂ M 17
5
). Theorem 2(3) gives,

as a corollary, that χs(P7) ≤ 5 since P7 ⊂ M 20
7
, which are new results that

contribute to the above-mentioned collection of known results.

3 Proof Techniques

To prove our results, let us first introduce what we call antitwinned graphs.
Given a signed graph G of signature sG, we can create the signed graph ρ(G) as
follows: We take two copies G+1, G−1 of G, hence V (ρ(G)) = V (G+1)∪V (G−1);
the edge set is defined as E(ρ(G)) = {uivj : uv ∈ E(G), i, j ∈ {−1,+1}} and
the signature as sρ(G)(uivj) = i × j × sG(u, v). A signed graph G is said to be
antitwinned if there exists a signed graph H such that G = ρ(H).

Antitwinned signed graphs play a central role for our proofs thanks to the
following lemma:

Lemma 1 ([5]). Given two signed graphs G and H, G admits an sp-
homomorphism to ρ(H) if and only if G admits a homomorphism to H.

Therefore, Theorem 2 will be proved by showing that:

(1) If G ∈ M4− 8
q+3

, then G
sp−→ ρ(SP+

q ).

(2) If G ∈ M 17
5
, then G

sp−→ ρ(SP+
9 ).

(3) If G ∈ M 20
7
, then G

sp−→ ρ(SP5).
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We prove these results by contradiction, by assuming that they have coun-
terexamples. Among all of these counterexamples, we take a graph G with the
fewest number of vertices. Our goal is to prove that G satisfies structural proper-
ties incompatible with having a maximum average degree smaller than a certain
value, hence the conclusion.

For each theorem, we start by introducing sets of so-called forbidden con-
figurations, which by minimality G cannot contain. We then strive to reach a
contradiction with the bounded maximum average degree. To do so, we use the
discharging method. This means that we give some initial weight to vertices of G,
we then redistribute those weights and obtain a contradiction by double count-
ing the total weight. We present appropriate collections of discharging rules, and
argue that every vertex of G ends up with non-negative weight while the total
initial weight was negative.

The discharging method was introduced more than a century ago to study
the Four-Color Conjecture [15], now a theorem. It is especially well-suited for
studying sparse graphs, and leads to many results, as shown in two recent sur-
veys [3,7].

u

C0

u v

C1

u1 u2

C2

u1
u3

v1

u2

C3

u2

v2

u1

u3

v3

u4 v4

C4

u1

v1

u2 v2

u3 v3

u4v4

C5

= or

Fig. 2. Forbidden configurations. Every edge incident to round vertices is represented.
Square vertices can be of any degree. Triangle vertices are replaced by one of the two
represented structures.

Due to lack of space, let us just give the sketch of the proof of Theorem 2(3).
To prove this theorem, we prove that every signed graph of maximum average
degree less than 20

7 and girth at least 7 admits a sp-homomorphism to ρ(SP5)
which implies the theorem by Lemma 1.

Let G be a smallest signed graph with mad(G) < 20
7 and girth at least 7

admitting no sp-homomorphism to ρ(SP5). We start by proving that the config-
urations depicted in Fig. 2 cannot appear in G.

We then define the weighting ω(v) = d(v) − 20
7 for each vertex v of degree

d(v). By construction, the sum of all the weights
∑

v∈V (G) ω(v) is negative since
the maximum average degree of G (and therefore its average degree) is strictly
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smaller than 20
7 . We say that a k-vertex (resp. k+-vertex ) is a vertex of degree

k (resp. at least k). A 3-vertex is said to be 3-worse if its adjacent to a 2-vertex,
3-bad if it is adjacent to two 3-worse vertices or 3-good otherwise. We then
introduce the following discharging rules:

(R1) Every 3+-vertex gives 3
7 to each of its 2-neighbors.

(R2) Every 3-good, 3-bad or 4+-vertex gives 1
7 to each of its 3-worse-neighbors.

(R3) Every 3-good or 4+-vertex gives 1
7 to each of its 3-bad-neighbors.

Finally, we show that every vertex has a positive final weight by using the
fact that the configurations of Fig. 2 cannot appear in G, a contradiction.
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Abstract. We analyse the unbiased WalkerMaker–WalkerBreaker
game, a variant of the well-known Maker–Breaker positional game where
both players Maker and Breaker are constrained to choose their edges
according to a walk. Here, we consider two standard graph games - the
Connectivity game and the Hamilton Cycle game played on the edge set
of the complete graph, Kn, on n vertices, and show how fast Walker-
Maker can build desired spanning structures in these games.

Keywords: Positional games · Maker–Breaker games ·
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1 Introduction

We study WalkerMaker–WalkerBreaker games (or WMaker–WBreaker games,
for brevity), a variant of well-known Maker–Breaker positional games. A posi-
tional game is described with the board of the game (a finite set X), the family of
winning sets (F ⊆ 2X), and the winning condition. In the (a : b) Maker–Breaker
game on X, two players Maker and Breaker alternately claim unclaimed ele-
ments of the board until all elements are claimed. Maker claims a elements and
Breaker claims b elements. Parameters a and b define the bias of the game. If
both a and b are equal to 1, then the game is referred to as the unbiased game.
In the Maker–Breaker game the players have opposite goals. Maker’s goal is to
claim all elements of some F ∈ F , while Breaker’s goal is to claim at least one
element from every winning set in order to prevent Maker from winning. More
about Maker–Breaker games and different aspects of the theory of positional
games can be found in the book of Beck [1] and in the recent monograph of
Hefetz, Krivelevich, Stojaković and Szabó [11].

It is very common to play Maker–Breaker games on the edges of a graph
G = (V,E) with |V | = n. In this case, the board of the game is E and the
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winning sets are all edge sets of subgraphs of G which possess some given graph
property. For example, in the Perfect Matching game on G the winning sets are
all sets containing �|V |/2� independent edges of G. In the Connectivity game the
winning sets are all spanning trees of G. In the Hamilton Cycle game the winning
sets are the edge sets of all Hamilton cycles of G. In the k-vertex-connectivity
game the winning sets are all spanning k-vertex-connected subgraphs of G.

Most of the unbiased Maker–Breaker games played on E(Kn) are an easy
win for Maker. For example, in the Connectivity game Maker can win in n − 1
moves [13]. It is also known that other unbiased games are in a favor of Maker.
So, for such games, the more interesting question to consider is how fast Maker
can win. Studying fast winning strategies of Maker has received a lot of attention
in recent years (see [3,4,7,8,10,12]). For example, it is shown that Maker can
win the unbiased Perfect Matching game in n/2+1 moves (for n even) [10], and
the unbiased Hamilton Cycle game in n + 1 moves [12].

One way to compensate for Maker’s advantage are biased (1 : b) Maker–
Breaker games, where b > 1, the study of which was initiated by Chvátal and
Erdős in [2]. Another approach is to reduce the number of winning sets by
making the base graph sparser and to play on a random board, as proposed by
Stojaković and Szabó in [14].

Recently, Espig, Frieze, Krivelevich, and Pegden in [6] introduced Walker–
Breaker games. In these games Maker is restricted to claim her edges according to
a walk. For her starting position, Walker (having the role of Maker) can choose
any vertex. In every other round, she needs to claim an edge, not previously
claimed by Breaker, incident with a vertex in which she has finished her previous
move. On the other hand, Breaker has no restrictions on the way he moves. So,
these games increase Breaker’s power and make up for Maker’s advantage in the
unbiased Maker–Breaker games. The decrease of Maker’s power, as a walker,
is evident in the Walker–Breaker Connectivity game, since Breaker is able to
isolate a vertex from Walker’s graph simply by fixing a vertex after Walker’s
first move and then claiming the edges between that fixed vertex and Walker’s
current position in every other round. The maximum number of vertices that
Walker can visit in the (1 : 1) game on Kn is n − 2, as it is shown by Espig,
Frieze, Krivelevich, and Pegden in [6].

Due to their recent appearance, little is known about Walker–Breaker games
(see [5], [6]) and lots of questions are still open. The question of interest in this
paper is the following:

Question 1. What happens if Breaker is also a walker?

Here we address this question and consider WMaker–WBreaker games in which
each player has to claim her/his edges according to a walk. We focus on the
Connectivity game and Hamilton Cycle game on E(Kn) for large enough n and
show that without wasting too many moves WMaker can win in these games.
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1.1 Notation

Given a graph G, V (G) and E(G) denote its sets of vertices, respectively edges,
and v(G) = |V (G)| and e(G) = |E(G)| their cardinalities. Given two vertices
x, y ∈ V (G) an edge in G is denoted by xy. Given a vertex x ∈ V (G), we
use dG(x) to denote the degree of vertex x in G. For a set A ⊆ V (G) and
x ∈ V (G) \ A, let dG(x,A) denote the degree of x towards A.

Assume that a WMaker–WBreaker game on the edge set of a given graph G
is in progress. At any point of the game, let M and B denote the graphs spanned
by the edges of WMaker and WBreaker, respectively, claimed so far.

For some vertex v we say that it is visited by a player if he/she has claimed at
least one edge incident with v. A vertex is isolated/unvisited if no edge incident
to it is claimed. Let U be the set of vertices that are still unvisited by WMaker,
i.e. U = V (G) \ V (M). The edges in E(G) \ E(M ∪ B) are called free. Unless
otherwise stated, we assume that WBreaker starts the game, i.e. one round in
the game consists of a move by WBreaker followed by a move of WMaker.

2 Results

As a walker, Maker is not able to build a spanning structure even when she
plays against the Breaker’s bias b = 1. In this section we want to show that
the situation changes when both Maker and Breaker are walkers, i.e. if both
players are restricted in the same way, we show that Maker is able to win in the
WMaker–WBreaker Connectivity game and Hamilton Cycle game. Also, we are
interested to see how fast she can build a spanning structure.

As it is known, in the standard Maker–Breaker Connectivity game on E(Kn)
Maker can win in the optimal number of moves, n − 1, so it is natural to ask
whether she, as a walker, can achieve such a quick winning now when Breaker
is a walker too.

To win as soon as possible, WMaker will use the following strategy in the
first stage of both the Connectivity game and the Hamilton Cycle game.

Strategy S. For her starting vertex, WMaker chooses the vertex v1, in which
WBreaker has finished his first move, and claims an edge v1u such that dB(u) = 0
(ties broken arbitrarily). In every other round WMaker checks if there exists an
edge e ∈ E(B), e = pq, s.t. p, q ∈ U , and from her current position w claims
wp, or wq, whichever is free. If both wp and wq are free she chooses wp if
dB(p) > dB(q), and wq, if dB(q) > dB(p) (ties are broken arbitrarily). If no such
edge exists, WMaker from her current position w claims a free edge wu such that
u ∈ U and dB(u) = max{dB(v) : v ∈ U and vw is free}, ties broken arbitrarily,
for as long as |U | ≥ 3. If all free edges wu are such that dB(u) = 0 for all u ∈ U ,
then WMaker claims an arbitrary free edge wu.

The following theorem shows that Maker, as walker, needs two additional moves
than it is optimal.
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Theorem 1 In the (1 : 1) WMaker–WBreaker Connectivity game on E(Kn),
WMaker, as the second player, has a strategy to win in at most n + 1 moves.

Sketch of the Proof. WMaker’s strategy is divided into two stages.

Stage 1. WMaker builds a path of length n − 4 in n − 4 rounds, by playing
according to the strategy S.

Stage 2. WMaker visits the three remaining untouched vertices in at most 5
additional moves. More details can be found in [9]. �	
In the Hamilton Cycle game, it becomes more challenging for WMaker to win
fast. The following theorem shows that she needs at most five more moves than
is the case of the standard Maker–Breaker Hamilton Cycle game.

Theorem 2 In the (1 : 1) WMaker–WBreaker Hamilton cycle game on E(Kn),
WMaker, as the second player, has a strategy to win in at most n + 6 moves.

Sketch of the Proof. WMaker’s strategy is divided into three stages.

Stage 1. WMaker builds a path of length n − 4 in n − 4 rounds, by playing
according to the strategy S.

Stage 2. WMaker closes a cycle of length n− 2 in round n− 2 or cycle of length
n − 1 at latest in round n.

Stage 3. WMaker completes a Hamilton cycle at latest in round n + 6.
More details can be found in [9]. �	
Next, we want to look at WBreaker’s possibilities to postpone WMaker’s win
in the Connectivity game. The following theorem shows that WBreaker as the
second player can force WMaker to play at least n moves in order to win the
game.

Theorem 3 In the (1 : 1) WMaker–WBreaker Connectivity game on E(Kn),
WBreaker, as the second player, has a strategy to postpone WMaker’s win by at
least n moves.

Sketch of the Proof. WBreaker’s strategy is as follows.
WBreaker plays arbitrarily until |U | = 3. To be able to visit n − 3 vertices,

WMaker needs to play at least n − 4 moves. Let u1, u2, u3 ∈ U after round
r ≥ n − 4.

If in round r + 1 ≥ n− 3 WMaker moves to some ui, i ∈ {1, 2, 3}, WBreaker
will move to uj , j 
= i. WBreaker is able to move to uj since uj ∈ U and there is
no WMaker’s edge between WBreaker’s current position and vertex uj . In the
following round WBreaker moves to uk, k 
= i, j. WMaker could claim uiuj or
uiuk in round r + 2 ≥ n − 2. Since ujuk ∈ E(B), after the round r + 3 ≥ n − 1,
WMaker needs to make at least one more move in order to visit the remaining
vertex from U . �	
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3 Concluding Remarks

We proved that WMaker is able to win in the (1 : 1) WMaker–WBreaker Con-
nectivity game and Hamilton Cycle game. From Theorems 1 and 3 it follows
that WMaker needs t, n ≤ t ≤ n + 1 moves to make a spanning tree. To win in
the Hamilton Cycle game she needs to play at most n + 6 moves, according to
Theorem 2. As WMaker cannot make a spanning tree in less than n moves, it
follows that WMaker needs at least n + 1 moves to create a Hamilton cycle.

The following natural question to consider could be what is the largest
WBreaker’s bias b for which WMaker can win. However, for b = 2 WBreaker
can isolate a vertex in WMaker’s graph. In each round, WBreaker can use one
move to return to some fixed vertex along the previously claimed edge, and the
other to claim the edge between this particular vertex and WMaker’s current
position.
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ber is 14873. Using them we obtain 12 transitive deficiency one paral-
lelisms, two of which belong to an infinite family constructed by Johnson.
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1 Introduction

Let PG(n, q) be the n-dimensional projective space over the finite field Fq. A
set of lines, such that each point is in exactly one of these lines, is called a
spread. Two spreads are isomorphic if an automorphism of PG(n, q) maps one
to the other. A parallelism is a partition of the set of all lines of the projective
space to spreads. Two parallelisms are isomorphic if there is an automorphism
of PG(n, q) which maps the spreads of one parallelism to spreads of the other.
A deficiency one parallelism is a partial parallelism with one spread less than
the parallelism. Each deficiency one parallelism can be uniquely extended to a
parallelism. A (partial) parallelism is called transitive if it has an automorphism
group which is transitive on the spreads. More details on projective spaces,
spreads and parallelisms can be found, for instance, in [14] or [19].

General constructions of parallelisms of PG(n, 2) are presented in [1] and
[25], of PG(2n − 1, q) in [4], and of PG(3, q) in [7,10,13,16]. Spreads and paral-
lelisms are related to translation planes [19], network coding [9], error-correcting
codes [12], design theory and cryptography [18]. All parallelisms of PG(3, 2) and
PG(3, 3) are known [2,14]. For larger projective spaces the classification problem
is open. That is why computer-aided constructions of parallelisms with certain
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predefined automorphism groups (for PG(3, 5) in [17,21,22,24]) contribute sig-
nificantly to the study of the properties and possible applications of parallelisms.

An infinite class of transitive deficiency one parallelisms of PG(3, q) is
described by Johnson [13] for q = pr if p is odd and further a group-theoretic
characterization of the constructed parallelisms is presented by Johnson and
Pomareda [15]. Properties of the automorphism groups and the spreads of tran-
sitive deficiency one parallelisms of PG(3, q) are derived by Biliotti, Jha, and
Johnson [5], and Diaz, Johnson, and Montinaro [8], who show that the deficiency
spread must be Desarguesian, and the automorphism group should contain a nor-
mal subgroup of order q2 (see also [14, chapter 38]). All transitive deficiency one
parallelisms of PG(3, 3) and PG(3, 4) are known [2,20]. The construction of such
parallelisms in PG(3, 5) is one of the aims of the present work.

We perform a computer-aided classification of all the parallelisms of PG(3, 5)
with an automorphism group of order 25. The construction method is described
in Sect. 2, a comment on the results is given in Sect. 3, and concluding remarks
can be found in Sect. 4.

2 Construction

2.1 The Automorphism Groups

The projective space PG(3, 5) has 156 points and 806 lines. We denote by G its
full automorphism group, where G ∼= PΓL(4, 5) and |G| = 29 ·32 ·56 ·13·31. Each
spread contains 26 lines which partition the point set and each parallelism has
31 spreads. The Sylow 5-subgroup of PΓL(4, 5) is of order 56 and all its elements
are of order 5. The elements are partitioned to 4 conjugacy classes under G [26]
presented here in Table 1. We denote by G51 , G52 , G53 and G54 groups of order
5 that are generated by an element of each of these classes respectively. The
number of elements in each class is given in the last column of the table. The
normalizer of G5i in G is defined as NG(G5i) = {γ ∈ G | γG5iγ

−1 = G5i}. We
use GAP [11] to obtain all the necessary groups and their conjugacy classes.

Table 1. Conjugacy classes (under G) of elements of the Sylow 5-subgroup

Class Group NG(G5) Number of elements

C1 G51 6000000 344

C2 G52 300000 880

C3 G53 10000 6400

C4 G54 500 8000

We establish that there are no parallelisms invariant under G51 or G53 , so we
use the elements of C2 and C4 to obtain the possible automorphism groups of
order 25. Such a group is generated by two elements α and β of order five. There
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Table 2. Conjugacy classes of groups of order 25

Fixed Fixed Line orbits of

Class Generators Group NG(G25i) points lines Length 5 Length 25

A α, β ∈ C2 G251 4000 1 6 10 30

B α, β ∈ C2 G252 80000 6 11 34 25

C α, β ∈ C2 G253 180000 6 1 36 25

D α, β ∈ C2 G254 250000 6 6 35 25

E α, β ∈ C4 G255 500 1 1 6 31

F α, β ∈ C4 G256 2500 1 1 11 30

E α ∈ C2, β ∈ C4 G255 500 1 1 6 31

are three cases to consider, namely α, β ∈ C2, α, β ∈ C4, and α ∈ C2, β ∈ C4. The
obtained groups of order 25 are in 6 conjugacy classes presented in Table 2, where
groups of class E can be generated by α, β ∈ C4 as well as by α ∈ C2, β ∈ C4.

Further considerations show that a parallelism admits only automorphism
groups from classes C and E. Without loss of generality we construct parallelisms
invariant under one group from class C and one from E, namely under G253 and
G255 . Each of them is noncyclic and has 6 subgroups of order 5 that are conjugate
to G52 or G54 .

2.2 Spread Orbits Under the Action of G253 or G255

Under the action of each of these groups there are fixed spreads, spreads with
orbits of length 5, and spreads with orbits of length 25. We consider them below.

A Fixed Spread. The short line orbits under each of the two groups cannot
participate in a spread together because they share points. That is why a fixed
spread consists of a fixed line and a line orbit of length 25.

A Spread with An Orbit of Length 5. Such a spread is fixed by one of the
six subgroups of order 5 of G25i . It has 6 lines from different line orbits of length
5. We denote by bi1 a line from the i-th short orbit {bi1, b

i
2, . . . , b

i
5}, i = 1, 2, . . . , 6.

Besides these lines, the spread contains 4 orbits {ci1, c
i
2, . . . , c

i
5}, i = 1, . . . , 4 of

length 5 under one of the subgroups of G25i . Their lines are from different line
orbits under the remaining five subgroups. Each one of the 4 orbits mentioned
above is a part of a full line orbit under G255 {ci1, c

i
2, . . . , ci25}, i = 1, 2, . . . , 4.

This way a spread orbit of length 5 contains the following spreads:

b11 b21 b31 b41 b51 b61 c11 c12 c13 c14 c15 c21 c22 c23 c24 c25 c31 c32 c33 c34 c35 c41 c42 c43 c44 c45

b12 b22 b32 b42 b52 b62 c16 c17 c18 c19 c110 c26 c27 c28 c29 c210 c36 c37 c38 c39 c310 c46 c47 c48 c49 c410

b13 b23 b33 b43 b53 b63 c111 c112 c113 c114 c115 c211 c212 c213 c214 c215 c311 c312 c313 c314 c315 c411 c412 c413 c414 c415

b14 b24 b34 b44 b54 b64 c116 c117 c118 c119 c120 c216 c217 c218 c219 c220 c316 c317 c318 c319 c320 c416 c417 c418 c419 c420

b15 b25 b35 b45 b55 b65 c121 c122 c123 c124 c125 c221 c222 c223 c224 c225 c321 c322 c323 c324 c325 c421 c422 c423 c424 c425
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A spread with An Orbit of Length 25. Such a spread contains lines from
26 different line orbits of length 25.

2.3 Computer Search for Parallelisms

We construct the parallelisms using software of both authors that is written in
C++ and performs backtrack search with rejection of some of the equivalent
partial solutions. The general approach is described in [23] and the details are
similar to those in [3].

3 Properties of the Constructed Parallelisms

A regulus of PG(3, q) is a set R of q + 1 mutually skew lines such that any line
intersecting three elements of R intersects all elements of R. Such a line is called
transversal. All the transversals of a regulus form its opposite regulus. A spread S
of PG(3, q) is regular if for every three distinct elements of S, the unique regulus
determined by them is a subset of S. A spread is called Hall spread if it can be
obtained from a regular spread by a replacement of one regulus by its opposite.
A spread is called conical flock spread if it has q reguli which have exactly one
common line. A spread is called derived conical flock spread if it can be obtained
from a conical flock spread by a replacement of one regulus by its opposite.

There are 21 nonisomorphic spreads in PG(3, 5) [6]. To distinguish them we
use invariants based on their relation to the reguli of the projective space. All
the spreads that take part in the parallelisms we construct, are distinguished by
two numbers - the number of whole reguli in the spread and the number of reguli
which share exactly 4 lines (out of all 6 lines) with the spread. For the regular
spread of PG(3, 5) these invariants are (130, 0), for the Hall spread (31, 105), for
the conical flock spread (5, 200), and for the derived conical flock spread (1, 210).
A parallelism is uniform if all its spreads are isomorphic to each other.

3.1 Parallelisms with G253

The group fixes one line pointwise. Each fixed point is incident with the fixed
line and with all the lines of 6 line orbits of length 5, and thus a spread can
have a line of at most one of these 6 orbits. Therefore a parallelism invariant
under G253 must have one fixed spread and 6 spread orbits of length 5. We obtain
14851 nonisomorphic parallelisms. Their properties are presented in Table 3. The
fixed spread is regular for all of them. The other 30 spreads are either Hall
spreads, or derived conical flock spreads. There are 4435 uniform deficiency one
parallelisms made of Hall spreads. They admit rich automorphism groups. The
12 parallelisms with automorphism groups of order at least 600 yield transitive
deficiency one parallelisms. Two of the parallelisms (with full automorphism
groups of order 1200) are invariant under the full central collineation group of
order q2(q2−1) = 600 (the group fixes the fixed by G253 line) and therefore their
corresponding transitive deficiency one parallelisms belong to the infinite family
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Table 3. Spreads and automorphisms of parallelisms with G253

Fixed spread Orbits of length 5 Order of the full auromorphism group

(130,0) (31,105) (1,210) 25 50 100 200 400 600 1200 2400

1 5 15 576

1 10 20 3840

1 15 15 3936

1 20 10 2064

1 30 - 4124 120 80 82 17 4 6 2

constructed by Johnson [13,15]. It is shown in [15, Corollary 26] that for PG(3, 5)
the number of Johnson’s parallelisms is 2 and our results comply with this. Up
to our knowledge, the remaining 10 transitive deficiency one parallelisms have
not been constructed before this work.

3.2 Parallelisms with G255

The fixed point is incident with the fixed line, and with all the lines of one line
orbit of length 5 and one of length 25. Since each point has to be in each spread,
a parallelism consists of a fixed spread, a spread orbit of length 5 and a spread
orbit of length 25. We construct 22 nonisomorphic parallelisms. The fixed spread
of all of them is the conical flock spread (Table 4), and the spread orbit of length
5 is made either of Hall spreads, or of derived conical flock spreads.

Table 4. Spreads and automorphisms of parallelisms with G255

Fixed Spread orbit of Spread orbit of Full auromorphism group of order

Spread Length 5 Length 25 25

(5,200) (31,105) (4,78) 6

(5,200) (31,105) (1,82) 4

(5,200) (31,105) (0,104) 4

(5,200) (31,105) (1,138) 2

(5,200) (1,210) (0,72) 2

(5,200) (1,210) (4,78) 4

4 Concluding Remarks

All the constructed parallelisms are available online. They can be downloaded
from http://www.moi.math.bas.bg/moiuser/∼stela.

Our results comply with the known theoretical investigations on transitive
deficiency one parallelisms [14, chapter 38]. The 12 transitive deficiency one

http://www.moi.math.bas.bg/moiuser/~stela
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parallelisms that we construct have the spread structure of the parallelisms from
Johnson’s infinite family [13,15], but only two of them belong to it. The present
results might lead to a future generalization of that family.
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On Alternation, VC-dimension and k-fold
Union of Sets
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Abstract. Alternation of Boolean functions is a measure of non-
monotonicity of the function. In this paper, we asymptotically charac-
terize the VC-dimension of family of Boolean functions parameterized by
the maximum alternation of the Boolean functions in the family. Enroute
to our main result, we show exact bounds for VC-dimension of functions
which has alternation 1, which strictly contains monotone functions and
hence generalizes the bounds in [3]. As an application, we show tight-
ness of VC-dimension bounds for k-fold union, by explicitly constructing
a family F of subsets of {0, 1}n such that k-fold union of the family,

Fk =
{⋃k

i=1 Fi | Fi ∈ F
}

must have VC-dimension at least Ω(dk) and

that this bound holds even when the union is over disjoint sets from F .
This provides a non-geometric set system achieving this bound.

Keywords: VC dimension · Alternation · Extremal sets · Boolean
functions

1 Introduction

Vapnik-Chervonenkis Dimension (VC-dimension) is a combinatorial measure of
a set system of subsets of a universe, developed by Vapnik and Chervonenkis in
the 1960s and has found deep applications the area of statistical learning theory,
discrete and computational geometry.

Let U be universe and F be a set of subsets of U . The family F is said to
shatter a subset S ⊆ U if for all subset S′ ⊆ S, there is a F ∈ F such that
S ∩F = S′. Notice that it is easy to shatter small sets, especially the empty set,
and U is not shattered unless F = P(U). The VC-dimension of F is the largest
d such that there is a set S of size d shattered by the family.

In the case when U = {0, 1}n, each F ∈ F can be interpreted as the positive
inputs of a Boolean function. That is, as the set f−1(1) = {x ∈ {0, 1}n | f(x) =
1} of some Boolean function f : {0, 1}n → {0, 1}. Hence, any family F can
be equivalently interpreted as a family of Boolean functions. Under this inter-
pretation, the VC-dimension of a class is directly related to the complexity of
learning the Boolean functions in the class in the Probably Approximately Cor-
rect (PAC) model [13]: where it yields matching upper [2] and lower [4] bounds
for the number of samples required in order to learn functions from F .

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 675–681, 2021.
https://doi.org/10.1007/978-3-030-83823-2_108

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83823-2_108&domain=pdf
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Motivated by this, there has been several works exploring tight VC dimen-
sions bounds various families of Boolean functions with n variables. Tight bounds
are known for VC-dimension of various subfamilies of Boolean functions such as
Boolean terms (conjunction of literals) - O(n) [9], k-Decision Lists - nk [10],
Symmetric Functions - n [4].

An important class of functions for which a characterization is known is the
class of monotone functions [3] where the VC-dimension was established to be
exactly

(
n

n/2

)
. A subclass of this family - namely the monotone terms were also

studied in [9] to establish a tight linear bound for VC-dimension. A natural
question is how to generalize these bounds to non-monotone functions as well.

For x, y ∈ {0, 1}n we say x � y if ∀i ∈ [n], xi ≤ yi where xi represents the ith

bit of x. Recall that a function f is said to be monotone, if ∀x, y ∈ {0, 1}n, x � y
then f(x) ≤ f(y). Consider a maximal chain of distinct inputs x0, x1, x2 . . . , xn ∈
{0, 1}n satisfying x0 � x1 � x2 � · · · � xn. The alternation of f (denoted by
alt(f)) is defined as max {alt(f, C) | C is a maximal chain in Bn} where alt(f, C)
is |{i | f(xi−1) 	= f(xi), xi ∈ C, i ∈ [n]}|. Indeed, for a monotone f , alt(f) = 1
and for any Boolean function f , alt(f) ≤ n. Thus, it forms a measure of how
much non-monotone the Boolean function is.

Our Results: In this paper, we initiate a study of the VC-dimension of Boolean
function families parameterized by the alternation and show the following results:

Exact VC-dimension for family of functions with alternation 1:We show that family
of functions with alternation 1 has VC-dimension exactly

(
n

n/2

)
+ 1. Theo-

rem 1. We also show that this family is shattering extremal as defined by [8]
and hence has some potentially useful combinatorial properties.

Tight bounds for VC-dimension for family of functions with alternation k: We show
(Theorem 2 and 3) that the family of functions F with alternation k has

VC-dimension satisfying:
∑n+k

2

i=n−k
2

(
n
i

) ≤ VC(Fk) ≤ O
(
k × (

n
n/2

))
. For k ≤

√
n the upper and lower bounds is asymptotically of the same order and

hence the bound is tight in general.
Application to VC-dimension of disjoint union of families: If a family F is of

VC-dimension ≤ d, how large can the VC-dimension of the k-fold union fam-
ily, defined as, Fk = {∪k

i=1Ai | Ai ∈ ∀i, Ai ∈ F} be? Blumer et al. [1] and
Haussler and Welzl [6] showed that the VC-dimension is at most O(dk log k).
This bound was shown to be tight by Eisentat and Angluin [5] who shows
existence of a geometric family with VC-dimension at most d and the k-fold
union has VC-dimension at least Ω(dk log k). The family constructed were
point sets in a plane. Using our methods, we construct a family of Boolean
functions such that k-fold union has VC-dimension at least Ω(dk) even when
the unions in the k-fold union are restricted to k-fold disjoint union.

2 VC-dimension Bounds for Functions with Alternation 1

As a warm up towards later sections, in this section, we describe VC-dimension
bounds and extremal properties of a family of functions related to alternation and
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monotonicity. As mentioned in the introduction, [3] computes the VC-dimension
of family of monotone functions (denoted by M) as : VC(M) =

(
n

n/2

)

A function f : {0, 1}n → {0, 1} is said to be k-slice function if f(x) = 0 if
for every x ∈ {0, 1}n, ∑n

i=1 xi < k and 1 if
∑n

i=1 xi > k. Define M∗ to be the
family of all slice-functions.

Proposition 1. VC(M∗) =
(

n
n/2

)

Observe that slice-functions are a subclass of monotone family. So the
VC-dimension is upper bounded by

(
n

n/2

)
and slice-functions can shatter only

antichain similar to monotone family. Thus the above bound.
Now consider the family of functions where each function has alternation at

most 1. F1 = {f | either f or ¬f is monotone}. We compute the VC-dimension
of this family exactly.

Theorem 1. VC(F1) =
(

n
�n/2�

)
+ 1

Proof. Lower Bound: We show the lower bound by shattering a set S ⊆ U of
cardinality

(
n

�n/2�
)
+ 1. S = {x ∈ {0, 1}n | ∑n

i=1 xi = �n/2} ⋃ {w} where w

is any arbitrary point in {0, 1}n such that
∑n

i=1 xi < n/2. Let S′ ⊆ S. We need
to give an F ∈ F such that F ∩ S = S′. We consider the following cases: Case
(1): S′ = {x ∈ {0, 1}n | ∑n

i=1 xi = n/2}. F such that F ∩ S = S′ is given by
the characteristic function f =

∨
z∈S′

∧
zi=1 xi. Case (2): S′ = X ∪ {w} where

∀x ∈ X,
∑n

i=1 xi = n/2. F such that F ∩ S = S′ is given by the characteristic
function f =

∧
z∈S′

∨
zi=1 xi. Observe that negation of this function is monotone.

Upper Bound: Suppose F1 shatters a set S such that |S| ≥ (
n

n/2

)
+ 2. We first

obtain certain properties that S cannot have through the following lemma.

Lemma 1. F1 cannot shatter a set S if it satisfies at least one of the following:

1. Parallel Chain: When there are elements p, p′, q, q′ ∈ S such that all of them
are distinct and p � p′ and q � q′.

2. Triplet Chain: If p, q, r ∈ S such that p � q � r then it is said to form a
triplet chain.

Proof. For parallel chain, without loss of generality let us suppose that p � p′

and q � q′. Suppose S′ = {p′, q}. Now any monotonically increasing function will
obtain the set {p′, q, q′} and any monotonically decreasing function will obtain
the set {p, p′, q} but never {p′, q} alone. Hence it cannot be shattered.

For triplet chain, suppose p, q, r ∈ S such that p � q � r. Consider the set
S′ = {p, r}. We observe that there does not exist a function f ∈ F1 such that it
is true on p and r and evaluates to false on q. Hence S cannot be shattered.

Now we claim that set S which is shattered must be a disjoint unions of at
most 2 maximal antichains. To see this, suppose S = S1 � S2 � S3 such that the
sets are maximal antichain. Without loss of generality, consider an element p ∈
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S1. Now there exists a point q ∈ S2 such that p and q are comparable(otherwise
they will be in the same set). Now if this is the case then neither p nor q can
be related to any point in S3 as it will either form a chain length of 3 i.e.
p ≺ q ≺ r(triplet chain) or parallel chains because of which the set S cannot be
shattered (see Lemma 1). Now if p and q are not comparable then we can have
a larger antichain by including either p or q in the set S3 which contradicts the
maximality of antichain set S3. Using similar argument for each, we conclude
that, the set S can be disjoint union of at most 2 maximal antichains.

Hence we conclude that there must be S = S1 �S2 where S1, S2 are maximal
antichains i.e. no elements from S1 can be put into S2 and vice versa. Using
Lemma 1 again, we have that S1 and S2 does not have either parallel chain
or triplet chain. But that contradicts the maximality of S1 and S2. Consider
p′, q′ ∈ S2. Then ∃p ∈ S1 such that p � p′ and p � q′. But we can obtain a
larger antichain by including p′, q′ into S1. Thus contradicting the maximality.

We now show that M exhibit a special property (Proposition 2) which is
also known as s-extremal or shattering extremal family. Let Sh(F) denote set of
shattered sets by a family F .

Proposition 2. M is shattering extremal i.e. |Sh(M)| = |M|.
This can be proved using the fact that there is one-to-one correspondence
between a monotone function and an antichain and M shatters only antichains.

3 Bounds for VC-dimension in Terms of alt(f)

In this section, we derive VC-dimension bounds for families of Boolean functions,
parameterized by the maximum alternation of functions in the family. We need
the following known theorem.

Lemma 2 (Characterization of Alternation [1]). Let f : {0, 1}n → {0, 1}.
Then there exists k = alt(f) monotone functions g1, . . . , gk each from {0, 1}n to
{0, 1} such that f(x) = ⊕k

i=1gi if f(0n) = 0 and f(x) = ¬ ⊕k
i=1 gi if f(0n) = 1.

We use this theorem to establish the following upper bound:

Theorem 2. Let k > 1. If Fk is the family of Boolean functions f such that
alt(f) ≤ k. Then, VC(Fk) ≤ O

(
k
(

n
n/2

))

Proof. Using Lemma 2, we get Fk =
{
(¬ ⊕ or ) ⊕k

i=1 fi | fi ∈ M}
. We look

at a family G =
{
f ⊕ g | f = ⊕k

i=1fi, fi ∈ M, g = const
}

where g(x) = 1 if
f(0n) = 1 and g(x) = 0 if f(0n) = 0. Observe that Fk ⊆ G and hence
VC(Fk) ≤ VC(G). We now show an upper bound in general for such con-
structed families. Given k classes of n-bit Boolean functions F1,F2 . . . ,Fk, and
a fixed Boolean function f : {0, 1}k → {0, 1}. We define: F(F1,F2, . . . ,Fk) =
{f(f1(.), ..., fk(.)) | fi ∈ Fi, i ∈ [k]}. We have,

Lemma 3 ([2,6,11]). Let d = maxi∈[k](VC(Fi)). VC(F(F1, . . . ,Fk)) ≤ O
(dk log k)



Alternation and VC-dimension of Union of Sets 679

Applying this lemma we obtain for the above family VC(Fk) ≤ O
(
k
(

n
n/2

)
log k

)
.

We show below how to improve the bound. The idea is simple counting: we have
|G| ≤ |M|k+1. We know that VC(G) ≤ log(|G|), which gives us VC(G) ≤ (k +
1) log(M). This bound is the Dedekind’s number and we use the following bound
due to Kleitman et al. (refer [7]): log(M) ≤ (

n
n/2

) (
1 + O( log n

n )
)
. This gives,

VC(Fk) ≤ (k + 1)
(

n
n/2

) (
1 + O

(
logn
n

))
Hence, we have VC(Fk) ≤ O(k

(
n

n/2

)
).

Now we turn to the lower bound. Using the fact that for any k ≥ 1, the family
Fk also includes the set of monotone functions M, the VC-dimension(Fk) ≥
VC-dimension(M). Hence VC-dimension(Fk) ≥ (

n
n/2

)
. We can improve this:

Theorem 3. Let k > 1. If Fk is the family of Boolean functions f such that
alt(f) ≤ k. Then, VC(Fk) ≥ ∑n/2+k/2

i=n/2−k/2

(
n
i

)

Proof. We shatter the set S = {x ∈ {0, 1}n | n/2 − k/2 ≤ ∑n
i=1 xi ≤ n/2 + k}.

To obtain any S′ ⊆ S, we give f ∈ Fk as f(x) = 1 whenever x ∈ S′ and f(x) = 0
otherwise. It remains to show that alt(f) ≤ k. Since the number of 1s in x ∈ S′

can only be in the range [n/2− k/2, n/2 + k/2], any chain in this part will have
alternation at most k and in the remaining part 0. Hence we obtain all S′ ⊆ S.

VC-dimension of Read-Once Functions: A Boolean function is said to be
read-once if there is a Formula (a Boolean circuit where every gate has fanout
at most 1) computing the function f such that every variable appears only
once in the formula. Monotone read-once functions have no negations in the
formula computing the function. The following lemma motivates the study of
VC-dimension under composition between read-once functions and functions
with alternation at most 1. We defer the proof to the full version.

Lemma 4. Let f : {0, 1}n → {0, 1} such that alt(f) ≤ k. Then f =
g(f1, f2, . . . , fk) where g is a monotone-Read Once formula and fi ∈ F1 where
F1 is the family of functions with alternation at most 1.

The above lemma follows from Lemma 2 and the fact that fi → fi+1. This
motivates the study of VC-dimension of monotone read-once functions which
could potentially be applied to improve the bound of alt-k family. Let R =
{f : {0, 1}n → {0, 1} | f is monotone read-once}.
Proposition 3. n ≤ VC(R) ≤ O(n log n)

Lower bound follows from the fact that Monomial family is a subclass of Read-
once family. Upper Bound follows from counting all Read-once functions.

4 Application to VC-dimension of k-fold Union

In this section we show VC-dimension bound for a non-geometric family which is
a k-union. We also remark in the end that even if we restrict our family to have
only disjoint union of k functions, we obtain a VC-dimension bound of Ω(dk).
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Lemma 5. Let F2k = {f : {0, 1}n → {0, 1} | alt(f) ≤ 2k}. Then this family is
same1 as G =

{⋃k
i=1 gi | gi : {0, 1}n → {0, 1}, alt(gi) ≤ 2

}

Proof. Let f ∈ F2k. Due to alternation characterization described in Lemma 2
we have, f =

⊕2k
i=1 fi =

⊕k
i=1(¬ f2i−1 ∧f2i)∨ (f2i−1 ∧¬ f2i). It can be observed

from the construction of [1], that fi → fi+1. Now using this fact we obtain
f =

∨k
i=1(¬ f2i−1 ∧ f2i) =

∨k
i=1 gi such that alt(gi) ≤ 2. In fact, it can also be

observed that f is the disjoint union of k sets (See full version for details).
For the reverse direction, we have a Boolean function g : {0, 1}n → {0, 1},

g =
∨

gi where gi : {0, 1}n → {0, 1} and alt(gi) ≤ 2. We need to show that
alt(g) ≤ 2k. We use the property that alt(g1 ∨ g2) ≤ alt(g1) + alt(g2) iteratively
to conclude that alt(g) ≤ 2k (See full version for details.)

Theorem 4. Let F2 = {f : {0, 1}n → {0, 1} | alt(f) ≤ 2}. Consider the family
Fk∪ =

{⋃k
i=1 fi | fi ∈ F2

}
. For k ≤ Θ(

√
n), we have VC(Fk∪) = Θ(k

(
n

n/2

)
).

Proof. From Lemma 5, we have that the family Fk∪ can alternately be rep-
resented as parity-composition of a family of monotone Boolean functions. So
Fk∪ = F2k. We conclude using Theorem 2 that VC(Fk∪) ≤ O(k

(
n

n/2

)
). From

Theorem 3 we have: VC(Fk∪) ≥ ∑n/2+k
i=n/2−k

(
n
i

)
. Using standard bounds (c.f. [12]),

when

i ≤ c
√

n, we obtain
(

n
n/2+i

)
= c1

(
n

n/2

)
, c1 > 0 which yields Ω(k

(
n

n/2

)
).
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Abstract. We study the threshold for the existence of a linear order
weakly connected component in the directed configuration model, con-
firming analytic but non-rigorous results recently obtained by Kryven [8].
We also establish convergence in probability of the fraction of vertices
and edges that are contained in the largest component. As a consequence
of our results, we obtain that the “separation” between the thresholds
for the existence a giant weakly and strongly connected component is
in some sense independent from the in-/out-degree correlation. We for-
malise this idea using bond percolation.

Keywords: Directed random graphs · Directed configuration model ·
Weak connected components · Multi-type branching processes

1 Introduction

The study of the component structure of random graphs with given degrees,
and in particular of the configuration model, cm, was pioneered by the work of
Molloy and Reed [9] who provided a criterion to determine if a degree sequence
typically produces a linear order connected component (known as the giant) or
if its largest component has sublinear order. Since then, it has become one of
the central topics in random graph theory [1,6,7].

Directed models are much less understood. Newman, Strogatz and Watts [10]
initiated the study of the directed configuration model, dcm, and located the
threshold for the existence of a giant strongly connected component (scc). Later,
Cooper and Frieze [4] provided a rigorous proof for the existence of such threshold
under certain conditions of the degree sequence. This problem has been recently
revisited by Cai and the second author [3], extending the range of applicability
of the result.

Weakly connected components (wcc) naturally arise in areas such as epi-
demiology, data mining or communication networks. In the physics community,
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the study of wcc’s has been neglected under the assumption that it effectively
behaves like the undirected case (see e.g. [10]). Kryven [8] observed that assump-
tion is wrong and predicted an alternative threshold for the appearance of the
giant wcc, supported with an analytical but non-rigorous approach based on
generating functions for bounded bi-degree distributions. The aim of this paper
is to provide a formal proof for the existence of the giant wcc threshold in the
directed configuration model under the much weaker assumption of bounded
second moments.

Let [n] := {1, . . . , n} be a set of n vertices. Let dn = ((d−
1 , d+1 ), . . . , (d−

n , d+n ))
be a bi-degree sequence with mn :=

∑
i∈[n] d

+
i =

∑
i∈[n] d

−
i . The directed con-

figuration model, dcm = dcm(dn), is the random directed multigraph on vertex
set [n] generated by assigning d−

i in half-edges (heads) and d+i out half-edges
(tails) to vertex i, and then choosing a uniformly random matching between
the set of heads and the set of tails. Let nk,� = {i : (d−

i , d+i ) = (k, �)}. Let
Dn = (D−

n ,D+
n ) be the degree pair of a vertex chosen uniformly at random, that

is P (Dn = (k, �)) = nk,�/n.
Let (dn)n≥1 be a sequence of bi-degree sequences. We will consider sequences

that satisfy the following.

Condition 1. There exists a discrete probability distribution D = (D−,D+) on
Z
2
≥0 with λk,� := P (D = (k, �)) such that we have:

(i) convergence in distribution, for k, � ≥ 0, limn→∞
nk,�

n = λk,�;
(ii) convergence of expected values, limn→∞ E[D±

n ] = E[D±] =: λ ∈ (0,∞);
(iii) convergence of second moments,

limn→∞ E[D−
n (D−

n − 1)] = E[D−(D− − 1)] =: μ2,0 ∈ (0,∞),
limn→∞ E[D−

n D+
n ] = E[D−D+] =: μ1,1 ∈ (0,∞), and

limn→∞ E[D+
n (D+

n − 1)] = E[D+(D+ − 1)] =: μ0,2 ∈ (0,∞).

Define the in- and out-size biased distributions of D by

P (Din = (k − 1, �)) =
kλk,�

λ
, P (Dout = (k, � − 1)) =

�λk,�

λ
. (1)

Consider the random matrix and its mean matrix,

Ξ :=
(

D−
out D+

out

D−
in D+

in

)

, M := E[Ξ] =
(

μ1,1 μ0,2

μ2,0 μ1,1

)

, (2)

where Dout and Din are independent and M has largest eigenvalue, ρ := μ1,1 +√
μ2,0μ0,2. Let q = (q−, q+) be the extinction probability vector of a 2-type

branching process with offspring Ξ.
Let Wn be the largest wcc in dcm. Let v(Wn) and e(Wn) be the number of

vertices and edges in Wn, respectively. Our main result is that the existence of
a giant wcc undergoes a phase transition at ρ = 1:

Theorem 2. Suppose that (dn)n≥1 satisfies Condition 1. If ρ > 1, then

v(Wn)
n

→ η ∈ (0, 1] and
e(Wn)

n
→ ζ ∈ (0, λ], (3)
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in probability, where η :=
∑

k,�≥0 λk,�(1−qk
−q�

+) and ζ :=
∑

k,�≥0 kλk,�(1−qk
−q�

+).
If ρ < 1, then, in probability,

v(Wn)
n

→ 0 and
e(Wn)

n
→ 0. (4)

Remark 3. The scc’s of dcm have been studied in [3,4] under Condition 1.
Denote by Sn the largest scc. Then, if μ1,1 > 1 or μ1,1 < 1, analogues of (3)
and (4) hold, respectively. So, the existence of a giant scc undergoes a phase
transition at μ1,1 = 1.

The combination of the previous results allows us to quantify the “separation”
between the wcc and the scc thresholds through bond percolation. Suppose that
dn satisfies μ1,1 > 1. It is easy to show that for any p ∈ [0, 1] the p-percolated
random digraph dcmp(dn) is distributed in law as dcm(dp

n), where dp
n is the

p-thinned version of dn conditional on having equal number of heads and tails
(for an undirected analogue of this result, see Lemma 3.2 in [5]).

Define pscc = (μ1,1)−1/2 and pwcc = (μ1,1+
√

μ2,0μ0,2)−1/2, and note that 0 <
pwcc < pscc < 1. We obtain a two-point threshold phenomenon for dcmp(dn):

– if p ∈ [0, pwcc): whp no a giant wcc exists;
– if p ∈ (pwcc, pscc): whp a giant wcc, but no giant scc exists;
– if p ∈ (pscc, 1]: whp a giant scc exists.

For an scc-critical sequence dn (i.e. satisfying μ1,1 = 1), pwcc ∈ (0, 1) does not
depend on the in-/out-degree correlation, only on the marginals.

Remark 4. Theorem 2 fails for sequences with infinite second moment. For
instance, let Δ = n2/3 and consider the sequence with one vertex with degrees
(Δ, 0) and all other vertices with degrees (1, 0) or (0, 1). The largest eigenvalue
ρ of the mean matrix M diverges but clearly the largest wcc has order n2/3 +1.

2 Sketch of the Proof Of Theorem 2

2.1 Multitype Branching Processes

Fix p ∈ N. We write 0 and 1 for the all zeros and all ones vectors of length p,
respectively. For any ω ∈ R, we write ω = ω1. Let Ξ = (ξij) be a random p × p
matrix with entries in Z≥0 and let (Ξ(m; t)))m≥1,t≥0 be iid (independent and
identically distributed) copies of Ξ. Let z = (z1, . . . , zp). For i ∈ [p], define the
generating function

hi(z) =
∑

k1,...,kp≥0

P
(∩j∈[p]{ξij = kj}

) ∏

j∈[p]

z
ξij

j

and h(z) = (h1(z), . . . , hp(z)). Denote by mij = E [ξij ] and by M = (mi,j) the
mean matrix. We say that M is finite if mi,j < ∞ for all i, j. We say that M is
irreducible if for every pair i, j there exists t ∈ N such that (M t)i,j > 0. Let ρ
be the largest eigenvalue of M .
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A p-type branching process with offspring distribution Ξ starting at a ∈ [p]
is a stochastic process (X(a)(t) = (X(a)

1 (t), . . . , X(a)
p (t)))t≥0 defined as follows:

X
(a)
j (t) =

{
1a=j (t = 0)
∑

i∈[p]

∑X
(a)
i (t−1)

m=1 ξij(m; t − 1) (t ≥ 1)

If X(a)(t) �= 0 for all t ∈ N, the branching process is said to survive; otherwise, it
is said to become extinct. Let s(a) = P

(∩t≥0{X(a)(t) �= 0}) and q(a) = 1−s(a), be
the survival and extinction probabilities, respectively. Write s = (s(1), . . . , s(p))
and q = (q(1), . . . , q(p)).

If we condition on the process becoming extinct, then X(a)(t) becomes a
subcritical branching process with offspring having generating function ĥ(z) =
q−1h(qz), where q−1 = (1/q(1), . . . 1/q(p)). Let ρ̂ < 1 be the largest eigenvalue
of the mean matrix of the conditioned process.

We develop the following result about subcritical growth of supercritical
branching processes conditioned on survival.

Theorem 5. For a ∈ [p], let (X(a)(t))t≥0 be an irreducible p-type branching
process with offspring distribution Ξ and mean matrix M with ρ ∈ (1,∞) and
q > 0. Then there exist constants c, C > 0 and a function τ(�) = (1+o�(1)) logρ �
such that

cρ̂t ≤ P

(
∩t

r=1{0 �= X(a)(r) < ω}
)

≤ Cρ̂t−τ(ω), for all t ≥ 1, ω ≥ t. (5)

This allows us to control the ω-expansion time of the process.

Lemma 1. For a ∈ [p], let (X(a)(t))t≥0 be an irreducible p-type branching pro-
cess with offspring distribution Ξ and mean matrix M with ρ ∈ (1,∞). Let
T

(a)
ω := inf{t : X(a)(t) �< ω}. Then for all ε > 0 and as ω → ∞,

P

(
T (a)

ω ≤ (1 + ε) logρ ω
)

→ 1 − q(a), P

(
T (a)

ω ∈ ((1 + ε) logρ ω,∞)
)

→ 0. (6)

This can be easily generalised to multiple iid branching processes. We omit this
result for brevity.

2.2 Exploration and Coupling of the Weak Components

We will use a Breadth First Search (BFS) digraph exploration process on the
weak components of dcm starting at a vertex v ∈ [n]. This is equivalent to the
usual BFS process on the graph obtained by removing the directions of the edges
in dcm. Let Fv(t) be the tree generated by the BFS process starting at v up to
time t, where we only add edges if they reveal a vertex not exposed yet and
assign them a mark depending on the direction we traverse them.

The in- and out-size biased distributions of Dn are defined as in (1). Then, by
(i) of Condition 1, (Dn)in → Din and (Dn)out → Dout in distribution. Similarly
we define the sequence of random matrices (Ξn)n≥0 with mean matrices Mn.
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By Condition 1, Ξn converges in distribution and in L1 to Ξ and furthermore,
Mn and M are finite and irreducible. Let ρn be the largest eigenvalue of Ξn. Let
qn = (q−

n , q+n ) be the extinction probability vector for the 2-type processes with
offspring Ξn. Note that ρn → ρ and qn → q.

Let GW(d1,d2)
Ξ be d1 + d2 independent 2-type Galton-Watson trees with off-

spring distribution Ξ, the first d1 ones starting with a particle of type 1, and
the last d2, starting with a particle of type 2.

One can define two new sequences Ξ↑
n and Ξ↓

n that will stochastically domi-
nate and be stochastically dominated by Ξn, respectively. This allows us to cou-
ple the digraph exploration process with the 2-type branching processes defined
previously (see [2, Lemma 5.3] for a unidimensional version of it).

Lemma 2. Let v ∈ [n] with d−
v = d1 and d+v = d2. Let β > 0 be sufficiently

small. For every rooted marked tree F with � := |V (F )| ≤ nβ we have

(1 − o(1))P
(
GW(d1,d2)

Ξ↓
n

∼= F
)

≤ P (Fv(�) = F ) ≤ (1 + o(1))P
(
GW(d1,d2)

Ξ↑
n

∼= F
)

.

2.3 Expansion, Connection Probabilities and the Supercritical Case

We say that a half-edge f is at distance t from v ∈ [n] if the shortest walk from
v to the vertex incident to f has length t. Denote by N ±

t (v) (and N ±
≤t(v)) the

set of head/tails at distance (at most) t from v.
Fix ω := log6 n. Define the ω-expansion time of v as

tω(v) := inf
{
t ≥ 1 : max{∣∣N −

t (v)
∣
∣ ,

∣
∣N+

t (v)
∣
∣} ≥ ω

}
. (7)

Combining Lemma 1 with p = 2 and Lemma 2, we obtain the following.

Lemma 3. Suppose ρ > 1. Fix ε ∈ (0, 1/2) and distinct u, v ∈ [n]. Define the
event A1(v, ε) := {tω(v) ≤ (1 + ε) logρ ω}. As n → ∞,

P (A1(u, ε)) = (1 + o(1))(1 − q
d−

u− q
d+

u
+ ) (8)

P (A1(u, ε) ∩ A1(v, ε)) = (1 + o(1))(1 − q
d−

u− q
d+

u
+ )(1 − q

d−
v− q

d+
v

+ ). (9)

Using Lemma 1 again, we prove that expansions are unlikely to happen late.

Lemma 4. Assume that ρ > 1. Fix ε ∈ (0, 1/2) and v ∈ [n]. As n → ∞,

P
(
tω(v) ∈ ((1 + ε) logρ ω,∞)

)
= o(1). (10)

Finally, we show that any pair of large sets are connected by a path.

Lemma 5. For all ε > 0 and sets X ,Y ⊆ [n] with |X |, |Y| ≥ ω,

P(dist(X ,Y) > (1 + ε) logρ n) = o(n−2). (11)

By Lemma 5, with high probability, all but at most o(n) vertices with finite ω-
expansion time are in the same weakly connected component and by Lemma 4
there are at most o(n) additional vertices in this component. Moreover, Lemma 3
allows us to find the expected order and size of this component, compute their
second moment, and thus prove concentration around their expectations.
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2.4 Subcritical Case

Define C(v) to be the component of dcm which contains v. Then, (4) follows by
Markov’s inequality from the next result.

Lemma 6. If ρ < 1, then Ev[|C(v)|] = o(n).

We give a sketch of the proof. Fix v ∈ [n] and β > 0 sufficiently small. For h ∈ N,
write Nh = N −

h (v) ∪ N+
h (v). We shall call v big if any of the following hold and

small otherwise:

i) d−
v + d+v ≥ nβ/3;

ii) |Nh| ≥ nβ/2 for some h ∈ N;
iii) |Nh0 | ≥ 1 for h0 = log1/ρ n.

All small vertices are contained in components of order at most nβ/2 log1/ρ n =
o(n). We can use classical results on multitype branching processes and cou-
pling, to bound the probability of each property i)–iii) in turn. Then, Markov’s
inequality implies that there are o(n) big vertices. It follows that

Ev[|C(v)|] =
1
n
E

( ∑

v∈[n]

|C(v)|
)

= o(n) .
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Abstract. We study the dichromatic number of a digraph, defined as
the minimum number of parts in a partition of its vertex set into acyclic
induced subdigraphs. We consider the class of oriented graphs such that
the out-neighbourhood of any vertex induces a transitive tournament
and prove for it a decomposition theorem. As a consequence, we obtain
that oriented graphs in this class have dichromatic number at most
2, proving a conjecture of Naserasr and the first and third authors of
this paper in Extension of the Gyárfás-Sumner conjecture to digraphs
arXiv:2009.13319.
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1 Introduction

1.1 Notation

In this paper, directed graphs (digraphs in short) are simple, i.e. contain no loop
and no multi-arc. If in addition it contains no digon (a cycle on two vertices),
we say that it is an oriented graph. This paper is mostly concerned with oriented
graphs.

An acyclic colouring of a digraph is an assignment of colours to the vertices
such that each colour induces an acyclic subdigraph, that is a subdigraph con-
taining no directed cycle. The acyclic chromatic number, or simply dichromatic
number, of a digraph D, denoted −→χ (D) , is defined to be the smallest number of
colours required for an acyclic colouring of D. This notion was first introduced
in 1982 by Neumann-Lara [11] and has attracted a lot of attention in the past
decade (see for example [4,7,10,14]) as it seems to be the natural generalization
for digraphs of the usual chromatic number.

Let D be a digraph. It is strongly connected if there is a directed path between
each ordered pair of vertices. In this case we say that D is a strong digraph. For
a vertex x of D, we denote by x+(D) (resp. x−(D)) the set of its out-neighbours
(resp. in-neighbours):

x+(D) = {y ∈ V (D), xy ∈ A(D)}
x−(D) = {y ∈ V (D), yx ∈ A(D)}

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 688–695, 2021.
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If there is no ambiguity on the digraph, we will simply use x+ and x−. If H
is a subdigraph of D, we define the contraction D/H as the digraph obtained by
removing all vertices of H, then adding a new vertex h such that xh (resp. hx)
is an arc of D/H if x+ ∩ H (resp x− ∩ H) is non empty. Beware that this graph
might contain digons even if D does not.

We denote by
←→
K2 the digraph on two vertices with an arc in both directions

and by Ck the directed cycle on k vertices. The oriented graph on three vertices
with a vertex of out-degree 2 (resp of in-degree 2) and two vertices of in-degree
1 (resp. of out-degree 1) is called S+

2 (resp. S−
2 ). A tournament is an orientation

of a complete graph. We denote by TTk the unique acyclic tournament on k
vertices, called transitive tournament.

Given a set F of digraphs we denote by Forbind(F) the set of digraphs which
have no member of F as an induced subdigraph. If F is explicitly given by
a list of digraphs F1, F2, . . . , Fk we will write Forbind(F1, F2, . . . , Fk) instead
of Forbind({F1, F2, . . . , Fk}). For example, Forbind(

←→
K2) is the class of oriented

graphs.
For a property P of digraphs (like tournament, acyclic), a digraph is locally

out-P (resp. locally in-P) if for every vertex x, x+ (resp. x−) induces a digraph in
P . We will make one exception for one of the main classes of this paper: for the
oriented graphs for which the out-neighborhood of every vertex is a transitive
tournament, we will use the term “out-transitive oriented graphs” instead of the
heavier and possibly confusing “out-transitive tournament oriented graphs”.

1.2 Context and Presentation of the Main Results

Many theorems or conjectures about chromatic number revolve around the fol-
lowing question: what induced substructures are expected to be found inside a
graph if we assume it has very large chromatic number? Or equivalently what
are the minimal families F such that graphs that do not contain any graph in
F as an induced subgraph has bounded chromatic number? In the case where
F is finite, Gyárfás and Sumner proposed the following tantalizing conjecture:

Conjecture 1 (Gyárfás-Sumner, [8,16]). Given a finite set of graphs F , graphs in
Forbind(F) have bounded chromatic number if and only if F contains a complete
graph and a forest.

In [2], Reza Naserasr and the first and third authors of this paper investigated
such questions in the setting of digraphs. A hero is a tournament H such that
every tournament not containing H have bounded dichromatic number. In [4],
Berger et al. give a full description of heros. Extending the notion of hero, a set
F of digraphs is said to be heroic if every digraph in Forbind(F) has bounded
dichromatic number. In [2], the following conjecture was given, along with a
proof of the only if part. It can be seen as an analogue to the Gyárfás-Sumner
Conjecture for oriented graphs.

Conjecture 2 ([2]). Let H be a hero and let F be an oriented forest. The set
{←→
K2,H, F} is heroic if and only if:
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– either F is the disjoint union of oriented stars,
– or H is a transitive tournament.

This conjecture is still widely open. The first case that was left in [2]
is the case F = S+

2 , and H = C3 and it was conjectured that digraphs
in Forbind(

←→
K2, C3, S

+
2 ) have dichromatic number at most two. Here we prove

this result, and in fact a stronger result. Before stating it, let us note that
Forbind{←→

K2, S
+
2 } is the class of oriented graphs such that the out-neighbourhood

of any vertex induces a tournament. These objects, also called locally out-
tournaments, are already well studied (see Chapter 6 in [3]), and often constitute
the next step when trying to generalize results on tournaments.

Theorem 3 1. Any oriented graph such that the out-neighbourhood of any ver-
tex induces a transitive tournament has dichromatic number at most 2.

In other words, locally out-transitive oriented graphs are 2-dicolorable. Note
that it indeed is stronger than the conjecture mentioned above as it amounts to
forbidding

←→
K2, S+

2 and the hero on 4 vertices made of a directed triangle C3 plus
a vertex with an arc going to the three other vertices. As already said, forbidding
S+
2 implies that every out-neighbourhood is a tournament, and forbidding this

hero implies that the tournament must be acyclic, hence transitive.
The proof of Theorem 3 relies on a structural decomposition theorem (see

Theorem 4) for the class of out-transitive oriented graphs, that is a theorem
whose statement is of the kind: either a graph in this class is “basic” (belongs to
some simple subclass, that will be described in Sect. 2), or it can be decomposed
in some prescribed ways. These kind of decomposition theorems proved to be
a very powerful strategy in the world of undirected graphs (the most famous
example being the celebrated proof of the perfect graph conjecture by Chud-
novsky et al. in [5]), but there are, up to our knowledge, not many theorems of
this kind in the world of digraphs, and there is no reason to believe that it could
not be as effective in this setting.

Remark 1. A few days prior to the submission of this paper, R. Steiner published
on arXiv a nice paper [15] containing another proof of Theorem 3 (as well as
other results about Conjecture 2). Even though some of the ingredients are in
common, his proof is longer and very different as it is an entirely inductive proof
whereas ours relies on the structure theorem mentioned above.

2 Round and In-Round Oriented Graphs

A linear order on a digraph D is an order O := (v1, v2, . . . , vn) of its vertices.
Two linear orders O1 and O2 are equivalent if there exists an integer k such that
O1 = (v1, v2, . . . , vn) and O2 = (vk, vk+1, . . . , vn, v1, v2, . . . , vk−1). An equiva-
lence class for this relation is called a cyclic order of D. Given a linear order
O = (v1, v2, . . . , vn) we define the length l(a) of an arc a = vivj to be equal to
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j − i if j ≥ i and n − i + j if j < i. For two vertices vi and vj the cyclic interval
[vi, vj ] is defined as follow:

[vi, vj ] =

{
{vk, k ∈ [i, j]} if i < j

{vk, k �∈ ]j, i[} if i ≥ j

Note that length of an arc and cyclic intervals only depend on the cyclic order
and not on a linear order chosen as a representative. As usual, ]vi, vj [ = [vi, vj ] \
{vi, vj}.

A round oriented graph D = (V,A) is an oriented graph such that there is a
cyclic order of its vertices satisfying:

∀xy ∈ A,∀z ∈]x, y[, xz ∈ A and zy ∈ A

In other words, for every vertex x, x+ (resp. x−) consists in a cyclic interval
placed just after (resp. before) x in the cyclic order. Note that a round ori-
ented graph is strongly connected if and only if every vertex has at least one
in-neighbour. This is because the cyclic order given by the theorem above is an
Hamiltonian cycle. By a similar observation, if a round oriented graph is not
strong, then it is in fact acyclic.

Remember that an oriented graph is locally transitive if the in-neighborhood
and the out-neighborhood of each vertex induces a transitive tournament.
Huang [9] proved that round oriented graphs and locally transitive oriented
graphs are actually the same. (He actually proved a more general version of this
result that applied on digraphs in place of oriented graphs, but as we only need
it for oriented graphs, we only state this one).

Theorem 1 (Huang [9]). If D = (V,A) is a connected oriented graph, then
the two conditions below are equivalent

1. for every vertex x, both x+ and x− induce a transitive tournament.
2. there exists a cyclic order of the vertices of D such that

∀xy ∈ A,∀z ∈ ]x, y[, xz ∈ A and zy ∈ A

Our first theorem is a generalization of the theorem above in the particular
case of strong oriented graphs. Following the terminology of [3], any oriented
graphs satisfying Condition 2. of the theorem below will be called in-round.

Theorem 2 Let D be a strong oriented graph. Then conditions below are equiv-
alent.

1. for every vertex x, x+ induces a tournament and x− induces an acyclic
digraph

2. there exists a cyclic order of the vertices of D such that

∀xy ∈ A,∀z ∈]x, y[, zy ∈ A
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Again 2. can be seen as the property that for every vertex x, x− consists in a
cyclic interval placed just before x in the order.

Proof (Proof of Theorem 2). The easy direction is 2. implies 1. Indeed, let x, y, z
be such that y, z ⊂ x+ and assume w.l.o.g that z ∈ [x, y]. Then by 2. we have
that zy ∈ A, so that indeed x+ is a tournament. If x− contains a directed cycle
C, let y denote the vertex of C such that C \ y ⊂ [y, x] (the left most vertex
of C in the representative of the cyclic order which ends in x). Let z be the
predecessor of y on C. Now we have that x ∈ [zy] and so by 2. there must be an
arc xy, which contradicts the fact that y ∈ x− (there are no digon here).

Now assume 1.. For every vertex x, x− induces a non empty acyclic oriented
graph, and hence contains a vertex y such that y+ ∩ x− = ∅ (take the last
vertex in a topological ordering of x−). For every x we arbitrarily choose one
such vertex and denote it by f(x). If z is an out-neighbour of f(x), then since
f(x)+ induces a tournament z and x must be connected by an arc, and this
cannot be zx by definition of f(x) so there must be an arc xz. We have therefore
f(x)+ \ {x} ⊂ x+ for all x.

Now let H be the graph induced by the arcs f(x)x. Each vertex of H has
in-degree exactly 1, so H contains a cycle C. If C does not span all vertices
of D, then since D is strong, there exists an arc xy in D where x ∈ C and
y 
∈ C. Because of the property above the whole cycle C must be contained
in y−, which contradicts 1.. So H consists in an Hamiltonian cycle and the
property f(x)+ ⊂ x+ exactly translates into 2. for the cyclic order defined by
this Hamiltonian cycle.

Remark 2. We point out that the proof above shows that Property 2. implies
in fact that every out-neighbourhood in an in-round oriented graph induces a
transitive tournament (even if it is not necessary to add it in Property 1. to
get the equivalence). Thus in-round strong oriented graphs can also be seen as
strong oriented graphs that are locally out-transitive and locally in-acyclic.

Using the cyclic structure given by the result above, it is not difficult to
deduce that in-round oriented graphs have dichromatic number at most 2.

Proposition 1. Every in-round oriented graph has dichromatic number at most
2. More precisely, for every vertex x, there exists a valid 2-dicolouring such that
{x} ∪ x+ is monochromatic.

Proof. We only need to prove it when the oriented graph is strong since a 2-
colouring of each strong component yields a valid 2-colouring of the whole ori-
ented graph. Consider the cyclic order given by the definition of in-round and
pick any vertex x. Let y be the vertex such that xy is a longest arc, that is the
arc such that the interval [x, y] contains the maximum number of vertices. This
implies that in the linear order given by the interval ]y, x[ all arcs go forward
since a back arc x′y′ would force the arc xy′ contradicting the maximality of xy.
So ]y, x[ induces an acyclic oriented graph. Moreover [x, y] induces an acyclic
oriented graph since it is included in y− and by definition of the in-round cyclic
order. This concludes the proof.
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3 Decomposing and Colouring Locally Out-Transitive
Oriented Graphs

3.1 Statement of the Results and Outline of the Proofs

In this subsection we state our results on the class of locally out-transitive ori-
ented graphs. Remember that an oriented graph D is out-transitive if for every
vertex x of D, x+ is a transitive tournament, and that strong in-round oriented
graphs are exactly strong oriented graphs that are both locally out-transitive
and locally in-acyclic (see Theorem 2). Hence, the theorem below generalises
Proposition 1.

Theorem 3. Every locally out-transitive oriented graph has dichromatic number
at most 2.

As mentioned in the introduction, the proof of the above theorem follows
from the following structural result that describes strong locally out-transitive
oriented graphs.

Theorem 4. If D is a strong locally out-transitive oriented graph, then there
exists a partition of its set of vertices into strong subdigraphs H1, . . . ,Hk such
that the digraph obtained by contraction of every Hi is a strong in-round oriented
graph.

Due to lack of space, we only outline the proofs here. Like every other proofs
missing in this paper, it can be found in the long version [1].

If D is an oriented graph, a subdigraph H of D is a hub if it satisfies the
following

– H is strong,
– there exists x /∈ H such that H ⊆ x−.

A hub is non-trivial if it has at least two vertices. Hubs are the key structure to
understand locally out-transitive oriented graphs.

Let D be a locally out-transitive oriented graph. We first prove that the set
of maximal (inclusion-wise) hubs forms a partition of the vertex set with the
additional property that, if H1 and H2 are two maximal hubs, then we are in
one of the three following situations:

– either there is no arc between H1 and H2,
– either there are all arcs from H1 to a subset of H2 inducing a transitive

tournament, and no other arc,
– or there are all arcs from H2 to a subset of H1 inducing a transitive tourna-

ment, and no other arc.

We then prove that the digraph F obtained by contraction of every maximal
hub is an oriented graph with no non-trivial hub, and then that every in-
neighborhood is acyclic and every out-neighborhood is a tournament. This in
turns implies, by Theorem 2, that the obtained graph is a strong oriented in-
round graph, which concludes the proof of Theorem 4.
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Using the 2-colouring of F given by Proposition 1, we are able to obtain a
2-colouring of D (we prove in fact as in Proposition 1 that for any vertex x there
exists a 2-colouring such that the closed neighbourhood of x is monochromatic)

3.2 A Short Application of Theorem 4 to the Caccetta-Häggkvist
Conjecture

A beautiful and famous conjecture due to Caccetta and Häggkvist states states
the following.

Conjecture 3 (Caccetta-Häggkvist). Let k ≥ 2 be an integer. Every digraph D
on n vertices with no directed circuits of length at most k contains a vertex of
out-degree less than n/k.

The case k = 2 is trivial but the case k = 3 is still widely open and has attracted
a lot of attention. In [12] (see page 3), it is mentioned that for k = 3, while adding
the hypothesis that the graph has no S+

2 makes it very easy, the dual case of
forbidding S−

2 was proven by Seymour but is ”substantially more difficult”. We
can prove that this comes as an easy consequence of Theorem 4 and Theorem 2,
for any value k ≥ 3.

Theorem 5. Let D be a locally in-tournament oriented graph on n vertices with
no directed cycle of length at most k. Then D contains a vertex of out-degree
less than n/k.
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12. Razborov, A.A.: On the Caccetta-Häggkvist Conjecture with Forbidden Sub-
graphs. J. Graph Theory 74, 236–248 (2013)

13. Scott, A., Seymour, P.: A survey of χ-boundedness. J. Graph Theory 95, 473–504
(2020)

14. Steiner, R.: A note on coloring digraphs of large girth. Discret. Appl. Math. 287,
62–64 (2020)

15. Steiner, R.: On coloring digraphs with forbidden induced subgraphs, vol. 2103, p.
04191 (2021)

16. Sumner, D.P.: Subtrees of a graph and the chromatic number. The Theory and
Applications of Graphs (Kalamazoo, Mich., 1980), pp. 557–576. Wiley, New York
(1981)



Ramsey Expansions
of 3-Hypertournaments
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Abstract. We study Ramsey expansions of certain homogeneous 3-
hypertournaments. We show that they exhibit an interesting behaviour
and, in one case, they seem not to submit to current gold-standard meth-
ods for obtaining Ramsey expansions. This makes these examples very
interesting from the point of view of structural Ramsey theory as there
is a large demand for novel examples.

Keywords: Homogeneous hypertournaments · Ramsey property

Structural Ramsey theory studies which homogeneous structures have the so-
called Ramsey property, or at least are not far from it (can be expanded by some
relations to obtain a structure with the Ramsey property). Recently, the area
has stabilised with general methods and conditions from which almost all known
Ramsey structures follow. In particular, the homogeneous structures offered by
the classification programme are well-understood in most cases. Hence, there is
a demand for new structures with interesting properties.

In this abstract we investigate Ramsey expansions of four homogeneous 4-
constrained 3-hypertournaments identified by the first author [3] and show that
they exhibit an interesting range of behaviours. In particular, for one of them
the current techniques and methods cannot be directly applied. There is a big
demand for such examples in the area, in part because they show the limitations
of present techniques, in part because they might lead to a negative answer to the
question whether every structure homogeneous in a finite relational language has
a Ramsey expansion in a finite relational language, one of the central questions
of the area asked in 2011 by Bodirsky, Pinsker and Tsankov [2].

1 Preliminaries

We adopt the standard notions of languages (in this abstract they will be rela-
tional only), structures and embeddings. A structure is homogeneous if every
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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isomorphism between finite substructures extends to an automorphism. There is
a correspondence between homogeneous structures and so-called (strong) amal-
gamation classes of finite structures, see e.g. [5]. A structure A is irreducible if
every pair of vertices is part of a tuple in some relation of A.

In this abstract, an n-hypertournament is a structure A in a language with
a single n-ary relation R such that for every set S ⊆ A with |S| = n it holds
that the automorphism group of the substructure induced on S by A is precisely
Alt(S), the alternating group on S. This in particular means that exactly half of
n-tuples of elements of S with no repeated occurrences are in RA. For n = 2 we
get standard tournaments, for n = 3 this correspond to picking one of the two
possible cyclic orientations on every triple of vertices. It should be noted how-
ever, that another widespread usage, going back at least to Assous [1], requires a
unique instance of the relation to hold on each n-set. A holey n-hypertournament
is a structure A with a single n-ary relation R such that all irreducible substruc-
tures of A are n-hypertournaments. A hole in A is a set of 3 vertices on which
there are no relations at all.

Let A,B,C be structures. We write C −→ (B)A2 to denote the statement that
for every 2-colouring of embeddings of A to C, there is an embedding of B to C
on which all embeddings of A have the same colour. A class C of finite structures
has the Ramsey property (is Ramsey) if for every A,B ∈ C there is C ∈ C with
C −→ (B)A2 and C+ is a Ramsey expansion of C if it is Ramsey and can be
obtained from C by adding some relations. By an observation of Nešetřil [8],
every Ramsey class is an amalgamation class under some mild assumptions.

1.1 Homogeneous 4-Constrained 3-Hypertournaments

Suppose that T = (T,R) is a 3-hypertournament and pick an arbitrary linear
order ≤ on T . One can define a 3-uniform hypergraph T̂ on the set T such that
{a, b, c} with a ≤ b ≤ c is a hyperedge of T̂ if and only if (a, b, c) ∈ R. (Note
that by the definition of a 3-hypertournament, it always holds that exactly one
of (a, b, c) and (a, c, b) is in R.) This operation has an inverse and hence, after
fixing a linear order, we can work with 3-uniform hypergraphs instead of 3-
hypertournaments. There are three isomorphism types of 3-hypertournaments
on 4 vertices:

H4 The homogeneous 3-hypertournament on 4 vertices. For an arbitrary linear
order ≤ on H4, Ĥ4 contains exactly two hyperedges. Moreover, they intersect
in vertices a < b such that there is exactly one c ∈ H4 with a < c < b.

O4 The odd 3-hypertournament on 4 vertices. For an arbitrary linear order ≤,
Ô4 will contain an odd number of hyperedges. Conversely, any ordered 3-
uniform hypergraph on 4 vertices with an odd number of hyperedges will
give rise to O4.

C4 The cyclic 3-hypertournament on 4 vertices. There is a linear order ≤ on C4

such that Ĉ4 has all four hyperedges. In other linear orders, Ĉ4 might have
no hyperedges or exactly two which do not intersect as in H4.
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We say that a class C of finite 3-hypertournaments is 4-constrained if there
is a non-empty subset S ⊆ {H4,O4,C4} such that C contains precisely those
finite 3-hypertournaments whose every substructure on four distinct vertices is
isomorphic to a member of S. There are four 4-constrained classes of finite 3-
hypertournaments which form a strong amalgamation class [3]. They correspond
to the following sets S:

S = {C4} The cyclic ones. These can be obtained by taking a finite cyclic order
and orienting all triples according to it. Equivalently, they admit a linear
order such that the corresponding hypergraph is complete.

S = {C4,H4} The even ones. The corresponding hypergraphs satisfy the prop-
erty that on every four vertices there are an even number of hyperedges.

S = {C4,O4} The H4-free ones. Note that in some sense, this generalizes the
class of finite linear orders: As Aut(H4) = Alt(4), one can define Hn to be
the (n − 1)-hypertournament on n points such that Aut(Hn) = Alt(n). For
n = 3, we get that H3 is the oriented cycle on 3 vertices and the class of all
finite linear orders contains precisely those tournaments which omit H3.

S = {C4,O4,H4} The class of all finite 3-hypertournaments.

2 Positive Ramsey Results

In this section we give Ramsey expansions for all above classes with the exception
of the H4-free ones. Let Cc be the class of all finite cyclic 3-hypertournaments. Let−→Cc be a class of finite linearly ordered 3-hypertournaments such that (A,R,≤)
∈ Cc if and only if for every x < y < z ∈ A we have (x, y, z) ∈ R. Notice that for
every (A,R) ∈ C there are precisely |A| orders ≤ such that (A,R,≤) ∈ −→Cc (after
fixing a smallest point, the rest of the order is determined by R), and conversely,
for every (A,R,≤) ∈ −→Cc we have that (A,R) ∈ Cc.

It is a well-known fact that every Ramsey class consists of linearly ordered
structures [7]. We have seen that after adding linear orders freely, the class of
all finite ordered even 3-hypertournaments corresponds to the class of all finite
ordered 3-uniform hypergraphs which induce an even number of hyperedges on
every quadruple of vertices. These structures are called two-graphs and they are
one of the reducts of the random graph (one can obtain a two-graph from a
graph by putting hyperedges on triples of vertices which induce an even number
of edges). Ramsey expansions of two-graphs have been discussed in [4] and the
same ideas can be applied here.

Let
−→Ce consist of all finite structures (A,≤, E,R) such that (A,≤) is a linear

order, (A,E) is a graph, (A,R) is a 3-hypertournament and for every a, b, c ∈ A
with a < b < c we have that (a, b, c) ∈ R if and only if there are an even number
of edges (relation E) on {a, b, c}. Otherwise (a, c, b) ∈ R.

Theorem 1. The 4-constrained classes of finite 3-hypertournaments with S ∈
{{C4}, {C4,H4}, {C4,O4,H4}} all have a Ramsey expansion in a finite lan-
guage. More concretely:
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1.
−→Cc is Ramsey.

2.
−→Ce is Ramsey.

3. The class of all finite linearly ordered 3-hypertournaments is Ramsey.

We remark that these expansions can be shown to have the so-called expansion
property with respect to their base classes, which means that they are the optimal
Ramsey expansions (see e.g. Definition 3.4 of [6]).

Proof. In
−→Cc, R is definable from ≤ and we can simply use Ramsey’s theorem.

Similarly, in
−→Ce, R is definable from ≤ and E, hence part 2 follows from the

Ramsey property of the class of all ordered graphs [9].
To prove part 3, fix a pair of finite ordered 3-hypertournaments A and

B and use the Nešetřil–Rödl theorem [9] to obtain a finite ordered holey 3-
hypertournament C′ such that C′ −→ (B)A2 . The holes in C′ can then be
filled in arbitrarily to obtain a linearly ordered 3-hypertournament C such that
C −→ (B)A2 .

3 The H4-Free Case

Let A = (A,R) be a holey 3-hypertournament. We say that A = (A,R′) is a
completion of A if R ⊆ R′ and A is an H4-free 3-hypertournament. Most of the
known Ramsey classes can be proved to be Ramsey by a result of Hubička and
Nešetřil [6]. In order to apply the result for H4-free 3-hypertournaments, one
needs a finite bound c such that whenever a holey 3-hypertournament has no
completion, then it contains a substructure on at most c vertices with no com-
pletion. (Completions defined in [6] do not directly correspond to completions
defined here. However, the definitions are equivalent for structures considered in
this paper.) We prove the following.

Theorem 2. There are arbitrarily large holey 3-hypertournaments B such that
B has no completion but every proper substructure of B has a completion.

This theorem implies that one cannot use [6] directly for H4-free hypertour-
naments. However, a situation like in Theorem 2 is not that uncommon. There
are two common culprits for this, either the class contains orders (for example,
failures of transitivity can be arbitrarily large in a holey version of posets) or
it contains equivalences (again, failures of transitivity can be arbitrarily large).
In the first case, there is a condition in [6] which promises the existence of a
linear extension, and thus resolves the issue. For equivalences, one has to intro-
duce explicit representatives for equivalence classes (this is called elimination of
imaginaries) and unbounded obstacles to completion again disappear.

For H4-free hypertournaments neither of the two solutions seems to work.
This means that something else is happening which needs to be understood in
order to obtain a Ramsey expansion of H4-free tournaments. Hopefully, this
would lead to new, even stronger, general techniques.

In the rest of the abstract we sketch a proof of Theorem 2.



700 G. Cherlin et al.

Lemma 1.

1. Let G = (G,R) be a holey 3-hypertournament with G = {1, 2, 3, 4} such that
(1, 3, 4) ∈ R, (1, 4, 2) ∈ R and {1, 2, 3} and {2, 3, 4} are holes. Let (G,R′) be
a completion of G. If (1, 2, 3) ∈ R′, then (2, 3, 4) ∈ R′.

2. Let G¬ = (G,R) be a holey 3-hypertournament with G = {1, 2, 3, 4} such that
(2, 4, 3) ∈ R, (1, 4, 2) ∈ R and {1, 2, 3} and {1, 3, 4} are holes. Let (G,R′) be
a completion of G¬. If (1, 2, 3) ∈ R′, then (1, 3, 4) /∈ R′.

Proof. In the first case, suppose that (1, 2, 3) ∈ R′. If (2, 4, 3) ∈ R′, then (G,R′)
is isomorphic to H4. Hence (2, 3, 4) ∈ R′. The second case is proved similarly.

Suppose that A = (A,R) is a holey 3-hypertournament. For x, y, z, w ∈ A,
we will write xyz ⇒ yzw if the map (1, 2, 3, 4) �→ (x, y, z, w) is an embedding
G → A and we will write xyz ⇒ ¬xzw if the map (1, 2, 3, 4) �→ (x, y, z, w) is an
embedding G¬ → A. Using the complement of G, we can define ¬xyz ⇒ ¬yzw,
and using the complement of G¬ we can define ¬xyz ⇒ xzw. This notation
can be chained as well, e.g. xyz ⇒ yzw ⇒ zwu ⇒ ¬zuv means that all of
xyz ⇒ yzw, yzw ⇒ zwu, zwu ⇒ ¬zuv are satisfied.

Let n ≥ 6. We denote by On = (On, R) the holey 3-hypertournament with
vertex set On = {1, . . . , n} such that

123 ⇒ 234 ⇒ 345 ⇒ · · · ⇒ (n − 2)(n − 1)n ⇒ ¬(n − 2)n1 ⇒ ¬n12 ⇒ ¬123.

All triples not covered by these conditions are holes.

Lemma 2.

1. There is a completion (On, R
′) of On.

2. If (On, R
′) is a completion of On, then (1, 2, 3) /∈ R′.

3. For every v ∈ On\{1, 2, 3} there is a completion (On\{v}, R′) of the structure
induced by On on On\{v} such that (1, 2, 3) ∈ R′.

Proof. For part 1, observe that every set of four vertices of On with at least two
different subsets of three vertices covered by a relation is isomorphic to G, G¬

or the complement of G. It follows that whenever x, y, z ∈ On is a hole such that
x < y < z, we can put (x, z, y) and its cyclic rotations in R′ to get a completion.
Part 2 follows by induction on the conditions.

For part 3, we put (1, 2, 3), (2, 3, 4), . . . (v − 3, v − 2, v − 1) ∈ R′, (v + 1, v +
3, v+2), . . . , (n−2, n, n−1) ∈ R′ and (n−2, n, 1), (n, 1, 2) ∈ R′. It can be verified
that this does not create any copies of H4. A completion of (On, R

′) exists as
the class of all finite H4-free tournaments has strong amalgamation.

Similarly, for n ≥ 6, we define O¬
n = (O¬

n , R) the holey 3-hypertournament
with vertex set O¬

n = {1, . . . , n} such that

¬123 ⇒ ¬234 ⇒ ¬345 ⇒ · · · ⇒ ¬(n − 2)(n − 1)n ⇒ (n − 2)n1 ⇒ n12 ⇒ 123

and there are no other relations in R. In any completion (O¬
n , R

′) of O¬
n it holds

that (1, 2, 3) ∈ R′, in fact, an analogue of Lemma 2 holds for O¬
n .



Ramsey Expansions of 3-Hypertournaments 701

Let Bn be the holey 3-hypertournament obtained by gluing a copy of On

with a copy of O¬
n , identifying vertices 1, 2 and 3. (This means that Bn has

2n − 3 vertices). We now use {Bn : n ≥ 6} to prove Theorem 2.

Proof (of Theorem 2). Assume that (Bn, R
′) is a completion of Bn. So in par-

ticular, it is a completion of the copies of On and O¬
n . By Lemma 2 and its

analogue for O¬
n , we have that (1, 2, 3) /∈ R′ and (1, 2, 3) ∈ R′, a contradiction.

Pick v ∈ Bn and consider the structure Bv
n induced by Bn on Bn\{v}. We

prove that Bv
n has a completion. If v /∈ {1, 2, 3}, one can use part 3 of Lemma 2

and its analogue for O¬
n to complete the copy of On and O¬

n (one of them missing
a vertex) so that they agree on {1, 2, 3}. Using strong amalgamation, we get a
completion of Bv

n. If v ∈ {1, 2, 3}, we pick an arbitrary completion of On and
O¬

n , remove v from both of them, and let the completion of Bn to be the strong
amalgamation of the completions over {1, 2, 3}\v.

The following question remains open.

Question 1. What is the optimal Ramsey expansion for the class of all finite H4-
free hypertournaments? Does it have a Ramsey expansion in a finite language?
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6. Hubička, J., Nešetřil, J.: All those Ramsey classes (Ramsey classes with closures

and forbidden homomorphisms). Adv. Math. 356C, 106,791 (2019)
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Abstract. In this work we consider extensions of a conjecture due to
Alspach, Mason, and Pullman from 1976. This conjecture concerns edge
decompositions of tournaments into as few paths as possible. There is a
natural lower bound for the number paths needed in an edge decomposi-
tion of a directed graph in terms of its degree sequence; the conjecture in
question states that this bound is correct for tournaments of even order.
The conjecture was recently resolved for large tournaments, and here
we investigate to what extent the conjecture holds for directed graphs
in general. In particular, we prove that the conjecture holds with high
probability for the random directed graph Dn,p for a large range of p.

Keywords: Path decomposition · Random directed graph

1 Introduction

There has been a great deal of recent activity in the study of decompositions
of graphs and hypergraphs. The prototypical question in the area asks whether,
for some given class C of graphs, directed graphs, or hypergraphs, the edge set
of each H ∈ C can be decomposed into parts satisfying some given property.
Here, one often wishes to minimise the number of parts; e.g., in the case of edge
colourings, determining the chromatic index amounts to partitioning the edges
of a graph into as few matchings as possible. In this paper, we will be concerned
with decomposing the edges of directed graphs into as few (directed) paths as
possible.

Let D be a directed graph (or digraph for short) with vertex set V (D) and
edge set E(D). A path decomposition of D is a collection of paths P1, . . . , Pk of D
whose edge sets E(P1), . . . , E(Pt) partition E(D). Given any directed graph D, it
is natural to ask what the minimum number of paths is in a path decomposition
of D. This is called the path number of D and is denoted pn(D). A natural lower
bound on pn(D) is obtained by examining the degree sequence of D. For each
vertex v ∈ V (D), write d+D(v) (resp. d−

D(v)) for the number of edges exiting (resp.
entering) v. The excess at vertex v is defined to be exD(v) := d+D(v)−d−

D(v). We
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note that, in any path decomposition of D, at least |exD(v)| paths must start
(resp. end) at v if exD(v) ≥ 0 (resp. exD(v) ≤ 0). Therefore, we have

pn(D) ≥ ex(D) :=
1
2

∑

v∈V (D)

|exD(v)|,

where ex(D) is called the excess of D. Any digraph for which equality holds
above is called consistent. Clearly not every digraph is consistent; in particular,
any Eulerian digraph D has excess 0 and so cannot be consistent.

For the class of tournaments (that is, orientations of the complete graph),
Alspach, Mason, and Pullman [1] conjectured that every tournament with an
even number of vertices is consistent.

Conjecture 1. Every tournament T with an even number of vertices is consistent.

Many cases of this conjecture were resolved by the second author together
with Lo, Skokan, and Talbot [9], and the conjecture has very recently been com-
pletely resolved (asymptotically) by Girão, Granet, Kühn, Lo, and Osthus [3].
Both results relied on the robust expanders technique, developed by Kühn and
Osthus with several coauthors, which has been instrumental in resolving sev-
eral conjectures about edge decompositions of graphs and directed graphs; see,
e.g., [2,7,8].

The conjecture seems likely to hold for many digraphs other than tourna-
ments: indeed, the conjecture was stated only for even tournaments probably
because it considerably generalised the following conjecture of Kelly, which was
wide open at the time. Kelly’s conjecture states that every regular tournament
has a decomposition into Hamilton cycles. The asymptotic solution of Kelly’s
conjecture was one of the first applications of the robust expanders technique [7].

A natural question then arises from Conjecture 1: which directed graphs are
consistent? It is NP-complete to determine whether a digraph is consistent [11],
and so we should not expect to characterise consistent digraphs. Nonetheless,
here we begin to address this question by showing that the large majority of
digraphs are consistent. We consider the random digraph Dn,p, which is con-
structed by taking n isolated vertices and inserting each of the n(n− 1) possible
directed edges independently with probability p. Our main result is the following
theorem.

Theorem 1. Let log4 n/n1/3 ≤ p ≤ 1−log3 n/n1/5. Then, with high probability1

Dn,p is consistent.

Notice that some upper bound on p, as in the above theorem, is necessary
because, when p = 1, we have that ex(Dn,p) = 0 (with probability 1) and so
Dn,p cannot be consistent. Moreover the property of being consistent is not a
monotone property, that is, adding edges to a consistent digraph does not imply
the resulting digraph is consistent. Therefore, unlike many other properties, we

1 That is, with probability tending to 1 as n goes to infinity.
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should not necessarily expect a threshold for the consistency of random digraphs.
We believe that the theorem holds true for much smaller values of p, and perhaps
even that no lower bound on p is necessary.

In fact, the proof of Theorem1 does not use randomness in a very significant
way. We give a set of sufficient conditions for a digraph to be consistent and
show that the random digraph (for suitable p) satisfies these conditions with
high probability. Broadly, our proof relies on the use of the so-called absorption
technique, an idea due to Rödl, Ruciński, and Szemerédi [10] (with special forms
appearing in earlier work, e.g., [6]). We adapt and refine the absorption ideas
used in [9], which we explain in the next section. In contrast to the previous
work on this question [3,9], our proof does not make use of robust expanders.
Preliminary ideas for this work came from de Vos [11].

2 Proof Sketch

Let D = Dn,p. We divide the vertices of D into sets A+, A−, A0 depending on
whether exD(v) > t, exD(v) < −t, or −t ≤ exD(v) ≤ t, respectively, for a
suitable choice of t. One can show that, with high probability, A+ and A− have
roughly the same size and A0 is small. To simplify our exposition, we will assume
A0 = ∅.

It turns out that it is useful to have a collection A of edges of D where every
edge of A is directed from A+ to A−, such that each vertex v of A+ (resp. A−)
has exactly |exD(v)| ≥ t edges of A exiting (resp. entering) v. This immediately
implies that the total number of edges of A is ex(D). The set A is our absorbing
structure. In Dn,p we can obtain (with high probability) a set of edges having
properties close to the set A described above, but for this sketch we assume we
have obtained A for simplicity. The digraph D′ obtained from D by removing the
edges in A has in-degree equal to out-degree for every vertex and can therefore
be decomposed into cycles. We should think of A as a collection of ex(D) single
edge paths, and our goal is to slowly combine edges of A with edges of D′ to
create longer paths in such a way that we maintain exactly ex(D) paths at every
stage. If we manage to combine all the edges of D′ in this way, then we have
decomposed D into ex(D) paths, proving that D is consistent.

To begin the process of absorption, we apply a recent result of Knierim,
Larcher, Martinsson and Noever [5] (improving on an earlier result of Huang, Ma,
Shapira, Sudakov and Yuster [4]) to decompose the edges of D′ into O(n log n)
cycles. The core idea then is to combine edges from A with each cycle C and to
decompose the union into paths; we refer to this as absorbing the cycle. Crucially,
in order to keep the number of paths invariant, we will combine each cycle C
with a set AC of 2 edges from A and decompose C ∪ AC into 2 paths (and
thereafter, the edges in AC are no longer available for use in absorbing other
cycles), as illustrated in Fig. 1.

We must then allocate absorbing edges to the cycles. The two main challenges
here are (i) that the absorbing edges need to fit with the specific cycle, meaning
they and the cycle can be decomposed into two paths, and (ii) that we only
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v1

v2

v′
1

v′
2

v1

v2

v′
1

v′
2

Fig. 1. Left: One example of absorbing a cycle using two absorbing edges. We have
v1, v2 on our cycle C with v1 ∈ A+, v2 ∈ A−. We find the additional edges (v1, v

′
1) at

v1 and (v′
2, v2) at v2 with v′

1 ∈ A− \ V (C) and v′
2 ∈ A+ \ V (C).

Right: The solid red and dashed blue lines show the two paths P1 := v′
2v2Cv1v

′
1 and

P2 := v1Cv2, which use all involved edges.
Note that under certain circumstances, if v′

1, v
′
2 lie on C, we can still decompose all

involved edges into two paths.

have a limited number of absorbing edges available at each vertex. In order to
be economical with absorbing edges, we employ different strategies to assign
absorbing edges depending on the number of vertices that the cycle has. We
divide the cycles into three sets and treat them separately.

For cycles that are long, we greedily choose two edges that fit the cycle. This
is possible as each cycle contains a large number of vertices, so there are many
choices for the possible absorbing edges, and we can always find two that fit
appropriately with the cycle.

For cycles of medium length, we use a flow problem to assign vertices to
cycles in such a way that each cycle is assigned a suitably large number of
vertices dependent on its length, but such that no vertex is assigned to too
many cycles. It turns out that this choice of assignment means we can find two
assigned vertices per cycle and pick one edge each from each of those vertices
that fit the cycle. This strategy is wasteful in the sense that we sometimes assign
more than two vertices to a cycle and thereby reserve more absorbing edges than
we use, but this approach allows us to find fitting absorbing edges.

For cycles that are short, it is easier to find fitting edges, as we are guaranteed
to find absorbing edges that have their other end off the cycle as in the example in
Fig. 1, but it is harder to ensure that we do not use too many edges per vertex.
We also use a flow problem to assign vertices to cycles, but we take multiple
rounds and only decompose certain ‘safe’ cycles in each round. In addition, we
decompose certain closed walks in each round, so we need to apply the result
by Knierim et al. between rounds in order to refactor the remaining edges into
cycles, and this may generate new long or medium cycles. Absorbing the short
cycles is the most complicated process of the three, but it is the process we apply
first so that the long and medium cycles that are produced as a byproduct can
be absorbed by the appropriate processes described above.
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tlmartins@id.uff.br

4 Department of Mathematics and Statistics, McGill University, Montréal, Canada
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Abstract. In this work, we discuss a strengthening of a result of Füredi
that every n-vertex Kr+1-free graph can be made r-partite by removing
at most T (n, r)−e(G) edges, where T (n, r) = r−1

2r
n2 denotes the number

of edges of the n-vertex r-partite Turán graph. As a corollary, we answer
a problem of Sudakov and prove that every K6-free graph can be made
bipartite by removing at most 4n2/25 edges. The main tool we use is the
flag algebra method applied to locally definied vertex-partitions.

Keywords: Max-Cut · Turán graph · Flag Algebras

1 Introduction

Let G = (V,E) be an n-vertex graph and r ≥ 2 an integer. Denote by delr(G)
the minimum size of an edge-subset X ⊆ E such that the graph G − X is
r-partite. Note that del2(G) is the dual problem to Max-Cut, i.e., finding the
largest bipartite subgraph in G. For convenience, we also define del1(G) := e(G).

Our aim is to obtain upper bounds on delr(G) and del2(G), respectively,
when G is a Kr+1-free graph, i.e., a graph with no complete subgraph on r + 1
vertices. A beautiful stability-type argument of Füredi [6] provides the following
upper bound on delr(G).

Theorem 1. (Füredi [6]). Fix an integer r ≥ 2. If G is an n-vertex Kr+1-free
graph, then delr(G) ≤ r−1

2r · n2 − e(G).

Note that the number of edges in every Kr+1-free graph on n vertices is bounded
from above by the number of edges in the Turán graph T (n, r), which is equal

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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to r−1
2r · n2. In other words, the result of Füredi can be stated as follows: if a

Kr+1-free graph is missing t edges to being extremal, then removing at most t
edges from it makes it r-partitie.

When the number of edges of G is very close to the extremal value, Theorem 1
was sharpened in [2,7]. Here we focus on a global improvement, and conjecture
that Theorem 1 can be strengthened as follows.

Conjecture 1. Fix an integer r ≥ 2. If G is an n-vertex Kr+1-free graph, then
delr(G) ≤ 0.8

(
r−1
2r · n2 − e(G)

)
.

If true, Conjecture 1 would be best possible, and we present tight constructions
in Sect. 3. Note that for r ≥ 4, the conjecture does not have a unique extremal
example. To provide an evidence for Conjecture 1, we prove it for r ∈ {2, 3, 4}.
Theorem 2. Fix an integer r ∈ {2, 3, 4}. If G is an n-vertex Kr+1-free graph,
then delr(G) ≤ 0.8

(
r−1
2r · n2 − e(G)

)
.

We also establish the following general improvement on Theorem 1.

Theorem 3. For every r ≥ 5 there exists ε := ε(r) > 0 such that the
following holds. If G is an n-vertex Kr+1-free graph, then delr(G) ≤ (1 −
ε)

(
r−1
2r · n2 − e(G)

)
.

The bound on ε(r) we establish monotonically decreases to 0 as r tends to
infinity, while Conjecture 1 claims that ε(r) = 0.2 for every r.

A closely related problem inspired by a well-known problem of Erdős on Max-
Cuts in dense triangle-free graphs is the following conjecture of Sudakov [9].

Conjecture 2. Fix r ≥ 3. For every Kr+1-free graph G, it holds that

del2(G) ≤
{

(r−1)2

4r2 · n2 r odd, and
r−2
4r · n2 r even.

Note that the conjectured value corresponds to the value of del2(T(n, r)).
Sudakov [9] proved the conjecture for r = 3.

Theorem 4. (Sudakov [9]). An n-vertex K4-free graph G can be made bipar-
tite by removing n2/9 edges, i.e., del2(G) ≤ n2/9. Moreover, if del2(G) = n2/9,
then G is the Turán graph T (n, 3).

We prove the conjecture for r = 5.

Theorem 5. If G is an n-vertex K6-free graph, then del2(G) ≤ 4n2/25. More-
over, if del2(G) = 4n2/25, then G is the Turán graph T (n, 5).

As we have already mentioned, Erdős [4] made a conjecture on the size of
the largest bipartite subgraph in triangle-free graphs. Specifically, he conjectured
that del2(G) ≤ n2/25 for every triangle-free n-vertex graph G. A result of Erdős,
Faudree, Pach, and Spencer [5] states that del2(G) ≤ n2/18. Using flag algebras
in a manner analogous to the one we use here, an improvement on the last bound
was recently announced by Balogh, Clemen, and Lidický [3].
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Note that for all the theorems in this section, a straightforward application
of the regularity lemma yields the corresponding asymptotic results for H-free
graphs, where H is a fixed r-colorable graph.

In our work, we extensively use flag algebras, a versatile tool developed by
Razborov [8], applied to Kr+1-free graph limits. We use as a convention that
unlabeled vertices are depicted as black circles, labeled vertices as yellow squares,
and edges as blue lines. Dashed lines indicate that both edge and non-edge are
admissible. We write [[.]] to denote the so-called unlabeling/averaging operator.

The rest of this extended abstract is organized as follows: In Sect. 2, we
describe an alternative proof of Theorem 1 using flag algebras, which demon-
strates the technique we use. In Sect. 3, we examine the set of possible extremal
constructions for Conjecture 1, and give a sketch of the proof of Theorem 2 for
the case r = 2. We conclude the extended abstract by Sect. 4, where we briefly
discuss the case r ≥ 3 as well as the ideas for the proof of Theorem 5.

2 Theorem 1 in Flag Algebras

As a warm-up to our flag algebra technique, we present a proof of Theorem 1.
Suppose Theorem 1 is false, and let r be the smallest integer for which it fails.
Let G be an n-vertex Kr+1-free graph G such that delr(G) > r−1

2r · n2 − e(G).
For a vertex v ∈ V (G), consider an r-partition of V (G) with Ar := V \ N(v)

being one part, and (A1, A2, . . . , Ar−1) being an (r − 1)-partition of N(v) given
by Theorem 1 if r ≥ 3, and A1 := N(v) in case r = 2. Note that if r = 2 then
N(v) induces no edges in G. It follows that the number of edges inside the parts
is at most e(G[Ar]) + delr−1(G[N(v)]), which is as most

e(G[Ar]) +
r − 2
r − 1

· |N(v)|2
2

− e(G[N(v)]). (1)

On the other hand, this is at least delr(G) > r−1
2r · n2 − e(G). This is in direct

contradiction with the following simple flag algebra proposition, which shows
that if we choose a vertex v uniformly at random, then the expectation of (1) is
at most r−1

2r · n2 − e(G).

Proposition 1. Fix r ≥ 2. If φ is a Kr+1-free graph limit, then

φ

(
[[ +

r − 2
r − 1

× − − r − 1
r

× + ]]
)

≤ 0.

Proof. We will show that the following identity holds for every r ≥ 2.

(
r − r2

) · [[ +
r − 2
r − 1

× − − r − 1
r

× + ]]

= [[
(
(r − 1) × −

)2

]].
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Note that the identity immediately proves the statement since the right-hand
side is non-negative while r − r2 < 0. Firstly, observe that the left-hand side is
equal to

[[
(
1 − r2

)
+ + +(r − 1)2

(
+

)
− (r − 1) ]] .

By the definition of [[·]], the previous expression averages to the following:

(r − 1)2 × +
(r − 1)(r − 3)

3
× − 2r − 3

3
× + . (2)

On the other hand, the right-hand side of the identity is equal to

(r − 1)2 ×
(

+
)

− (r − 1) ×
(

+
)
+ + ,

which again averages to (2). This finished the proof. ��
Proposition 1 and the following lemma yield the statement of Theorem 1.

Lemma 1. Fix positive integers r, b and �. If G is a Kr+1-free graph then its
b-blow-up G[b] is Kr+1-free and del�(G[b]) = b2 · del�(G).

An inspection of the just presented proof yields that the bound in Theorem 1
is tight only if G is a Turán graph. Indeed when G = T (n, r), Theorem 1 does
not allow to remove any edge. However, this is rather a technical “obstacle” and
Conjecture 1 can be seen as a way how to bypass it.

3 Tight Constructions for Conjecture 1

Clearly, Conjecture 1 is tight for Turán graphs since the bound T (n, r) − e(G)
does not allow deletion of any edges. When r = 2, the complete balanced bipar-
tite graph and a balanced blow-up of C5 attains the bound 0.8(n2/4 − e(G)).
Therefore, blow-ups of C5 behave similarly as a complete bipartite graph with
respect to Conjecture 1, and this propagates to larger r.

Given r ≥ 2, a tight construction for Conjecture 1 can be obtained as follows:
Let H be a join of a copies of K1 and b copies of C5, where a+2b = r. Let G be
a blow-up of H, such that all the vertices corresponding to K1s have the weight
1/r and all the vertices corresponding to C5s have the weight 2/(5r).

When r ∈ {2, 3, 4}, we prove the above description of the tight constructions
for Theorem 2 is complete, see also Fig. 1.
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Fig. 1. Non-Turán tight constructions for Theorem 2 when r = 3 and r = 4.

3.1 Proof of Theorem 2 When r = 2

Let N be the non-edge type with labels u and w, and let C be the combination
of N -flags that expresses the size of the cut (L,R) with L := N(u) ∪ N(v) and
R := V \ L. Next, we define

O := KN
3 × (C − 0.8(1/2 − d(G))) = KN

3 × (
C − 0.4(d(G) − d(G))

)
,

which can be expressed using flag algebras as follows:

u

w RL O = ×
[

+ − 2
5

(

−
)]

.

Notice that 1
2 − d(G) is the density of missing edges to the complete bipartite

graph, and 0.8(12 − d(G)) is the normalized number of edges we are allowed to
delete in Conjecture 1 when r = 2. In order to prove Conjecture 1, we need to
show that the expression O is non-positive in triangle-free graphs.

Theorem 6. If φ is a K3-free graph limit, then φ([[O]]) ≤ 0. Moreover, if

φ([[O]]) = 0, then φ1

( )
∈ {0.4, 0.5} almost surely.

Proof. First, let F1 :=
(

−
)

×
(
6 × − 4 ×

)
. Observe

that if φ([[F 2
1 ]]) = 0 then φ1

( )
∈ {0.4, 0.5} almost surely.

Next, consider the following two vectors X and Y of σ-flags, where σ is the
one-vertex type and the co-cherry type, respectively, and the following 7 linear
combinations of flags using X and Y :
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X =

⎛

⎜
⎝ , , , ,

⎞

⎟
⎠ , (3)

Y =

⎛

⎜
⎝ , , , ,

⎞

⎟
⎠ . (4)

F1 = X · (4, 4,−5,−5, 6), F4 = Y · (0, 1,−1, 1,−1), F7 = Y · (6, 1, 1,−4,−4),

F2 = X · (6,−9, 0, 0,−6), F5 = Y · (0, 1,−1, 2,−2), F8 = Y · (2,−2,−2, 1, 1).

F3 = X · (4, 0,−3,−4, 4), F6 = Y · (0, 2,−2, 1,−1),

We express each term as a linear combination of 5-vertex unlabeled flags
and establish the following estimate on [[O]] for some non-positive rationals
w1, w2, . . . , w8:

[[O]] ≤
∑

i∈{1,2,...,8}
wi × [[F 2

i ]].

Hence, φ([[O]]) ≤ 0. Moreover, if the equality is attained for some limit φ, then
φ([[F 2

i ]]) = 0 for all i ∈ [8] by complementary slackness. In particular, we have

φ1

( )
∈ {0.4, 0.5} for almost every choice of the root. ��

Lemma 1 readily translates Theorem 6 to the setting of finite graphs, and a
result of Andrásfai, Erdős and Sős [1] yields that the only non-bipartite tight
graph in Theorem 2 when r = 2 is a balanced blow-up of C5.

4 Concluding Remarks

An analogous approach to Conjecture 1 when r = 2 can be applied to the cases
r = 3 and r = 4, although more locally defined partitions and more sum-of-
squares are needed. The proof of Theorem 5 is also very similar, and in fact
the simplest form we have found consists only of five sum-of-squares, a natural
partition tuned to perform optimally on the corresponding Turán graphs, and
an application of Theorem 6.

One of the main reasons why the complexity of the proof grows with r is the
increasing number of tight constructions, and it is not obvious how to generalize
this approach to all r. Nevertheless, bootstraping from Theorem 6, we establish
a much more modest improvement described in Theorem 3.
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Abstract. We consider Kempe changes on the k-colourings of a graph
on n vertices. If the graph is (k − 1)-degenerate, then all its k-colourings
are equivalent up to Kempe changes. However, the sequence between two
k-colourings that arises from the corresponding proof may be exponential
in the number of vertices. An intriguing open question is whether it can
be turned polynomial. We prove this to be possible under the stronger
assumption that the graph has treewidth at most k−1. Namely, any two
k-colourings are equivalent up to O(kn2) Kempe changes.

Keywords: Reconfiguration · Colouring · Treewidth · Graph theory

1 Introduction

In 1879, Kempe introduced an elementary operation on the k-colourings of a
graph that became known as a Kempe change [1]. Given a coloured graph, a
Kempe chain is a connected component in the subgraph induced by two given
colours. A Kempe change consists in swapping the two colours in a Kempe chain.
Two k-colourings of a graph are Kempe equivalent if one can be obtained from
the other through a series of Kempe changes.

The study of Kempe changes has a vast history, see e.g. [2] for a comprehen-
sive overview or [3] for a recent result on general graphs. We refer the curious
reader to the relevant chapter of a 2013 survey by Cereceda [4]. Kempe equiv-
alence falls within the wider setting of combinatorial reconfiguration, which [4]
is also an excellent introduction to. Perhaps surprisingly, Kempe equivalence
has direct applications in approximate counting and applications in statistical
physics (see e.g. [5,6] for nice overviews). Closer to graph theory, Kempe equiv-
alence can be studied with a goal of obtaining a random colouring by applying
random walks and rapidly mixing Markov chains, see e.g. [7].

Kempe changes were introduced as a mere tool, and are decisive in the proof
of Vizing’s edge colouring theorem [8]. However, the equivalence class they define
on the set of k-colourings is itself highly interesting. In which cases is there a
single equivalence class? In which cases does every equivalence class contain
a colouring that uses the minimum number of colours? Vizing conjectured in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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1965 [9] that the second scenario should be true in every line graph, no matter
the choice of k.

A Kempe change is trivial if it involves a single vertex. Reconfiguration
restricted to trivial Kempe changes is another well-studied topic, known as ver-
tex recolouring. All the (k+2)-colourings of a k-degenerate graph are equivalent
up to trivial Kempe changes, as proved in [10]. However, the sequence between
two (k + 2)-colourings that arises from the corresponding proof may be expo-
nential in the number n of vertices. Cereceda conjectured that there exists one
of length O(n2). In a breakthrough paper, Bousquet and Heinrich proved that
there exists a sequence of length O(nk+1) [11]. However, Cereceda’s conjecture
remains open, even for k = 2. Bonamy and Bousquet [12] confirmed the conjec-
ture for graphs of treewidth k. Note that a graph of treewidth k is k-degenerate,
while there are 2-degenerate graphs with arbitrarily large treewidth.

When considering all Kempe changes – not only trivial ones – all the (k+1)-
colourings of a k-degenerate graph are Kempe equivalent. However, the same
haunting question remains. Is there always a short sequence between two (k+1)-
colourings? The proof of Bousquet and Heinrich [11] does not extend to this
setting, and even a polynomial upper-bound on the number of changes would be
highly interesting. Here, we extend [12] to non-trivial Kempe changes with one
fewer colour.

Theorem 1. For every k and n, any two (k+1)-colourings of an n-vertex graph
with treewidth at most k are equivalent up to O(kn2) Kempe changes.

Additionally, the proof of Theorem1 is constructive and yields an algorithm
to compute such a sequence in time f(k) · Poly(n). Given a witness that the
graph has treewidth at most k, the complexity drops to k · Poly(n).

The rest of the paper is organized as follows. In Sect. 2, we introduce vari-
ous definitions, notation and observations. In Sect. 3, we present the algorithm
behind Theorem1, prove its correctness and analyse its complexity.

2 Basic Notions

Let k, n ∈ N. Given a k-colouring α of a graph G and c ∈ [k], we denote
Ku,c(α,G) the k-colouring obtained from α by swapping c and α(u) in the con-
nected component of G[α−1({c, α(u)})] containing u. We may drop the param-
eter G when there is no ambiguity.

We denote N(u) and N [u] the open and closed neighbourhoods of a vertex
u, respectively. Given an ordering v1 ≺ · · · ≺ vn of the vertices of G, we denote
N+(vi) = {vj ∈ N(vi)|j ≥ i} and N−(vi) = {vj ∈ N(vi)|j ≤ i}.

A graph H is chordal if every induced cycle is a triangle. Equivalently, there
is an ordering of the vertices such that for all vertex v, N+[v] is a clique. As a
consequence, the chromatic number χ(H) of a chordal graph H is equal to the
size ω(H) of a largest clique in H. We will use the following proposition.

Proposition 1 [13]. Given an n-vertex chordal graph G and an integer p, any
two p-colourings of G are equivalent up to at most n Kempe changes.
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The proof presented in [13] for Proposition 1 is constructive and the correspond-
ing algorithm runs in linear time.

The treewidth of a graph measures how much a graph “looks like” a tree. Out
of the many equivalent definitions of treewidth, we use the following: a graph G
has treewidth at most k if there exists a chordal graph H such that G is a (not
necessarily induced) subgraph of H, with ω(H) = χ(H) ≤ k +1. For example, if
G is a tree, we note that G is chordal and 2-colourable, take H = G and derive
that G has treewidth at most 1.

A graph G is k-degenerate if there exists an ordering of the vertices such that
for all v ∈ V , N+(v) is of size at most k. If G has treewidth at most k, then it
is k-degenerate.

3 Main Proof

Let G be an n-vertex graph of treewidth k. Let H be a chordal graph such that
G is a (not necessarily induced) subgraph of H, with ω(H) = χ(H) ≤ k + 1
and V (H) = V (G). Computing H is equivalent to computing a so-called tree
decomposition of G, which can be done in time f(k) · n [14].

Since G and H are defined on the same vertex set, there may be confusion
when discussing neighbourhoods and other notions. When useful, we write G or
H in index to specify. There is an ordering v1 ≺ · · · ≺ vn of the vertices of G such
that ∀v ∈ V (G), N+

H [v] induces a clique in H. The ordering can be computed
from H in O(n) using Lex-BFS [15].

The core of the main proof lies in Proposition 2: any (k +1)-colouring of G is
equivalent up to O(k ·n2) Kempe changes to a (k +1)-colouring of G that yields
a (k + 1)-colouring of H.

Proof (of Theorem 1 assuming Proposition 2). Let α and β be two (k + 1)-
colourings of G. By Proposition 2, there exists a (k + 1)-colouring α′ (resp. β′)
that is equivalent to α (resp. β) up to O(kn2) Kempe changes. Additionally, both
α′ and β′ yield (k + 1)-colourings of H. Since H is chordal, by Proposition 1,
there exists a sequence of at most kn Kempe changes in H from α′ to β′. Each
of these Kempe changes in H can be simulated by at most n Kempe changes in
G, which results in a sequence of length O(kn2) between α and β. ��
Proposition 2. Given any (k + 1)-colouring α of G, there exists a (k + 1)-
colouring α′ of G that is equivalent to α up to O(kn2) Kempe changes and such
that α′(u) 	= α′(v) for all uv ∈ E(H).

To prove Proposition 2 and obtain a (k + 1)-colouring of H, we gradually
“add” to G the edges in E(H) \ E(G). To add an edge, we first reach a (k + 1)-
colouring where the extremities have distinct colours, then propagate any later
Kempe change involving one extremity to the other extremity. We formalize this
process through Algorithm 1. Let v1w1 ≺ . . . ≺ vqwq be the edges in E(H)\E(G)
in the lexicographic order, where vi ≺ wi for every i.
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Algorithm 1: Going from α to α′

Input : G, a (k + 1)-colouring α of G and v1w1 ≺ · · · ≺ vqwq such that
G + {v1w1, . . . , vqwq} is a (k + 1)-colourable chordal graph H

Output: A (k + 1)-colouring α̃ of H, that is Kempe equivalent to α

Let ˜G ← G and α̃ ← α;
1 for j from 1 to q do

if α̃(vj) = α̃(wj) then
Let c ∈ [k + 1] \ α̃(N+

H [vj ]);

// Possible because α̃(vj) = α̃(wj) and |N+
H [vj ]| ≤ k.

Let U = N−
˜G
(vj) ∩ N−

˜G
(wj) = {u1 ≺ · · · ≺ up};

2 for i = p down to 1 do
if α̃(ui) = c then

Let ci ∈ [k + 1] \ α̃(N+
˜G
[ui]);

// Possible because α̃(vj) = α̃(wj) and |N+
˜G
[ui]| ≤ k.

3 α̃ ← Kui,ci(α̃, ˜G);

end
4 // Now c /∈ α̃({x ∈ N

˜G(vj)|x ≥ ui})
end

5 // Now c /∈ α̃(N
˜G(vj))

6 α̃ ← Kvj ,c(α̃, ˜G);

end
˜G ← ˜G ∪ {vjwj};

end

We will prove the following three claims. Note that Proposition 2 follows from
Claims 1 and 2, while Claim 3 simply guarantees that the proof of Theorem1 is
indeed constructive.

Claim (1). Algorithm 1 outputs a (k + 1)-colouring α′ of G that is Kempe
equivalent to α and such that α′(u) 	= α′(v) for all uv ∈ E(H).

Claim (2). Algorithm 1 performs O(kn2) Kempe changes in G to obtain α′ from
α.

Claim (3). Algorithm 1 runs in O(kn4) time.

In Algorithm 1, the variable ˜G keeps track of how close we are to a (k + 1)-
colouring of H. Before the computations start, ˜G = G. When the algorithm
terminates, ˜G = H. At every step, G is a subgraph of ˜G. To refer to ˜G or α̃ at
some step of the algorithm, we may say the current graph or current colouring.
The Kempe changes that we discuss are performed in ˜G. Consequently, the
corresponding set of vertices might be disconnected in G, and every Kempe
change in ˜G may correspond to between 1 and n Kempe changes in G.

Proof (of Claim 1). By construction, at every step α̃ is Kempe equivalent to α.
We prove the following loop invariant: at every step, α̃ is a (k + 1)-colouring
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of ˜G. Since ˜G = H at the end of the algorithm, proving the loop invariant will
yield the desired conclusion.

The invariant holds at the beginning of the algorithm, when ˜G = G.
Assume that at the beginning of the j-th iteration of the loop 1, α̃ is a proper

colouring of ˜G. All the Kempe changes in the loop are performed in ˜G, so we
only need to prove that at the end of the iteration, α̃(vj) 	= α̃(wj).

This follows from the validity of comments 4 and 5. The latter is a direct
consequence of the former, so we focus on arguing that after the step i of the
inner loop 2, we have c /∈ α̃({x ∈ N

˜G(vj)|x ≥ ui}). The key observation is that at
the i-th step of the inner loop 2, the Kempe changes performed at line 3 involve
only vertices smaller than ui. We prove by induction the stronger statement the
Kempe chain T involved in the Kempe change Kui,ci(α̃, ˜G) is a tree rooted at
ui in which all the nodes are smaller than their father.

– ci 	∈ α̃(N+
˜G
(ui)) so all the vertices at distance 1 in T from ui are smaller than

ui.
– Let x at distance d + 1 from ui in T . Let y be a neighbour of x at distance d

from ui. Assume by contradiction that x 
 y. By induction hypothesis, there
is a unique neighbour z of y at distance d − 1 from ui, with y ≺ z. Both z
and x are in N+

H (y) and since H is chordal, this implies zx ∈ E(H). We have
z ≺ ui ≺ vj so zx ≺ vjwj and zx ∈ E( ˜G). In particular, x is at distance d
from ui in T , which raises a contradiction and proves x ≺ y.
Assume by contradiction that x is adjacent to two vertices y, z at distance d
from ui in T . Then y and z are identically coloured so yz /∈ E( ˜G). Moreover
y, z ∈ N+

H (x) and H is chordal, hence yz is an edge of H. Since y, z ≺ vj , we
have yz ≺ vjwj . Thus, yz belongs to ˜G, raising a contradiction.

As a result, the Kempe change of line 6 does not recolour any vertex larger than
ui with colour c, and the comment 5 is true. Therefore at the beginning of line 6,
α̃(vj) = α̃(wj) and c /∈ α(N(vj)). At the end of line 6, vj and wj are coloured
differently.

Proof (of Claim 2). We now prove that the number of Kempe changes in G
performed by the algorithm is O(kn2).

We first prove that for each vertex x, there exists at most one step j of
the loop 1 for which vj = x and we enter the conditional statement α̃(vj) =
α̃(wj). Indeed, the first time we enter the conditional statement, the vertex x is
recoloured with a colour c not in N+

H (x) at line 6. Note that all the edges xy
with y 
 x are consecutive in the ordering of E(H) \ E(G). Therefore, once the
vertex x is recoloured, all the remaining edges xy are handled without Kempe
change, as the conditional statement is not satisfied. This implies directly that
line 6 is executed at most n times.

Now, we bound the number of times x plays the role of ui in the Kempe
change at line 3. For each step j of loop 1 for which it happens, we have vj , wj ∈
N+

H (x). Since |N+
H (x)| ≤ k and each vj is involved at most once by the above

argument, we obtain that x plays this role at most k times.
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Consequently the overall number of Kempe changes performed in ˜G by the
algorithm is O(kn). Performing a Kempe change in ˜G is equivalent to performing
a Kempe change in all the connected component of G of the Kempe chain of ˜G.
Therefore, the number of Kempe changes performed in G by the algorithm is
O(kn2).

Proof (of Claim 3). In total, the loop 2 is executed at most once for every pair
of vertices in N+

H (u) for each u ∈ V (G), that is O(k2n) times. However, we also
take into account the number of Kempe changes that need to be performed.
By Claim 2, only O(kn2) Kempe changes are performed in G. As a result, the
total complexity of the algorithm is O(k2n+kn4) = O(kn4) (performing Kempe
changes in a naive way in G).
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Abstract. In this paper we show that for any integer n and real number
0 ≤ α ≤ 1 there exists a point set of size n with Θ(n3−α) empty triangles
such that any point of the plane is in O(n3−2α) empty triangles.

Keywords: Combinatorial geometry · Empty triangles · Horton sets ·
Squared Horton sets · Selection Lemma

1 Introduction

Let S be a set of n points in general position1in the plane. A triangle of S is a
triangle whose vertices are points of S. We say that a point p of the plane stabs a
triangle Δ if it lies in the interior of Δ. Boros and Füredi [7] showed that for any
point set S in general position in the plane, there exists a point in the plane which
stabs a constant fraction (n3

27 +O(n2)) of the triangles of S. Bárány [3] extended
the result to R

d; he showed that there exists a constant cd > 0, depending only
on d, such that for any point set Sd ⊂ R

d in general position, there exists a point
in R

d which is in the interior of cdn
d+1 d-dimensional simplices spanned by Sd.

This result is known as First Selection Lemma [12].
Later, researchers considered the problem of the existence of a point in many

triangles of a given family, F , of triangles of S. Bárány, Füredi and Lovász [4]
showed that for any point set S in the plane in general position and any family
F of Θ(n3) triangles of S, there exists a point of the plane which stabs Θ(n3)
triangles from F . This result, generalized to R

d by Alon et al. [1], is now also
known as Second Selection Lemma [12].

1 A point set S ⊂ R
d is in general position if for every integer 1 < k ≤ d+1, no subset

of k points of S is contained in a (k−2)-dimensional flat.
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Both results for the plane require families of Θ(n3) triangles of an n-point
set. It is natural to ask about families of smaller cardinality. For this question,
Aronov et al. [2] showed that for every 0 ≤ α ≤ 1 and every family F of
Θ(n3−α) triangles of an n-point set, there exists a point of the plane which stabs
Ω(n3−3α/ log5 n) triangles of F . This lower bound was improved by Eppstein [8]
to the maximum of n3−α/(2n − 5) and Ω(n3−3α/ log2 n). A mistake in one of
the proofs was later found and fixed by Nivasch and Sharir [13]. Furthermore,
Eppstein [8] constructed point sets S and families of n3−α triangles of S such
that every point of the plane is in at most n3−α/(2n−5) triangles for α ≥ 1 and
in at most n3−2α triangles for 0 ≤ α ≤ 1. Hence, for the number of triangles of
a family F that can be guaranteed to simultaneously contain some point of the
plane, there is a continuous transition from a linear fraction for |F| = O(n2) to
a constant fraction for |F| = Θ(n3).

A triangle of S is said to be empty if it does not contain any points of S in
its interior. Let τ(S) be the number of empty triangles of S. It is easily shown
that τ(S) is Ω(n2); Katchalski and Meir [11] showed that there exist n-point
sets S with τ(S) = O(n2). Note that for such point sets, an edge of S is on
average part of a constant number of empty triangles of S. However, Erdős [9]
conjectured that there is always an edge of S, which is part of a superconstant
number of empty triangles of S. Bárány et al. [5] proved this conjecture for
random n-point sets, showing that for such sets, Θ(n/ log n) empty triangles are
expected to share an edge, where the expected total number of empty triangles
is Θ(n2); see [15].

Erdős’ conjecture suggests that perhaps there is always a point of the plane
stabbing many empty triangles of S. Naturally, the mentioned lower bounds
for the number of triangles stabbed by a point of the plane also apply for the
family of all empty triangles of S. In contrast, the upper bound constructions of
Eppstein do not apply, since they contain non-empty triangles or do not contain
all empty triangles of their underlying point sets. In this paper, we show that
we cannot guarantee the existance of a point in more triangles than these upper
bounds for general families of triangles; hence the title of our paper. Specifically,
we prove the following.

Theorem 1. For every integer n and every 0 ≤ α ≤ 1, there exist sets S of
n points with τ(S) = Θ(n3−α) empty triangles where every point of the plane
stabs O(n3−2α) empty triangles of S.

To prove Theorem 1 for α = 1, we utilize so called Horton sets and squared
Horton sets. Horton [10] constructed a family of arbitrary large sets without large
empty convex polygons. Valtr [14] generalized this construction and named the
generalised sets Horton sets. Squared Horton sets were defined by Valtr [14] (as
set Ak in Sect. 4). Bárány and Valtr [6] showed that squared Horton sets of size
n span only Θ(n2) empty triangles.

Outline. The remainder of this extended abstract is organized as follows: In
Sect. 2, we define Horton sets and show several properties of them that will be
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of use for later sections. Section 3 considers squared Horton sets and contains a
proof of Theorem1 for the case α = 1 (Theorem 2). And in Sect. 4 we present
a generalized construction based on squared Horton sets, which we analyze to
prove Theorem 1. Due to space constraints, the full proofs of most statements in
this extended abstract are deferred to the full version.

2 Horton Sets

Let X be a set of n points in the plane such that no two points have the same x-
coordinate. Suppose that the points in X are labeled in increasing order by their
x-coordinates, such that X = {p0, p1, . . . , pn−1}. For any such labeled point set
X, we denote with X0 = {p0, p2, . . . } the subset of points of X that have even
labels and with X1 = {p1, p3, . . . } the subset of points of X with odd labels.

Now consider two point sets X and Y in the plane such that no two points
of X ∪ Y have the same x-coordinate. We say that Y is high above X if every
line passing through two points of Y is above every point of X. Similarly, X is
deep below Y if every line through two points of X is below every point of Y .

A set H of n points in the plane, with no two points having the same x-
coordinate, is called a Horton set if it satisfies the following properties:

– If |H| = 1, then H is a Horton set.
– If |H| > 1, then H0 and H1 are Horton sets, H1 is high above H0, and H0 is

deep below H1.

The following two statements on empty triangles in Horton sets will turn out
useful for proving our main theorem.

Lemma 1. Let H be a Horton set of n points. Then every point of the plane
stabs O(n log n) empty triangles of H.

Lemma 2. Let H be a Horton set of n points. Then every point of H is incident
to O(n log n) empty triangles of H.

3 Squared Horton Sets

For n being a squared integer, we denote with G an integer grid of size
√

n×√
n.

Otherwise, G is a subset of an integer grid of size �√n� × �√n�, from which
some consecutive points of the topmost row and possibly the leftmost column
are removed to have n points remaining. An ε-perturbation of G is a perturbation
of G where every point p of G is replaced by a point at distance at most ε to p.

A squared Horton set H of size n is a specific ε-perturbation of G such that
triples of non-collinear points in G keep their orientations in H and such that
points along each non-vertical line in G are perturbed to points forming a Horton
set in H. Points along each vertical line are perturbed to points forming a rotated
copy of a Horton set in H. See [6,14] for more details. The following lemma is a
direct consequence of this definition.
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Lemma 3. Let H be a squared Horton set obtained from an ε-perturbation of G
and let � and �′ be two parallel lines spanned by G. Then the subset of H formed
by the ε-perturbations of (G ∩ �) ∪ (G ∩ �′) is also a Horton set.

Let Δ be a (possibly degenerate) triangle with vertices on G. Let e be an
edge of Δ and let p be the vertex of Δ opposite to e. We say that the height of
Δ w.r.t. e is zero if p is on the straight line spanned by e; otherwise, it is one
plus the number of lines between e and p, parallel to e, and containing points
of G. We call the area bounded by two such neighboring lines a strip of G. The
height of Δ is the minimum of the heights w.r.t. its edges and the edge defining
the height of Δ is the base edge.

Lemma 4. Any interior-empty triangle of G has height at most 2.

For the proof of our next statement, we will use Euler’s totient function ϕ(d),
which is the number of integers k with 1 ≤ k ≤ d that are relative primes with
d. Clearly, ϕ(d) ≤ d. Note that for d > 1, ϕ(d) is also the number of points (d, a)
with a < d on the integer grid such that the segment from the origin to the point
(d, a) does not contain any grid point.

Theorem 2. Let H be a squared Horton set of n points. Then every point of
the plane stabs O(n) empty triangles of H.

Proof. Let H be a squared Horton set of n points. Let q ∈ R
2 \ H. Obviously,

no point of H stabs any empty triangle of H. By Lemma 4, every unperturbed
triangle lies in at most two neighboring strips of G, parallel to the base edge of
the triangle. We count each triangle that possibly contains q for this direction.

We start with the number of triangles of height zero. For each such triangle Δ,
q has to be on the same perturbed ‘line’ as Δ. For each 1 ≤ d ≤ �√n�, there
are at most 4 · ϕ(d) lines through q with at most

√
n/d points each. As for each

line, the points form a Horton set in H, and by Lemma 1 the number of such
empty triangles containing q is at most c

∑�√
n�

d=1 ϕ(d)(�√n�/d) · log2(�
√

n�/d) ≤
c�√n� ∑�√

n�
d=1 log2(�

√
n�/d) = O(n).

We now consider the triangles of height one. For q to stab such a triangle,
q has to lie on the boundary or in the interior of the strip defining the height
of Δ. For each direction, there are at most two relevant strips for q, each con-
taining a Horton set of size 2�√n�/d. Hence we obtain c

∑�√
n�

d=1 ϕ(d)(2�√n�/d) ·
log2(2�√n�/d) = O(n) such empty triangles that could be stabbed by q.

Finally, consider the triangles of height 2. For each direction there are at
most five grid lines that could contain the unperturbed base edge of an empty
triangle containing q: at most three lines bounding the 1 − 2 strip(s) containing
q, plus the neighboring lines above and below. Also, the third point p of this
triangle stems from one of these lines. For each point p ∈ H from these lines, the
(possibly) empty triangles of height 2 with base edge on these lines are pairwise
interior-disjoint. Therefore, for each point p there is at most one such empty
triangle of height two that contains q. Hence, the total number of those triangles
per direction is O(

√
n/d). Summing over all 1 ≤ d ≤ √

n, we obtain a bound of
O(n) triangles of H of height 2 stabbed by q. ��
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The following result on the number of empty triangles incident to a fixed
point of a squared Horton set can be proven in a similar way as Theorem2.

Lemma 5. Every point of a squared Horton set of n points is incident to O(n)
empty triangles.

4 ◊-Squared Horton Sets

Fig. 1. A ◊ point set.

We denote by ◊ a point set as depicted in Fig. 1. It
is obtained by placing four points on the corners of a
square and adding further points along four slightly con-
cave arcs between adjacent corners, such that on each
arc there is almost the same number of points.

Let H be a squared Horton set with m points. A ◊-
squared Horton set H◊ is the set we obtain by replacing
every point of H by a small ◊ with k points. Thus, H◊
consists of n = km points. We denote the points of H
by pi and the corresponding ◊ set by ◊i. Further, the sets ◊i, i ∈ {1, . . . , m},
are sufficiently small such that for any i = j = l ∈ {1, . . . , m}, any point triple
qi ∈ ◊i, qj ∈ ◊j , ql ∈ ◊l has the same orientation as pi, pj , pl. This is possible
since the underlying point set is in general position. Moreover, the arcs of each ◊i

are such that for any ◊j with i = j, all points of one arc of ◊i and one arc of◊j form a convex point set.

Lemma 6. The number of empty triangles in H◊ is Θ(m2k3).

Proof. We split the empty triangles of H◊ into three groups, depending on the
number of different ◊ subsets of H◊ that contain vertices of a triangle.

Case 1. Triangles spanned by three points of ◊i, for some i ∈ {1, . . . , m}. Each◊i spans O(k3) such empty triangles. Summing up over the m different subsets◊1, . . . ,◊m yields O(mk3) empty triangles of H◊ for this case.

Case 2. Triangles spanned by two points in ◊i and one point in ◊j , for some
i = j ∈ {1, . . . , m}. There are Θ(m2) pairs (◊i,◊j). For each of ◊i and ◊j , there
are at least k/4 and at most k choices for a vertex of an empty triangle. So we
have Θ(m2k3) empty triangles of H◊ in this case.

Case 3. Triangles spanned by one point in each of ◊i,◊j ,◊l, for some i = j =
l ∈ {1, . . . , m}. Then pi, pj , pl is an empty triangle of H. For each of pi, pj , and
pl, we have at least k/4 and at most k choices for a point of its corresponding◊ such that the resulting triangle of H◊ is empty. As H has Θ(m2) empty
triangles, we obtain Θ(m2k3) empty triangles of H◊ for this case as well. ��
Lemma 7. Every point of the plane stabs O(mk3) empty triangles of H◊.

Proof Sketch. First we fix a point s of the plane. We again we split the empty
triangles into three groups: all three vertices are in the same ◊, two vertices in one◊ and the third one in a different ◊, or all vertices in different ◊s. The number
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of empty triangles with s inside can be bounded relatively straightforward for
triangles of the first two groups. Triangles of the third group again stem from
empty triangles of the underlying squared Horton set H. For this group, we
show can find a point s′ depending on s such that if s stabs an empty triangle
Δ of H◊, then either s′ stabs the corresponding triangle Δ′ of H or s′ is on the
boundary of Δ′. Using this in combination with our results for squared Horton
sets (namely, Theorem 2 and Lemma 5) completes the proof. ��

With these lemmata we can finally show our main result.

Proof of Theorem 1. By Lemma 6 there are Θ(m2k3) empty triangles in S. With
k = n1−α there are Θ(n3−α) empty triangles. By Lemma 7 every point stabs
O(mk3) empty triangles. Hence every point stabs O(n3−2α) empty triangles. ��

Acknowledgements. Research on this work has been initiated at a workshop of the
H2020-MSCA-RISE project 73499 - CONNECT, held in Barcelona in June 2017. We
thank all participants for the good atmosphere as well as for discussions on the topic.

References
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Abstract. The mod k chromatic index of a graph G is the minimum
number of colors needed to color the edges of G in a way that the sub-
graph spanned by the edges of each color has all degrees congruent to 1
(mod k). Recently, we proved that the mod k chromatic index of every
graph is at most 198k−101, improving, for large k, a result of Scott [Dis-
crete Math. 175, 1–3 (1997), 289–291]. In this paper we study the mod k
chromatic index of random graphs. More specifically, we prove that for
every integer k ≥ 2, there is Ck > 0 such that, if p ≥ Ckn

−1 logn and
n(1 − p) → ∞, the following holds: if k is odd, then the mod k chro-
matic index of G(n, p) is asymptotically almost surely equal to k; and if
k is even, then the mod k chromatic index of G(2n, p) is asymptotically
almost surely equal to k, while the mod k chromatic index of G(2n+1, p)
is asymptotically almost surely equal to k + 1.

Keywords: Mod k coloring · Edge colorings · Random graphs

1 Introduction

Throughout this paper, all graphs considered are simple and k ≥ 2 is an integer.
A χ′

k-coloring of G is a coloring of the edges of G in which the subgraph spanned
by the edges of each color has all degrees congruent to 1 (mod k). The mod k
chromatic index of G, denoted χ′

k(G), is the minimum number of colors in a

This research has been partially supported by Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brasil – CAPES – Finance Code 001. F. Botler is par-
tially supported by CNPq (423395/2018-1) and FAPERJ (211.305/2019). L. Colucci
is supported by FAPESP (2020/08252-2). Y. Kohayakawa is partially supported by
CNPq (311412/2018-1, 423833/2018-9) and FAPESP (2018/04876-1, 2019/13364-7).
The research that led to this paper started at WoPOCA 2019, which was financed by
CNPq (425340/2016-3, 423833/2018-9) and FAPESP (2015/11937-9). FAPERJ is the
Rio de Janeiro Research Foundation. FAPESP is the São Paulo Research Foundation.
CNPq is the National Council for Scientific and Technological Development of Brazil.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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χ′
k-coloring of G. In 1991, Pyber [4] proved that χ′

2(G) ≤ 4 for every graph G,
and in 1997 Scott [5] proved that χ′

k(G) ≤ 5k2 log k for every graph G. Recently,
we proved [2] that χ′

k(G) ≤ 198k −101 for any G, which improves Scott’s bound
for large k and is sharp up to the multiplicative constant. In this paper, we study
the behavior of the mod k chromatic index of the random graph G(n, p) for a
wide range of p = p(n). More specifically, we prove the following result.

Theorem 1. Let k ≥ 2 be an integer. There is a constant Ck such that if
p ≥ Ckn−1 log n and n(1 − p) → ∞, then the following holds as n → ∞.

(i) If k is even, then

P(χ′
k(G(2n, p)) = k) → 1;

P(χ′
k(G(2n + 1, p)) = k + 1) → 1.

(ii) If k is odd, then

P(χ′
k(G(n, p)) = k) → 1.

Theorem 1 extends a theorem of the authors [1] that dealt with the case k = 2
and C

√
n−1 log n < p < 1 − 1/C for some C.

In Sect. 2, we present some technical lemmas, and in Sect. 3, we prove The-
orem 1. While Theorem 1 tells us that the typical value of the mod k chromatic
index is at most k + 1 for a wide range of edge densities, in Sect. 4, we give a
sequence G3, G4, . . . of graphs for which χ′

k(Gk) ≥ k +2 for every k ≥ 3. Finally,
in Sect. 5, we present some concluding remarks and discuss future work. Owing
to space limitations, we omit the proofs of some results.

2 Technical Lemmas

In this section, we present some technical lemmas used in the proof of Theorem 1.
We say that a bipartite graph with bipartition (A,B) is balanced if |A| = |B|.
The next lemma is a generalization of Lemma 4.7 in [3].

Lemma 1. For every positive constant c and integer k ≥ 2, the following holds:
if p = Θ(n−1 log n), then a.a.s. every induced balanced bipartite subgraph of
G(n, p) with minimum degree at least c log n contains k disjoint perfect match-
ings.

Given a graph G, for each i ∈ {1, . . . , k}, we denote by Vi(G) the set of
vertices of G with degree in G congruent to i modulo k. Let ni(G) = |Vi(G)|
and denote by Gi the graph G[Vi(G)]. The sets V1, . . . , Vk are the degree classes
of G.

Lemma 2. Let k ≥ 2 be an integer and let ε > 0 be given. There is a constant
C = Cε,k > 0 such that the following holds: suppose that p > Cn−1 log n and
n(1 − p) → ∞, and let G = G(n, p) be generated as the union of two random
graphs H1 = G(n, p1) and H2 = G(n, p2) on the same vertex set (in particular,
(1−p) = (1−p1)(1−p2)), where p1 = Θ(n−1 log n). Then, as n → ∞, for every
1 ≤ i, j ≤ k, we have
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(i)
P

(∣∣∣ni(G) − n

k

∣∣∣ < ε
n

k

)
→ 1;

(ii)
P

(∣∣∣|NH1(v) ∩ Vj(G)| − np1
k

∣∣∣ < ε
np1
k

for all v ∈ Vi(G)
)

→ 1.

The following result is a straightforward consequence of Lemma2.

Corollary 1. Let k ≥ 3 be an integer. There is a constant Ck such that if
p > Ckn−1log n and n(1−p) → ∞, then G = G(n, p) satisfies the following with
probability 1 − o(1): there are k − 2 vertex-disjoint stars S3, . . . , Sk in G such
that, for each i ∈ {3, . . . , k}, the star Si has k + i − 1 edges, is centered in Gi

and its leaves belong to G2.

We shall also make use of the following lemma.

Lemma 3. For every integer k ≥ 2, there is a constant Ck > 0 such that the
following holds: if p > Ckn−1 log n, then G(n, p)1, the subgraph induced by the
vertices of degree 1 modulo k in G(n, p), is connected a.a.s.

3 Main Theorem

We say that a graph G is a mod k graph if all its non-isolated vertices have degree
congruent to 1 mod k. In what follows, we prove Theorem 1. The strategy of the
proof is to use Corollary 1 to remove the edges of a set of vertex-disjoint stars of
suitable sizes to fix the parity of the cardinality of some degree classes. Then we
use Lemma 1 to remove perfect matchings inside each degree class, so that the
remaining graph is a mod k graph. This is performed in a way that the removed
edges form a graph that can be colored with k − 1 colors.

Proof (Proof of Theorem 1). First, we observe that a.a.s. G contains a vertex
of nonzero degree congruent to 0 mod k, and hence P(χ′

k(G(n, p)) ≥ k) → 1 as
n → ∞ regardless of the parity of k.

The key idea of this proof when k and n are even or k is odd is (1) to use
Corollary 1 to find a set of vertex-disjoint stars whose removal of their edges
yields a graph G′ such that, for each i > 2, the graph G′

i, obtained by removing
the center of the star centered at Gi (if there is such a star), has an even number
of vertices, and then (2) use Lemma 1 to remove, for each i > 1, an (i − 1)-
regular bipartite spanning graph inside each G′

i (the union of i − 1 disjoint
perfect matchings). The removed graphs are vertex-disjoint and bipartite, and
hence their union can be colored with k − 1 colors (see Fig. 1). Moreover, the
obtained graph is a mod k graph, which can be colored with the kth color. The
remaining case, namely when k is even and n is odd, then follows by removing a
vertex v, using the first case, and coloring most of the edges incident to v with
the (k +1)st color. In what follows, we divide the proof according to these cases.
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G1

G2

G3 G4

G5

Fig. 1. Illustration of the subgraphs removed from G in the case k = 5: in this example,
G2 and G5 have an even number of vertices, and G3 and G4 have an odd number of
vertices. Each circle represents a degree class. A bipartite graph inside a degree class
spans all of the vertices of that class, except for the vertices of the stars.

Case 1. k even. Let Ge and Go denote the subgraphs of G induced by the
vertices of even and odd degree, respectively. The proof of this case is divided
depending on the parity of n.

Case 1.1 n even. We generate G = G(n, p) as the union of H1 = G(n, p1) and
H2 = G(n, p2), as in Lemma 2. By Corollary 1, there are vertex-disjoint stars
S3, . . . , Sk, such that, for each i ∈ {3, 4, . . . , k}, the star Si has i − 1 edges, is
centered in Gi and its leaves belong to G2. Let G′ be the graph obtained from G
by removing the edges of Si for each i ∈ {3, 4, . . . , k} if |V (Gi)| is odd, and let G′

i

be the subgraph of G′ induced by the vertices with degree (in G′) congruent to
i modulo k. Note that G′

2 is precisely the graph obtained from G2 by removing
the leaves of the stars removed from G; and, for i ∈ {3, 4, . . . , k}, G′

i is precisely
the graph obtained from Gi by removing the their centers. Since n is even,
both |V (Go)| and |V (Ge)| are even, and hence, the number of j ∈ {2, 4, . . . , k}
for which |V (Gj)| is odd is even. This implies that |V (G′

i)| is even for every
i ≥ 2 and that the degree of each vertex that belongs to some star is 1 modulo k
in G′. By Lemma 2 (ii), almost surely every Gi (1 ≤ i ≤ k) satisfies δH1(Gi) ≥
np1/(2k) > c′ log n for some c′. One can prove, then, that every G′

i (2 ≤ i ≤ k)
contains a spanning bipartite subgraph with equal sizes and minimum degree
at least (c′/3) log n in H1, and hence, Lemma 1 implies that G′

i contains i − 1
disjoint perfect matchings. Note that the graph obtained from G′ by removing
these matchings is a mod k graph, and that the stars and matchings above form
a bipartite graph with maximum degree at most k −1, and hence can be colored
with k − 1 colors, as desired. This finishes the proof of Case 1.1.

Case 1.2 n odd. Fix a vertex u ∈ V (G). We generate G(n, p) by first exposing
the edges in G′ = G − u and then the edges incident to u. In this way, it is
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clear that almost surely u has at least k − 1 (indeed, at least (1 − o(1))npk−1)
neighbors in G′

1. By Case 1.1, almost surely G′ can be colored with colors 1, . . . , k.
Moreover, by the previous case, the coloring can be done in a way that all edges
incident to vertices with degree 1 (mod k) (in G′) are colored with the same
color, say 1. Now, we color the edges incident to u. Suppose that d(u) ≡ d
(mod k), for some d ∈ {1, 2, . . . , k}. If d 	= 1, then we assign each of the colors
2, . . . , d once to an edge joining u to vertices in G′

1 (this is possible since there
are at least k − 1 such edges), leaving a number 1 (mod k) of uncolored edges
incident to u. We assign these edges a new color. Therefore, G can be colored
with k + 1 colors.

Now, suppose that G can be colored with k colors. Note that this implies that
the edges incident to a fixed vertex in G1 must get the same color. By Lemma 3,
G1 is a.a.s. connected, whence all the edges of G incident to vertices of G1 must
be colored with the same color, say 1. Moreover, by Lemma 2 (ii), V (G1) is a
dominating set. This implies that the edges of color 1 span a spanning subgraph
of G in which every degree is odd, which is a contradiction since n = |V (G)| is
odd.

Case 2. k odd. In this case, the stars given by Corollary 1, are taken either with
i−1 or with k+ i−1 edges. If there is at least one i ≥ 3 with |Gi| odd, it is clear
that there is a choice of the size of the stars (for each odd |V (Gi)|, i ≥ 3) for
which |V (G′

2)| is even (since i− 1 and k + i− 1 have opposite parity), regardless
of the parity of n. Otherwise, if the only i ≥ 2 for which |V (Gi)| is odd is i = 2,
we take a star with k edges, center in G1 and leaves in G2, so |V (G′

2)| is again
even. The rest of the proof follows Case 1.1 mutatis mutandis.

4 A Lower Bound for maxχ′
k(G)

In this section, we present a lower bound for the maximum mod k chromatic
index of graphs. Namely, the next result states that χ′

k(K1,k,k) ≥ k + 2, where
K1,k,k is the complete 3-partite graph with vertex classes of size 1, k and k.

Proposition 1. If G = K1,k,k, then χ′
k(G) = k + 2.

Proof. Let G be the complete 3-partite graph K1,k,k, and let ({u}, A,B) be the
vertex partition of G. Suppose, for a contradiction, that G can be colored with
c colors, where c ≤ k + 1. Note that some color, say 1, must be used to color
precisely k + 1 edges incident to u, and hence, every other edge incident to u
must be colored with a different color. In particular, this implies that c ≥ k. On
the other hand, given a vertex v 	= u, the only ways to color the edges incident
to v is either (a) by coloring all the edges incident with the color used in uv; or
(b) by coloring each of its edges with a different color. We say call a vertex with
such a coloring monochromatic or rainbow, respectively.

Since there are k+1 edges incident to u with color 1, we may assume without
loss of generality that there are two vertices x and y in A and a vertex z in B
for which ux, uy and uz have color 1. We claim that all the vertices v ∈ A ∪ B
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are rainbow. First, suppose that uv has color 1. If v ∈ A is monochromatic, then
z has two edges with color 1, and hence z must be monochromatic. This implies
that x and y have both two edges with color 1, and hence x and y must also
be monochromatic, which implies that every vertex in B are monochromatic,
and hence every edge of G is colored with color 1, which is a contradiction.
Therefore, v is rainbow. Analogously, v is rainbow if v ∈ B and uv has color 1.
Thus, we may assume that uv has a color different from 1, say 2. Suppose v ∈ A
is a monochromatic vertex. In this case, since x is rainbow, there is an edge xw
with color 2. Then xw and vw are two edges colored with 2. This implies that w
must be a monochromatic vertex, and hence uw has color 2. Therefore u has two
edges with color 2, a contradiction. Now, note that the subgraph of G spanned
by the edges of color 2 is a spanning subgraph of G, but all its degrees are equal
to 1, a contradiction to |V (G)| = 2k + 1 being odd.

5 Concluding Remarks and Future Work

In this paper we determined the mod k chromatic index of G(n, p) for p = p(n)
such that p ≥ Ckn−1 log n and n(1 − p) → ∞. It is natural to investigate the
remaining ranges of p. For instance, if G is a forest, it is not hard to prove that
χ′

k(G) = max
{
r ∈ {1, . . . , k} : r ≡ d(v) (mod k) for some v ∈ V (G)

}
. This

observation settles the case p � n−1, since in this range G(n, p) is asymptotically
almost surely a forest. The next step in this direction would be p = cn−1 for some
c ∈ (0, 1), in which case the components of G(n, p) are asymptotically almost
surely trees and unicyclic graphs. Unfortunately, the formula above for χ′

k(G)
does not extend to all unicyclic graphs: for instance, it is not hard to prove that
if G is any graph that contains a cycle of length � ≥ 3 in which �−1 vertices have
degree precisely k +1, and one vertex has degree at most k, then χ′

k(G) ≥ k +1.
Quite possibly, the most challenging range would be n−1 ≤ p ≤ cn−1 log n,
where c is a smallish constant (Theorem 1 deals with the case in which c ≥ Ck

for some constant Ck that depends only on k).
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Abstract. Betweenness centrality is a measure of the importance of a
vertex x inside a network based on the fraction of shortest paths passing
through x. We study a blow-up construction that has been shown to
produce graphs with uniform distribution of betweenness. We disprove
the conjecture about this procedure’s universality by showing that trees
with a diameter at least three cannot be transformed into betweenness-
uniform by the blow-up construction. It remains open to characterize
graphs for which the blow-up construction can produce betweenness-
uniform graphs.

Keywords: Graph theory · Betweenness centrality · Betweenness
uniform

In our vibrant society, everything is moving. Goods are being transported
between factories, warehouses and stores, ideas are communicated among peo-
ple, data are passing through the Internet. Such transfers are often realized via
shortest paths, and thus the structure of the underlying network plays an essen-
tial part in the workload of particular nodes. One way to measure such expected
workload of a node in a network is betweenness centrality. This measure is based
on the fraction of shortest path passing through a given vertex. More precisely,
for a graph G = (V,E) with x ∈ V (G) we define betweenness centrality as

B(x) =
∑

{u,v}∈(V (G)\{x}
2 )

σu,v(x)
σu,v

,

where σu,v denotes the number of shortest paths between u and v and σu,v(x)
is the number of shortest paths between u and v passing through x.[1] Indeed,
it seems to be a highly useful notion of measuring the importance of nodes,
as shown by its numerous applications in neuroscience [9], chemistry [12],
sociology[4], and transportation [11]. From a more theoretical perspective,
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betweenness centrality has also been shown to be a helpful measure in mod-
elling random planar graphs [7].

Once we measure the tendency to put uneven workload to different vertices,
we might want to optimize the underlying network such that the communication
is spread more evenly. Apart from preventing overload and potential collapse,
it might also be important from the strategic perspective, as we do not want
to have a single point of failure. The extremal case is then the class of graphs
with uniform distribution of betweenness. A graph is called betweenness-uniform,
if the value of betweenness is the same for all vertices. It is easily observable
that vertex-transitive graphs are betweenness-uniform [10]. However, for any
fixed n, there are superpolynomially many betweenness-uniform graphs, which
are not vertex-transitive [3]. Apart from the fact that the class of distance-
regular graphs is betweenness-uniform [2,3], not much more is known about
the characterization of betweenness-uniform graphs. An important property of
betweenness-uniform graphs is that they are always 2-connected [3]. Actually,
any betweenness-uniform graph is 3-connected, unless it is isomorphic to a cycle
[5]. There exist other studies concerned with both the values of betweenness in
betweenness-uniform graphs [6] and edge betweenness-uniform graphs [8].

Throughout this text we use a standard notation. A graph G has a vertex
set V (G) and edge set E(G). The degree of a vertex v ∈ V (G) is degG(v) =
|{u : uv ∈ E(G)}| = |NG(v)|. Subscript is omitted whenever G is clear from the
context. The distance d(u, v) between u, v ∈ V (G) is the length of the short-
est path connecting these vertices. We say that a graph G has diameter k if
k = maxu,v∈V (G){d(u, v)}. We denote by Pn the path on n vertices, by Kn the
complete graph on n vertices and by In the edge-less graph on n vertices and by
Sn−1 the star with one central vertex and n−1 leafs. We write G ∼= H whenever
graph G is isomorphic to graph H. The set {1, . . . , n} is denoted by [n].

Let G be a graph with vertex set {v1, . . . , vn} and H1, . . . , Hn be a set of
graphs. The graph G[H1, . . . , Hn] is defined on a vertex set obtained from V (G)
via substituting each vi ∈ V (G) by set of vertices V (Hi) and has edge set
E(G[H1, . . . , Hn]) =

⋃n
i=1 E(Hi) ∪ {uv |u ∈ V (Hi), v ∈ V (Hj), vivj ∈ E(G)}.

We will call Hi as the blow-up of vi.
Our primary motivation in this work is to study graphs potentially generated

via the following conjecture.

Conjecture 1 (Coroničová Hurajová, Gago, Madaras, 2013 [3]). For any
graph G on a vertex set {v1, . . . , vn} there exist graphs H1, . . . , Hn such that
G[H1, . . . , Hn] is betweenness-uniform.

In the following, we deal with generating graphs from paths. We show the new
blow-up constructions for P3 and stars leading to betweenness-uniform graphs.
Contrary to that, we show that no such construction exists for P4 and further
generalize this claim to trees with diameter at least three, disproving thus the
conjecture.

By v ∈ V (Hi) we mean that v is also in a subgraph of G[H1, . . . , Hn] defined
on vertices blown-up from vi. Whenever we consider a graph G[H1, . . . , Hn], we
assume that the underlying graph G has at least two vertices and is connected.
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From these assumptions it is not hard to realize that the distance of any two
vertices inside the same blow-up graph Hi is at most two.

While considering betweenness of a vertex v in G[H1, . . . , Hn], we will dis-
tinguish the paths contributing to B(v) according to their endpoints x, y. Either
x, y ∈ V (Hi) for some i ∈ [n], or x ∈ V (Hi), y ∈ V (Hj) for i, j ∈ [n] such that
i �= j. We say that the first type of paths contributes to the local betweenness
of v for given Hi, BHi(v), and that the second type of paths contributes to the
global betweenness of v, BG(v).

Observation 2. For v∈V (Hi), B(v) = BG(v)+BHi(v)+
∑

j:vj∈NG(vi)
BHj (v).

This observation enables us to ignore any paths longer than two between
x, y ∈ V (Hi) for any i, as such paths do not influence betweenness of any vertex.
As a result, the only long paths influencing betweenness of any vertex are the
paths between distinct Hi’s. Furthermore, the shortest paths between Hi and
Hj for j �= i contain at most one vertex from each Hk, k ∈ [n].

Our goal is to find a betweenness uniform graph using the blow-up construc-
tion for a path Pk. We iterate candidates via different values of k. Starting from
the smallest paths, P2 = K2 is betweenness-uniform and thus P2[Km,Km] is
betweenness-uniform for any integer m as has been shown in the article [3].

Even though the path P3 and star Sk are not betweenness-uniform, but we
still can find a blow-up resulting in a betweenness-uniform graph.

Observation 3. For P3, the graph P3[K1, I2,K1] is isomorphic to C4 and thus
betweenness-uniform. Furthermore, P3[Ia, Ia+b, Ib] is betweenness-uniform for
any a, b positive integers.

Observation 4. For any star Sk with vertices {v1, . . . , vk} of degree one and
deg(vk+1) = k there exists a blow-up construction Sk[Is1 , . . . , Isk , I∑k

j=1 sj
] giving

a betweenness-uniform graph.

Before moving to longer paths, we observe some properties of the blow-up
graphs. From the fact that any betweenness-uniform graph is 2-connected [3],
|V (Hi)| > 1 for any vi ∈ V (G) of degree at least two.

Let u, v ∈ V (G[H1, . . . , Hn]) such that u, v ∈ V (Hi) and G′ = G[H1, . . . ,Hn].
We denote σHi,G

′
u,v the number of uv-paths inside Hi, which have the same length

as the shortest uv-path in G′. Specifically, σHi,G
′

u,v is one if uv ∈ E(Hi) and zero
whenever uv /∈ E(Hi) and there is no uv-path of length two in Hi.

For simplicity, we denote ni =
∑

j:vj∈NG(vi)
|V (Hj)| the sum of sizes of the

neighbouring blow-up graphs.

Observation 5. Let G′ = G[H1, . . . ,Hn], x ∈ V (Hi) for some i ∈ [n] and
vivj ∈ E(G). Then

BHj (x) =
∑

u,v∈V (Hj)
uv/∈E(Hj)

1

σ
Hj ,G′
u,v +

∑
k:

vk∈NG(vj)
|V (Hk)|

=
∑

u,v∈V (Hj)
uv/∈E(Hj)

1

σ
Hj ,G′
u,v + nj
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Now we focus on G = P4 and denote G′ = P4[H1,H2,H3,H4]. We start by
expressing betweenness centrality of a vertex x ∈ V (H1) and y ∈ V (H2) for
degG(v1) = 1 and v1v2 ∈ E(G).

Using Observation 2, B(x) = BG(x) + BH1(x) + BH2(x). From v1 being an
endpoint we have BG(v1) = 0. Furthermore, for N1(x) = N(x) ∩ V (H1),

BH1(x) =
∑

x1,x2∈N1(x)
x1x2 /∈E(G′)

1

σH1,G′
x1x2 + |V (H2)|

and BH2(x) =
∑

y1y2∈V (H2)
y1y2 /∈E(G′)

1

σH2,G′
y1y2 + n2

.

There are no other paths contributing to B(x) for x ∈ V (H1).
We can use Observations 2 and 5 to express the betweenness of the vertex y,

B(y) = BG(y) + BH2(y) +
∑

j:vj∈NG(v2)

∑

u,v∈V (Hj),
uv/∈E(Hj)

1

σ
Hj ,G′
u,v + nj

The global betweenness of y is closely related to the betweenness of v2 in G. All
paths between V (H1) and V (G′) \ {V (H1) ∪ V (H2)} contribute to each vertex

of V (H2) by the same amount, so BG(y) =
|V (H1)|·

(
|V (G′)|−|V (H1)|−|V (H2)|

)

|V (H2)| . An
interesting conclusion is that the global betweenness of y grows heavily with
the growing size of |V (G′)| − |V (H2)| and gets small when V (H2) forms a large
fraction of V (G′).

The local contributions to y behave similarly to the local contributions of x:

BH2(y) =
∑

y1y2∈N(y)∩V (H2)
y1y2 /∈E(G′)

1

σH2,G′
y1y2 + n2

and BHj (y) =
∑

y1y2∈V (Hj)

y1y2 /∈E(G′)

1

σ
Hj ,G′
y1y2 + nj

for each j such that vj ∈ NG(v2).
Note that the sizes of the local contributions shrink with the growing sizes

of Hi’s in their neighbourhood, because the denominator grows.

Observation 6. For degG(v1) = 1 and v1v2 ∈ E(G), BH1(x) ≤ BH1(y).

Using previous observation and the definition of BHi we infer

BH1
y−x = BH1(y) − BH1(x) =

∑

y1∈V (H1),y2∈V (H1)\N(x)
y1y2 /∈E(G′)

1

σH1,G′
y1y2 + |V (H2)|

. (1)

Similarly, we obtain BH2(x) ≥ BH2(y) and thus

BH2
x−y = BH2(x) − BH2(y) =

∑

y1∈V (H2),y2∈V (H2)\N(y)
y1y2 /∈E(G′)

1

σH2,G′
y1y2 + n2

. (2)
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When considering B(x) = B(y) and using Eqs. (1) and (2) we obtain

BH2
x−y = BG(y) + BH1

y−x +
∑

j:vj∈NG(v2),j �=1

BHj (y) (3)

We will show that even when trying to maximize B(x), it will always be smaller
than B(y) for sufficiently large G′.

We denote

Δ(x, y) =
BH2

x−y

BG(y) + BH1
y−x +

∑
j:vj∈NG(v2)

j �=1

BHj (y)
.

If B(x) = B(y), Δ(x, y) = 1. For B(x) < B(y) we obtain Δ(x, y) < 1 and vice
versa.

Lemma 7. Let m = |H2| be fixed. Then Δ(x, y) is maximized for H2
∼= Im.

Lemma 8. Let m = |H1| be fixed. Then Δ(x, y) is maximized for H1
∼= Km.

In order to produce betweenness uniform graph using the above-described
blow-up construction we need to maximize Δ(x, y), i.e. maximize corresponding
B(x) and minimize B(y). From the lemmas above we obtain H1

∼= Ka,H2
∼= Ib,

H3
∼= Ic,H4

∼= Kd for some positive integers a, b, c and d. By this assumption,
Eq. (3) simplifies. We transform it into an inequality, as by maximizing Δ(x, y)
we must allow the case when B(x) > B(y). Note that by adding edges into H3

betweenness of vertices in both H2 and H4 decreases. By using the inequality
for both x ∈ V (H1), y ∈ V (H2) and x′ ∈ V (H4), y′ ∈ V (H3) we obtain

(
b
2

)

(a + c)
≥ a(c + d)

b
+ 0 +

(
c
2

)

(b + d)
and

(
c
2

)

(b + d)
≥ d(a + b)

c
+ 0 +

(
b
2

)

(a + c)

By substituting the second inequality to the first one we get

0 ≥ a(c + d)
b

+
d(a + b)

c
implying 0 ≥ ac(c + d) + bd(a + b)

which cannot be fulfilled by a, b, c, d positive integers and thus B(x) < B(y) and
G′ is not betweenness-uniform.

By realizing that the global betweenness of y grows with growing number of
vertices in the path while the betweenness of the endpoints of the path stays the
same, we obtain a result summarizing betweenness-uniform blow-up construc-
tions of paths.

Proposition 9. For Pk with k ≥ 4 there is no blow-up construction resulting
in a betweenness-uniform graph.

Theorem 10. Let G be a tree with diameter d at least three and |V (G)| = n.
Then there are no graphs H1, . . . , Hn such that G[H1, . . . , Hn] is a betweenness-
uniform graph.
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The idea of the proof is that Pd is contained is G as a subgraph such that
its endpoints have degree one. It is not hard to see that by adding subtrees
adjacent to the internal vertices of the path, the betweenness of end-vertices is
not increasing and betweenness of the internal vertices is not decreasing.

Our results show that there are some non-betweenness-uniform graphs, such
as P3 and Sk, which can be transformed to a betweenness-uniform graph by
the blow-up construction, but there are other non-betweenness-uniform graphs,
which cannot be transformed into a betweenness-uniform graph by the blow-up
construction for any H1, . . . , Hn.

Problem 11. Determine a class B of graphs that can be transformed into
betweenness uniform via blow-up construction with a suitable choice of
H1, . . . ,Hn.

Conjecture 12. Let G be a graph of order n with diameter at least three hav-
ing a vertex cut of size one. Then there are no graphs H1, . . . , Hn such that
G[H1, . . . , Hn] is betweenness-uniform.
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Abstract. A partial order is universal if it contains every countable
partial order as a suborder. In 2017, Fiala, Hubička, Long and Nešetřil
showed that every interval in the homomorphism order of graphs is uni-
versal, with the only exception being the trivial gap [K1,K2]. We con-
sider the homomorphism order restricted to the class of oriented paths
and trees. We show that every interval between two oriented paths or
oriented trees of height at least 4 is universal. The exceptional intervals
coincide for oriented paths and trees and are contained in the class of
oriented paths of height at most 3, which forms a chain.

Keywords: Graph homomorphism · Homomorphism order · Oriented
path · Oriented tree · Universal poset · Fractal property

1 Introduction

Let G1, G2 be two finite directed graphs. A homomorphism f : G1 → G2 is an
arc preserving map f : V (G1) → V (G2). If such a map exists we write G1 ≤ G2.
The relation ≤ defines a quasiorder on the class of directed graphs which, by
considering homomorphic equivalence classes, becomes a partial order. A core
of a digraph is its minimal-size homomorphic equivalent digraph. As the core of
a digraph is unique up to isomorphism, see [5], it is natural to choose a core as
the representative of each homomorphic equivalence class.
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Given a partial order (P,≤) and a, b ∈ P satisfying a < b, the interval [a, b]
is a gap if there is no c ∈ P such that a < c < b. We say that a partial order
is dense if it contains no gaps. Finally, a partial order is universal if it contains
every countable partial order as a suborder.

The homomorphism order of graphs has proven to have a very rich struc-
ture [5]. For instance, Welzl showed that undirected graphs, except for the gap
[K1,K2], are dense [8]. Later, Nešetřil and Zhu [7] proved a density theorem
for the class of oriented paths of height at least 4. Recently, Fiala et al. [3]
showed that every interval in the homomorphism order of undirected graphs,
with the only exception of the gap [K1,K2], is universal. The question whether
this “fractal” property was also present in the homomorphism order of other
types of graphs was formulated. In this context, the following result was shown
when considering the homomorphism order of the class oriented trees.

Theorem 1 ([1]). Let T1, T2 be oriented trees such that T1 < T2. If the core of
T2 is not a path, then the interval [T1, T2] is universal.

Theorem 1 was presented in the previous Eurocomb [1] but the result was not
published as intervals of the form [T1, T2] where the core of T2 is a path remained
to be characterized. In particular, the characterization of the universal intervals
in the class of oriented paths was left as an open question. Here, we answer
these questions and complete the characterization of the universal intervals in
the class of oriented paths and trees by proving the following results (see Sect. 2
for definitions and notation).

Theorem 2. Let P1, P2 be oriented paths such that P1 < P2. If the height of P2

is greater or equal to 4 then the interval [P1, P2] is universal. If the height of P2

is less or equal to 3 then the interval [P1, P2] forms a chain.

Theorem 3. Let T1, T2 be oriented trees such that T1 < T2. If the height of T2

is greater or equal to 4 then the interval [T1, T2] is universal. If the height of T2

is less or equal to 3 then the interval [T1, T2] forms a chain.

It is known that the core of an oriented tree of height at most 3 is a path.
Thus, oriented paths of height less or equal to 3 are the only exception when
considering the presence of universal intervals in both the class of oriented paths
and the class of oriented trees. Hence, the nature of its intervals in terms of
density and universality is completely determined.

Let Pn denote the directed path consisting on n + 1 vertices and n con-
secutive forward arcs. Let Lk denote the oriented path with vertex sequence
(a, b0, c0, b1, c1, . . . , bk, ck, d) and arcs (ab0, b0c0, b1c0, b1c1, . . . , bkck−1, bkck, ckd),
as shown in Fig. 1.

It is easy to check that P0 < P1 < P2 and there is no oriented path strictly
between P0 and P1 nor P1 and P2. Among oriented paths of height equal to
three, the only cores are the paths Lk for all k ≥ 0, and it is also easy to see that
Lk ≤ Lm if and only if k ≥ m. Combining these observations we get that oriented
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a

b0

c0

b1

ck

bk

d

c1

Fig. 1. The path Lk.

paths of height at most 3 are found at the “bottom” of the homomorphism order
of paths and trees and form the following chain

P0 < P1 < P2 < · · · < Lk+1 < Lk < Lk−1 < · · · < L2 < L1 < L0 = P3.

From the above results we can deduce the following corollary for both the
homomorphism order of paths and the homomorphism order of trees.

Corollary 1. An interval [G1, G2] in the homomorphism order of oriented paths
(resp. trees) is universal if and only if it contains two paths (resp. trees) which
are incomparable in the homomorphism order.

It might seem that combining Theorems 1 and 2 one would get a proof of
Theorem 3. However, this is not true as we have to consider intervals of form
[T1, P2] where the core of T1 is not a path and the height of P2 is greater or
equal to 4. For this reason, we need a new density theorem.

Theorem 4. Let T1 be a oriented tree and P2 a oriented path such that T1 < P2.
If the height of P2 is greater or equal to 4 then there exists an oriented tree T
satisfying T1 < T < P2.

The proof of Theorem4 is a more general version of the density theorem for
paths proved by Nešetřil and Zhu [7]. Due to space limitations we omit the proof
in this note.

It is now straightforward to prove Theorem3. Given oriented trees T1, T2

with T1 < T2 and T2 with height greater or equal to 4, we consider two cases: if
the core of T2 is not a path we are done by applying Theorem1; else, the core of
T2 is a path so by Theorem 4 there exists a tree T satisfying T1 < T < T2. Now,
if the core of T is a path we can apply Theorem 2 to the interval [T, T2], else the
core of T is not a path and we can apply Theorem1 to the interval [T1, T ].

2 Notation

A (oriented) path P = (V (P ), A(P )) is a sequence of vertices V (P ) =
(p0, . . . , pn) together with a sequence of arcs A(P ) = (a1, . . . , an) such that, for
each 1 ≤ i ≤ n, ai = pi−1pi or pi−1pi. We denote by i(P ) = p0 and t(P ) = pn

the initial and terminal vertex of P respectively. We denote by P the set of all
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oriented paths. Let Pn denote the path with vertex set V (Pn) = (0, 1, . . . , n)
and arc set A(Pn) = (01, 12, . . . , (n − 1)n). The height of a path P , denoted
h(P ), is the minimum k ≥ 0 such that P → Pk. It is known that for any path
P there is a unique homomorphism l : P → Ph(P ). Given such homomorphism
l : P → Ph(P ), the level of a vertex v ∈ V (P ) is the integer l(v). We define the
level of an arc a ∈ A(P ) as the greatest level of its incident vertices and denote
it l(a).

We write P−1 for the reverse path of P , where V (P−1) = (pn, pn−1, . . . , p0)
and pp′ ∈ A(P−1) if and only if p′p ∈ A(P ). That is, P−1 is the path obtained
from flipping the path P . Given paths P, P ′, the concatenation PP ′ is the path
with vertex set V (PP ′) = (p0, . . . , pn = p′

0, p
′
1, . . . , p

′
n′) and arc set A(PP ′) =

(a1, . . . , an, a′
1, . . . , a

′
n′).

A zig-zag of length n consists on a path Z with n + 1 vertices whose arcs
consecutively alternate from forward to backward. Note that all arcs in a zig-zag
must have the same level. When considering a zig-zag Z as a subpath of some
path P , we define the level of Z as the level of its arcs in P , and denote it l(Z).

3 Proofs

The proof of Theorem2 consists of the construction of an embedding from the
homomorphism order of all oriented paths, which was proven to be universal [2],
into the interval [P1, P2]. The construction is based on the standard indicator
technique initiated by Hedrĺın and Pultr [4], see also [5]. The method takes
oriented paths Q and I and creates the path ΦI(Q) := Q∗ I(a, b), obtained from
Q by replacing each arc qq′ ∈ A(Q) with a copy of the path I by identifying the
vertex q with i(I) and the vertex q′ with t(I). If the path I is well chosen we can
guarantee that ΦI induces an embedding from (P ,≤) into the interval [P1, P2].
For an arc qq′ ∈ Q, we denote Iqq′ := ΦI(qq′) to the copy of I replacing qq′.

Lemma 1. Let I be a path. Let I1, I2 be copies of I and let ε1, ε2 ∈ {−1, 1}.
Suppose that, for every Q ∈ P, the following conditions hold:

(i) P1 < ΦI(Q) < P2;
(ii) Every homomorphism f : I → ΦI(Q) satisfies f(I) ⊆ Iqq′ for some qq′ ∈

A(Q);
(iii) Every homomorphism g : Iε1

1 Iε2
2 → ΦI(Q) satisfies that for every z, z′ ∈

{‘i’, ‘t’},
z(I1) = z′(I2) implies z(Iq1q′

1
) = z′(Iq2q′

2
)

where g(I1) ⊆ Iq1q′
1
and g(I2) ⊆ Iq2q′

2
.

Then ΦI is a poset embedding from the class P of paths into the interval [P1, P2].

The power of the method is that the construction of the embedding reduces
to finding a suitable gadget I satisfying the above conditions.

To construct I, first consider a path P such that P1 < P < P2. We know such
a path exist since paths of height greater or equal to 4 are dense [7]. Without loss



Homomorphisms Order of Paths and Trees 743

of generality let P be a core. Consider a surjective homomorphism h : P → P2.
We can assume that such homomorphism always exists, since otherwise we will
be able to find another path P ′, with P < P ′ < P2, which admits a surjective
homomorphism into P2. Then, since h is surjective, there exist two different
vertices v1, v2 ∈ V (P ) such that h(v1) = h(v2). Without loss of generality sup-
pose that v1 appears before v2 in the sequence V (P ). Note that l(v1) = l(v2) as
homomorphisms preserve level vertex difference. The path P is then naturally
split into three subpaths: the subpath A from i(P ) to v1, the subpath B from
v1 to v2, and the subpath C from v2 to t(P ). So P = ABC.

Let a1 be the last arc of A and let a2 be the first arc of C.
We first assume the case that neither B = Z ′

1, B = Z ′
2 nor B = Z ′

1Z
′
2 for

some zig-zags Z ′
1 and Z ′

2 of level l(a1) and l(a2) in P respectively.
Next, we choose as a gadget the following path

I = Z1A
−1ABCC−1Z2

where Z1 and Z2 are long enough zig-zags of even length and levels l(a1) and
l(a2) in I respectively.

It only remains to check that I satisfies the conditions of Lemma 1.
Let Q ∈ P . It follows by construction that P1 < ΦI(Q) < P2. To see this,

first note that P ⊂ I so it is clear that P1 < ΦI(Q). Now, observe that there is a
homomorphism ρ : I → P which collapses the zig-zags Z1 and Z2 into the arcs
a1 and a2 respectively, and maps A−1 into A and C−1 into C identifying the
correspondent vertices. Then, the map ρ′ : ΦI(Q) → P2 defined for each copy
Iqq′ of I as ρ′(Iqq′) := (h ◦ ρ)(Iqq′) is well defined since h(v1) = h(v2). Finally,
suppose that there is a homomorphism f : P2 → ΦI(Q). Since the zig-zags are
long enough we must have f(P2) ⊂ Iqq′ for some qq′ ∈ A(Q), implying that
P2 → I → P , a contradiction. Thus, I satisfies condition (i) of Lemma 1.

We say that a digraph is rigid if its only automorphism is the identity map.
To check conditions (ii) and (iii) of Lemma 1 we shall use several times the fact
that the core of a path is rigid, see Lemma 2.1 in [7].

Another trivial property of homomorphisms is also that they can never
increase the distance between two vertices when considering its images, see [5].
That is, every homomorphism f : G1 → G2 satisfies d(v1, v2) ≥ d(f(v1), f(v2))
for every v1, v2 ∈ V (G1).

Let f : I → ΦI(Q) be a homomorphism. Since the zig-zags Z1 and Z2 are
long enough, we have, for ABC ⊂ I, that f(ABC) ⊂ Iqq′ for some qq′ ∈ A(Q).
Because Iqq′ → P and P is rigid, we must have that f maps the path ABC
in I to the copy of ABC in Iqq′ via the identity map. If follows by a distance
argument that f(I) ⊂ Iqq′ , so condition (ii) holds.

Finally, let g : I1I2 → ΦI(Q) be a homomorphism. Note that t(I1) = i(I2).
Let q1q

′
1, q2q

′
2 ∈ A(Q) such that g(I1) ⊂ Iq1q′

1
and g(I2) ⊂ Iq2q′

2
. Let w1 be the

terminal vertex of the subpath ABC in I1 and let w2 be the initial vertex of the
subpath ABC in I2. Recall from the paragraph above that any homomorphism
f : I → ΦI(Q) maps the path ABC in I to the path ABC in Iqq′ fixing all
vertices. Thus, g(w1) is the terminal vertex of the subpath ABC in Iq1q′

1
and
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g(w2) is the initial vertex of the subpath ABC in Iq2q′
2
. We can not have q1 = q′

2

since in such case d(g(w1), g(w2)) > d(w1, w2). Both cases q1 = q2 and q′
1 = q′

2

imply that there is a homomorphism g′ : I1I2 → I. Suppose that this is the case.
Observe that w1 is joined to w2 by the path C−1Z1Z2A

−1 in I1I2. We would also
have that g′(w2) is joined to g′(w1) by the path ABC in I. Thus, we must have
B = Z ′

1, Z ′
2 or Z ′

1Z
′
2 for some zig-zags of level equal to Z1 and Z2 respectively,

which contradicts our first assumption. The only remaining case is q′
1 = q2.

The above argument is valid for the case ε1 = ε2 = 1 in condition (iii).
However, the other cases are analogous if not even simpler. Hence, applying
Lemma 1 to the path I completes the proof.

We have assumed that neither B = Z ′
1, B = Z ′

2 nor B = Z ′
1Z

′
2. If this is not

the case what we do is take l(a1) 
= l(a2) and consider the auxiliary path

P ′ = ABCC−1Z2CC−1Z1A
−1ABC

if B 
= Z ′
1, or

P ′ = ABCC−1Z2A
−1AZ1A

−1ABC

otherwise, where again Z1 and Z2 are long enough zig-zags of even length and
level l(a1) and l(a2) in P ′ respectively. Then we show that P ′ satisfies the
required properties for P above and we apply the arguments to P ′.

4 Final Remarks

For directed graphs, and even more, for general relational structures, the gaps
of the homomorphism order are characterized by Nešetřil and Tardif in full
generality [6]. They are all related to trees. However the homomorphism order of
these general relational structures does not enjoy the simplicity of the “bottom”
of the homomorphism order of paths and trees. We think that Corollary 1 may
shed light on the characterization of universal intervals in the homomorphism
order of these more general structures.
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Abstract. An (n, m)-graph is a graph with n types of arcs and m types
of edges. The chromatic number of an (n, m)-graph G is the minimum
number of colors to color the vertices of G such that if we identify the
vertices of the same color we get a simple (n, m)-graph by identifying
the arcs (resp., edges) between two vertices which have the same direc-
tion and color. We study this chromatic number for the family of sparse
graphs, partial 2-trees when 2n + m = 3 and for graphs with bounded
maximum degree and degeneracy.

Keywords: Colored mixed graphs · Graph homomorphisms ·
Chromatic number · Maximum average degree · Planar graphs

1 Introduction and Main Results

In 2000, Nešetřil and Raspaud [1] generalized the notion of graph homomor-
phisms by introducing the concept of colored homomorphisms of colored mixed
graphs.

An (n,m)-colored mixed graph, or simply a (n,m)-graph is a graph G with
a set of vertices V (G), a set of arcs A(G), and set of edges E(G). Moreover,
each arc is colored with one of the n colors from {1, 2, · · · , n} and each edge is
colored with one of the m colors from {n+1, n+2, · · · , n+m}. The underlying
undirected graph of G is denoted by U(G). In this article, we restrict ourselves
to (n,m)-graph G where U(G) is simple.

If u is adjacent to v via a forward arc (resp., edge) of color α, then v is an α-
neighbor of u where α ∈ {1, 2, · · · , n+m}. Moreover, if α is the color of a forward
arc, then v is a (−α)-neighbor of u. Furthermore, the set of all α-neighbors of u
is denoted by Nα(u) where α ∈ {±1,±2, · · · ,±n, n + 1, n + 2, · · · , n + m}.

Observe that, for (n,m) = (0, 1), (1, 0), and (0,m), the (n,m)-graphs are the
same as undirected graphs, oriented graphs [7,11], and edge-colored graphs [3,5],
respectively. These types of graphs and their homomorphisms are well-studied. It
is worth mentioning that, a variation of homomorphisms of (0, 2)-graphs, called
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homomorphisms of signed graphs, have gained popularity in recent times due
to its strong connection with classical graph theory (especially, coloring and
graph minor theory) [8]. It is known that, homomorphisms of signed graphs are
in one-to-one correspondence with a specific restriction of homomorphisms of
(0, 2)-graphs [12]1. Thus, the notion of colored homomorphism truly manages to
unify a lot of important theories related to graph homomorphisms.

A (colored) homomorphism of a (n,m)-graph G to another (n,m)-graph H
is a function f : V (G) → V (H) such that if uv is an arc(resp., edge) of G,
then f(u)f(v) is also an arc (resp., edge) of H having the same color as uv. The
notation G → H is used to denote that G admits a homomorphism to H.

Using the notion of homomorphism, one can define the chromatic number
of colored mixed graphs that generalizes [13] the chromatic numbers defined
for simple graphs, oriented graphs, edge-colored graphs, etc. The (n,m)-colored
mixed chromatic number or, simply, (n,m)-chromatic number of a (n,m)-graph
G is given by

χ
n,m

(G) = min{|V (H)| : G → H}.

For a family F of simple graphs, the (n,m)-chromatic number is given by

χ
n,m

(F) = max{χ
n,m

(G) : U(G) ∈ F}.

One of the major results proved for (n,m)-chromatic number of graphs is the
one relating acyclic chromatic number to the parameter.

Theorem 1 [1]. Let Ak be the family of simple graphs having acyclic chromatic
number at most k. Then

χ
n,m

(Ak) ≤ k(2n + m)k−1.

Using the above result and the fact that the acyclic chromatic number of
planar graphs is at most 5 [2], an upper bound for the (n,m)-chromatic number
of the family of planar graphs was established. Later Fabila-Monroy, Flores,
Heumer, Montejano [4] proved lower bounds for the same, improving the previous
lower bounds due to Nesětřil and Raspaud [1]. We present these bounds in a
consolidated manner below.

Let Pg denote the family of planar graphs having girth (length of a shortest
cycle) at least g.

Theorem 2 [1,4]. For all non-negative integers n and m where (2n + m) ≥ 2
we have,

(2n + m)3 + 2(2n + m)2 + (2n + m) + 1 ≤ χ
n,m

(P3) ≤ 5(2n + m)4, for m > 0 even

(2n + m)3 + (2n + m)2 + (2n + m) + 1 ≤ χ
n,m

(P3) ≤ 5(2n + m)4, otherwise.

1 In categorical terms, there is a bijective covariant functor from the category induced
by homomorphisms of signed graphs to a subcategory of the category induced by
homomorphisms of (0, 2)-graphs.



On Chromatic Number of (n, m)-graphs 747

In an attempt to reduce the gap between the above lower and upper bounds
Montejano, Pinlou, Raspaud, Sopena [6] considered the parameter for sparse
planar graphs. This led to a tight linear bound for the (n,m)-chromatic number
of families of planar graphs having large girth.

Theorem 3 [6]. For all non-negative integers n and m where (2n+m) ≥ 2 and
for g ≥ 10(2n + m) − 4, we have

χ
n,m

(Pg) = 2(2n + m) + 1.

One of the main aims of this paper is to show that the (n,m)-chromatic
number of planar graphs can be tight and linear even for lesser girths. To do
so, we consider the family of graphs having bounded maximum average degree,
given by

mad(G) = max
{
2|E(H)|
|V (H)| : H is a subgraph of G

}
.

Theorem 4. For all non-negative integers n and m where (2n + m) ≥ 2 and
for mad(G) < 2 + 2

4(2n+m)−1 , we have

χ
n,m

(G) ≤ 2(2n + m) + 1.

Using a well known result, that a planar graph G having girth at least g has
mad(G) < 2g

g−2 , we obtain the following result as a corollary of Theorem4.

Theorem 5. For all non-negative integers n and m where (2n + m) ≥ 2 and
for g ≥ 8(2n + m), we have

χ
n,m

(Pg) = 2(2n + m) + 1.

One more important result on (n,m)-chromatic number, due to Das, Nandi
and Sen [9], relates maximum degree of the graph to the parameter. Let GΔ

denote the family of connected graphs with maximum degree Δ.

Theorem 6 [9]. For all non-negative integers n and m where (2n+m) ≥ 2 and
for all Δ ≥ 5, we have

(2n + m)Δ/2 ≤ χ
n,m

(GΔ) ≤ 2(Δ − 1)2n+m.(2n + m)(Δ−1) + 2.

We significantly improve the above bounds and generalize the result by restrict-
ing the degeneracy of the graph, for large values of Δ. The proof uses probabilis-
tic method and generalises the method used by Aravind and Subramanian [10]
in the context of oriented graphs. Let GΔ,d denote the family of graphs having
maximum degree Δ and degeneracy d.

Theorem 7. For all non-negative integers n and m where (2n + m) ≥ 2, we
have

χ
n,m

(GΔ,d) ≤ 16Δd(2n + m)d.
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The last result in this paper is related to Theorem2. The family of partial
2-trees is an important subclass of the family of planar graphs. The best known
bounds for this family T 2 of partial 2-trees are the following.

Theorem 8 [1,4]. For all non-negative integers n and m where (2n + m) ≥ 2,
we have

(2n + m)2 + 2(2n + m) + 1 ≤ χ
n,m

(T 2) ≤ 3(2n + m)2, for m > 0 even

(2n + m)2 + (2n + m) + 1 ≤ χ
n,m

(T 2) ≤ 3(2n + m)2, otherwise.

Note that, for (2n + m) = 2 case, it is known that the lower bounds are
tight. Our next result proves that this is not the case even for (2n + m) = 3
where (n,m) = (1, 1) and (n,m) = (0, 3). Further, we give closer bounds for this
particular case.

Theorem 9. For the family T 2 of partial 2-trees we have

(i) 14 ≤ χ
0,3

(T 2) ≤ 15.
(ii) 14 ≤ χ

1,1
(T 2) ≤ 16.

The sections with proof sketches are given below.

2 Proof of Theorem 4

Let us consider a Hamiltonian decomposition C0, C1, · · · Cp of K2p+1, where
p = 2n + m. We convert this K2p+1 into a complete (n,m)-graph using the
decomposition.

For each α ∈ {1, 2, · · · , n} convert the cycles C2α−1 and C2α with directed
cycles having arcs of color α. For each edge β ∈ {n + 1, n + 2, · · · , n + m},
convert the cycle C2n+β into a cycle having all edges of color β. Thus we obtain
a complete (n,m)-mixed graph on 2p + 1 vertices. As the graph is completely
defined using the Hamiltonian decomposition, we can call it the complete (n,m)-
graph of the decomposition C1, C2, · · · , Cp.

Lemma 1. There exists a Hamiltonian decomposition of K2p+1 such that its
complete (n,m)-graph has the following property: for every S � V (K2p+1) we
have |S| < |Nα(S)| for all α ∈ {−n,−(n − 1), · · · ,−1, 1, 2, · · · (n + m)}.

Let T be a complete (n,m)-graph on 2p+1 vertices statisfying the condition
of Lemma 1. We want to show that G → T whenever mad(G) < 2 + 2

4p−1 . That
is, it is enough to prove the following lemma.

Lemma 2. If mad(G) < 2 + 2
4p−1 , then G → T .

We prove the above lemma by contradiction. Hence we assume a minimal
(with respect to number of vertices) (n,m)-graph M having mad(M) < 2+ 2

4p−1
which does not admit a homomorphism to T .
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Lemma 3. The graph M does not contain a vertex having degree one.

A path with all internal vertices of degree two is called a thread, and in
particular a k-thread is a thread having k internal vertices. The end vertices
(assume them to always have degree at least 3) of a (k-)thread are called ( k-
)thread adjacent.

Lemma 4. The graph M does not contain k-thread adjacent vertices with k ≥
2p − 1.

Let us describe the configuration Cl. Let v be a vertex, thread-adjacent to
exactly l vertices v1, v2, · · · , vl, each having degree at least three. Let the threads
between v and vi have ki internal vertices. This is configuration Cl.

Lemma 5. The graph M does not contain the configuration Cl as an induced
subgraph if

l∑
i=1

ki ≥ (2p − 1)l − 2p

where p = (2n + m).

Now we are ready to start the discharging procedure. First we define a charge
function on the vertices of M .

ch(x) = deg(x) −
(
2 +

2
4p − 1

)
, for all x ∈ V (M).

Observe that,
∑

x∈V (M) ch(x) < 0 as mad(M) < 2+ 2
4p−1 . After the completion

of the discharging procedure, all updated charges become non-negative implying
a contradiction. The discharging rule is the following:

(R1) : Every vertex having degree three or more donates 1
4p−1 to the degree two

vertices which are part of its incident threads.

Let ch∗(x) be the updated charge.

Lemma 6. For any degree two vertex x ∈ V (M), we have ch∗(x) = 0.

Proof. As M does not have any degree one vertex due to Lemma3, every degree
two vertex x must be internal vertex of a thread. Thus, by rule (R1) the vertex
x must receive 1

4p−1 . Hence the updated charge is

ch∗(x) = ch(x) +
2

4p − 1
= deg(x) − 2 − 2

4p − 1
+

2
4p − 1

= 0.

Thus we are done.

Lemma 7. For any vertex x having degree three or more, we have ch∗(x) ≥ 0.
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Proof. Let x be a degree d vertex of M . Thus by Lemma5

ch∗(x) ≥ ch(x) − (2p − 1)d − 2p
4p − 1

= d − 2 − 2
4p − 1

− 2pd − d − 2p
4p − 1

=
4pd − 8p − d + 2 − 2 − 2pd + d + 2p

4p − 1
=

2p(d − 3)
4p − 1

≥ 0

for d ≥ 3.

This implies 0 >
∑

x∈V (M) ch(x) =
∑

x∈V (M) ch∗(x) ≥ 0, a contradiction.
Thus, the proof of Lemma2 is completed, which implies Theorem4.

3 Proof Sketch of Theorem 7

This result is a generalization of a theorem by Aravind and Subramanian [10]
where they prove it for the case (n,m) = (1, 0). The proof uses a probabilistic
method.

The major modification in our proof is in its probabilistic model using which a
complete (n,m)-graph with certain property is found. In our case, the probability
of a particular type of adjacency between two vertices of the said complete graph
is 1

2n+m instead of 1
2 . Moreover, the coveted property in the complete graph also

changes according to the value of (n,m).

4 Proof Sketch of Theorem 9

In this proof, first we show that all (n,m)- partial 2-trees admit a homomor-
phism to T if and only if Nα(u) ∩ Nβ(v) �= ∅ for all α, β ∈ {−n,−(n −
1), · · · ,−1, 1, 2, · · · (n+m)}, whenever u, v are adjacent in T . Moreover, we note
that such a T must exist on χ

n,m
(T 2) vertices. The lower bound follows by

proving non-existence of such T on 13 vertices and the upper bound follows by
showing existence of such T on 15 vertices.
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Abstract. The Shadow Minimization Problem in the Boolean lattice
asks for the minimum cardinality of the shadow of a family of k–sets
of [n] among families of the same cardinality. The well–known Kruskal–
Katona theorem says that the initial segments In,k(m) of length m in
the colex order are solutions to the problem. Füredi and Griggs showed
that, for some set of cardinalities m, the solution to this problem is
unique (up to automorphisms of the Boolean lattice). They gave exam-
ples showing that this unicity may fail to hold for other cardinalities and
raised the question of characterizing the extremal sets for this problem.
We give a structural result for these extremal sets which shows in par-
ticular that, for every extremal family S of k–subsets of [n] and every
t > c log log n, the t iterated lower shadow of S is an initial segment in the
colex order. Moreover, for an asymptotically dense set of cardinalities,
initial segments in the colex order still are essentially the unique solution
to this shadow minimization problem. These results illustrate the robust-
ness of the colex order as a solution of this problem. A key property of
the cardinalities for which solutions other than initial segments in the
colex order exist is that the coefficients of their k–binomial decomposi-
tions decrease very fast, according to a family of numbers which extend a
classical sequence of the so–called hypotenusal numbers. We also provide
an algorithm linear in n and polynomial in k deciding, given a cardinality
m and an integer t, if there is an extremal family S of k–subsets of [n]
such that Δt(S) is not an initial segment in the colex order and, if the
answer is positive, provides a construction of such a set.

Keywords: Shadow minimization problem · Colex order ·
Kruskal–Katona theorem

1 Introduction

The well–known Kruskal–Katona Theorem [4,5] on the minimum shadow of a
family of k–subsets of [n] = {1, 2, . . . , n} is a central result in Extremal Combi-
natorics with multiple applications, see e.g. [1]. The shadow of a family S ⊂ (

[n]
k

)

is the family Δ(S) ⊂ (
[n]
k−1

)
of (k −1)–subsets which are contained in some set in

S. The Shadow Minimization Problem asks for the minimum cardinality of Δ(S)
for families of k-sets S with a given cardinality m = |S|. The answer given by the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 752–757, 2021.
https://doi.org/10.1007/978-3-030-83823-2_120
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Kruskal–Katona theorem can be stated in terms of k–binomial decompositions.
The k–binomial decomposition of a positive integer m is

m =
(

a0

k

)
+

(
a1

k − 1

)
+ · · · +

(
at

k − t

)
, (1)

where the coefficients satisfy a0 > a1 > · · · > at ≥ k − t ≥ 1, t ∈ [0, k − 1], are
uniquely determined by m and k. We also refer to the t–tuple (a0 > a1 > · · · >
at) as the k–binomial sequence of m.

Theorem 1 (Kruskal–Katona [3,5]). Let S ⊂ (
[n]
k

)
be a non-empty family of

k–subsets of [n] and let

m =
(

a0

k

)
+

(
a1

k − 1

)
+ · · · +

(
at

k − t

)

be the k–binomial decomposition of m = |S|. Then

|ΔS| ≥ KK(m) :=
(

a0

k − 1

)
+

(
a1

k − 2

)
+ · · · +

(
at

k − t − 1

)
.

and, more generally

|ΔiS| ≥ KKi(m) :=
(

a0

k − i

)
+

(
a1

k − 1 − i

)
+ · · · +

(
at

k − t − i

)
.

where Δi(S) is the i–th iterated shadow of S defined recursively by Δi(S) =
Δ(Δi−1(S)), 1 ≤ i ≤ k − 1.

In this context, we say that a family S is extremal if the cardinality of its
lower shadow achieves the lower bound in Theorem1, so |ΔS| = KK(|S|).

For every m, the initial segment of length m in the colex order is an extremal
family. We recall that the colex order on the k–subsets of [n] is defined by
x ≤colex y if and only if max((x \ y) ∪ (y \ x)) ∈ y. We denote by In,k(m) the
initial segment of length m in the colex order in

(
[n]
k

)
. In what follows, we refer

to initial segments up to automorphisms of the Boolean lattice, induced by any
permutation of [n].

Füredi and Griggs [2] (see also Mörs [7]) proved that, for cardinalities m for
which the k–binomial decomposition has length t+1 < k, these initial segments
In,k(m) are in fact the unique extremal families (up to automorphisms of the
Boolean lattice Bn). They also displayed some non-trivial examples which show
that this is not the case when t+1 = k. This prompted the authors to ask about
the characterization of the extremal families. We note that, for fixed k, the set
of integers with k–binomial decomposition of length k has upper asymptotic
density one. Thus, the unicity of the extremal families can be ensured only on
a thin set of cardinalities. The aim of this paper is to further study the relation
between the binomial decompositions, the extremal families and their relation
with the colex order, and provide an answer to these questions.
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From the definition of KK(m) it is clear that all initial segments In,k(m) with
m having a k–binomial decomposition sequence of the form (a0, a1, . . . , ak−2, i)
for 1 ≤ i < ak−1−1 have the same lower shadow. Hence, if these decompositions
define the integer interval [m0,m1], then every family of the form In,k(m0) ∪ J
is extremal for every J ⊂ In,k(m1) \ In,k(m0). This provides trivial examples of
extremal families different from initial segments In,k(m). On the other hand, the
(k − 1)–iterated shadow Δk−1(S) of a family S is always an initial segment in
the colex order (a family of singletons). It is thus reasonable to measure how far
is an extremal family from an initial segment by the smallest t such that Δt(S)
is an initial segment of the colex order. Our first result shows that, from this
perspective, extremal families can not be very far away from initial segments.

Theorem 2. Let S ⊂ (
[n]
k

)
be an extremal family with cardinality m. Then, for

every t ≥ c log log n, where c is an absolute constant, we have

Δt(S) ∼= In,k−t(KKt(m)).

Another result which illustrates the robustness of the colex order as a solution
of the shadow minimization problem extends the range of cardinalities for which
unicity of solutions hold from sparse to dense.

Theorem 3. Let k < n be positive integers and N =
(
n
k

)
. Let U ⊂ [N ] be the

set of integers for which all extremal families S ⊂ (
[n]
k

)
with cardinality m ∈ U

satisfy that Δ3(S) ∼= In,k−3(KK3(m)). Then

lim
n→∞

|U |
N

= 1.

Both results follow from a strengthened version of the following theorem,
which shows that requiring Δt(S) being different from the colex order implies a
fast decreasing of the coefficients in the k–binomial decomposition of m = |S|.
This rate of decrease can be measured by a sequence of numbers introduced by
Lucas [6, Page 496] which he called hypotenusal numbers. The n–th hypotenusal
number hn can be described by the following process. Suppose that we have a
collection of bins indexed by the nonnegative integers and a moving wall placed
at a nonnegative integer i separating bin i from bin i + 1. At each integer time
k we denote by w(k) the position of the wall, by b(k, i) the number of balls
in bin i and by b(k) the total number of balls. At an initial time there is one
ball in the bin 0 and the wall is located at position 0. At time k, we number
the balls at time k − 1 from 1 to b(k − 1) and for each ball j at bin i, we
remove it and we add one ball to bins i, i + 1, . . . , w(k − 1) + j − 1 (it can be
checked that the resulting number of balls at time k in bin i does not depend
on the particular numbering of the balls at time k − 1). The wall is placed at
position w(k) = w(k − 1) + b(k − 1). The n–th hypotenusal number is hn =
w(n) − w(n − 1). See Fig. 1 for an illustration.

The first hypotenusal numbers are

1, 1, 2, 6, 36, 876, 408696, 83762796636, . . .



Problem of Füredi and Griggs 755

Fig. 1. The hypotenusal process

The resulting sequence is A001660 in the Encyclopedia of Integer Sequences [8].
It is related to the problem of finding extremal families by the following theorem.

Theorem 4 (Hypotenusal numbers). Let S ⊂ (
[n]
k

)
be an extremal family of

k-sets with |∂k−1(S)| = n. Let t be such that Δt(S) is not an initial segment of
the colex order and let

|S| =
(

a0

k

)
+ · · · +

(
ak−1

1

)
,

be the k–binomial decomposition of |S|. Then we have

ak−2−t+i − ak−1−t+i ≥ hi + 1, 1 ≤ i < t, and ak−2 − ak−1 ≥ ht, (2)

where hi is the i–th hypotenusal number.
Moreover, there are m, n and an extremal family S ∈ (

[n]
k

)
with cardinality

m satisfying that Δt(S) is not an initial segment of length m in the colex order
and the coefficients in the k–binomial decomposition of m satisfy equality in (2).

From the hypotenusal process described above it can be checked that the
growth of the hypotenusal numbers is doubly exponential in n: there is a constant
h > 1 such that hn = Ω(h2n). This is a lower bound on the growth of the last t
coefficients of the binonial sequence for extremal sets S for which Δt(S) is not
an initial segment in the colex order and provides a proof of Theorem2.

Furthermore, extremal families S for which Δt(S) is not an initial segment in
the colex order can be constructed in time O(npoly(k)) from a given k–binomial
sequence when they exist. More precisely, we have the following algorithmic
result.
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Theorem 5 (Algorithmic construction). Let k, n, 2 ≤ t < k − 1 and m be
given. The existence of an extremal family S with cardinality m with |Δk−1(S)| =
n such that Δt(S) is not an initial segment of the colex order can be decided in
time O(npoly(k)). If such a family exists, an instance of S can be constructed
within the same time complexity.

2 Hypergraph Representation

The constructive part of Theorem 5 reveals the structure of extremal families.
The key idea in describing this structure consists in associating to a family S of
k–sets the hypergraph of minimal elements in the complement of the simplicial
complex

C(S) = ∪k
i=0Δ

i(S)

generated by S, the family of all subsets y such that y ⊂ x for some x ∈ S.

Definition 1 (Hypergraph of a family of k-sets). Given a family of k-sets
S ⊂ (

[n]
k

)
with support Δk−1(S) = [n], the hypergraph H = H(S) of S has vertex

set V (H) = [n] and the edges of H are the minimal (with respect to containment)
elements in 2V (H) \C(S), the complement of the simplicial complex generated by
S. In particular,

S =
(

[n]
k

)
\

⋃

e∈E(H)

∇k−|e|{e},

and H(S) uniquely determines S. Moreover, for each 0 ≤ j ≤ k − 1,

Δk−j(S) =
(

[n]
j

)
\

⋃

e∈E,|e|≤j

∇j−|e|{e}.

For example, the hypergraph H = H(S) of the initial segment in the colex
order S = I5,3(5) = {123, 124, 134, 234, 125} has edge set E(H) = {35, 45}.
It turns out that the structure of E(H) is simpler to analyze than the family
S itself. Moreover, the structure of E(H) can be quantitatively linked to the
cardinalities of the iterated lower shadows of S. If E = {e1, . . . , eh}, we may
write

⋃
e∈E,|e|≤j ∇j−|e|{e} as the disjoint union:

⋃

e∈E,|e|≤j

∇j−|e|{e} = ∪h
i=1

(
∇j−|ei|{ei} \

[
∪t<i∇j−|et|{et}

])

The cardinality of each term
(∇j−|ei|{ei} \ [∪i−1

t=1∇j−|et|{et}
])

can be written as
the sum of binomial coefficients of the type

(
n − |ei| − j − p

k − |ei| − j − q

)

for some appropriate nonnegative pairs of inetegers p and q; the key point is
that the sequence of p’s and q’s only depends on the previous edges e1, . . . ei−1
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but not on j. Then, by using binomial identities, we can find the binomial k–
decomposition of |Δk−j(S)| and check the extremality of the family. Moreover,
the same arguments can be reused to find |Δk−j−1(S)| giving a complete picture
of the iterate lower shadows of S. The binomial identities lead to a strengthening
of Theorem 4 in terms of so–called generalized hypotenusal numbers which can
be described by the hypotenusal process with distinct initial configurations, and
grow significantly larger than the hypotenusal numbers themselves, yet still being
doubly exponential. We omit here the technical details.
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Abstract. In 1968, Gallai conjectured that the edges of any connected
graph with n vertices can be partitioned into �n

2
� paths. Although this

conjecture has been tackled and partially solved over the years, it is still
open as of today. We prove that the conjecture is true for every planar
graph. More precisely, we show that every connected planar graph except
K3 and K−

5 (K5 minus one edge) can be decomposed into �n
2
� paths.

Keywords: Graph theory · Graph decomposition · Paths

1 Introduction

Given a graph G, a k-path decomposition of G is a partition of the edges of G
into k paths. In 1968, Gallai stated this simple but surprising conjecture [8]:
every finite undirected connected graph on n vertices admits a �n

2 �-path decom-
position. Gallai’s conjecture is still unsolved as of today, and has only been
confirmed on very specific classes of graphs: graphs of degree 2 or 4 [6], graphs
whose vertices of even degree induce a forest [9], series-parallel graphs [7], graphs
with maximum degree at most 5 [1], or planar 3-trees [4]. Recently, Botler et al.
proved that the conjecture is true in the case of triangle-free planar graphs [2].
Chu et al. confirmed the conjecture on graphs of maximum degree 6, under the
condition that vertices of degree 6 form an independent set [5].

An odd semi-clique is obtained from a clique on 2k+1 vertices by deleting at
most k−1 edges. Bonamy and Perrett asked the following question [1, Question
1.1]: Does every connected graph G that is not an odd semi-clique admit a
�n
2 �-path decomposition?

We answer this question positively for planar graphs. Only two odd semi-
cliques are planar: the triangle K3 and K5 minus one edge, which we denote by
K−

5 (see Fig. 1). We can therefore state the result as follows:

Theorem 11. Every connected planar graph G on n vertices, except K3 and
K−

5 , can be decomposed into �n
2 � paths.

To prove this result, we proceed with a standard approach for coloring prob-
lems, by considering a planar graph that is a counterexample to our theorem and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 758–764, 2021.
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2

1

1

1

1

1 1

2 2

2 2

3

Fig. 1. A 2-path decomposition of K3 and a 3-path decomposition of K−
5

is vertex-minimum with respect to this property. We can prove that such a min-
imum counterexample (MCE) cannot contain a certain set of configurations, by
providing for each of these configurations a reduction rule that takes advantage of
the properties of the MCE and yields a contradiction. This technique is widely
used in the literature on graph coloring, and especially on Gallai’s conjecture
[1–3,5]. More precisely, these reducible configurations deal with vertices of small
degree (at most 5), so after showing that our MCE cannot contain any of these
configurations, we know that it has mostly vertices of degree at least 6. Finding
these reducible configurations and their associated reduction rules makes up the
bulk of the proof, and this is the part we develop in the next section. We finally
use Euler’s formula for planar graphs and structural arguments to prove that
there is no such graph.

2 Reducible Configurations

We say that a path decomposition of a graph on n vertices is good if it contains
at most �n

2 � paths. Given a planar graph G, a 2-family is a set U of two vertices
of G of degree at most 4. A 4-family is a set of four vertices of degree 5. We say
that a graph with a 4-family U is almost 4-connected w.r.t. U if it is 3-connected
and does not contain a set A = {a1, a2, a3} of vertices such that A separates two
vertices u1, u2 ∈ U , or such that there is a vertex u ∈ U ∩ A, and A separates
two neighbors of u. The main lemma of the paper is the following.

Lemma 21. Let G be a connected planar graph on n vertices, other than K3

and K−
5 , and assume that G is a minimum counterexample to Theorem11, i.e.

that G does not admit a �n
2 �-path decomposition and is vertex-minimum for this

property. Then G does not contain any of the following configurations:

– (CI): a 2-family;
– (CII): an almost 4-connected component with respect to a 4-family.

The general idea is the following: we prove by contradiction that (CI) or
(CII) configurations cannot occur in an MCE by considering such a graph G
with a 2-family or 4-family U . We delete the vertices of U , and add or remove
some edges. We call the resulting graph G′ the reduced graph. G′ is smaller than
G, so it is made up of connected components that are either K3, K−

5 or have
a good path decomposition. We are able to build a decomposition of G′ into
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paths and cycles, such that the total number of paths and cycles is � |V (G′)|
2 �.

We describe a specific reduction rule for each case, such that the decomposition
of the reduced graph associated with this case can be turned into a good path
decomposition of G. Since G is a counterexample, it is a contradiction, hence
after each case is dealt with we deduce that our MCE does not contain (CI) nor
(CII) configurations.

2.1 Configurations (CI )

The first set of configurations deals with all the cases of our MCE G containing
2 vertices of degree at most 4, which we call special vertices. We start by consid-
ering a shortest path S between u1 and u2. Each special vertex has one neighbor
belonging to S, and up to 3 other remaining neighbors. We distinguish between
whether or not the special vertices have remaining neighbors in common.

If the special vertices u1, u2 have no common remaining neighbor, we deal
with the case by considering a composite rule made up two partial rules. The
reduced graph G′ will be created by removing the vertices u1, u2 and the edges
of S from G, as well as adding or removing some edges specified by each partial
rule.

v1

v2

u1

v1

v2

Q

u1

v1

v2

Q

Q

Fig. 2. A partial rule for 2 non-adjacent remaining neighbors

Figure 2 features an example of partial rule. The leftmost drawing represents
the initial configuration in G, in this case the special vertex u1 has degree 3, with
a neighbor in the path S (in red) and two non-adjacent remaining neighbors
v1, v2. The middle drawing depicts what edges we add to or remove from the
reduced graph G′, in this case we add the edge v1v2. We consider an arbitrary
path decomposition of G′, and assume the (green) path Q contains the edge
v1v2. The rightmost drawing represents a decomposition of G that we can build
based on the decomposition of G′: all paths from the decomposition of G′ remain
unchanged in G, except Q which is deviated on the edges v1u1 and u1v2. Since
|V (G)| − |V (G′)| = 2, we are allowed one more path, that we use to color the
edges of S. Having one end of such a path on each special vertex is convenient,
for example for the rule of Fig. 3, where it is extended to help handle edges
within the neighborhood of u.

The composite rule is defined by application of the two partial rules, to
define the reduced graph G′ and draw a path decomposition of G from a path
decomposition of G′. Since the special vertices do not have common remaining
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v1

v4

v3

v2 u1

v1

v4

v3

v2
Q

u1

v1

v4

v3

v2
Q

Q

PP

P

Fig. 3. A partial rule for 3 remaining neighbors

neighbors, the partial rules do not interfere with each other and can be applied
independently.

When the two special vertices have common remaining neighbors, we treat
both of them at the same time with a common rule, such as the one depicted in
Fig. 4. The leftmost drawing depicts the configuration in G: two adjacent special
vertices u1, u2 of degree 4 with a common neighbor v, and such that u1 has two
other neighbors v1, v3, u2 has two other neighbors v2, v4, the vertices v1, v2, v3, v4
are distinct and v1, v2 are non-adjacent. The middle drawing depicts the reduced
graph G′: after removing u1, u2, we add the edge v1v2, and this edge belongs
to a path Q in a path decomposition of G′. The rightmost drawing depicts the
path decomposition of G that we build from the one of G′: we deviate the path
Q on the edges v1u1, u1u2, u2v2, and we use an extra path for the edges v3u1,
u1v, vu2 and u2v4.

v1 v2

v3 v4

v

u1 u2

v1 v2

v3 v4

v

Q

u1 u2

v1 v2

v3 v4

v

P

P P

P

Q

Q

Q

Fig. 4. A reduction rule for special vertices with 1 common neighbor

We find a set of about 30 rules that covers all possible cases of (CI) configu-
rations. We thus deduce a contradiction with the nature of G, which proves that
such a minimum counterexample does not contain a configuration (CI).

2.2 Configurations (CII )

We proceed in the same way for the configurations (CII), by generalizing the
concepts of the previous section for our set of 4 special vertices of degree 5. We
again consider an MCE G and assume it contains a configuration (CII). Instead
of considering a path S, we consider a subdivision of a certain graph, rooted on
our 4 special vertices. The goal of this part is again to define valid reduction rules
that cover each possible case. The rules operate like in the previous section: we
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remove the special vertices and the edges of the subdivision, and add or remove
some edges in the neighborhood of the special vertices, as specified in each rule.
The resulting reduced graph can be decomposed into the right number of paths
and cycles, and we are able to deduce from the rule a good path decomposition
of our MCE G.

The subdivisions we consider are K4-subdivisions (Fig. 5a) or C4+-
subdivisions (Fig. 5b) rooted on our 4 special vertices (where C4+ is the graph
made up of a cycle on 4 vertices with two parallel edges doubled).

u1 u2

u3

u4

(a) K4

u1

u2

u3

u4

a1

a2

a3

a4

(b) C4+

Fig. 5. A K4- and a C4+-subdivision

We use a result by Yu [10] to show that in an almost 4-connected configu-
ration, there exists indeed a K4- or C4+-subdivision rooted on the four special
vertices. These subdivisions can be decomposed into 2 paths, which corresponds
to the number of extra paths we are allowed to use in our reductions. Addi-
tionally, these paths have their four ends on each of the four special vertices,
which allows us once again to extend those paths if needed in order to cover all
edges within the neighborhood of our special vertices. Each special vertex u has
three incident edges that belong to the subdivision, and two other remaining
neighbors v, v′. The edges uv,uv′ are the ones we need to cover in the good path
decomposition of G that we want to build, for each special vertex u.

We generalize our concept of partial rules for our 4 special vertices. Each
partial rule treats the neighborhood of one or two special vertices at once, so
we now consider composite rules made up of a subdivision and between 2 and
4 partial rules. If these partial rules affect disjoint areas of the graph and are
disjoint from the subdivision, they can be applied independently, but it is not
always the case.

In order to find a composite rule made up of compatible partial rules, we
apply a series of alterations to the subdivision, to eliminate some unwanted
configurations. When all modifications have been applied, we do a careful case
analysis and find a composite rule for each case, such as the one in Fig. 6.
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u1 u2

u3

u4

v1v1

v2 v2

u1 u2

u3

u4

v1v1

v2 v2

CV

CN

CV

CN

Fig. 6. Example of a composite rule on a K4-subdivision

The configuration depicted on the first drawing consists in a K4-subdivision
S, such that some of the remaining neighbors of the special vertices belong to S,
which prevents partial rules from being applied as-is. The reduction rule consists
in finding an alternate subdivision S′ (in this case the K4-subdivision is turned
into a C4+-subdivision), describing a 2-path decomposition of S′ (in red and
blue on the second drawing) and describing a set of partial rules (in this case
CV and CN , which deals with two adjacent remaining neighbors) for each special
vertex, while making sure these partial rules are compatible with one another
and with the subdivision. We find a set of around 20 composite rules that covers
all cases of (CII) configurations.
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Abstract. Tuza famously conjectured in 1981 that in a graph without
k + 1 edge-disjoint triangles, it suffices to delete at most 2k edges to
obtain a triangle-free graph. The conjecture holds for graphs with small
treewidth or small maximum average degree, including planar graphs.
However, for dense graphs that are neither cliques nor 4-colourable, only
asymptotic results are known. Here, we confirm the conjecture for thresh-
old graphs, i.e. graphs that are both split graphs and cographs.

Keywords: Tuza’s conjecture · Packing · Covering · Threshold graphs

1 Introduction

If we can “pack” at most k disjoint objects of some type in a given graph, how
many elements do we need to “cover” all appearances of such an object in the
graph? Erdős and Pósa famously proved that if a graph contains at most k
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pairwise vertex-disjoint cycles, then there is a set of at most f(k) vertices that
intersects every cycle [7]. While the exact best value of function f is yet unknown,
the asymptotic behaviour was recently determined to be f(k) = Θ(k log k) [5].

In this paper, we focus on edge-disjoint triangles; we refer the interested
reader to [12] for a dynamic survey on other objects. For a graph G, we call
every family of pairwise edge-disjoint triangles a triangle packing, and every
subset of edges intersecting all triangles in G a triangle hitting. We denote by
μ(G) the maximum size of a triangle packing in G, and by τ(G) the minimum
size of a triangle hitting in G. Trivially, there is a set of at most 3μ(G) edges that
intersect every triangle. We are concerned with improving that bound, following
Tuza’s conjecture from 1981.

Conjecture 1 (Tuza [13]). For any graph G it holds τ(G) ≤ 2μ(G).

Conjecture 1, if true, is tight for K4 and K5. Gluing together copies of K4 and
K5 along vertices, it is easy to build an infinite family of connected graphs for
which Conjecture 1 is tight. However, for larger cliques, it is known that the ratio
τ(Kp)/μ(Kp) tends to 3/2 as p increases [8]. In addition, Haxell and Rödl [10]
proved that τ(G) ≤ 2μ(G) + o(|V (G)|2) for any graph G, meaning Conjecture 1
is asymptotically true when τ(G) is quadratic with respect to |V (G)|. Those seem
to indicate that Conjecture 1 should be easier for dense graphs than for sparse
graphs. Conversely, it is asymptotically tight in some classes of dense graphs [2].
If we focus on hereditary graph classes (i.e. classes that contain every induced
subgraph of a graph in the class), the conjecture has only been confirmed for
a few graph classes. Those classes include most notably graphs of treewidth at
most 6 [4], 4-colourable graphs [1], and graphs with maximum average degree
less than 7 [11].

A good candidate for an interesting dense hereditary graph class is the class of
split graphs, i.e. graphs whose vertex set can be partitioned into two sets: one that
induces a clique, the other inducing an independent set. However, Conjecture 1
remains a real challenge even when restricted to split graphs. Another good
candidate for an interesting dense hereditary graph class is the class of cographs,
i.e. graphs with no induced path on four vertices. As an initial step, we focus on
graphs that are both split graphs and cographs, i.e. threshold graphs. While this
may seem like a small step, it is arguably the first dense hereditary superclass
of cliques where the conjecture is confirmed.

Theorem 1. If G is a threshold graph, then τ(G) ≤ 2μ(G).

Finally, it is worth mentioning that Conjecture 1 is known to hold as soon as
we consider multi -packing [6], and in particular it holds in its fractional relax-
ation. Another angle of attack consists of lowering the bound of 3 step by step
for all graphs. The best, and in fact only, such bound is slightly under 2.87 [9].

1.1 Preliminaries

All graphs in this paper are undirected and simple. Let G = (V,E) be a graph.
For all v ∈ V the set N(v) := {u | {u, v} ∈ E} is called the neighbourhood of v
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and N [v] := N(v) ∪ {v} is its closed neighbourhood. A vertex v ∈ V is complete
to A ⊆ V, v /∈ A if v is adjacent to all vertices in A. Disjoint sets A,B ⊆ V are
complete to each other if E contains all edges between A and B.

Lemma 1. The edge set of a clique K with |K| = k can be decomposed into
k edge disjoint maximal matchings for k odd and k − 1 edge disjoint maximal
matchings for k even.

A graph G = (V,E) is a star if V = {c, s1, . . . , sk} and E =
{{c, si} |1 ≤ i ≤ k}, the vertex c is called the center vertex of the star. A graph
G is a complete split graph if its vertex set can be partitioned into sets K and
S, such that S is independent, K induces a clique, and K and S are complete
to each other.

The following lemma describes how to pack triangles in complete split graphs.

Lemma 2 [8]. Let K be a clique, S an independent set such that they are
complete to each other and |K| = |S| = k. Then we can find an (optimal)
triangle packing TP of size

(
k
2

)
such that:

1. It uses all edges from K and each triangle in TP contains exactly one edge
from K.

2. If k is odd, the remaining edges (not used in TP) create a matching between
K and S, otherwise they create a star with its center vertex in S. Moreover,
we can choose the unused matching and the center vertex of the unused star
arbitrarily.

Corollary 1. Let K be a clique and S an independent set such that they are
complete to each other.

(a) If |S| < |K|, then we can find a triangle packing of size |S| · �|K|/2�.
(b) If |S| ≥ |K|, then we can find a triangle packing of size

(|K|
2

)
.

We say that we pack edges of K with vertices of S when we use triangle packings
from Corollary 1.

2 Threshold Graphs

A graph G = (V,E) is a threshold graph if its vertex set can be partitioned
into two sets K = {c1, . . . , ck} and S = {u1, . . . , us} such that G[K] is a clique
and S is an independent set in G, and N [ci+1] ⊆ N [ci] for all 1 ≤ i < k and
N(ui) ⊆ N(ui+1) for all 1 ≤ i < s. We identify K with the clique G[K] and say
G = (K ∪ S,E) is a threshold graph with given threshold representation (K,S).

The threshold representation of a threshold graph may not be unique. We
prove that it can be chosen such that the clique contains a vertex which is not
adjacent to any vertex of the independent set.

Lemma 3. For every threshold graph G = (V,E) there exists a threshold repre-
sentation (K,S) such that there is a vertex v ∈ K with N(v) ∩ S = ∅.
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Fig. 1. The structure of threshold graph G.

Fig. 2. The (a) triangle packing and (b) triangle hitting for |X| ≥ k/2.

We can now prove that Conjecture 1 holds for all threshold graphs.

Proof (of Theorem 1). Let G = (K ∪ S,E) be a threshold graph with K =
{c1, . . . , ck} and S = {u1, . . . , us} such that N(ck) ∩ S = ∅. By Lemma 3,
such a representation exists. Let r ∈ {1, . . . , s} be chosen minimal such that{
c1, . . . , c�k/2�

} ⊆ N(ur) and let X be the subset {ur, . . . , us} of S (see Fig. 1).
Note that X is complete to the set

{
c1, . . . , c�k/2�

}
. We distinguish two cases,

based on the parity of k. First, we focus on the case that k is even. In this
case we consider two cliques Ktop and Kbot of equal size, induced by vertices{
c1, . . . , ck/2

}
and

{
ck/2+1, . . . , ck

}
, respectively.

We construct a triangle packing TP of G using Corollary 1 as follows: we
pack the edges of Kbot with vertices in Ktop, and the edges of Ktop with vertices
in X (see Fig. 2(a)).

If |X| ≥ k
2 , then TP is a triangle packing of size 2

(k/2
2

)
. On the other hand, a

triangle hitting of size
(
k−1
2

)
can be obtained by taking all edges from K except

those incident to ck (see Fig. 2(b)). Thus, we obtain a lower bound on the triangle
packing and an upper bound on the triangle hitting yielding:

τ(G) ≤
(

k − 1
2

)
=

k − 2
2

· (k − 1) ≤ k − 2
2

· k = 4
(

k/2

2

)
≤ 2μ(G).

If |X| < k
2 , then TP is of size at least

(k/2
2

)
+|X|·�k/4� ≥ (k/2

2

)
+|X| (k/4 − 1/2) .

On the other hand, the edges inside Ktop and inside Kbot together with all edges
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Fig. 3. The (a) triangle packing and (b) triangle hitting for |X| < k/2.

between S and Kbot build a triangle hitting of G (cf. Fig. 3(b)) of size at most
2
(k/2

2

)
+ |X| (k/2 − 1) . Indeed, recall that ck does not have any neighbours in

S, therefore we have at most |X| (k
2 − 1

)
edges between X and Kbot, and by

definition of X, there are no vertices in Kbot having neighbours in S\X. Thus,
we again obtain a lower bound on the triangle packing and an upper bound on
the triangle hitting yielding:

τ(G) ≤ 2
(

k/2

2

)
+ |X|

(
k

2
− 1

)
= 2

(
k/2

2

)
+ 2 |X|

(
k

4
− 1

2

)
≤ 2μ(G).

We are left with the case that k is odd. We consider the cliques Ktop and
Kbot induced by sets

{
c1, . . . , c(k+1)/2

}
and

{
c(k+1)/2+1, . . . , ck

}
, respectively.

Again, we look at the size of X and in case it is large, we can derive a similar
argument as in the previous case, using Corollary 1. More precisely, assume that
|X| ≥ k+1

2 . Then we pack the edges of Kbot into
((k−1)/2

2

)
triangles with vertices in

Ktop, and the edges of Ktop into
((k+1)/2

2

)
triangles with vertices in X. Together,

this gives a triangle packing of size
(
(k+1/2)

2

)
+

(
(k−1/2)

2

)
= (k−1)2/4. The triangle

hitting again consists of all edges from K except those adjacent to ck, therefore
has size

(
k−1
2

)
(recall Fig. 2). These two bounds together yield:

τ(G) ≤
(

k − 1
2

)
=

k − 1
2

· (k − 2) ≤ (k − 1)2

2
≤ 2μ(G).

It remains to consider the case |X| < k+1
2 . In order to find a triangle packing, we

define K ′
top and K ′

bot to be induced by
{
c1, . . . , c(k−1)/2

}
and

{
c(k+1)/2, . . . , ck

}
,

respectively (so K ′
top = Ktop \ {c(k+1)/2} is of size k−1

2 and K ′
bot = Kbot ∪

{c(k+1)/2} is of size k+1
2 ). We build a triangle packing analogously to before, using

Corollary 1. The edges of K ′
bot can be packed into � (k+1)/2

2 � · k−1
2 ≥ k−1

4 · k−1
2

triangles with vertices in K ′
top. Moreover, min

{
|X| · ⌊

k−1
4

⌋
,
((k−1)/2

2

)} ≥ |X| k−3
4

edges of K ′
top can be packed into triangles with vertices in X (see Fig. 4(a)). This

gives a triangle packing of size at least (k−1)/2 · (k−1)/4 + |X| (k−3)/4. To find a
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Fig. 4. The (a) triangle packing and (b) triangle hitting for |K| odd and |X| < (k+1)/2.

triangle hitting, we again consider the partition of K into Ktop and Kbot. We
take all edges inside Ktop and inside Kbot together with all edges between S and
Kbot (see Fig. 4(b)). Again, recall that ck ∈ Kbot does not have any neighbours
in S, and there are no vertices in Kbot having neighbours in S \ X. Thus, this
yields a triangle hitting of size

((k+1)/2
2

)
+

((k−1)/2
2

)
+ |X| (k−3)/2. Therefore, we

obtain the following which concludes the proof:

τ(G) ≤
(k+1

2

2

)
+

(k−1
2

2

)
+ |X| k − 3

2

=
(k − 1)2

4
+ |X| k − 3

2
= 2 · k − 1

2
· k − 1

4
+ 2 |X| k − 3

4
≤ 2μ(G).

��
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Covering Three-Tori with Cubes
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Abstract. Let μ(ε) be the minimum number of cubes of side ε needed
to cover the unit three-torus [R/Z]3. We prove new lower and upper
bounds for μ(ε) and find the exact value for all ε ≥ 7

15
and all ε ∈[

1
r+1/(r2+r+1)

, r2−1
r3−r−1

)
for any integer r ≥ 3.

Keywords: Coverings · Cubes · Tori

1 Introduction

Let d be a positive integer, ε ∈ (0, 1). Consider the torus T d := [R/Z]d and the
set Jε of ‘sub-cubes’ of the form {(x1, . . . , xd) : xi ∈ [x0

i , x
0
i + ε]}. The question

is, what is the minimum number μ := μ(d; ε) of sets A1, . . . , Aμ from Jε needed
to cover T d (i.e., T d = A1 ∪ . . . ∪ Aμ)?

In [1], it is proven that μ ≥ �1/ε�(d), where �x�(i) =
⌈
x�x�(i−1)

⌉
and �x�(1) =

�x�. Moreover, it is shown that, for d = 2, this lower bound is sharp, i.e. μ(2; ε) =
�1/ε�1/ε��.

In our paper, we consider d = 3. Since μ(1; ε) = �1/ε� and μ(2; ε) =
�1/ε�1/ε��, we get that

�1/ε�1/ε�1/ε��� ≤ μ(3; ε) ≤ �1/ε�1/ε���1/ε�. (1)

In [1], the authors also noticed that the lower bound for d = 3 is not sharp. For
example, μ(3; 3/7) > �7/3�7/3�7/3���. Unfortunately, nothing better than (1)
is known.

In this paper, we have found the exact value of μ(3; ε) for ε ≥ 7/15. We have
also found exact values of μ(3; ε) for ε close to 1/r, r ∈ N. In Sect. 2, we state
new results. In Sect. 3, we show that to solve the problem for ε ∈ [1/r, 1/(r−1)),
r ∈ {2, 3, . . .}, it is sufficient to solve it for a finite set of rational numbers with
denominator at most r3. In Sect. 4, we prove lemmas from Sect. 3. In Sect. 5, we
give a complete proof of Theorem 2 and outline the proofs of other results.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 772–777, 2021.
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2 New Results

Theorem 1. If ε ≥ 2/3, then the lower bound is the answer:

μ(3; ε) = 5, ε ∈ [2/3, 3/4), μ(3; ε) = 4, ε ∈ [3/4, 1).

If 1/2 ≤ ε < 2/3, then the upper bound is the answer, i.e. μ(3; ε) = 8.

Notice that, in contrast to d = 2, for ε ∈ [1/2, 1), μ(d = 3; ε) equals the lower
bound in (1) if and only if ε ∈ [1/2, 4/7) ∪ [2/3, 1).

Since, for an integer r ≥ 2 and ε ∈
[
1
r , 1

r−1/r2

)
, the lower bound and the

upper bound in (1) are equal, the value of μ(3; ε) is straightforward and equals
r3. We have also found left-neighborhoods of all 1/r where the lower bound is
the correct answer (notice that for such ε the difference between the upper and
the lower bounds is, conversely, large).

Theorem 2. Let r ∈ N. If ε ∈
[

1
r+1/(r2+r+1) ,

1
r

)
, then the lower bound is the

answer, i.e. μ(3; ε) = r3 + r2 + r + 1.

Moreover, we have proved that the trivial right-neighborhoods of all 1/r
where the upper bound is the correct answer can be extended in the following
way.

Theorem 3. Let r ≥ 2 be an integer. If ε ∈
[
1
r , r2−1

r3−r−1

)
, then the upper bound

is the answer, i.e. μ(3; ε) = r3.

We have also improved the lower bound from (1) in some special cases.

Theorem 4. Let r ≥ 2 be an integer, ξ ∈ {0, 1, . . . , r} be such that

ξ2 ≤ ξ + (r + 1)
⌊

ξ2

r + 1

⌋
.

Let

• s = r2 + r + ξ,
• t = r3 + r2 + 2ξr +

⌊
ξ2

r+1

⌋
be coprime with s.

Then μ
(
3; s

t

)
> t, i.e. bigger than the lower bound.

The condition ξ2 ≤ ξ +(r+1)
⌊

ξ2

r+1

⌋
implies that either ξ ≥ √

r + 1 or ξ = 1.

In the interval [1/3, 1/2), there are two such k
n ∈ {

7
16 , 8

21

}
.

Finally, we have improved the upper bound from (1) in some special cases.
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Theorem 5. Let r ≥ 2 be an integer, ξ ∈ {2, 3, . . . , r}. Let
• s = r2 + r + ξ,
• t = r3 + r2 + ξ(r + 1).

Then μ
(
3; s

t

) ≤ t, i.e. smaller than the upper bound.

Both Theorem 4 and Theorem 5 imply improvements of the bounds in (1) for
ε from a certain right-interval of the respective s/t (see Lemma 1 from Sect. 3).

Notice that, for ε ∈ [1/3, 1/2), Theorems 2, 3, 4, 5 and Lemma 1 from Sect. 3
imply that

– for ε ∈ [
1
3 , 8

23

)
, μ(3; ε) = 27 (by Theorem 3 and Lemma 1);

– for ε ∈ [
8
21 , 5

13

)
, μ(3; ε) ∈ [22, 24] (by Theorem 4 and Lemma 1);

– for ε ∈ [
7
16 , 4

9

)
, μ(3; ε) ∈ [17, 21] (by Theorem 4 and Lemma 1);

– for ε ∈ [
4
9 , 7

15

)
, μ(3; ε) ∈ [16, 18] (by Theorem 5 and Lemma 1);

– for ε ∈ [
7
15 , 1

2

)
, μ(3; ε) = 15 (by Theorem 2 and Lemma 1).

3 Integer Lattices

On the one hand, there are continuously many ε left for which the answer is not
known. On the other hand, the below lemma implies that the problem reduces
to a countable set.

Let d ≥ 2 be an integer.

Lemma 1. There exists an infinite sequence of rational numbers 1 > s1
t1

> s2
t2

>
. . . > 0 such that, for every i ∈ N, ti ≤ μ(d; si/ti) and μ(d; ε) = μ(d; si/ti) for
all ε ∈ [si/ti, si−1/ti−1), where s0 = t0 = 1.

For d = 3, due to (1), the denominator of the critical point si

ti
is at most

� ti
si

�� ti
si

� ti
si

��. Therefore, for every integer r ≥ 2, on
[
1
r , 1

r−1

)
there are at most

r2(r3+1)
2(r−1) + r3 candidates on the role of a critical point.

We give the proof of Lemma 1 in Sect. 4. From this proof it immediately fol-
lows (see Remark 1 in Sect. 4) that the problem can be equivalently reformulated
for integer lattices (as stated below in Lemma 2).

Let s ≤ t be positive integers. Consider the torus [Z/tZ]d and the set of its
‘sub-cubes’ with edges of size s: {(x1, . . . , xd) : x0

i ≤ xi ≤ x0
i +s−1 mod t, x0

i ∈
Z/tZ}. Let μ0(d; s, t) be the minimum number of such ‘sub-cubes’ needed to
cover the torus.

Lemma 2. Let r ≥ 2 be an integer, ε ∈
[
1
r , 1

r−1

)
. Let s

t ≤ ε be the closest

rational number to ε with t ≤ rd. Then μ(d; ε) = μ0(d; s, t).

Since μ(d; s/t) = μ0(d; s, t), we get that μ0(d; s, t) depends only on s/t.
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4 Proofs of Lemmas

In this section, we prove Lemma 1 and note that this proof implies Lemma 2 as
well.

Let μ ∈ N. Consider the minimum value of ε ∈ (0, 1] such that there is a
covering A of the torus T d by μ ‘sub-cubes’

Aj :=
{

(x1, . . . , xd) : xi ∈
[
xj

i , x
j
i + ε

]}
, j ∈ [μ] := {1, . . . , μ}.

Let i ∈ [d]. Consider the segments
[
xj

i , x
j
i + ε

]
, j ∈ [μ]. Let us draw a graph

Gi(A) with vertex set [μ]. Let vertices j1, j2 ∈ [μ] be adjacent in G if and only
if the sets

{
xj1

i , xj1
i + ε

}
,

{
xj2

i , xj2
i + ε

}
are not disjoint (i.e., the respective

segments have at least one common endpoint).
Let us show that there exists a covering Ã of T d by μ ‘sub-cubes’ such

that Gi(Ã) is connected. Assume that, in Gi(A), there are several connected
components H1, . . . , H�, � ≥ 2. Let j1, . . . , jv be the vertices of H1. Denote by ρ
the distance between the set of endpoints of segments labeled by j1, . . . , jv and
the set of endpoints of the rest segments, i.e.

ρ = min

{
|a−b|, a ∈

{
xj
i , x

j
i + ε, j ∈ {j1, . . . , jv}

}
, b ∈

{
xj
i , x

j
i + ε, j /∈ {j1, . . . , jv}

}}

Let us shift all segments labeled by j1, . . . , jv in the direction to the closest seg-
ment that is not labeled by any of j1, . . . , jv at the distance ρ. Clearly, we get a
covering A1 of T d with Gi(A1) consisting of at most �−1 components. If Gi(A1)
is not connected, make the same procedure with A1 and obtain a covering A2

with Gi(A2) having at most � − 2 components. Proceeding in this way, we will
reach the desired covering Ã.

Assume now that, for every i ∈ [d], Gi(A) is connected. Suppose that there
is no integer q ∈ {1, . . . , μ} such that qε ∈ N (otherwise, we get the statement
of Lemma 1).

Fix i ∈ [d] and consider the following relation < on the set of segments
[xj

i , x
j
i + ε]:

if xj1
i + ε = xj2

i , then [xj1
i , xj1

i + ε] < [xj2
i , xj2

i + ε].

Since qε /∈ N for any q ∈ {1, . . . , μ}, we get that < is linear order.
Let [x1

i , x
1
i + ε] be a minimal segment respectively (there can be several

equal segments). Without loss of generality, we may assume that x1
i = 0. Let

0 = α0 < α1 < . . . < αr < 1 be all distinct endpoints of segments [xj
i , x

j
i + ε],

j ∈ [μ]. Let
γ = min{αk+1 − αk, k ∈ {0, 1, . . . , r}},

where αr+1 = 1.
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Let δ < γ/r be a positive number. For every j ∈ [μ], let rj be the number
of (distinct) segments less than [xj

i , x
j
i + ε]. Let us replace Aj with the cube A′

j

having the same (but the ith) projections, the ith projection is replaced with[
(x′)j

i := xj
i − rjδ, (x′)j

i + ε − δ
]
. Let us prove that A′ = {A′

1, . . . , A
′
μ} covers T d

as well.
Clearly, for every y′ ∈ [0, 1) there exists y ∈ [0, 1) such that

y′ ∈ [(x′)j
i , (x

′)j
i + ε − δ] if and only if y ∈ [xj

i , x
j
i + ε].

Therefore, T d|xi=y′ is covered by the same (d − 1)-dimensional cubes (hyper-
planes of A′

j with xi = y′) as T d|xi=y. Since A covers T d we get that A′ covers
T d as well. Since we can reduce lengths of segments for every i ∈ [d], we get a
contradiction with the minimality of ε.

Remark 1. Clearly, this proof implies Lemma 2 as well. Indeed, if for a given
ε ∈ (0, 1), there are no positive integers s, t ≤ μ(d; ε), such that ε = s/t, then
we can reduce edges of ‘sub-cubes’ using the above construction. Length of new
sides of cubes will be equal to the desired s

t , where s, t ∈ N, t ≤ μ(d; ε). Moreover,
the vertices {x0

1, . . . , x
0
d} of these cubes will be exactly in the points of the lattice

{(j1 s
t , . . . , jd

s
t ), j1, . . . , jd ∈ Z+}. Lemma 2 follows since μ(d; ε) = μ(d; s/t).

5 Proof of Theorem 2

Due to (1), it is sufficient to prove that, for ε = 1
r+1/(r2+r) , there exists a covering

by r3 + r2 + r +1 cubes. By Lemma 2, we should construct a covering of [Z/tZ]3

consisting of t = r3 + r2 + r + 1 ‘sub-cubes’ with edges of size s = r2 + r + 1.

The main idea here is the same as in [1]: to take each next ‘sub-cube’ shifted
relative to the previous one by a fixed integer vector v.

More formally, let us say that the ‘sub-cube’ {(x1, x2, x3) : x0
i ≤ xi ≤

x0
i + s − 1 mod t} has the base vertex (x0

1, x
0
2, x

0
3). It remains to notice that the

‘sub-cubes’ with base vertices (i, ri, (r2+r+1)i) for i ∈ {0, 1, . . . , t−1} cover the
torus [Z/tZ]3. The latter clearly follows (the points of the lattice with the same
first coordinate are covered by s sequential cubes since each move of the first
coordinate of the base vertex equals 1, and there are exactly t − 1 moves) from
the fact that, in dimension 2, the squares with base vertices (ri, (r2 + r + 1)i)
for i ∈ {0, 1, . . . , s − 1} cover [Z/tZ]2.

Theorem 5 can be proven in the same way by choosing the same shift vector,
i.e. (1, r, r2 + r + 1).

Due to Lemma 1, Theorem 2 and Theorem 3, to prove Theorem1, it is suffi-
cient to find μ(3; 2/3) and μ(3; 3/5). The proof of μ(3; 2/3) = 5 is constructive
since it equals to the lower bound. We skip here the proof of μ(3; 3/5) = 8 due
to the space constraints.

Proofs of new lower bounds in Theorems 3 and 4 use completely different
ideas. The main properties of possible coverings in smaller number of cubes are
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1. absence of cubes with the base vertices having at least one same coordinate,
2. such coverings are ‘very close’ to each other (we may get one covering from

another one by small shifts of sub-cubes).

Having this, it is not hard to prove that there are no such coverings.

Acknowledgements. The study was supported by the Russian Federation Govern-
ment (Megagrant number 075-15-2019-1926).
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Abstract. We study a generalisation of the degree/girth problem to
the setting of directed and mixed graphs. We say that a mixed graph or
digraph G is k-geodetic if there is no pair of vertices u, v such that G
contains distinct non-backtracking walks of length ≤ k from u to v. The
order of a k-geodetic mixed graph with minimum undirected degree r
and minimum directed out-degree z in general exceeds the mixed Moore
bound M(r, z, k) by some small excess ε. Bannai and Ito proved that
there are no non-trivial undirected graphs with excess one. In this paper
we investigate the structure of digraphs with excess one and derive results
on the permutation structure of the outlier function that rules out the
existence of certain digraphs with excess one. We also present strong
bounds on the excess of k-geodetic mixed graphs and show that there
are no k-geodetic mixed graphs with excess one for k ≥ 3.

Keywords: Excess · Geodecity · Digraph · Mixed graph

1 The Degree/Geodecity Problem

The well-known degree/girth problem asks for the smallest possible order of a
d-regular graph G with given girth g. For odd girth g = 2k + 1, counting the
vertices in a tree of depth k (called a Moore tree) rooted at an arbitrary vertex u
of G shows that the order of G is bounded below by the undirected Moore bound
1 + d + d(d − 1) + · · · + d(d − 1)k−1.

A walk W in a graph is non-backtracking if it does not include a sub-walk of
the form u ∼ v ∼ u, i.e. the same edge cannot appear in consecutive positions in
W in opposite directions. We define a graph G to be k-geodetic if for any pair of
vertices u, v of G there is at most one non-backtracking walk from u to v with
length ≤ k; this is equivalent to all of the vertices in any Moore tree of G with
depth k being distinct, so G is k-geodetic if and only if it has girth ≥ 2k + 1. It
is easily seen that the Moore bound is attained by a graph G if and only if G is
d-regular, has diameter k and is k-geodetic.

A graph that attains the Moore bound is a Moore graph. It is known that
for odd g this bound can be met only if d = 2 (with the cycle C2k+1 being the
extremal graph), k = 1 (complete graphs Kd+1) or k = 2 and d ∈ {3, 7, 57}.
There exist Moore graphs with (d, k) = (3, 2) (the Petersen graph) and (d, k) =
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 778–783, 2021.
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(7, 2) (the Hoffman-Singleton graph), but the existence of a Moore graph with
(d, k) = (57, 2) is a famous unsolved problem. In general then the order of a
k-geodetic graph with degree d will exceed the Moore bound by some (hopefully
small) excess ε. Bannai and Ito showed in [1] using spectral theory that the only
undirected graphs with excess one are the cycles. A survey of the degree/girth
problem is given in [4].

In this paper we discuss one of several possible extensions of this problem to
directed graphs and mixed graphs. A mixed graph is a graph containing both
undirected links and directed arcs (allowing either the edge set or arc set to be
empty, we can construe undirected and directed graphs as special cases of mixed
graphs); we do not allow a mixed graph to contain loops or parallel edges and
arcs. By a small abuse of notation, we define a mixed path of length � in a mixed
graph G to be a sequence u0, e0, u1, e1, . . . , e�−1, u� such that for 0 ≤ i ≤ � each
ui is a vertex of G and for 0 ≤ i ≤ � − 1 each ei is either an edge ui ∼ ui+1

or an arc ui → ui+1, such that for no 0 ≤ i ≤ � − 2 do we have ei = ei+1. The
mixed graph G is k-geodetic if there do not exist vertices u, v of G with distinct
mixed paths of length ≤ k from u to v; this is equivalent to all vertices in a
mixed Moore tree being distinct.

Recently in [7] Sillasen posed the following question, which we call the
degree/geodecity problem.

Question 1 (Degree/geodecity problem). What is the smallest possible order of a
k-geodetic digraph with minimum out-degree d?

We call an extremal digraph for this problem a (d, k)-geodetic-cage and we denote
the order of this digraph by N(d, k). It is easily seen that the order of such a
digraph is bounded below by the directed Moore bound M(d, k) = 1 + d + d2 +
· · · + dk. However, it is known that there are no interesting digraphs that meet
this lower bound [2]. We define a (d, k; +ε)-digraph to be a k-geodetic digraph
with minimum out-degree d and order M(d, k) + ε.

2 Results for Digraphs

Miller, Miret and Sillasen proved the following theorems for digraphs with excess
ε = 1. A digraph G is diregular if there exists d such that every vertex of G has
both in- and out-degree d.

Theorem 1 [7]. There are no diregular (2, k; +1)-digraphs for k ≥ 2.

Theorem 2 [5]. All (d, k; +1)-digraphs are diregular. There are no (d, k; +1)-
digraphs for k = 2 and d ≥ 8 or for k = 3, 4 and d ≥ 3.

The author extended these results in the papers [9–11] as follows.

Theorem 3. For k ≥ 3 there are no (2, k; +2)-digraphs (diregular or otherwise)
and no diregular (2, k; +3)-digraphs. We have N(2, 2) = 9 and there are two
(2, 2)-geodetic-cages up to isomorphism, which are shown in Fig. 1.
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Fig. 1. The two (2, 2)-geodetic-cages

A natural next step is to investigate whether there exist (3, k; +1)-digraphs.
Any such digraph must satisfy a strong structural lemma.

Lemma 1. If u and v are any two distinct vertices of a (3, k; +1)-digraph, then
u and v have at most one common out-neighbour and at most one common
in-neighbour.

Using Lemma 1, it is elementary to show that there are no (3, 2;+1)-digraphs.
We can also deduce non-existence for other values of d and k by analysing
the automorphism group of a (d, k; +1)-digraph. In [8] in the context of the
degree/diameter problem Sillasen deduces information on the possible fixed sets
of a non-identity automorphism of a digraph with order one less than the Moore
bound; this analysis carries through for digraphs with excess one. Combined with
the result that there are no (2, k; +1)-digraphs [7], this restricts the possible sets
of fixed points of an automorphism of a (d, k; +1)-digraph to one of four possible
forms.

Lemma 2. If G is a (d, k; +1)-digraph and φ is a non-identity automorphism of
G, then the subdigraph Fix(φ) of G induced by the fixed points of φ is either the
null digraph, a pair of isolated vertices, a directed (k + 2)-cycle or a (d′, k; +1)-
digraph, where 3 ≤ d′ ≤ d − 1.

For every vertex u of a (d, k; +1)-digraph there is a unique vertex o(u) that
lies at distance > k from u; this vertex is called the outlier of u and o is the
outlier function of G. In fact the function o is also a digraph automorphism [7];
necessarily o is fixed-point-free. We make a definition that will help us to analyse
the structure of the outlier automorphism.

Definition 1. The order of a vertex u of a (d, k; +1)-digraph G is the smallest
value of r ≥ 1 such that or(u) = u. The index ω(G) of G is the smallest vertex
order in G. G is outlier-regular if its outlier function is a regular permutation.

Applying Lemma 2 to a (3, k; +1)-digraph G tells us about the subdigraph of G
induced by the vertices with order equal to the index.
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Corollary 1. If G is a (3, k; +1)-digraph, then one of the following holds:

– G is outlier-regular,
– the outlier function o of G contains a unique transposition, or
– the vertices of G with order ω(G) form a directed (k + 2)-cycle.

If the second case holds, then k �≡ 3, 5 (mod 6) and if k ≡ 0, 2 (mod 6), then
G contains two vertices of order two, with all other vertices of G having order
six. If the third case holds, then k+2 divides M(3,k)−k−1

2 . It follows that if k ≥ 2
is such that i) k ≡ 3 or 5 (mod 6), ii) k + 2 does not divide M(3,k)−k−1

2 and iii)
M(3, k) + 1 is prime, then there is no (3, k; +1)-digraph.

Corollary 2. There are no (3, 3;+1), (3, 15;+1)- or (3, 63;+1)-digraphs.

Applying these ideas to (d, 2;+1)-digraphs also allowed us to close the open cases
for k = 2 in Theorem 2.

Theorem 4. If d, k ≥ 2, then any (d, k; +1)-digraph has d ≥ 3 and k ≥ 5.

A spectral argument also shows that there are no involutary digraphs with excess
one, i.e. any (d, k; +1)-digraph contains a vertex with order at least three. A
computer search by the authors has also identified further geodetic cages for
small d and k.

Theorem 5. N(2, 3) = 20 and N(3, 2) = 16. Up to isomorphism there are two
(2, 3)-geodetic-cages and the (3, 2)-geodetic-cage is unique.

All known Moore graphs, as well as many cages, are vertex-transitive. It is
therefore of interest to ask if there exist vertex-transitive digraphs with small
excess. We derived the following divisibility condition for the existence of a
vertex-transitive (d, k; +1)-digraph.

Theorem 6. Let G be a vertex-transitive (d, k; +1)-digraph. Then (k+1) divides
2d + d2 + d3 + · · · + dk+1 and (k + t) divides (M(d, k) + 1)(dt − dt−1) for all
2 ≤ t ≤ k − 1.

Values of d and k that satisfy this condition are very rare. In particular, it
follows from Theorem 4 that there are no vertex-transitive (d, k; +1)-digraphs
in the range 2 ≤ d ≤ 12 and 2 ≤ k ≤ 10000. Similar divisibility conditions
hold for the broader range 1 ≤ ε < d if we assume the stronger property of
arc-transitivity.

3 Bounds for Mixed Graphs

We can extend the degree/geodecity problem to mixed graphs in a straightfor-
ward way. The Moore bound M(r, z, k) for k-geodetic mixed graphs with mini-
mum undirected degree r and minimum directed out-degree z was derived in [3].
We define an (r, z, k; +ε)-graph to be a k-geodetic mixed graph with undirected
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degree r, directed out-degree z and order exceeding the Moore bound by excess
ε. It is known that there are no mixed Moore graphs for k ≥ 3 [6].

A mixed graph is totally regular if the subgraph induced by the edges of G is
regular and the subdigraph induced by the arcs of G is diregular. The structure
of a mixed graph is much easier to analyse if it is totally regular.

Theorem 7 [12]. All (r, z, 2;+1)-graphs are totally regular.

Using counting arguments we prove a strong lower bound on the excess of
totally regular mixed graphs.

Theorem 8. For k ≥ 3, the excess ε of a totally regular (r, z, k; +ε)-graph sat-
isfies

ε ≥ r

φ

[λk−1
1 − 1
λ1 − 1

− λk−1
2 − 1
λ2 − 1

]
,

where φ =
√

(r + z − 1)2 + 4z, λ1 = 1
2 (r + z − 1 + φ) and λ2 = 1

2 (r + z − 1 − φ).

Trivially this bound shows that for k ≥ 4 there are no mixed graphs with excess
one. A closer analysis of the structure of (r, z, 3;+1)-graphs yields the following
result.

Corollary 3. There are no totally regular (r, z, k; +1)-graphs for k ≥ 3.

It is much more difficult to rule out the existence of mixed graphs with small
excess that are not totally regular. However, we found recently that Theorem 8
can be generalised to all mixed graphs at the expense of reducing the bound by
a factor z

2r+3z .

Theorem 9. For k ≥ 3, the excess of any (r, z, k; +ε)-graph satisfies

ε ≥ rz

(2r + 3z)φ

[λk−1
1 − 1
λ1 − 1

− λk−1
2 − 1
λ2 − 1

]
.

This new bound allows us to expand Corollary 3 to rule out the existence of all
k-geodetic mixed graphs with excess one for k ≥ 3, thereby extending the result
of Bannai and Ito [1].

Corollary 4. For r, z ≥ 1, if G is an (r, z, k; +1)-graph, then k = 2, G is totally
regular and either i) r = 2, ii) 4r+1 = c2 for some c ∈ N and c|(16z2−24z+25),
or iii) 4r − 7 = c2 for some c ∈ N and c|(16z2 + 40z + 9).

These bounds, combined with computer search, produce the new record mixed
graphs in Table 1.
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Table 1. Smallest (r, z, k; +ε)-graphs for given r, z and k (* = smallest known)

r z k Moore bound Order Excess Comment

1 1 3 11 16 5 Cages classified

1 1 4 19 30 11 Cages classified

1 1 5 32 54* 22* No graphs of order less than 50

2 1 2 11 12 1 Cayley graph of D12

2 1 3 28 48* 20* No graphs of order less than 32

2 2 2 19 21 2 Cages not classified
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Abstract. We determine the order of growth, up to polylogarithmic
factors, of the number of orientations of the binomial random graph
G(n, p) containing no directed cycle of length k for every k � 3. This
solves a conjecture of Kohayakawa, Morris and the last two authors.
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1 Introduction

An orientation �H of a graph H is an oriented graph obtained by assigning
an orientation to each edge of H. The study of the number of �H-free orien-
tations of a graph G, denoted by D(G, �H), was initiated by Erdős [8], who
posed the problem of determining D(n, �H) := max

{
D(G, �H) : |V (G)| = n

}
.

For tournaments, this problem was solved by Alon and Yuster [2], who proved
that D(n, Tk) = 2ex(n,Kk) holds for any tournament Tk and all sufficiently large
n ∈ N.

Let C�
� denote the directed cycle of length �. Bucić and Sudakov [6] deter-

mined D(n,C�
2k+1) for every k � 1 as long as n is sufficiently large, extending

the proof in [2]. Another extension of the results in [2] was given by Araújo,
Botler, and the last author [3] who determined D(n,C�

3 ) for every n ∈ N (see
also [5]).

In the context of random graphs, Allen, Kohayakawa, Parente, and the last
author [1] investigated the problem of determining the typical number of C�

k -
free orientations of the Erdős–Rényi random graph G(n, p). They proved that,
for every k � 3, with high probability as n → ∞ we have log2 D(G(n, p), C�

k ) =
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o(pn2) for p � n−1+1/(k−1), and log2 D(G(n, p), C�
k ) = (1 + o(1))p

(
n
2

)
for

n−2 � p � n−1+1/(k−1). This result was improved in the case of triangles
by Kohayakawa, Morris and the last two authors [7], who proved, among other
things, the following result1.

Theorem 1 [7, Theorem 1.2]. If p � n−1/2, then, with high probability as
n → ∞, log D(G(n, p), C�

3 ) = Θ̃
(
n/p

)
.

A first step towards determining log D(G(n, p), C�
k ) for k � 4 was also given

in [7], where it was proved that log D(G(n, p), C�
k ) = Õ

(
n/p

)
. Moreover, they

proved that a natural generalization of the lower bound construction used in the
proof of Theorem1 gives

log D(G(n, p), C�
k ) = Ω

(
n

p1/(k−2)

)
(1)

with high probability when p � n−1+1/(k−1). They conjectured that this lower
bound is sharp up to polylogarithmic factors, and we confirm this conjecture by
proving the following result.

Theorem 2. Let k � 3 and p = p(n) � n−1+1/(k−1). Then, with high probabil-

ity as n → ∞, log D
(
G(n, p), C�

k

)
= Θ̃

(
n

p1/(k−2)

)
.

The proof of this result will be outlined in the next section, and it consists
of new ideas together with a significant generalisation of the strategy from [7].
Roughly, we define a pseudorandomness condition on the number of directed
r-paths between small sets for 1 � r � k − 2, and split into two cases accord-
ing to whether the condition holds. The graph container method (introduced
by Kleitman and Winston [9], and Sapozhenko [10]) is used when the pseudo-
randomness condition is satisfied, that is the orientation contains many directed
(k − 2)-paths. However, most of the work is in the case where the pseudoran-
domness condition does not hold and the graph container lemma does not apply.
In this situation, we will show a way to efficiently “encode” the number of ori-
entations that do not extend many directed (r − 1)-paths to directed r-paths,
for 2 � r � k − 2.

2 Outline of the Proof of Theorem 2

In this section we give an outline of the proof of Theorem2. But first we present
a quick sketch of the proof of Theorem2 for C�

3 as proved in [7].

The Proof in [7]. The idea is to obtain, by induction on the number of vertices,
a general bound on the number of C�

3 -free orientations of an n-vertex graph G
which only depends on n and α(G). More precisely, one gets the bound

( n

� α(G)

)2n
. (2)

1 The ˜Θ(·) and ˜O(·) notation are analogous to Θ and O notation but with polylog-
arithmic factors omitted. From now on log will denote the natural logarithm for
convenience.
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In order to obtain such bound, let G be a graph on vertex set V and consider
v ∈ V . Let H = G[V \{v}] and suppose that the number of C�

3 -free orientations
of H is ( n − 1

� α(H)

)2n−2
. (3)

Then, for each C�
3 -free orientation �G of G, pick �T ⊂ E(�G) \ E( �H) minimal

such that �G is the only C�
3 -free orientation of G containing �T ∪ �H. The key

observation is that, by the minimality of T , the vertex sets T+ := N+
�T

(v) and

T− := N−
�T

(v) are independent sets in H, so there are at most
(

n
�α(G)

)2 choices

for �T . This together with (3) and α(H) � α(G) completes the proof. Since
α(G(n, p)) � 3 log n

p holds with high probability, the bound (2) implies Theorem 2
for C�

3 .
We will generalise the ideas depicted above in two ways, which will be

described in the next two subsections. It will also be the case that directed
paths of length k − 2 starting and ending in the neighbourhood of a vertex play
a key role. For this reason, we fix � = k − 2 � 1 and avoid copies of C�

�+2.

Pseudorandomness. We start by defining a “pseudorandom” oriented graph
property, and we proceed to separately count the C�

�+2-free orientations depend-
ing on whether the already oriented subgraph �H is pseudorandom. Then we use
the randomness of G(n, p) in a stronger way, using a bit of the randomness in
each step of the induction.

Let us define the pseudorandom property we mentioned in the previous para-
graph. We write �Pr for the directed path with r edges and, given a oriented graph
�G, we denote by �Gr the digraph such that (u, v) is an edge whenever there is a �Pr

from u to v in �G. We say an oriented graph �G is r-locally dense (see Definition 1),
if

e�

�

(�G[V \X])r (A, B) � 1

2
p

�−r+1
� |A||B|,

for all disjoint sets A,B,X ⊂ V (G) of size roughly log n
p , where e�

�

(�G[V \X])r (A,B)

denotes the number of edges between A and B in the digraph (�G[V \ X])r.
Observe that being 1-locally dense does not depend on the orientation of

the graph (and the set X plays no role in this case), i.e., being 1-locally dense
is a pseudorandom property that depends only on the underlying graph G. In
particular any orientation of G(n, p) is 1-locally dense with high probability and
one may think of this property as a strengthening of the fact that α(G(n, p)) �
3 log n

p .

Sketch of the Proof. We will count separately the orientations �G which are �-
locally dense and the orientations which are not r-locally dense but are (r − 1)-
locally dense for some 2 � r � �. In the former case (see Lemma 2 ii), we
proceed similarly to the proof in [7]: let v ∈ V and put H = G[V \ {v}]. Let
�T ⊂ E(�G)\E( �H) be minimal such that �G is the only orientation of G containing
�T ∪ �H. Note that T+ := N+

�T
(v) and T− := N−

�T
(v) are independent sets in �H�.
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Since �G is �-locally dense, the density of edges in �H� is of order p1/�. This allows
us to prove, using the graph container lemma, that the largest independent set
in NG(v) has size roughly (log n)/p1/�.

In the case where �G is not r-locally dense but is (r − 1)-locally dense (see
Lemma 2 (i)), we use the fact that there are disjoint sets A,B ⊂ V and A′ ⊂ A,
with |A′| � |A|/2, such that for all a ∈ A′ it holds that d�

�

�Gr (a,B) � p
�−r+1

� |B|,
where d�

�

(a,B) denotes d+(a,B) + d−(a,B) (in this outline we assume X = ∅
for simplicity). Put �H = �G[V \ A′] and note that, since �G is (r − 1)-locally
dense, �Hr−1 has many edges between any two “sufficiently large” sets2. Now
given a ∈ A′ we may choose S+ ⊂ V (H) ∩ N+

�G
(v), the set of all x ∈ N+

�G
(v)

such that d+�Hr−1(x,B) � d−
�Hr−1(x,B) and S− ⊂ V (H) ∩ N−

�G
(v), the set of all

x ∈ N−
�G

(v) such that d−
�Hr−1(x,B) > d+�Hr−1(x,B). We claim that |S+|, |S−| �

Cp−1/�. Indeed, for “almost” all x ∈ S+, S− we have d�

�

�Hr−1(x,B) � p
�−r+2

� |B|,
so if |S+| or |S−| is larger than Cp−1/� then d�

�

�Gr (a,B) would be too large. Then,
S+ and S− are small sets that fully determine the orientation of all edges of G
between a and V (H).

We remark that our proof depends on using the randomness of the edges
between A′ and V (H) after choosing the orientation �H. The problem is that
usually one should have to reveal all of the edges G(n, p) before choosing the
orientation. To circumvent this fact we will actually bound the expected number
of 1-locally dense orientations of G(n, p). When estimating this expectation we
will be able to split the expectation in a way that makes possible to apply the
induction and use part of the randomness after orienting part of the edges.

3 Forbidding Directed Cycles

In this section, our goal is to count orientations of G(n, p) containing no copies
of C�

�+2. Recall that given an oriented graph �G, we denote by �Gr the digraph
such that (u, v) is an edge whenever there is a �Pr from u to v in �G. In what
follows we fix � � 1. We prove the following result, that implies Theorem2.

Theorem 3. With high probability, G(n, p) admits at most exp
(

32�n(log n)2

p1/�

)

C�
�+2-free orientations.

We postpone the proof of Theorem 3 to the end of the section to make the
required preparation. Throughout the rest of the paper, �, n and p will be
fixed, and all graphs will have vertex set contained in [n]. Furthermore, put
α = 26(log n)/p. The following definition will be used to “encode” orientations
of C�

�+2-free graphs.

2 This is the point where we need X in the definition of r-locally dense graphs, because
we want �Hr−1 = �G[V \ A′]r−1 to have many edges between pairs of sets.
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Definition 1. Given 1 � r � �, an oriented graph �G is r-locally dense if for
every pairwise disjoint sets A, B, X of V (G) such that

|A| = α, rα � |B| � �α, and |X| � (� + 1 − r)α, (4)

we have
e�

�

(�G\X)r (A,B) � p
�−r+1

� |A||B|/2. (5)

Otherwise, the orientation �G is called r-locally-sparse.

Even though the following lemma is a trivial application of Chernoff’s inequality
(together with the fact that the definition of 1-locally-dense depends solely on
the underlying undirected graph and not on the orientation of the edges), it will
be crucial.

Lemma 1. With high probability every orientation of G(n, p) is 1-locally-dense.

Given a graph G and an induced subgraph H of G, an orientation �G of G
is an extension of an orientation �H of H if E( �H) ⊂ E(�G). Furthermore, we
say that �G extends �H. Due to Lemma 1, we may restrict ourselves to counting
1-locally-dense, C�

�+2-free orientations in the rest of the paper.

Definition 2. Let G = (V,E) be a graph and let �H be an orientation of an
induced subgraph H of G. We denote by Dr(G, �H) (resp. Sr(G, �H)) the set of
all 1-locally-dense, C�

�+2-free orientations of G that extend �H and are r-locally-
dense (resp. r-locally-sparse). For convenience, we also write Dr(G) for Dr(G, ∅)
and Sr(G) for Sr(G, ∅).

In view of Lemma 1 and using the language of Definition 2, our goal is to estimate
|D1(G(n, p))|.

If �G ∈ Sr(G), then let A, B and X be pairwise disjoint sets of V (G) sat-
isfying (4) such that (5) fails to hold. In this case, there exists A′ ⊂ A with
|A′| = |A|/2 such that d�

�

(�G\X)r (a,B) � p
�−r+1

� |B| for every a ∈ A′. This moti-
vates the following definition. Recall that α = 26(log n)/p.

Definition 3. Let G be a graph and H be an induced subgraph of G, and let
B,X be disjoint subsets of V (H). The triple (H,B,X) is a G-root if

|V (G) \ V (H)| = α/2, rα � |B| � �α, and |X| � (� + 1 − r)α.

Given a G-root (H,B,X), an orientation �G of G is an (r,B,X)-sparse extension
of an orientation �H of H if for every a ∈ V (G)\V (H), we have d�

�

(�G\X)r (a,B) �
p

�−r+1
� |B|.
We let Sr(G, �H,B,X) denote the set of all orientations of �G that are

(r,B,X)-sparse extensions of �H. Taking �H = �G \ A′ in the previous discus-
sion, it follows that

Sr(G) =
⋃

(H,B,X)

⋃

�H∈D1(H)

Sr(G, �H,B,X), (6)

where the first union is over all G-roots.
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Given a graph H and a set A disjoint from V (H), we define G(H,A, p) as
the graph G with V (G) = V (H)∪A such that E(G[V (H)]) = E(H) and we add
each edge of

(
V (G)

2

) \ (
V (H)

2

)
with probability p independently at random. We

are now ready to state the main tool for the proof of Theorem3, whose proof is
omitted in this extended abstract.

Lemma 2. Let H be a graph, A be a set disjoint from V (H) with |A| = α/2
and put G := G(H,A, p). If (H,B,X) is a G-root, then for every orientation �H
of H,

(i) E

[∣
∣Dr−1(G) ∩ Sr(G, �H,B,X)

∣
∣
]

� exp
(
8A|p− 1

� log n
)

,

(ii) E

[∣
∣D�(G, �H)

∣
∣
]

� exp
(
4(� + 1)|A|p− 1

� (log n)2
)

.

Using this result, we can prove Theorem 3.

Proof. Recall that n is fixed, and put z := exp
(
8(� + 1)p− 1

� (log n)2
)
. We will

show by induction on n′ � n that

E

[∣
∣D1(G(n′, p))

∣
∣
]

� zn′
, (7)

which together with Lemma 1 and Markov’s inequality implies the desired result.
To do so, we start with the following claim.

Claim. Let n′ � n and � be positive integers. If p � log n/n, then
E

[∣
∣D1(G(n′, p)

∣
∣
]

� zα/2 · E
[∣
∣D1(G(n′ − α/2, p))

∣
∣
]
.

Proof (of claim). Let G = G(n′, p). Notice that, since every 1-locally-dense ori-
entation is either �-locally dense or admits a minimal 2 � r � � for which it is
r-locally sparse, we have

D1(G) = D�(G) ∪
�⋃

r=2

(Dr−1(G) ∩ Sr(G)), (8)

so it suffices to bound the expected sizes of the sets in the right-hand side. Let
A be a set of size α/2, and let H = G[V \ A] and F = G \ (

V \A
2

)
. Observe that

F and H are independent. Therefore,

E

[∣
∣D�(G)

∣
∣
]

= EH

[

EF

[ ∑

�H

∣
∣D�(G, �H)

∣
∣
∣
∣
∣ H

]
]

= EH

[
∑

�H

EF

[∣
∣D�(G, �H)

∣
∣
∣
∣
∣ H

]
]

,

(9)
where the sums are over �H ∈ D1(H). Conditioned on H, F ∪H is distributed as
G(H,A, p), and so we have by Lemma 2(ii) that EF

[∣
∣D�(G, �H)

∣
∣

∣
∣
∣ H

]
� z|A|/2,

and hence, by (9), E
[∣
∣D�(G)

∣
∣
]

� EH

[
∑

�H∈D1(H) z|A|/2
]

= zα/4 · E
[∣
∣D1(G(n −
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α/2), p)
∣
∣
]
, bounding one of the terms of the right-hand side of (8). To bound the

expected sizes of the remaining sets, we proceed analogously, using (6) to bound
E

[∣
∣Dr−1(G) ∩ Sr(G)

∣
∣
]

� E

[ ∑
(H,B,X)

∑
�H

∣
∣Dr−1(G) ∩ Sr(G, �H,B,X)

∣
∣
]

=

EH

[
∑

(H,B,X)

∑
�H EF

[∣
∣Dr−1(G) ∩ Sr(G, �H,B,X)

∣
∣
∣
∣
∣ H

]
]

, where the sums are

over all G-roots and all �H ∈ D1(H), respectively. Applying Lemma2(i) and
the fact that there are at most n3�α/2 � zα/3 G-roots, we have: E

[∣
∣Dr−1(G) ∩

Sr(G)
∣
∣
]

� EH

[
∑

(H,B,X)

∑
�H∈D1(H) z|A|/3

]

= zα/2 · E
[∣
∣D1(G(n − α/2), p)

∣
∣
]
,

finishing the proof of the claim.

We can now prove (7). For the base cases, note that if 2 � n′ � p−1−1/�(log n)2

then by an application of Chernoff: E

[∣
∣D1(G(n′, p))

∣
∣
]

�
∏

v∈V E

[
2|N(v)|

]
�

exp
(
8pn′2

)
� zn′

. Otherwise, n′ > p−1−1/�(log n)2 implies p � log n/n, so

from Claim 3 and the induction hypothesis we obtain E

[∣
∣D1(G(n′, p))

∣
∣
]

� zα/2 ·
E

[∣
∣D1(G(n′ − α/2, p))

∣
∣
]

� zα/2 · zn′−α/2 = zn′
, proving (7) by induction. By

Markov’s inequality and (7), the number of 1-locally-dense orientations of G(n, p)
is exp

(
32�p− 1

� n(log n)2
)

with high probability. Moreover, by Lemma1, with high
probability every orientation of G(n, p) is 1-locally-dense. This finishes the proof.
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Charles University, Prague, Czech Republic
{husek,samal}@iuuk.mff.cuni.cz

Abstract. Several recent results and conjectures study counting ver-
sions of classical existence statements. We ask the same question for
circuit double covers of cubic graphs. We prove an exponential bound
for planar graphs: Every bridgeless cubic planar graph with n vertices
has at least (5/2)n/4−1/2 circuit double covers. The method we used to
obtain this bound motivates a general framework for counting objects
on graphs using linear algebra which might be of independent interest.
We also conjecture that every bridgeless cubic graph has at least 2n/2−1

circuit double covers.

Keywords: Graph theory · Cycle double cover · Circuit double cover

Definition 1. Let G be a graph. A multiset1 of circuits (resp. cycles) C is a
circuit (resp. cycle) double cover if every edge of G is contained in exactly two
elements of C. It is a k-cycle double cover if |C| ≤ k.

We want to study a way to effectively calculate the number of circuit double
covers (CDCs for short) of graphs. All graphs considered in this paper are cubic,
bridgeless and may contain parallel edges and loops unless noted otherwise. We
count circuit double covers (circuit is a subgraph isomorphic to Cl for some l ≥ 3)
instead of cycle double covers (cycle is a subgraph with all degrees even, i.e., a
union of edge-disjoint circuits) because counting the later allows to increase the
number by just grouping the circuits into cycles in different ways.2 The original
motivation was examination of the flower snarks for which our following theorem
does not apply because their embeddings have representativity at most two (as
proved by Mohar and Vodopivec [2]).

1 We must allow repetition, otherwise there would not exist any circuit (or cycle)
double of Ck. For an introduction into the topic see e.g., [1].

2 Given a k-cycle double cover, we can split the cycle with t circuits into two cycles
and obtain 2t−1 different (k + 1)-cycle double covers.
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Theorem 2 (Hušek, Šámal [3]). Every cyclically 4-edge-connected cubic
graph with a closed cell embedding with representativity at least 4 and f faces3

has 2Ω( 3√f) circuit double covers.

This study led to interesting results like an exponential lower-bound on the
number of CDCs of bridgeless cubic planar graphs. We first present a general
framework for computing graph parameters which might be of independent inter-
est. Then we describe counting circuit double covers in this framework and apply
linear programming to obtain the exponential lower bound.

1 The Framework

The basic idea is to construct graphs by joining gadgets and to extend the
definition of a graph parameter so it can be effectively computed along this
construction. It is important to note that all vertices and edges have identity –
i.e., given a graph with two vertices and three parallel edges, we can tell which
edge is which.

A gadget is a graph with some half-edges – half-edge is an edge which is
incident to only one vertex in the gadget and its other end is “floating” so it can
be connected to the other half-edge. The half-edges are ordered – we treat them
as numbered by 1, 2, 3, . . . We identify graphs with the gadgets of size zero.

Definition 3. A gadget g is a tuple (V,E,O, f,≺) such that V and O are dis-
joint sets, E is a set, ≺ is a total order on O, (V ∪ O,E, f) is a multigraph
(f : E → (

V ∪O
2

)
maps each edge to its endpoints), |f(e) ∩ O| ≤ 1 for all e ∈ E

and |{e ∈ E : o ∈ f(e)}| = 1 for all o ∈ O. Size of the gadget is |O| and it is
denoted |g|.

We say k-gadget instead of gadget of size k. We denote the class of all graphs
G , the class of k-gadgets Gk and the class of all gadgets G∗. We create gadgets
from other gadgets by the following three elementary types of operations defined
for all k, k′ ∈ N:

1. Disjoint union 	k,k′
: Gk × Gk′ → Gk+k′

.
2. Join of half-edges, denoted J k+2

i,j : Gk+2 → Gk joining half-edges i and j.
3. Permutation of half-edge labels, denoted πk[σ] : Gk → Gk for permutation σ.

We usually omit the k and k′ as they can be inferred from context when needed.
In the rest of the paper we restrict ourselves to cubic graphs. We will still

say “all graphs” and “all gadgets” but we will mean only cubic ones.
When we say just join (denoted J :

∏
i∈[n] Gki → Gr where n is the number

of input gadgets, ki their sizes and r size of the resulting gadget), we mean
function created by composing the elementary operations.

3 Such an embedding that the closure of every face is a disk and every non-contractible
curve crosses at least 4 edges.
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Definition 4. A function P : G → R such that G1
∼= G2 ⇒ P(G1) = P(G2) is

called a graph parameter. The set R is the range of this parameter.

We want to enrich the descriptions of graph parameters so that they cap-
ture how the parameters are computed along the gadget decomposition. We will
model this using universal algebras: We first define the gadget algebra where
operations are joins and then describe the parameters using homomorphisms
from the gadget algebra.

The joins as defined above are defined only on gadgets of some size. This
would lead to a partial algebra. To avoid this we extend the gadget algebra by
a special object None and extend the joins to all gadgets but returning None on
the new elements of their domains. To simplify the notation, we denote G′ =
G∗ 	 None. More precisely we extend any join J :

∏
i∈[n] Gki → Gr to a mapping

J :
∏

i∈[n] G′ → G′ such that J (x) = None for all x �∈ ∏
i∈[n] Gki . This yields

the same results as using the partial algebras with the strong homomorphisms
as described in [4, Chap. 2].

Definition 5. The gadget algebra G is an algebra whose objects are G′ = G∗ 	
{None} and operations are the constant None and all the joins J : G′n → G′.

Definition 6. The linear representation P of the graph parameter P ′ over the
field Q consists of

– the representation algebra P,
– an algebra homomorphism hP : G → P, and
– a mapping fP : P → Q.

The representation algebra P is a vector space over Q additionally equipped with
operations corresponding to those of the gadget algebra G. We let JP denote the
operation corresponding to the join J . We fix an orthonormal basis eb of P and
index it by a set BP so we can define support supp(v) ⊂ BP . We also treat P
as a graph parameter G → Q defined P(G) = fP(hP(G)). We require that

1. hP(None) = 0,
2. supp(hP(g1)) ∩ supp(hP(g2)) = ∅ for all gadgets g1, g2 of different sizes,
3. all the functions JP are linear in all their arguments,
4. fP is also a linear function and
5. P(G) = P ′(G) for all G ∈ G .

We call elements of the set Bk
P =

⋃
g∈Gk supp(hP(g)) ⊂ BP the k-boundaries

and the elements of Ok
P = Q

Bk
P (as a subspace of P) k-multiplicity vectors. We

omit the subscript P whenever possible. We say that the representation is finite
if all the sets Bk

P are finite.

Observation 7. Let P be a linear representation and let S be some set of k-
gadgets. Define matrix Ak

g1,g2
= P(J k

g (g1, g2)) where J k
g : Gk×Gk → G is gluing4

and g1, g2 ∈ S. Then rank(Ak) ≤ |Bk
P′ | for every linear representation P ′ of the

same graph parameter.
4 It joins the half-edges with the same labels. The result is a gadget of the size zero –

i.e., a graph.
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On the other hand we do not expect this lower bound to be always tight but
leave this as an open problem:

Problem 8. Given arbitrary graph parameter with a finite linear representation
over Q. Is there such a representation P of this parameter that rank(Ak) = |Bk

P |
for S = Gk and all k?

Problem 9. Characterize graph parameters which have a finite linear represen-
tation over Q, R or C. What if we restrict the growth of |Bk|?

2 The Number of CDCs as a Linear Representation

With the general framework in place, we can get back to the circuit double
covers of cubic graphs. We will model the number of CDCs as a finite linear
representation. We let ν(G) denote the number of circuit double covers of graph
G, we also use ν to denote the linear representation we construct.

We describe CDCs by crossings on edges. We take some drawing of the graph
in a plane – vertices are distinct points, edges are simple curves that do not go
through vertices except at the ends but the edges can cross each other. We can
define a walk along the edges in such a drawing and circuit double cover can be
described by specifying whether its walks swap sides or not on each edge.

It is natural to extend this definition to gadgets. The CDC on a gadget is
a (multi)set of circuits and walks which covers every edge of the gadget twice
(including the half-edges). Both ends of each walk must be half-edges and no
edge can appear twice in one walk. The crossings on regular edges are already
determined but the crossings on half-edges will be determined when the half-edge
is joined with another half-edge.

How do the gadget joins act on the CDCs? The disjoint union of the under-
laying gadgets is just a union of the CDCs and it always succeeds. Permuting
half-edges does nothing, the only interesting operation is joining two half-edges
together. When we are joining two half-edges, there are two walks on each of
them and we must determine in which of the two possible ways we can join them.

What determines whether we can join two walks? We can always join a walk
to itself, creating a circuit. If the walks are different, we only need them to not
share an edge (otherwise we would create a self-touching walk which could not
be completed into a circuit). Note that circuits do not participate in the joins in
any way. We can formalize this and use the descriptions of the structure of the
CDCs at the half edges as boundaries to construct a linear representation.

Observation 10. The described representation has 2Θ(k2) boundaries of size k.

Theorem 11. Any linear representation counting the number of circuit double
covers must have at least 2Ω(k log k) boundaries of size k.

On the other hand for small k the asymptotic behaviour is not important
and the values itself are more interesting – |B0| up to |B7| are 1, 0, 1, 1, 33, 744,
69 920 and 13 710 912.
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Observation 12. Replacing a 3-vertex with a triangle doubles the number of
circuit double covers.

Corollary 13. Any n-vertex graph created from three parallel edges by repeat-
edly expanding vertices to triangles has exactly 2n/2−1 circuit double covers.

The results we obtained so far motivate our following conjecture:

Conjecture 14. Every bridgeless cubic graphs with n vertices has at least
2n/2−1 circuit double covers.

3 Reducing Cycles – The General Method

We want to show that graphs in some class C have many CDCs and we know
that there is a small set of gadgets S such that every graph of C has some gadget
of S as an induced subgraph.

We can for every gadget s ∈ S choose a set of smaller gadgets Rs and try to
prove that the number of CDCs of a graph G containing s can be lowerbounded
by the number of CDCs of G with s replaced by elements of Rs. If this is true,
the modified graphs are all smaller and they also belong into C then we obtain
some lower bound on the number of CDCs for class C.

Proving the lower bound for each s is where the linear programming comes
into a play. We saw a special case of this approach before in Observation 12.
But in that case there was only one boundary and one substitution gadget, so
no linear program was needed.

Theorem 15. If the objective value of the linear program P described below is
at least one then the following holds for all gadgets g:

ν(J (g, s)) ≥ min
r∈Rs

cn(s)−n(r)ν(J (g, r))

where n(g) is the number of vertices of gadget g and the linear program P is:

– The variables are m ∈ R
B|s|

which we interpret as coefficients of a multiplicity
vector and they are non-negative.

– The objective is to minimize Jν(m,hν(s)) – the number of CDCs of the join
of the worst “gadget” and s.

– For every r ∈ Rs there is a condition cn(s)−n(r)Jν(m,hν(r)) ≥ 1.

4 Reducing Cycles – Application to Planar Graphs

We are interested in bridgeless cubic planar graphs. We know that every such
graph contains a cycle of size at most 5 because its dual is also a planar graph
and so it contains a vertex of degree at most 5 (due to Euler’s formula). Moreover
for c ≤ √

2 we may assume that the graph is cyclically 4-edge-connected. So we
take all 4-edge-connected planar cubic graphs as the class C.
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We replace the 4-cycles with the 2 possible noncrossing matchings and the
5-cycles with a cubic vertex and free edge (again drawn in a noncrossing way)
in all the 5 possible rotations. The following theorems show the results of this
replacements:

Theorem 16. Let G be a cyclically 4-edge-connected cubic graph with a 4-
cycle. Let G1 and G2 be the two possible graphs obtained from G by deleting
two opposite edges of the 4-cycle and suppressing vertices of degree 2. Then
ν(G) ≥ 4min{ν(G1), ν(G2)}.
Proof. Because the graph is cyclically 4-edge-connected and we are deleting non-
adjacent edges, the resulting graph is still 2-edge-connected. We apply Theo-
rem 15 with c =

√
2, 4-cycle as s and the two non-crossing matchings as Rs. We

obtain the following linear program:

max

{
33∑

i=1

oimi :
√

2
4

33∑

i=1

aimi ≥ 1 ∧
√

2
4

33∑

i=1

bimi ≥ 1

}

where mi are the variables and oi, ai and bi are constants evaluated by a com-
puter (although they might be computed by hand in this case). Each variable
corresponds to a boundary and |B4| = 33 hence there is 33 variables. Each
inequality corresponds to an elements of Rs. Plugging in the values, taking dual
and removing conditions obviously implied by other conditions, we get:

max
{

1
4
x0 +

1
4
x1 : x0 ≤ 2 ∧ x1 ≤ 2

}

The objective value of this linear program is 1. This satisfies the conditions of
the theorem so we obtain:

ν(G) = ν(J (g, s)) ≥ min
r∈Rs

√
2
4
ν(J (g, r)) = 4min{ν(G1), ν(G2)}.

Theorem 17. Let G be a cyclically 4-edge-connected cubic graph with a 5-cycle
and no 4-cycle. Let G1, G2, . . . , G5 be the 5 possible graphs obtained from G by
replacing the 5-cycle by a cubic vertex and an edge in non-crossing way (assum-
ing the 5-cycle is a face). Then ν(G) ≥ 5/2mini ν(Gi). If we replace the 5-cycle
by a cubic vertex and an edge in the all possible ways (i.e., breaking planarity)
we get ν(G) ≥ 3.75mini ν(Gi).

The previous theorems together with the fact that the hypothetical minimal
counterexample does not have 2-cut nor nontrivial 3-cut lead to the following
corollary:

Corollary 18. Every bridgeless planar graph with no vertex of degree two has
at least (5/2)n/4−1/2 ≈ 20.33n circuit double covers.

Corollary 19. A minimal counterexample (the one with the smallest number of
vertices) to Conjecture 14:
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1. does not have 2-edge-cut,
2. does not have non-trivial 3-edge-cut,
3. does not contain triangle,
4. does not contain 4-cycle, and
5. has at least 22 vertices.
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Abstract. For a graph G and an oriented graph �H, let G → �H denote
the property that every orientation of G contains a copy of �H. We inves-
tigate the threshold p �H = p �H(n) for G(n, p) → �H, where G(n, p) is
the binomial random graph. Similarly to the classical (edge-colouring)

Ramsey setting, p �H � n−1/m2( �H), where m2( �H) denotes the maximum

2-density of �H. While n−1/m2( �H) gives the correct order of magnitude
for acyclic orientations of cycles and complete graphs with at least 4 ver-
tices, this is known not always to be the case. We extend the examples in
that category, describing a large family of oriented graphs �H such that

p �H � n−1/m2( �H).

Keywords: Ramsey theory · Random graphs · Oriented graphs

1 Introduction

Given a graph G and an oriented graph �H, we write G → �H to mean that every
orientation of G contains a copy of �H. This property has been investigated by a
range of authors (see, e.g., [5,7–10,12–16,20,21,24,25]), focusing on orientations
of complete graphs.

We study this property in the context of the binomial random graph G(n, p),
which is the random graph formed from the complete graph Kn by deleting each
edge independently with probability 1 − p. More precisely, we are interested
in determining, for any acyclically oriented graph �H, the threshold function
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p �H = p �H(n) of G(n, p) → �H. We call p �H = p �H(n) a threshold for G(n, p) → �H
if

lim
n→∞

P
[
G(n, p) → �H

]
=

{
0 if p � p �H

1 if p � p �H ,

where a � b (or, equivalently, b � a) means limn→∞ an/bn → 0 (we speak of
‘the threshold p �H ’, since p �H is unique up to constant factors).

Thresholds for Ramsey-type properties are widely studied (see, e.g., [11,18]
and the many references therein). Note that since every graph admits an acyclic
orientation, G �→ �H whenever �H contains a directed cycle. On the other hand,
if �H is acyclic, then the property G(n, p) → �H is non-trivial and monotone, and
hence (as proved by Bollobás and Thomason [3]) it has a threshold p �H = p �H(n).

Let H be a graph. As usual, let v(H) and e(H) denote the number of ver-
tices and edges in H. An important parameter for estimating thresholds of
Ramsey-type properties involving H is the maximum 2-density m2(H) of H
(for v(H) � 3), given by maxJ(e(J) − 1)/(v(J) − 2), where the maximum is
taken over all J ⊂ H with v(J) � 3. We also consider the maximum density
m(H), defined as maxJ e(J)/v(J), where the maximum is taken over all J ⊂ H

with v(J) � 1. Analogous definitions are used for every oriented graph �H: we
denote by H the (undirected) graph we obtain from �H by ignoring the orienta-
tion of its arcs, and set m2( �H) := m2(H) and m( �H) := m(H).

For any acyclic oriented graph �H, we can obtain an upper bound for p �H
using the regularity method (it suffices to combine ideas from [11, Sect. 8.5] and,
say, [6]). For an alternative approach giving the same upper bound, based on
the methods of [19], see [4].

Theorem 1 (Cavalar [4]). For every acyclically oriented graph �H there exists
a constant C = C( �H) such that if p ≥ Cn−1/m2( �H) then a.a.s. G(n, p) → �H.

Barros, Cavalar, Kohayakawa and Naia [2] proved that p �H = n−1/m2( �H) for
every acyclic orientation of a complete graph or a cycle with at least 4 vertices.
Furthermore, they showed that the threshold is lower for transitive triangles.

Theorem 2 (Barros, Cavalar, Kohayakawa and Naia [2]). If �Ht is an
acyclic orientation of a complete graph or a cycle with t vertices, then

p �Ht
=

{
n−1/m(K4) if t = 3

n−1/m2( �Ht) if t ≥ 4.

We shall describe a large family of oriented graphs �H such that p �H �
n−1/m2( �H). In order to define this family, consider an oriented graph �H and
let r be an arbitrary vertex of �H. Sometimes we say that �H is rooted at r, or
(equivalently) that r is the root of �H. Given an oriented graph �F , we denote by
�F ◦ �H the rooted product of �F and �H, defined as �F ◦ �H = (V,E) where
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V = V (�F ) × V ( �H), and

E =
{(

(f, r), (f ′, r)
)

: (f, f ′) ∈ E(�F )
}

∪
⋃

x∈V (�F )

{(
(x, h), (x, h′)

)
: (h, h′) ∈ E( �H)

}
.

See Fig. 1 for an example of the rooted product between oriented graphs. Also,
let

#   „

TT3 be the transitive tournament on 3 vertices. We prove that, for the rooted
product �F ◦ �H of some oriented graphs �F and �H, the threshold p�F◦ �H is asymp-
totically smaller than n−1/m2(�F◦ �H). Note that m2(F ) < 2 whenever F is a tree
or cycle with at least four vertices.

Fig. 1. An oriented tree �F , a rooted
#   „
TT3 and their rooted product �F ◦ #   „

TT3.

Theorem 3. Let �H be a rooted
#   „

TT3. If m2(�F ) < 2 and �F is acyclic,
then p�F◦ �H � n−1/m2(�F◦ �H).

In order to obtain Theorem 3, we prove that sublinearly-sized subsets of
vertices of G(n, p) inherit the orientation Ramsey property. Our proof uses the
method of hypergraph containers [1,22] applied to thresholds of Ramsey prop-
erties, closely following ideas of Nenadov and Steger [19].

Theorem 4. Let �H be an acyclically oriented graph. For every 0 < γ < 1, there
exists D such that the following holds. If p � (D ln n)n−(1−γ)/m2( �H) then for
G = G(n, p) we a.a.s. have that G[S] → �H for all S ∈

(V (G)
n1−γ

)
.

In the next section we prove Theorem 3. In Sect. 3 we observe that Theorem 3
holds even for trees �F whose order is a small polynomial in n (see Theorem 5).
Finally, in Sect. 4 we outline the proof of Theorem 4.

2 Proof of Theorem 3

We prove Theorem 3 using a restricted version of a general result (see, e.g. [11,
23]).

Lemma 1 (Schürger [23]). If δ > 0 and p � nδ−1/m(K4), then a.a.s. G(n, p)
contains Θ(n6δ) vertex-disjoint copies of K4.

Given an oriented graph �H and a positive integer k, we denote by k �H the
disjoint union of k copies of �H. For brevity, we omit some calculations.
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Proof (Theorem 3; outline). We prove that there are constants γ, D and δ > 0,
such that p = (D log n)n−(1−γ)/m2(�F ) ≥ nδ−1/m2(K4), 6δ > 1 − γ and p �
n−1/m2(�F◦ �H). Lemma 1 and the first inequality above imply that a.a.s. G(n, p)
contains n6δ vertex-disjoint copies of K4. The second inequality, together with
the fact that K4 → �H, implies that a.a.s. G(n, p) → n1−γ �H. Theorem 4 implies
that a.a.s. in every orientation of G(n, p) the root vertices in copies of �H induce
a copy of �F . Hence p�F◦ �H ≤ p, and the third inequality completes the proof. �

3 Larger Trees (proof of Theorem 5)

In this section we prove Theorem 3 for “large” trees.

Theorem 5. Let �F be an oriented tree and �H be a rooted
#   „

TT3. For every ε > 0
there is γ > 0 such that the following holds. If v(�F ) ≤ n1/2−ε and p � n−1/2−γ ,
then a.a.s. G(n, p) → �F ◦ �H. In particular, p�F◦ �H � n−1/m2(�F◦ �H).

To prove Theorem 5 we need the following result.

Theorem 6 (Naia [17]). If G is a graph and T is an oriented tree whose order
is at most χ(G)/ log2 v(G), then G → T .

We can now prove Theorem 5.

Proof (of Theorem 5). Fix ε > 0 and let γ = ε/8. Let δ := 1/6 − γ and p :=
nδ−1/m(K4) = n−1/2−γ . Note that p � n−1/m2(K3) = n−1/m2(�F◦ �H). We will show
that a.a.s. G(n, p) → �F ◦ �H.

By Lemma 1, a.a.s. G = G(n, p) contains m vertex-disjoint copies H1, . . . , Hm

of K4, where m ≥ Cn6δ for some C > 0. Moreover, by an easy application of the
first moment method, we have that a.a.s. α(G) < 3p−1 log n, so for all S ⊆ V (G)
with |S| ≥ Cn6δ we have χ

(
G[S]

)
≥ |S|/α

(
G(n, p)

)
> Cn1/2−7γ/(3 log n).

Fix an orientation of G. Since K4 → #   „

TT3, for each i ∈ [m], the orientation
of Hi contains a copy of

#   „

TT3 whose root corresponds to some ri ∈ V (Hi). By
Theorem 6, the fixed orientation of G′ = G

[
{r1, . . . , rm}

]
contains every oriented

tree with χ(G′)/ log2 m > n1/2−ε vertices, which follows from the choice of γ. �

4 Inheritance by Sublinear Sets (Proof of Theorem 4)

Let �H be an acyclically oriented graph. In this section we sketch a proof that,
if γ > 0 and p lies slightly above n−(1−γ)/m2( �H), then a.a.s. the Ramsey prop-
erty G(n, p) → �H is inherited (simultaneously) by all vertex subsets of size n1−γ .
An important ingredient in the proof of Theorem 4 is the following container the-
orem for digraphs, which we obtain by applying the hypergraph container lemma
of Saxton and Thomason [22] and Balogh, Morris and Samotij [1]. We omit the
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somewhat technical proof of Theorem 7 below for conciseness. For convenience,
given numbers n, s and t, define

T (n, s, t) :=
{

(T1, . . . , Ts) ∈ E(Kn)s :
∣
∣
⋃

i∈[s]

Ti

∣
∣ � t

}
.

Theorem 7. Let �H be an acyclic oriented graph. There exists α > 0 and positive
integers n0, s and c such that the following holds for all n � n0. For each graph
G of order n such that G �→ �H, there exists T = (T1, . . . , Ts) ∈ E(G)s and a set
C = C(T ) ⊆ E(Kn) depending only on T such that

(a)
⋃

i∈[s] Ti ⊆ E(G) ⊆ C,
(b) |E(Kn)\C| � αn2, and
(c) T ∈ T (n, s, cn2−1/m2( �H)).

Let us outline the proof of Theorem 4. Our calculations follow those of
Nenadov and Steger [19], but we require an extra union bound, over vertex
sets of size n1−γ . For each S ⊆ V (G) denote by E(S) and Ec(S), respectively,
the events G[S] → �H and G[S] �→ �H. For each S ∈

(V (G)
n1−γ

)
, if G[S] �→ �H, then

by Theorem 7 (applied to G[S]) there exists an s-tuple T with

T = (T1, . . . , Ts) ∈ T (n1−γ , s, cn(2−1/m2( �H))(1−γ)) (1)

and a set C(T ) ⊆ E(Kn) such that
⋃

i∈[s] Ti ⊆ E(G[S]) ⊆ C(T ) and
|E(Kn1−γ )\C(T )| � αn2(1−γ). Crucially, G[S] avoids E(Kn1−γ )\C(T ). We can
bound P[Ec(S)] by bounding the probability that there exists an s-tuple T
from (1) such that E0(T ) := E(Kn1−γ )\C(T ) is edge-disjoint from G[S]. Thus,
writing t := cn(2−1/m2( �H))(1−γ), we have

P[Ec(S)] ≤
∑

T∈T (n1−γ ,s,t)

P

⎡

⎣

⎛

⎝
⋃

i∈[s]

Ti ⊆ E(G[S])

⎞

⎠ ∧ (E(G[S]) ∩ E0(T ) = ∅)

⎤

⎦ .

Note that the two events in the above probability are independent and hence

P[Ec(S)] ≤
∑

T∈T (n1−γ ,s,t)

p

∣
∣
∣⋃

i∈[s] Ti

∣
∣
∣ · (1 − p)αn2(1−γ)

.

The sum can be bounded by first deciding on the number of edges

j :=
∣
∣
∣

⋃

i∈[s]

Ti

∣
∣
∣ ≤ cn(2−1/m2(H))(1−γ),

then choosing j edges, and finally deciding, for each edge, in which of the s-tuples
T1, . . . , Ts it appears. It is then possible to show that

P[Ec(S)] � exp
(
−n(2−1/m2( �H))(1−γ) ln n

)
.

Applying the union bound over all choices of S, we deduce that P [
⋃

S Ec(S)] ≤
∑

S∈(V (G)
n1−γ) P

[
Ec(S)

]
= o(1), since m2( �H) ≥ 1 and γ < 1, and Theorem 4 follows.
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18. Nenadov, R., Person, Y., Škorić, N., Steger, A.: An algorithmic framework for

obtaining lower bounds for random Ramsey problems. J. Combin. Theory Ser. B
124, 1–38 (2017)

19. Nenadov, R., Steger, A.: A short proof of the random Ramsey theorem. Combin.
Probab. Comput. 25(1), 130–144 (2016)
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Abstract. By using permutation representations of maps, one obtains
a bijection between all maps whose underlying graph is isomorphic to
a graph G and products of permutations of given cycle types. By using
statistics on cycle distributions in products of permutations, one can
derive information on the set of all 2-cell embeddings of G. In this paper,
we study multistars—loopless multigraphs in which there is a vertex
incident with all the edges. The well known genus distribution of the
two-vertex multistar, also known as a dipole, can be used to determine
the expected genus of the dipole. We then use a result of Stanley to show
that, in general, the expected genus of every multistar with n nonleaf
edges lies in an interval of length 2/(n + 1) centered at the expected
genus of an n-edge dipole. As an application, we show that the face
distribution of the multistar is the same as the face distribution gained
when adding a new vertex to a 2-cell embedded graph, and use this to
obtain a general upper bound for the expected number of faces in random
embeddings of graphs.

Keywords: Random maps · Genus distribution · Dipole · Multistar

1 Introduction

By an embedding of a graph G, we mean a 2-cell embedding of G in some oriented
surface. Two embeddings of G are equivalent if there is an orientation-preserving
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homeomorphism of the surface mapping the graph in one embedding onto the
graph in the other, and the restriction of the homeomorphism to the graph
is the identity isomorphism. Equivalent embeddings are considered the same
since they define the same map, where a map is considered as the incidence
structure of vertices, edges and faces of the embedding. It is well known [4,10]
that equivalence classes of 2-cell embeddings of G (i.e., maps whose underlying
graph is G) are in bijective correspondence with local rotations, where for each
vertex v ∈ V (G) we prescribe a cyclic permutation πv of the half-edges, or darts,
incident with v.

We consider the ensemble of all maps of G, endowed with the uniform prob-
ability distribution. The genus and the number of faces of a random map of G
become random variables in this setting. This gives rise to the notion of the aver-
age genus of the graph and leads to random topological graph theory as termed
by White [11]. It turns out that considering all embeddings of a graph is useful
not only in graph theory and combinatorics, but also in applications in algebra
and in theoretical physics. We refer to Lando and Zvonkin [2] for an overview of
such applications.

Two special cases of random embeddings are well understood. The first one
is when the graph is a bouquet of n loops (also called a monopole), which is the
graph with a single vertex and n loops incident with the vertex. By duality, the
maps of the monopole with n loops correspond to unicellular maps [1] with n
edges. The second well studied case is the n-dipole, a two-vertex graph with n
edges joining the two vertices.

The main object of study in this paper are multi-stars, or loopless multigraphs
in which there is a vertex incident with all the edges. Formally, we have one center
vertex v0 incident to n edges; these edges lead to k ≥ 1 other vertices, v1, . . . , vk,
with ni edges between v0 and vi (1 ≤ i ≤ k). As n1 ≥ n2 ≥ · · · ≥ nk ≥ 1, where
∑k

i=1 ni = n, we see that multi-stars with n edges are in bijective correspondence
with partitions of n. An expression for the genus polynomial of multi-stars was
obtained by Stanley [9], and our main results use this formulation to derive
precise bounds for the expected genus of these graphs (see Sect. 3).

Although most previous works in random topological graph theory concern
the (average) genus, it turns out that the number of faces is a more natural statis-
tic. Fixing a graph G, the Euler-Poincaré formula allows us to switch between
the genus of a map of G and the number of faces in the map. If G has n vertices
and e edges, then a map of G of genus g has f = e − n + 2 − 2g faces. This
provides an easy exchange between the average genus and the expected number
of faces.

The paper is organized as follows. In Sect. 2, we show that the expected
number of faces for a random embedding of a dipole with n edges is precisely
Hn−1 +

⌈
n
2

⌉−1, where Hn−1 = 1 + 1
2 + 1

3 + · · · + 1
n−1 is the harmonic sum (see

Corollary 1). Previously, Stahl [8] proved that the average number of faces is at
most Hn−1 + 1. It is worth noting that we are able to obtain our exact result
with a relatively simple combinatorial proof.



Random 2-Cell Embeddings of Multistars 807

In Sect. 3 we extend the dipole result to multistars, showing that they have
the same expected number of faces as dipoles up to a difference of ± 1

n+1 (see
Theorem 3). In Sect. 4 we note that the result for multistars can be used in a
more general setting, where we consider a map to which we add a new vertex and
consider the expected number of new faces obtained after doing so. In particular,
our Theorem 4 shows that the expected number of new faces obtained when
adding a new vertex of degree d is at most log(d) + 1 (where we use log(·) to
denote the natural logarithm). We apply this result to obtain new upper bounds
for the expected number of faces of several families of graphs on n vertices. A
notable outcome is for d-regular graphs, where the conclusion is that the expected
number of faces is at most n log(d). More generally, the same result works for
d-degenerate graphs (see Theorem 5 and Corollary 6). This also improves an old
result of Stahl [7] that the expected number of faces in a random embedding of
an arbitrary graph of order n is at most n log(n).

2 The Dipole

We will start by studing random embeddings of the dipole Dn: the graph with two
vertices and n parallel edges joining them. Each embedding of Dn is determined
by the local rotations at both vertices. In this case, each local rotation is a full
cycle in Cn. This means there is a bijection between embeddings of Dn and pairs
{(σ, τ) : σ, τ ∈ Cn}. It is then fairly easy to see that the faces in an embedding
given by (σ, τ) correspond to the cycles in the permutation product στ .

Calculating the expected number of faces in an embedding of Dn is therefore
equivalent to calculating the expected number of cycles in a product of two full
cycles taken randomly from Cn. The labelling on the symbols in Sn is arbitrary,
so we may fix one of the full cycles to be σ = (1 2 3 . . . n) and just consider the
set {(σ, τ) : τ ∈ Cn}. Let F be the random variable for the number of cycles
in στ when τ is chosen uniformly at random from Cn. Therefore the expected
number of faces in a random embedding of Dn is equal to E[F ]. Using a result
of Stanley [9], we get the following:

Corollary 1. Let F be the number of faces in a random embedding of Dn, where
n ≥ 2. Then

E(F ) =

{
Hn−1 + 2

n , if n is even;
Hn−1 + 2

n+1 , if n is odd.

3 Multi-stars

As mentioned in the introduction, multistars with n edges are in bijective corre-
spondence with partitions of n. If n = λ1 + · · · + λk, we denote the partition as
λ = (λ1, . . . , λk) and write λ � n. We denote by Cλ the set of all permutations of
type λ. We consider the multistar of type λ: the multistar with k outer vertices
and λi edges from the central vertex to the ith outer vertex. Call this Kλ(n).
Let r(λ) denote the number of parts of size 1 in λ, and note that a vertex of



808 J. Campion Loth et al.

degree 1 in a multistar has no effect on the number of faces. Stanley [9] gives
the generating function we will use (the shift operator E is defined by the rule
E(f(q)) = f(q − 1)).

Theorem 2 ([9]). Let fλ(j) denote the number of permutations in Cλ, whose
product with the full cycle (1 2 · · · n) is a permutation with j cycles. Then:

n∑

j=1

fλ(j)qj =
|Cλ|

(n + 1)!

(
k∏

i=1

(1 − Eλi)

)

(q + n)n+1.

We use this result to derive our main result of this section.

Theorem 3. Let Fλ(n) be the random variable denoting the number of faces in
a random embedding of Kλ(n) and let n′ = n − r(λ). Then

E(Fλ(n)) ∈
(
Δn′ − 1

n′+1 , Δn′ + 1
n′+1

)
,

where Δn′ = Hn′−1 +
⌈

n′
2

⌉−1

.

Let us observe that the value Δn′ = Hn′−1 +
⌈

n′
2

⌉−1

in Theorem 3 is pre-
cisely the same as the expected number of faces for the dipole with n′ edges in
Corollary 1.

4 General Graphs

Next we use the results of the previous sections to get bounds on the expected
number of faces for random embeddings of more general classes of graphs.

Now suppose we have a fixed embedding of some graph G, and want to add
a new vertex to this graph. The new vertex v is connected to some vertices of
G. If u is a neighbor of v, we fix one of the appearances of u on the facial walks
of G. This is where the edge uv will emanate from u in the local clockwise order
around u. Finally, choosing a local rotation at v randomly gives an embedding
of G′ = G + v.

If two edges incident with v end up in the same face of G we call them equiv-
alent; this defines a partition λ � deg(v) =: d. We can relate the number of faces
incident with v and the number of faces in an embedding of the multistar Kλ(d),
which we studied in the previous section. As a result we get the following.

Theorem 4. Suppose a vertex v of degree d is added to an embedding of a
graph G by giving v a random local rotation. Then the expected number of faces
containing v is less than

h(d) := Hd−1 +
⌈

d
2

⌉−1
+

1
d + 1

.
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Theorem 4 implies general bounds on the expected number of faces in random
embeddings of graphs. Given a graph G, let F denote the random variable for
the number of faces in a random embedding of G. It immediately follows from
Theorem 4 that, if G has maximum degree d ≥ 2, then E[F ] < n

(
log(d) + 5

3

)
.

In fact, we can obtain a stronger upper bound. The graph is said to be d-
degenerate if there is an ordering of its vertices v1, . . . , vn such that di ≤ d for
each i ∈ [n], where di denotes the number of neighbors vj of vi with j < i.
We call di the back-degree. We make a slight change to the definition above.
Whenever di = 0 we redefine it to the value di = 1 instead.

Theorem 5. Let G be a connected graph of order n. Given a linear order of
vertices v1, . . . , vn with respective back-degrees di (1 ≤ i ≤ n), we have

E[F ] ≤ 1 +
n∑

i=3

log d∗
i , (1)

where d∗
i := di if di �= 2 and d∗

i := e if di = 2. We also have

E[F ] ≤ 1 +
n∑

i=3

Hdi−1. (2)

Corollary 6. Let G be a connected d-degenerate graph. If d = 2, then E[F ] ≤
n − 1. If d ≥ 3, then E[F ] ≤ 1 + (n − 2) log d.

Theorem 5 improves upon the previous best known general bound, proven
by Stahl in [7]. A similar improvement has been made with (2), which should be
compared with the bound E(F ) ≤ n +

∑n
i=1 Hd′

i−1 from [7].
In a separate paper [6], Stahl described some infinite families of graphs for

which E(F ) is linear in the number of vertices. All of them arised by linking
together n copies of a fixed graph H “in a consistent manner so as to form a
chain”. The collection of graphs for which the expected number of faces is linear
is much richer though, as the following proposition illustrates.

Proposition 7. Let G be a graph and let C be a family containing cycles (2-
regular connected subgraphs) of G. Suppose that each cycle in C has length at
most � and all of its vertices have degree at most d. If d �= 2, then the expected
number of faces in a random embedding of G is at least 2|C|

(d−1)� .

Note that two cycles in C are allowed to intersect. Combining Theorem 5 with
Proposition 7, we see that any graph with the bounded maximum degree and
linearly many short cycles has linearly many expected faces. Although Propo-
sition 7 describes general classes of graphs with the linear expected number of
faces, it is believed that this is rare. In fact, Stahl conjectured [5, Conjecture
4.3] that for almost all graphs with q edges, the expected number of faces in a
random embedding is close to H2q.

We were unable to find any graph family with unbounded degeneracy for
which the bound in Theorem 5 is tight. Indeed, we believe that such graphs do
not exist.
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Conjecture 8. The expected number of faces in a random embedding of a graph
on n vertices with maximum edge multiplicity μ is O(n log(2μ)).

Conjecture 8 would imply that the expected number of faces in a random
embedding of any simple graph is at most linear in the number of vertices. Notice
that the dipole, considered in Sect. 2, gives a family of graphs for which Con-
jecture 8 is tight. Moreover, a long path in which every second edge is replaced
by a dipole with μ edges gives a tight family in which each of n and μ can
independently tend to infinity.

Acknowledgements. The authors would like to thank Amarpreet Rattan for pointing
out relevant literature, and Ladislav Stacho for helpful initial discussions on the topic.
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Cycle Saturation in Random Graphs
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Abstract. For a fixed graph F, the minimum number of edges in an
edge-maximal F -free subgraph of G is called the F -saturation number.
The asymptotics of the F -saturation number of the Erdös–Rényi ran-
dom graph G(n, p) for constant p ∈ (0, 1) was established for any com-
plete graph and any star graph. We obtain the asymptotics of the Cm-
saturation number of G(n, p) for m � 5. Also we prove non-trivial linear
(in n) lower bounds and upper bounds for the C4-saturation number of
G(n, p) for some fixed values of p.

Keywords: Random graph · Saturation · Cycle · Extremal graph
theory

One of the fundamental problems of the extremal graph theory was posed
by Turán [1]. It is concerned with finding the maximum number of edges in a
graph on n vertices without a copy of a given graph F as a subgraph. This value
is denoted by ex(n, F ). Zykov [2] and later independently Erdös, Hajnal and
Moon [3] raised a dual question of finding the minimum number of edges in an
edge-maximal F -free graph on n vertices. Let us give a formal definition.

Let F and H be graphs. H is said to be F -saturated if it is a maximal F -free
graph, i.e. H does not contain any copy of F as a subgraph, but adding any
missing edge to H creates one. The saturation number sat(n, F ) is defined to be
the minimum number of edges in an F -saturated graph on n vertices.

If F is an m-clique then sat(n, F ) is known. It was proven in [3] that when
n � m � 2, then

sat(n,Km) = (m − 2)n −
(

m − 1
2

)
. (1)

Denote by K1,m the star graph on m + 1 vertices. Its saturation number is
also known. It was proven by Kászonyi and Tuza [4] that

sat(n,K1,m) =

{(
m
2

)
+

(
n−m

2

)
, m + 1 � n � 3m

2 ;⌈ (m−1)n
2 − m2

8

⌉
, n � 3m

2 .
(2)

Finding sat(n,Cm) is harder. The problem is solved only for m = 4, 5. It was
determined in [5] by Ollman that for n � 5

sat(n,C4) =
⌊

3n − 5
2

⌋
. (3)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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An upper bound of ⌈
10
7

(n − 1)
⌉

(4)

for sat(n,C5) was given in [6] by Fisher, Fraughnaugh and Langley. In a very
technical paper [7] by Chen it was shown that for n � 21 this upper bound is
also a lower bound for sat(n,C5).

Luo, Shigeno and Zhang in [8] established that

sat(n,C6) �
⌊

3n − 3
2

⌋
, for n � 9,

sat(n,C6) �
⌈

7n

6

⌉
− 2, for n � 6. (5)

Finally, Füredi and Kim [9] showed that for all m � 7 and n � 2m − 5
(

1 +
1

m + 2

)
n − 1 < sat(n,Cm) <

(
1 +

1
m − 4

)
n +

(
m − 4

2

)
. (6)

Observe that there is a gap between upper and lower bounds though Füredi and
Kim conjectured that the constructions yielding the upper bound are optimal.

More results concerning the saturation problem can be found in a survey [10]
by J. Faudree, R. Faudree, Schmitt and in references therein.

Many classical extremal questions were extended to random settings. Korándi
and Sudakov [11] initiated the study of the saturation problem for random
graphs.

Recall that the random graph G(n, p) is a random element of the set of
all graphs G on [n] := {1, . . . , n} with probability distribution p|E(G)|(1 −
p)(

n
2)−|E(G)| (or, in other words, every pair of vertices is adjacent with prob-

ability 0 � p � 1 independently). We say that a graph property Q holds with
high probability (whp), if P (G(n, p) ∈ Q) → 1 as n → ∞.

For fixed graphs F and G we say that a subgraph H ⊆ G is F -saturated in
G if H is a maximal F -free subgraph of G. The minimum number of edges in
an F -saturated graph in G is denoted by sat(G,F ).

Korándi and Sudakov [11] asked a question of determining the saturation
number of G(n, p) when F is a complete graph Km on m vertices. They proved
that for every fixed p ∈ (0, 1) and fixed integer m � 3 whp

sat(G(n, p),Km) = (1 + o(1))n log 1
1−p

n. (7)

The saturation number of G(n, p) when F is a star graph was studied in
a couple of papers. Note that by the definition sat(G,K1,2) coincides with the
minimum cardinality of a maximal matching in G. Zito [12] showed that

lim
n→∞P

(n

2
− log 1

1−p
(np) < sat(G(n, p),K1,2) <

n

2
− log 1

1−p

√
n
)

= 1. (8)
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Mohammadian and Tayfeh–Rezaie [13] proved that for every fixed p ∈ (0, 1)
and fixed integer m � 3 whp

sat(G(n, p),K1,m) =
(m − 1)n

2
− (1 + o(1))(m − 1) log 1

1−p
n. (9)

Observe that their upper bound is stronger than the one in (8) whereas the lower
bound is weaker.

It is interesting to analyze the stability of the saturation number. When F
is a complete graph the comparison of (1) and (7) shows that it gets roughly
logarithm times bigger. When F is a star on m + 1 vertices the contrast of (2)
and (8),(9) shows that there is an asymptotical stability.

It is natural to ask a question about the asymptotic behavior of a Cm-
saturation number of G(n, p).

The first result of the present paper establishes the asymptotical behavior of
the Cm-saturation number of G(n, p) when m � 5.

Theorem 1. Let p ∈ (0, 1) be fixed. For every m � 5 and ε > 0 whp

n − 1 � sat (G (n, p) , Cm) � n(1 + ε). (10)

To prove this we show the existence of a certain structure in G(n, p) whp. Let
the vertex set of G(n, p) be {1, . . . , n}. Let k := �m/2�.

Fig. 1. Graphs G(n, p) and A for odd m. Dashed edges may be present in G(n, p) but
not present in A

To settle the problem for odd m (see Fig. 1) we show that whp there exists
a spanning subgraph A of G(n, p) which consists of a vertex 1 adjacent only to
a certain number of disjoint cliques of size k. There is a copy of the path Pk−2
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Fig. 2. Graphs G(n, p) and A for even m. Dashed edges may be present in G(n, p) but
not present in A

emanating from each vertex of every clique. The last vertex of every path is an
internal vertex of a copy of some star graph. There are no other edges in A,
and it does not contain copies of Cm. We also show that whp there only may
be present edges between vertices of paths or leaves of stars emanating from
different cliques, and edges between 1 and leaves of any star graph in G(n, p).
Addition of any such edge to A creates a copy of Cm.

The construction for even m is similar (see Fig. 2). We show that whp there
exists a spanning subgraph A of G(n, p) which consists of two neighbors 1 and
r, each of which is adjacent only to a unique set of the same certain number
of vertex-disjoint cliques of size m/2 + 1. There is a copy of the path Pm/2−2

emanating from each vertex of every clique. The last vertex of every path is
an internal vertex of a copy of some star graph. There are no other edges in
A, and it does not contain copies of Cm. We also show that whp there only
may be present edges between vertices of paths or leaves of stars emanating
from different cliques, and edges between 1 or r and leaves of any star graph in
G(n, p). Addition of any such edge to A creates a copy of Cm.

The second result of the paper provides the upper bound for the C4-
saturation number of G(n, p).

Theorem 2. Let p ∈ (0, 1) be fixed. For every ε > 0 there exists a constant
C(p) such that whp

sat (G (n, p) , C4) � C(p) · n(1 + ε). (11)

In particular, when p = 1/2 then for every ε > 0 whp

sat (G (n, p) , C4) � 27
14

· n(1 + ε). (12)

It is simpler to describe our construction for p > 1 − 1/ 3
√

7, so we only outline
it for such p. Denote by A[V ] an induced graph on a vertex set V by the graph
A. Denote by NA(v) the set of neighbors of the vertex v in A. Let δ > 0, r :=
�(1/2+ δ) log 1

1−p
n�. To prove the theorem we show that whp G(n, p) contains a
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spanning subgraph A and sets of its vertices V r+1 ⊂ V r ⊂ . . . ⊂ V 1 = [n] such
that for every i ∈ {1, . . . , r} the induced subgraph A[V i] is as in Fig. 3 and the
graph A[V r+1] is C4-saturated with o(n) edges. There may be present any other
edges in G(n, p). Addition of any such edge creates C4 in A. The third result of
the paper provides the lower bound for the C4-saturation number of G(n, p).

Fig. 3. Graph A[V i] : Ri = {vi1, vi2, vi3}; for every j ∈ {1, 2, 3} V i
j = NA(v

i
j), V

i
j =

Y i
j � U i

j � W i
j , E(A[Y i

j ])) is a perfect matching, E(A[U i
j � W i

j ]) is a perfect matching
between U i

j and W i
j , E

(
A[W i

j � V i+1]
) \ E

(
A[V i+1]

)
is a perfect matching between

W i
j and V i+1.

Theorem 3. Let p ∈ (0, 1) be fixed. For every ε > 0 whp

sat (G (n, p) , C4) � 3
2
n(1 − ε). (13)

Let A be a C4-saturated graph in G(n, p). Find the set of all vertices of degree
2 in A and denote it by U. Recursively remove from A and G(n, p) adjacent
vertices of degree 2 included in U that have a common neighbor not in U. Clearly,
these operations preserve C4-saturation. After such deletions there also remain
bad configurations such as vertices of degree two in U that have two neighbors
not in U, induced simple paths of length at least 5 with endpoints not in U,
isolated vertices. We show that there are o(n) of them and they do not affect
the asymptotics of the number of edges. If all remaining vertices have degree
at least 3 then the problem is solved. Otherwise the analysis of the degrees of
neighbors of adjacent vertices with degree 2 in U that do not have a common
neighbor allows to solve the problem.

Let us analyze the stability of the saturation number when F is a cycle Cm.
The comparison of (4), (5), (6) and our result (10) implies that the order of
growth is stable for m > 4, but there is no stability since the constants before n
are different. Contrast of (3) and (11), (12), (13) shows that we can not make a
conclusion about the stability of C4. Remarkably, our results also demonstrate
that so far Cm-saturation number for m > 4 is a unique example when the
saturation number drops.
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Abstract. The paper deals with the max-cut problem for random
hypergraphs. We consider a binomial model of a random k-uniform
hypergraph H(n, k, p) for some fixed k ≥ 3, growing n and p = p(n).
For given natural number q, the max-q-cut for a hypergraph is the max-
imal possible number of edges that can be properly colored with q colors
under the same coloring. Generalizing the known results for graphs we
show that in the sparse case (when p = cn/

(
n
k

)
for some fixed c > 0 not

depending on n) there exists a limit constant γ(c, k, q) such that

max-q-cut(H(n, k, p))

n
P−→ γ(c, k, q)

as n → +∞. We also prove some estimates for γ(c, k, q) of the form
Ak,q · c + Bk,q · √

c + o(
√

c).

Keywords: Random hypergraphs · Max-cut · Interpolation method

1 Introduction

The paper is devoted to the maximum cut problem for random hypergraphs. Let
us recall some definitions.

1.1 Definitions

Let H = (V,E) be a hypergraph and q be a natural number. A q-Cut (or a q-
coloring) is a partition of the vertex set into q disjoint subsets V = V1�. . .�Vq =
V . The size of the cut is the number of edges that are not entirely contained
in some Vi, i.e. |{e | e ∈ E(H), ∀i : e �⊆ Vi}|. The max-q-cut(H) is the maximal
value of a q-cut over all partitions. In terms of colorings, max-q-cut(H) is equal
to the maximal possible number of edges which can be properly colored with q
colors under the same coloring.

The problem of estimating max-q-cut will be considered in the setting of ran-
dom hypergraphs. A classical binomial model of a random k-uniform hypergraph,
denoted by H(n, k, p), can be described as a Bernoulli scheme on k-subsets of an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 817–822, 2021.
https://doi.org/10.1007/978-3-030-83823-2_130
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n-element set of vertices: every k-subset is drawn independently with probability
p = p(n). It is easy to see that the probability of getting exactly a hypergraph
H ′ = (V,E′) is equal to

P (H(n, k, p) = (V,E′)) = p|E′| · (1 − p)(
n
k)−|E′|.

For k = 2, H(n, 2, p) is a well-known Erdős–Renyi random graph G(n, p).

1.2 Known Results

For fixed given q ≥ 2, the problem of estimating the max-q-cut value of G(n, p)
is mostly interesting in the sparse case when p = cn/

(
n
2

)
and c > 0 does not

depend on n, because for np tending to infinity, it is easy to see that

max-q-cut(G(n, p)) ∼
(

1 − 1
q

)
p

(
n

2

)
.

The fundamental result concerning the sparse case is the theorem of Bayati,
Gamarnik and Tetali [1]. It states that for any c > 0, q ≥ 2 there exists γ(c, q)
such that

max-q-cut(G(n, cn/
(
n
2

)
))

n

Pr−→ γ(c, q) as n → +∞.

The estimation of the value γ(c, q) was intensively studied for decades. Most
of the bounds deal with large c (in comparison with q) and have the following
asymptotic representation:

γ(c, q) =
(
1 − q−1

) · c + Bq · √
c + o(

√
c).

For the most challenging case, q = 2, Bertoni et al. [2] proved that B2 ≤
√

ln 2
2 .

Later, Coppersmith et al. [3] proved that B2 ∈ [0.37613, 0.58870]. Gamarnik and
Li [4] improved this and showed that B2 ∈ [0.47523, 0.55909]. Finally, Dembo,
Montanari and Sen [5] found the exact value of B2 which can be numerically
approximated by a solution of some partial differential equation.

The general case, q > 2, is not studied so well. Coja-Oghlan, Moore and
Sanwalani [6] obtained the following estimates for Bq when q is large enough:

4
3

√
ln q

q

(
1 − O

(
ln ln q

ln q

))
≤ Bq ≤

√
2 ln q

q

√
1 − 1

q
.

The aim of our work was to generalize some of the above results to the hyper-
graph setting.

1.3 New Results

Our first result provides the existence of the limit constant in the max-q-cut
problem for random hypergraphs in the sparse case, i.e. when p = cn/

(
n
k

)
and

c > 0 does not depend on n.
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Theorem 1. For arbitrary fixed k ≥ 3, q ≥ 2, c > 0 and p = cn/
(
n
k

)
there is a

constant γ(c, k, q) such that:

max-q-cut(H(n, k, cn/
(
n
k

)
))

n

Pr−→ γ(c, k, q) as n → +∞.

This is a natural generalization of the result from [1]. However, this means that
the proof of Theorem 1 does not provide any bounds for the value γ(c, k, q). The
next theorem gives some estimates for γ(c, k, q). Again, we assume that c is large
enough in comparison with k and q.

Theorem 2. For any large enough c > c0(k, q),

γ(c, k, q) ≤ c · (1 − q1−k) +
√

c · Ak,q + o(
√

c)

γ(c, k, q) ≥ c · (1 − q1−k) +
√

c · Ck,q + o(
√

c)

where
Ak,q =

1
qk−1

·
√

2 ln q · (qk−1 − 1),

Ck,q =
√

8 ln q

k + 1
·
√

k

qk−1
·
(

1 − O

(
ln ln q

ln q

))
.

Theorem 2 generalizes the results from [6] to the case of hypergraphs and shows
that for large q, we have the gap of the order

√
k between the bounds. It would

be interesting to improve the obtained estimates, by the way the advances in
the graph case have been done by using the results concerning the Sherrington-
Kirkpatrick model of spin glasses.

In the next section we will provide the sketches of the proofs.

2 Ideas of the Proofs

2.1 Proof of Theorem 1

The proof of Theorem 1 follows the argument of Bayati, Gamarnik and Tetali
[1] and uses the interpolation method.

First of all, we establish that it is sufficient to show that there exists a limit
for the expected value of max-q-cut:

γ(c, k, q) = lim
n→+∞

Emax-q-cut(H(n, k, cn/
(
n
k

)
))

n
.

This follows from the fact that max-q-cut(H(n, k, cn/
(
n
k

)
)) is highly concen-

trated around its mean and can be established by application of the Talagrand
inequality.

On the second step we want to show that the sequence

a(n) = Emax-q-cut(H(n, k, cn/

(
n

k

)
))
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is superadditive, i.e.

a(n) ≥ a(n1) + a(n2) − O(n1/2)

for any n, n1, n2 such that n1 + n2 = n. Standard calculus shows that this will
imply the existence of the limit a(n)/n.

So, let us fix arbitrary n, n1, n2 such that n1 + n2 = n and apply the inter-
polation method. Let V be a vertex set, |V | = n, and let us fix its partition into
two parts V1 and V2 such that |Vi| = ni, i = 1, 2. Consider the following sequence
of random hypergraphs on the vertex set V , H(t)(n, k,m), t = 0, . . . ,m, where
m = cn�. The hypergraph H(t)(n, k,m) consists of t green edges and m − t red
edges, all the edges are chosen independently.

– A green edge is chosen uniformly from V k (i.e. we choose k vertices with
replacement).

– A red edge with probability ni/n is chosen uniformly from V k
i , i = 1, 2.

Note that H(t)(n, k,m) can contain nonproper (less than k different vertices)
or coinciding edges. However H(m)(n, k,m) looks like the usual uniform model
with m edges and H(0)(n, k,m) looks like the union of two small hypergraphs
H(mi)(ni, k,mi), mi = cni�, i = 1, 2. The following lemma is the heart of the
method.

Lemma 1. For any t = 0, . . . ,m − 1,

Emax-q-cut(H(t+1)(n, k,m)) ≥ Emax-q-cut(H(t)(n, k,m)).

Note that for the hypergraphs H(t)(n, k,m) we still want to make nonproper
edges nonmonochromatic while counting the max-q-cut.

During the final step of the proof we establish via the coupling technique
that

∣
∣
∣
∣Emax-q-cut(H(m)(n, k,m)) − Emax-q-cut(H(n, k, cn/

(
n

k

)
))

∣
∣
∣
∣ = O(n1/2).

2.2 Proof of the Upper Bound in Theorem 2

Here we follow the ideas from [2] and [6]. It will be convenient again to switch
to another model of a random hypergraph. Consider the classical uniform model
H(n, k,m) where different m = �cn� k-subsets of the vertex set are chosen
at random. To prove some upper bound for the max-q-cut, say x, we need to
estimate the number of k-uniform hypergraphs on n vertices with m edges and
max-q-cut greater than x.

For a hypergraph H = (V,E), consider a vertex q-partition V = V1� . . .�Vq.
Let Ei denote the set of edges that are entirely contained in Vi and let
E0 denote the set of edges that are not contained in any Vi. Define T =
(V1, . . . , Vq, E0, . . . , Eq) and consider the number of all such collections over all
k-uniform hypergraphs with vertex set V , m edges and size of E0 at least x:

t(n,m, k, q, x) = |{T : |E0| ≥ x}|
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=
∑

n1,...,nq
m1,...,mq

|{T : |Vi| = ni, |Ei| = mi, |E0| ≥ x}|

Now let h(n,m, k, q, x) denote the maximal summand in the above sum. The
following lemma gives the asymptotic behavior of this value.

Lemma 2. For x > m/2,

h(n,m, k, q, x) ∼ n!
(
(n/q)!

)q ·
( (n

q

k

)

m−x
q

)q

·
((

n
k

) − q · (n
q

k

)

x

)

The proof is based on the solution of some optimization problem. Lemma 2 helps
to estimate the probability that a random hypergraph H(n, k,m) has max-q-cut
greater than x. Clearly, it is less than

h(n,m, k, q, x) · nq−1 · (nk)q
((nk)

m

) .

It remains to show that this value tends to 0 for

x = n · (
c · (1 − q1−k) +

√
c · Ak,q + o(

√
c)

)
.

2.3 Proof of the Lower Bound in Theorem 2

Here we follow the approach from [3] and [6] and use the greedy procedure to get
a large enough cut. Consider all the vertices one by one and color them as follows:
assign a color i that will add the maximal number of edges to the current cut.
For a step t, let m(t) denote the number of edges that become monochromatic
after the coloring of the vertex number t + 1 and let z(t) denote the number of
edges added to the cut. The following lemma allows us to estimate the expected
value of z(t).

Lemma 3

Ez(t) ≥ cn
(
n
k

) ·
(

t

k − 1

)

−
⎛

⎝c · (t/n)k−1 · k

qk−1
+ rq ·

√
c · (t/n)k−1 · k

qk−1

⎞

⎠ ·
(

1 + O

(
1
n

))
+ o(

√
c),

where rq = Emin{ξ1, . . . , ξq}, ξi are independent N (0, 1) random variables.

In the proof we first estimate the expected value of m(t). Since the worst case
is the case of a balanced coloring on the step t, we have:

Em(t) ≤ Emin{u1, . . . , uq},

where u1, . . . , uq are independent random variables with Bin(
(
t/q
k−1

)
, p) distribu-

tion. Further, we use several limit theorems which allow us to get an approxi-
mation by the normal distribution.
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During the final step of the proof we need to estimate the sum
∑n−1

t=1 Em(t)
from below by using the expression from Lemma 3. The careful analysis leads
us to the required lower bound.

Acknowledgments. The article was prepared within the framework of the HSE Uni-
versity Basic Research Program and funded by RFBR and INSF, project number 20-
51-56017.
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Abstract. We compute the whole asymptotic expansion of the probabil-
ity that a large uniform labeled graph is connected, and of the probability
that a large uniform labeled tournament is irreducible. In both cases, we
provide a combinatorial interpretation of the involved coefficients.

1 Introduction

Let us consider the Erdös-Rényi model of random graphs G(n, 1/2), where for
each integer n � 0, we endow the set of undirected simple graphs on the set
{1, . . . , n} with the uniform probability: each graph appears with probability
1/2(n2). The probability pn that such a random graph of size n is connected goes
to 1 as n goes to ∞. In 1959, Gilbert [2] provided a more accurate estimation
and proved that

pn = 1 − 2n

2n
+ O

(
n2

23n/2

)
.

In 1970, Wright [8] computed the first four terms of the asymptotic expansion
of this probability:

pn = 1 −
(

n

1

)
1

2n−1
− 2

(
n

3

)
1

23n−6
− 24

(
n

4

)
1

24n−10
+ O

(
n5

25n

)
.

The method can be used to compute more terms, one after another. However,
it does not allow to provide the structure of the whole asymptotic expansion,
since no interpretation is given to the coefficients 1, 2, 24, . . . .

The first goal of this paper is to provide such a structure: the kth term of
the asymptotic expansion of pn is of the form

ik 2k(k+1)/2

(
n

k

)
1

2kn
,

where ik counts the number of irreducible labeled tournaments of size k. A
tournament is said irreducible if for every partition A � B of the set of vertices
there exist an edge from A to B and an edge from B to A. Equivalently, a
tournament is irreducible if, and only if, it is strongly connected [6,7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. Nešetřil et al. (Eds.): Extended Abstracts EuroComb 2021, TM 14, pp. 823–828, 2021.
https://doi.org/10.1007/978-3-030-83823-2_131
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Theorem 1 (Connected graphs). For any positive integer r, the probability
pn that a random graph of size n is connected satisfies

pn = 1 −
r−1∑
k=1

ik

(
n

k

)
2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where ik is the number of irreducible labeled tournaments of size k.

In particular, as there are no irreducible tournament of size 2, this explains

why there is no term in
(
n
2

) 1
22n

in Wright’s formula. This result might look
surprising as it relates asymptotics of undirected objects with directed ones.

A similar development happened for irreducible tournaments. For n � 0, we
endow the set of tournaments on the set {1, . . . , n} with the uniform probability:
each tournament appears with probability 1/2(n2). In 1962, Moon and Moser [5]
gave a first estimation of the probability qn that a labeled tournament of size n
is irreducible, which was improved in [4] into

qn = 1 − n

2n−2
+ O

(
n2

22n

)
.

In 1970, Wright [9] computed the first four terms of the asymptotic expansion
of the probability that a labeled tournament is irreducible:

qn = 1 −
(

n

1

)
22−n +

(
n

2

)
24−2n −

(
n

3

)
28−3n −

(
n

4

)
215−4n + O

(
n52−5n

)
.

Here again, we provide the whole structure of the asymptotic expansion,
together with a combinatorial interpretation of the coefficients (they are not all
powers of two):

Theorem 2 (Irreducible tournaments). For any positive integer r, the prob-
ability qn that a random labeled tournament of size n is irreducible satisfies

qn = 1 −
r−1∑
k=1

(
2ik − i

(2)
k

)(n

k

)
2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where i
(2)
k is the number of labeled tournaments of size k with two irreducible

components.

We can notice that the coefficients cannot be interpreted as counting a single
class of combinatorial objects, since the coefficient 2i2 − i

(2)
2 = 0 − 2 is negative.

2 Notations, Strategy and Tools

Let us denote, for every integer n, gn the number of labeled graphs of size n,
cn the number of connected labeled graphs of size n, tn the number of labeled
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tournaments of size n, and in the number of irreducible labeled tournaments of
size n. We have pn = cn/gn and qn = in/tn.

Looking for a proof of Theorem 1, we see two issues: finding a formal relation
between connected graphs and irreducible tournaments, and proving the conver-
gence. A tool to settle the first issue is the symbolic method: we associate to
each integer sequence its exponential generating function:

G(z) =
∞∑

n=0

gn
zn

n!
, C(z) =

∞∑
n=0

cn
zn

n!
, T (z) =

∞∑
n=0

tn
zn

n!
, I(z) =

∞∑
n=0

in
zn

n!
.

Since gn = tn = 2(n2), we have

G(z) = T (z) =
∞∑

n=0

2(n2) zn

n!
. (1)

Note that, while the number of labeled tournaments of size n is equal to the
number of labeled graphs of size n, their associated species are not isomorphic: for
n = 2, the two labeled tournaments are isomorphic (by swapping the vertices),
while the two labeled graphs are not, so this equality is somewhat artificial.

Since every labeled graph can be uniquely decomposed as a disjoint union of
connected labeled graphs, we have

G(z) = exp(C(z)). (2)

It remains to find a relation between tournaments and irreducible tourna-
ments.

Lemma 1. Any tournament can be uniquely decomposed into a sequence of irre-
ducible tournaments.

In terms of generating functions, Lemma 1 translates to

T (z) =
1

1 − I(z)
. (3)

Hence, part of the work will be to let those expressions interplay.
Regarding asymptotics, we will rely on Bender’s Theorem [1]:

Theorem 3 (Bender). Consider a formal power series

A(z) =
∞∑

n=1

anzn

and a function F (x, y) which is analytic in some neighborhood of (0, 0). Define

B(z) =
∞∑

n=1

bnzn = F (z,A(z)) and D(z) =
∞∑

n=1

dnzn =
∂F

∂y
(z,A(z)),
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Assume that an �= 0 for all n ∈ N, and that for some integer r � 1 we have

(i)
an−1

an
→ 0 as n → ∞; (ii)

n−r∑

k=r

|akan−k| = O(an−r) as n → ∞.

Then

bn =
r−1∑
k=0

dkan−k + O(an−r).

3 Proofs

Proof (Proof of Lemma 1). Let T be a tournament. It is either irreducible, and
all is done, or it consists of two nonempty parts A and B such that all edges
between A and B are directed from A to B. Applying the same argumentation
recursively to A and B, we obtain a decomposition of T into a sequence of
subtournaments T1, . . . , Tk, such that each Ti is irreducible and for every pair
i < j, all edges go from Ti to Tj (see Fig. 1). Since Ti are also the strongly
connected components of T , the decomposition is unique.

1

23

4

5 6

4 5 31
2

6

Fig. 1. Decomposition of a tournament as a sequence of irreducible components.

Proof (Proof of Theorem 1). Let us apply Bender’s theorem (Theorem 3) the
following way: take

A(z) = G(z) − 1 and F (z, w) = ln(1 + w).

Then, in accordance with formulas (1), (2) and (3),

B(z) = ln(G(z)) = C(z) and D(z) =
1

G(z)
=

1
T (z)

= 1 − I(z).

Check the conditions of Theorem 3. In the case at hand, condition (i) has the
form:

an−1

an
=

2(n−1
2 )

(n − 1)!
n!

2(n2)
=

n

2n−1
→ 0, as n → ∞.
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To establish condition (ii), consider xk = n!akan−k =
(
n
k

)
2(k2)+(n−k

2 ), where
r � k � n− r. Then (xk) decreases for r � k � n/2 and increases symmetrically
for n/2 � k � n − r. Bounding each summand by the first term is not enough,
but bounding each summand (except for the first and last) by the second term
gives the following:

n−r∑
k=r

akan−k � 1
n!

(
n

r

)
2(r2)+(n−r

2 )+1 +
n − 2r − 1

n!

(
n

r + 1

)
2(r+1

2 )+(n−r−1
2 )

= O

⎛
⎝2

(
n2−(2r+1)n

)
/2

(n − r)!

⎞
⎠ + O

⎛
⎝2

(
n2−(2r+3)n

)
/2

(n − r − 2)!

⎞
⎠ = O(an−r).

Hence, Bender’s theorem implies

bn =
cn
n!

=
2(n2)

n!
−

r−1∑
k=1

ik
k!

2(n−k
2 )

(n − k)!
+ O

(
2(n−r

2 )

(n − r)!

)
.

Dividing by gn/n! = 2(n2)/n!, we get

pn =
cn
gn

= 1 −
r−1∑
k=1

ik

(
n

k

)
2(n−k

2 )

2(n2)
+ O

(
nr

2nr

)
.

Proof (Proof of Theorem 2).
Let us apply Bender’s theorem (Theorem 3) for

A(z) = T (z) − 1 and F (z, w) = − 1
1 + w

.

Then, in accordance with formula (3),

B(z) = − 1
T (z)

= −1+I(z) and D(z) =
1(

T (z)
)2 =

(
1−I(z)

)2
.

Since
(
I(z)

)2 is the generating function for the class of labeled tournaments
which can be decomposed into a sequence of two irreducible tournaments, we
can rewrite the latter identity in the form

D(z) = 1 −
∞∑

n=1

(
2ik − i

(2)
k

)zn

n!
.

In the case at hand, the conditions that are needed to apply Theorem 3 are the
same as in the proof of Theorem 1, since the sequence (an) is the same. Hence,

bn =
in
n!

=
2(n2)

n!
−

r−1∑
k=1

2ik − i
(2)
k

k!
2(n−k

2 )

(n − k)!
+ O

(
2(n−r

2 )

(n − r)!

)
.

Dividing by tn/n! = 2(n2)/n!, we get

qn =
in
tn

= 1 −
r−1∑
k=1

(
2ik − i

(2)
k

)(n

k

)
2(n−k

2 )

2(n2)
+ O

(
nr

2nr

)
.
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4 Further Results

With a bit more work, we can compute the probability that a random graph of
size n has exactly m connected components, and the probability that a random
tournament of size n has exactly m irreducible components as n goes to ∞.

In another direction, we can also generalize Theorem 1 to the Erdös-Rényi
model G(n, p), where the constant 2 in the formulas is replaced by ρ = 1/(1−p)
and the sequence (ik) is replaced by a sequence of polynomials (Pk(ρ)) =
1, ρ − 2, ρ3 − 6ρ + 6, ρ6 − 8ρ3 − 6ρ2 + 36ρ − 24, . . . with an explicit combina-
torial interpretation.

The methods presented here can also be extended to some geometrical con-
text where connectedness questions appear. In particular, we will provide asymp-
totics for combinatorial maps, square tiled surfaces, constellations, random ten-
sor model [3]. In some of the models, the coefficients in the asymptotic expan-
sions show connections with indecomposable tuples of permutations and perfect
matchings.
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Abstract. We show that for any sufficiently large graph G avoiding Kk

as a minor, we can map vertices v ∈ V (G) to intervals I(v) ⊆ [0, 1] so
that (1) I(u) ∩ I(v) �= ∅ for each edge uv (2) the sum of the squares
of the lengths of these intervals is O(k6 log k), and (3) the average dis-
tance between the intervals is at least 1/25. Balanced separators of G of
sublinear size (with various additional properties) can be read off this
representation.

Keywords: Graph theory · Small separators · Minor-closed

1 Interval Representation and Balanced Separators

For a fixed constant c < 1, we say that a set X of vertices of an n-vertex
graph G is a balanced separator if each component of G − X has at most cn
vertices. It is customary to take c = 2/3, but any constant smaller than 1 gives
qualitatively the same results; for the purposes of this paper, we take c = 0.99.
If necessary, one can usually improve the balance by iteratively adding to X a
balanced separator of the largest component of G − X.

Let s(G) denote the minimum size of a balanced separator in G, and for a
class G of graphs, let sG : N → N be defined by

sG(n) = max{s(G) : G ∈ G, |V (G)| ≤ n}.

Classes with sublinear separators (i.e., classes G with sG(n) = o(n)) are of inter-
est from the computational perspective, as they naturally admit divide-and-
conquer style algorithms.

Most known examples of classes of sublinear separators arise from topologi-
cal or geometric considerations (planar graphs [9], graphs on a fixed surface [7],
intersection graphs of connected subsets of a surface with subquadratic num-
ber of edges [8], finite element meshes and overlap graphs [11], nearest-neighbor
graphs [10], . . . ). Proper minor-closed classes were shown to have sublinear sepa-
rators by Alon et al. [1], and provide an interesting example of such graph classes
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that are not explicitly geometric (though they are related to graphs on surfaces
via the structure theorem [12]).

We use a variation on the technique developed by Biswal, Lee, and Rao [2] to
provide a geometric representation for graphs from proper minor-closed classes
from which one can directly read off a balanced separator. For an interval J ,
let |J | denote the length of J . For two closed intervals J1 and J2, let d(J1, J2)
denote the distance between them, i.e., the minimum of |x − y| for x ∈ J1

and y ∈ J2. For a graph G, an interval representation of G in [0, 1] is a func-
tion I assigning to each vertex of G a closed subinterval of [0, 1] such that
for every uv ∈ E(G), we have I(u) ∩ I(v) �= ∅. For c > 0, the representa-
tion I is c-thrifty if

∑
v∈V (G) |I(v)|2 ≤ c. The representation I is scattered if

∑
u,v∈V (G) d(I(u), I(v)) ≥ |V (G)|2/25, i.e., if the average distance between the

intervals representing the vertices of G is at least 1/25.

Theorem 1. For every positive integer k, there exists a positive real number
c(k) = O(k6 log k) such that every graph G with at least 107c(k) vertices not
containing Kk as a minor has a c(k)-thrifty scattered interval representation in
[0, 1].

It is easy to read off a balanced separator in G from such a representation.

Lemma 2. Let c be a positive real number. If a graph G with n vertices has a
c-thrifty scattered interval representation I in [0, 1], then s(G) ≤ 49

√
cn.

Proof. Let x ∈ [0, 1] be chosen uniformly at random. Let X = {v ∈ V (G) : x ∈
I(v)}.

E[|X|] =
∑

v∈V (G)

Pr[v ∈ X] =
∑

v∈V (G)

|I(v)| ≤
√

n
∑

v∈V (G)

|I(v)|2 ≤ √
cn.

Moreover, note that for v1, v2 ∈ V (G), if x separates I(v1) from I(v2), then v1
and v2 belong to different components of G − X. Hence, letting A consist of
vertices v ∈ V (G) such that max I(v) < x and B consist of vertices v ∈ V (G)
such that x < min I(v), both A and B are unions of components of G−X. Note
that

E[|A|2 + |B|2] ≤ n2 − 2E[|A||B|] = n2 − 2E[|{(u, v) : max I(u) < x < min I(v)}|]
= n2 − 2

∑

u,v∈V (G)

Pr[max I(u) < x < min I(v)]

= n2 −
∑

u,v∈V (G)

d(I(u), I(v)) ≤ 24
25
n2.

Consequently,

E
[|A|2 + |B|2 + n3/2

50
√

c
|X|] ≤ 49

50
n2,

and thus there exists a choice of x ∈ [0, 1] for which |A|2+|B|2+ n3/2

50
√

c
|X| ≤ 49

50n2.
It follows that |A|, |B| ≤ 0.99n, i.e., X is a balanced separator, and |X| ≤ 49

√
cn.
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Let us remark that Biswal et al. [2] obtain a similar representation without
the requirement that the intervals representing vertices are subintervals of [0, 1]
(and trading off a weaker scattering bound for better thriftiness). Consequently,
their representation is less explicit about the separators, as it only implies the
existence of a (not necessarily balanced) separator X splitting the graph into
two parts A and B such that |X| = O(n−1/2 min(|A|, |B|)); thus, in order to
obtain a balanced sublinear separator, they have to iterate this process, further
splitting the larger part.

Thrifty scattered representations in [0, 1] also capture more general kinds of
separators.

Lemma 3. Let c be a positive real number and suppose a graph G with n vertices
has a c-thrifty scattered interval representation I in [0, 1]. Then, for any assign-
ment w : V (G) → R

+
0 of non-negative weights to vertices of G and any ε > 0,

there exist sets X,Y ⊆ V (G) such that w(X) ≤ εw(V (G)), |Y | ≤ 9604c/ε, and
X ∪ Y is a balanced separator in G.

Let us remark that having the small set Y of potentially unbounded weight
in such a balanced separator cannot be avoided; e.g., if G is the star K1,n−1 with
the center of the star having weight n−1 and each of the leaves having the weight
1, then for ε < 1/200, there is no balanced separator X with w(X) ≤ εw(V (G)).

2 Thrifty Scattered Metrics

Consider a graph and a function r : V (G) → R
+
0 , which we view as assigning a

diameter to each vertex of G. For an edge uv ∈ E(G), we naturally define its
length �r(uv) = 1

2 (r(u)+ r(v)), and for a path P , we set �r(P ) =
∑

e∈E(P ) �r(e).
This defines a pseudometric on V (G), μr(u, v) = min({�r(P ) : P ∈ PG(u, v)}),
where PG(u, v) is the set of all paths from u to v in G. We will also consider a
capped version of this pseudometric, μr/1(u, v) = min(1, μr(u, v)). For c, s > 0,
we say that r is c-thrifty if

∑
v∈V (G) r2(v) ≤ c, and that μr/1 is s-scattered if

∑
u,v∈V (G) μr/1(u, v) ≥ s|V (G)|2.

Observation 4. Let c be a positive real number and suppose a graph G has a
c-thrifty scattered interval representation I in [0, 1]. Let r(v) = |I(v)| for every
v ∈ V (G). Then r is c-thrifty and μr/1 is 1/25-scattered.

Proof. The fact that r is c-thrifty is trivial. To see that μr/1 is 1/25-scattered,
it suffices to observe that d(I(u), I(v)) ≤ μr/1(u, v).

We now aim to show that a weak converse holds if G avoids a fixed graph as
a minor. Let C be a partition of V (G), let μ be a metric on V (G), and let β > 0
be a real number. The (μ, β)-center of C is the set of vertices v ∈ V (G) such
that {u ∈ V (G) : μ(u, v) ≤ β} is a subset of a single part of C, i.e., such that all
vertices at μ-distance at most β from v belong to the same part of C as v. The
partition C is (μ, β)-padded if the (μ, β)-center of C contains at least half of the
vertices of G. For Δ > 0, the partition C is (μ,Δ)-bounded if for every C ∈ C,
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all vertices u, v ∈ C satisfy μ(u, v) ≤ Δ. We use the following key property of
graphs avoiding a minor, which follows from Theorem 1 of Fakcharoenphol and
Talwar [6].

Theorem 5. There exists a function α(k) = O(k2) such that for any positive
integer k, any graph G avoiding Kk as a minor, any pseudometric μ in V (G)
induced by an assignment of non-negative lengths to edges of G, and any Δ > 0,
there exists a (μ,Δ)-bounded (μ,Δ/α(k))-padded partition of V (G).

Clearly, we can apply this result to μr/1 and Δ ≤ 1, since μr(u, v) and
μr/1(u, v) agree up to distance 1. By a argument similar to Theorem 4.4 of
Biswal et al. [2], Theorem 5 implies the following claim.

Corollary 6. Let α be the function from Theorem 5. Let c be a positive real
number. Let k be a positive integer and let G be a graph with n ≥ 108cα2(k)
vertices avoiding Kk as a minor. Let r be a c-thrifty assignment of non-negative
diameters to vertices of G. If μr/1 is 1/2-scattered, then G has a 64α2(k)c-thrifty
scattered representation by intervals in [0, 1].

Theorem 1 now follows from the existence of an assignment of diameters with
these properties. Such an assignment can be obtained using a modification of
the flow duality argument of Biswal et al. [2].

Lemma 7. There exists a constant κ > 0 such that the following claim holds.
Let k be a positive integer and let c = 720κ2k2 log k. If G is a graph with n ≥ 400c
vertices and Kk is not a minor of G, then there exists a c-thrifty assignment
r : V (G) → R

+
0 such that μr/1 is 1/2-scattered.

3 Generalizations and Open Problems

Similarly to Biswal et al. [2], we can perform the same argument for graphs from
any class with polynomial expansion (which is equivalent to having strongly sub-
linear separators in all subgraphs [4]). We then obtain an O(nβ)-thrifty scattered
representation for some positive β < 1. This is good enough to ensure sublinear
separators, but not very good in the setting of Lemma 3, where this forces us
to have Ω(nβ/ε) exceptional vertices in the set Y (while it is known that much
fewer suffice, the dependence on n is sublogarithmic [5] and possibly might even
be constant).

Since the aforementioned graphs do not have to have balanced separators
of order O(

√
n) but rather O(nγ) for some γ < 1, we cannot hope to directly

generalize Theorem 1 for them while keeping c constant. To overcome this issue,
it is natural to consider requiring

∑
v∈V (G) rk(v) for some k > 2 to be bounded by

a constant instead of the current c-thriftiness condition. However, this fails even
for quite simple graphs already at the stage where we seek a suitable scattered
metric (analogue to Lemma 7). Let Tn be the cartesian product of a balanced
rooted binary tree B with n/ log n vertices with a path P with log n vertices. It
can be shown that Tn does not admit an assignment of diameters r such that
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both r has constant thriftiness and μr/1 has constant scattering, and thus it also
does not admit a scattered representation by intervals in [0, 1] with constant
thriftiness.

Let us note that in contrast, Tn satisfies the conclusions of Lemma 3: For
any assignment w of weights to vertices of Tn and any ε > 0, there exist sets
X,Y ⊆ V (Tn) such that X ∪Y is a balanced separator, w(X) ≥ εw(V (Tn)), and
|Y | ≤ 3/ε. Indeed, if ε < 3/ log n, then we can set X = ∅ and let Y be the vertex
set of the copy of P corresponding to the root of B. If ε ≥ 3/ log n, note that
among the middle third of the vertices of P , there exists at least one such that
the corresponding copy B′ of B satisfies w(V (B′)) ≤ w(V (G))/(|V (P )|/3) ≤
εw(V (G)), and thus we can set X = V (B′) and Y = ∅.

Moreover, note that Tn is actually quite close to planar graphs, in the follow-
ing sense: Every planar graph is known to be a subgraph of the strong product
of a graph of treewidth 8 with a path [3]. Hence, it seems that Theorem 1 (in the
strong form with c being independent on the number of vertices of G) cannot be
extended much beyond proper minor-closed classes.

Motivated by the example of Tn, we can consider a weaker concept, allowing
different representations for different values of ε. For a polynomial p, a p-thrifty
system of scattered interval representations in [0, 1] is a system {Iε : ε > 0},
where for each ε > 0, Iε is a scattered interval representation of G in [0, 1] such
that |Iε(v)| ≥ ε for at most p(1/ε) vertices v ∈ V (G). The existence of such a
system implies an analogue of Lemma 3, and promisingly, conversely Lemma 8
below holds. For a polynomial q, we say a graph G has low-weight separators
with exception growth q if for every assignment w : V (G) → R+

0 and every ε > 0,
there exists a balanced separator X ∪ Y in G such that w(X) ≤ εw(V (G)) and
|Y | ≤ q(1/ε). By the linear programming duality we can prove the following.

Lemma 8. Let q be a polynomial. If a graph G has low-weight separators with
exception growth q, then for every ε > 0, there exists an assignment rε : V (G) →
[0, 1] such that rε(v) ≥ ε for at most q(1/ε)/ε vertices v ∈ V (G) and μr/1 is
49

5000 -scattered.

We run into further problems when we try to convert such a metric into
an interval representation, since Theorem 5 is not true for all classes with low-
weight separators with bounded exception growth. However, it is possible the
following claim can be proven using some other argument.

Conjecture 9. For every polynomial q, there exists a polynomial p such that
every graph with low-weight separators with exception growth q has a p-thrifty
system of scattered interval representations in [0, 1].

The example of the graph Tn shows that such a system must contain at least
two different representations. We do not know whether a fixed number of repre-
sentations always suffices, or whether the number of distinct representations in
the system must grow with |V (G)|.

Finally, let us remark that a c-thrifty scattered interval representation in
[0, 1] only describes separators in the whole graph G, not in its subgraphs. For
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example, the disjoint union of any two graphs with the same number of vertices
has a 0-thrifty scattered interval representation, mapping the vertices one of
the graphs to the interval [0, 0] and the vertices of the other one to [1, 1]. For
hereditary graph classes with sublinear separators (e.g., for proper minor-closed
classes), it is natural to ask whether the graphs from these classes admit a geo-
metric representation that would also certify sublinear separators in all their
subgraphs. Presumably, one could expect to obtain our thrifty scattered inter-
val representation in [0, 1] from this hypothetical representation by a suitable
projection.
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Abstract. A well-known theorem in plane geometry states that any set
of n non-collinear points in the plane determines at least n lines. Chen
and Chvátal asked whether an analogous statement holds within the
framework of finite metric spaces, with lines defined using the notion of
betweenness.

In this paper, we prove that in the plane with the L1 (also called Man-
hattan) metric, a non-collinear set induces at least �n/2� lines. This is
an improvement of the previous lower bound of n/37, with substantially
different proof.

Keywords: Metric spaces · Lines · de Bruijn–Erdős theorem ·
L1 distance

1 Lines in Finite Metric Spaces

A well-known theorem in plane geometry states that n points in the plane are
either collinear, or they induce at least n lines. Erdős noticed in [5] that this is a
corollary of the Sylvester-Gallai theorem (which states that for any non-collinear
set X of points in the plane, some line passes through exactly two points of X).
Also, it is a special case of a theorem proved by de Bruijn and Erdős [4] about
set systems satisfying certain properties.

The proof of de Bruijn and Erdős involves neither measurements of distances,
nor measurements of angles. As such it is part of ordered geometry, which revolves
around the ternary notion of betweenness: a point w is between u and v if it is
an interior point of the line segment with endpoints u and v. We will write [uwv]
to indicate that w is between u and v. In terms of Euclidean distance ρ,

w is between u and v ⇐⇒ u, v, w are distinct points and
d(u, v) = d(u,w) + d(w, v).

In an arbitrary metric space, this notion becomes metric betweenness, intro-
duced in [7]. The concept of a line is also generalized quite naturally:

A line 〈u, v〉 consists of u and v and all points w such that one of u, v, w is
between the other two.

Supported by grant 19-04113 of the Czech Science Fountain (GACR) and by Charles
University project UNCE/SCI/004.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Having introduced this definition in 2006 [2], Chen and Chvátal asked which
properties of lines in Euclidean space translate into the setting of arbitrary finite
metric spaces. In particular, they posed the following question:

Is it true that every finite metric space (X, ρ) induces at least |X| lines, or there
is a line containing all of X?

This question is still open, although a number of interesting results related
to it have been proved; these are surveyed in [3]. Among them, let us men-
tion for future reference a theorem of Aboulker, Chen, Huzhang, Kapadia, and
Supko ([1], Theorem 3.1): In an arbitrary metric space, every non-collinear set
of n points induces Ω(

√
n) lines.

In this paper, we concentrate on the plane with the L1 (also called Manhat-
tan) metric, defined by ρ((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|. We encounter
two very different kinds of lines in this case: those induced by two points that
share a coordinate (horizontal or vertical pairs), and those induced by pairs
that do not share a coordinate (so called increasing or decreasing pairs). The
two types of lines (for increasing/decreasing pairs of points, and for horizon-
tal/vertical pairs) can be seen in Fig. 1.

Balázs Patkós and this author proved in [6] that every non-collinear set of n
points in this particular metric space induces at least n/37 lines. Moreover, if no
two of the points share their x- or y-coordinate, then there are at least n lines,
i.e., the Chen—Chvátal question has an affirmative answer. The proof relies on a
lemma that was later extended and used by Aboulker, Chen, Huzhang, Kapadia,
and Supko in deriving the weaker lower bound Ω(

√
n) valid for all metric spaces.

In the present paper, we improve the lower bound n/37 by a completely
different method.

Fig. 1. Line induced by an increasing pair and by a vertical pair.

Theorem 1. Let X be a set of n points in the plane with the L1 metric. Either
there is a line containing all of X, or X induces at least �n/2� lines.

In the rest of this paper, X will be a set of n points in the plane with the
L1 metric and we will assume that there is no line containing all of X. We will
only consider lines induced by increasing and decreasing pairs of points.
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2 Increasing and Decreasing Pairs, Blue and Red Arrows

In order to prove Theorem 1, we will introduce an auxiliary graph G on the
vertex set X as follows. Fix a line L and suppose that F is the family of all
increasing pairs that induce L. We select a member of F that is in some sense
minimal and put a (directed) edge between the two points. Repeat this for all
lines. Then repeat the process for all lines and decreasing pairs as well. With
a few exceptions, distinct edges represent distinct lines. Whenever two edges
represent the same line, delete one of the edges. The resulting graph G′ may
have some isolated vertices (and indeed, the original graph G may have them
as well). But we can show that for each isolated vertex there is another point
nearby, which has degree at least 2. Counting the degrees, we find out that there
are at least the required number of edges, and hence at least the required number
of lines.

For p ∈ X we define x(p) to be the x-coordinate of p and y(p) the y-
coordinate. Let {p, q} be a pair of points in the plane. We say that it is an
increasing pair if (x(p) − x(q)) · (y(p) − y(q)) > 0. A decreasing pair has the
inequality reversed. A horizontal pair has y(p) = y(q), while vertical pair satis-
fies x(p) = x(q). The line defined by points u, v will be denoted by 〈u, v〉.

Our goal now is to introduce a partial order on the set of increasing pairs
that induce a given line. In order to do that, we first introduce a partial order
on the points themselves. If c, d ∈ X with x(c) ≤ x(d) and y(c) ≤ y(d), we write
c ≤I d. This is a partial order on X. Let us consider all increasing pairs that
induce a line L. For two such pairs, {p, q} with p ≤I q and {a, b} with q ≤I b, we
put {p, q} ≤∗

I {a, b} if either q <I b, or if the first pair is “nested” in the second
pair, that is, p ≥I a and q ≤I b. All pairs in {p, q, a, b} are comparable in ≤I ,
so ≤∗

I is a linear order on the increasing pairs inducing L. For each L, pick the
least element {a, b} and suppose that a ≤I b. We say that the ordered pair (a, b)
is a blue arrow.

We repeat the process for decreasing pairs: we write c ≤D d if x(c) ≤ x(d)
and y(c) ≥ y(d). We define ≤∗

D and use it to select some decreasing pairs and
call them red arrows, all in complete analogy with the increasing case. The graph
G mentioned in the first paragraph will have red and blue arrows as its edges.
(See left part of Fig. 2 for an example of configuration with an isolated point and
some blue and red arrows).

Note that we may have situations where, e.g., 〈u, v〉 = 〈w, v〉 for increasing
pairs {u, v}, {w, v}, and {u,w} is a horizontal pair. That is why we defined ≤I

and ≤D in such a way that they accommodate horizontal and vertical pairs as
well.fi

3 What Happens Around Isolated Points?

The aim of this section is to show that there are many arrows. In particular, if
a is an isolated vertex in the graph G, there is some nearby vertex that is the
endpoint of two arrows.
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a2
a3

b2

b3
c2

c3

d2
d3

c1

a1

b1

d1

a

Fig. 2. Left: a configuration with an isolated point and some red (solid) and blue
(dashed) arrows. Right: blue and red arrows generating the same lines.

The statements in this section are proved by a careful analysis of point con-
figurations and are outside the scope of this abstract. Let us note that any point
a ∈ X defines four quadrants of the plane respective to this point. These are
numbered anticlockwise in the usual manner and are considered to be open (i.e.,
they do not contain the boundary lines).

Lemma 1. If a is an isolated vertex of the graph G, and X has some points in
the union of the first, second, and fourth quadrants relative to a, then there are
points r, r′, s and red or blue arrows (r, s), (r′, s) as depicted in Fig. 3.

Moreover, the line segments between r and a and between s and a are empty.
Also, it is not hard to prove that without loss of generality, X contains no points
with first, second, and fourth quadrants empty.
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F

r′

r

s

a

Fig. 3. Six situations for isolated vertices, and an example of conflict.

For each isolated vertex a, Lemma 1 provides a point sa such that {a, sa} is
a horizontal or vertical pair and there are two blue or two red arrows into sa.
Define f(a) = (sa,blue) if the two arrows are blue, f(a) = (sa, red) otherwise.
If I is the set of isolated vertices, then this f maps I into (X \ I) × {blue, red}.
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In the following lemma, we note that the situation depicted in the right side of
Fig. 3 never happens.

Lemma 2. The mapping f is injective.

4 The Lines Induced by Arrows are (Mostly) Distinct

Two red arrows by definition correspond to different lines. The same is true
for two blue arrows. One can prove that if a blue and a red arrow induce the
same line, then the four points are located at corners of a rectangle in the plane.
Moreover, if we have more such pairs of arrows, the rectangles are arranged in
a way described by Lemma 3, which can be seen on the right side of Fig. 2.

Lemma 3. Let (ai, bi) for i = 1, . . . , k be blue arrows and (ci, di) be red arrows
such that 〈ai, bi〉 = 〈ci, di〉 for all i. We may number the points in such a way that
a1 <D a2 <D · · · <D ak, b1 >D · · · >D bk, c1 <I · · · <I ck and d1 >I · · · >I dk.

Lemma 4. Let (ai, bi) for i = 1, . . . , k be blue arrows and (ci, di) be red arrows
such that 〈ai, bi〉 = 〈ci, di〉 for all i. For each i there is an arrow starting in ai,
other than (ai, bi). Also for each ci, there is an arrow starting in ci, other than
(ci, di).

We will not prove these lemmas in this extended abstract.

5 Counting Degrees

Proof (Proof of Theorem 1). Let us consider the directed graph G on the vertex
set X, where the edges are the red and blue arrows. This graph might have some
isolated vertices. In Sect. 3, we defined a mapping f that assigns a pair (sa, red)
or (sa,blue) to each isolated a, where sa is a point located close to a and the
second entry denotes the color of the two arrows ending in sa that are assigned
to this a. We have also noted that this mapping is injective.

Let c be the number of isolated vertices. We have c pairs (a, sa), and with
each pair we associate two arrows of the same color ending in sa. We may have
sa = sb for distinct isolated vertices a and b, but by the injectivity of f , the
pairs of arrows are pairwise disjoint. If I is the set of isolated vertices, the set
A := I ∪ {sa; a ∈ I} has at most 2c vertices, and

∑

v∈A

deg+(v) ≥ 2c.

As before, let (ai, bi) and (ci, di) for i ∈ {1, . . . , k} be the coinciding red and
blue arrows. Let B := {a1, . . . , ak, c1, . . . , ck}. We have shown in Sect. 4 that
each vertex in B has outdegree at least 2. We have |A ∪ B| ≤ 2c + 2k, so
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C := X \ (A ∪ B) has size at least n − 2c − 2k. The vertices outside A ∪ B have
at least one arrow starting or ending in them. We have

2|E(G)| =
∑

v∈X

deg+(v) +
∑

v∈X

deg−(v)

≥
∑

v∈A

deg+(v) +
∑

v∈B

deg−(v) +
∑

v∈C

deg+(v) +
∑

v∈C

deg−(v)

≥ 2c + 2 · 2k + (n − 2c − 2k)
= n + 2k.

Now delete the arrow (ai, bi) for each i = 1, . . . , k. This modified graph G′ has
2|E(G′)| ≥ n. It follows that G′ has at least n/2 arrows, each corresponding to
a distinct line of the original metric space.

6 L∞ Metric

Let us briefly consider the L∞ metric on R
d, defined by

d((u1, . . . , ud), (v1, . . . , vd)) = max
1≤j≤d

|uj − vj |.

Whenever we have a finite set in the plane with the L∞ metric, rotating the
plane by 45 degrees transforms the L∞-lines into L1-lines. The following theorem
is an easy consequence of Theorem 1.

Theorem 2. Let X be a set of n points in the plane with the L∞ metric. Either
there is a line containing all of X, or X induces at least �n/2� lines.

This may be of interest because any finite metric space can be regarded as
an L∞ space in R

d for some d. However, the required d may be very high, which
makes handling it difficult.

Acknowledgment. I would like to thank Vašek Chvátal for his many insights into
the topic of lines in metric spaces, as well as useful remarks concerning the full version
of this paper.
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Abstract. Given a family G of graphs on a common vertex set X, we
say that G is rainbow connected if for every vertex pair u, v ∈ X, there
exists a path from u to v that uses at most one edge from each graph of
G. We consider the case that G contains s graphs, each sampled randomly
from G(n, p), with n = |X| and p = c logn

sn
, where c > 1 is a constant. We

show that there exists a threshold of at most three consecutive integer
values such that when s is greater than or equal to this threshold, G
is a.a.s. rainbow connected, and when s is below this threshold, G is
a.a.s. not rainbow connected.

Keywords: Graph theory · Random graph · Rainbow path

1 Introduction

We consider random graphs using the Erdős-Rényi model, that are defined as
follows. Let n be a positive integer and 0 ≤ p ≤ 1. We construct a graph G
with V (G) = [n] := {1, . . . , n} by independently letting each edge e ∈ (

[n]
2

)

belong to E(G) with probability p. We say that G is a random graph in G(n, p).
When a statement involving a value n holds with probability approaching 1 as
n approaches infinity, we say that the statement holds asymptotically almost
surely, or a.a.s. for short.

One particular property of random graphs that has been the focus of exten-
sive research is the diameter. Recall that the diameter diam(G) of a graph G is
the maximum distance dist(u, v) taken over all vertex pairs u, v in the graph. In
a seminal paper on random graphs from 1959, Erdős and Rényi [8] showed that
if G is a random graph in G(n, p), where p = c log n

n and c is a constant, then G
is a.a.s. connected when c > 1 and a.a.s. disconnected when c < 1. This result
of Erdős and Rényi was essentially the first result on the diameter of random
graphs, giving a probability threshold for when the diameter of a random graph
is finite. Later, in 1974, Burtin [5] determined that when p � n− d−1

d for a posi-
tive integer d, a random graph in G(n, p) has diameter at most d a.a.s. Klee and
Larman [12] rediscovered this result in 1981. Bollobás [3] then showed in 1984
that when a graph G on n vertices has c log n

n

(
n
2

)
randomly placed edges (where

c > 1 is a constant), its diameter is a.a.s. equal to one of at most four consecutive

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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integer values. Chung and Lu [6] later translated this result of Bollobás into the
random setting G(n, p), giving the following bounds.

Theorem 1 [6]. Let G be a random graph in G(n, p), where p = c log n
n and

c > 1. Then a.a.s.,

log
(

c
11

)
+ log n

log c + log log n
≤ diam(G) ≤

log
(

33c2

400

)
+ log log n + log n

log c + log log n
+ 2.

In other words, Chung and Lu show that the diameter of G is a.a.s. one of at
most four consecutive integer values, each within a constant from log n

log c+log log n .
In seeking the diameter of a random graph G, one essentially asks the fol-

lowing question: For which values of s does there a.a.s. exist a path of length
at most s between every pair of vertices in G? In this paper, we ask a similar
question in the following rainbow setting.

We consider a family G = {G1, . . . , Gs} of s graphs on a common vertex set
[n]. We say that a path P ⊆ ⋃s

i=1 E(Gi) is a rainbow path if there exists an
injection φ : E(P ) → [s] such that for each edge e ∈ E(P ), e ∈ E(Gφ(e)). Two
vertices u, v ∈ [n] are rainbow connected if there exists a rainbow path with u
and v as endpoints. Furthermore, we say that G is rainbow connected if every
pair {u, v} ∈ (

[n]
2

)
is rainbow connected. If we let each graph Gi ∈ G have its

edges colored with the color i, then we may equivalently define a rainbow path
as a path that uses at most one edge of each color. Note that we allow an edge
joining u and v to appear in more than one of the graphs in the family and
that we consider repetitions as having multiple edges, each of different color. For
a given family of random graphs, we will ask, for which values of s does there
a.a.s. exist a rainbow path of length at most s between every pair of vertices in
[n]. Equivalently, we ask, for which values of s is G a.a.s. rainbow connected.

Rainbow connectivity has been studied by Kamčev, Krivelevich, and Sudakov
in [11]. Rainbow paths are also an example of rainbow structures, which are
defined as edge-colored subgraphs in which each edge has a distinct color.
Depending on the setting, rainbow subgraphs are often referred to either as
transversals or partial transversals of a graph family. The study of rainbow
graphs dates back as far as the eighteenth century in Euler’s work on Latin
squares. Recently, rainbow graph structures have received increasing attention.
For instance, Alon, Pokrovskiy, and Sudakov show that every properly colored
complete graph contains a long rainbow cycle [2], and Gao et al. prove that a
family of sufficiently dense 3-uniform hypergraphs contains a rainbow matching
[9]. Additionally, certain classical results have been extended into the rainbow
setting. For instance, a famous theorem of Dirac [7] states that a graph on n
vertices with minimum degree at least n/2 must contain a Hamiltonian cycle.
Joos and Kim [10] have generalized Dirac’s result to show that every family
G = {G1, . . . , Gn} of n graphs with V (Gi) = [n] (1 ≤ i ≤ n), each of minimum
degree at least n/2, contains a rainbow Hamiltonian cycle. Note that if all graphs
Gi are the same, this is the same as Dirac’s theorem.

In the same flavor, a classic result of Moon and Moser [14] gives a minimum
degree condition for the existence of a Hamiltonian cycle in a bipartite graph.



844 P. Bradshaw and B. Mohar

One of the authors of this paper, generalized this result to the rainbow setting [4].
In addition to rainbow Hamiltonian cycles, certain other rainbow structures have
been shown to exist under appropriate conditions. For instance, Aharoni et al. [1]
obtained a rainbow version of Mantel’s theorem, proving that a family G of three
graphs on a common set of n vertices contains a rainbow triangle if each graph
in G contains at least 0.2557n2 edges.

Our Results

First, we fix some notation that we will use throughout the paper. We let n be
a large integer and we consider families of random graphs of order n. We pick
an integer s ≥ 1, depending on n, and we let c > 1 be a fixed constant. We let

p =
c log n

sn
.

Then, for 1 ≤ i ≤ s, we take a random graph Gi in G(n, p), and let G =
{G1, . . . , Gs}. We refer to the values 1, . . . , s as colors, and we will often use
language suggesting that each graph Gi has its edges colored monochromatically
with color i. In this setting, it is straightforward to show that an edge e ∈(
[n]
2

)
belongs to at least one graph Gi ∈ G with probability (c − o(1)) log n

n , and
therefore, by the threshold of Erdős and Rényi [8],

⋃s
i=1 Gi is connected a.a.s.

when c > 1 (and disconnected when c < 1).
In the following two main theorems, we will find a threshold for the number

of graphs required in G to ensure rainbow connectivity.

Theorem 2. Let G = {G1, . . . , Gs} be a family of s graphs on a common set of
n vertices, each taken randomly from G(n, p), with p = c log n

sn , where c > 1 is a
constant. If

s ≤ log n

log c − 1 + log log n
− 1

2
+

log log log n

3 log log n
,

then a.a.s. G is not rainbow connected.

Theorem 3. Let G = {G1, . . . , Gs} be a family of s graphs on a common set of
n vertices, each taken randomly from G(n, p), with p = c log n

sn , where c > 1 is a
constant. If

s ≥ log n

log c − 1 + log log n
+

3
2

+
2
√

log log log n

log log n
,

then a.a.s. G is rainbow connected.

Together, Theorems 2 and 3 show that the minimum value s that guar-
antees that the s graphs in G a.a.s. make a rainbow connected family is con-
centrated on at most three consecutive integer values, each within a constant
of log n

log c−1+log log n . By comparing this threshold with the result of Theorem 1,
we see that the diameter of

⋃s
i=1 Gi is a.a.s. of the form log n

log c+o(1)+log log n ,

which is slightly smaller (by about log n
(log log n)2 ) than the minimum value of s

that a.a.s. ensures rainbow connectivity in G.
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2 Proof of Theorem 3

Theorem 2 can be proved with a simple application of the First Moment Method
(c.f. [13, Chapter 3]). However, proving Theorem 3 takes more work. Therefore
we omit the details of the proof of Theorem 2 in this extended abstract and
provide more details about the proof of Theorem 3. For this entire section, we
set

d = 	log log log log n
.

2.1 Spheres and Breadth-First Search for Rainbow Paths

We aim to determine the number s of colors needed to make G a.a.s. rainbow
connected. In order to estimate this value s, we will need the following definition.

Definition 1. Let v ∈ [n], C ⊆ [s], and let t ≥ 0 be an integer. Then we define
ΓC

t (v) to be the set of vertices u ∈ [n] satisfying the following two conditions:

– u can be reached from v by a rainbow path of length t consisting of edges of
graphs Gi for which i ∈ C;

– u cannot be reached from v by a rainbow path of length at most t−1 consisting
of edges of graphs Gi for which i ∈ C.

We will refer to these sets ΓC
t (v) as spheres. We observe that for each vertex

v ∈ [n], v is rainbow connected with every vertex in
⋃s

i=0 Γ
[s]
i (v). For a vertex

v ∈ [n], our sets ΓC
i (v) can be computed recursively with a breadth-first search.

First, we let ΓC
0 (v) = {v}. Then, for 0 ≤ t ≤ |C| − 1, we can compute ΓC

t+1(v)
from ΓC

t (v) as follows. We consider each vertex w ∈ ΓC
t (v) individually. There

exists a nonempty set Pw of rainbow paths from v to w of length exactly t.
For each path P ∈ Pw, we denote by C(P ) the set of t colors of the edges of
P . Then, for each path P ∈ Pw, we search for vertices u that have not been
reached before in some ΓC

z (v) with z ≤ t and for which wu ∈ E(Gi) for some
color i ∈ C \C(P ). We add every such u to ΓC

t+1(v). By carrying out this process
for each vertex w ∈ ΓC

t (v) and each path P ∈ Pw, we obtain ΓC
t+1(v). When

we calculate bounds for s, we will be interested in estimating the sizes of these
spheres ΓC

t (v). We have two lemmas to help us.

Lemma 1. It holds a.a.s. that for each graph Gi ∈ G, Δ(Gi) < 2c log n
log log n .

Lemma 2. There exists a value ε = ε(c) > 0 such that a.a.s., for every vertex
v ∈ [n] and every set C ⊆ [s] of size at most d + 1,

∣
∣
∣Γ [s]\C

1 (v)
∣
∣
∣ ≥ ε log n.

We will use the value ε from Lemma 2 throughout the rest of the paper.
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2.2 The Proof

In this section, we sketch the proof of Theorem 3. Our strategy is to show
that for an arbitrary vertex pair u, v ∈ [n], u and v are rainbow connected
with probability 1 − o

(
1

n2

)
, from which it will follow that G is a.a.s. rainbow

connected.

Lemma 3. It holds a.a.s. that for every vertex u ∈ [n], there exists a value
t∗ ≤ d for which ∣

∣
∣Γ [s−1]

t∗ (u)
∣
∣
∣ ≥ 1

2
ε(c log n)d.

Now, we move to the main strategy. We consider a vertex pair u, v ∈ [n].
By Lemma 3, we may assume that |Γ [s−1]

t∗ (u)| ≥ 1
2ε(c log n)d for some t∗ ≤ d.

For a vertex w ∈ Γ
[s−1]
t∗ , let Pw be a rainbow path from u to w, and let C(Pw)

be the set of colors used in E(Pw). We define Rw := [s − 1] \ C(Pw) and
r := s − d − 1 ≤ |Rw|. We will consider the spheres ΓRw

t (v) for t ≤ r. In order
for the growth of our spheres to be independent from observations about Pw, we
will not use vertices of

⋃d
t=0 Γ

[s−1]
t (u) in our search from v, but this does not

negatively affect us.
We write ξ = n

(log n)d−1 , and we would like to show that |ΓRw
t (v)| ≥ ξ for

some value t ≤ r. Then, we can make the following argument.

Claim. For each w ∈ Γ
[s−1]
t∗ (u), let Pw, Rw, and r be defined as above. Suppose

that for each w ∈ Γ
[s−1]
t∗ (u), the inequality

∣
∣
∣ΓRw

tw (v)
∣
∣
∣ ≥ ξ holds for some tw ≤ r.

Then u and v are rainbow connected with probability 1 − o
(

1
n2

)
.

Proof. Consider a vertex w ∈ Γ
[s−1]
t∗ (u). Let Ew be the set of edges with one

endpoint at w and the other endpoint in ΓRw
tw (v). Since neither Pw nor ΓRw

tw (v)
uses the color s, if some edge in Ew belongs to Gs, then u and v are rainbow
connected. Now, if the hypothesis of the claim holds, then Ew must have at least ξ

edges. Furthermore, as our spheres ΓRw
tw (v) avoid

⋃d
t=0 Γ

[s−1]
t (u), for two vertices

w,w′ ∈ Γ
[s−1]
t∗ (u), Ew and Ew′ are disjoint. Thus, the union of all sets Ew over

all vertices w ∈ Γ
[s−1]
t∗ (u) must have at least ξ · 1

2ε(log n)d > 4 log n/p distinct
edges, and if any one of these 4 log n/p edges belongs to Gs, then u and v are
rainbow connected. Furthermore, with probability at least 1 − (1 − p)4 log n/p =
1 − o

(
n−2

)
, there exists an edge of Gs in some edge set Ew, giving a rainbow

path between u and v.

For 0 ≤ t ≤ r, we write Γt = ΓRw
t (v). By our claim, it suffices to show

that for each w ∈ Γ
[s−1]
t∗ (u), we have |Γtw(v)| ≥ ξ for some value tw ≤ r,

and then Theorem 3 will be proven. We will define values Lt with the goal of
showing that if |Γtw(v)| ≥ ξ does not hold for some value tw ≤ r, then with
high probability, |Γt(v)| ≥ Lt for all values 0 ≤ t ≤ r, which will ultimately give
us a contradiction. In order to estimate |Γt(v)| for 0 ≤ t ≤ r, we will carry out
a breadth first search from v. We define δ1 = δ2 = (log n)−1/3, and we define
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δt = (log n)−1 for 3 ≤ t ≤ r −1. We also define φ = 1
log n and α(t) = 1− (r − t)p.

Then, we define L0 = 1 and

Lt =
(

1
2
ε log n

) (
c log n

s

)t−1

(r − 1)t−1(1 − φ)2t−2
t−1∏

i=1

α(i)(1 − δi).

Using our breadth-first search technique, we can show that with probability
1 − o

(
1

n3

)
, for all values 0 ≤ t ≤ r, |Γt| ≥ Lt. By substituting t = r in this

inequality and simplifying, we may obtain the following inequality:

|Γr|
n/(log n)d−1

≥ exp
(
s log log n + s(log c − 1) − log n − 3

2
log log n + O(d)

)

≥ exp
(√

log log log n + O(d)
)

> 1.

Thus, we conclude that |Γr| ≥ n
(log n)d−1 . By our claim, the vertex pair u, v is

rainbow connected with probability 1 − o
(

1
n2

)
, which implies that every vertex

pair is rainbow connected with probability 1 − o(1). ��
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R.: A rainbow version of Mantel’s theorem. Adv. Comb. Paper No. 2, 12 (2020)

2. Alon, N., Pokrovskiy, A., Sudakov, B.: Random subgraphs of properly edge-
coloured complete graphs and long rainbow cycles. Israel J. Math. 222(1), 317–331
(2017)

3. Bollobás, B.: The evolution of sparse graphs. In: Graph Theory and Combinatorics
(Cambridge, 1983), pp. 35–57. Academic Press, London (1984)

4. Bradshaw, P.: Transversals and bipancyclicity in bipartite graph families (2020)
5. Burtin, J.D.: Extremal metric characteristics of a random graph. II. Limit distri-

butions. Teor. Verojatnost. i Primenen. 20, 82–99 (1975). (in Russian)
6. Chung, F., Lu, L.: The diameter of sparse random graphs. Adv. Appl. Math. 26(4),

257–279 (2001)
7. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 3(2),

69–81 (1952)
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Abstract. Let Λ(T ) denote the set of leaves in a tree T . One natural
problem is to look for a spanning tree T of a given graph G such that
Λ(T ) is as large as possible. Recently, a similar but stronger notion called
the robust connectivity of a graph G was introduced, which is defined as
the minimum value |R∩Λ(T )|

|R| taken over all nonempty subsets R ⊆ V (G),
where T = T (R) is a spanning tree on G chosen to maximize |R ∩ Λ(T )|.
We prove a tight asymptotic bound of Ω(γ− 1

r ) for the robust connec-
tivity of r-connected graphs of Euler genus γ. Moreover, we give a sur-
prising connection between the robust connectivity of graphs with an
edge-maximal embedding in a surface and the surface connectivity of
that surface, which describes to what extent large induced subgraphs of
embedded graphs can be cut out from the surface without splitting the
surface into multiple parts. For planar graphs, this connection provides
an equivalent formulation of a long-standing conjecture of Albertson and
Berman.

Keywords: Robust connectivity · Graphs on surfaces ·
Albertson-Berman conjecture

1 Introduction

Let Λ(T ) denote the set of leaves in a tree T . Given a graph G, we denote by
τG the set of all spanning trees in G. The maximum leaf number (or maxleaf
number) of a graph G is defined as �(G) : =maxT∈τG

|Λ(T )|.
Questions about maximum leaf number have been thoroughly considered

throughout the literature, and maximum leaf number was one of the origi-
nal NP-complete problems (even when restricted to planar graphs of maximum
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degree 4) identified by Garey and Johnson [7]. Storer [10] considered the problem
of finding a lower bound for the maximum leaf number of cubic graphs, and he
proved that every cubic graph on n vertices has a spanning tree with at least
�n
4 + 2� leaves. Kleitman and West [9] gave an algorithm for a connected graph

G of minimum degree k that shows �(G) ≥ (1 − 2.51 ln k
k )n.

The maximum leaf number problem can be equivalently formulated as a
minimum connected dominating set problem, which is a problem where the task
is to find a smallest connected subset of vertices D ⊆ V (G) of a graph G, such
that every vertex of G is in the closed neighborhood of D. Both formulations of
the maximum leaf number problem have been studied from the computational
point of view in many areas of computer science [6]. In this paper, we will consider
a graph invariant related to maximum leaf number known as robust connectivity1.
The robust connectivity κρ(G) of a graph G is defined as follows.

Definition 1 (Robust connect. [5]).

κρ(G) := min
R⊆V (G)

R �=∅
max
T∈τG

|R ∩ Λ(T )|
|R| .

We often write �(G,R) for the maximum value of |R∩Λ(T )|
|R| taken over all spanning

trees T of G, in which case κρ(G) = minR⊆V (G)
R �=∅

�(G,R). In [5], it was shown that

a non-regular graph G of maximum degree Δ is κρ(G)
2Δ -flexibly Δ-choosable.

Despite being useful for establishing bounds in certain problems like flexible
list coloring, robust connectivity does not appear to be simple to calculate. How-
ever, in [5], it was shown that for graphs of bounded degree, 3-connectivity is
enough to guarantee some absolute lower bound for robust connectivity.

Theorem 1 (Theorem 22 in [5]). If Δ ≥ 3 is an integer, then there exists a
value ε = ε(Δ) > 0 such that if G is a 3-connected graph of maximum degree Δ,
then κρ(G) ≥ ε.

The authors of [5] also showed that 3-connectivity alone is not enough to
guarantee a lower bound on a graph’s robust connectivity. To demonstrate this
fact, the authors used the Levi graph of the complete 3-uniform hypergraph K

(3)
n ,

described in Example 1. They also pointed out that 2-connected cubic planar
graphs do not have any guaranteed nonzero lower bound for robust connectivity,
as demonstrated by Fig. 1.

Example 1 ([5]). Let G be a graph whose vertex set consists of a set R of at
least four vertices and an additional vertex vA for each triplet A ∈ (

R
3

)
, and let

each vertex of the form vA be adjacent exactly to those vertices in the triplet A.

It is straightforward to show that the Levi graph G of K
(3)
n in Example 1 is

3-connected. However, no more than two vertices of R may be removed from G

1 This parameter was formerly called “game connectivity” in [5]. However, we believe
that the term “robust connectivity” better suits the properties of this parameter.
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· · ·

Fig. 1. The graph G in the figure is an arbitrarily large two-connected 3-regular graph.
If a set R ⊆ V (G) is chosen as shown by the dark vertices in the figure, then there
does not exist a constant ε > 0 such that ε|R| vertices of R may become leaves of
some spanning tree of G. Therefore, the robust connectivity of G is arbitrarily close
to zero. For any k ≥ 3, a similar k-regular graph with robust connectivity arbitrarily
close to zero with may be constructed from a cycle C by replacing each vertex of C by
a k-clique minus an edge.

Fig. 2. [Figure 4 in [5]] The figure shows the Levi graph of K
(3)
5 , which is a 3-connected

graph constructed based on Example 1 with |R| = 5.

without disconnecting G. Therefore, for any spanning tree T on G, the leaves of T
include at most two vertices of R. As R becomes arbitrarily large, the proportion
of vertices in R that can be included as leaves in a spanning tree on G becomes
arbitrarily small. Therefore, Example 1 shows that some 3-connected graphs G
do not satisfy κρ(G) ≥ ε for any universal ε > 0. Figure 2 shows the Levi graph
of K

(3)
n from Example 1 when n = |R| = 5. Similarly, the Levi graphs of K

(r)
n

for larger uniformities r ≥ 4 show that the robust connectivity of r-connected
graphs may also be arbitrarily small.

We show a surprising connection between the notion of robust connectivity
and the following famous conjecture of Albertson and Berman [1].

Conjecture 1 ([1]). If G is a planar graph on n vertices, then G contains an
induced forest of size at least n/2.

Conjecture 1 has a long history, and many partial results and theorems of a
similar flavor exist; see [2] for a very recent overview of the related results. One
of the large motivations for Conjecture 1 was that it would provide a proof that
every planar graph on n vertices has an independent set of size �n/4� without
relying on the Four Color Theorem. The currently best known lower bound of
2
5n is a consequence of Borodin’s theorem of 5-acyclic colorability [3], which was
already published in 1976. Conjecture 1 is proven for only a few subclasses of
planar graphs, e.g., outerplanar graphs [8], where the tight lower bound is 2

3n.
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Our Results. We present asymptotically tight lower bounds for the robust
connectivity of r-connected graphs in terms of their Euler genus, for r ≥ 3.

Theorem 2. If r ≥ 3 and G is an r-connected graph of Euler genus γ, then
κρ(G) ≥ 1

27γ−1/r.

The Levi graphs of K
(r)
n show that this bound is tight within a constant

factor. With more careful calculations, we also derive improved lower bounds for
the robust connectivity of 3-connected planar graphs.

Theorem 3. If G is a 3-connected planar graph, then κρ(G) ≥ 21
256 > 1

13 .
Moreover, if ε > 0, then there exists a planar 3-connected graph H such that
κρ(H) ≤ 1

3 + ε.

In this direction, we may attempt to go even further and exchange the assump-
tion of 3-connectivity with being a planar triangulation. Note that planar trian-
gulations on at least 4 vertices are 3-connected. For planar triangulations, we
formulate the following conjecture.

Conjecture 2. If G is a planar triangulation, then κρ(G) ≥ 1
2 .

Surprisingly, Conjecture 2 turns out to be equivalent to the famous Conjec-
ture 1.

Theorem 4. Conjecture 1 is equivalent to Conjecture 2.

Hence, we propose the notion of robust connectivity as another way to attack
Conjecture 1. In fact, we will present a further generalization of both conjectures
to graphs of arbitrary Euler genus γ. In order to do this, we develop a new notion
for an arbitrary surface S that, informally, describes how large of an induced
subgraph we can cut out of an edge-maximal graph on S without separating S
into multiple pieces. We will often write G̃ to refer to an embedding of graph G.
For a surface S, we let GS be the family of (simple) embedded graphs on S. A
graph G is edge-maximal (with respect to a surface S) if G has an embedding
G̃ ∈ GS , but for each non-edge e /∈ E(G), G+ e cannot be embedded in S. More
often, we will speak about an edge-maximal embedding G̃ ∈ GS of graph G if
for each e /∈ E(G), e cannot be added to the embedding G̃ without creating a
crossing on S. Note that every edge-maximal graph G with respect to a surface
S has an edge-maximal embedding on S, but not every graph with an edge-
maximal embedding on S is edge-maximal with respect to S. For an embedded
graph G̃ ∈ GS , we write S ✂ G̃ for the surface obtained by cutting S along the
edges of G̃ and puncturing S at each isolated vertex of G̃. Then, we define m(G̃)
to be the number of vertices in a largest induced embedded subgraph G̃′ ⊆ G̃
for which S ✂ G̃′ is a connected surface. Now, we define the main parameter of
interest.

Definition 2 (Surface connectivity). The surface connectivity κs(S) of a
surface S is defined as follows: κs(S) = inf

{
m(G̃)

|G̃| : G̃ ∈ GS

}
.
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We will show that the minimum robust connectivity over all edge-maximal
graphs embedded in a surface S is equal to the surface connectivity of S.

Theorem 5. Let S be a surface. Every graph G with an edge-maximal embed-
ding on S satisfies κρ(G) ≥ k if and only if κs(S) ≥ k.

When S is the plane, an edge-maximally embedded graph G̃ is simply a
planar triangulation, and S ✂ G̃

′ is connected for an induced embedded subgraph
G̃′ ⊆ G if and only if G̃′ is acyclic. Hence, Theorem 5 directly implies Theorem 4.

Proofs of Theorems 2 and 3 are in the full version of this paper [4].

2 Induced Subgraphs on Surfaces

First, we establish an upper bound on the surface connectivity of any surface
S. Since every surface S locally resembles the plane, we may embed K4 on S in
such a way that every triangle of K4 separates S into two connected components.
Thus, the largest subgraph of K4 that does not separate S contains only two out
of the four total vertices, and so κs(S) ≤ 1

2 . When S is the plane, Conjecture 1
asserts that κs(S) = 1

2 .

Lemma 1. Let G be a graph, and let G̃ be an edge-maximal embedding of G in a
surface S. Suppose G̃′ is a proper induced embedded subgraph of G̃ corresponding
to an induced subgraph G′ ⊆ G. If S ✂ G̃

′ is a connected surface, then G \ G′ is
a connected graph.

The proof of Lemma 1 is in the full version [4]. We note that Lemma 1
immediately implies that an edge-maximal graph on a surface with at least four
vertices is 3-connected, since in a simple graph, a pair of vertices can only induce
an edge, which cannot separate a surface. We also note that edge-maximality is
necessary for Lemma 1. For example, if T̃ is an embedded tree in a surface S,
S ✂ T̃

′ is connected for any induced embedded subgraph T̃ ′ of T̃ , but T \ T ′ is
often disconnected. Now, we are ready to prove our main result of this section.

Proof (of Theorem 5). Suppose first that κs(S) ≥ k, or in other words, that every
embedded graph H̃ ∈ GS on n vertices has an induced embedded subgraph H̃ ′

of size at least kn for which S ✂ H̃
′ is a connected surface. As shown above using

K4, k ≤ 1
2 . Let G be a graph with an edge-maximal embedding on S. We note

that since every edge-maximal graph G with at most three vertices is a clique
and hence satisfies κρ(G) > 1

2 ≥ k, it suffices only to consider edge-maximal
graphs G on at least four vertices. In particular, we may assume by Lemma 1
that G is 3-connected.

Now, let R ⊆ V (G). If |R| ≤ 3, then since G is 3-connected, we may use at
least 2 ≥ 2

3 |R| > k|R| vertices of R as leaves of some spanning tree on G, and
we are done in this case. Now, suppose |R| ≥ 4. If G has an universal vertex,
then we may find a spanning tree on G that uses at least |R| − 1 ≥ 3

4 |R| > k|R|
vertices of R as leaves, and we are done. Otherwise, we consider the graph G̃[R]
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embedded in S. By our hypothesis, we may find a subset R′
� R of size at

least k|R| for which S ✂ G̃[R′] is a connected surface. We claim that we may
find a spanning tree on G that includes every vertex of R′ as a leaf. Indeed,
as S ✂ G̃[R′] is connected, and as G is edge-maximal, it follows from Lemma 1
that G \ R′ is a connected graph. Furthermore, since G has no universal vertex,
G \ N(r) is a disconnected graph for each r ∈ R′, so by Lemma 1, S ✂ G̃[N(r)]
is a disconnected surface. Therefore, for each r ∈ R′, at least one neighbor of
r does not belong to R′. Hence, one may take any spanning tree T on G \ R′,
and T will dominate R′; then one may add each vertex of R′ as a leaf of T . As
|R′| ≥ k|R|, and as the choice of R was arbitrary, it follows that κρ(G) ≥ k.

Suppose, on the other hand, that every graph G with an edge-maximal embed-
ding on S satisfies κρ(G) ≥ k. Let H̃ be a graph embedded in S. We seek an
induced embedded subgraph H̃ ′ ⊆ H̃ of size at least k|H̃| for which S ✂ H̃

′ is
a connected surface. It will make our task no easier to add edges to H̃ until H̃
is edge-maximal. Now, let G̃ be a graph embedded in S obtained by adding a
vertex vC to each connected component C of S ✂ H̃ and making vC adjacent to
all vertices incident to C. We call these vertices vC component vertices. Clearly,
G̃ is an edge-maximal embedding, since every possible edge between vertices of
H̃ is included, and every possible edge between a component vertex and a vertex
of H̃ is included. Now, let R ⊆ V (G) denote the vertices that originated in H.
Since G has an edge-maximal embedding, we know that κρ(G) ≥ k, and hence
we may choose a spanning tree T on G that includes at least k|R| of the vertices
of R as leaves. Then T ′ = T \ (Λ(T ) ∩ R) is a connected graph that spans all
component vertices of G. We claim that if H ′ = H[Λ(T ) ∩ R], then S ✂ H̃

′ is a
connected surface. Indeed, if S ✂ H̃

′ is disconnected, then there must exist two
component vertices of G in distinct connected components of S ✂ H̃

′, and T ′

cannot contain both of these component vertices, a contradiction. Therefore, the
induced subgraph H̃ ′ is a graph of size at least k|R| = k|H̃|, and S ✂ H̃

′ is a
connected surface. 	

Conclusions. We have shown tight asymptotic bounds for the robust connec-
tivity of r-connected graphs embedded on surfaces. Moreover, we show a connec-
tion between robust connectivity of edge-maximal graphs and the notion surface
connectivity. We propose a further study of surface connectivity which, to the
best of our knowledge, has not been considered before. For planar graphs, the
connection we showed provides another equivalent formulation of the famous
Albertson Berman conjecture, and our results may give another direction to
attack the conjecture itself. For surfaces of higher genus, this connection gives
rise a more general question. The graph K7 may be embedded on any surface
with at least one handle such that no more than three vertices can be removed
without disconnected the surface. Hence, we ask widely open Question 1. We
do not even know whether the correct bound decreases with increasing Eulerian
genus.

Question 1. Is surface connectivity always at least 3
7 for any surface?
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