
 Distances and Dom
ination in Graphs   •   Ism

ael González Yero

Distances and 
Domination in 
Graphs

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Ismael González Yero
Edited by



Distances and Domination in Graphs





Distances and Domination in Graphs

Editor

Ismael González Yero
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Preface to ”Distances and Domination in Graphs”

In graph theory, a large number of topics related to distances in graphs is being investigated

in several studies. The most typical and known ones are perhaps the diameter, the radius, and

the eccentricity. However, there is a large number of other interesting distance-related topcis in

graphs that are frequently used in applied and/or theoretical investigations. Some of the most

common ones are related to well-known indexes that measure the properties of graphs, for example,

the centrality, the closeness, and the betweenness centrality. One interesting fact that allows us to

deal with such problems is that the matrix of distances in a graph can be computed in polynomial

time, using, for example, the well-known Floyd–Warshall algorithm. Another interesting case in

problems concerning distances in graphs is the degree–diameter problem, which basically involves

the determination of the largest possible graph (in terms of the size of its vertex set) such that the

largest degree of any of the vertices in the graph is, at most, the specified diameter. This problem

has been extensively studied, and there is a huge background of literature on it. Some other

examples of distance-related parameters are the convexity number, the geodetic number, and the

metric dimension. During the last 30 years, with the increase in investigations in several areas like

computer science, computer engineering, operational research and social networks, graph theory has

become an important tool for researching many of the mentioned areas. On the other hand, one of

the most important topics in graph theory is the theory of domination and related problems, such as

independence, covering and matching. The growth of studies on domination in graphs can be partly

attributed to its applicability in diverse theoretical fields, such as linear algebra, communication

networks, social sciences, computational complexity and algorithm design. The significant increase

in interest in this topic has resulted in an enormous quantity of published papers—around 1600

papers, a significant number of monographs and theses, and several books. Based on this increased

interest, this Special Issue was developed at the journal Mathematics under the title of “Distance

and Domination in Graphs”, in order to gather some relavant and recent investigations concerning

distances and domination in graphs.

Ismael González Yero

Editor
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Abstract: Characterizing topological properties and anomalous behaviors of higher-dimensional
topological spaces via notions of curvatures is by now quite common in mainstream physics and
mathematics, and it is therefore natural to try to extend these notions from the non-network domains
in a suitable way to the network science domain. In this article we discuss one such extension,
namely Ollivier’s discretization of Ricci curvature. We first motivate, define and illustrate the
Ollivier–Ricci Curvature. In the next section we provide some “not-previously-published” bounds
on the exact and approximate computation of the curvature measure. In the penultimate section we
review a method based on the linear sketching technique for efficient approximate computation of
the Ollivier–Ricci network curvature. Finally in the last section we provide concluding remarks with
pointers for further reading.

Keywords: network science; network curvature; discrete Ricci curvature; earth-mover’s distance

MSC: 68Q17; 68W40

1. Introduction

It is by now quite common in mainstream physics and mathematics [1,2] to characterize
topological properties and anomalous behaviors of higher-dimensional topological spaces via notions
of (local and global) curvatures of these spaces, e.g., in general relativity, extreme variations of
four dimensional space-time curvatures via geodesic incompleteness lead to characterizations of
black-holes [3]. It is therefore natural to try to extend these notions from the non-network domains
e.g., from continuous metric spaces or from higher-dimensional geometric objects) in a suitable way
to the network science domain so that non-trivial new topological characteristics of networks can be
captured. There are several ways this can be achieved; we briefly mention two other approaches before
proceeding with the approach that is the main topic of this paper. Note that such extensions need to
overcome at least two key challenges, namely that (i) networks are discrete (non-continuous) objects,
and that (ii) networks may not necessarily have an associated natural geometric embedding.

One notion of network curvature that has been well-studied in the network theory literature,
first suggested by Gromov in a non-network group theoretic context [4], is the Gromov-hyperbolic
curvature. First defined for infinite continuous metric space [2], the measure was later adopted for finite
graphs. Usually the measure is defined via properties of geodesic triangles or via equivalent (in a sense
that can be made precise) 4-node conditions, though Gromov originally defined the measure using
Gromov-product nodes in [4]. Informally any infinite metric space has a finite Gromov-hyperbolicity
measure if it behaves metrically in the large scale as a negatively curved Riemannian manifold,
and thus the value of this measure can be correlated to the standard scalar curvature of a hyperbolic
manifold. Intuitively, for a finite network the measure is based on the properties of the set of exact

Mathematics 2020, 8, 1416; doi:10.3390/math8091416 www.mdpi.com/journal/mathematics1
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and approximate geodesics of the network. There is a large body of research works dealing with
theoretical and empirical aspects of this measure, e.g., see [5–10] for theoretical aspects, and see [11–13]
for empirical aspects with applications to real-world networks.

A second notion of curvature is the applying Forman’s discretization of Ricci curvature for
(polyhedral or CW) complexes (the “Forman–Ricci curvature”) [14] to networks. Informally, one applies
the Forman-Ricci curvature to networks by topologically associating components (sub-graphs) of
the given graphs with higher-dimensional objects. The topological association itself can be carried
out several ways. Although this type of curvature originated relatively recently, there are already
a number of papers investigating properties of these measures and applying them to real-world
networks, e.g., see [8,15–18].

The network curvature discussed in this paper is another discretization of Ricci curvature,
namely Ollivier’s discretization [19–22], henceforth dubbed as the “Ollivier–Ricci curvature”.
Both Ollivier–Ricci curvature and Forman-Ricci curvature assign measures that assign a number
to each edge of the given network, but the numbers are calculated in quite different ways in these
two curvatures since they capture different metric properties of a Riemannian manifold. The reader
is referred to the paper by [15] for a comparative analysis of these two measures. In addition to
the network curvatures measures discussed above, researchers have also explored other notions of
curvature, such as the one based on circle packings by Chow and Luo [23].

Basic Notations and Terminologies

To simplify exposition, we assume in this paper that the given network (In this paper the terms
“graph” and “network” will be used interchangeably.) G = (V, E) is an undirected unweighted
connected graph; generalization of the corresponding definitions and concepts to the case of
non-negative edge weights is mostly straightforward. The following notations will be used in the rest
of this paper.

� For a node v ∈ V, Nbr(v) = { u | {v, u} ∈ E} denotes the set of neighbors of v, and deg(v) =

|Nbr(v) | denotes the degree of v.
� distG(u, v) (or simply dist(u, v)) denote the distance (i.e., number of edges in a shortest path)

between the nodes u and v in G.

2. Ollivier–Ricci Curvature: Motivation, Definition and Illustration

In this section, we provide the formal definition of the Ollivier–Ricci curvature. First, we need
to define the so-called Earth Mover’s Distance (EMD) (also known as the L1 transportation distance,
the L1 Wasserstein distance and the Monge-Kantorovich-Rubinstein distance) [24–27]. For the purpose
of this paper, it suffices to define the distance in the discrete setting of a network as follows. Suppose
that we have two probability distributions P1 and P2 on a subset ∅ ⊂ V′ ⊆ V of nodes, i.e., two real
numbers 0 ≤ P1(v),P2(v) ≤ 1 for every node v ∈ V′ with ∑v∈V′ P1(v) = ∑v∈V′ P2(v) = 1. We can
think of every number P1(v) as the maximum total amount of “earth” (dirt) at node v that can be
moved to other nodes, and every number P2(v) as the maximum total amount of earth node v can store
in its storage. The cost of transporting one unit of earth from node u to node v is distG(u, v), and the
goal is to satisfy the storage requirement of all nodes by moving earths as needed while minimizing
the total transportation cost. Letting the variable zu,v ∈ [0, 1] denote the amount of shipment from
node u to node v in an optimal solution, EMD for the two probability distributions P1 and P2 on V′

can be formulated as the linear programming (LP) problem shown in Figure 1 which can be solved
in polynomial time. One can also think of the EMD solution as the distance between two probability
distributions P1 and P2 on the set of nodes V′ based on the shortest-path metric on G. We will use the
notation EMD(V′,P1,P2) to denote the value of the objective function in an optimal solution of the LP

in Figure 1.
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variables: zu,v for every pair of nodes u, v ∈ V ′

minimize ∑
u∈V′

∑
v∈V′

dist(u, v) zu,v (* minimize total transportation cost *)

subject to

∑
v∈V′

zu,v = P1(u), for each u ∈ V ′ (* take from u as much as it has *)

∑
u∈V′

zu,v = P2(v), for each v ∈ V ′ (* ship to v as much as it needs *)

zu,v ≥ 0, for all u, v ∈ V ′

Figure 1. LP-formulation for EMD on the set of nodes |V′ | with |V′ |2 variables. Comments are enclosed
by (* and *). Note that the constraints zu,v ≤ 1 are unnecessary and therefore omitted.

For an intuitive understanding of the connection of EMD to Ollivier–Ricci curvature for networks,
we informally recall one way of defining Ricci curvature measure for a smooth Riemannian manifold.
The Ricci curvature at a point x in the manifold along a direction can be thought of transporting a
small ball centered at x along that direction and measuring the “distortion” of that ball. The role of
the direction is captured by the edge {u, v}, the roles of the balls at the two nodes are played by the
distributions P1 and P2, and the role of the distortion due to transportation is captured by the EMD

measure. More precisely, given our input graph G = (V, E) and an edge {u, v} ∈ E, the paper [20]
uses the EMD measure to define the “course Ricci curvature” RIC(u, v) along the edge {u, v} in the
following manner (see Figure 2 for an illustration):

� Let V′ be the set of nodes Vu,v
def
= {u, v} ∪Nbr(u) ∪Nbr(v).

� Let the probability distributions P1 and P2 be uniform distributions (If the given graph is
non-negative node weights then another option is to normalize the restrictions of these node
weights to the sub-graph Hu,v and use them for the distributions P1 and P2.) Pu and Pv,
respectively, over the nodes in {u} ∪Nbr(u) and {v} ∪Nbr(v), respectively, i.e.,

Pu(x) def
= P1(x) =

⎧⎨⎩
1∣∣ {u}∪Nbr(u)

∣∣ , if x ∈ {u} ∪Nbr(u)

0, otherwise

Pv(x) def
= P2(x) =

⎧⎨⎩
1∣∣ {v}∪Nbr(v)

∣∣ , if x ∈ {v} ∪Nbr(v)

0, otherwise
(1)

� Remembering that distG(u, v) = 1 for an edge {u, v} ∈ E, we can then define the course Ricci
curvature as (cf. [20] (Definition 3)):

RIC(u, v) = 1 − EMD(Vu,v,Pu,Pv)

distG(u, v)
≡ RIC(u, v) = 1 − EMD(Vu,v,Pu,Pv) (2)

The measure can easily be extended for graphs with non-negative edge weights; redefine dist(u, v)
to be minimum total weight over all possible paths between u and v and use the equation:

RIC(u, v) = 1 − EMD(Vu,v,Pu,Pv)

distG(u, v)

Some authors also define the discrete Ricci curvature RIC(u) for a node u ∈ V by taking
the average of the discrete Ricci curvarure over all edges incident on u, e.g., by letting RIC(u) =
∑{u,v}∈E RIC(u,v)

deg(u) .

3
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uuu

vvv

GGG

(a)

Vu,v = {u, v, q1, q2, q3, q4}Vu,v = {u, v, q1, q2, q3, q4}Vu,v = {u, v, q1, q2, q3, q4}

(b)

uuu

q1q1q1

q2q2q2

vvv
q3q3q3

q4q4q4

(c)

000
111

q2q2q2

uuu

q1q1q1

q4q4q4

vvv

q3q3q3

q2q2q2

uuu

q1q1q1

q4q4q4

vvv

q3q3q3

PuPuPu

1/51/51/5

1/51/51/5

1/51/51/5

1/51/51/5

1/51/51/5

000

PvPvPv

000

1/51/51/5

1/51/51/5

1/51/51/5

1/51/51/5

1/51/51/5

{u} ∪ Nbr(u){u} ∪ Nbr(u){u} ∪ Nbr(u)

{v} ∪ Nbr(v){v} ∪ Nbr(v){v} ∪ Nbr(v)

Figure 2. A pictorial illustration of calculation of RIC(u, v). (a) The given graph G; (b) The subset of
nodes Vu,v; (c) The distributions Pu and Pv. For visual clarity, only two distances dist(q3, q3) = 0 and
dist(v, q3) = 1 are shown.

An Illustration of Computing the Value of RIC(u, v) For a Two-dimensional Grid

Consider an infinite two-dimensional grid on the plane and any edge {u, v} of the grid
as shown in Figure 3. Note that any node of the grid has exactly 4 neighbors, thus Pu(x) ={

1/5, if x ∈ {u} ∪Nbr(u)

0, otherwise
and Pv(x) =

{
1/5, if x ∈ {v} ∪Nbr(v)

0, otherwise
. Moreover, the set of nodes

Nbr(u) \ {v} and Nbr(v) \ {u} are disjoint, thus it is easy to see that EMD(Vu,v,Pu,Pv) = 1 (see Figure 3).
Using (2) we therefore get RIC(u, v) = 0.

4
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uuu vvv

Figure 3. A pictorial illustration of calculation of RIC(u, v) for a two-dimensional grid. The blue
edges, when shifted to the left by one unit, coincide with the red edges, giving EMD(Vu,v,Pu,Pv) ≤ 1.
It can also be argued that EMD(Vu,v,Pu,Pv) ≥ 1 (e.g., see [20] (Example 5) with N = 2), thus giving
EMD(Vu,v,Pu,Pv) = 1.

3. Exact and Approximate Computation of Ric(u, v)

Note that any node x ∈ Vu,v with either Pu(x) = 0 or Pv(x) = 0 can be ignored in the calculation
of EMD(Vu,v,Pu,Pv). Thus, a straightforward calculation of RIC(u, v) requires the following two steps:

� Find the pair-wise distances between the nodes in Nbr(u) and Nbr(v). This can be done in
O(nω log n) using Seidel’s algorithm [28] where n is the number of nodes and ω be the value such
that two n × n matrices can be multiplied in O(nω) time; the smallest current value of ω is slightly
less than 2.373 [29].

� Solve an LP with O(deg(u)deg(v)) variables and O(deg(u)deg(v)) constraints via standard LP

solvers such as the interior-point method. Alternatively, the LP can be solved by minimum-cost
network flow algorithms by viewing it as a transportation problem, e.g., see [30].

However, the calculation of EMD(Vu,v,Pu,Pv) (and therefore RIC(u, v)) can be further simplified
if we make some more observations.

Consider a pair of nodes u′ ∈ Nbr(u) and v′ ∈ Nbr(v) for an edge {u, v} ∈ E. Note that there are
only four possible values of distG(u′, v′): distG(u′, v′) = 0 if u′ = v′, distG(u′, v′) = 1 if {u′, v′} ∈ E,
distG(u′, v′) = 2 if there is a path of length 2 between u′ and v′, and distG(u′, v′) = 3 for all other cases.
Thus, to to find all pair-wise distances between the nodes in Nbr(u) and Nbr(v) we only need to check
for paths up to length 3, which can be done faster in O(nω) time using Seidel’s algorithm [28] again.

For further discussion, consider the total variation distance (TVD) between the two distributions
Pu and Pv on the set of nodes in Vu,v:

||Pu − Pv ||TVD
def
=

1
2

⎛⎝ ∑
v′∈Vu,v

(
|Pu(v′)− Pv(v′)|

)⎞⎠
Note that ||Pu − Pv ||TVD can be trivially computed in O(deg(u) + deg(v)) time.

Proposition 1. 1 − 3||Pu − Pv ||TVD ≤ RIC(u, v) ≤ 1 − ||Pu − Pv ||TVD.

Proof. Since every pair of non-identical nodes u′, v′ ∈ Vu,v satisfy 1 ≤ distG(u′, v′) ≤ 3, we have
||Pu − Pv ||TVD ≤ EMD(Vu,v,Pu,Pv) ≤ 3||Pu − Pv ||TVD which imply the claimed result via definition
of RIC(u, v).

The bound in Proposition 1 may not necessarily be a tight approximation for RIC(u, v);
for example, for the grid in Figure 3 we get ||Pu − Pv ||TVD = 3/5 giving −4/5 ≤ RIC(u, v) ≤ 2/5

as an approximation to the actual value of RIC(u, v) = 0.

5
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For development of further bounds, consider the edge {u, v} ∈ E. Assume without loss of
generality that deg(u) ≤ deg(v) and G has 4 or more nodes, thus deg(v) ≥ 2. Suppose that u and v
have 0 ≤ � ≤ deg(u) common neighbour nodes as shown pictorially below:

Nbr(u) =
{ k+�=deg(u)−1≥ �+1 nodes︷ ︸︸ ︷

p1, p2, . . . , pk, q1, q2, . . . , q�
}

{
q1, q2, . . . , q�︸ ︷︷ ︸
�≥ 0 common
neighbours

, r1, r2, . . . , rm

︸ ︷︷ ︸
m+�=deg(v)−1≥ �+1 nodes

}
= Nbr(v)

Note that the two probability vectors Pu and Pv for the edge {u, v} are as shown below:

p1 . . . pk q1 . . . q� u r1 . . . rm v

Pu =
(

1
deg(u)+1 . . . 1

deg(u)+1
1

deg(u)+1 . . . 1
deg(u)+1

1
deg(u)+1 0 . . . 0 1

deg(u)+1

)
Pv =

(
0 . . . 0 1

deg(v)+1 . . . 1
deg(v)+1

1
deg(v)+1

1
deg(v)+1 . . . 1

deg(v)+1
1

deg(v)+1

)
By our assumption 1

deg(u)+1 ≥ 1
deg(v)+1 , and thus a straightforward calculation gives the following

value for ||Pu − Pv ||TVD:

||Pu − Pv ||TVD =
1
2
×

(
k

deg(u) + 1
+

m
deg(v) + 1

+ (�+ 2)×
(

1
deg(u) + 1

− 1
deg(v) + 1

))
=

k+�
2 + 1

deg(u) + 1
+

m−�
2 − 1

deg(v) + 1
=

1
2
+

(deg(v) + 1)− 2(�+ 2)
2(deg(v) + 1)

= 1 − �+ 2
deg(v) + 1

(3)

Proposition 2. −2 + 3 �+2
deg(v)+1 ≤ RIC(u, v) ≤ �+2

deg(v)+1 , and in particular it always holds that −2 <

RIC(u, v) ≤ 1.

Proof. Plugging the bound (3) in Proposition 1 proves the first claim. To prove the second claim,
note that 0 < �+2

deg(v)+1 ≤ 1.

For further bounds, suppose that there exists a γ ∈ {1, 2, 3} such that for any two distinct nodes
u′ ∈ Nbr(u) and v′ ∈ Nbr(v) we have dist(u′, v′) is exactly γ. In that case, it follows that

EMD(Vu,v,Pu,Pv) = γ×||Pu −Pv ||TVD ⇒ RIC(u, v) = 1−γ×||Pu −Pv ||TVD = 1−γ+
γ(�+ 2)

deg(v) + 1

Now, suppose that G has no cycles of 5 of fewer edges containing the edge {u, v} (a tree is a trivial
example of such a graph). This implies γ = 3 and � = 0, giving the following bound.

Proposition 3. If G has no cycles of 5 of fewer edges containing the edge {u, v} then RIC(u, v) is precisely
−2 + 6

deg(v)+1 ≤ 0 and can be computed in O(deg(u) + deg(v)) time.

4. Review of Efficient Approximate Computation of Ric(u, v) via Linear Sketching

It is clear that a crucial bottleneck in computing RIC(u, v) for an arbitrary graph G = (V, E)
is the computation of EMD(Vu,v,Pu,Pv) since it seems to require solving a linear program
with O(deg(u)deg(v)) variables and O(deg(u)deg(v)) constraints (note that in the worst case
deg(u)deg(v) can be as large as Θ(n2) when n is the number of nodes of G). In this section we review

6
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a non-trivial approach for computing EMD(Vu,v,Pu,Pv) provided we settle for a slightly non-optimal
solution for EMD(Vu,v,Pu,Pv).

Linear sketching is a popular method to perform approximate computations on large data sets
using dimensionality reduction [31]. The general (informal) intuition behind linear sketching is to take
linear projections of the given data set and then use these projections to provide solutions to the original
problem. Significant research has been done on the problem of estimating EMD using linear sketches
for general metric spaces [32–36]. In this section, we discuss the results by McGregor and Stubbs [37]
to approximately estimate EMD on a graph metric (i.e., metric induced by inter-node distances in
a graph, as is the case for computing RIC(u, v)). Recall that our bottleneck is the computation of
EMD(Vu,v,Pu,Pv) for the given graph G.

The first step is to transform the problem of computing EMD(Vu,v,Pu,Pv) by standard techniques
to the following equivalent problem which will be denoted by EMDd. Given two multi-sets A,B ⊆ X
over a ground set X with |A| = |B| = k, and a metric d : X × X �→ R+ on X , compute the
minimum-cost of perfect matching between A and B, i.e., using πA,B to denote a 1-1 mapping from A
to B, we need to compute

EMDd(A,B) = min
πA,B

{
∑

a∈A
d(a, πA,B(a))

}
For the purpose of measuring approximation quality, we say that an algorithm is an

(ε, δ)-algorithm for computing a quantity of value Q if the value Q′ returned by the algorithm satisfies
Pr[ |Q − Q′| < εQ ] ≥ 1 − δ.

The basic approach of McGregor and Stubbs in [37] is to define two vectors x, y ∈ R|E|

corresponding to the set A and B. We then estimate EMDd(A,B) by posing it as a �1-regression
problem using the vectors x, y and a set of other vectors defined by the structure of the underlying
graph. The idea is take some random projections of these vectors to a smaller dimensional space
and then perform �1-regression on these projections to save space and time. The following result by
Kane et al. [38] is crucial to the analysis of this approach (the notation PrM∼ν is the standard notation
for denoting that the entries of M are drawn from the distribution ν):

(�) There exists a distribution (“q-dimensional sketch”) ν over linear maps from Rn �→ Rq

where q = O(ε−2 log n log δ−1) and a “post-processing” function f : Rq �→ R such that for
any x ∈ Rn with polynomially-bounded entries, it holds that

Pr
M∼ν

[ ∣∣ ‖ x ‖1 − f (Mx)
∣∣ ≤ ε ‖ x ‖1

]
≥ 1 − δ

To understand how the above result relates to the calculation of EMDd(A,B), first consider the
case when the given instance of EMDd(A,B) is one dimensional, i.e., let G = (V, E) be a path with n
nodes V = {1, . . . , n} and n − 1 edges E = {e1, . . . , en−1} where ei = {i, i + 1}, let A, B ⊆ V, and let
d(i, j) = distG(i, j) for all i, j ∈ V. Then we can associate computation of EMDd(A,B) to a norm
estimation problem in the following manner. Assume that we have vectors x = (x1, . . . , xn−1) ∈ Rn−1

and y = (y1, . . . , yn−1) ∈ Rn−1 such that for all i ∈ {0, 1, n − 1} the following assertions hold:
xi = |{a ∈ A |i ≥ a}| and yi = |{b ∈ B |i ≥ b}|. Then, it can be shown that EMDd(A,B) =‖ x − y ‖1

and thus we can use the result of Kane et al. [38] as stated in (�) directly.
As a second illustration of the above point, suppose that the graph G in the previous example

is now a cycle of n nodes V = {1, . . . , n} and n edges E = {e1, . . . , en} where ei = {i, i + 1} for
i ∈ {1, . . . , n − 1} and en = {n, 1}. Suppose that we simply ignore the last edge en so that the graph
becomes a path and we can apply the previous approach. However, this omission of en changes the
distance between the nodes i ∈ A and j ∈ B from d(i, j) = min

{
|i − j|, |i − n| + 1 + |1 − j|, |i −

1| + 1 + |n − j|
}

to a new distance d′(i, j) = |i − j|. To resolve this issue, we make a sequence of
guesses for the number of pairs of nodes that will be joined using the edge en. More precisely,

7
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for λ ∈ {−k,−k + 1, . . . , k − 1, k} let Cλ be the multi-set consisting of λ copies of “1” if λ > 0 and |λ|
copies of “n” if λ < 0. Then, one can show that

EMDd(A,B) ≤ |λ|+ EMDd′(A� Cλ,B � C−λ)

with equality for some λ ∈ {−k,−k + 1, . . . , k − 1, k}, where � denotes the union for multi-sets. Thus,
we can use the result in (�) in the following manner. First define two vectors x = (x1, . . . , xn) ∈ Rn and
y = (y1, . . . , yn) ∈ Rn where xi = |{a ∈ A | i ≥ a}| and yi = |{b ∈ B | i ≥ b}| for i ∈ {1, . . . , n − 1},
and xn = yn = 0. Let z = x − y and c = (1, . . . , 1) ∈ Rn. Then, it follows that

EMDd(A,B) = min
λ∈{−k,−k+1,...,k−1,k}

{
‖ z + λc ‖1

}
Define the function f : R �→ R as f (λ) =‖ z + λc ‖1; clearly EMDd(A,B) =

minλ∈{−k,−k+1,...,k−1,k}
{

f (λ)
}

. For a specific λ ∈ {−k,−k + 1, . . . , k − 1, k}, we can use (�) to
find an approximation f̃λ of fλ using a O(ε−2 log n log(kδ−1))-dimensional sketch of z such that
Pr

[
| f̃λ − f (λ) | > ε f (λ)]

]
< δ

2k+1 . Iterating the process 2k + 1 times and using the union bound for
probabilities, we get

Pr
[
∀λ ∈ {−k, . . . , k} : | f̃λ − f (λ)| ≤ ε f (λ)

]
≥ 1 −

k

∑
λ=−k

Pr
[
| f̃λ − f (λ) | > ε f (λ)]

]
> 1 − (2k + 1)× δ

2k + 1
= 1 − δ

It is possible to design a more careful approach that iterates only O(log k) times instead of
2k + 1 times. The ideas behind this approach as described above can be extended to trees with some
non-trivial effort.

Finally the approach can indeed be generalized to the case when G is an arbitrary graph (which
applies to computing RIC(u, v)) in the following manner. The basic idea to calculate EMDd(A,B) for
an arbitrary graph G is to reduce it in an approximate sense to that of computing EMD for a tree.
Let T = (V, ET) be an arbitrary spanning tree of G, and let F = E \ ET . The tree T defines a natural tree
metric d′ where d′(a, b) is the length of the shortest path between a and b in T for all a, b ∈ V. One can
then express EMDd(A,B) in terms of EMDd′(A′,B′) for some A′ ⊇ A and B′ ⊇ B in the following
manner. For f = (u, v) ∈ F and λ f ∈ {−k,−k + 1, . . . , k − 1, k}, let C f

λ f
be the multi-set consisting of

λ f copies “u” if λ f > 0 and |λ f | copies of “v” if λ f < 0. Then the following bound holds:

EMDd(A,B) ≤ ∑
f∈F

|λ f |+ EMDd′
(
A� ∑

f∈F
C f

λ f
, B � ∑

f∈F
C f
−λ f

)
The above inequality leads to the following approach. Fix an arbitrary node r ∈ V as the root of

the spanning tree T, and let PT(u, v) denote the set of edges in the unique path in T between nodes
u and v. Define the two vectors x, y ∈ R|E| as follows (xe and ye denote the component of x and y,
respectively, indexed by the edge e ∈ E):

xe =

{
|{a ∈ A | e ∈ PT(a, r)}|, if e ∈ ET

0, otherwise
ye =

{
|{b ∈ B | e ∈ PT(b, r)}|, if e ∈ ET

0, otherwise

and let z = x − y. For each f = (u, v) ∈ F, define a vector c f ∈ R|E| where the component c
f
e of c f

indexed by the edge e ∈ E is given by:

8
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c
f
e =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if e ∈ PT(u, r) \ PT(v, r)

−1, if e ∈ PT(v, r) \ PT(u, r)

1, if e = f

0, otherwise

This leads to the following optimization problem:

EMDd(A,B) = min
∀ f∈F:λ f ∈{−k,−k+1,...,k−1,k}

‖ z + ∑
f∈F

λ f c f ‖1

The above optimization problem can be solved using several approaches, e.g., using a recursive
regression algorithm that exploits the convexity of f or using some recent results on robust regression
via sub-space embeddings [39,40].

5. Discussion

In this paper we have reviewed some computational aspects of the Ollivier–Ricci curvature for
networks, and shown a few simple computational bounds. As already mentioned in Section 1, there are
other notions of network curvature that is also used by researchers and therefore this review should
not be viewed as championing the Ollivier–Ricci curvature over other curvatures. We hope that this
review will motivate further research on the exciting interplay between notions of curvatures from
network and non-network domains. Some applications of network curvatures for real-world networks
appear in references such as [11,13,15,16,18].

We conclude our article by mentioning an interesting application of the Ollivier–Ricci curvature
for Markov chains for graph coloring and other problems (recise technical descriptions of these results
are beyond the scope of this introductory review). The probability distributions on nodes used to
compute EMD in the Ollivier–Ricci curvature can be naturally associated with a Markov process on the
given graph (as a very simplified illustration, one can use a “normalized version” of EMD(Vu,v,Pu,Pv)

as the probability of transition between the states corresponding to nodes u and v). Such associations
have a long history in the Markov chain literature under various names such as path coupling [41]
and the values of RIC(u, v)’s have been used (explicitly or implicitly) to prove useful properties of the
Markov chain, such as fast convergence to its stationary distribution, in many settings such as graph
colouring [41] and sampling of paths with constraints [42].
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Abstract: A dominating set in a graph G is a set of vertices S ⊆ V(G) such that any vertex of V − S
is adjacent to at least one vertex of S. A dominating set S of G is said to be a perfect dominating set
if each vertex in V − S is adjacent to exactly one vertex in S. The minimum cardinality of a perfect
dominating set is the perfect domination number γp(G). A function f : V(G) → {0, 1, 2} is a perfect
Roman dominating function (PRDF) on G if every vertex u ∈ V for which f (u) = 0 is adjacent to
exactly one vertex v for which f (v) = 2. The weight of a PRDF is the sum of its function values over
all vertices, and the minimum weight of a PRDF of G is the perfect Roman domination number γ

p
R(G).

In this paper, we prove that for any nontrivial tree T, γ
p
R(T) ≥ γp(T) + 1 and we characterize all

trees attaining this bound.

Keywords: Roman domination number; perfect Roman domination number; tree

1. Introduction

In this paper, only simple and undirected graph without isolated vertices will be considered.
The set of vertices of the graph G is denoted by V = V(G) and the edge set is E = E(G). The order of
a graph G is the number of vertices of the graph G and it is denoted by n = n(G). The size of G is the
cardinality of the edge set and it is denoted by m = m(G). For a vertex v ∈ V, the open neighbourhood
N(v) is the set {u ∈ V(Γ) : uv ∈ E(G)}, the closed neighbourhood of v is the set N[v] = N(v) ∪ {v}, and
the degree of v is degG(u) = |N(v)|. Any vertex of degree one is called a leaf, a support vertex is a vertex
adjacent to a leaf, a strong support vertex is a support vertex adjacent to at least two leaves and an end
support vertex is a support vertex such that all its neighbors, except possibly one, are leaves. For a
graph G, let L(G) = {v ∈ V(G) | degG(v) = 1} and Lv = N(v) ∩ L(G). The distance dG(u, v) between
two vertices u and v in a connected graph G is the length of a shortest u − v path in G. The diameter of
G, denoted by diam(G), is the maximum value among distances between all pair of vertices of G.
For a vertex v in a rooted tree T, let C(v) and D(v) denote the set of children and descendants of v,
respectively and let D[v] = D(v) ∪ {v}. Moreover, the depth of v, depth(v), is the largest distance
from v to a vertex in D(v). The maximal subtree rooted at v, denoted by Tv, consists of v and all its
descendants. We write Pn for the path of order n. A tree T is a double star if it contains exactly two
vertices that are not leaves. A double star with, respectively p and q leaves attached at each support
vertex is denoted DSp,q. For a real-valued function f : V −→ R, the weight of f is w( f ) = ∑v∈V f (v),
and for S ⊆ V we define f (S) = ∑v∈S f (v). So w( f ) = f (V).

Mathematics 2020, 8, 966; doi:10.3390/math8060966 www.mdpi.com/journal/mathematics13
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A dominating set (DS) in a graph G is a set of vertices S ⊆ V(G) such that any vertex of V − S is
adjacent to at least one vertex of S. A dominating set S of G is said to be a perfect dominating set (PDS)
if each vertex in V − S is adjacent to exactly one vertex in S. The minimum cardinality of a (perfect)
dominating set of a graph G is the (perfect) domination number γ(G) (γp(G)). Perfect domination was
introduced by Livingston and Stout in [1] and has been studied by several authors [2–6].

A function f : V(Γ) → {0, 1, 2} is a Roman dominating function (RDF) on G if every vertex u ∈ V
for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. A perfect Roman dominating
function (PRDF) on a graph G is an RDF f such that every vertex assigned a 0 is adjacent to exactly
one vertex assigned a 2 under f . The minimum weight of a (perfect) RDF on a graph G is the (perfect)
Roman domination number γR(G) (γp

R(G)). A (perfect) RDF on G with weight γR(G) (γp
R(G)) is called

a γR(G)-function (γp
R(G)-function). An RDF f on a graph G = (V, E) can be represented by the

ordered partition (V0, V1, V2) of V, where Vi = {v ∈ V| f (v) = i} for i = 0, 1, 2. The concept of Roman
domination was introduced by Cockayne et al. in [7] and was inspired by the manuscript of the authors
of [8], and Stewart [9] about the defensive strategy of the Roman Empire decreed by Constantine I The
Great, while perfect Roman domination was introduced by Henning, Klostermeyer and MacGillivray
in [10] and has been studied in [11–13]. For more on Roman domination, we refer the reader to the
book chapters [14,15] and surveys [16–18].

It was shown in [10] that for any tree G of order n ≥ 3, γ
p
R(G) ≤ 4n

5 . Moreover, the authors have
characterized all trees attaining this upper bound. Note that the previous upper bound have been
improved by Henning and Klostermeyer [13] for cubic graphs of order n by showing that γ

p
R(G) ≤ 3n

4 .
It is worth mentioning that if S is a minimum (perfect) dominating set of a graph G, then clearly

(V − S, ∅, S) is a (perfect) RDF and thus

γR(G) ≤ 2γ(G) and γ
p
R(G) ≤ 2γp(G). (1)

On the other hand, if f = (V0, V1, V2) is a γR(G)-function, then V1 ∪ V2 is a dominating set of G yielding

γ(G) ≤ γR(G). (2)

It is natural to ask whether the inequality (2) remains valid between γP(G) and γ
p
R(G) for any

graph G. The answer is negative as it can be seen by considering the graph H obtained from a double
star DSp,p, (p ≥ 3) with central vertices u, v by subdividing the edge uv with vertex w, and adding 2k
(k ≥ 3) new vertices, where k vertices are attached to both u and w and the remaining k vertices are
attached to both v and w (see Figure 1). Clearly, γp(H) = 2k + 3 while γ

p
R(H) = 5 and so the difference

γp(H)− γ
p
R(H) can be even very large.

u w v

x1

xk

y1

yk

Figure 1. The graph H.

Motivated by the above example, we shall show in this paper that γ
p
R(T) ≥ γp(T) + 1 for every

nontrivial tree T, and we characterize all trees attaining this bound.

2. Preliminaries

We start by providing some useful definitions and observations throughout the paper.

14
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Definition 1. For any graph G, let

WR,1
G = {u ∈ V | there exists a γ

p
R(G)-function f such that f (u) = 2},

WR,≤1
G = {u ∈ V | f (u) ≤ 1 for some γ

p
R(G)-function f },

WR,≥1
G = {u ∈ V | for each v ∈ NG(u), f (v) ≤ 1 for every γ

p
R(G)-function f },

WP,A
G = {u ∈ V | u belongs to every γp(G)-set}.

Definition 2. Let u be a vertex of a graph G. A set S is said to be an almost perfect dominating set (almost
PDS) with respect to u, (i) if each vertex x ∈ V \ (S ∪ {u}) has exactly one neighbor in S, and (ii) if u ∈ V \ S,
then u has at most one neighbor in S. Let

γp(G; u) = min{|S| : S is an almost PDS with respect to u}.

Trivially, every PDS of G is an almost PDS with respect to any vertex of G and thus γp(G; u) is
well defined. Hence γp(G; u) ≤ γp(G) for each vertex u ∈ V. Let

WAPD
G = {u ∈ V | γp(G; u) = γp(G)}.

The proof of the following two results are given in [12].

Observation 1. Let G be a graph.

1. Any strong support vertex belongs to WP,A
G .

2. Any support vertex adjacent to a strong support vertex, belongs to WP,A
G .

3. For any leaf u of G, there is a γ
p
R(G)-function f such that f (u) ≤ 1.

Proposition 1. Let G be a graph. G has a γ
p
R(G)-function that assigns 2 to every end strong support vertex.

Thus every end strong support vertex of a graph G belongs to WR,1
G .

The next result is a consequence of Observation 1 and Proposition 1.

Corollary 1. Let u be an end strong support vertex of a graph H. If G is the graph obtained from H by adding
a vertex x and an edge ux, then γp(G) = γp(H) and γ

p
R(G) = γ

p
R(H).

Proposition 2. Let H be a graph and u ∈ V(H). If G is a graph obtained from H by adding a path P2 : x1x2

attached at u by an edge ux1, then:

1. γp(G) ≤ γp(H) + 1 and γ
p
R(G) ≥ γ

p
R(H) + 1.

2. If u ∈ WR,1
H ∪ WR,≥1

H , then γ
p
R(G) = γ

p
R(H) + 1.

3. If u ∈ WAPD
H , then γp(G) = γp(H) + 1.

Proof.

1. For a γp(H)-set S, let S′ = S ∪ {x1} if u ∈ S, and S′ = S ∪ {x2} if u �∈ S. Clearly, S′ is a PDS of G
and thus γp(G) ≤ γp(H) + 1.

Now let f be a γ
p
R(G)-function. Obviously, f (x1) + f (x2) ≥ 1. If f (u) ≥ 1, then the function

f restricted to H is a PRDF on H yielding γ
p
R(G) ≥ γ

p
R(H) + 1. Thus assume that f (u) =

0. Then f (x1) + f (x2) = 2 and the function g : V(H) → {0, 1, 2} defined by g(u) = 1 and
g(x) = f (x) for x ∈ V(H) \ {u} is a PRDF on H of weight γ

p
R(G) − 1. Hence in any case,

γ
p
R(G) ≥ γ

p
R(H) + 1.

15
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2. Assume first that u ∈ WR,1
H and let f be a γ

p
R(H)-function with f (u) = 2. Then f can be extended

to a PRDF of G by assigning a 1 to x2 and a 0 to x1 and thus γ
p
R(G) ≤ γ

p
R(H) + 1. The equality

follows by item 1. Assume now that u ∈ WR,≥1
G′ and let f be a γ

p
R(H)-function. By the definition

of WR,≥1
H , we must have f (u) ≥ 1 to Roman dominate u. Now, if f (u) = 2, then using the same

argument as above we obtain γ
p
R(G) = γ

p
R(H) + 1. Hence assume that f (u) = 1. Then the

function g : V(G) → {0, 1, 2} defined by g(x1) = 2, g(u) = g(x2) = 0 and g(x) = f (x) for all
x ∈ V(H) \ {u} is a PRDF of G of weight γ

p
R(H) + 1. Therefore γ

p
R(G) ≤ γ

p
R(H) + 1, and the

equality follows by item 1.
3. Let S be a γp(G)-set. Clearly, |S ∩ {x1, x2}| ≥ 1 and S − {x1, x2} is an almost PDS of H with

respect to u. Since u ∈ WAPD
H , we have |S − {x1, x2}| ≥ γp(G′; u) = γp(H). Therefore γp(G) =

|S| ≥ γp(H) + 1, and the equality follows from item 1. �

For a graph G and a vertex u of G, we denote by Gu
K1,3

the graph obtained from G by adding a star
K1,3 and joining one of its leaf to u.

Proposition 3. Let G be a graph and u a vertex of G.

1. γp(Gu
K1,3

) ≤ γp(G) + 2 and γ
p
R(G) + 2 ≤ γ

p
R(G

u
K1,3

).

2. If u ∈ WP,A
G ∩ WAPD

G , then γp(Gu
K1,3

) = γp(G) + 2.

3. If u ∈ WR,≤1
G , then γ

p
R(G

u
K1,3

) = γ
p
R(G) + 2.

Proof. Let x be the center of the star K1,3 and x1 a leaf of K1,3 attached at u by an edge ux1.

1. For a γp(G)-set S, let S′ = S ∪ {x, x1} if u ∈ S, and S′ = S ∪ {x} for otherwise. Clearly, S′ is a
PDS of Gu

K1,3
and thus γp(Gu

K1,3
) ≤ γp(G) + 2.

Now, let f be a γ
p
R(G

u
K1,3

)-function. By Proposition 1, we may assume that f (x) = 2. If f (x1) ≤ 1,

then the function f restricted to G is a PRDF on G of weight at most γ
p
R(G

u
K1,3

)− 2. Thus, we
assume that f (x1) = 2. Then the function g : V(G) → {0, 1, 2} defined by g(u) = 1 and
g(x) = f (x) for all x ∈ V(G) \ {u} is a PRDF on G of weight γ

p
R(G

u
K1,3

) − 3. In any case,

γ
p
R(G) ≤ γ

p
R(G

u
K1,3

)− 2.

2. Let S be a γp(Gu
K1,3

)-set. By Observation 1-(1), we have x ∈ S. Now, if u ∈ S, then x1 ∈ S and
clearly S − {x, x1} is a PDS of G, implying that γp(Gu

K1,3
) ≥ γp(G) + 2. Thus, assume that u �∈ S.

If x1 �∈ S, then S − {x} is a PDS of G that does not contain u and since u ∈ WP,A
G we deduce that

|S−{x}| ≥ γp(G) + 1. Hence γp(Gu
K1,3

) ≥ γp(G) + 2. If x1 ∈ S, then S−{x, x1} is an almost PDS

of G and since u ∈ WAPD
G we conclude that |S − {x, x1}| ≥ γp(G). Hence γp(Gu

K1,3
) ≥ γp(G) + 2.

Whatever the case, the equality follows from item 1.
3. Assume that u ∈ WR,≤1

G and let f be a γ
p
R(G)-function such that f (u) ≤ 1. Then f can be

extended to a PRDF on Gu
K1,3

by assigning a 2 to x and a 0 to every neighbor of x and thus

γ
p
R(G

u
K1,3

) ≤ γ
p
R(G) + 2. The equality follows from item 1. �

Proposition 4. Let G′ be a graph and let u be an end support vertex of G′ which is adjacent to a strong support
vertex v. If G is a graph obtained from G′ by adding a vertex x and an edge ux, then γp(G) = γp(G′) and
γ

p
R(G) ≥ γ

p
R(G

′). Moreover, if u ∈ WR,1
G′ , then γ

p
R(G) = γ

p
R(G

′).

Proof. Let S be a γp(G′)-set. By Observation 1, v ∈ S. Thus u ∈ S for otherwise u would have two
neighbors in S. Hence S is a PDS of G and so γp(G) ≤ γp(G′). On the other hand, by Observation 1,
any γp(G)-set contains both u and v, and thus remains a PDS of G′. It follows that γp(G) ≥ γp(G′),
and the desired equality is obtained.

Since u is an end strong support vertex in G, u ∈ WR,1
G . By Proposition 1, there is a γ

p
R(G)-function

f such that f (u) = 2, and clearly f restricted to G′ is a PRDF on G′ yielding γ
p
R(G) ≥ γ

p
R(G

′).
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Now, assume that u ∈ WR,1
G′ and let g be a γ

p
R(G

′)-function with g(u) = 2. Then g can be extended
to a PRDF on G by assigning a 0 to x. Thus γ

p
R(G) ≤ γ

p
R(G

′), and the desired equality follows. �

Proposition 5. Let G′ be a graph and u a vertex of G′. If G is a graph obtained from G′ by adding a double star
DS2,2 attached at u by one of its leaves, then:

1. γp(G) ≤ γp(G′) + 3 and γ
p
R(G) ≥ γ

p
R(G

′) + 3.
2. If u ∈ WR,1

G′ , then γ
p
R(G) = γ

p
R(G

′) + 3.

3. If u ∈ WP,A
G′ ∩ WAPD

G′ , then γp(G) = γp(G′) + 3.

Proof. Let x, y be the non-leaf vertices of the double star DS2,2, and let Lx = {x1, x2} and Ly = {y1, y2}.
We assume that x1u ∈ E(G).

1. For a γp(G′)-set S, let S′ = S ∪ {x, y} if u �∈ S, and S′ = S ∪ {x1, x, y} if u ∈ S. Clearly, S′ is a
PDS of G and thus γp(G) ≤ γp(G′) + 3.

Consider now a γ
p
R(G)-function f such that f (y) = 2 (according to Proposition 1).

Clearly, f (x) + f (x2) ≥ 1. If f (x1) ≤ 1, then f restricted to G′ is a PRDF on G′ of weight at
most γ

p
R(G)− 3 and thus γ

p
R(G) ≥ γ

p
R(G

′) + 3. If f (x1) = 2, then f (u) = 0 and the function
g : V(G′) → {0, 1, 2} defined by g(u) = 1 and g(w) = f (w) otherwise, is a PRDF onG′ of weight
at most γ

p
R(G)− 4 yielding γ

p
R(G) ≥ γ

p
R(G

′) + 4. In any case we have γ
p
R(G) ≥ γ

p
R(G

′) + 3.
2. Assume that u ∈ WR,1

G′ and let f be a γ
p
R(G

′)-function such that f (u) = 2. Then f can be extended
to a PRDF on G by assigning a 2 to y, a 1 to x2 and a 0 to x, x1, y1, y2. Hence γ

p
R(G) ≤ γ

p
R(G

′) + 3,
and the desired equality follows from item 1.

3. Assume that u ∈ WP,A
G′ ∩ WAPD

G′ , and let S be a γp(G)-set. By items 1 and 2 of Observation 1,
x, y ∈ S. If u ∈ S, then x1 ∈ S and thus S − {x, y, x1} is a PDS of G′, implying that γp(G) ≥
γp(G′) + 3. Hence, assume that u �∈ S. If x1 �∈ S, then S − {x, y} is a PDS of G′ that does not
contain u. But since u ∈ W3

G′ we deduce that |S − {x, y}| ≥ γp(G′) + 1 which yields γp(G) ≥
γp(G′) + 3. Thus suppose that x1 ∈ S. Then S − {x, y, x1} is an almost PDS of G′, and since
u ∈ WAPD

G′ we conclude that |S − {x, y, x1}| ≥ γp(G′; u) = γp(G′). Hence γp(G) ≥ γp(G′) + 3,
and the desired equality is obtained by item 1.

Proposition 6. Let G′ be a graph and let u be an end strong support vertex of degree 3 whose non-leaf neighbor
is a support vertex, say v, of degree 3, where |Lv| = 1. Let G be a graph obtained from G′ by adding four vertices,
where two are attached to a leaf of u and the other two are attached to the leaf of v. Then γp(G) = γp(G′) + 2
and γ

p
R(G) = γ

p
R(G

′) + 2.

Proof. Let Lu = {x, x′} and Lv = {y}. Let x1, x2, y1 and y2 be the four added vertices, where
xx1, xx2, yy1, yy2 ∈ E(G). By items 1 and 2 of Observation 1, any γp(G′)-set contains u and v.
Clearly such a set can be extended to a PDS of G by adding x, y which yields γp(G) ≤ γp(G′) + 2.
On the other hand, let D be a γp(G)-set. Then by items 1 and 2 of Observation 1, we have x, u, y, v ∈ D,
and thus D \ {x, y} is a PDS of G′, implying that γp(G) ≥ γp(G′) + 2. Therefore γp(G) = γp(G′) + 2.

Next we shall show that γ
p
R(G) = γ

p
R(G

′) + 2. First we show that γ
p
R(G) ≤ γ

p
R(G

′) + 2. Since u is
an end strong support vertex of G′, let f be a γ

p
R(G

′)-function with f (u) = 2 (by Proposition 1) such
that f (v) is as small as possible. If f (v) ≤ 1, then f (y) = 1, and thus the function g : V(G) → {0, 1, 2}
defined by g(x) = g(y) = 2, g(x′) = 1, g(u) = g(x1) = g(x2) = g(y1) = g(y2) = 0 and g(w) = f (w)

otherwise, is a PRDF on G. Hence γ
p
R(G) ≤ γ

p
R(G

′) + 2. If f (v) = 2, then by our choice of f , we have
f (z) = 0 for any z ∈ N(v) \ {u} and thus the function h : V(G) → {0, 1, 2} defined by h(z) = 1 for
z ∈ N(v) \ {u, y} and h(x′) = 1, h(x) = h(y) = 2, h(u) = h(v) = h(x1) = h(x2) = h(y1) = h(y2) = 0
and h(w) = f (w) otherwise, is a PRDF on G yielding γ

p
R(G) ≤ γ

p
R(G

′)+ 2. Hence γ
p
R(G) ≤ γ

p
R(G

′)+ 2.
Now we show that γ

p
R(G) ≥ γ

p
R(G

′) + 2. By Proposition 1, let g be a γ
p
R(G)-function such that
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g(x) = g(y) = 2. It can be seen that g(x′) = 1. If f (v) = 0, then the function h : V(G′) → {0, 1, 2}
defined by h(u) = 2, h(y) = 1, h(x) = h(x′) = 0 and h(w) = g(w) otherwise, is a PRDF on G′ of weight
at most γ

p
R(G)− 2. If f (v) ≥ 1, then the function h : V(G′) → {0, 1, 2} defined by h(u) = h(v) = 2,

h(x) = h(x′) = h(y) = 0 and h(w) = g(w) otherwise, is a PRDF on G′ of weight at most γ
p
R(G)− 2.

In any case, γ
p
R(G) ≥ γ

p
R(G

′) + 2, and the equality follows.

3. The Family T
In this section, we define the family T of unlabeled trees T that can be obtained from a sequence

T1, T2, . . . , Tk (k ≥ 1) of trees such that T1 ∈ {P2, P3} and T = Tk. If k ≥ 2, then Ti+1 is obtained
recursively from Ti by one of the following operations.

Operation O1: If u ∈ V(Ti) is an end strong support vertex, then O1 adds a vertex x attached at u by
an edge ux to obtain Ti+1.

Operation O2: If u ∈ (WR,1
Ti

∪ WR,≥1
Ti

) ∩ WAPD
Ti

, then O2 adds a path P2 = x1x2 attached at u by an
edge ux1 to obtain Ti+1.

Operation O3: If u ∈ WR,≤1
Ti

∩ WP,A
Ti

∩ WAPD
Ti

, then O3 adds a star K1,3 centered at x by attaching one
of its leaves, say x1, to u to obtain Ti+1.

Operation O4: If u ∈ WR,1
Ti

is an end support vertex which is adjacent to a strong support vertex,
then O4 adds a vertex x attached at u by an edge ux to obtain Ti+1.

Operation O5: If u ∈ WR,1
Ti

∩ WP,A
Ti

∩ WAPD
Ti

, then O5 adds a double star DS2,2 by attaching one of its
leaves, say x1, to u to obtain Ti+1.

Operation O6: If u ∈ V(Ti) is an end strong support vertex of degree 3 with x ∈ Lu such that u is
adjacent to a support vertex v of degree 3 with Lv = {y}, then O6 adds four vertices x1, x2, y1, y2

attached at x and y by edges xx1, xx2, yy1, yy2 to obtain Ti+1.

Lemma 1. If Ti is a tree with γ
p
R(Ti) = γp(Ti) + 1 and Ti+1 is a tree obtained from Ti by one of the Operations

O1, . . . ,O6, then γ
p
R(Ti+1) = γp(Ti+1) + 1.

Proof. If Ti+1 is obtained from Ti by Operation O1, then by Corollary 1 and the assumption γ
p
R(Ti) =

γp(Ti) + 1, we have γ
p
R(Ti+1) = γ

p
R(Ti) = γp(Ti) + 1 = γp(Ti+1) + 1. If Ti+1 is obtained from Ti

by Operation O2, then as above the result follows from Proposition 2 (items 2, 3 and 4). If Ti+1 is
obtained from Ti by Operation O3, then the result follows from Proposition 3 (items 2 and 3). If Ti+1 is
obtained from Ti by Operation O4, then the result follows from Proposition 4. If Ti+1 is obtained from
Ti by Operation O5, then the result follows from Proposition 5. Finally, if Ti+1 is obtained from Ti by
Operation O6, then the result follows from Proposition 6.

In the rest of the paper, we shall prove our main result:

Theorem 1. For any tree T of order n ≥ 2,

γ
p
R(T) ≥ γp(T) + 1,

with equality if and only if T ∈ T .

4. Proof of Theorem 1

Lemma 2. If T ∈ T , then γ
p
R(T) = γp(T) + 1.

Proof. Let T be a tree of T . Then there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1) such that
T1 ∈ {P2, P3}, and if k ≥ 2, then Ti+1 can be obtained from Ti by one of the aforementioned operations.
We proceed by induction on the number of operations used to construct T. If k = 1, then T ∈ {P2, P3}
and clearly γ

p
R(T) = γp(T) + 1. This establishes our basis case. Let k ≥ 2 and assume that the result
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holds for each tree T ∈ T which can be obtained from a sequence of operations of length k − 1 and let
T′ = Tk−1. By the induction hypothesis, γ

p
R(T

′) = γp(T′) + 1. Since T = Tk is obtained from T′ by one
of the Operations Oi (i ∈ {1, 2, . . . , 6}) , we conclude from Lemma 1 that γ

p
R(T) = γp(T) + 1.

Theorem 2. For any tree T of order n ≥ 2,

γ
p
R(T) ≥ γp(T) + 1,

with equality only if T ∈ T .

Proof. We use an induction on n. If n ∈ {2, 3}, then T ∈ {P2, P3}, where γ
p
R(T) = 2 = γp(T) + 1 and

T ∈ T . If n = 4 and diam(T) = 2, then T = K1,3, where γ
p
R(T) = 2 = γp(T) + 1 and T ∈ T because it

can be obtained from P3 by applying Operation O1. If n = 4 and diam(T) = 3, then T = P4, where
γ

p
R(T) = 3 = γp(T) + 1 and clearly T ∈ T since it can be obtained from P2 by Operation O2. Let n ≥ 5

and assume that every tree T′ of order n′ with 2 ≤ n′ < n satisfies γ
p
R(T

′) ≥ γp(T′) + 1 with equality
only if T′ ∈ T .

Let T be a tree of order n. If diam(T) = 2, then T is a star, where γ
p
R(T) = 2 = γp(T) +

1 and T ∈ T because T it can be obtained from P3 by frequently use of Operation O1. Hence
assume that diam(T) = 3, and thus T is a double star DSp,q, (q ≥ p ≥ 1). If T = DS1,q (q ≥ 2),
then γ

p
R(T) = 3 = γp(T) + 1 and T ∈ T since it is obtained from P3 by applying Operation O2.

If T = DSp,q, (q ≥ p ≥ 2), then γp(T) = 2, γ
p
R(T) = 4 and so γ

p
R(T) > γp(T) + 1. Henceforth,

we assume that diam(T) ≥ 4. Let v1v2 . . . vk (k ≥ 5) be a diametrical path in T such that degT(v2) is
as large as possible. Root T at vk and consider the following cases.

Case 1. degT(v2) ≥ 4.
Let T′ = T − v1. By Corollary 1 and the induction hypothesis on T′, we obtain

γ
p
R(T) = γ

p
R(T

′) ≥ γp(T′) + 1 = γp(T) + 1.

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain. In particular,

γ
p
R(T

′) = γp(T′) + 1. By induction on T′, we have T′ ∈ T . It follows that T ∈ T since it can be
obtained from T′ by applying operation O1.

Case 2. degT(v2) = degT(v3) = 2.
Let T′ = T − Tv3 . For a γp(T′)-set S, let S′ = S ∪ {v1} if v4 ∈ S and S′ = S ∪ {v2} for otherwise.
Clearly S′ is a PDS of T and thus γp(T) ≤ γp(T′) + 1. Consider now a γ

p
R(T)-function f . If f (v3) ∈

{0, 1}, then f (v1) + f (v2) = 2 and the function f , restricted to T′ is a PRDF on T′ of weight at most
γ

p
R(T)− 2 . If f (v3) = 2, then f (v4) = 0 and the function g : V(T′) → {0, 1, 2} defined by g(v4) = 1

and g(z) = f (z) otherwise, is a PRDF on T′. In any case, γ
p
R(T) ≥ γ

p
R(T

′) + 2. By the induction
hypothesis on T′, we obtain

γ
p
R(T) ≥ γ

p
R(T

′) + 2 ≥ γp(T′) + 1 + 2 ≥ γp(T)− 1 + 3 > γp(T) + 1.

Case 3. degT(v2) = 2 and degT(v3) ≥ 3.

Let T′ = T − Tv2 . By Proposition 2, we have γp(T) ≤ γp(T′) + 1 and γ
p
R(T) ≥ γ

p
R(T

′) + 1. It follows
from the induction hypothesis that

γ
p
R(T) ≥ γ

p
R(T

′) + 1 ≥ γp(T′) + 1 + 1 ≥ γp(T) + 1.

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain. In particular,

γp(T) = γp(T′) + 1, γ
p
R(T) = γ

p
R(T

′) + 1 and γ
p
R(T

′) = γp(T′) + 1. By induction on T′, we deduce
that T′ ∈ T . Next, we shall show that v3 ∈ (WR,1

T′ ∪ WR,≥1
T′ ) ∩ WAPD

T′ . Let f be a γ
p
R(T)-function.

If f (v3) = 2, then f (v1) = 1 and f (v2) = 0 and the function f |V(T′) is a γ
p
R(T

′)-function with f (v3) = 2
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and hence v3 ∈ WR,1
T′ . Hence, assume that f (v3) ≤ 1. Then f (v1) + f (v2) = 2. If f (v2) ≤ 1 or

f (v2) = 2 and f (v3) = 1, then the function f restricted to T′ is a PRDF on T′ of weight γ
p
R(T)− 2,

contradicting the fact γ
p
R(T) = γ

p
R(T

′) + 1. Hence we assume f (v2) = 2 and f (v3) = 0. Then the
function g : V(T′) → {0, 1, 2} defined by g(v3) = 1 and g(x) = f (x) otherwise, is a γ

p
R(T

′)-function
and so v3 ∈ WR,≥1

T′ . Hence v3 ∈ WR,1
T′ ∪ WR,≥1

T′ . It remains to show that v3 ∈ WAPD
T′ . Suppose that

v3 �∈ W5
T′ and let S be an almost PDS of T′ of size less that γp(T′). Clearly, v3 �∈ S and v3 has no

neighbor in S. Therefore, S ∪ {v2} is a PDS of T of size at most γp(T′) = γp(T)− 1, a contradiction.
Hence v3 ∈ WAPD

T′ . It follows that T ∈ T since it can be obtained from T′ by Operation O2.

Case 4. degT(v2) = 3.
Let Lv2 = {v1, w}. According to Cases 1, 2 and 3, we may assume that any end support vertex on a
diametrical path has degree 3. Consider the following subcases.

Subcase 4.1. degT(v3) = 2.

Let T′ = T − Tv3 . By Proposition 3-(1) and the induction hypothesis we have:

γ
p
R(T) ≥ γ

p
R(T

′) + 2 ≥ γp(T′) + 1 + 2 ≥ γp(T) + 1.

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain. In particular,

γ
p
R(T) = γ

p
R(T

′) + 2, γp(T) = γp(T′) + 2 and γ
p
R(T

′) = γp(T′) + 1. It follows from the induction
hypothesis that T′ ∈ T . In the next, we shall show that v4 ∈ WR,≤1

T′ ∩ WP,A
T′ ∩ WAPD

T′ .
Suppose that v4 �∈ WP,A

T′ and let S be a γp(T′)-set that does not contain v4. Then S ∪ {v2} is a
PDS of T, contradicting the fact γp(T) = γp(T′) + 2. Hence v4 ∈ WP,A

T′ . Suppose now that v4 �∈ WAPD
T′

and let D be an almost PDS of T′ with respect to v4 such that |D| < γp(T′). Then v4 �∈ D and v4 has
no neighbor in D, and thus D ∪ {v2, v3} is a PDS of T of cardinality less γp(T′) + 2, a contradiction.
Hence v4 ∈ WAPD

T′ . It remains to show that v4 ∈ WR,≤1
T′ . By Proposition 1, let f be a γ

p
R(T)-function

such that f (v2) = 2. If f (v4) = 2, then we must have f (v3) ≥ 1. But f restricted to T′ is a PRDF on
T′ of weight at most γ

p
R(T)− 3, contradicting γ

p
R(T) = γ

p
R(T

′) + 2. Hence f (v4) ≤ 1. If f (v4) = 0
and f (v3) = 2, then the function g : V(T′) → {0, 1, 2} defined by g(v4) = 1 and g(x) = f (x)
otherwise, is a PRDF of T′ of weight at most γ

p
R(T)− 3, a contradiction as above. Thus f (v4) = 1 or

f (v4) = 0 and f (v3) ≤ 1. Then f restricted to T′ is a γ
p
R(T

′)-function showing that v4 ∈ WR,≤1
T′ . Hence

v4 ∈ WR,≤1
T′ ∩ WP,A

T′ ∩ WAPD
T′ . Therefore, T ∈ T because it can be obtained from T′ by Operation O3.

Subcase 4.2. degT(v3) ≥ 3.

We distinguish between some situations.

(a) v3 is a strong support vertex.
Let T′ = T − v1. By Proposition 4 and the induction hypothesis we have:

γ
p
R(T) ≥ γ

p
R(T

′) ≥ γp(T′) + 1 = γp(T) + 1.

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain.

In particular, γ
p
R(T) = γ

p
R(T

′), γp(T) = γp(T′) and γ
p
R(T

′) = γp(T′) + 1. By the
induction hypothesis, T′ ∈ T . To show v2 ∈ WR,1

T′ , let f be a γ
p
R(T)-function such that

f (v2) = 2 (by Proposition 1). Since γ
p
R(T) = γ

p
R(T

′), f is also a γ
p
R(T

′)-function with f (v2) = 2,
implying that v2 ∈ WR,1

T′ . Therefore T ∈ T because it can be obtained from T′ by Operation O4.
(b) v3 has two children x, y with depth one, different from v2.

Then u and w are both strong support vertices of degree 3. Let T′ = T − Tv2 . By Observation 1,
any γp(T′)-set S contains x and y and thus v3 ∈ S. Hence S ∪ {v2} is a PDS of T yielding
γp(T) ≤ γp(T′) + 1. Now, let f be a γ

p
R(T) function such that f (v2) = 2 and f (x) = 2
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(by Proposition 1). Then f (v3) ≥ 1. It follows that the function f restricted to T′ is a PRDF on T′

of weight γ
p
R(T)− 2, and hence γ

p
R(T) ≥ γ

p
R(T

′) + 2. By the induction hypothesis we have

γ
p
R(T) ≥ γ

p
R(T

′) + 2 ≥ γp(T′) + 3 ≥ γp(T) + 2 > γp(T) + 1.

(c) v3 is a support vertex and has a child u with depth one different from v2.
Let w1 be the unique leaf adjacent to v3. Note that u is a strong support vertices of degree 3.
Let T′ = T − Tv2 . If S is a γp(T′)-set, then by Observation 1-(2), v3 ∈ S and thus S ∪ {v2} is a
PDS of T yielding γp(T) ≤ γp(T′) + 1. By Proposition 1, let f be a γ

p
R(T)-function such that

f (v2) = 2 and f (u) = 2. By the definition of perfect Roman dominating functions, we have
f (v3) ≥ 1. Then, the function f restricted to T′ is a PRDF on T′ of weight γ

p
R(T)− 2 and thus

γ
p
R(T) ≥ γ

p
R(T

′) + 2. It follows from the induction hypothesis that

γ
p
R(T) ≥ γ

p
R(T

′) + 2 ≥ γp(T′) + 3 ≥ γp(T) + 2 > γp(T) + 1.

According to (a), (b) and (c), we can assume for the next that degT(v3) = 3.
(d) degT(v3) = 3 and v3 has a child x with depth one different from v2.

Note that x is a strong support vertices of degree 3. Let Lx = {x1, x2} and let T′ be the
tree obtained from T by removing the set of vertices {v1, v2, w, x, x1, x2}. For a γp(T′)-set S,
let S′ = S ∪ {v2, x} if v3 ∈ S and S′ = S ∪ {v2, v3, x} when v3 �∈ S. Clearly, S′ is a PDS of
T and so γp(T) ≤ γp(T′) + 3. Now let f be a γ

p
R(T)-function such that f (v2) = f (x) = 2.

Then f (v3) ≥ 1 and the function f restricted to T′ is a PRDF on T′ of weight at most γ
p
R(T)− 4.

By the induction hypothesis we have:

γ
p
R(T) ≥ γ

p
R(T

′) + 4 ≥ γp(T′) + 1 + 4 ≥ γp(T)− 3 + 5 > γp(T) + 1.

(e) degT(v3) = 3 and v3 is adjacent to exactly one leaf w′.
If v4 has a child s with depth one and degree two, then let T′ be the tree obtained from T by
removing s and its unique leaf. This case can be treated in the same way as in Case 3. Moreover,
if v4 has a child s with depth one and degree at least four, then let T′ be the tree obtained from T
by removing a leaf neighbor of s. This case can be treated in the same way as in Case 1. Hence,
we may assume that each child of v4 is a leaf or a vertex with depth one and degree 3 or a vertex
with depth two whose maximal subtree is isomorphic to Tv3 . First assume that degT(v4) ≥ 4,
and let T = T − Tv3 . Clearly, any γp(T′)-set contains v4 and such a set can be extended to a
PDS of T by adding v2, v3. Hence γp(T) ≤ γp(T′) + 2. Now let f be a γ

p
R(T)-function such that

f (v2) = 2. Clearly, f (v3) + f (w′) ≥ 1. If f (v3) ≤ 1 or f (v3) = 2 and f (v4) ≥ 1, then the function
f restricted to T′ is a PRDF on T′ and thus γ

p
R(T) ≥ γ

p
R(T

′) + 3. Hence assume that f (v3) = 2
and f (v4) = 0. Then the function g : V(T′) → {0, 1, 2} defined by g(v4) = 1 and g(u) = f (u)
otherwise, is a PRDF of T′ of weight γ

p
R(T)− 3 and thus γ

p
R(T) ≥ γ

p
R(T

′) + 3. By the induction
hypothesis we have:

γ
p
R(T) ≥ γ

p
R(T

′) + 3 ≥ γp(T′) + 1 + 3 ≥ γp(T)− 2 + 4 > γp(T) + 1.

From now on, we can assume that degT(v4) ≤ 3. We examine different cases.

(e.1.) v4 has a child x of degree 3 and depth 1.

Let Lx = {z1, z2} and let T′ be the tree obtained from T by removing the set {v1, w, z1, z2}.
By Proposition 6, we have γp(T) = γp(T′) + 2 and γ

p
R(T) = γ

p
R(T

′) + 2. We deduce from
the induction hypothesis that

γ
p
R(T) = γ

p
R(T

′) + 2 ≥ γp(T′) + 1 + 2 = γp(T)− 2 + 3 = γp(T) + 1.

21



Mathematics 2020, 8, 966

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain.

In particular, γ
p
R(T

′) = γp(T′) + 1. By induction on T′, we have T′ ∈ T . Therefore T ∈ T
since it can be obtained from T′ by Operation O6.

(e.2.) v4 has a child v′3 with depth two.
Note that Tv′3

and Tv3 are isomorphic. Let T′ = T − (Tv3 ∪ Tv′3
), and observe that v4 is a leaf

in T′. Since any γp(T′)-set can be extended to a PDS of T by adding v4 and the support
vertices of Tv3 ∪ Tv′3

we obtain γp(T) ≤ γp(T′) + 5. Moreover, as above we can see that

γ
p
R(T) ≥ γ

p
R(T

′) + 6. Now, by induction hypothesis we obtain:

γ
p
R(T) ≥ γ

p
R(T

′) + 6 ≥ γp(T′) + 1 + 6 ≥ γp(T)− 5 + 7 > γp(T) + 1.

(e.3.) degT(v4) = 2.
Let T′ = T − Tv4 . If V(T′) = {v5}, then it can be seen that T is tree with γ

p
R(T) = 5

and γp(T) = 3, implying that γ
p
R(T) > γp(T) + 1. Hence we assume that T′ is nontrivial.

By Proposition 5 and by the inductive hypothesis we have:

γ
p
R(T) ≥ γ

p
R(T

′) + 3 ≥ γp(T′) + 1 + 3 ≥ γp(T)− 3 + 4 = γp(T) + 1.

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain.

In particular, γ
p
R(T) = γ

p
R(T

′) + 3, γp(T) = γp(T′) + 3 and γ
p
R(T

′) = γp(T′) + 1.
By induction on T′, we have T′ ∈ T . Next, we shall show that v5 ∈ WR,1

T′ ∩ WP,A
T′ ∩ WAPD

T′ .
Suppose that v5 �∈ WP,A

T′ and let S be a γp(T′)-set that does not contain v5. Then S ∪ {v2, v3}
is a PDS of T contradicting γp(T′) = γp(T′) + 3. Hence v5 ∈ WP,A

T′ . Suppose that
v5 �∈ WAPD

T′ and let S be an almost PDS of T′ such that |S| ≤ γp(T′)− 1. Clearly, v5 �∈ S
and v5 has no neighbor in S. It follows that S ∪ {v4, v3, v2} is a PDS of T of size
|S| + 3 ≤ γp(T) − 1, a contradiction. Thus v5 ∈ WAPD

T′ . Next we show that v5 ∈ WR,1
T′ .

Let f be a γ
p
R(T)-function such that f (v2) = 2. To Roman dominate w′, we must have

either f (w′) = 1 or f (v3) = 2. We claim that f (v4) ≤ 1. Suppose, to the contrary,
that f (v4) = 2. By definition of perfect Roman dominating functions, we may assume that
f (v3) = 2. But then the function g : V(T′) → {0, 1, 2} defined by g(v5) = 1 and g(x) = f (x)
otherwise, is a PRDF of T′ of weight γ

p
R(T

′) − 5 contradicting γ
p
R(T) = γ

p
R(T

′) + 3.
Hence f (v4) ≤ 1. It follows that the function f restricted to T′ is a PRDF of T′ of weight at
most γ

p
R(T)− 3 for which we conclude from γ

p
R(T) = γ

p
R(T

′) + 3 that f (v3) = f (v4) = 0
and f (w′) = 1. Hence to Roman dominate v4, we must have f (v5) = 2 and thus
function f restricted to T′ is a γ

p
R(T

′)-function that assigns a a 2 to v5. Hence v5 ∈ WR,1
T′ ,

and thus v5 ∈ WR,1
T′ ∩ WP,A

T′ ∩ WAPD
T′ . Therefore, T ∈ T since it can be obtained from T′ by

Operation O5.

(e.4.) degT(v4) = 3 and v4 has a child z with depth 0.
Seeing the above Cases and Subcases as we did in the beginning of Case (e), we may assume
that any child of v5 is a leaf, or an end strong support vertex of degree 3, or a vertex with
depth 2 whose maximal subtree is isomorphic to Tv3 , or a vertex with depth 3 whose maximal
subtree is isomorphic to Tv4 . Assume first that degT(v5) ≥ 4, and let T′ = T−Tv4 . Clearly, v5

belongs to any γp(T′)-set and such a set γp(T′)-set can be extended to a PDS of T by adding
v2, v3, v4, implying that γp(T) ≤ γp(T′) + 3. Next we show that γ

p
R(T) ≥ γ

p
R(T

′) + 4. Let f
be a γ

p
R(T)-function such that f (v2) = 2. Clearly f (v3) + f (w′) ≥ 1 and f (v4) + f (z) ≥ 1.

If f (v4) ≤ 1 or f (v5) ≥ 1, then the function f restricted to T′ is a PRDF on T′ yielding
γ

p
R(T) ≥ γ

p
R(T

′) + 4. Hence assume that f (v4) = 2 and f (v5) = 0. Then the function
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g : V(T′) → {0, 1, 2} defined by g(v5) = 1 and g(u) = f (u) otherwise, is a PRDF of T′

yielding γ
p
R(T) ≥ γ

p
R(T

′) + 4. By induction on T′, it follows that

γ
p
R(T) ≥ γ

p
R(T

′) + 4 ≥ γp(T′) + 5 ≥ γp(T) + 2 > γp(T) + 1.

For the next, we assume that degT(v5) ≤ 3. If degT(v5) = 1, then it can be seen that
T is a tree with γ

p
R(T) = 6, γp(T) and so γ

p
R(T) > γp(T) + 1. Hence we assume that

degT(v5) ∈ {2, 3}. Consider the following situations.

(e.4.1.) degT(v5) = 2.
Let T′ = T − Tv5 . If V(T′) = {v6}, then T is a tree with γ

p
R(T) = 6 and γp(T) = 4,

yielding γ
p
R(T) > γp(T) + 1. Hence, assume that T′ is nontrivial. For a γp(T′)-set S,

let S′ = S ∪ {v2, v3, v4, v5} if v6 ∈ S, and S′ = S ∪ {v2, v3, v4} if v6 �∈ S. Then S′ is a PDS of
T, implying that γp(T) ≤ γp(T′) + 4. Moreover, it is easy to see that γ

p
R(T) ≥ γ

p
R(T

′) + 5.
By induction on T′, we obtain γ

p
R(T) > γp(T) + 1.

(e.4.3.) degT(v5) = 3 and v5 has a child v′4 with depth 3.
Then Tv4 and Tv′4

are isomorphic. If u is a vertex in Tv4 , then let u′ be the vertex of Tv′4
corresponding to u in Tv4 . Let T = T − (Tv4 ∪ Tv′4

). Clearly, any γp(T′)-set can be extended
to a PDS of T by adding v5, v2, v3, v4, v′2, v′3, v′4 and thus γp(T) ≤ γp(T′) + 7. Moreover, it is
not hard to see that γ

p
R(T) ≥ γ

p
R(T

′) + 8. By induction on T′, we obtain γ
p
R(T) > γp(T) + 1.

(e.4.4.) degT(v5) = 3 and v5 has a children y with depth 1 and degree 3.
Let T′ = T − (Tv4 ∪ Ty). Clearly, any γp(T′)-set can be extended to a PDS of T by adding
v5, v2, v3, v4, y and thus γp(T) ≤ γp(T′) + 5. Next, we show that γ

p
R(T) ≥ γ

p
R(T

′) + 6.
Let f be a γ

p
R(T)-function such that f (v2) = 2 and f (y) = 2 (by Proposition 1).

Clearly f (v3) + f (w′) ≥ 1 and f (v4) + f (z) ≥ 1. If f (v5) ≥ 1, then the function f restricted
to T′ is a PRDF on T′ yielding γ

p
R(T) ≥ γ

p
R(T

′) + 6. Thus, let f (v5) = 0. Then to Roman
dominate z, v4, w′, we must have f (z) + f (v4) + f (v3) + f (w′) ≥ 4. Then the function
g : V(T′) → {0, 1, 2} defined by g(v5) = 1 and g(u) = f (u) otherwise, is a PRDF on T′

yielding γ
p
R(T) ≥ γ

p
R(T

′) + 6. It follows from the induction hypothesis that

γ
p
R(T) ≥ γ

p
R(T

′) + 6 ≥ γp(T′) + 7 ≥ γp(T) + 2 > γp(T) + 1.

(e.4.5.) degT(v5) = 3 and v5 has a child v′3 with depth 2 such that Tv′3
∼= Tv3 .

If u is a vertex in Tv3 , then let u′ be the vertex of Tv′3
corresponding to u in Tv3 . Let

T = T − (Tv4 ∪ Tv′3
). Clearly, any γp(T′)-set can be extended to a PDS of T by adding

v5, v2, v3, v4, v′2, v′3 and so γp(T) ≤ γp(T′) + 6. Moreover, it is not hard to see that
γ

p
R(T) ≥ γ

p
R(T

′) + 7. By the induction hypothesis we obtain γ
p
R(T) > γp(T) + 1.

(e.4.6.) degT(v5) = 3 and v5 has a children z′ with depth 0.
If V(T′) = {v6}, then T is a tree with γ

p
R(T) = 6 and γp(T) = 4, yielding γ

p
R(T) > γp(T)+ 1.

Hence we assume that degT(v6) ≥ 2. Suppose first that degT(v6) = 2 and let T′ = T − Tv6 .
If V(T′) = {v7}, then T is a tree with γ

p
R(T) ≥ 7 and γp(T) = 5, yielding γ

p
R(T) > γp(T)+ 1.

Hence assume that T′ is nontrivial. Clearly, any γp(T′)-set can be extended to a PDS of T
by adding v2, v3, v4, v5, v6 and thus γp(T) ≤ γp(T′) + 5. On the other hand, it is not hard to
see that γ

p
R(T) ≥ γ

p
R(T

′) + 7. By the induction hypothesis we obtain γ
p
R(T) > γp(T) + 1.

Assume now that degT(v6) ≥ 3. By above Cases and Subcases, we may assume that any
child of v6 is a leaf, or a vertex with depth j whose maximal subtree is isomorphic to
Tvj+1 for j = 2, 3, 4. Let T′ be a tree obtained from T by removing v3, w′, v4, z, v5, z′ and
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joining v2 to v6. Clearly, any γp(T′)-set contains v2, v6 and such a set can be extended
to a PDS of T by v3, v4, v5 yielding γp(T) ≤ γp(T′) + 3. Now, let f be a γ

p
R(T)-function,

and let r = f (v3) + f (w′) + f (v4) + f (z) + f (v5) + f (z′). To Roman dominate the vertices
v3, w′, v4, z, v5, z′, we must have r ≥ 5 when f (v5) ≤ 1 or r = 4 when f (v5) = 2. If r = 4
or r ≥ 5 and f (v6) ≥ 1, then the function f restricted to T′ is a PRDF on T′ implying
that γ

p
R(T) ≥ γ

p
R(T

′) + 4. Hence assume that r ≥ 5 and f (v6) = 0. Then the function
h : V(T′) → {0, 1, 2} defined by h(v6) = 1 and h(x) = f (x) otherwise, is a PRDF on T′

yielding γ
p
R(T) ≥ γ

p
R(T

′) + 4. By the induction hypothesis we obtain

γ
p
R(T) ≥ γ

p
R(T

′) + 4 ≥ γp(T′) + 1 + 4 ≥ γp(T)− 3 + 5 > γp(T) + 1,

and the proof is complete.

According to Lemma 2 and Theorem 2, we have proven Theorem 1.
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Abstract: In this article, we obtain general bounds and closed formulas for the secure total domination
number of rooted product graphs. The results are expressed in terms of parameters of the factor
graphs involved in the rooted product.
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1. Introduction

Recently, many authors have considered the following approach to the problem of protecting a
graph [1–7]: suppose that one “entity” is stationed at some of the vertices of a (simple) graph G and
that an entity at a vertex can deal with a problem at any vertex in its closed neighbourhood. In general,
an entity could consist of a robot, an observer, a legion, a guard, and so on. Informally, we say that
a graph G is protected under a given placement of entities if there exists at least one entity available
to handle a problem at any vertex. Various strategies (or rules for entities placements) have been
considered, under each of which the graph is deemed protected. As we can expect, the minimum
number of entities required for protection under each strategy is of interest. Among these strategies
we cite, for instance, domination [8,9], total domination [10], secure domination [1], secure total
domination [2], Roman domination [6,7], Italian domination, [11] and weak Roman domination [5].
The first four strategies are described below.

The simplest strategies of graph protection are the strategy of domination and the strategy of
total domination. In such cases, the sets of vertices containing the entities are dominating sets and
total dominating sets, respectively. Typically, a vertex in a graph G = (V(G), E(G)) dominates itself
and its neighbouring vertices. A set S ⊆ V(G) is said to be a dominating set of G if every vertex in
V(G) \ S is dominated by at least one vertex in S, while S is said to be a total dominating set if every
vertex v ∈ V(G) is dominated by at least one vertex in S \ {v}.

The minimum cardinality among all dominating sets of G is the domination number of G,
denoted by γ(G). The total domination number, denoted by γt(G), is defined by analogy. These two
parameters have been extensively studied. For instance, we cite the following books, [8–10].

Let N(v) be the open neighbourhood of v ∈ V(G) and let S ⊆ V(G). In the case of the secure
(total) domination strategy, a vertex v ∈ V(G) \ S is deemed (totally) protected under S ⊆ V(G) if S is
a (total) dominating set and there exists u ∈ N(v) ∩ S such that (S ∪ {v}) \ {u} is a (total) dominating
set. In such a case, in order to emphasise the role of vertex u, we say that v is (totally) protected by u
under S. A set S ⊆ V(G) is said to be a secure (total) dominating set if every vertex in v ∈ V(G) \ S is
(totally) protected under S.

For instance, let G be the graph shown in Figure 1, and suppose that an observer is stationed
at vertex a and another one is stationed at b. In such a case, the graph is under the control of the
observers, as its vertices are (i.e., {a, b} is a dominating set). Now, if the observer stationed at vertex a
moves to any vertex in {c, d, e}, then the graph is under the control of the observers as well. In this
case, {a, b} is a secure dominating set. Furthermore, if there are three observers and they are stationed
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at a, b, and c, then every vertex of the graph (including a, b, and c) is under the control of the observers,
and this property is preserved if the observer stationed at c moves to d or e. Hence, {a, b, c} is a secure
total dominating set.

Figure 1. In this case, {a} is a dominating set, {a, b} is a total dominating set and also a secure
dominating set, while {a, b, c} is a secure total dominating set.

The minimum cardinality among all secure dominating sets of G is the secure domination number
of G, denoted by γs(G). This domination parameter was introduced by Cockayne et al. in [1] and
studied further in a number of works including [12–17]. Now, the minimum cardinality among all
secure total dominating sets of G is the secure total domination number of G, which is denoted by
γst(G). This parameter was introduced by Benecke et al. in [2] and studied further in [3,4,16,18,19].

A secure total dominating set of cardinality γst(G) will be called a γst(G)-set. A similar agreement
will be assumed when referring to optimal sets associated to other parameters used in the article.

The problem of computing γst(G) is NP-hard [18], even when restricted to chordal bipartite
graphs, planar bipartite graphs with arbitrary large girth and maximum degree three, split graphs
and graphs of separability at most two. This suggests finding the secure total domination number for
special classes of graphs or obtaining tight bounds on this invariant. This is precisely the aim of this
article in which we study the case of rooted product graphs.

2. Some Notation and Tools

All graphs considered in this paper are finite and undirected, without loops or multiple edges.
The minimum degree of a graph G will be denoted by δ(G), i.e., δ(G) = minv∈V(G) |N(v)|. As usual,
the closed neighbourhood of a vertex v ∈ V(G) is denoted by N[v] = N(v) ∪ {v}. We say that a vertex
v ∈ V(G) is a universal vertex if N[v] = V(G). By analogy with the notation used for vertices, the
open neighbourhood of S ⊆ V(G) is the set N(S) = ∪v∈SN(v), while the closed neighbourhood is the
set N[S] = N(S) ∪ S.

A set S ⊆ V(G) is a double dominating set of G if |N[u] ∩ S| ≥ 2 for every u ∈ V(G).
The double domination number of G, denoted by γ×2(G), is the minimum cardinality among all
double dominating sets of G. The k-domination number of a graph G, denoted by γk(G), is the
cardinality of a smallest set of vertices such that every vertex not in the set is adjacent to at least k
vertices of the set. Such sets are called k-dominating sets.

Remark 1. Every secure total dominating set is a double dominating set and every double dominating set is a
2-dominating set. Therefore, for any graph G with no isolated vertex, γst(G) ≥ γ×2(G) ≥ γ2(G).

By Remark 1, for every secure total dominating set S and every vertex v ∈ S, the set S \ {v} is a
dominating set. Therefore, the following remark holds.

Remark 2. For every graph G with no isolated vertex, γst(G) ≥ γ(G) + 1.

A leaf of G is a vertex of degree one. A support vertex of G is a vertex which is adjacent to a leaf and
a strong support vertex is a support vertex which is adjacent to at least two leaves. A leaf is said to be a
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strong leaf if it is adjacent to a strong support vertex, otherwise it is called a weak leaf. The set of leaves,
support vertices, strong leaves and weak leaves are denoted by L(G), S(G), Ls(G), and Lw(G), respectively.

Remark 3. If D is a secure total dominating set of a graph G, then (S(G) ∪ L(G)) ⊆ D and no vertex of G is
totally protected under D by vertices in S(G) ∪ L(G).

If v is a vertex of a graph H, then the vertex-deletion subgraph H − {v} is the subgraph of H
induced by V(H) \ {v}. In Section 3 we will show the importance of γst(H − {v}) in the study of the
secure total domination number of rooted product graphs. Now we proceed to state some basic tools.

Lemma 1. Let H be a graph with no isolated vertex. If v ∈ V(H) \ (Lw(H) ∪ S(H)), then

γst(H − {v}) ≥ γst(H)− 2.

Furthermore, if γst(H − {v}) > γst(H), then v belongs to every γst(H)-set.

Proof. Assume that v ∈ V(H) \ (Lw(H) ∪ S(H)) and let D be a γst(H − {v})-set. Suppose that
|D| ≤ γst(H)− 3. If |N(v) ∩ D| ≥ 2, then D ∪ {v} is a secure total dominating set of H of cardinality
|D ∪ {v}| ≤ γst(H)− 2, which is a contradiction. Suppose that |N(v) ∩ D| ≤ 1. If v /∈ L(H), then for
every y ∈ N(v) \ D we have that D ∪ {v, y} is a secure total dominating set of H of cardinality
|D ∪ {v, y}| ≤ γst(H)− 1, which is a contradiction. Now, if v ∈ Ls(H), then by Remark 3 we can
conclude that D ∪ {v} is a secure total dominating set of H of cardinality |D ∪ {v}| ≤ γst(H)− 2,
which is a contradiction again. Hence, γst(H − {v}) = |D| ≥ γst(H)− 2.

On the other hand, if there exists a γst(H)-set S such that v /∈ S, then S is a secure total dominating
set of H − {v}, and so γst(H − {v}) ≤ |S| = γst(H). Therefore, if γst(H − {v}) > γst(H), then v ∈ S
for every γst(H)-set S.

If v is a weak leaf of H, then it could be that γst(H) ≥ γst(H − {v}) + 2. For instance, Figure 2
shows the existence of cases in which the gap γst(H)− γst(H − {v}) is arbitrarily large. In Remark 4
we highlight this fact.

Figure 2. A graph H where V(H) is the γst(H)-set. Since {a, b, c, d} forms a γst(H − {v})-set, we have
that γst(H)− γst(H − {v}) = k + 1 for every integer k ≥ 1.

Remark 4. For any integer k ≥ 1 there exists a graph H having a weak leaf vertex v such that γst(H)−
γst(H − {v}) = k + 1.

In contrast to Remark 4, the following result shows the case where v is a strong leaf.

Lemma 2. Let H be a graph with no isolated vertex. If v ∈ Ls(H), then

γst(H − {v}) = γst(H)− 1.

Proof. Let D be a γst(H)-set, v ∈ Ls(H) and N(v) = {sv}. By Remark 3 we deduce that D \ {v}
is a secure total dominating set of H − {v} and so γst(H − {v}) ≤ |D \ {v}| ≤ γst(H) − 1. Now,
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let D′ be a γst(H − {v})-set. Since sv ∈ S(H − {v}), by Remark 3 we have that sv ∈ D′ and no
vertex of H − {v} is totally protected by sv under D′, which implies that D′ ∪ {v} is a secure total
dominating set of H and, as a result, γst(H)− 1 ≤ |D′ ∪ {v}| − 1 = |D′| = γst(H − {v}). Therefore,
γst(H − {v}) = γst(H)− 1.

Lemma 3. For any graph H having a universal vertex v,

γst(H) = γ(H − {v}) + 1.

Proof. Let D be a γ(H − {v})-set. Since v is a universal vertex of H, it is straightforward that D ∪ {v}
is a secure total dominating set of H. Thus, γst(H) ≤ |D ∪ {v}| = γ(H − {v}) + 1.

From now on, suppose that γst(H) ≤ γ(H − {v}) and let S be a γst(H)-set. We differentiate the
following two cases.
Case 1. v ∈ S. In this case, as |S| ≤ γ(H − {v}), we deduce that S \ {v} is not a dominating set
of H − {v}. Hence, there exists a vertex y ∈ V(H − {v}) such that N(y) ∩ S = {v}, which is a
contradiction, as S is a 2-dominating set, by Remark 1.
Case 2. v /∈ S. In this case, S is a secure total dominating set of H − {v} and so γst(H − {v}) ≤ |S| ≤
γ(H − {v}), which is a contradiction with Remark 2.

Therefore, the result follows.

3. The Case of Rooted Product Graphs

Given a graph G of order n(G) and a graph H with root vertex v, the rooted product graph G ◦v H
is defined as the graph obtained from G and H by taking one copy of G and n(G) copies of H and
identifying the ith vertex of G with the root vertex v in the ith copy of H for every i ∈ {1, 2, . . . , n(G)}.

If H or G is a trivial graph, then G ◦v H is equal to G or H, respectively. In this sense, hereafter we
will only consider graphs G and H of order greater than or equal to two.

For every x ∈ V(G), Hx ∼= H will denote the copy of H in G ◦v H containing x. The restriction
of any set S ⊆ V(G ◦v H) to V(Hx) will be denoted by Sx, and the restriction to V(Hx − {x}) will be
denoted by S−

x . Hence, V(G ◦v H) = ∪x∈V(G)V(Hx) and for every γst(G ◦v H)-set S we have that

γst(G ◦v H) = |S| = ∑
x∈V(G)

|Sx| = ∑
x∈V(G)

|S−
x |+ |S ∩ V(G)|.

Theorem 1. For any graphs G and H with no isolated vertex and any v ∈ V(H),

γst(G ◦v H) ≤ n(G)γst(H).

Furthermore, if v /∈ S(H), then

γst(G ◦v H) ≤ γst(G) + n(G)γst(H − {v}).

Proof. Let D be a γst(H)-set and S ⊆ V(G ◦v H) such that Sx is the subset of V(Hx) induced by D
for every x ∈ V(G). Since S is a secure total dominating set of G ◦v H, we deduce that γst(G ◦v H) ≤

∑
x∈V(G)

|Sx| = n(G)γst(H).

Now, assume that v /∈ S(H). Let W be a γst(H − {v})-set and S′ ⊆ V(G ◦v H) \ V(G) such
that S′

x is the subset of V(Hx − {x}) induced by W for every x ∈ V(G). Since for any γst(G)-set X,
we have that X ∪ S′ is a secure total dominating set of G ◦v H, we deduce that γst(G ◦v H) ≤ |X ∪ S′| =
γst(G) + n(G)γst(H − {v}).
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We now proceed to analyse three cases in which it is not difficult to give closed formulas for
γst(G ◦v H). Specifically, we consider the cases in which the root vertex v is a support vertex, a strong
leaf, or a universal vertex.

Theorem 2. The following statements hold for any graphs G and H with no isolated vertex.

(i) If v ∈ S(H), then γst(G ◦v H) = n(G)γst(H). Furthermore, |Dx| = γst(H) for every γst(G ◦v H)-set
D and every x ∈ V(G).

(ii) If v ∈ V(H) is a universal vertex, then γst(G ◦v H) = n(G)γst(H).
(iii) If v ∈ Ls(H), then γst(G ◦v H) = γ(G) + n(G)(γst(H)− 1).

Proof. Let D be a γst(G ◦v H)-set. Let us first consider the case where v ∈ S(H). Since x ∈ S(G ◦v H)

for every x ∈ V(G), by Remark 3 we deduce that Dx is a secure total dominating set of Hx, and as a
consequence |Dx| ≥ γst(Hx) for every x ∈ V(G). Hence, γst(G ◦v H) = ∑x∈V(G) |Dx| ≥ n(G)γst(H).
Now, if |Dx| ≥ γst(Hx) + 1 for some x ∈ V(G), then γst(G ◦v H) > n(G)γst(H), which contradicts
Theorem 1. Therefore, (i) follows.

Let us now consider the case where v /∈ S(H) is a universal vertex. Let x ∈ V(G). If x ∈ Dx,
then Dx is a secure total dominating set of Hx and, as a result, |Dx| ≥ γst(Hx). Now, if x /∈ Dx,
then D−

x is a secure total dominating set of Hx − {x}, and so Remark 2 and Lemma 3 lead to |Dx| ≥
γst(Hx − {x}) ≥ γ(Hx − {x}) + 1 = γst(Hx). Hence, γst(G ◦v H) = ∑x∈V(G) |Dx| ≥ n(G)γst(H)

and (ii) follows by Theorem 1.
From now on we assume that v ∈ Ls(H). Let sx ∈ V(Hx) be the support of x in Hx for every

x ∈ V(G). Since x ∈ Ls(Hx), we have that sx ∈ S(Hx −{x})∩ D. Hence, by Remark 3 we deduce that
D−

x is a secure total dominating set of Hx −{x}, and by Lemma 2 we have that |D−
x | ≥ γst(Hx −{x}) =

γst(H)− 1. Moreover, since N(x) ∩ Dx = {sx} for every x ∈ V(G), by Remark 1 it follows that every
vertex in V(G) \ D has to have a neighbour in V(G)∩ D, which implies that V(G)∩ D is a dominating
set of G. Therefore, γst(G ◦v H) = |D| = |D ∩ V(G)|+

∣∣∣∪x∈V(G)D−
x

∣∣∣ ≥ γ(G) + n(G)(γst(H)− 1).
It remains to show that γst(G ◦v H) ≤ γ(G) + n(G)(γst(H)− 1). To this end, let X be a γ(G)-set,

Y a γst(H − {v})-set, and W ⊆ V(G ◦v H) \ V(G) such that Wx is the subset of V(Hx − {x}) induced
by Y for every x ∈ V(G). Notice that sx ∈ Wx. In order to show that S = X ∪ W is a secure total
dominating set of G ◦v H, we only need to observe that every vertex in V(G) \ S is totally protected
under S by any neighbour in X, while every w ∈ V(Hx) \ Wx is totally protected under S by some
neighbour in Wx. Thus, γst(G ◦v H) ≤ |S| = γ(G) + n(G)γst(H − {v}), and by Lemma 2 we deduce
that γst(G ◦v H) ≤ γ(G) + n(G)(γst(H)− 1) . Therefore, (iii) follows.

Given two graphs G and G′, the corona graph G � G′ can be seen as a rooted product graph
G ◦v H where H is the join (The join graph G′ + G′′ is the graph obtained from G′ and G′′ by joining
each vertex of G′ to all vertices of G′′) graph K1 + H and v is the vertex of K1. Therefore, Lemma 3 and
Theorem 2 (ii) lead to the following result on corona graphs.

Theorem 3. If G is a graph with no isolated vertex, then for every nontrivial graph G′,

γst(G � G′) = n(G)(γ(G′) + 1).

As we will see later, the behaviour of γst(G ◦v H) changes depending on whether the root vertex
v is a weak leaf or not. First we proceed to consider the cases where the root vertex is not a weak leaf.

Lemma 4. Let S be a γst(G ◦v H)-set and x ∈ V(G). If v /∈ Lw(H), then the following statements hold.

• |Sx| ≥ γst(H)− 2.
• If |Sx| = γst(H)− 2, then N[x] ∩ Sx = ∅.
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Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ (S ∪ {x}) is totally protected under S
by some vertex in Sx. Now, suppose that |Sx| ≤ γst(H) − 3 and let y ∈ N(x) ∩ V(Hx). If y /∈ Sx,
then Sx ∪ {x, y} is a secure total dominating set of Hx of cardinality at most γst(H)− 1, which is a
contradiction. Assume that N(x) ∩ V(Hx) ⊆ Sx. If N(x) ∩ V(Hx) = {y}, then x ∈ Ls(Hx) and y ∈
S(G ◦v H). Thus, by Remark 3 no vertex in V(Hx) is totally protected by y under S, and so Sx ∪ {x} is
a secure total dominating set of Hx of cardinality at most γst(H)− 2, which is a contradiction. Finally,
if |N(x) ∩ V(Hx)| ≥ 2, then Sx ∪ {x} is a secure total dominating set of Hx and, as above, we arrive to
a contradiction. Therefore, |Sx| ≥ γst(H)− 2.

Now, assume that |Sx| = γst(H)− 2. First, suppose that x ∈ S. Notice that if N(x) ∩ V(Hx) ⊆ Sx,
then Sx is a secure total dominating set of Hx, which is a contradiction. Hence, there exists y ∈
(N(x)∩V(Hx)) \ Sx, and so Sx ∪{y} is a secure total dominating set of Hx and |Sx ∪{y}| = γst(H)− 1,
which is a contradiction. Thus, x /∈ S. Now, suppose that N(x) ∩ Sx �= ∅. If there exists z ∈
(N(x) ∩ V(Hx)) \ Sx, then Sx ∪ {z} is a secure total dominating set of Hx and |Sx ∪ {z}| = γst(H)− 1,
which is a contradiction. Now, if N(x) ∩ V(Hx) ⊆ Sx, then one can easily check that Sx ∪ {x} is a
secure total dominating set of Hx, which is a contradiction again, as |Sx ∪ {x}| = γst(H)− 1. Therefore,
N(x) ∩ V(Hx) ∩ S = ∅.

From Lemma 4 we deduce that if v /∈ Lw(H), then any γst(G ◦v H)-set S induces a partition
{AS,BS, CS} of V(G) as follows.

AS = {x ∈ V(G) : |Sx| ≥ γst(H)},

BS = {x ∈ V(G) : |Sx| = γst(H)− 1},

CS = {x ∈ V(G) : |Sx| = γst(H)− 2}.

The following corollary is a direct consequence of Theorem 2 (i).

Corollary 1. Let S be a γst(G ◦v H)-set. If BS ∪ CS �= ∅, then v /∈ S(H).

Lemma 5. Let S be a γst(G ◦v H)-set, where v /∈ Lw(H). If CS �= ∅, then γst(H − {v}) = γst(H)− 2.

Proof. By Lemma 4, if x ∈ CS, then N[x] ∩ Sx = ∅, which implies that S−
x is a secure total dominating

set of Hx − {x} of cardinality |S−
x | = |Sx| = γst(Hx)− 2. Hence, x /∈ S(Hx) and γst(Hx − {x}) ≤

|S−
x | = γst(Hx)− 2. Notice that Lemma 2 leads to x /∈ Ls(Hx). Thus, by Lemma 1 we conclude that

γst(Hx − {x}) = γst(Hx)− 2. Therefore, the result follows.

The following result states the intervals in which the secure total domination number of a rooted
product graph can be found.

Theorem 4. Let G and H be two graphs with no isolated vertex. At least one of the following statements holds
for every v ∈ V(H) \ Lw(H).

(i) γst(G ◦v H) = n(G)γst(H).
(ii) n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 1).
(iii) γ×2(G) + n(G)(γst(H)− 2) ≤ γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 2).

Proof. Let S be a γst(G ◦v H)-set and consider the partition {AS,BS, CS} of V(G) defined above.
We differentiate the following four cases.

Case 1. BS ∪ CS = ∅. In this case, for any x ∈ V(G) we have that |Sx| ≥ γst(H) and, as a consequence,
γst(G ◦v H) ≥ n(G)γst(H). Thus, Theorem 1 leads to (i).

Case 2. BS �= ∅ and CS = ∅. In this case, for any x ∈ V(G) we have that |Sx| ≥ γst(H)− 1 and, as a
result, γst(G ◦v H) ≥ n(G)(γst(H)− 1).
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In order to conclude the proof of (ii), we proceed to show that γst(G ◦v H) ≤ γst(G) +

n(G)(γst(H) − 1). To this end, we fix x′ ∈ BS, yx′ ∈ V(Hx′) ∩ N(x′), a γst(G)-set D and define
a subset W of vertices of G ◦v H as follows.

(a) If x′ �∈ S, then for any x ∈ V(G) we set W ∩ V(G) = D and W−
x is induced by S−

x′ = Sx′ . It is
readily seen that the set W constructed in this manner is a secure total dominating set of G ◦v H
and so γst(G ◦v H) ≤ |W| = |D|+ n(G)|Sx′ | = γst(G) + n(G)(γst(H)− 1).

(b) Assume that x′ ∈ S. If x ∈ V(G) \ L(G), then Wx is induced by Sx′ , while if x ∈ L(G), then
Wx is induced by Sx′ ∪ {yx′ }. It is readily seen that the set W constructed in this manner is a
secure total dominating set of G ◦v H and, as a result, γst(G ◦v H) ≤ |W| = |L(G)|+ n(G)|Sx′ | ≤
γst(G) + n(G)(γst(H)− 1).

Case 3. BS = ∅ and CS �= ∅. By Corollary 1, v �∈ S(H), and by Lemma 5 we have that γst(H − {v}) =
γst(H)− 2. Hence, by Theorem 1 we conclude that γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 2).

From Lemma 4 we deduce that AS is a 2-dominating set of G. Hence, γst(G ◦v H) ≥
|AS|γst(H) + |CS|(γst(H) − 2) = 2|AS| + n(G)(γst(H) − 2) ≥ 2γ2(G) + n(G)(γst(H) − 2) ≥
γ×2(G) + n(G)(γst(H)− 2). Therefore, in this case (iii) holds.

Case 4. BS �= ∅ and CS �= ∅. By Corollary 1, v �∈ S(H), and by Lemma 5, γst(H − {v}) = γst(H)− 2.
Thus, by Theorem 1 we conclude that γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 2).

In order to conclude that in this case (iii) holds, let us define a double dominating set D of G such
that |D| ≤ 2|AS|+ |BS|. Set D has minimum cardinality among the sets satisfying that AS ∪ BS ⊆ D
and for any x ∈ AS, if N(x) ∩ CS �= ∅, then there exists x′ ∈ N(x) ∩ CS ∩ D. Notice that every vertex
in AS is dominated by at least one vertex in D and, by Lemma 4, every vertex in CS is dominated
by at least two vertices in AS ∪ BS ⊆ D. Furthermore, if there exists one vertex x ∈ BS such that
N(x) ∩AS ∩ BS = ∅, then Sx is a secure total dominating set of Hx, which is a contradiction, as |Sx| =
γst(Hx)− 1. Hence, D is a double dominating set of G. Therefore, γst(G ◦v H) = |S| ≥ |AS|γst(H) +

|BS|(γst(H)− 1) + |CS|(γst(H)− 2) ≥ |D|+ n(G)(γst(H)− 2) ≥ γ×2(G) + n(G)(γst(H)− 2).

The bounds given in the previous theorem are tight. To see this, we consider the following
examples where H1 and H2 are the graphs shown in Figure 3.

• γst(G ◦v P7) = n(G) (γst(P7)− 1), where v is the central vertex of P7 and G is a graph with
δ(G) ≥ 2.

• γst(Kr ◦v H1) = 2 + r(3 − 1) = γst(Kr) + n(Kr) (γst(H1)− 1), where r ≥ 2.
• Theorem 5 gives some conditions to achieve the equalities γst(G ◦v H) = γst(G) + n(G)(γst(H)−

2) = γ×2(G) + n(G)(γst(H)− 2). In this case we can take H ∼= H2.

Figure 3. The set of black-coloured vertices forms a γst(Hi)-set for i ∈ {1, 2}. The set {a, b} is a
γst(H1 − {v})-set, while {a, b, c} is a γst(H2 − {v})-set.

We now consider some particular cases in which we impose some additional restrictions on G
and H. We begin with an immediate consequence of Theorem 4.
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Theorem 5. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ Lw(H). If γst(H − {v}) =
γst(H)− 2 and γst(G) = γ×2(G), then

γst(G ◦v H) = γst(G) + n(G)(γst(H)− 2).

Proof. If γst(H − {v}) = γst(H)− 2, then v /∈ S(H) and Theorem 1 leads to γst(G ◦v H) ≤ γst(G) +

n(G)(γst(H) − 2). Thus, by Theorem 4 we conclude that if γst(G) = γ×2(G), then γst(G ◦v H) =

γst(G) + n(G)(γst(H)− 2).

The following result considers the case in which γst(H − {v}) ≥ γst(H)− 1.

Theorem 6. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ Lw(H). If γst(H − {v}) ≥
γst(H)− 1, then

n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤ n(G)γst(H).

Now, if δ(G) ≥ 2 and γst(H − {v}) ≥ γst(H), then γst(G ◦v H) = n(G)(γst(H)− 1) or γst(G ◦v H) =

n(G)γst(H).

Proof. Let S be a γst(G ◦v H)-set and assume that γst(H − {v}) ≥ γst(H)− 1. By Lemma 5 we have
that CS = ∅, and so Lemma 4 leads to |Sx| ≥ γst(Hx)− 1 for every x ∈ V(G). Thus, γst(G ◦v H) =

∑x∈V(G) |Sx| ≥ n(G)(γst(H)− 1). Therefore, Theorem 1 leads to n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤
n(G)γst(H).

From now on we assume that δ(G) ≥ 2 and γst(H − {v}) ≥ γst(H). Let us distinguish between
two cases, according to whether or not γst(H − {v}) > γst(H).

Case 1. γst(H − {v}) > γst(H). We define a set D ⊆ V(G ◦v H) as follows. For any x ∈ V(G) \ S we
take D ∩ V(Hx) as a γst(Hx)-set, while for any x ∈ V(G) ∩ S we set D ∩ V(Hx) = Sx. Notice that D
is a secure total dominating set of G ◦v H. Now, if there exists a vertex x ∈ V(G) \ S, then the set S−

x
is a secure total dominating set of Hx − {x}. Hence, |Sx| = |S−

x | ≥ γst(H − {x}) > γst(Hx) = |Dx|,
and so |D| < |S|, which is a contradiction. Thus, V(G) ⊆ S.

If |Sx| ≥ γst(H) for every x ∈ V(G), then Theorem 1 leads to γst(G ◦v H) = n(G)γst(H).
Suppose that there exists a vertex x ∈ V(G) such that |Sx| ≤ γst(H) − 1. We define a set D′ ⊆
V(G ◦v H) as follows. For every z ∈ V(G), the restriction of D′ to V(Hz) is induced by Sx. Notice that
V(G) ⊆ D′ and, if δ(G) ≥ 2, then every vertex in V(Hz) \ D′ is totally protected under D′ by
some vertex in D′

z, which implies that D′ is a secure total dominating set of G ◦v H. Therefore,
γst(G ◦v H) ≤ |D′| ≤ n(G)(γst(H)− 1), concluding that γst(G ◦v H) = n(G)(γst(H)− 1).

Case 2. γst(H −{v}) = γst(H). First, assume that V(G)∩ S = ∅. Since S−
x is a secure total dominating

set of Hx − {x} for every x ∈ V(G), we have that γst(G ◦v H) = ∑x∈V(G) |S−
x | ≥ ∑x∈V(G) γst(H −

{x}) = n(G)γst(H − {v}) = n(G)γst(H), and so Theorem 1 leads to γst(G ◦v H) = n(G)γst(H).
Now, assume that there exists y ∈ V(G) ∩ S. Notice that Lemma 5 leads to CS = ∅. Hence,

y ∈ AS ∪ BS. If y ∈ BS, we define a set D′ ⊆ V(G ◦v H) as follows. For every z ∈ V(G), the restriction
of D′ to V(Hz) is induced by Sy. As in Case 1, we deduce that D′ is a secure total dominating set
of G ◦v H and so we can conclude that γst(G ◦v H) = |D′| = n(G)(γst(H)− 1). Finally, if BS = ∅,
then V(G) = AS and by Theorem 1 we conclude that γst(G ◦v H) = |S| = n(G)γst(H).

Now, we consider a particular case in which γst(H − {v}) = γst(H).

Theorem 7. Let G be a graph with no isolated vertex. Let H be a graph and v ∈ V(H) such that γst(H −
{v}) = γst(H). If v /∈ S for every γst(H)-set S, then

γst(G ◦v H) = n(G)γst(H).
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Proof. Assume that v /∈ S for every γst(H)-set S. Notice that v /∈ L(H) ∪ S(H). Let D be a
γst(G ◦v H)-set. By Lemma 5 we conclude that CD = ∅. Now, if BD = ∅, then by analogy to
Case 1 in the proof of Theorem 4 it follows that γst(G ◦v H) = n(G)γst(H).

Suppose that there exists a vertex x ∈ BD. If x /∈ D, then D−
x is a secure total dominating set of

Hx − {x}, which implies that γst(H − {v}) = γst(Hx − {x}) ≤ |D−
x | = |Dx| = γst(H)− 1, which is

a contradiction. Hence, x ∈ D. Now, if N(x) ∩ V(Hx) ⊆ D, then Dx is a secure total dominating
set of Hx and so γst(Hx) ≤ |Dx| = γst(Hx) − 1, which is a contradiction. Finally, if there exists
x′ ∈ N(x) ∩ V(Hx) \ D, then D′

x = Dx ∪ {x′} is a secure total dominating set of Hx of cardinality
γst(Hx) and x ∈ D′

x, which is a contradiction again. Therefore, BD = ∅, and we are done.

The Case in Which the Root Vertex Is a Weak Leaf

The first part of this section is devoted to the case in which the support vertex of the root v has
degree greater than or equal to three. From Remark 4 we learned that if v ∈ Lw(H), N(v) = {s}
and |N(s)| ≥ 3, then the gap γst(H)− γst(H − {v}) could be arbitrarily large.

Remark 5. Let H be a graph with no isolated vertex, v ∈ Lw(H) and N(v) = {s}. If |N(s)| ≥ 3, then

γst(H) ≥ γst(H − {v}).

Proof. Let S be a γst(H)-set. By Remark 3, we have that v, s ∈ S. If N(s) ⊆ S, then since |N(s)| ≥ 3,
we deduce S \ {v} is a secure total dominating set of H − {v}. Hence, γst(H − {v}) ≤ |S \ {v}| <
γst(H). Now, if there exists u ∈ N(s) \ S, then (S \ {v}) ∪ {u} is also a secure total dominating set of
H − {v}. Thus, γst(H − {v}) ≤ |(S \ {v}) ∪ {u}| = γst(H). Therefore, the result follows.

By Remarks 4 and 5, it seems reasonable to express γst(G ◦v H) in terms of γst(H − {v})
rather than γst(H). To this end, we consider the following lemma.

Lemma 6. Let S be a γst(G ◦v H)-set. If v ∈ Lw(H), N(v) = {s} and |N(s)| ≥ 3, then |Sx| ≥ γst(H −
{v}) for every x ∈ V(G)

Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ (S ∪ {x}) is totally protected under S by
some vertex in Sx. Now, suppose that |Sx| < γst(H − {v}) and let N(x) ∩ V(Hx) = {sx}. If x /∈ S,
then S−

x is a secure total dominating set of Hx − {x}, which is a contradiction as |S−
x | = |Sx| <

γst(H − {v}) = γst(Hx − {x}). Hence, x ∈ S. Now, if N(sx) ⊆ S, then we set S′ = (Sx \ {x}) ∪ {sx}
and otherwise we set S′ = (Sx \ {x}) ∪ {w} for any w ∈ N(sx) \ S. In both cases, S′ is a secure total
dominating set of Hx − {x} and γst(Hx − {x})− 1 > |Sx| − 1 ≥ |S′| ≥ γst(Hx − {x}), which is a
contradiction. Therefore, |Sx| ≥ γst(H − {v}).

By Theorem 1 and Lemma 6, we deduce the next result.

Theorem 8. Let G and H be two graphs with no isolated vertex. If v ∈ Lw(H), N(v) = {s}
and |N(s)| ≥ 3, then

n(G)γst(H − {v}) ≤ γst(G ◦v H) ≤ min{n(G)γst(H), γst(G) + n(G)γst(H − {v})}.

The following result is an immediate consequence of the theorem above.

Corollary 2. Let G and H be two graphs with no isolated vertex. Let v ∈ Lw(H) and N(v) = {s}.
If |N(s)| ≥ 3 and γst(H − {v}) = γst(H), then

γst(G ◦v H) = n(G)γst(H).
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Theorem 9. Let G be a graph with δ(G) ≥ 2 and H a graph with no isolated vertex. Let v ∈ Lw(H)

and N(v) = {s}. If |N(s)| ≥ 3 and N(s) ∩ S(H) �= ∅, then the following statements hold.

(i) If s /∈ D for every γst(H − {v})-set D, then

γst(G ◦v H) = γst(G) + n(G)γst(H − {v}).

(ii) If there exists a γst(H − {v})-set D such that s ∈ D, then

γst(G ◦v H) ∈ {n(G)γst(H − {v}, γ(G) + n(G)γst(H − {v}), γt(G) + n(G)γst(H − {v})}.

Proof. Let S be a γst(G ◦v H)-set such that |S ∩ N[V(G)]| is maximum. For any vertex x ∈ V(G),
let {sx} = N(x) ∩ V(Hx). Let {M0,M1,N0,N1} be the partition of V(G) defined as follows.

M0 = {x ∈ V(G) \ S : sx ∈ S}, M1 = {x ∈ V(G) ∩ S : sx ∈ S},

N0 = {x ∈ V(G) \ S : sx /∈ S}, N1 = {x ∈ V(G) ∩ S : sx /∈ S}.

By Theorem 1 we have that γst(G ◦v H) ≤ γst(G) +n(G)γst(H −{v}). Hence, in order to prove (i)
we proceed to show that γst(G ◦v H) ≥ γst(G) + n(G)γst(H − {v}). To this end, we need to estimate
the gap |Sx| − γst(H − {v}). Obviously, if x ∈ N0, then |Sx| = γst(H − {v}). Now, since N(sx) ∩
S(Hx) �= ∅, if x ∈ M0 ∪M1, then S−

x is a secure total dominating set of Hx − {x}, and so |S−
x | ≥

γst(Hx − {x}) = γst(H − {v}). By hypothesis of (i) we deduce that, if x ∈ M0, then |Sx| ≥ |S−
x | >

γst(H − {v}), while if x ∈ M1, then |Sx| > |S−
x | > γst(H − {v}). We now consider the case x ∈

N1. By Lemma 6 we have that |Sx| ≥ γst(H − {v}). If |Sx| = γst(H − {v}), then S−
x ∪ {sx} is a

secure total dominating set of Hx − {x} and |S−
x ∪ {sx}| = |Sx| = γst(H − {v}) = γst(Hx − {x}),

which contradicts the hypothesis of (i). Hence, x ∈ N1 leads to |Sx| > γst(H − {v}).
In summary, we can conclude that if x ∈ N0, then |Sx| = γst(H − {v}), if x ∈ M0 ∪ N1,

then |Sx| ≥ γst(H − {v}) + 1, while if x ∈ M1, then |Sx| ≥ γst(H − {v}) + 2. We claim that there
exists a secure total dominating set Z of G such that |Z| ≤ |N1|+ |M0|+ 2|M1|.

We define Z as a set of minimum cardinality satisfying that N1 ∪M0 ∪M1 ⊆ Z and for any
x ∈ M1 with N(x)∩N0 �= ∅ there exists wx ∈ N(x)∩N0 ∩ Z. Notice that, by definition, Z is a double
dominating set of G and, since δ(G) ≥ 2, every vertex in M1 has at least two neighbours in Z \ N0 or
one neighbour in Z ∩N0. Let x ∈ V(G) \ Z. Since x ∈ N0, there exists y ∈ S ∩ V(G) = M1 ∩N1 ⊆ Z
such that x is totally protected under S by y. We claim that Z′ = (Z \ {y}) ∪ {x} is a total dominating
set of G. Since Z is a total dominating set of G, we have that every vertex in V(G) \ N(y) is dominated
by some vertex in Z′. Now, if there exists u ∈ N(y) ∩ V(G) such that N(u) ∩ S ∩ V(G) = {y},
then u ∈ M1, and so N(u) ∩ Z ∩N0 �= ∅, concluding that Z′ is a total dominating set of G. Hence,
Z is a secure total dominating set of G, and as a consequence,

γst(G ◦v H) = ∑x∈V(G) |Sx|
= ∑x∈M1

|Sx|+ ∑x∈M0
|Sx|+ ∑x∈N1

|Sx|+ ∑x∈N0
|Sx|

≥ ∑x∈M1
(γst(H − {v}) + 2) + ∑x∈M0∪N1

(γst(H − {v}) + 1) + ∑x∈N0
γst(H − {v})

= ∑x∈V(G) γst(H − {v}) + (2|M1|+ |M0|+ |N1|)
≥ ∑x∈V(G) γst(H − {v}) + |Z|
≥ n(G)γst(H − {v}) + γst(G).

Therefore, proof of (i) is complete.
We now proceed to prove (ii). From Lemma 6 we can consider the partition {R0, R1} of V(G)

defined as follows.

R0 = {x ∈ V(G) : |Sx| = γst(H − {v})}, R1 = {x ∈ V(G) : |Sx| > γst(H − {v})}.
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By assumptions, there exists a γst(H − {v})-set D such that s ∈ D. Let W ⊆ V(G ◦v H) \ V(G)

such that Wx is induced by D for every vertex x ∈ V(G).
If x ∈ N0, then S′ = (S \ Sx) ∪ Wx is a γst(G ◦v H)-set with |S′ ∩ N[V(G)]| > |S ∩ N[V(G)]|,

which is a contradiction. Hence, N0 = ∅. If x ∈ R1 ∩ N1, then S′ = (S \ Sx) ∪ (Wx ∪ {x}) is a
γst(G ◦v H)-set with |S′ ∩ N[V(G)]| > |S ∩ N[V(G)]|, which is a contradiction. Hence, R1 ∩N1 = ∅,
and so N1 ⊆ R0. Now, by hypothesis of (ii), M0 ⊆ R0. Moreover, if x ∈ M1, then S−

x is a secure total
dominating set of Hx − {x}, and so x ∈ R1. Therefore, R1 = M1 and R0 = M0 ∪N1.

Now, we suppose that there exists a vertex x′ ∈ N1. Let W ′ ⊆ V(G ◦v H) such that W ′
x is induced

by Sx′ for every vertex x ∈ V(G). Since δ(G) ≥ 2 we have that W ′ is a secure total dominating
set of G ◦v H of cardinality n(G)γst(H − {v}). Therefore, γst(G ◦v H) ≤ n(G)γst(H − {v}) and by
Theorem 8, we deduce that γst(G ◦v H) = n(G)γst(H − {v}).

From now on, we assume that N1 = ∅. Hence, R1 = M1 and R0 = M0. Let x ∈ M1.
As N(sx) ∩ S(Hx) �= ∅, we have that S−

x is a secure total dominating set of Hx − {x}, and by
hypothesis of (ii) we deduce that |S−

x | = γst(H − {v}), which implies that |Sx| = γst(H − {v}) + 1.
Hence, γst(G ◦v H) = |M1|+ n(G)γst(H − {v}).

Since V(G) = M0 ∪M1 and M0 ∩M1 = ∅, by Remark 1, any vertex in M0 is dominated by at
least one vertex in M1. Hence, M1 is a dominating set of G and we differentiate the following two cases.

Case 1. There exists a γst(H − {v})-set D containing s, such that no vertex in N(s) \ D is necessarily
totally protected by s under D. Let W ′′ ⊆ V(G ◦v H) \ V(G) such that W ′′

x is induced by D for every
vertex x ∈ V(G). In this case, for every γ(G)-set X we have that X ∪ W ′′ is a secure total dominating
set of G ◦v H. Hence |M1| = γ(G), and as a consequence, γst(G ◦v H) = γ(G) + n(G)γst(H − {v}).
Case 2. For every γst(H − {v})-set D containing s, there exists a vertex in V(H) \ D that is totally
protected uniquely by s under D. In this case, any vertex in M1 is dominated by another vertex in
M1, which implies that M1 is a total dominating set of G. As in Case 1, let W ′′ ⊆ V(G ◦v H) \ V(G)

such that W ′′
x is induced by D for every vertex x ∈ V(G). In this case, for every γt(G)-set X we

have that X ∪ W ′′ is a secure total dominating set of G ◦v H. Hence |M1| = γt(G). Therefore,
γst(G ◦v H) = γt(G) + n(G)γst(H − {v}).

From now on we consider the case in which the support vertex of the root v has degree two.

Lemma 7. Let H be a graph with no isolated vertex. If v ∈ Lw(H), N(v) = {s} and |N(s)| = 2,
then γst(H − {v}) ≥ γst(H)− 1.

Proof. Suppose that γst(H − {v}) ≤ γst(H)− 2 and let D be a γst(H − {v})-set. Since both s and its
support vertex in H − {v} are included in D, we have that D ∪ {v} is a secure total dominating set of
H. Hence, γst(H) ≤ |D ∪ {v}| = γst(H − {v}) + 1 ≤ γst(H)− 1, which is a contradiction. Therefore,
γst(H − {v}) ≥ γst(H)− 1, which completes the proof.

Theorem 10. Let S be a γst(G ◦v H)-set. If v ∈ Lw(H), N(v) = {s} and |N(s)| = 2, then for any
x ∈ V(G),

γst(H)− 1 ≤ |Sx| ≤ γst(H).

Therefore, with the assumptions above,

n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤ n(G)γst(H).

Proof. We first consider the case in which Sx is a secure total dominating set of Hx. Since x ∈ L(Hx)

we have that x belongs to every γst(Hx)-set. So, |Sx| = γst(Hx) = γst(H).
Now, assume that Sx is not a secure total dominating set of Hx. Notice that every vertex in

V(Hx) \ (S ∪ {x}) is totally protected under S by some vertex in Sx. Since {x, sx} ∩ Sx �= ∅, we have
that Sx ∪ {x, sx} is a secure total dominating set of Hx. Hence, γst(H) − 1 = γst(Hx) − 1 ≤ |Sx ∪
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{x, sx}| − 1 ≤ |Sx|. Now, if there exists x′ ∈ V(G) such that |Sx′ | > γst(H), then for any γst(Hx′)-set
D, we have that S′ = (S \ Sx′) ∪ D is a secure total dominating set of G ◦v H and |S′| < |S|, which is
a contradiction. Therefore, γst(H)− 1 ≤ |Sx| ≤ γst(H) for every x ∈ V(G), and since γst(G ◦v H) =

∑x∈V(G) |Sx|, the result follows.

We now consider the particular case where δ(G) ≥ 2. By Lemma 7 we only need to consider two
cases according to whether γst(H − {v}) ≥ γst(H) or γst(H − {v}) = γst(H)− 1. These two cases are
discussed in Theorems 11 and 12, respectively.

Theorem 11. Let G be a graph with δ(G) ≥ 2 and H a graph with no isolated vertex. Let v ∈ Lw(H),
N(v) = {s} and |N(s)| = 2. If γst(H − {v}) ≥ γst(H), then

γst(G ◦v H) ∈ {n(G)γst(H), n(G)(γst(H)− 1)}.

Proof. Let S be a γst(G ◦v H)-set such that |S| < n(G)γst(H). For any vertex x ∈ V(G), let {sx} =

N(x) ∩ V(Hx) and {s′x} = N(sx) \ {x}. By Theorem 10 there exists a vertex y ∈ V(G) such that
|Sy| = γst(H)− 1. If y /∈ Sy, then S−

y is a secure total dominating set of Hy − {y} and so |S−
y | = |Sy| =

γst(H)− 1 < γst(H − {v}) = γst(Hy − {y}), which is a contradiction. Hence, y ∈ Sy.
We suppose that sy ∈ Sy. Since |Sy| = γst(H) − 1, we deduce that s′y /∈ Sy. So, the set D =

(Sy \ {y}) ∪ {s′y} is a secure total dominating set of Hy − {y} of cardinality |D| = |Sy| = γst(H)− 1 <

γst(H − {v}) = γst(Hy − {y}, which is a contradiction. Hence, sy /∈ Sy, and so s′y ∈ Sy.
Let W ⊆ V(G ◦v H) such that Wx is induced by Sy, for any x ∈ V(G). Since δ(G) ≥ 2, we deduce

that W is a secure total dominating set of G ◦v H, and, as a result, γst(G ◦v H) ≤ |W| = n(G)|Sy| =
n(G)(γst(H)− 1). By Theorem 10 we obtain that γst(G ◦v H) = n(G)(γst(H)− 1), which completes
the proof.

Theorem 12. Let G be a graph with δ(G) ≥ 2 and H a graph with no isolated vertex. Let v ∈ Lw(H),
N(v) = {s} and |N(s)| = 2. If γst(H − {v}) = γst(H)− 1, then

γst(G ◦v H) ∈ {n(G)(γst(H)− 1), γ(G) + n(G)(γst(H)− 1)}.

Proof. By Theorem 10 we have that γst(G ◦v H) ≥ n(G)(γst(H) − 1). Since s ∈ L(H − {v}),
any γst(H − {v})-set D contains N[s] \ {v} as a subset. Let W ⊆ V(G ◦v H) \ V(G) such that Wx

is induced by D for every vertex x ∈ V(G). As for any γ(G)-set X, the set X ∪ W is a secure total
dominating set of G ◦v H, we deduce that γst(G ◦v H) ≤ |X ∪ W| = γ(G) + n(G)γst(H − {v}) =

γ(G) + n(G)(γst(H)− 1).
Let S be a γst(G ◦v H)-set such that |S| > n(G)(γst(H)− 1). For any vertex x ∈ V(G), let {sx} =

N(x) ∩ V(Hx). By Theorem 10, we can conclude that the set Z = {z ∈ V(G) : |Sz| = γst(H)} is
not empty. Since there exists a γst(H)-set containing N[s], we can assume, without loss of generality,
that N[sz] ⊆ Sz for every vertex z ∈ Z. We claim that Z is a dominating set of G. Let x′ ∈ V(G) \ Z
and suppose that x′ ∈ S. In such a case, |Sx′ | = γst(H)− 1 and we can define a set W ′ ⊆ V(G ◦v H)

such that W ′
x is induced by Sx′ for every vertex x ∈ V(G). Notice that W is a secure total dominating

set of G ◦v H and |W| = n(G)(γst(H) − 1), which is a contradiction. Thus, (V(G) \ Z) ∩ S = ∅,
which implies that Z is a dominating set of G and so γst(G ◦v H) = |S| ≥ | ∪x∈V(G) Sx| = |Z| +
n(G)(γst(H)− 1) ≥ γ(G) + n(G)(γst(H)− 1), which completes the proof.

Theorem 13. Let G be a graph such that δ(G) ≥ 2 and H a graph with no isolated vertex. If v ∈ Lw(H),
N(v) = {s}, |N(s)| = 2 and N(s) ∩ S(H) �= ∅, then

γst(G ◦v H) = n(G)(γst(H)− 1).
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Proof. For any vertex x ∈ V(G), let {sx} = N(x) ∩ V(Hx) and notice that any γst(Hx)-set Dx satisfies
that N[sx] ⊆ Dx and Dx \ {x, sx} is a secure total dominating set of Hx − {x, sx}. Since δ(G) ≥ 2,
we have that D =

⋃
x∈V(G)(Dx \ {sx}) is a secure total dominating set of G ◦v H. Hence, γst(G ◦v

H) ≤ |D| = n(G)(γst(H) − 1). By Theorem 10 we obtain that γst(G ◦v H) = n(G)(γst(H) − 1),
which completes the proof.

4. Concluding Remarks

It is well-known that the problem of finding the secure total domination number of a graph
is NP-hard. This suggests the challenge of finding closed formulas or giving tight bounds for this
parameter. In this paper we develop the theory for the class of rooted product graph. The study shows
that if the root vertex is strong leaf, a support, or a universal vertex, then there exists a formula for the
secure total domination number of the rooted product graph. In the remaining cases, two different
behaviours are observed depending on whether the root vertex is a weak leaf or not. Although in
a different way, in both cases we were able to give the intervals to which the parameter belongs.
The endpoints of these intervals are expressed in terms of other domination parameters of the graphs
G and H involved in the product, which allows us to obtain closed formulas when certain conditions
are imposed on G or H.
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Abstract: A digraph D is an efficient open domination digraph if there exists a subset S of V(D) for
which the open out-neighborhoods centered in the vertices of S form a partition of V(D). In this
work we deal with the efficient open domination digraphs among four standard products of digraphs.
We present a method for constructing the efficient open domination Cartesian product of digraphs
with one fixed factor. In particular, we characterize those for which the first factor has an underlying
graph that is a path, a cycle or a star. We also characterize the efficient open domination strong
product of digraphs that have factors whose underlying graphs are uni-cyclic graphs. The full
characterizations of the efficient open domination direct and lexicographic product of digraphs are
also given.

Keywords: efficient open domination; digraphs; products of digraphs

1. Introduction

In this work we join two natural concepts. The first one is operations on digraphs (under some
rules) that result in a bigger digraph than the starting ones. The second one is partitions of sets.
There exist many digraph products for which the vertex set is the Cartesian product of vertex sets of its
factors (there are also several operations which have (di)graph product in their name, but the vertex set
is defined in a different manner). They differ by the definitions of the edge sets. Among them, four are
called standard products. These are the Cartesian product, the strong product, the direct product
and the lexicographic product. One can find a rich bibliography about them (see [1]). One standard
approach of studying the digraph products is to study their structure and how to recognize them.
Another approach is to deduce the properties of (di)graph products with respect to some properties of
their factors. The later is also the topic of this work.

Partitions of objects are always interesting and useful as a mathematical concept, as every partition
yields an equivalence relation. This further enables a factor structure of starting objects, which often
brings simplification and deeper insight. Therefore, it is natural to study different kinds of partitions
and the existence of them. Unfortunately, we are often not in the position to describe the mentioned
relation with the properties of the investigated objects. This often disables further studies.

Graph theory offers a wide range of possibilities for partitions, one of them being the partitions of
vertices. Open neighborhoods are a natural example for partitioning the set of vertices. Among graphs
this was initiated in 1993 by Cockayne et al. in [2], where such partitions were named total perfect
codes. The terminology efficient open domination graphs was introduced by Gavlas and Schultz in
2002 (see [3]). The study of efficient open domination of Cayley graphs can be found in [4]. Grid graphs,
that is Cartesian products of two paths, were investigated in [5–7] and direct products of graphs with
such a partition were characterized in [8]. Characterizations of efficient open domination graphs among
lexicographic, strong and disjunctive product of two graphs can be found in [9]. In the same paper [9]
the Cartesian products of some known families of graphs with respect to efficient open domination
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were also investigated. Later, in [10], one factor of a Cartesian product was fixed while the other factor
was characterized in such a way that its Cartesian product is an efficient open domination graph.

Existence of a partition of vertices of a graph into closed neighborhoods was initiated even earlier
by Biggs in 1976 (see [11]) under the name 1-perfect graphs. The name efficient (closed) domination
graphs was proposed later by Bange et al. in [12]. This subject became quite popular and throughout
the years several combinatorial and computational results were presented. One of the latest results of
this type is that the problem of efficient closed domination is solvable in polynomial time for the class
of P6-free graphs, as shown in [13] and independently in [14]. This was further investigated in [15] for
some subclasses of P6-free graphs. The authors use the maximum weight independent set problem
of a square graph G2 to which the efficient closed domination of G can be reduced. Among products
the strong product was treated in [16] and the direct product of (an arbitrary number of) cycles was
covered in a series of papers [17–19]. For the lexicographic product the topic was covered in [20], while
Mollard deals with the efficient closed domination Cartesian product in [21]. Recently, graphs that are
both efficient open and efficient closed domination at the same time were considered in [22].

In the case of digraphs one can also distinguish between in- and out-neighborhoods besides open
and closed neighborhoods. However, this dilemma is artificial because if we reverse the orientation of
the digraph, then in-neighborhoods become out-neighborhoods and vice versa. Hence, we can deal
with efficient open and efficient closed domination digraphs. Efficient open domination digraphs were
introduced in [23] and studied further in [24–27]. In [28] Schaudt presented a useful characterization
under the name of efficient total domination digraphs. See also [29] for more recent results. As in the
case of graphs, there is more literature concerning efficient closed domination digraphs than that of
efficient open domination digraphs. Here we mention only [30], a recent work that brings the results
on the efficient closed domination among standard products of digraphs.

The paper is organized as follows. In the coming section we first settle the terminology. A section
with several results on efficient open domination Cartesian products of digraphs follows. There we
present a method for constructing an efficient open domination Cartesian product of digraphs with
one fixed factor. Section four is devoted to the efficient open domination strong products of digraphs.
We characterize those for which the factors have uni-cyclic graphs as their underlying graphs. Moreover,
we conjecture that these are the only efficient open domination digraphs among strong products. The last
section brings characterizations of the efficient open domination direct and lexicographic products
of digraphs.

2. Preliminaries

The terminology and basic definitions in this section are summarized from [30] where the authors
present the results on the efficient closed domination among standard products of digraphs.

Let D be a digraph with the vertex set V(D) and the arc set A(D). For any two vertices u, v ∈
V(D), we write (u, v) as the arc with direction or orientation from u to v, and say u is adjacent to v,
or v is adjacent from u. For an arc (u, v) we also say that u is the in-neighbor of v and that v is the
out-neighbor of u. For a vertex v ∈ V(D), the open out-neighborhood of v (open in-neighborhood of v) is
N+

D (v) = {u ∈ V(D) : (v, u) ∈ A(D)} (N−
D (v) = {u ∈ V(D) : (u, v) ∈ A(D)}). The in-degree of v is

δ−D(v) = |N−
D (v)|, the out-degree of v is δ+D(v) = |N+

D (v)| and the degree of v is δD(v) = δ−D(v) + δ+D(v).
Moreover, N−

D [v] = N−
D (v) ∪ {v} is the closed in-neighborhood of v (N+

D [v] = N+
D (v) ∪ {v} is the closed

out-neighborhood of v). In the above notation we omit D if there is no ambiguity with respect to the
digraph D. We similarly proceed with any other notation which uses such a style of subscripts.
Throughout the paper we use [k] = {1, . . . , k}.

A vertex v of D with δ+(v) = |V(D)| − 1 is called an out-universal vertex, and if δ−(v) = |V(D)| −
1, then v is called an in-universal vertex. A vertex v of D with δ+(v) = 0 is called a sink, and if δ−(v) = 0,
then v is called a source. If δ(v) = 0, then v is an isolated vertex or a singleton. An arc of the form (v, v) is
called a loop and can be considered as a directed cycle of length one. A vertex v with δ(v) = 1 is called
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a leaf and is either a sink (if δ+(v) = 0) or a source (if δ−(v) = 0). Clearly, any vertex u with δ(u) = 2
is either a sink, or a source, or δ−(u) = 1 = δ+(u).

The underlying graph of a digraph D is a graph GD with V(GD) = V(D) and for every arc (u, v)
from D we have an edge uv in E(GD). If (u, v) and (v, u) are both arcs, then we have two edges
between u and v in the underlying graph. A directed path is a digraph D ∼= Pn with one source and
one sink where its underlying graph is isomorphic to a path Pn. Similarly, a directed cycle is a digraph
D ∼= Cn without sinks and sources with a cycle Cn as its underlying graph. We also consider a loop as
a directed cycle C1 of length one and double arc with different orientation as a directed cycle C2 of
length two. The distance dD(u, v) between two vertices u and v is the minimum number of arcs on
a directed path from u to v or ∞ if such a directed path does not exist. For A ⊆ V(D) we denote by
D − A a digraph obtained from D by deleting all vertices from A. By D[A] we denote the subdigraph
of D that is induced on the vertices from A.

Let D be a digraph and let S ⊆ V(D). The set S is called a total dominating set of D if the open
out-neighborhoods centered in vertices of S cover V(D), that is V(D) =

⋃
v∈S N+

D (v). Let S be a total
dominating set of D. If N+

D (v) ∩ N+
D (u) = ∅ for every two different vertices u, v ∈ S, then the set

{N+
D (v) : v ∈ S} not only covers V(D) but also partitions V(D). In this case we say that S is an efficient

open dominating set (or an EOD set for short) of D. If there exists an EOD set S for the digraph D, then
D is called an efficient open domination digraph (or an EOD digraph for short). For A ⊆ V(D) we say
that SA ⊆ V(D) is efficient open domination set only (or an EOD set only for short) for a digraph D − A if
every vertex from V(D)− A has exactly one in-neighbor in SA and in addition A ∩ N+

D (SA) = ∅.
Let D and F be digraphs. Different products of digraphs D and F have, similarly as in graphs,

their set of vertices equal to V(D)× V(F). We roughly and briefly discuss the four standard products
of digraphs: the Cartesian product D�F, the direct product D × F , the strong product D � F and the
lexicographic product D ◦ F (sometimes also denoted D[F]). Adjacency in different products is defined
as follows.

• In the Cartesian product D�F there exists an arc from vertex (d, f ) to vertex (d′, f ′) if there exists
an arc from d to d′ in D and f = f ′ or d = d′ and there exists an arc from f to f ′ in F.

• If there is an arc from d to d′ in D and an arc from f to f ′ in F, then there exists an arc from (d, f )
to ( f ′, d′) in the direct product D × F.

• In the strong product we have ((d, f ), (d′, f ′)) ∈ A(D � F) if ((d, d′) ∈ A(D) and f = f ′) or
(d = d′ and ( f , f ′) ∈ A(F)) or ((d, d′) ∈ A(D) and ( f , f ′) ∈ A(F)).

• There is an arc in the lexicographic product D ◦ F from a vertex (d, f ) to a vertex (d′, f ′), whenever
(d, d′) ∈ A(D) or (d = d′ and ( f , f ′) ∈ A(F)).

Some examples of the above mentioned products appear in Figure 1.

D E

D�E D × E D � E D ◦ E

Figure 1. The digraphs D and E, and their Cartesian, direct, strong and lexicographic products.

Let ∗ ∈ {�,×,�, ◦}. The map pD : V(D ∗ F) → V(D) defined by pD((d, f )) = d is called the
projection map onto D. Similarly, we define pF as the projection map onto F. Projections are defined as
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maps between vertices, but frequently it is more convenient to see them as maps between digraphs. In
this case we observe the subdigraphs induced by B ⊆ V(D ◦ F) and pX(B) for X ∈ {D, F}. Notice that
in the Cartesian and in the strong product the arcs project either to arcs (with the same orientation) or
to a vertex. In the case of the direct product arcs always project to arcs (with the same orientation). In
the lexicographic product D ◦ F the projection pD maps arcs into arcs (with the same orientation) or
into vertices. In the same product the projection pF maps arcs into vertices, into arcs with the same
orientation, into arcs with different orientation or into two vertices without an arc between them.

For a fixed f ∈ V(F) we call set D f = {(d, f ) ∈ V(D ∗ F) : d ∈ V(D)} a D-layer through f in D ∗ F,
where ∗ ∈ {�,×,�, ◦}. Symmetrically, an F-layer Fd through d is defined for a fixed d ∈ V(D). Notice
that for the Cartesian product, for the strong product and for the lexicographic product, (D ∗ F)[D f ]

is isomorphic to D and (D ∗ F)[Fd] is isomorphic to F, respectively. In the case of the direct product
loops play an important role. If there are no loops in f and in d, then the subdigraphs (D ∗ F)[Fd]

and (D ∗ F)[D f ] are isomorphic to an empty digraph on |V(F)| and |V(D)| vertices, respectively. If
we have (d, d) ∈ A(D) and ( f , f ) ∈ A(F), then (D ∗ F)[Fd] and (D ∗ F)[D f ] are isomorphic to F and
D, respectively.

It is easy to see that open out-neighborhoods in the direct product of digraphs satisfy

N+
D×F((d, f )) = N+

D (d)× N+
F ( f ) (1)

and for the lexicographic product of digraphs it holds that

N+
D◦F((d, f )) =

(
N+

D (d)× V(F)
)
∪
(
{d} × N+

F ( f )
)

. (2)

Using these two equalities a complete characterization of the EOD digraphs among the direct and
the lexicographic product is presented in the last section.

3. The Cartesian Product

Definition 1. Let F be a digraph and let S1, . . . , Sk ⊆ V(F). If Si is an EOD set only for F − Si−1, i ∈ [k],
where S0 = ∅, then we say that F is a k-EOD path divisible. Similarly, if Si is an EOD set only for F − Si−1,
i ∈ [k], where S0 = Sk, then we say that F is a k-EOD cycle divisible. We say that sets S1, . . . , Sk are k-EOD
path or k-EOD cycle divisible sets of F.

Notice that every k-EOD path divisible digraph is also an EOD digraph, because S1 is an EOD set
only for F − S0 = F. Therefore, an EOD digraph F with an EOD set S1 is 1-EOD path divisible. Also if
F is n-EOD path divisible, then it is also m-EOD path divisible for every m ≤ n. In particular, let F be a
directed cycle, that is F is an EOD digraph with the EOD set S = V(F). If we set S2i−1 = V(F) and
S2i = ∅, then F is k-EOD path divisible for every positive integer k. If F is k-EOD path divisible, then
it can happen that Si ∩ Sj �= ∅. See an example of this on Figure 2.

With the following example we underline the rich structure of n-EOD path (or cycle) divisible
digraphs. We will show that every digraph can be an induced digraph of an n-EOD path (or cycle)
divisible digraph. A complete digraph Kn contains an arc in both directions between all different
vertices of Kn. Let V(Kn) = {v1, . . . , vn}. Digraph K−

n is obtained from Kn by deleting all arcs (vi+1, vi),
i ∈ [n − 1]. For a digraph F we construct an n-EOD path divisible digraph F+ in the folowing way. We
take one copy of F and two copies of K−

n , the first copy containing the vertices V1 = {v1, . . . , vn} and
the second copy containing the vertices V2 = {v′1, . . . , v′n}. The arc set of F+ contains A(F), all arcs from
both copies of K−

n , the set {(vi, v′i), (v
′
i, vi) : i ∈ [n]}, all arcs from the set {(vi, f ) : vi ∈ V1, f ∈ V(F)}

and an arbitrary subset of {( f , vi), ( f , v′i) : f ∈ V(F), vi ∈ V1, v′i ∈ V2}. It is not hard to see that F+ is
an n-EOD path divisible digraph with n-EOD path divisible sets Si = {vi, v′i} for every i ∈ [n].

Similar construction can be done to get an n-EOD cycle divisible digraph. We only need to delete
arcs (v1, vn) and (v′1, v′n) from F+. Also if F is an n-EOD cycle divisible digraph, then F is also an kn-EOD
cycle divisible digraph, where kn-EOD cycle divisible sets are repeated cyclically k times.
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v1

v2

v3

v4 v5

v6

v7

v8

Figure 2. 4-EOD path divisible digraph with S1 = {v3, v4}, S2 = {v6, v7}, S3 = {v1, v8}, S4 = {v2, v3}
and with S1 ∩ S4 = {v3}.

Next we show that n-EOD path divisibility of F is essential for the Cartesian product Pn�F to be
an EOD digraph, where Pn is a directed path.

Theorem 1. Let Pn be a directed path and let F be a digraph. The Cartesian product Pn�F is an EOD digraph
if and only if F is an n-EOD path divisible digraph.

Proof. Let Pn = v1 . . . vn be a directed path where v1 is the source and vn is the sink and let F be an
arbitrary digraph.

First assume that F is an n-EOD path divisible digraph. Denote by S1, . . . , Sn the subsets of V(F)
that correspond with n-EOD path divisibility. We will show that S = ∪n

i=1{vi} × Si is an EOD set
of Pn�F, meaning that |N−(vi, u) ∩ S| = 1 for every i ∈ [n] and u ∈ V(F). For every (v1, u) it holds
that |N−(v1, u) ∩ S| ≥ 1 because S1 is an EOD set of F and therefore {v1} × S1 is an EOD set for
(Pn�F)[Fv1 ] ∼= F. Since v1 is a source of Pn, there do not exist any other in-neighbors of vertices in
Fv1 except those already in Fv1 , so |N−(v1, u) ∩ S| = 1. Next we observe (vi, u) for 2 ≤ i ≤ n and
u ∈ V(F). If u ∈ Si−1, then (vi, u) has an in-neighbor in {vi−1} × Si−1 ⊂ S and if u ∈ V(F)− Si−1,
then (vi, u) has an in-neighbor in {vi} × Si ⊂ S. On the other hand these neighbors are unique in S,
because N+

F (Si) ∩ Si−1 = ∅ and Si is an EOD set only for F − Si−1. Hence, S is an EOD set of Pn�F,
which is therefore an EOD digraph.

Now assume that Pn�F is an EOD digraph and let S be its EOD set. Let Si = pF(S ∩ Fvi ) for
i ∈ [n] and let S0 = ∅. Clearly, every vertex from Fv1 must have exactly one in-neighbor in {v1} × S1

because v1 is a source of Pn. Therefore, S1 is an EOD set of F − S0 = F and N+
F (S1) ∩ S0 = ∅. Now

let i > 1. Vertices from {vi} × Si−1 have in-neighbors in {vi−1} × Si−1 and therefore do not have
in-neighbors in {vi} × Si, meaning that N+

F (Si) ∩ Si−1 = ∅. On the other hand all other vertices in Fvi

must have an in-neighbor in {vi} × Si, because S is an EOD set of Pn�F. Thus, Si is an EOD set only
for F − Si−1. Therefore, S1, . . . , Sn yield that F is an n-EOD path divisible digraph.
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With n-EOD cycle divisibility one can describe all EOD digraphs among Cn�F where Cn is a
directed cycle. The proof is very similar to the proof of Theorem 1 and is therefore omitted. The main
difference is that we do not need to treat layer Fv1 separately since everything follows from the
general step.

Theorem 2. Let Cn be a directed cycle and let F be a digraph. The Cartesian product Cn�F is an EOD digraph
if and only if F is an n-EOD cycle divisible digraph.

We continue with a path that is oriented in such a way, that it has exactly one source of degree two.

Theorem 3. Let D be a digraph with an underlying graph Pn = v1 . . . vn with such an orientation that vk,
1 < k < n, is the only source, let m = max{k, n − k + 1} and let F be a digraph. The Cartesian product D�F
is an EOD digraph if and only if F is an m-EOD path divisible digraph.

Proof. Let vk be the only source of D. Thus P′ = vkvk−1 . . . v1 is a directed path on k vertices, where vk
is the source and v1 is the sink, and P′′ = vkvk+1 . . . vn is a directed path on n − k + 1 vertices, where
vk is the source and vn is the sink. Let m = max{k, n − k + 1}. If F is m-EOD path divisible with
sets Si, i ∈ [m], then F is k-EOD path divisible with sets Si, i ∈ [k] and also (n − k + 1)-EOD path
divisible with sets Si, i ∈ [n − k + 1]. As shown in the proof of Theorem 1, sets S(k) = (∪k

i=1{vi} ×
Sk−i+1) and S(n − k + 1) = (∪n

i=k{vi} × Si) are EOD sets for P′�F and P′′�F, respectively. Clearly,
S = S(k) ∪ S(n − k + 1) is an EOD set of D�F because Fvk ∩ S(k) = Fvk ∩ S(n − k + 1) and D�F is an
EOD digraph.

Now assume that D�F is an EOD digraph and let S be its EOD set. Since vk is a source, P′�F and
P′′�F are also EOD digraphs. By Theorem 1 F is a k-EOD path divisible digraph and an (n− k+ 1)-EOD
path divisible digraph. Hence, F is also m-EOD path divisible for m = max{k, n − k + 1}.

Before we deal with a path that is oriented in such a way, that it has exactly one sink of degree
two, we need the following definition.

Definition 2. Let F be a k-EOD and an �-EOD path divisible digraph. We say that F is k, �-sink friendly if
there exist k-EOD path divisible sets S1, . . . , Sk and �-EOD path divisible sets S′

1, . . . , S′
� such that Sk ∩ S′

� = ∅
and there exists a set S0 ⊆ V(F), which is an EOD set only for F − (Sk ∪ S′

�).

Theorem 4. Let D be a digraph with an underlying graph Pn = v1 . . . vn with such an orientation that vk,
1 < k < n, is the only sink and let F be a digraph. The Cartesian product D�F is an EOD digraph if and only if
F is (k − 1), (n − k)-sink friendly.

Proof. Let F be digraph and let D be a digraph with an underlying graph Pn = v1 . . . vn where vk,
1 < k < n, is the only sink. This means that v1 and vn are the only sources of D.

First assume that F is (k − 1), (n − k)-sink friendly. This means that there exist sets S1, . . . , Sk−1
that yield (k − 1)-EOD path divisibility of F and sets Sn, Sn−1 . . . , Sk+1 that yield (n − k)-EOD path
divisibility of F. In addition, Sk−1 ∩ Sk+1 = ∅ and there exists a set Sk ⊆ V(F) which is an EOD
set only for F − (Sk−1 ∪ Sk+1). Let A = ∪k−1

i=1 ({vi} × Si) and B = ∪n
j=k+1({vj} × Sj). We will show

that S = A ∪ B ∪ ({vk} × Sk) is an EOD set of D�F. Let Q = v1 . . . vk−1 and R = vnvn−1 . . . vk+1 be
directed subpaths of D. By Theorem 1, Q�F and R�F are EOD digraphs with EOD sets A and B,
respectively. No vertex from Fvk is an in-neighbor of vertices from Q�F and R�F, because vk is a sink.
Therefore, there exists exactly one in-neighbor in S for every vertex from Q�F and R�F. So, we only
need to check (vk, f ) for every f ∈ V(F). If f ∈ Sk−1, then (vk−1, f ) ∈ S is the in-neighbor of (vk, f ).
On the other hand this is the only neighbor of (vk, f ) from S because (vk+1, f ) /∈ S as Sk−1 ∩ Sk+1 = ∅
and because Sk is an EOD set only for F − (Sk−1 ∪ Sk+1). By symmetry we can see that (vk, f ) has also
exactly one in-neighbor in S whenever f ∈ Sk+1. So let f ∈ V(F)− (Sk−1 ∩ Sk+1). Clearly (vk, f ) has
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no in-neighbor from S in Fvk−1 and in Fvk+1 . Since Sk is an EOD set only for F − (Sk−1 ∪ Sk+1), there
exists exactly one in-neighbor x of f in Sk and (vk, x) is therefore the only neighbor of (vk, f ) from S.
Hence, S is an EOD set of D�F which is therefore an EOD digraph.

Now assume that D�F is an EOD digraph and let S be its EOD set. Again, for directed paths
Q = v1 . . . vk−1 and R = vnvn−1 . . . vk+1, Q�F and R�F are EOD digraphs with no influence from
Fvk in a product D�F. Sets Si = pF(S ∩ Fvi ) for i ∈ [k − 1] are (k − 1)-EOD path divisible sets by
Theorem 1 and sets Sj = pF(S ∩ Fvj) for j ∈ {k + 1, . . . , n} (in reversed order) are (n − k)-EOD path
divisible sets by the same theorem. If f ∈ Sk−1 ∩ Sk+1, then (vk, f ) has two in-neighbors (vk−1, f ) and
(vk+1, f ) in S, a contradiction. Therefore, we have Sk−1 ∩ Sk+1 = ∅. Let Sk = pF(S ∩ Fvk ) and let f
be an arbitrary vertex from ∈ V(F)− (Sk−1 ∪ Sk+1). Clearly, (vk, f ) has exactly one in-neighbor in
{vk} × Sk because S is an EOD set. Also (vk, f ′), f ′ ∈ Sk−1 ∪ Sk+1, has no in-neighbor in {vk} × Sk as
it has its unique in-neighbor either in S, in {vk−1} × Sk−1 or in {vk+1} × Sk+1. Hence, Sk is an EOD set
only for V(F)− (Sk−1 ∪ Sk+1) and F is (k − 1), (n − k)-sink friendly.

The next challenge considering digraphs with an underlying graph isomorphic to a path or to a
cycle is when we have more sinks and sources of degree two. Clearly, after every sink there comes a
source and after each source there is a sink. In the case of a sink v of degree two digraph F must be
k, �-sink friendly by Theorem 4, where k + 1 and �+ 1 are the distances to the sources that are closest
to v. However this is not always enough. Let x and y be two sinks and let u be a source between
them. By Theorem 4 digraph F must be k1, �1-sink friendly and k2, �2-sink friendly where k1 + 1 and
k2 + 1 are the distances between u and x and u and y, respectively. We say that F is k1, k2-source friendly
if S1 = S′

1. Here, sets S1, . . . , Sk1 and S′
1, . . . , S′

k2
are appropriate k1- and k2-EOD path divisible sets

from k1, �1-sink friendly and k2, �2-sink friendly constellation, respectively. Now, if we can assure
sink friendliness for each sink, and also source friendliness for each source of a digraph F, then this is
characteristic for D�F to be an EOD digraph. Here, the underlying graph of D is either Pk or Ck with
more than one source or sink of degree two. Because the proof is very similar and the formal statement
is problematic (it depends on the status of vertices of degree one in D), we omit the proof of this.

We end this section with another fixed factor which this time has a star K1,n as its underlying
graph. Vertex of degree n is the source and all the others are sinks.

Theorem 5. Let D be a digraph with an underlying graph K1,n with the set of vertices {v0, v1, . . . , vn}, where
δ+D(v0) = n and let F be an arbitrary digraph. The Cartesian product D�F is an EOD digraph if and only if F
is a 2-EOD path divisible digraph.

Proof. Let D be a digraph with an underlying graph K1,n with the set of vertices {v0, v1, . . . vn}, where
δ+D(v0) = n, which means that v0 is the source. Clearly, δ−D(vi) = 1 and vi is a sink for every i ∈ [n].
Let F be an arbitrary digraph. Denote by A the set of vertices of D�F.

First assume that F is 2-EOD path divisible with sets S1 and S2. We will show that S = ({v0} ×
S1) ∪ (∪n

i=1{vi} × S2) is an EOD set for D�F, meaning that |N−((e, f )) ∩ S| = 1 for every (e, f ) ∈ A.
For every (v0, f ) ∈ A it holds that |N−((v0, f )) ∩ S| ≥ 1 since S1 is an EOD set for F and therefore
{v0} × S1 is an EOD set for (D�F)[Fv0 ] ∼= F. Since v0 is a source, there do not exist any other
in-neighbors of vertices Fv0 except those from Fv0 , so |N−((v0, f )) ∩ S| = 1. Now let (vi, f ) ∈ A,
i ∈ [n]. Vertices from {v0} × S1 are the in-neighbors of all of the vertices from {vi} × S1 and, since
F is 2-EOD path divisible, vertices from {vi} × S2 are the in-neighbors of all of the vertices from
{vi} × (V(F)− S1). So |N−((vi, f )) ∩ S| ≥ 1. By the definition of 2-EOD path divisibility it holds that
|N+({vi} × S2) ∩ ({vi} × S1)| = 0, meaning that |N−((vi, f )) ∩ S| = 1.

Now assume that D�F is an EOD digraph and let S be its EOD set. Let vi be an arbitrary vertex
of the star D different from v0. Vertices from S ∩ Fv0 are in-neighbors of some (or all) of the vertices of
Fvi . Denote the set of those vertices by Fvi . Vertices from Fvi − Fvi have to have in-neighbors in S ∩ Fvi ,
since they do not have in-neighbors in S ∩ Fv0 . Vertices from S ∩ Fvi are not in-neighbors of any of the
vertices from Fvi , since that would mean that there exists (vi, f ) ∈ Fvi for which |N−(vi, f ) ∩ S| > 1,
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a contradiction with S being an EOD set of D�F. Let S1 := pH(S ∩ Fs0) and S2 := pH(S ∩ Fs1).
Clearly, S1 is an EOD set of F and S2 is an EOD set only for F − S1. Hence, F is a 2-EOD path
divisible digraph.

4. The Strong Product

In this section we first characterize all EOD strong product digraphs D� F, such that the underlying
graphs of D and F are cycles Cm and Cn, respectively. Then we extend this result to a characterization
of all EOD digraphs D � F where D and F have uni-cyclic graphs as their underlying graphs. We also
conjecture that there are no more EOD digraphs among the strong product of digraphs. We start with
several lemmas that come in handy later.

Lemma 1. Let D and F be two digraphs without isolated vertices. If one of them has a source, then D � F is
not an EOD digraph.

Proof. Let D and F be two digraphs. If D has a source u and F has a source v, then vertex (u, v) is a
source in D � F and it has no in-neighbor. Hence, there does not exist an EOD set for D � F. Without
loss of generality let D have a source u and let F be an arbitrary digraph without a source. We will try
to construct an EOD set S for D � F. Since u is a source, vertex (u, y), y ∈ V(F), has in-neighbors only
in Du, and since F does not have a source at least one in-neighbor of (u, y) exists. Let (u, y′) ∈ S be
the in-neighbor of (u, y). Again, since u is a source and F has no source, there exists an in-neighbor
(u, y′′) ∈ S of (u, y′) ∈ Du. Denote by u′ an out-neighbor of u in D. It exists since D contains no
isolated vertices. By the definition of the strong product of two digraphs, both (u, y′) and (u, y′′) are
in-neighbors of (u′, y′) and since (u, y′), (u, y′′) ∈ S vertex (u′, y′) has two different in-neighbors in S.
Meaning that S is not an EOD-set, so D � F is not an EOD digraph.

In the rest of this section we use the following notation and orientation for directed cycles
Cm = c1c2 . . . cm and Cn = dndn−1 . . . d1 on m and n vertices, respectively, see Figure 3, and with (ci, dj)

we denote a vertex of a strong product of those two cycles. All operations on the first index i are via
(mod m) and on the second index j are via (mod n). We also partition V(Cm � Cn) into sets

A = {(ci, dj); i + j = 3q + 1, q ∈ N},

B = {(ci, dj); i + j = 3q + 2, q ∈ N} and

C = {(ci, dj); i + j = 3q, q ∈ N}.

(3)

Lemma 2. If there exists an EOD set S for Cm � Cn, m, n ≥ 3, and (ci, dj) ∈ S, then (ci−1, dj+1) ∈ S.

Proof. Let Cm � Cn, m, n ≥ 3, be an EOD digraph, let S be its EOD set and let (ci, dj) ∈ S. The vertex
(ci, dj) is an in-neighbor of (ci+1, dj), (ci, dj−1) and (ci+1, dj−1). On the other hand (ci, dj) must also
have an in-neighbor in S. The only in-neighbors of (ci, dj) are (ci−1, dj), (ci, dj+1) and (ci−1, dj+1).
If (ci−1, dj) ∈ S, then (ci, dj) and (ci−1, dj) are both in-neighbors of (ci, dj−1), a contradiction. Similarly,
if (ci, dj+1) ∈ S, then (ci, dj) and (ci, dj+1) are both in-neighbors of (ci+1, dj), a contradiction again.
Hence, (ci−1, dj+1) must be in S.

Lemma 3. If there exists an EOD set S for Cm �Cn, m, n ≥ 3, and (ci, dj) ∈ S, then (ci, dj+3), (ci−3, dj) ∈ S.

Proof. Let Cm � Cn, m, n ≥ 3, be an EOD digraph and let S be its EOD set. With possible change
of notation let (cm, d1) ∈ S. A vertex (cm, d1) is an in-neighbor of the vertices (c1, d1), (cm, dn) and
(c1, dn). Vertex (cm−1, d2) belongs to S by Lemma 2. Clearly, (cm−1, d2) is also the in-neighbor of
vertices (cm−1, d1) and (cm, d2). So (cm, d2) /∈ S because otherwise (cm, d1) has two in-neighbors in S.
If (cm, d3) ∈ S, then (cm, d2) has two in-neighbors in S again. So (cm, d3) /∈ S.
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Vertex (cm−2, d3) ∈ S by Lemma 2 since (cm−1, d2) ∈ S and (cm−2, d3) is an in-neighbor of
(cm−2, d2) and (cm−1, d3). One of the in-neighbors (cm−1, d3), (cm, d4) or (cm−1, d4) of the vertex (cm, d3)

must be in S. If (cm−1, d3) ∈ S, then (cm, d2) has two in-neighbors in S. Similarly, if (cm−1, d4) ∈ S,
then (cm−1, d3) has two in-neighbors in S. Hence, (cm, d4) ∈ S.

We can exchange the role of factors and by symmetric arguments get that (ci−3, dj) also belongs
to S.

d1

d2

d3

dn−1

dn

Cn

...

c1 c2 cm−3 cm−2 cm−1 cm

Cm

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
...

(cm, d1)

(cm, d2)

(cm, d3)

(cm, dn−1)

(cm, dn)

Figure 3. The strong product of two directed cycles Cm and Cn.

Now we can characterize all EOD digraphs among strong product digraphs of two cycles.

Theorem 6. Let D and F be digraphs with underlying graphs Cm and Cn, respectively. The strong product
D � F is an EOD digraph if and only if both D and F are directed cycles, m = 3� and n = 3k for some k, � ∈ N.

Proof. First, let m = 3� and n = 3k, k, � ∈ N, and let D ∼= Cm and F ∼= Cn be two directed cycles.
Recall the sets A, B and C from (3). We will show that A is an EOD set of Cm � Cn. The in-neighbor
of a vertex (ci, dj) ∈ B, i + j = 3q + 2, that is in A is (ci−1, dj), since (i − 1) + j = (i + j) − 1 =

(3q + 2)− 1 = 3q + 1. The in-neighbor of a vertex (ci, dj) ∈ C, i + j = 3q, that is in A is (ci, dj+1), since
i + (j + 1) = (i + j) + 1 = 3q + 1. The in-neighbor of a vertex (ci, dj) ∈ A, i + j = 3q + 1, that is in A is
(ci−1, dj+1), since (i − 1) + (j + 1) = i + j = 3q + 1. So every vertex v from V(Cm � Cn) is efficiently
dominated by A. Moreover v has exactly one in-neighbor in A since exactly one in-neighbor of v has
the sum of indices equal to 3q + 1.

To prove the contrary let D and F be two digraphs with underlying graphs Cm and Cn, respectively,
such that D � F is an EOD digraph with an EOD set S. If one of the cycles is not directed, then it
has a source. By Lemma 1 the strong product D � F is not an EOD digraph. So we may assume that
both D and F are directed cycles. With possible change of notation we may assume that (cm, d1) ∈ S.
By consecutive use of Lemma 3 we get that {(cm, d3k+1) : k ∈ [�n/3�]} ⊆ S and that {(cm−3�, d1) :
� ∈ [�m/3�]} ⊆ S. If n = 3k, then (cm, dn−2) ∈ S and (cm, dn+1) ∈ S by Lemma 3 again where
(cm, dn+1) = (cm, d1). If n = 3k + 1, then (cm, dn) ∈ S and (cm, dn+3) ∈ S by Lemma 3 again where
(cm, dn+3) = (cm, d3). Hence, (cm, d3), (cm, d4) ∈ S and they are both the in-neighbors of (c1, d3),
a contradiction. If n = 3k + 2, then (cm, dn−1) ∈ S and (cm, dn+2) ∈ S by Lemma 3 again where
(cm, dn+2) = (cm, d2). Hence, (cm, d1), (cm, d2) ∈ S and they are both the in-neighbors of (c1, d1), a
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contradiction again. Therefore, n = 3k. By symmetric arguments we also get that m = 3� and the proof
is completed.

Next we expand Theorem 6 and present a bigger class of EOD strong product digraphs. For this
let T1, . . . , Tm be arbitrary trees with roots r1, . . . , rm, respectively. We define an underlying graph C+

m
such that we identify root ri with vertex ci of a cycle Cm for every i ∈ [m]. Clearly, C+

m is exactly a
uni-cyclic graph, but we need the before mentioned structure. Notice that C+

m
∼= Cm if every tree Ti is a

one vertex tree. We say that a digraph with the underlying graph C+
m is well oriented if Cm is a directed

cycle and every edge from Ti is oriented away from the root ri for every i ∈ [m]. We use the same
notation C+

m for a digraph with the underlying graph C+
m .

Theorem 7. Let m, n ≥ 3 be two positive integers. The strong product C+
m � C+

n is an EOD digraph if and
only if both C+

m and C+
n are well oriented, m = 3� and n = 3k for some k, � ∈ N.

Proof. First, let m = 3� and n = 3k, k, � ∈ N, and let C+
m and C+

n be well oriented. We show this
direction in two steps. First let C+

n
∼= Cn and we show that C+

m � Cn is an EOD digraph. By Theorem 6
Cm � Cn is an EOD digraph with an EOD set A from (3). We extend set A to set A+ for which we then
show that it is an EOD set of C+

m � Cn. First we choose the notation for all the vertices from (C+
m �

Cn)− V(Cm � Cn). With vi we denote all the vertices from C+
m − V(Cm) with dC+

m
(cm, vi) = i. Notice

that different vertices from C+
m can have the same notation. Vertices from (C+

m � Cn)− V(Cm � Cn) are
then denoted as usual by (vi, dj). Furthermore, we denote sets A′ = {(vi, dj) : i + j = 3q + 1, q ∈ N},
B′ = {(vi, dj) : i + j = 3q + 2, q ∈ N} and C′ = {(vi, dj) : i + j = 3q, q ∈ N}. Now we partition
V(C+

m � Cn) into sets A+ = A ∪ A′, B+ = B ∪ B′ and C+ = C ∪ C′, where A, B and C are from (3). We
will show that A+ is an EOD set of C+

m � Cn.
By Theorem 6 each vertex from A, B and C has exactly one in-neighbor in A. The in-neighbor

of a vertex (vi, dj) ∈ B′, i + j = 3q + 2, that is in A+ is either (vi−1, dj) or (ci−1, dj), since (i − 1) + j =
(i + j)− 1 = (3q + 2)− 1 = 3q + 1. The in-neighbor of a vertex (vi, dj) ∈ C′, i + j = 3q, that is in
A+ is (vi, dj+1), since i + (j + 1) = (i + j) + 1 = 3q + 1. The in-neighbor of a vertex (vi, dj) ∈ A′,
i + j = 3q + 1, that is in A+ is either (vi−1, dj+1) or (ci−1, dj+1), since (i − 1) + (j + 1) = i + j = 3q + 1.
So every vertex x from V(C+

m � Cn) has an in-neighbor in A+. Moreover x has exactly one in-neighbor
in A+ since exactly one in-neighbor of x has the sum of indices equal to 3q + 1.

By symmetric arguments we can show that C+
m � C+

n is an EOD digraph whenever C+
m
∼= Cm. So,

we can assume that C+
m � Cm and C+

n � Cn. We know by the above arguments that C+
m �Cn is an EOD

digraph with an EOD set A+. Since there is no arc from vertices of D = (C+
m � C+

n )− V(C+
m � Cn) to

vertices of (C+
m � Cn) we will use the set A+ for C+

m � Cn and enlarge it to A∗ that will be an EOD
set of C+

m � C+
n . For this we first need to present the following notation for vertices of D. By (ci, uj

k)

we denote all the vertices from D that belong to layers (C+
m )dj and (C+

n )ci and are at the distance k
from (ci, dj). Similarly, we use (vi, uj

k) for all the vertices from D that belong to layers (C+
m )dj and

(C+
n )vi and are at the distance k from (vi, dj). Notice that different vertices from D can have the same

notation. Beside A+ we put (ci, uj
k) and (vi, uj

k) in A∗ if (i + j = 3q + 1 and k = 3p) or (i + j = 3q + 2
and k = 3p − 2) or (i + j = 3q and k = 3p − 1) for some p, q ∈ N.

We will show that A∗ is an EOD set of C+
m � C+

n . We already know that A+ ⊆ A∗ is an EOD set of
C+

m � Cn and we need to show that every vertex from D has exactly one in-neighbor in A∗. Notice that
every (xi, uj

k), where x ∈ {c, v}, has exactly three in-neighbors (xi−1, uj
k), (xi−1, uj

k−1) and (xi, uj
k−1).

(If k = 1, then we put uj
0 = dj.) We need to consider nine cases. They are presented in the following

Table 1.
In the first two columns we present all nine options. The middle column contains the in-neighbor

of (xi, uj
k) from A∗ and the last two columns show why this is the in-neighbor of (xi, uj

k) in A∗. Finally,

we show that only one of the three in-neighbors of (xi, uj
k) is in A∗. If (xi−1, uj

k−1) ∈ A∗, then exactly

one index of the other two in-neighbors differs by 1 from the same index of (xi−1, uj
k−1) and they are
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therefore not in A∗. By symmetry (xi−1, uj
k−1) is also not in A∗ whenever either (xi−1, uj

k) or (xi, uj
k−1)

is in A∗. So let (xi, uj
k−1) ∈ A∗. In this case we can build a similar table as before, only that this table

shows that (xi−1, uj
k) is not in A∗. Similarly, also (xi, uj

k−1) /∈ A∗ when (xi−1, uj
k) ∈ A∗.

Table 1. Nine cases considered that show that every vertex from D has exactly one in-neighbor in A∗.

i + j k Neighbor in A∗

3q 3p (xi, uj
k−1) i + j = 3q k − 1 = 3p − 1

3q 3p − 2 (xi−1, uj
k) i − 1 + j = 3q − 1 k = 3p − 2

3q 3p − 1 (xi−1, uj
k−1) i − 1 + j = 3q − 1 k − 1 = 3p − 2

3q + 1 3p (xi−1, uj
k−1) i − 1 + j = 3q k − 1 = 3p − 1

3q + 1 3p − 2 (xi, uj
k−1) i + j = 3q + 1 k − 1 = 3p − 3

3q + 1 3p − 1 (xi−1, uj
k) i − 1 + j = 3q k = 3p − 1

3q + 2 3p (xi−1, uj
k) i − 1 + j = 3q + 1 k = 3p

3q + 2 3p − 2 (xi−1, uj
k−1) i − 1 + j = 3q + 1 k − 1 = 3p − 3

3q + 2 3p − 1 (xi, uj
k−1) i + j = 3q + 2 k − 1 = 3p − 2

To prove the contrary let C+
m �C+

n be an EOD digraph with an EOD set S. If there exists an arc in a
tree Ti that is not oriented away from the root, then we have a source in Ti and with that a contradiction
with Lemma 1. Hence, all arcs of trees from C+

m are oriented away from the root. If cycle Cm is not a
directed cycle, then we have a source cj on Cm for some j ∈ [m]. Because all arcs of Tj are oriented
away from the root rj = cj, we have a source cj in C+

m as well, a contradiction with Lemma 1 again.
Hence, C+

m is well oriented. Also, C+
n must be well oriented by the same arguments. Next we observe

a subdigraph Cm � Cn of C+
m � C+

n . By the orientation of all arcs of all the trees, we see that there does
not exist an arc from vertices of (C+

m � C+
n )− V(Cm � Cn) to vertices of Cm � Cn. Therefore, Cm � Cn

is an EOD digraph as well and by Theorem 6 we get m = 3� and n = 3k for some positive integers �
and k.

The above results give rise to the following conjecture. We believe that it is true, but the proof is
a challenge.

Conjecture 1. The strong product D � F is an EOD digraph if and only if D ∼= C+
m and F ∼= C+

n are well
oriented, m = 3� and n = 3k for some k, � ∈ N.

5. The Direct and the Lexicographic Product

We conclude this paper with characterizations of the EOD digraphs among the direct and the
lexicographic product. They follow from (1) and (2), respectively, and are no surprise. The following
result for the direct product is an analogue of the result for the EOD graphs from [8] (under the name
of total perfect codes).

Theorem 8. Let D and F be digraphs. The direct product D × F is an EOD digraph if and only if D and F are
EOD digraphs.

Proof. Let D and F be EOD digraphs with EOD sets SD and SF, respectively. We will show that
SD × SF is an EOD set of D × F. By (1) it holds that

V(D × F) ⊆
⋃

(d, f )∈SD×SF

N+
D×F((d, f )).
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Suppose there exists a vertex (d0, f0) that has two different in-neighbors (d, f ) and (d′, f ′) in SD × SF.
If d = d′, then f �= f ′, and by (1) we have

N+
D×F((d, f )) ∩ N+

D×F((d
′, f ′)) =

(
N+

D (d)× N+
F ( f )

)
∩
(

N+
D (d)× N+

F ( f ′)
)
= N+

D (d)×
(

N+
F ( f ) ∩ N+

F ( f ′)
)

.

Thus, f0 has two different in-neighbors f and f ′ in SF. That is a contradiction since SF in an EOD
set of F. If f = f ′, then d �= d′ and we obtain a contradiction by symmetric arguments. Meaning that
d �= d′ and f �= f ′. Again by (1) the vertex d0 has two different in-neighbors d and d′ in SD and f0 has
two different in-neighbors f and f ′ in SF, a contradiction with SD and SF being EOD sets of D and
F, respectively. Therefore, no two vertices from SD × SF have a common out-neighbor, meaning that
D × F is an EOD digraph.

Now let D × F be an EOD digraph and S be its EOD set. Let f ∈ F be an arbitrary vertex. Every
vertex from D f has exactly one in-neighbor in S. Denote with S f the set of all those vertices. We will
show that pD(S f ) is an EOD set of D. Let d and d′ be two different vertices from pD(S f ). Choose
f ′, f ′′ ∈ V(F) such that (d, f ′), (d′, f ′′) ∈ S f . If there exists d0 such that d and d′ are its in-neighbors,
then (d0, f ) has two in-neighbors (d, f ′) and (d′, f ′′) in S, a contradiction with S being an EOD set
of D × F. By (1) and because S is an EOD set of D × F it also holds that V(D) ⊆ ⋃

d∈pD(S f )
N+

D (d).
Therefore, pD(S f ) is an EOD set of D, meaning that D is an EOD digraph. By symmetric arguments F
is also an EOD digraph and with that the proof is completed.

The result for EOD digraphs among the lexicographic product of digraphs is an analogue to the
graph version from [9].

Theorem 9. Let D and F be digraphs. The lexicographic product D ◦ F is an EOD digraph if and only if

(i) D is a digraph without arcs and F is an EOD digraph, or
(ii) D is an EOD digraph and F contains a sink.

Proof. Let D be a digraph on n vertices without edges and F be an EOD digraph. Then D ◦ F is isomorphic
to n copies of F and since F is an EOD digraph, n copies of F also form an EOD digraph.

Now, let D be an EOD digraph, let SD be its EOD set and let f0 be a sink in F. We will show that
SD × { f0} is an EOD set of D ◦ F. By (2) it holds that N+

D◦F((d, f0)) = N+
D (d)× V(F) since f0 is a sink

in F. So
⋃

d∈SD
N+

D◦F((d, f0)) equals V(D × F). If for d, d′ ∈ SD and d �= d′ there exists a vertex in D ◦ F
which in-neighbors are both (d, f0) and (d′, f0), then there also exists a vertex in D which in-neighbors
are both d and d′. A contradiction with SD being an EOD set of D. Therefore, D ◦ F is an EOD digraph.

Conversely, let D ◦ F be an EOD digraph, S its EOD set and (d, f ) ∈ S an arbitrary vertex. If f is
not a sink in F, then there exists a vertex f ′ ∈ Fd, such that (d, f ) is an in-neighbor of (d, f ′). Denote
with (d1, f1) the unique in-neighbor of (d, f ) from S. If d1 �= d, then (d, f ′) has both (d, f ) and (d1, f1)

as its in-neighbors, which is not possible. Hence, d1 = d. If d has any out-neighbors, then for every
out-neighbor d′ of d a vertex (d′, f ) has both (d, f ) and (d1, f1) as its in-neighbors, a contradiction. So
no d such that (d, f ) ∈ S has any out-neighbors. Since every vertex (d′′, f ′′) ∈ V(D ◦ F) has exactly
one in-neighbor (d, f ) ∈ S, we conclude that d′′ �= d yields that d has at least one out-neighbor, which
is not possible. Therefore, d′′ = d and no d′′ ∈ V(D) has any out-neighbors. Meaning that D is a
digraph without arcs. To prove that F is an EOD digraph choose an arbitrary F-layer Fd (which always
induces a digraph isomorphic to F). Clearly, the vertices in Fd that are also in S form an EOD set of
(D ◦ F)[Fd] ∼= F. So F is an EOD digraph and (i) follows.

Now assume f is a sink. Notice that in this case Fd is a subset of all out-neighbors of (d0, f ), where
d0 is an in-neighbor of d. We will prove that pD(S) is an EOD set of D. Suppose it is not. Then there
exist d, d′ ∈ pD(S) with a common out-neighbor. With this and (2) we have a contradiction with S
being an EOD set of D ◦ F. Meaning that pD(S) is an EOD set of D and (ii) follows.
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6. Conclusions

In this work we treated the four standard products of digraphs (the Cartesian, the strong, the direct
and the lexicographic) with respect to the efficient open domination. The idea is to describe which
digraphs among these products are efficient open domination digraphs and to describe them with
the properties of their factors. We completely characterized such digraphs among the direct product
(Theorem 8) and among the lexicographic product (Theorem 9). For the efficient open domination
Cartesian product digraphs the characterizations are given for those for which the first factor has an
underlying graph that is a path (Theorems 1, 3 and 4), a cycle (Theorem 2) or a star (Theorem 5).
This yields an idea on how to deal with the Cartesian product of digraphs with one fixed factor and an
arbitrary second one. Among the efficient open domination strong product of digraphs we characterized
those in which both factors have uni-cyclic graphs as their underlying graphs (Theorems 6 and 7). We also
conjecture that this are the only strong product digraphs that are the efficient open domination digraphs.
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Abstract: Let G be a graph without isolated vertices. A function f : V(G) → {0, 1, 2} is a total Roman
dominating function on G if every vertex v ∈ V(G) for which f (v) = 0 is adjacent to at least one
vertex u ∈ V(G) such that f (u) = 2, and if the subgraph induced by the set {v ∈ V(G) : f (v) ≥ 1}
has no isolated vertices. The total Roman domination number of G, denoted γtR(G), is the minimum
weight ω( f ) = ∑v∈V(G) f (v) among all total Roman dominating functions f on G. In this article
we obtain new tight lower and upper bounds for γtR(G) which improve the well-known bounds
2γ(G) ≤ γtR(G) ≤ 3γ(G), where γ(G) represents the classical domination number. In addition,
we characterize the graphs that achieve equality in the previous lower bound and we give necessary
conditions for the graphs which satisfy the equality in the upper bound above.

Keywords: total Roman domination; Roman domination; semitotal domination; domination

1. Introduction

Domination theory is a classical and interesting topic in theory of graphs, as well as one of the
most active areas of research in this topic. The increasing interest in this area is partly explained by the
diversity of applications to both theoretical and real-world problems, such as facility location problems,
monitoring communication, coding theory, algorithm design, complex ecosystems, electrical networks,
among others. A set D ⊆ V(G) of vertices of a graph G is a dominating set if every vertex in V(G) \ D
is adjacent to at least one vertex in D. The domination number of G, denoted by γ(G), is the minimum
cardinality among all dominating sets of G. Many variants of the previous concept have appeared in
the literature. We refer to [1,2] for numerous results on this issue.

A remarkable variant of the parameter above, and one of the most studied, is as follows.
A dominating set D of a graph G without isolated vertices is a total dominating set if the subgraph
induced by the vertices of D has no isolated vertex. Notice that any graph with no isolated vertex has
a total dominating set, since D = V(G) is such a set. The total domination number of G, denoted by
γt(G), is the minimum cardinality among all total dominating sets of G. More information on total
domination in graphs can be found in the survey [3] and the book [4].

Next, we consider another variant of the concept of domination. A semitotal dominating set of a
graph G without isolated vertices, is a dominating set D of G such that every vertex in D is within
distance two of another vertex of D. The semitotal domination number, denoted by γt2(G), is the
minimum cardinality among all semitotal dominating sets of G. This parameter was introduced by
Goddard et al. in [5], and was also further studied in [6–8].

Mathematics 2020, 8, 349; doi:10.3390/math8030349 www.mdpi.com/journal/mathematics55
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For any graph without isolated vertices, we have that every semitotal dominating set is also a
dominating set. Similarly, every total dominating set is a semitotal dominating set. Hence, the next
inequality chain, given in [5], relates the parameters above.

γ(G) ≤ γt2(G) ≤ γt(G) (1)

In the last decades, functions defined on graphs have received much attention in domination
theory. This fact may be because the classical (total) domination problem can be studied using functions
defined on graphs. Based on this approach, we consider the following concepts, which are also variants
of the domination in graphs.

Let f : V(G) → {0, 1, 2} be a function on a graph G. Notice that f generates three sets V0, V1

and V2, where Vi = {v ∈ V(G) : f (v) = i} for i = 0, 1, 2. In this sense, from now on, we will write
f (V f

0 , V f
1 , V f

2 ) so as to refer to the function f . Given a set S ⊆ V(G), f (S) = ∑v∈S f (v). We define

the weight of f as ω( f ) = f (V(G)) = |V f
1 |+ 2|V f

2 |. In this sense, by an f (V(G))-function, we mean
a function of weight f (V(G)). If the function f is clear from the context, then we will simply write
f (V0, V1, V2). We shall also use the following notations: V1,2 = {v ∈ V1 : N(v) ∩ V2 �= ∅} and
V1,1 = V1 \ V1,2.

Roman domination in graphs was formally defined by Cockayne, Dreyer, Hedetniemi, and
Hedetniemi [9] motivated, in part, by an article in Scientific American of Ian Stewart entitled “Defend
the Roman Empire" [10]. A Roman dominating function (RDF) on a graph G is a function f (V0, V1, V2)

satisfying that every vertex u ∈ V0 is adjacent to at least one vertex v ∈ V2. The Roman domination
number of G, denoted by γR(G), is the minimum weight among all RDFs on G. Further results on
Roman domination can be found for example, in [11–14].

Another kind of functions defined on graphs are the total Roman dominating functions, which
were introduced by Liu and Chang [15] and later, studied by Abdollahzadeh Ahangar et al. in [16].
A total Roman dominating function (TRDF) on a graph G without isolated vertices, is an RDF
f (V0, V1, V2) such that the set V1 ∪ V2 is a total dominating set of G. The minimum weight among all
TRDFs on G is the total Roman domination number of G and it is denoted by γtR(G).

Abdollahzadeh Ahangar et al. [16] give the next relationship between the total Roman domination
number and the domination number of a graph: If G is a graph with no isolated vertex, then

2γ(G) ≤ γtR(G) ≤ 3γ(G). (2)

Also, the authors of [16] proposed open problems concerning characterizing the graphs that
satisfy the equalities in the inequality chain above. While the families of trees which satisfy these
equalities has been characterized in [17], it remains an open problem to characterize graphs in general.
In that sense, in this article we study the open problems above. In the next section we first give
new lower and upper bounds for this parameter, which improve the bounds given in the Inequality
chain (2). Also, in Section 3 we give a characterization for the graphs G that satisfy the equality
γtR(G) = 2γ(G); and finally, in Section 4 we give some necessary conditions that satisfy the graphs G
for which γtR(G) = 3γ(G).

Notation

Throughout this article we consider G = (V(G), E(G)) as a simple graph of order n = |V(G)|.
Given a vertex v of G, N(v) and N[v] represent the open neighbourhood and the closed neighbourhood
of v, respectively. For a set D ⊆ V(G), its open neighbourhood and closed neighbourhood are
N(D) = ∪v∈D N(v) and N[D] = N(D) ∪ D, respectively. The boundary of the set D is defined
as ∂(D) = N(D) \ D. The private neighbourhood of a vertex v with respect to a set D ⊆ V(G)

(v ∈ D), denoted by pn(v, D), is defined by pn(v, D) = {u ∈ V(G) : N(u) ∩ D = {v}}. The vertices
of pn(v, D) will be called private neighbours of v with respect to D. Given a vertex v ∈ D ⊆ V(G),
epn(v, D) = pn(v, D) ∩ (V(G) \ D) represent the external private neighbourhood of v with respect
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to D. Also, and as is commonly defined, G − D denotes the graph obtained from G such that
V(G − D) = V(G) \ D and E(G − D) = E(G) \ {uv ∈ E(G) : u ∈ D or v ∈ D}. The subgraph
induced by D ⊆ V(G) is denoted by G[D]. For any two vertices u and v, the distance d(u, v) between
u and v is the length of a shortest u − v path.

A set X of vertices of G is a packing in G if the closed neighbourhoods of vertices in X are pairwise
disjoint, that is, if N[u] ∩ N[v] = ∅, for every pair of different vertices u, v ∈ X.

A leaf vertex of a graph G is a vertex of degree one, and a support vertex of G is a vertex adjacent
to a leaf. The set of leaves and support vertices are denoted by L(G) and S(G), respectively. Also,
given a set D ⊆ V(G) we denote I(D) as an independent set of maximum cardinality in G[D] such
that |I(D) ∩ S(G)| is maximum.

Other definitions will be introduced as needed.

2. Main Result

We begin this section with the following useful result of total Roman dominating functions given
in [16].

Lemma 1 ([16]). If G is a graph with no isolated vertex, then there exists a γtR(G)-function f (V0, V1, V2)

such that either V2 is a dominating set of G, or the set S of vertices not dominated by V2 satisfies G[S] = kK2

for some k ≥ 1, where S ⊆ V1 and ∂(S) ⊆ V0.

It is known from [9] that for any graph G, γR(G) ≤ 2γ(G) and also, from Inequality chain (1)
that γ(G) ≤ γt2(G). Hence, and as consequence of both inequalities above, we deduce that the
following result improves the lower and upper bounds given in Inequality chain (2) for the total
Roman domination number of graphs.

Theorem 1. For any graph G with neither isolated vertex nor components isomorphic to K2,

γt2(G) + γ(G) ≤ γtR(G) ≤ γR(G) + γ(G).

Proof. We first prove the lower bound. By Lemma 1, there exists a γtR(G)-function g(Vg
0 , Vg

1 , Vg
2 )

such that either Vg
2 is a dominating set of G, or Vg

1,1 satisfies G[Vg
1,1]

∼= kK2 for some k ≥ 1. Hence, Vg
2

is a dominating set of G − Vg
1,1 and can be extended to a dominating set of G by adding to it the set

I(Vg
1,1). So γ(G) ≤ |Vg

2 ∪ I(Vg
1,1)| = |Vg

2 |+ |Vg
1,1|/2. Moreover, Vg

2 ∪ Vg
1,2 is a total dominating set of

G − Vg
1,1 and it is easy to check that Vg

2 ∪ Vg
1,2 ∪ I(Vg

1,1) is a semitotal dominating set of G. Therefore
γt2(G) ≤ |Vg

2 ∪ Vg
1,2 ∪ I(Vg

1,1)| = |Vg
2 |+ |Vg

1,2|+ |I(Vg
1,1)| = |Vg

2 |+ |Vg
1,2|+ |Vg

1,1|/2 and so,

γt2(G) + γ(G) ≤ (|Vg
2 |+ |Vg

1,2|+ |Vg
1,1|/2) + (|Vg

2 |+ |Vg
1,1|/2) = 2|Vg

2 |+ |Vg
1 | = γtR(G),

which completes the proof of the lower bound.
Now, in order to prove the upper bound, let D be a γ(G)-set and f (V0, V1, V2) be a γR(G)-function.

Also, we consider V1,0 = {v ∈ V1 : N(v) ⊆ V0} and let f ′(V′
0, V′

1, V′
2) be a function defined as follows.

(a) For every vertex x ∈ (V1,0 ∪ V2) ∩ D, choose a vertex u ∈ (V0 ∩ N(x)) \ D (if it exists), and label
it as f ′(u) = 1.

(b) For every vertex x ∈ V0 ∩ D, f ′(x) = 1.
(c) For any other vertex u not previously labelled, f ′(u) = f (u).
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Since f is an RDF on G, by construction we have that f ′ is a TRDF on G. Therefore,

γtR(G) ≤ ω( f ′)

≤ |V1|+ 2|V2|+ |(V1,0 ∪ V2) ∩ D|+ |V0 ∩ D|
≤ (|V1|+ 2|V2|) + |D|
= γR(G) + γ(G),

which completes the proof.

Now, we show a family of graphs Gp,q given by Cabrera et al. in [18], which satisfy that
γtR(Gp,q) = γt2(Gp,q) + γ(Gp,q) (observe that γ(Gp,q) = p, γt2(Gp,q) = p + 1 and γtR(Gp,q) = 2p + 1).
Let p, q be two integers such that q ≥ p ≥ 2. From the complete bipartite graph Kp,q and the empty
graph Np, we construct the graph Gp,q as follows. We add p new edges which form a matching
between the vertices of Np and the vertices of degree q in Kp,q. Figure 1 shows the graph G3,4 and a
γtR(G3,4)-function g(V0, V1, V2).

1

1

1

1

1

2

0

0

0

0

Figure 1. The graph G3,4.

Next, we provide some useful properties that satisfies a specific TRDF for the graphs G with
γtR(G) = γt2(G) + γ(G).

Theorem 2. For any graph G such that γtR(G) = γt2(G) + γ(G), there exists a γtR(G)-function
f (V0, V1, V2) satisfying the following conditions.

(i) Either V2 is a dominating set of G, or the set V1,1 satisfies G[V1,1] = kK2 for some k ≥ 1, where
∂(V1,1) ⊆ V0.

(ii) V2 ∪ I(V1,1) is a γ(G)-set and V2 ∪ V1,2 ∪ I(V1,1) is a γt2(G)-set.
(iii) G[V1,2] is isomorphic to an empty graph. Furthermore, if v ∈ V1,2, then |N(v) ∩ V2| = 1.

Proof. Let f (V0, V1, V2) be a γtR(G)-function that satisfies Lemma 1. Hence, condition (i) holds.
Now, we proceed to prove (ii). First, we notice that A = V2 ∪ I(V1,1) and B = V2 ∪ V1,2 ∪ I(V1,1)

are a dominating set and a semitotal dominating set, respectively. Hence, γ(G) ≤ |A| and γt2(G) ≤ |B|.
Since |A|+ |B| = γtR(G) and γtR(G) = γt2(G) + γ(G), we obtain that |B|+ |A| = γt2(G) + γ(G).
If |A| > γ(G), then |B| < γt2(G), which is a contradiction. Therefore, |A| = γ(G) and so, |B| = γt2(G),
which completes the proof of (ii).

Finally, we proceed to prove (iii). Let v ∈ V1,2. Clearly, N(v) ∩ V2 �= ∅. If N(v) ∩ V1,2 �= ∅
or |N(v) ∩ V2| > 1, then (V2 ∪ V1,2 ∪ I(V1,1)) \ {v} is a semitotal dominating set of G, which is a
contradiction with the fact that V2 ∪V1,2 ∪ I(V1,1) is a γt2(G)-set by (ii). Therefore, N(v)∩V1,2 = ∅ and
|N(v) ∩ V2| = 1, which implies that G[V1,2] is isomorphic to an empty graph, and that |N(v) ∩ V2| = 1,
which completes the proof.
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We consider again the family of graphs Gp,q. Let g(V0, V1, V2) be a γtR(Gp,q)-function defined as
V2 = {v} and V1 = (S(Gp,q) ∪ L(Gp,q)) \ {v}, for some v ∈ S(G). Notice that g satisfies the conditions
given in Theorem 2. For an example, see the γtR(G3,4)-function g showed in the Figure 1.

Next, we will show a family of graphs Gr that satisfy the upper bound in the Theorem 1. In this
case we have that γ(Gr) = r, γR(Gr) = 2r and γtR(Gr) = 3r, where r ≥ 2 is an integer. The graph Gr

is constructed from the path graph P3r−2 = v1v2 · · · v3r−2 and the empty graph N2 by taking one copy
of P3r−2 and r copies of N2 and adding edges between the vertex v3i−2 and the i-th copy of N2, for
i ∈ {1, . . . , r}. Figure 2 shows the graph G3.

Figure 2. The graph G3.

3. Graphs G with γtR(G) = 2γ(G)

We begin this section with a simple characterization, which is a direct consequence of Theorem 1
and the Inequality chains (1) and (2).

Theorem 3. Let G be a graph with no isolated vertex. Then γtR(G) = 2γ(G) if and only if γtR(G) =

γt2(G) + γ(G) and γt2(G) = γ(G).

We observe that the condition γtR(G) = γt2(G) + γ(G) is a necessary condition but is not
sufficient to satisfy the equality γtR(G) = 2γ(G). For instance, see the graph G3,4 shown in Figure 1.

Next, we give another characterization for the graphs G satisfying γtR(G) = 2γ(G). It is important
to emphasize that this characterization depends only of the existence of a γ(G)-set which satisfies
some specific conditions.

Theorem 4. Let G be a graph with no isolated vertex. Then γtR(G) = 2γ(G) if and only if there exist a
γ(G)-set S and a set D ⊆ S such that

(a) G[D] is isomorphic to an empty graph.
(b) |epn(v, S)| = 1, for every vertex v ∈ D.
(c) γ(G − D∗) = γt(G − D∗), where D∗ =

⋃
v∈D epn(v, S) ∪ D.

Proof. First, we suppose that γtR(G) = 2γ(G). By Lemma 1, there exists a γtR(G)-function
g(Vg

0 , Vg
1 , Vg

2 ) such that either Vg
2 is a dominating set of G, or Vg

1,1 satisfies G[Vg
1,1]

∼= kK2 for some k ≥ 1.
By proceeding analogously as the proof of the lower bound of Theorem 1 and since γtR(G) = 2γ(G) =

γt2(G) + γ(G), we obtain γ(G) = |Vg
2 | + |Vg

1,1|/2 and γt2(G) = |Vg
2 | + |Vg

1,2| + |Vg
1,1|/2. Therefore

Vg
1,2 = ∅.

Let D be the set formed by taking one vertex from each K2-component of G[Vg
1,1]. Notice that

D ∪ Vg
2 is a dominating set of G. Hence 2γ(G) = γtR(G) = |Vg

1 | + 2|Vg
2 | = 2|D| + 2|Vg

2 |, which
implies that S = D ∪ Vg

2 is a γ(G)-set. Thus, by construction of sets S and D, it is easy to see that
Statements (a) and (b) hold.

Next, we prove Statement (c). Let D∗ =
⋃

v∈D epn(v, S)∪ D. It is readily seen that from D and any
γ(G − D∗)-set we can construct a dominating set of G, and as Vg

1,2 = ∅, we obtain 1
2 γtR(G) = γ(G) ≤

γ(G − D∗) + |D| ≤ |Vg
2 |+ 1

2 |V
g
1,1| = 1

2 γtR(G). Thus, we have equalities in the inequality chain above.
In particular, γ(G − D∗) = |Vg

2 |. Also, notice that Vg
2 is a total dominating set of G − D∗ since Vg

1,2 = ∅.
Hence, we deduce γt(G − D∗) ≤ |Vg

2 | = γ(G − D∗), which implies γt(G − D∗) = γ(G − D∗), and
Statement (c) holds, as desired.
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Conversely, we suppose there exist a γ(G)-set S and a set D ⊆ S such that Statements (a),
(b) and (c) hold. Let AD be a γt(G − D∗)-set. By Statements (a) and (b) we have that S \ D is a
dominating set of G − D∗ and so, by using Statement (c), we deduce that |AD| = γ(G − D∗) ≤ |S \ D|.
Moreover, we observe that the function f (V0, V1, V2), defined by V1 = D∗ and V2 = AD, is a TRDF
on G. Therefore, by Inequality chain (2) and statements above, we obtain 2γ(G) ≤ γtR(G) ≤ ω( f ) =
|D∗|+ 2|AD| ≤ 2|D|+ 2|S \ D| = 2|S| = 2γ(G). Thus, we have equalities in the previous inequality
chain. In particular, γtR(G) = 2γ(G), which completes the proof.

4. Some Necessary Conditions for the Graphs G satisfying γtR(G) = 3γ(G)

Analogously to the section above, we continue now with a simple characterization, which is a
direct consequence of Theorem 1 and the well-know inequality γR(G) ≤ 2γ(G).

Theorem 5. Let G be a graph without isolated vertices. Then γtR(G) = 3γ(G) if and only if γtR(G) =

γR(G) + γ(G) and γR(G) = 2γ(G).

We want to accentuate that in all the examples in which we have observed that the upper bound
of Theorem 1 is achieved, we also have that γR(G) = 2γ(G). In such a sense, we propose the following
conjecture, which we could not prove.

Conjecture 1. Let G be a graph with no isolated vertex. Then γtR(G) = 3γ(G) if and only if γtR(G) =

γR(G) + γ(G).

In order to give some necessary conditions for the graphs G satisfying γtR(G) = 3γ(G), we shall
need the following definition and useful results.

Definition 1. A graph G satisfies Property P if for every γ(G)-set S, there exist no three vertices x, y, z ∈ S
such that

• There exists a vertex y′ ∈ epn(y, S) such that d(x, y′) = d(y′, z) = 2.
• |epn(x, S)| = |epn(z, S)| = 2.

Notice that the families of graphs Gp,q and Gr given in Section 2 satisfy the Property P . Moreover,
the Figure 3 shows a graph G that does not satisfy Property P . Observe that the set S = {x, y, z} is a
γ(G)-set and also, it is easy to see that |epn(x, S)| = |epn(z, S)| = 2 and that the vertex y′ ∈ epn(y, S)
satisfies the condition d(x, y′) = d(y′, z) = 2.

z

x

y′ y

Figure 3. A graph G that does not satisfy the Property P .

Lemma 2. Let G be a graph and let S be a γ(G)-set. If S is a packing, then for all v ∈ S there exists v′ ∈ S
such that d(v, v′) = 3.

Proof. Suppose there exists a vertex v ∈ S such that for all vertex v′ ∈ S \ {v}, it is satisfied that
d(v, v′) > 3 (notice that d(v, v′) ≥ 3 because S is a packing). Hence, every vertex at distance two of v is
not dominated by S, which is a contradiction. This completes the proof.

Proposition 1. If G is a graph such that every γ(G)-set is a packing, then for every γ(G)-set S and for every
v ∈ S it is satisfied that |epn(v, S)| ≥ 2.

60



Mathematics 2020, 8, 349

Proof. Let S be a γ(G)-set and let v ∈ S. Since S is a packing, we have that epn(v, S) �= ∅. If
epn(v, S) = {u}, then v is a vertex of degree one. By using Lemma 2, we have that S′ = (S \ {v})∪ {u}
is a γ(G)-set, but is not a packing, contradicting the hypothesis. So |epn(v, S)| ≥ 2, as desired.

Theorem 6. Let G be a graph. If γtR(G) = 3γ(G), then the following statements hold.

(i) γR(G) = 2γ(G).
(ii) S is a packing, for every γ(G)-set S.
(iii) G satisfies Property P .

Proof. By Theorem 5, Statement (i) follows. Moreover, Abdollahzadeh Ahangar et al. showed in [16]
that every γ(G)-set is a packing, which implies that Statement (ii) holds.

Next we prove Statement (iii). In that sense, we suppose that G does not satisfy Property P . Hence
there exist a γ(G)-set S and three vertices x, y, z ∈ S satisfying the conditions given in Definition 1.
By Statement (ii) and Proposition 1 we have |epn(v, S)| ≥ 2, for every v ∈ S. Let x′ ∈ epn(x, S) \ N(y′)
and z′ ∈ epn(z, S) \ N(y′). Now, we consider the function f defined as follows.

(a) For every vertex u ∈ (S \ {x, z}) ∪ {y′}, set f (u) = 2.
(b) For every vertex v ∈ S \ {x, y, z}, choose a vertex v′ ∈ N(v), and label it as f (v′) = 1.
(c) For u ∈ {x, z, x′, z′}, set f (u) = 1.
(d) For any other vertex u not previously labelled, set f (u) = 0.

Notice that, by construction, f is a TRDF on G. Therefore,

γtR(G) ≤ ω( f )

≤ 2|(S \ {x, z}) ∪ {y′}|+ |S \ {x, y, z}|+ |{x, z, x′, z′}|
= 2(|S| − 1) + (|S| − 3) + 4

= 3|S| − 1

< 3γ(G),

which is a contradiction. Hence G satisfies Property P and the proof is complete.

5. Conclusions and Open Problems

New results concerning the study of total Roman domination in graphs have been presented in
this article. Among the main contributions, the following should be highlighted.

• As the main result, we have provided new lower and upper bounds for the total Roman
domination number of graphs, which improve other well-known bounds.

• We have shown a theoretical characterization for the graphs G satisfying γtR(G) = 2γ(G).
• We have shown some necessary conditions for the graphs G that satisfy γtR(G) = 3γ(G).

On the other hand, and as a consequence of this study, some open problems have arisen. Next,
we expose some of the most interesting.

(a) Characterize the graphs G satisfying γtR(G) = γt2(G) + γ(G).
(b) Characterize the graphs G satisfying γtR(G) = γR(G) + γ(G).
(c) Settle Conjecture 1.
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Abstract: A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to
at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent
dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is
less or equal to k − 1. The minimum cardinality among all total outer k-independent dominating sets
is the total outer k-independent domination number of G. In this article, we introduce this parameter
and begin with the study of its combinatorial and computational properties. For instance, we give
several closed relationships between this novel parameter and other ones related to domination
and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally,
we prove that computing the total outer k-independent domination number of a graph G is an
NP-hard problem.

Keywords: total outer k-independent domination; total domination; k-independence

1. Introduction

Theory of domination in graphs is one of the most important topics in graph theory. In the
last few decades, the interest in this area has increased, due to its applications to different fields of
science, such as linear algebra, communication networks, social sciences, computational complexity,
algorithm design, complex ecosystems, optimization problems, among others (for example, see [1,2]).
In this sense, in this important area, a very high number of variants of domination parameters have
been developed, which are combinations of two or more parameters. In this article, we center our
attention on the study of a new parameter, which is a combination between the following well-known
parameters: total domination and k-independence in graphs. In addition, we focus the investigation
some computational and combinatorial properties of it.

Throughout this article, we consider simple graphs G. Given a set D ⊆ V(G), and a vertex
v ∈ V(G), ND(v) denotes the set of neighbors of v in D, that is, ND(v) = {u ∈ D : uv ∈ E(G)}
and ND[v] = ND(v) ∪ {v}. In addition, let δD(v) = |ND(v)|. The parameter δ(v) = δV(G)(v) =

|NV(G)(v)| denotes the degree of v in G. For short, we will often use N(v) and N[v] instead of NV(G)(v)
and NV(G)[v], respectively. The minimum and maximum degrees of G will be denoted by δ(G) =

minv∈V(G){δ(v)} and Δ(G) = maxv∈V(G){δ(v)}, respectively. A leaf vertex of G is a vertex of degree
one, and a support vertex of G is a vertex adjacent to a leaf vertex. The set of leaves and support vertices
will be denoted by L(G) and S(G), respectively. The subgraph induced by X ⊆ V(G) will be denoted by
G[X]. Given two sets X, Y ⊆ V(G), E(X, Y) denotes the set of all edges of G that join a vertex of X and
a vertex of Y.

Mathematics 2020, 8, 194; doi:10.3390/math8020194 www.mdpi.com/journal/mathematics63
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A set of vertices of a graph G is independent if the subgraph induced by it is isomorphic to an
empty graph. The independence number of G is the maximum cardinality among all independent sets of
G and is denoted by β(G).

A set D ⊆ V(G) is a dominating set of G if every vertex in V(G) \ D is adjacent to at least one
vertex in D. The domination number of G is the minimum cardinality among all dominating sets of G,
and it is denoted by γ(G).

In [3,4], Fink and Jacobson generalized the concepts of dominating and independent sets. For
an integer k ≥ 1, we say that a set X ⊆ V(G) is k-independent if the maximum degree of the subgraph
induced by the vertices of X is less than or equal to k − 1, that is, Δ(G[X]) ≤ k − 1. The k-independence
number of G is the maximum cardinality among all k-independent sets of G and is denoted by βk(G).
A βk(G)-set is a k-independent set of cardinality βk(G). Thus, when k = 1, the 1-independence
number is the classical independence number. Moreover, we say that a set D ⊆ V(G) is k-dominating if
every vertex in V(G) \ D has at least k neighbors in D. The k-domination number of G is the minimum
cardinality among all k-dominating sets of G and is denoted by γk(G). A k-dominating set of cardinality
γk(G) is called a γk(G)-set. For more information on k-independence and k-domination, we suggest
the relatively recent survey [5].

A dominating set D ⊆ V(G) is a total dominating set of G if the subgraph induced by the vertices
of D has no isolated vertex. The total domination number of G is the minimum cardinality among all
total dominating sets of G and is denoted by γt(G). A total dominating set of cardinality γt(G) is
called γt(G)-set. For more information on total domination, we suggest the survey [6] and the book [7].

A total outer k-independent dominating set (or TOkID set, for short) is a total dominating set D ⊆
V(G) such that V(G) \ D is a k-independent set. The minimum cardinality among all TOkID sets is the
total outer k-independent domination number of G and is denoted by γk

t,oi(G). A TOkID set of cardinality
γk

t,oi(G) is a γk
t,oi(G)-set. When k = 1, a TOkID set is a total outer-independent dominating set, that is,

a total dominating set D such that the subgraph induced by V(G) \ D is isomorphic to an empty
graph. This last concept was introduced in [8] and also barely looked at in [9] under the name of total
co-independent domination number. Recently, it was analyzed in [10–12].

Given a graph G with no isolated vertex, in order to have a TOkID set D of G, any vertex of
V(G) \ D must have at least one neighbor in D and must have at most k − 1 neighbors in V(G) \ D.
Hence, 1 ≤ k ≤ Δ(G).

Moreover, we observe that, if H1, H2, . . . , Hr with r ≥ 2 are the components of a non-connected
graph H with no isolated vertex, then any TOkID set of H is formed by a TOkID set in each component
Hi, for i = 1, . . . , r. In the following remark, we expose the quotation above, and, as a consequence, in
the paper, we only study the TOkID sets of nontrivial connected graphs.

Remark 1. Let H be a non-connected graph with no isolated vertex. If H1, H2, . . . , Hr with r ≥ 2, are the
components of H, then

γk
t,oi(H) =

r

∑
i=1

γk
t,oi(Hi).

The remainder of this article is structured as follows. Section 2 introduces primary combinatorial
and computational results. For instance, we show that the problem of finding the total outer
k-independent domination number of a graph is NP-hard. In addition, we give the exact value
of this parameter for some specific families of graphs, and we expose general bounds and discuss
the extreme cases. Finally, Section 3 is dedicated to giving several Nordhaus–Gaddum type results
concerning the parameter γk

t,oi(G).
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2. Primary Combinatorial and Computational Results

It is natural to think that, due to the concept of “TOkID set", the total outer k-independent
domination number is related to the total domination number and the k-independence number.
This simple quotation leads to the following result.

Theorem 1. If G is a connected graph of order n, then

γk
t,oi(G) ≥ max{γt(G), n − βk(G)}.

Moreover, it is not difficult to see that, for any nontrivial connected graph G, any TO(k − 1)ID set
is a TOkID set, where 2 ≤ k ≤ Δ(G). Therefore, the following inequality chain holds.

Proposition 1. If G is a connected graph of order n and maximum degree Δ, then

2 ≤ γt(G) = γΔ
t,oi(G) ≤ γΔ−1

t,oi (G) ≤ · · · ≤ γt,oi(G) ≤ n.

The following remark is an immediate consequence of the proposition above.

Remark 2. Let G be any connected graph. If γk
t,oi(G) = γt(G), then γ

j
t,oi(G) = γt(G) for every j ∈

{k, . . . , Δ(G)}.

Next, we give a theoretical characterization of the graphs that have equal TOkID and TO(k − 1)ID
numbers. For this, we need some extra terminology and notation. For any γk

t,oi(G)-set D, let Ak
D be the

set of vertices defined as follows:

Ak
D =

{
v ∈ V(G) \ D : δV(G)\D(v) = k − 1

}
.

Lemma 1. Let G be a nontrivial connected graph. For any γk
t,oi(G)-set D with k ≥ 2,

γk−1
t,oi (G) ≤ γk

t,oi(G) + |Ak
D|.

Proof. Let D be any γk
t,oi(G)-set. Notice that D ∪ Ak

D is a TO(k − 1)ID set of G. Thus, γk−1
t,oi (G) ≤

|D ∪ Ak
D| = γk

t,oi(G) + |Ak
D|.

Theorem 2. Let G be a connected graph. For an integer k ≥ 2, γk
t,oi(G) = γk−1

t,oi (G) if and only if Ak
D = ∅ for

some γk
t,oi(G)-set D.

Proof. Suppose that γk
t,oi(G) = γk−1

t,oi (G) and let D be a γk−1
t,oi (G)-set. Thus, Δ(G[V(G) \ D]) ≤ k − 2.

Since every TO(k − 1)ID set is a TOkID set, it follows that D is also a TOkID set of G of cardinality
γk

t,oi(G). Hence, D is also a γk
t,oi(G)-set and satisfies that Ak

D = ∅. Conversely, if there exists a
γk

t,oi(G)-set D such that Ak
D = ∅, then, by Proposition 1 and Lemma 1, the result follows.

Now, we give an example of a subfamily of graphs given by Cabrera et al. in [13], in which
the lower bound of Theorem 1 is achieved for the graphs of this family, and also the equivalence of
Theorem 2 is satisfied. To this end, we need to introduce the family of graphs F . Before this, we shall
need the following operations for vertices or induced paths P3 of a graph G. Note that these operations
were already presented in [12].

Addition of t pendant vertices: Given a vertex x, add t new vertices y1, . . . , yt and the edges xyi
for every i ∈ {1, . . . , t}.
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Inflation of size q: Given an induced path P3 = uvw of G, in which δ(v) = 2, remove the vertex v
and the two incident edges, and replace them with q vertices v1, . . . , vq and edges uvi, viw for every
i ∈ {1, . . . , q}.

From the cycle C6, we obtain a graph H ∈ F by making the following sequence of operations.

(i) Apply the operation “Addition of ti pendant vertices”, ti ≥ 1 and i ∈ {1, 2, 3}, to all vertices of a
β(C6)-set S = {v1, v2, v3}, respectively.

(ii) Apply the operation “Inflation of size qi” with qi ≥ 1 and i ∈ {1, 2, 3} to the three possible paths of
order three between v1, v2, v3.

Figure 1 shows an example of a graph belonging to the family F . Next, we expose a result which
relates γt(H) and γt,oi(H) for graphs H ∈ F .

Figure 1. A graph H ∈ F where the three black-colored vertices form a β(C6)-set and the two
gray-colored vertices form a possible set to be added to the black-colored vertices to get a γt(H)-set.

Remark 3. If H ∈ F , then γt(H) = γt,oi(H) = 5.

According to the remark above, we can easily check that, for any graph H ∈ F , γt(H) =

γΔ
t,oi(H) = γΔ−1

t,oi (H) = · · · = γt,oi(H). Since every TOkID set is also a total dominating set and
γt(H) = γk

t,oi(H) by equality chain above, we have that every γk
t,oi(H)-set is also a γt(H)-set too.

Hence, if k ≥ 2, then Ak
D = ∅ for every γk

t,oi(H)-set D.
Now, we consider the decision problem associated with total outer k-independent domination

number of graphs.

TOTAL OUTER k-INDEPENDENT DOMINATION PROBLEM (TOkID PROBLEM)
INSTANCE: A nontrivial connected graph G and a positive integer r
PROBLEM: Deciding whether γk

t,oi(G) is less than r

We will show that the TOkID PROBLEM is NP-Complete by making a reduction from a known
decision problem concerning the k-independence number of graphs, which was solved in 1989 by
Jacobson and Peters [14]. In this article, the authors showed that the problem of determining the
number βk(G) for an arbitrary graph G is NP-Complete.

Next, we define a family of graphs, which we will need to make the reduction. Fixing a positive
integer k, the graph Hk is obtained from a path P2, by adding four copies of Kk, and joining with
an edge each vertex of P2 with all the vertices from two of such copies. (see Figure 2I). Let G be a
connected graph with |V(G)| = n and let H(1)

k , . . . , H(n)
k be n graphs isomorphic to the graph Hk.

We construct the graph Gn,k by adding edges between the ith-vertex of G and one vertex of maximum

degree of the ith-graph H(i)
k . See Figure 2II for an example.
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(I) (II)

Figure 2. The graph H2 (I) and a graph G4,2 (II) where G is a complete graph minus one edge.

Lemma 2. If G is a connected graph of order n and any positive integer k ≤ Δ(G), then

βk(Gn,k) = |V(Gn,k)| − 3n + βk(G).

Proof. Let G be a nontrivial connected graph such that |V(G)| = n and let Gn,k be the graph described

above (1 ≤ k ≤ Δ(G)). We define u(i), v(i) as the two vertices of maximum degree in the copy H(i)
k of the

graph Hk used to construct Gn,k and let A be a βk(G)-set. Notice that A ∪ {⋃n
i=1 V(H(i)

k ) \ {u(i), v(i)}}
is a k-independent set of Gn,k. Hence, βk(Gn,k) ≥ |V(Gn,k)| − 3n + βk(G).

On the other hand, let S be a βk(Gn,k)-set. It is straightforward to see that |S ∩ V(H(i)
k )| ≤

|V(H(i)
k )| − 2 for every 1 ≤ i ≤ n and that |S ∩ V(G)| ≤ βk(G). Therefore,

βk(Gn,k) = |S| = |(S ∩ V(G)) ∪ {
n⋃

i=1

S ∩ V(H(i)
k )}|

≤ |S ∩ V(G)|+
n

∑
i=1

(|V(H(i)
k )| − 2)

= |V(Gn,k)| − 3n + βk(G),

which completes the proof.

The following theorem shows the NP-completeness of the TOkID PROBLEM.

Theorem 3. TOkID PROBLEM is NP-complete.

Proof. The TOkID PROBLEM belongs to NP, since we can check in polynomial time that a given
set has cardinality at most r and is a TOkID set. Let Gn,k and u(i), v(i) be the graph and the vertices
described in the lemma above, respectively. Now, we will prove that γk

t,oi(Gn,k) = 3n − βk(G).

Let A be a βk(G)-set and let D = (V(G) \ A) ∪
{⋃n

i=1{u(i), v(i)}
}

. Notice that D is a total
dominating set of Gn,k and V(Gn,k) \ D is a k-independent set. Thus, D is a TOkID set of Gn,k and, as a
consequence,

γk
t,oi(Gn,k) ≤ |D| = n − |A|+

∣∣∣∣∣ n⋃
i=1

{u(i), v(i)}
∣∣∣∣∣ = 3n − βk(G).

Moreover, by Theorem 1 and Lemma 2, we obtain that γk
t,oi(Gn,k) ≥ 3n − βk(G). Therefore,

γk
t,oi(Gn,k) = 3n − βk(G).

Now, for j = 3n− h, it is readily seen that γk
t,oi(Gn,k) ≤ j if and only if βk(G) ≥ h, which completes

the reduction. Hence, TOkID PROBLEM is NP-complete.

The next result is an immediate consequence of the previous theorem.

Corollary 1. The problem of computing the total outer k-independent domination number of a nontrivial
connected graph is NP-hard.
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According to the complexity results above, it is desirable to bound the total outer k-independent
domination number or compute its exact value for several families of graphs. We next center our
attention on this second goal. We will use the notation Pn, Cn, Kn, Sn, Sr,n−r, Nn and Wn = N1 + Cn−1

for path graphs, cycle graphs, complete graphs, star graphs, double star graphs, empty graphs and
wheel graphs of order n, respectively. In addition, we use the notation Kr,s for the bipartite complete
graph and, without loss of generality, we always assume that r ≤ s.

Remark 4 ([7]). For any integer n ≥ 3, γt(Pn) = γt(Cn) =
⌊ n

2
⌋
+

⌈ n
4
⌉
−

⌊ n
4
⌋
.

Proposition 2. The following equalities hold for any integer n ≥ 3.

(i) γt,oi(Pn)=
⌊ 2n

3
⌋

and γ2
t,oi(Pn) =

⌊ n
2
⌋
+

⌈ n
4
⌉
−

⌊ n
4
⌋
.

(ii) γt,oi(Cn)=
⌊ 2n+2

3
⌋

and γ2
t,oi(Cn) =

⌊ n
2
⌋
+

⌈ n
4
⌉
−

⌊ n
4
⌋
.

(iii) γk
t,oi(Kn) =

{
2 if k = n − 1,

n − k otherwise.
(iv) γk

t,oi(Sn) = γk
t,oi(Sr,n−r) = 2.

(v) γk
t,oi(Wn) =

⎧⎪⎨⎪⎩
⌈

n+1
2

⌉
if k = 1,⌈ n+2

3
⌉

if k = 2,
2 otherwise.

(vi) γk
t,oi(Kr,s) =

{
min{r + 1, r + s − 2k + 2} if k ≤ r,

min{r + 1, s − k + 2} otherwise.

Proof. From Proposition 1 and Remark 4, we deduce (i) and (ii). The equalities (iii)–(v) are
straightforward. Now, we proceed to prove (vi). Let Kr,s be the bipartite complete graph with
partite sets Vr and Vs of cardinality r and s, respectively. Let v ∈ Vs. Notice that Vr ∪ {v} is a TOkID
set of Kr,s. Hence, γk

t,oi(Kr,s) ≤ |Vr ∪ {v}| = r + 1. If γk
t,oi(Kr,s) = r + 1, then we are done. Thus,

we assume that γk
t,oi(Kr,s) ≤ r. Next, we analyze two cases.

Case 1. k ≤ r. Let X ⊆ V(Kr,s) such that |X ∩ Vr| = r − (k − 1) and |X ∩ Vs| = s − (k − 1). Notice that
X is a TOkID set of Kr,s. Hence, γk

t,oi(Kr,s) ≤ |X| = r + s − 2k + 2. Now, let D be a γk
t,oi(Kr,s)-set. Since

D ∩ Vr �= ∅, D ∩ Vs �= ∅ and |D| ≤ r, we have that |D ∩ Vr| ≥ r − (k − 1) and |D ∩ Vs| ≥ s − (k − 1).
Thus, γk

t,oi(Kr,s) = |D| ≥ r + s − 2(k − 1). Therefore, γk
t,oi(Kr,s) = r + s − 2k + 2.

Case 2. k > r. Let X ⊆ V(Kr,s) such that |X ∩ Vr| = 1 and |X ∩ Vs| = s − (k − 1). Notice that X
is a TOkID set of Kr,s. Hence, γk

t,oi(Kr,s) ≤ |X| = s − k + 2. Now, let D be a γk
t,oi(Kr,s)-set. Since

D ∩ Vr �= ∅, D ∩ Vs �= ∅ and |D| > r, we have that |D ∩ Vr| ≥ 1 and |D ∩ Vs| ≥ s − (k − 1). Thus,
γk

t,oi(Kr,s) = |D| ≥ s − k + 2. Therefore, γk
t,oi(Kr,s) = s − k + 2.

Let G and H be two graphs of order nG and nH , respectively. The corona product graph G � H is
defined as the graph obtained from G and H, by taking one copy of G and nG copies of H and joining
by an edge every vertex from the ith-copy of H with the ith-vertex of G. For every x ∈ V(G), Hx will
denote the copy of H in G � H associated with x.

Next, we study the total outer k-independent domination number of corona product graphs.
Before, we shall need the following useful lemmas.

Lemma 3. If G and H are two graphs with no isolated vertex, then, for any positive integer k ≤ Δ(H),

βk(G � H) = nGβk(H).

Proof. Let S be a βk(H)-set. For any x ∈ V(G), let Sx be the copy of S associated with Hx. Since
∪x∈V(G)Sx is a k-independent set of G � H, we have that βk(G � H) ≥ | ∪x∈V(G) Sx| = nGβk(H). Now,
we suppose that βk(G � H) > nGβk(H) and let D be a βk(G � H)-set. Thus, there exists a vertex
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v ∈ V(G) such that |D ∩ (V(Hv) ∪ {v})| > βk(H). This can only happen if v ∈ D, which implies
that |D ∩ (V(Hv)| ≤ k − 1, contradicting the fact that |D ∩ (V(Hv) ∪ {v})| > βk(H) since βk(H) ≥ k.
Therefore, βk(G � H) = nGβk(H), which completes the proof.

Lemma 4. If G and H are two graphs with no isolated vertex, then

γt(G � H) = nG.

Proof. Notice that V(G) is a total dominating set of G � H. Hence, γt(G � H) ≤ |V(G)| = nG.
Moreover, we observe that each copy of H contains at least one vertex in any total dominating set of
G � H. Thus, γt(G � H) ≥ nG, which completes the proof.

Theorem 4. If G is a graph with no isolated vertex, then, for every graph H with no isolated vertex,

γk
t,oi(G � H) =

{
nG if Δ(H) ≤ k − 1,

nG(nH − βk(H) + 1) otherwise.

Proof. If Δ(H) ≤ k − 1, then it is straightforward to see that V(G) is a TOkID set of G � H. Hence, by
Lemma 4 and the statement above, we have that γk

t,oi(G � H) ≤ |V(G)| = nG = γt(G � H). Therefore,
Theorem 1 leads to γk

t,oi(G � H) = nG.
From now on, we assume that k ≤ Δ(H). Let S be a βk(H)-set. For any x ∈ V(G), let Sx be the

copy of S associated with Hx. Since R = ∪x∈V(G)Sx is a k-independent set of G � H, by Lemma 3,
we deduce that R is a βk(G � H)-set. Moreover, we observe that V(G � H) \ R is a total dominating
set of G � H. Thus, V(G � H) \ R is a TOkID set of G � H and so γk

t,oi(G � H) ≤ |V(G � H) \ R| =
|V(G � H)| − βk(G � H) = nG(nH + 1)− nGβk(H) = nG(nH − βk(H) + 1). The proof is completed
by Theorem 1.

Now, we continue the article giving relationships between the total outer k-independent
domination number and other parameters of a graph.

Theorem 5 ([15]). If G is a connected graph of order n ≥ 3 and maximum degree Δ(G) ≤ n − 2, then
γt(G) ≤ n − Δ(G).

Theorem 6. If G is a connected graph of order n and size m, then

2m − n(k − 2)
3Δ(G)− k

≤ γk
t,oi(G) ≤ n − k + 1.

Furthermore, γk
t,oi(G) = n − k + 1 if and only if k = Δ(G) = n − 1.

Proof. Let D be a γk
t,oi(G)-set. Since D is also a total dominating set of G, each vertex in V(G) \ D

is adjacent to at least one vertex in D. Hence, (n − |D|) ≤ |E(D, V(G) \ D)| ≤ |D|(Δ(G) − 1). In
addition, as V(G) \ D is a k-independent set, we have that |E(V(G) \ D, V(G) \ D)| ≤ (n−|D|)(k−1)

2 .

Since |E(D, D)| ≤ |D|Δ(G)−|E(D,V(G)\D)|
2 ≤ |D|Δ(G)−(n−|D|)

2 , we obtain

m = |E(D, V(G) \ D)|+ |E(D, D)|+ |E(V(G) \ D, V(G) \ D)|

≤ |D|(Δ(G)− 1) +
|D|Δ(G)− (n − |D|)

2
+

(n − |D|)(k − 1)
2

,

which is equivalent to 2m ≤ |D|(3Δ(G)− k) + n(k − 2). Therefore, γk
t,oi(G) = |D| ≥ 2m−n(k−2)

3Δ(G)−k , which
completes the proof of the lower bound.
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In order to prove the upper bound, we first suppose that 1 ≤ k < Δ(G). Let v be a vertex of
maximum degree and let Sk be a set of k vertices adjacent to v. Clearly, the set Sk is k-independent.
If D = V(G) \ Sk is a total dominating set, then D is a TOkID set. Hence, γk

t,oi(G) ≤ |D| = n − k <

n − k + 1. Now, we assume that D is not a total dominating set of G. Since G is connected, it can only
happen when Sk ∩ S(G) �= ∅. Let Ss

k = Sk ∩ S(G) and consider the set D′ = (D \ (N(Ss
k)∩ L(G)))∪ Ss

k.
Observe that D′ is a total dominating set of G of cardinality at most |D| and V(G) \ D′ is k-independent.
Hence, D′ is a TOkID set of G and so, γk

t,oi(G) ≤ |D′| ≤ |D| = n − k < n − k + 1.
Now, we suppose that k = Δ(G) < n − 1. Hence, by Proposition 1 and Theorem 5, we have that

γk
t,oi(G) = γt(G) ≤ n − Δ(G) = n − k < n − k + 1.

Finally, we assume that k = Δ(G) = n − 1. Thus, γt(G) = 2 and again, by Proposition 1, it follows
that γk

t,oi(G) = γt(G) = 2 = n − Δ(G) + 1 = n − k + 1. Conversely, if γk
t,oi(G) = n − k + 1, then,

by previous cases (1 ≤ k < Δ(G) and k = Δ(G) < n − 1), we deduce that k = Δ(G) = n − 1, which
completes the proof.

The lower bound above is tight. For instance, it is achieved for the cycle C4t with k = 2, where, by
Proposition 2(ii), we obtain γ2

t,oi(C4t) = 2t.

The following result is a direct consequence of Theorems 1 and 6.

Corollary 2. Let G be a nontrivial connected graph of order n. Let k be an integer such that βk(G) = k.
If k < Δ(G) or Δ(G) < n − 1, then γk

t,oi(G) = n − k.

Next, we give an upper bound for the total outer k-independent domination number of a graph.

Theorem 7. If G is a connected graph of order n, then for any positive integer k ≤ δ(G),

γk
t,oi(G) ≤ 2(n − βk(G))− δ(G) + k.

Proof. Let S be a βk(G)-set. Since S is k-independent, then V(G) \ S is a (δ(G)− k + 1)-dominating
set of G. Now, we fix a vertex v ∈ S and let A be the set of isolated vertices of G[V(G) \ (S ∪ N(v))].
Let A′ be a subset of S of minimum cardinality such that N(x) ∩ A′ �= ∅ for every x ∈ A. Clearly,
|A′| ≤ |A|. Moreover, notice that the set (V(G) \ S) ∪ A′ ∪ {v} is a TOkID set of G. Hence,

γk
t,oi(G) ≤ |(V(G) \ S) ∪ A′ ∪ {v}|

≤ |V(G) \ S|+ |A′|+ 1

≤ |V(G) \ S|+ |A|+ 1

= (n − βk(G)) + (n − βk(G)− (δ(G)− k + 1)) + 1

= 2(n − βk(G))− δ(G) + k,

which completes the proof.

We remark that the upper bound given in Theorem 7 is tight. For example, it is achieved for the
graph Hk = (k + 1)Kk + Nk+1, where k ≥ 2 is an integer. It is easy to check that βk(Hk) = (k + 1)k,
|V(Hk)| = (k + 1)2, δ(Hk) = 2k and γk

t,oi(Hk) = k + 2. The graph H2, for example, is illustrated in
Figure 3.

Figure 3. The graph H2 = 3K2 + N3.
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Our next result provides a lower bound for the total outer k-independent domination number in
terms of the order, minimum degree, and the maximum degree of a graph.

Theorem 8. If G is a connected graph of order n, then for any positive integer k ≤ δ(G),

γk
t,oi(G) ≥ max{δ(G)− k + 1,

n(δ(G)− k + 1)
Δ(G) + δ(G)− k

}.

Furthermore, if γk
t,oi(G) = δ(G)− k + 1, then G ∼= G1 + G2, where G1 is a graph with no isolated vertex of

order δ(G)− k + 1 and G2 is a (k − 1)-regular graph of order n − δ(G) + k − 1.

Proof. Let D be a γk
t,oi(G)-set. If D = V(G), then, by Theorem 13(iii), we have that k = 1 and G ∼= P2.

Hence, the bound is satisfied. Now, we assume that V(G) \ D �= ∅. Since every vertex in V(G) \ D
has at least δ(G)− k + 1 neighbors in D, we obtain that γk

t,oi(G) = |D| ≥ δ(G)− k + 1. In addition,
since every vertex in D has at most Δ(G)− 1 neighbors in V(G) \ D, we deduce that

|D|(Δ(G)− 1) ≥ |V(G) \ D|(δ(G)− k + 1)

γk
t,oi(G)(Δ(G)− 1) ≥ (n − γk

t,oi(G))(δ(G)− k + 1)

γk
t,oi(G)(Δ(G) + δ(G)− k) ≥ n(δ(G)− k + 1)

γk
t,oi(G) ≥ n(δ(G)− k + 1)

Δ(G) + δ(G)− k

which implies that the bound is satisfied.
Now, we assume that |D| = δ(G)− k + 1. Since D is also a total dominating set of G, we have that

G1 = G[D] is a graph with no isolated vertex of order δ(G)− k + 1. Let v ∈ V(G) \ D. If δ(v) > δ(G),
then δD(v) > δ(G)− k + 1 as V(G) \ D is k-independent, which is a contradiction. Hence, for every
vertex x ∈ V(G) \ D, it satisfies that δ(x) = δ(G) and, consequently, δV(G)\D(x) = k − 1. Thus,
G2 = G[V(G) \ D] is a (k − 1)-regular graph of order n − δ(G) + k − 1 and G ∼= G1 + G2, which
completes the proof.

For any integer k ≥ 3, let G2k,k−1 be the family of (k − 1)-regular graphs of order 2k, and let
G = P2 + Gk, where Gk ∈ G2k,k−1. Observe that G2k,k−1 ⊆ T[F ◦1 P2], where Δ(F) ≤ k − 1. Hence,
by Theorem 13(i), we have that γk

t,oi(G) = 2. In addition, one can check that |V(G)| = 2k + 2,
Δ(G) = 2k + 1, and δ(G) = k + 1, concluding that the lower bound given in the previous theorem
is tight, and it is achieved for the graph G. Recall that, for any integer k ≥ 3, the family G2k,k−1 is
not empty. Next, we give an example of a graph Fk ∈ G2k,k−1. Let Fk be the graph with vertex set
V(Fk) = {v1, . . . , vk, u1, . . . , uk} and edge set E(Fk) = {viuj : i ∈ {1, . . . k}, j ∈ {i, . . . , i + k − 1}},
where the subscripts are taken modulo k. It is not difficult to see that the graph Fk is a (k − 1)-regular
graph of order 2k, as desired. The graph F4, for example, is illustrated in Figure 4.

Figure 4. The graph F4.

In order to derive another results, we need to state the following results.
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Theorem 9. Let G be a graph.

(i) [16] If k ≤ δ(G), then βk(G) + γδ(G)−k+1(G) ≤ n.
(ii) [3] If 2 ≤ k ≤ Δ(G), then γk(G) ≥ γ(G) + k − 2.

The following result is a direct consequence of combining Theorems 1 and 9(i).

Theorem 10. If G is a connected graph, then for any positive integer k ≤ δ(G),

γk
t,oi(G) ≥ γδ(G)−k+1(G).

We remark that the lower bound given in the theorem above is sharp. For example, it is achieved
for any complete graph Kn with n ≥ 3 and 1 ≤ k ≤ n − 2.

From Theorems 10 and 9(ii), we immediately have the next theorem.

Theorem 11. If G is a connected graph, then for any positive integer 2 ≤ k ≤ δ(G),

γk
t,oi(G) ≥ γ(G) + δ(G)− k − 1.

To conclude this section, we proceed to characterize all graphs achieving the extreme values given
in Proposition 1. Before this, we shall need the following result and notation.

Theorem 12 ([8]). Let G be a graph of order n. Then, γt,oi(G) = n − 1 if and only if G ∈ {P3, C4, C5} or G is
a complete graph with at least three vertices.

We define the k-join operation between two graphs G and H, and denoted by G ◦k H, as the
disjoint union of G and H by joining each vertex of G to k or k + 1 vertices of H. For each integer
positive k and any graphs G and H, the family of all graphs obtained by the operation above is denoted
by T[G ◦k H].

Theorem 13. Let G be a connected graph of order n. Then, the following statement holds.

(i) γk
t,oi(G) = 2 if and only if G ∈ T[F ◦1 P2], where F is some graph with Δ(F) ≤ k − 1.

(ii) For n ≥ 3, we have that γk
t,oi(G) = n − 1 if and only if either k = 1 and G ∈ {Kn, P3, C4, C5} or k = 2

and G ∈ {P3, C3}.
(iii) γk

t,oi(G) = n if and only if k = 1 and G is the path P2.

Proof. We first proceed to prove (i). Suppose that γk
t,oi(G) = 2 and let D be a γk

t,oi(G)-set. Clearly,
D induces a path P2. Moreover, V(G) \ D is a k-independent set, which implies that the subgraph
induced by V(G) \ D, namely F, has maximum degree Δ(F) ≤ k − 1. In addition, as D is a total
dominating set, every vertex in V(G) \ D is adjacent to one or two vertices in D, i.e., 1 ≤ δD(v) ≤ 2
for every v ∈ V(G) \ D. Therefore, G ∈ T[F ◦1 P2], where F is some graph with Δ(F) ≤ k − 1. The
necessary condition is straightforward and so the proof of (i) holds.

We now proceed to prove (ii). If either k = 1 and G ∈ {Kn, P3, C4, C5} or k = 2 and G ∈ {P3, C3},
then it is easy to see that γk

t,oi(G) = n − 1. Hence, we assume that G is a connected graph satisfying
γk

t,oi(G) = n − 1. By Theorem 6, we obtain that k ≤ 2 and, if k = 2, then k = Δ(G) = n − 1. If k = 1,
then, by Theorem 12, we give that G ∈ {Kn, P3, C4, C5}. Moreover, if k = 2, then Δ = 2 and n = 3.
Hence, G is either P3 or C3, which completes the proof of (ii).

Finally, we proceed to prove (iii). If k = 1 and G = P2, then it is straightforward that γk
t,oi(G) = n.

Conversely, if G is a connected graph such that γk
t,oi(G) = n, then, by Theorem 6, we obtain that

k = Δ(G) = 1 and n = 2. Hence, G is the path P2, which completes the proof.
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3. Nordhaus–Gaddum Type Inequalities

In 1956, Nordhaus and Gaddum published an article [17], where it gave lower and upper bounds
on the sum and product of the chromatic numbers of a graph and its complement. From this research
idea, these types of inequalities was defined as Nordhaus–Gaddum type inequalities, and have been
well studied for several domination parameters. We suggest a recent survey [18]. In the present section,
we initiate the study of Nordhaus–Gaddum type inequalities for the total outer k-independence
domination number.

We first establish a lower and upper bounds on the sum of the total outer k-independence
domination numbers of a graph and its complement. Before this, we remark that in this section
we involve the study of not connected graphs. However, it is necessary to assume that both G and
G have no isolated vertices. This last condition implies that n ≥ 4. In addition, we assume that
1 ≤ k ≤ min{Δ(G), Δ(G)}.

Lemma 5. For any integer m ≥ 3,
γt,oi(mK2) = 2m − 2.

Proof. Let u and v be two adjacent vertices of mK2. Notice that V(mK2) \ {u, v} is a TO1ID set of mK2.
Hence, γt,oi(mK2) ≤ |V(mK2) \ {u, v}| = 2m − 2. Now, suppose that γt,oi(mK2) < 2m − 2 and let D be
a γt,oi(mK2)-set. Observe that |V(mK2) \ D| ≥ 3 and any three vertices in V(mK2) \ D contain a path
P3, which is a contradiction since V(mK2) \ D is an independent set. Therefore, γt,oi(mK2) = 2m − 2,
which completes the proof.

Theorem 14. For any graph G of order n ≥ 4 such that neither G nor G contains isolated vertices,

max{4, n − 2k + 1} ≤ γk
t,oi(G) + γk

t,oi(G) ≤ 2n − k.

Furthermore,

(i) γk
t,oi(G) + γk

t,oi(G) = 4 if and only if γk
t,oi(G) = γk

t,oi(G) = 2.
(ii) γk

t,oi(G) + γk
t,oi(G) = 2n − k if and only if k = 1 and G ∈ {C4, C4}.

(iii) γk
t,oi(G) + γk

t,oi(G) = 2n − k − 1 if and only if k = 1 and G ∈ {mK2, mK2}, with m ≥ 3.

Proof. First, we prove the lower bound. Since γk
t,oi(G) ≥ 2 for any graph G without isolated vertices,

the trivial lower bound follows and also (i) is straightforward. Now, let D and D be a γk
t,oi(G)-set and

a γk
t,oi(G)-set, respectively. As V(G) \ D and V(G) \ D are k-independent in G and G, respectively, we

have that δV(G)\D(x) ≤ k − 1 and δV(G)\D(x) ≤ k − 1 for every x ∈ (V(G) \ D) ∩ (V(G) \ D). Hence,
|(V(G) \ D) ∩ (V(G) \ D)| ≤ |NV(G)\D(x)|+ |NV(G)\D(x)|+ 1 ≤ 2k − 1, and, as a consequence,

n − (|D|+ |D|) ≤ n − |D ∪ D| = |(V(G) \ D) ∩ (V(G) \ D)| ≤ 2k − 1,

which implies that n − 2k + 1 ≤ γk
t,oi(G) + γk

t,oi(G), as desired.
Next, we prove the upper bound. Suppose that γk

t,oi(G) + γk
t,oi(G) > 2n − k. Notice that either

G or G is connected. By symmetry, we assume that G is connected. Since n ≥ 4 and Δ(G) < n − 1,
by Theorem 6, we have that γk

t,oi(G) ≤ n − k. This implies that γk
t,oi(G) > n, which is a contradiction.

Therefore, the upper bound follows.
Now, we proceed to prove (ii). If k = 1 and G ∈ {C4, C4}, then it is straightforward to observe

that γk
t,oi(G) + γk

t,oi(G) = 2n − k. Conversely, we assume that γk
t,oi(G) + γk

t,oi(G) = 2n − k. Since G
is connected, Theorem 6 leads to γk

t,oi(G) = n − k and γk
t,oi(G) = n. Hence, by Theorem 13(iii), it

follows that G consists of disjoint copies of K2. Since k ≤ Δ(mK2) = 1, we have that k can only take
the value 1 and so γ1

t,oi(mK2) = n − 1. This implies, by Theorem 13(ii), that m = 2. Therefore, k = 1
and G ∈ {C4, C4}, which completes the proof of (ii).

73



Mathematics 2020, 8, 194

Finally, we proceed to prove (iii). First, we suppose that γk
t,oi(G) + γk

t,oi(G) = 2n− k − 1. Again, as
G is connected, we have that (γk

t,oi(G), γk
t,oi(G)) = (n − k, n − 1) or (γk

t,oi(G), γk
t,oi(G)) = (n − k − 1, n).

Hence, we analyze these two cases.

Case 1. (γk
t,oi(G), γk

t,oi(G)) = (n − k, n − 1). If γk
t,oi(G) = n − 1, then by Theorem 13(ii), we have that

(k = 1 and G is isomorphic to mK2 ∪ H, where H ∈ {Kr, P3, C4, C5}) or (k = 2 and G is isomorphic
to mK2 ∪ H, where H ∈ {P3, C3}). In both cases, we can construct a TOkID set of G of cardinality
n − k − 1, which contradicts the condition γk

t,oi(G) = n − k.

Case 2. (γk
t,oi(G), γk

t,oi(G)) = (n − k − 1, n). If γk
t,oi(G) = n, then by Theorem 13(iii) we have that

k = 1 and G is isomorphic to mK2, with m ≥ 3. Moreover, Lemma 5 leads to γk
t,oi(G) = γk

t,oi(mK2) =

γt,oi(mK2) = 2m − 2 = n − 2 = n − k − 1, as desired.

On the other hand, we suppose that k = 1 and G ∈ {mK2, mK2}, with m ≥ 3. By symmetry,
we consider that G = mK2. Theorem 13(iii) and Lemma 5 lead to (γk

t,oi(G), γk
t,oi(G)) = (n − k − 1, n).

Hence, γk
t,oi(G) + γk

t,oi(G)) = 2n − k − 1, which completes the proof.

Next, we show that the upper bounds in Theorem 14 can be improved if we assume that both G
and G are connected graphs.

Theorem 15. If G is a graph of order n ≥ 4 such that both G and G are connected, then

γk
t,oi(G) + γk

t,oi(G) ≤ 2(n − k).

Proof. Notice that, if both G and G are connected, then k ≤ min{Δ(G), Δ(G)} < n − 1, and by
Theorem 6 we have that (γk

t,oi(G), γk
t,oi(G)) ≤ (n − k, n − k). Hence, γk

t,oi(G) + γk
t,oi(G) ≤ 2(n − k).

Next, we give Nordhaus–Gaddum type inequalities for the product of the TOkID numbers of a
graph and its complement.

Theorem 16. If G is a graph of order n ≥ 5 such that neither G nor G contains isolated vertices, then

max{4, 2n − 2(2k + 1)} ≤ γk
t,oi(G) · γk

t,oi(G) ≤ (n − k)(n − 1).

Furthermore,

(i) γk
t,oi(G) · γk

t,oi(G) = 4 if and only if γk
t,oi(G) = γk

t,oi(G) = 2.
(ii) γk

t,oi(G) · γk
t,oi(G) = (n − k)(n − 1) if and only if k = 1 and G ∼= C5.

Proof. We first prove the upper bound. Since either G or G is connected (by symmetry, we assume
that G is connected) and max{Δ(G), Δ(G)} < n − 1, we deduce by Theorem 6 that γk

t,oi(G) ≤ n − k.
Therefore, γk

t,oi(G) · γk
t,oi(G) ≤ (n − k)n.

Suppose now that there exists a graph G of order n for which γk
t,oi(G) · γk

t,oi(G) = (n − k)n.
Without loss of generality, we assume that γk

t,oi(G) = n − k and γk
t,oi(G) = n. Thus, by Theorem 13(iii),

we have that k = 1 and G consists of disjoint copies of K2, which is a contradiction with the equality
above γk

t,oi(G) = n − k = n − 1 by Lemma 5.
As a consequence, γk

t,oi(G) · γk
t,oi(G) < (n − k)n, which implies

γk
t,oi(G) · γk

t,oi(G) ≤ (n − k)(n − 1), (1)

as desired.
Now, we suppose that the equality in the inequality (1) holds. Hence, either (γk

t,oi(G), γk
t,oi(G)) =

(n − k, n − 1) or (γk
t,oi(G), γk

t,oi(G)) = (n − 1, n − k). Without loss of generality, we may assume that
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(γk
t,oi(G), γk

t,oi(G)) = (n − k, n − 1). By Theorem 13(ii), we have that either (k = 1 and G ∼= t1K2 + G′,
where G′ ∈ {Kn, P3, C4, C5}) or (k = 2 and G ∼= t2K2 + G′′, where G′′ ∈ {P3, C3}). In both cases,
if t1, t2 ≥ 1, then we can construct a TOkID set of G of cardinality n − k − 1, which contradicts the
condition γk

t,oi(G) = n − k. Since n ≥ 5, we obtain that k = 1 and G ∼= C5. The other hand is
straightforward to see, which completes the proof of statement (ii).

In order to prove the lower bound, by Theorem 14, we have

γk
t,oi(G) + γk

t,oi(G) ≥ max{4, n − 2k + 1}.

Now, we minimize γk
t,oi(G) · γk

t,oi(G) subject to γk
t,oi(G) + γk

t,oi(G) = max{4, n − 2k + 1}.
If γk

t,oi(G) + γk
t,oi(G) = 4, then, by Theorem 14(i), we obtain the equivalence with the condition

γk
t,oi(G) = γk

t,oi(G) = 2. Therefore, γk
t,oi(G) · γk

t,oi(G) ≥ 4 and statement (i) holds. On the other
hand, if γk

t,oi(G) + γk
t,oi(G) = n − 2k + 1, then we obtain either (γk

t,oi(G), γk
t,oi(G)) = (2, n − 2k − 1) or

(γk
t,oi(G), γk

t,oi(G)) = (n − 2k − 1, 2). Therefore, γk
t,oi(G) · γk

t,oi(G) ≥ 2n − 2(2k + 1), which completes
the proof.

4. Conclusions and Open Problems

In this paper, we have introduced and studied the total outer k-independent domination number
of graphs. Among the main contributions, we emphasize the following.

• We have shown the close relationship that exists between the total outer k-independent
domination number and other domination parameters such as domination number, total
domination number, k-domination number, and k-independence number.

• We have obtained general bounds for the parameter and discussed the sharpness of them.
• In a specific section of the article, we focused on the study of Nordhaus–Gaddum type inequalities

for the total outer k-independence domination number.
• We have shown that the problem of finding the total outer k-independent domination number of

a graph is NP-hard.

In order to continue with this new line of research, we propose some open problems, which we
consider to be interesting.

(a) Characterize the graphs G of order n such that γk
t,oi(G) = γt(G) and γk

t,oi(G) = n − βk(G).
(b) Since the problem of finding γk

t,oi(G) is NP-hard, is there a polynomial-time algorithm for finding
γk

t,oi(T) for any tree T?
(c) To find possible practical applications to the parameter γk

t,oi(G) studied.
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Abstract: A set S ⊆ V(G) in a graph G is a dominating set if S dominates all vertices in G, where we
say a vertex dominates each vertex in its closed neighbourhood. A set is independent if it is pairwise
non-adjacent. The minimum cardinality of an independent dominating set on a graph G is called the
independent domination number i(G). A graph G is ID-stable if the independent domination number of
G is not changed when any vertex is removed. In this paper, we study basic properties of ID-stable
graphs and we characterize all ID-stable trees and unicyclic graphs. In addition, we establish bounds
on the order of ID-stable trees.

Keywords: independent domination; stable graph; tree; unicyclic graph

1. Introduction

Throughout this paper, V(G) and edge set E(G) (briefly V, E) are used to denote the vertex set
and edge set of G, respectively. For every vertex v ∈ V(G), the open neighborhood of v is the set NG(v) =
N(v) = {u ∈ V(G) | uv ∈ E(G)}, and its closed neighborhood is the set NG[v] = N[v] = N(v) ∪ {v}.
The degree of a vertex v ∈ V is dG(v) = |N(v)|. A leaf of G is a vertex with degree one, and a support
vertex is a vertex adjacent to a leaf. The set of all leaves adjacent to a vertex v is denoted by L(v).
For two vertices u and v, the distance dG(u, v) from u to v is the number of the edges of a shortest
uv-path in G. The diameter diam(G) of a graph G is the greatest distance among a pair of vertices of G.
Assume T is a rooted tree and v ∈ V(T), let C(v) and D(v) denote the set of children and descendants
of v, respectively, and D[v] = D(v) ∪ {v}. The maximal subtree at v, denoted by Tv, is the subgraph of
T induced by D[v], and is denoted by Tv. For a graph G, let I(G) be the set of vertices with degree 1.
The path and cycle on n vertices are denote by Pn and Cn, respectively.

A set S ⊆ V in a graph G is a dominating set if every vertex of G is either in S or adjacent to a
vertex of S. The domination number γ(G) equals the minimum cardinality of a dominating set in G.
There are many variants of the dominating set which are studied extensively, such as the independent
dominating set [1], total domination [2,3], Roman domination [4,5], semitotal domination [6,7], etc.
For a comprehensive treatment of domination in graphs, see the monographs by Haynes, Hedetniemi,
and Slater [8,9].

A set is independent if it is pairwise non-adjacent. The minimum cardinality among all independent
dominating sets on a graph G is called the independent domination number i(G) of G. An i(G)-set is an
independent dominating set of G of cardinality i(G). This variation of graph domination has been
studied extensively in the literature; see for example the books [8,9], and the readers can consult the
new survey of Goddard and Henning [1].

The removal of a vertex from a graph can increase the independent domination number,
decrease the independent domination number, or leave it unchanged. A graph G is independent

Mathematics 2019, 7, 820; doi:10.3390/math7090820 www.mdpi.com/journal/mathematics77
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domination vertex-critical or i-vertex-critical if i(G − v) < i(G) for every v ∈ V(G). The independent
domination vertex-critical graphs have been studied by Ao [10] and Edwards [11] and elsewhere [12–14].
Here we focus on the case where the removal of any vertex leave the independent domination
number unchanged.

A graph G is independent domination stable (ID-stable) if the independent domination number of
G is not changed when any vertex is removed. The domination stable problem consists of characterize
graphs whose domination number (a type of domination number, e.g. total domination number,
Roman domination number) remains unchanged under removal of any vertex or edge, or addition of
any edge [2,15–17].

In this paper, we study basic properties of ID-stable graphs and we characterize all ID-stable trees
and unicyclic graphs. In addition, we establish bounds on the order of ID-stable trees.

We make use of the following results in this paper.

Proposition 1 ([1]). For n ≥ 3, i(Pn) = i(Cn) = � n
3 �.

The next result is an immediate consequence of Proposition 1.

Corollary 1. If n ≥ 3, then Cn is an ID-stable graph if and only if n �≡ 1 (mod 3).

In the next sections, we will use the following notations:
For a graph G, let:

W(G) = {u ∈ V(G) | there exists an i(G)-set containing u}

and:

W1,1(G) = {(u, v)|u, v ∈ V(G) and there exists an i(G)-set containing both of u and v}.

2. Basic Properties

In this section, we study the basic properties of the ID-stable graph, and we construct new
ID-stable graphs from an old one.

Proposition 2. If G is an ID-stable graph, then every support vertex in G is adjacent to exactly one leaf.

Proof. Let G be an ID-stable graph. Suppose, to the contrary, that G has a support vertex x with
|L(x)| ≥ 2, and let y, z ∈ L(x). If G has an i(G)-set S such that x �∈ S, then y, z ∈ S, and clearly,
S − {y} is an independent dominating set of G − y yielding i(G − y) < i(G), which is a contradiction.
Hence, we assume that every i(G)-set contains x. Now, consider the graph G − x, and let D be an
i(G − x)-set. Since each vertex in L(x) is isolated in G − x, D contains all vertices in L(x). Clearly,
D is an independent dominating set of G such that x �∈ D. It follows from the assumption that
i(G − x) = |D| > i(G), a contradiction again. This completes the proof.

Proposition 3. If G is an ID-stable graph, then G does not have two adjacent support vertices.

Proof. Let G be an ID-stable graph. Suppose, to the contrary, that there exist two adjacent support
vertices x, y in G. Assume that L(x) = {x′}, L(y) = {y′}, and let S be an i(G)-set. Then, x′ ∈ S or
y′ ∈ S. Assume, without loss of generality, that y′ ∈ S. Then, y /∈ S. If (NG(y) − {y′}) ∩ S �= ∅,
then S − {y′} is an independent dominating set of G − y′, which leads to a contradiction. Hence,
(NG(y) − {y′}) ∩ S = ∅. In particular, x �∈ S, and so, x′ ∈ S. Now, (S − {y′, x′}) ∪ {y} is an
independent dominating set of G − x′, which leads to a contradiction.
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The spider Sq is the graph obtained from the star K1,q by subdividing its edges once. Clearly,
i(Sq) = q. Assume that V(Sq) = {s} ∪ {ai, bi|i = 1, 2, . . . , q} and E(Sq) = {sai, aibi|i = 1, 2, . . . , q}.
The vertex s is called the head; the vertices ai are called the knees; and the vertices bi are called the feet of
the spider for 1 ≤ i ≤ q.

Proposition 4. Let G be a graph and v ∈ V(G). Let G′ be the graph obtained from G by adding a spider
Sq (q ≥ 1) and possibly joining the head s to v. Then, i(G′) = i(G) + q.

Proof. Clearly, any i(G)-set can be extended to an independent dominating set of G′ by adding
a1, . . . , aq, and so, i(G′) ≤ i(G) + q.

Now, we show that i(G′) ≥ i(G) + q. Let S be an i(G′)-set. To dominate bi, we must have
|S ∩ {ai, bi}| ≥ 1 for each i. If s �∈ S or sv �∈ E(G′), then the set S − V(Sq) is an independent
dominating set of G, and this implies that i(G′) ≥ i(G) + q. Suppose that s ∈ S and sv ∈ E(G′).
It follows that {b1, . . . , bq} ⊆ S and S ∩ NG[v] = ∅. Then, the set (S − {s, b1, . . . , bq}) ∪ {v} is an
independent dominating set of G yielding i(G′) ≥ i(G) + q. Thus, i(G′) = i(G) + q, and the proof
is complete.

Proposition 5. Let G be an ID-stable graph. Then:

1. if u ∈ W(G) and G′ is a graph obtained from G by adding a spider S1 with head s and an edge us, then G′

is an ID-stable graph,
2. if u ∈ V(G) and G′ is a graph obtained from G by adding a spider Sq (q ≥ 2) with head s and an edge us,

then G′ is an ID-stable graph.

Proof. Our arguments apply equally well to both parts, so we prove them simultaneously. Let
v ∈ V(G′) be an arbitrary vertex. If v ∈ V(G), then we have i(G − v) = i(G) because G is an ID-stable
graph, and by Proposition 4, we have

i(G′ − v) = i(G − v) + q = i(G) + q = i(G′).

Assume that v ∈ V(Sq). We consider three cases.

Case 1. v = s.
Then, clearly, G′ − v is the union of G with qK2 (q ≥ 1), and so, i(G′ − v) = i(G) + q. It follows

from Proposition 4 that i(G′ − v) = i(G′).

Case 2. v = ai for some i ∈ {1, 2, . . . , q}.
Assume, without loss of generality, that v = aq. First, we prove (1). Clearly, we have G′ − v =

(G + us)∪ K1. Obviously, any i(G)-set containing u can be extended to an independent dominating set
of G′ − v by adding b1, and so, i(G′ − v) ≤ i(G) + 1 = i(G′). On the other hand, any i(G′ − v)-set is
obviously an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′), yielding i(G′ − v) = i(G′).
Now, we prove (2). Clearly, any i(G)-set can be extended to an independent dominating set of G′ − v
by adding {bq, a1, . . . , aq−1}, and so, i(G′ − v) ≤ i(G) + q = i(G′). Furthermore, any i(G′ − v)-set is
obviously an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Thus, i(G′ − v) = i(G′).

Case 3. v = bi for some i ∈ {1, 2, . . . , q}.
Assume, without loss of generality, that v = b1. Obviously, any i(G)-set can be extended to an

independent dominating set of G′ − v by adding {a1, . . . , aq}, and so, i(G′ − v) ≤ i(G) + q = i(G′).
Now, let S′ be an i(G′ − v)-set. If a1 ∈ S′, then S′ is obviously an independent dominating set of
G′, and so, i(G′ − v) ≥ i(G′). Assume that a1 /∈ S′. Then, s ∈ S′. If (NG′(u) − {s}) ∩ S′ �= ∅,
then (S′ − {s}) ∪ {a1} is an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Suppose that
(NG′(u)−{s})∩ S′ = ∅. Then, S′ − {s, b2, . . . , bq} is an independent dominating set of G− u, and since
G is an ID-stable graph, we deduce that i(G′ − v) = (|S′| − q) + q ≥ i(G) + q = i(G′). Hence, i(G′ −
v) = i(G′). Therefore, G′ is an ID-stable, and the proof is complete.
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Let k1 and k2 be non-negative integers, and let Hk1,k2 be the graph obtained from the star K1,3

centered at s with V(K1,3) = {s, a, b, c} by attaching k1 pendent paths P2 to a and k2 pendent paths
P2 to b (see, e.g., Figure 1). For each 1 ≤ i ≤ k1, the vertex set of ith P2 is {ri, ti} with ari ∈ E(Hk1,k2),
and for each 1 ≤ j ≤ k2, the vertex set of jth P2 is {pj, qj} with bpj ∈ E(Hk1,k2).

Figure 1. The operations O3, or O4, or O5.

Proposition 6. Let G be a graph and x, y ∈ V(G) (possibly x = y). Let G′ be the graph obtained from G by
adding a graph Hk1,k2 and adding possibly the edges xa or yb. Then, i(G′) = i(G) + k1 + k2 + 1.

Proof. Clearly, any i(G)-set can be extended to an independent dominating set of G′ by adding
s, r1, . . . , rk1 , p1, . . . , pk2 , and so, i(G′) ≤ i(G) + k1 + k2 + 1.

Now, we show that i(G′) ≥ i(G) + k1 + k2 + 1. Let S be an i(G′)-set such that |S ∩ {a, b}| is as
small as possible. To dominate c, ti (1 ≤ i ≤ k1) and qj (1 ≤ j ≤ k2), we must have |S ∩ {s, c}| ≥ 1,
|S ∩ {ri, ti}| ≥ 1 (1 ≤ i ≤ k1) and |S ∩ {pj, qj}| ≥ 1 (1 ≤ j ≤ k2). We claim that |S ∩ {a, b}| = 0.
Suppose, on the contrary, that |S ∩ {a, b}| ≥ 1. We consider the following cases.

Case 4. |S ∩ {a, b}| = 1.
Assume without loss of generality that a ∈ S and b �∈ S. Then, we must have c ∈ S and

t1, . . . , tk1 ∈ S if k1 ≥ 1. If xa �∈ E(G′) or S ∩ NG(x) �= ∅, then the set (S − {a, c}) ∪ {s} is an
independent dominating set of G′ of size less that i(G′), which is a contradiction. Hence, xa ∈ E(G′)
or S ∩ NG(x) = ∅, but then the set (S − {a}) ∪ {x} is an i(G′)-set, which contradicts the choice of S.

Case 5. |S ∩ {a, b}| = 2.
Then, we must have c ∈ S, {t1, . . . , tk1} ⊆ S if k1 ≥ 1 and {q1, . . . , qk2} ⊆ S if k2 ≥ 1. If S ∩

NG[x] �= ∅ and S ∩ NG[y] �= ∅, then (S − {a, b, c}) ∪ {s} is an independent dominating set of G′ of
size i(G′)− 2, which is a contradiction. Assume without loss of generality that S ∩ NG[x] = ∅. If x = y,
then (S − {a, b, c}) ∪ {x, s} is an independent dominating set of G′ of size i(G′)− 1, a contradiction
again. Hence, x �= y. Now, to dominate x, we must have xa ∈ E(G′), but then the set (S − {a}) ∪ {x}
is an i(G)′-set, contradicting the choice of S.

Therefore a, b �∈ S. Now, the set S ∩ V(G) is an independent dominating set of G, and this implies
that i(G′) ≥ i(G) + k1 + k2 + 1. Thus, i(G′) = i(G) + k1 + k2 + 1, and the proof is complete.

Proposition 7. Let G be an ID-stable graph. Then:

(a) if (x, y) ∈ W1,1(G) and G′ is a graph obtained from G by adding H0,0 and adding the edges xa, yb, then
G′ is an ID-stable graph,

(b) if x ∈ W(G), y ∈ V(G), and G′ is a graph obtained from G by adding H0,k2 (k2 ≥ 1) and adding the
edges xa, yb, then G′ is an ID-stable graph,

(c) if x, y ∈ V(G) and G′ is a graph obtained from G by adding Hk1,k2 (k1, k2 ≥ 1) and adding the edges
xa, yb, then G′ is an ID-stable graph.
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Proof. Let v be a vertex in G′. If v ∈ V(G), then by Proposition 6, we have i(G′ − v) = i(G − v) + k1 +

k2 + 1. Since G is an ID-stable graph, we have i(G− v) = i(G), and so, i(G′ − v) = i(G) + k1 + k2 + 1 =

i(G′). Assume that v �∈ V(G). We consider the following cases.

Case 6. v = s.
Clearly, any i(G′ − v)-set is an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). In the

case (a), any i(G)-set containing x, y can be extended to an independent dominating set of G′ − v
by adding c, and so, i(G′ − v) ≤ i(G) + 1 = i(G′). In the case (b), any i(G)-set containing x can be
extended to an independent dominating set of G′ − v by adding c, p1, . . . , pk2 , and so, i(G′ − v) ≤
i(G) + k2 + 1 = i(G′). In the case (c), any i(G)-set can be extended to an independent dominating
set of G′ − v by adding c, p1, . . . , pk2 , r1, . . . , rk1 , and so, i(G′ − v) ≤ i(G) + k1 + k2 + 1 = i(G′). Thus,
i(G′ − v) = i(G′).

Case 7. v = a (the case v = b is similar).
It is easy to see that there exists an i(G′ − v)-set containing s. On the other hand, any i(G′ − v)-set

containing s is an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Using an argument
similar to that described in Case 6, we obtain i(G′ − v) = i(G′).

Case 8. v = c.
Obviously, any i(G)-set can be extended to an independent dominating set of G′ − v by adding the

vertices s, r1, . . . , rk1 if k1 ≥ 1 and p1, . . . , pk2 if k2 ≥ 1, and so, i(G′ − v) ≤ i(G) + k1 + k2 + 1 = i(G′).
Now, let S be an i(G′ − v)-set. To dominate s, ti (1 ≤ i ≤ k1) and qj (1 ≤ j ≤ k2), we must have
|S ∩ {a, b, s}| ≥ 1, |S ∩ {ri, ti}| ≥ 1 for 1 ≤ i ≤ k1 and |S ∩ {pj, qj}| ≥ 1 for 1 ≤ j ≤ k2. If s ∈ S,
then S is obviously an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Assume that s /∈ S.
Then, a ∈ S or b ∈ S. Assume, without loss of generality, that a ∈ S. If b /∈ S, then S − V(Hk1,k2) is an
independent dominating set of G − x, and since G is an independent domination stable graph, we have
i(G′ − v) = (|S| − k1 − k2 − 1) + k1 + k2 + 1 ≥ i(G) + k1 + k2 + 1 = i(G′). Let b ∈ S. This implies
that {q1, . . . , qk2} ⊆ S if k2 ≥ 1. If (N(y) − {b}) ∩ S �= ∅, then the set S − {b} if k2 = 0, and the
set (S − {b, q1, . . . , qk2}) ∪ {p1, . . . , pk2} if k2 ≥ 1 is an independent dominating set of G′ − v, which
leads to a contradiction. Hence, (N(y)− {b}) ∩ S = ∅, and similarly, (N(x)− {a}) ∩ S = ∅. Then,
(S − V(Hk1,k2)) ∪ {y} is an independent dominating set of G − x, and since G is an ID-stable graph,
we deduce that i(G′ − v) = (|S| − k1 − k2 − 1) + k1 + k2 + 1 ≥ i(G) + k1 + k2 + 1 = i(G′). Therefore,
i(G′ − v) = i(G′).

Case 9. v = ri for some i ∈ {1, 2, . . . , k1} or v = pj for some j ∈ {1, 2, . . . , k2}.
Assume, without loss of generality, that v = r1. Obviously, any i(G)-set can be extended

to an independent dominating set of G′ − v by adding s, t1, r2, . . . , rk1 and p1, . . . , pk2 if k2 ≥ 1,
and so, i(G′ − v) ≤ i(G) + k1 + k2 + 1 = i(G′). On the other hand, any i(G′ − v)-set is obviously an
independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Therefore, i(G′ − v) = i(G′).

Case 10. v = ti for some i ∈ {1, 2, . . . , k1} or v = qj for some j ∈ {1, 2, . . . , k2}.
Assume, without loss of generality that v = t1. Clearly, any i(G)-set can be extended to an

independent dominating set of G′ − v by adding the vertices s, r1, . . . , rk1 and p1, . . . , pk2 if k2 ≥ 1,
and so, i(G′ − v) ≤ i(G) + k1 + k2 + 1 = i(G′). To prove the inverse inequality, let S be an i(G′ − v)-set.
To dominate c, ti (2 ≤ i ≤ k1) and qj (1 ≤ j ≤ k2), we must have |S ∩ {c, s}| ≥ 1, |S ∩ {ri, ti}| ≥ 1
for 2 ≤ i ≤ k1 and |S ∩ {pj, qj}| ≥ 1 for 1 ≤ j ≤ k2. If r1 ∈ S, then S is obviously an independent
dominating set of G′, and so, i(G′ − v) ≥ i(G′). Assume that r1 /∈ S′. It follows that a ∈ S yielding
c, ti ∈ S for 2 ≤ i ≤ k2. If b �∈ S, then we may assume that p1, . . . , pk2 ∈ S, and clearly, the set
S − V(Hk1,k2) is an independent dominating set of G − x. Since G is an ID-stable graph, we obtain
i(G′ − v) = (|S| − k1 − k2 − 1)+ k1 + k2 + 1 ≥ i(G)+ k1 + k2 + 1 = i(G′). Let b ∈ S. Then, q1, . . . , qk2 ∈
S if k2 ≥ 1. It is easy to see that (N(y)− {b})∩ S = ∅. If (N(x)− {a})∩ S �= ∅, then (S − {a})∪ {r1}
is an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Suppose that (N(x)− {a})∩ S = ∅.
Then, (S − V(Hk1,k2)) ∪ {y} is an independent dominating set of G − x, and since G is an ID-stable
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graph, we have i(G′ − v) = (|S| − k1 − k2 − 1) + k1 + k2 + 1 ≥ i(G) + k1 + k2 + 1 = i(G′). Hence,
i(G′ − v) = i(G′). Thus, G′ is an ID-stable graph, and the proof is complete.

Let N be the set of non-negative integers, n ≥ 3 and Q ∈ Nn with Q = (q1, q2, . . . , qn). Let D(Q) =

{i | qi > 0}. For any i with qi > 0 and qi+1 = 0, if qj = 0 for j = i + 1, i + 2, . . . , i + k and
qi+k+1 > 0 where the subscript is taken modulo n, we define H(Q, i) = k. For example, if Q =

(0, 2, 0, 1, 3, 0, 1, 2, 0, 0), then H(Q, 2) = 1, H(Q, 5) = 1 and H(Q, 8) = 3.
The graph C(n, Q) (resp. P(n, Q)) is the graph obtained from Cn = (v1v2 . . . vn)

(resp. Pn = v1v2 . . . vn) by attaching qi disjoint pendent paths P2 to vi. If qi > 0, then let
Hvi = {vi+1, . . . , vi+H(Q,i)}, and assume for any 1 ≤ j ≤ qi, the vertex set of jth P2 attached to vi
is {vi,j,a, vi,j,b} with leaf vi,j,b (see Figure 2).

v4
v5

v6

v1
v2

v3

v9 v1
v2

v3

v4v5v6

v7

v8

v1,1,a v1,1,b

v1,1,a v1,1,b

v1,2,a v1,2,b

v3,1,a v3,1,b

v4,3,a v4,2,a
v4,1,a

v4,1,bv4,2,bv4,3,b

v6,1,a

v6,1,b

v7,2,b v7,2,a

v7,1,b v7,1,a

(a) (b)

Figure 2. (a) The graph C(6, (1, 0, 0, 0, 0, 0)); (b) the graph C(9, (2, 0, 1, 3, 0, 1, 2, 0, 0)).

Proposition 8. Let G be a graph, and x, y ∈ V(G) (possibly x = y). If G′ is a graph obtained from G by
adding H = P(n, (0, 0, k1, 0, . . . , 0, k2, 0, 0)), where n ≡ 0 (mod 6), k1 ≥ 0, k2 ≥ 0, and adding possibly the
edges xv3 and yvn−2, then i(G′) = i(G) + k1 + k2 +

n
3 .

Proof. Clearly, any i(G)-set can be extended to an independent dominating set of G′ by adding
v3i−1 (1 ≤ i ≤ n

3 ), v3,j,a (1 ≤ j ≤ k1) and vn−2,j,a (1 ≤ j ≤ k2), and so, i(G′) ≤ i(G) + k1 + k2 +
n
3 .

Now, we show that i(G′) ≥ i(G) + k1 + k2 +
n
3 . Let S be an i(G′)-set. To dominate the vertices

v1, vn, v3i−1 (2 ≤ i ≤ n
3 −1), v3,j,b (1 ≤ j ≤ k1) and vn−2,j,b (1 ≤ j ≤ k2), we must have |S ∩ {v1, v2}| ≥ 1,

|S ∩ {vn−1, vn}| ≥ 1, |S ∩ {v3i−2, v3i−1, v3i}| ≥ 1 (2 ≤ i ≤ n
3 − 1), |S ∩ {v3,j,a, v3,j,b}| ≥ 1 (1 ≤ j ≤

k1), and |S ∩ {vn−2,j,a, vn−2,j,b}| ≥ 1 (1 ≤ j ≤ k2). We may assume without loss of generality that
{v3i−1 | 2 ≤ i ≤ n

3 − 1} ⊆ S. If v3, vn−2 �∈ S, then the set S ∩ V(G) is an independent dominating
set of G, and this implies that i(G′) ≥ i(G) + k1 + k2 +

n
3 . Assume without loss of generality that

v3 ∈ S. Then, we must have {v3,1,b, . . . , v3,k1,b} ⊆ S and S ∩ NG(v3) = ∅. If v3 is not adjacent
to x or NG(x) ∩ S �= ∅, then the set S′ = (S − {v1, v2, v3, v3,1,b, . . . , v3,k1,b}) ∪ {v2, v3,1,a, . . . , v3,k1,a}
is an independent dominating set of G′ of size i(G′) − 1, a contradiction. Hence, v3x ∈ E(G′),
NG(x) ∩ S �= ∅, and so, x �∈ S. If vn−2 �∈ S, then the set (S − V(H)) ∪ {x} is an independent
dominating set of G, yielding i(G′) ≥ i(G) + k1 + k2 +

n
3 . Assume that vn−2 ∈ S. Then, we have

{vn−2,1,b, . . . , vn−2,k2,b} ⊆ S and S ∩ NG(vn−2) = ∅. Using the above arguments, we have vn−2y ∈
E(G′), y �∈ S, and NG(y) ∩ S = ∅. If x = y or x and y are adjacent in G, then the set (S − V(H)) ∪
{x, v2, v5, . . . , vn−2, v3,1,a, . . . , v3,k1,a, vn−2,1,a, . . . , vn−2,k2,a} is an independent dominating set of G′ of
size i(G′)− 1, which is a contradiction. Hence, x �= y and x and y are not adjacent in G. Now, the set
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(S − V(H)) ∪ {x, y} is an independent dominating set of G, implying that i(G′) ≥ i(G) + k1 + k2 +
n
3 .

Therefore, i(G′) = i(G) + k1 + k2 +
n
3 , and the proof is complete.

Proposition 9. Let G be an ID-stable graph. If x, y ∈ V(G) and G′ is a graph obtained from G by adding
P(6, (0, 0, k1, k2, 0, 0)) and adding the edges xv3, yv4, then G′ is an ID-stable graph.

Proof. Let v be a vertex in G′. If v ∈ V(G), then by Proposition 8 and the fact that G is an ID-stable
graph, we obtain:

i(G′ − v) = i(G − v) + k1 + k2 + 2 = i(G) + k1 + k2 + 2 = i(G′).

Let v �∈ V(G). We consider the following cases.

Case 11. v ∈ {v2, v5, v3,j,a, v4,k,a | 1 ≤ j ≤ k1 and 1 ≤ k ≤ k2}.
As in Case 9 in Proposition 7, we have i(G′ − v) = i(G′).

Case 12. v ∈ {v1, v6, v3,j,b, v4,k,b | 1 ≤ j ≤ k1 and 1 ≤ k ≤ k2.
As in Case 10 in Proposition 7, we have i(G′ − v) = i(G′).

Case 13. v ∈ {v3, v4}.
We may assume, without loss of generality, that v = v3. Clearly, any i(G′ − v)-set containing v2

is an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). On the other hand, any i(G)-set
can be extended to an independent dominating set of G′ − v by adding {v2, v5, v3,j,a, v4,l,a | 1 ≤ j ≤
k1 and 1 ≤ l ≤ k2}, and Proposition 8 yields i(G′ − v) ≤ i(G) + k1 + k2 + 2 = i(G′).

Proposition 10. Let Q = (q1, q2, . . . , qn) ∈ Nn such that |D(Q)| ≥ 2 and H(Q, i) ≥ 1 for each i ∈ D(Q).
If H(Q, i) ≡ 1(mod 3) for some i ∈ D(Q) or H(i, Q) ≡ 2 (mod 3) for each i ∈ D(Q), or H(Q, i) ≡
0 (mod 3) and H(Q, j) ≡ 0 (mod 3) for some i, j ∈ D(Q), then the graph C(n, Q) is not an ID-stable graph.

Proof. Suppose, to the contrary, that G = C(n, Q) is an ID-stable graph. If G has an i(G)-set S
containing vi for some i ∈ D(Q), then S−{vi,1,b} is an independent dominating stable set for G − vi,1,b,
which leads to a contradiction. Hence, for any i(G)-set S and any i ∈ D(Q), we have vi �∈ S. Assume
that D(Q) = {i1, i2, . . . , ir}. Now, we show that:

i(G) =
r

∑
j=1

qij +
r

∑
j=1

⌈ H(ij, Q)

3

⌉
.

For 1 ≤ j ≤ r, let Pij be the path vij+1vij+2 . . . vij+H(Q,ij)
, and let Sj be an i(Pij)-set. Clearly, the set

I = ∪r
j=1(Sij ∪ {vij ,k,a | 1 ≤ k ≤ qij}) is an independent dominating set of G, and we conclude

from Proposition 1 that i(G) ≤ ∑r
j=1 qij + ∑r

j=1

⌈ H(ij ,Q)
3

⌉
. To prove the inverse inequality, let S be

an i(G)-set. To dominate the vertices vij ,k,b for 1 ≤ j ≤ r and 1 ≤ k ≤ qij , we must have |S ∩
{vij ,k,a, vij ,k,b}| ≥ 1, and since S ∩ {vi1 , . . . , vir} = ∅, we must have |S ∩ Hvij

| ≥
⌈ H(ij ,Q)

3

⌉
for each j,

by Proposition 1. This implies that i(G) = |S| ≥ ∑r
j=1(dG(vij)− 2) + ∑r

j=1

⌈ H(ij ,Q)
3

⌉
. Hence, i(G) =

∑r
j=1 qij) + ∑r

j=1

⌈ H(ij ,Q)
3

⌉
.

If H(Q, ij) ≡ 1 (mod 3) for some ij ∈ D(Q), say j = 1, then the set (I − (Si1 ∪ {vi1,k,a | 1 ≤
k ≤ qi1})) ∪ ({vi1,k,b | 1 ≤ k ≤ qi1} ∪ {vi1+3s | 0 ≤ s ≤ � qi1

3 � − 1}) when qir ≡ 0 (mod 3), the
set (I − (Si1 ∪ Si2 ∪ {vi1,k,a | 1 ≤ k ≤ qi1})) ∪ ({vi1,k,b | 1 ≤ k ≤ qi1} ∪ {vi1+3s | 0 ≤ s ≤ � qi1

3 �} ∪
{vir+3s+1 | 0 ≤ s ≤ � qir

3 � − 1}) when qir ≡ 2 (mod 3), and the set (I − (Si1 ∪ Si2 ∪ {vi1,k,a | 1 ≤ k ≤
qi1})) ∪ ({vi1,k,b | 1 ≤ k ≤ qi1} ∪ {vi1+3s | 0 ≤ s ≤ � qi1

3 �} ∪ {vir+qir−1, vir+3s+1 | 0 ≤ s ≤ � qir
3 � − 2})

when qir ≡ 1 (mod 3) is an i(G)-set, which is a contradiction. Thus, H(Q, ij) �≡ 1 (mod 3) for each
ij ∈ D(Q).
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Suppose H(i, Q) ≡ 2 (mod 3) for each i ∈ D(Q). Then, clearly, n = ∑r
j=1

⌈ H(ij ,Q)
3

⌉
, and the set

{vi1+3s | 0 ≤ i ≤ � n
3 � − 1} ∪ {vij ,k,b | 1 ≤ k ≤ qij}) is an independent dominating set of G, which leads

to a contradiction again.
Finally let, without loss of generality, H(Q, i1) ≡ 0 (mod 3) and H(Q, i�) ≡ 0 (mod 3) for some

i1, i� ∈ D(Q) and H(Q, ij) ≡ 2 (mod 3) for each ij ∈ D(Q)− {ij, i�}. If |D(Q)| = 2, then it is not
hard to see that i(G − vi1+2) > i(G), which is a contradiction. Assume that |D(Q)| ≥ 3. By symmetry,
we may assume that � ≥ 3. Let G′ = G − vi�+2, and let S′ be an i(G′)-set such that |S′ ∩ {vi1 , . . . , vir}|
is as large as possible. Since G is an independent domination stable graph, we have i(G) = i(G′). It is
not hard to see that the set:

D1 =

⎛⎝{vi2 , . . . , vi�} ∪ (
�−1⋃
j=2

{vij+3k | 1 ≤ k ≤
⌊ H(ij, Q)− 1

3

⌋
})

⎞⎠
is a subset of S′. It follows that D2 = ∪�−1

j=2{vij ,k,b | 1 ≤ k ≤ qij} ⊆ S′. We may also assume that

{vi1+3s−1 | 1 ≤ s ≤
⌊

H(i1,Q)
3

⌋
} ⊆ S′. Let D3 = ∪�

j=2{vij ,k,a | 1 ≤ k ≤ qij}. Clearly, the set:

(S′ − (D1 ∪ D2)) ∪ {vi�} ∪ D3 ∪

⎛⎝ �⋃
j=2

{vij+3k+1 | 0 ≤ k ≤
⌊ H(ij, Q)− 1

3

⌋
}

⎞⎠
is an independent dominating set of G of cardinality |S′| = i(G) containing vi� , which is a contradiction.
This completes the proof.

3. Independent Domination Stable Trees

In this section, we give a constructive characterization of all ID-stable trees.
In order to present our constructive characterization, we define a family of trees as follows. Let T

be the family of trees T that can be obtained from a sequence T1, T2, . . ., Tk of trees for some k ≥ 1,
where T1 is P2 and T = Tk. If k ≥ 2, Ti+1 can be obtained from Ti by one of the following operations.

Operation T1: If u ∈ W(Ti), then T1 adds a spider S1 with head s and an edge us to obtain Ti+1 (see
Figure 3).

Operation T2: If u ∈ V(Ti), then T2 adds a spider Sq (q ≥ 2) with head s and an edge us to obtain Ti+1
(see Figure 3).

Theorem 1. If T ∈ T , then T is an ID-stable tree.

Proof. If T is P2, then obviously T is an ID-stable tree. Suppose now that T ∈ T . Then there exists a
sequence of trees T1, T2, . . . , Tk (k ≥ 1) such that T1 is P2, and if k ≥ 2, then Ti+1 can be obtained from
Ti by one of the Operations T1 or T2. We proceed by induction on the number of operations used to
construct T. If k = 1, the result is trivial. Assume the result holds for each tree T ∈ T which can be
obtained from a sequence of operations of length k − 1 and let T′ = Tk−1. By the induction hypothesis,
T′ is an ID-stable tree. Since T = Tk is obtained by one of the Operations T1 or T2 from T′, we conclude
from the Proposition 5 that T is an ID-stable tree.

Next, we characterize all ID-stable trees.

Theorem 2. Let T be a tree of order n ≥ 2. Then, T is an ID-stable tree if and only if T ∈ T .
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u

b1

b2

b3

bq

Ti (or Gi) Sq

s

Figure 3. The operations: T1 or T2.

Proof. According to Theorem 1, we need only to prove necessity. Let T be an ID-stable tree of
order n ≥ 2. The proof is by induction on n. If n = 2, then T = P2 ∈ T . Let n ≥ 3, and let the
statement hold for all ID-stable trees of order less than n. Assume that T is an ID-stable tree of order n.
By Propositions 2 and 3, we deduce that diam(T) ≥ 4. Let v1v2 . . . vk (k ≥ 5) be a diametrical path in
T and root T at vk. By Proposition 2, any support vertex adjacent to v3 has degree two. In particular
dT(v2) = 2. By Proposition 3, v3 is not a support vertex, and so, Tv3 = SdT(v3)−1. Let T′ = T − Tv3 .
Since T is an ID-stable tree, we deduce from Proposition 4 that for any vertex v ∈ V(T′),

i(T′ − v) + dT(v3)− 1 = i(T − v) = i(T) = i(T′) + dT(v3)− 1

and this implies that i(T′ − v) = i(T′). Hence, T′ is an ID-stable tree. It follows from the induction
hypothesis that T′ ∈ T . If dT(v3) ≥ 3, then T ∈ T since T can be obtained from T′ by operation T2.

Assume that dT(v3) = 2. By Proposition 4, we have i(T′) + 1 = i(T). Since T is an ID-stable tree,
we have i(T − v2) = i(T). Let S be an i(T − v2)-set. Clearly, v1 ∈ S. If v3 ∈ S, then S − {v1} is an
independent dominating set of T − v1, which is a contradiction. Hence, v3 /∈ S, and this implies that
v4 ∈ S. Now, S − {v1} is an independent dominating set of T′, and we deduce from i(T′) + 1 = i(T)
that S − {v1} is an i(T′)-set. Thus, v4 ∈ W(T′). Now, T can be obtained from T′ by operation T1, and
so, T ∈ T . This completes the proof.

4. Independent Domination Stable Unicyclic Graphs

In this section, we give a constructive characterization of all ID-stable unicyclic graphs. We start
with introducing the following families of graphs.

• J1 = {Cn|n ≥ 3 and n �≡ 1 (mod three)}.
• J2 = {C(3k + 1, (q1, 0, 0, . . . , 0))|k ≥ 1 and q1 ≥ 2}.
• J3 is the family of graphs C(n, Q) where Q = (q1, . . . , qn) ∈ Nn satisfies (i) D(Q) ≥ 2, (ii) H(Q, i) �≡

1 (mod 3) for each i ∈ D(Q), and (iii) H(Q, i) ≡ 0 (mod 3) for exactly one i ∈ D(Q).
• J4 is the family of graphs obtained from P(6, (0, 0, k1, k2, 0, 0)) (k1 ≥ 0, k2 ≥ 0) by adding a new

vertex w, joining w to v3, v4, and adding a pendant edge at w (see, e.g., the graph of the second
column and the fifth row in Figure A2 (Appendix A)).

• J = J1 ∪ J2 ∪ J3 ∪ J4 ∪ T .

Next, we show that each graph in J is an ID-stable graph. By Corollary 1 and Theorem 1,
any graph in the family T ∪ J1 is an independent domination stable graph.

Proposition 11. If G ∈ J2, then G is an ID-stable graph.

Proof. Let G ∈ J2. First, we show that i(G) = k + q1. Clearly, the set {v3i | 1 ≤ i ≤ k} ∪ {v1,j,a | 1 ≤
j ≤ q1} is an independent dominating set of G yielding i(G) ≤ k + q1. To prove the inverse inequality,
let S be an i(G)-set. To dominate v1,j,b, we must have |S ∩ {v1,j,a, v1,j,b}| ≥ 1 for each j ∈ {1, . . . , q1}.
On the other hand, to dominate the vertices v3i (1 ≤ i ≤ k), we must have |S ∩ {v3i−1, v3i, v3i+1}| ≥ 1
for each i ∈ {1, . . . , k}, and this implies that i(G) ≥ k + q1. Hence, i(G) = k + q1.

85



Mathematics 2019, 7, 820

Next we show that G is an ID-stable graph. Let v ∈ G. If v = v1, then G = P3k ∪ q1K2, and by
Proposition 1, we have i(G − v) = i(P3k) + i(q1K2) = k + q1 = i(G). If v = v1,j,a for some 1 ≤ j ≤ q1,
then G = K1 ∪C(3k + 1, (q1 − 1, 0, 0, . . . , 0)), and as above, we have i(G − v) = k + q1 = i(G). Suppose
that v = v1,j,b for some 1 ≤ j ≤ q1, say j = 1. Clearly, the set {v3i | 1 ≤ i ≤ k} ∪ {v1,j,a | 1 ≤ j ≤ q1} is
an independent dominating set of G yielding i(G − v) ≤ k + q1 = i(G). To prove i(G − v) ≥ k + q1,
let S′ be an i(G − v)-set. To dominate v1,j,a, we must have |S′ ∩ {v1,j,a, v1}| ≥ 1, and to dominate
the vertex v1,j,b, we must have |S′ ∩ {v1,j,a, v1,j,b}| ≥ 1 for each j ∈ {2, . . . , q1}. On the other hand, to
dominate the vertices in V(Cn)− {v1, v2, v3}, S′ must contain at least k − 1 vertices in {v2, . . . , vn},
and so, i(G − v) ≥ k + q1. Hence, i(G − v) = i(G) in this case. Let now v = vi (i �= 1). Clearly,
any i(P3k)-set of P3k = vi−1 . . . v1vn . . . vi+1 can be extended to an independent dominating set of
G − v by adding v1,j,a for j = 1, 2, . . . , q1, and so, i(G − v) ≤ i(P3k) + q1 = k + q1 = i(G). On the
other hand, if S is an i(G − v)-set, then to dominate the vertices in {v1,j,b | 1 ≤ j ≤ q1}, we must
have |S ∩ {v1,j,a, v1,j,b | 1 ≤ j ≤ q1}| ≥ q1, and to dominate the vertices in V(Cn) − {vi, v1}, we
must have |S ∩ (V(Cn) − {vi})| ≥ k. Thus, i(G − v) = |S| ≥ k + q1 = i(G), and hence, G is an
ID-stable graph.

Theorem 3. Let G = C(n, Q) where n ≥ 3 and D(Q) = 1. Then, G is an ID-stable graph if and only
if G ∈ J2.

Proof. According to Proposition 11, we only need to prove necessity. Let G be an independent
domination stable graph. Assume, without loss of generality, that Q = (q1, 0 . . . , 0) where q1 ≥ 1.
As Proposition 11, we can see that i(G) = � n−1

3 �+ q1. If n �≡ 1 (mod 3), then the set {v3i+1 | 0 ≤
i ≤ � n−1

3 � − 1} ∪ {v1,j,a | 2 ≤ j ≤ q1} is an independent dominating set of G − v1,1,b of size i(G)− 1,
which is a contradiction. Assume that n ≡ 1 (mod 3). If q1 = 1, then clearly G − v1,1,a = K1 ∪ Cn, and
by Proposition 1, we have i(G) = i(Cn) + 1 = � n−1

3 �+ 2, which is a contradiction. Therefore, q1 ≥ 2,
and so, G ∈ J2.

Proposition 12. If G ∈ J3, then G is an independent domination stable graph.

Proof. Let G = C(n, Q) ∈ J3, and let ω = ∑r
j=1 qij + ∑r

j=1

⌈ H(Q,ij)
3

⌉
. Assume that D(Q) = {i1, . . . , ir},

and suppose, without loss of generality, that H(Q, i1) ≡ 0 (mod 3). Let S′ = ∪r
j=1{vij ,s,a | 1 ≤ s ≤ qij},

S′′ = ∪r
j=2{vij ,s,b | 1 ≤ s ≤ qij}, Sp

j = {vij+3k+p | 0 ≤ k ≤ �H(Q,ij)
3 � − 1} for j ∈ {1, . . . , r} and

p ∈ {1, 2, 3}.
First, we show that i(G) = ω. Clearly, the set S = (∪r

j=1S2
j ) ∪ S′ is an i(G)-set, and so, i(G) ≤ ω.

To prove the inverse inequality, let T be an i(G)-set. To dominate the vertices vij ,s,b, we must have
|T ∩ {vij ,s,a, vij ,s,b}| ≥ 1 for each 1 ≤ j ≤ r and 1 ≤ s ≤ qij . Now, to dominate the vertices vi1+3k+2,

we must have |T ∩ {vi1+3k+1, vi1+3k+2, vi1+3k+3}| ≥ 1 for 0 ≤ k ≤
⌈ H(Q,ij)

3

⌉
− 1, and to dominate the

vertices vij+2, . . . , vij+1−1, we must have |T ∩ {vij+1, vij+2, . . . , vij+1−1, vij+1}| ≥ 1 for each j ∈ {2, . . . , r}
yielding i(G) ≥ ω. Thus, i(G) = ω as desired.

Now, we show that G is an independent domination stable graph. Let v ∈ V(G). Consider the
following cases.

Case 14. v ∈ S′.
Clearly, any i(G − v)-set is an independent dominating set of G, and so, i(G − v) ≥ i(G). On the

other hand, (∪r
j=1S2

j ) ∪ S′′ ∪ {vi1,s,b | 1 ≤ s ≤ qi1} is an independent dominating set of G − v, and
hence, i(G) ≥ i(G − v). Thus, i(G) = i(G − v) in this case.

Case 15. v ∈ {vi1 , . . . , vir}.
Suppose, without loss of generality, that v = vi1 . Obviously, S is an independent dominating set

of G − v, and hence, i(G) ≥ i(G − v). Let D be an i(G − v)-set such that |D ∩ {vi1,j,a | 1 ≤ j ≤ q1}| is
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as large as possible. Then, {vi1,j,a | 1 ≤ j ≤ q1} ⊆ D. As above, we can see that |D| = i(G − v) ≥ i(G).
Therefore, i(G) = i(G − v) in this case.

Case 16. v ∈ S′′.
Assume, without loss of generality, that v = vi1,1,b. Clearly, S is an independent dominating

set of G − v, and hence, i(G) ≥ i(G − v). To prove the inverse inequality, let T be a i(G − v)-set.
As above, we have |T ∩ {vi1,s,a, vi1,s,b}| ≥ 1 for 2 ≤ s ≤ qi1 , and |T ∩ {vij ,s,a, vij ,s,b}| ≥ 1 for each
2 ≤ j ≤ r and 1 ≤ s ≤ qij . Furthermore, we must have |T ∩ {vi1 , vi1,1,a}| ≥ 1. Now, to dominate the

vertices vi1+2, . . . , vi2−1, we must have |T ∩ {vi1+1, . . . , vi2−1}| ≥ H(Q,i1)
3 , and to dominate the vertices

vir+1, . . . , vi1−2, we must have |T ∩ {vir , vir+1, . . . , vi1−2, vi1−1}| ≥ H(Q,ir)
3 . Repeating this process,

we must have |T ∩ {vij , vij+1, . . . , vij+1−2, vij+1−1}| ≥
H(Q,ij)

3 for each 2 ≤ j ≤ r − 1. It follows that
|T| ≥ i(G), and so, i(G) = i(G − v).

Case 17. v ∈ S1
1 (the case v ∈ S3

1 is similar).
Assume that v = vi1+3k+1. Clearly, the set (∪r

j=2S3
j )∪{vi1+3t+2 | 0 ≤ t ≤ k− 1}∪ {vi1+3t | k+ 1 ≤

t ≤
⌈

H(Q,i1)−3k−1
3

⌉
} is an independent dominating set of G − v of size i(G), and so, i(G) ≥ i(G − v).

To prove the inverse inequality, let T be an i(G − v)-set. As above, we have |T ∩ {vij ,s,a, vij ,s,b}| ≥ 1

for each 1 ≤ j ≤ r and 1 ≤ s ≤ qij , and |T ∩ {vij+1, . . . , vij+1−1, vij+1}| ≥
H(Q,ij)

3 for 2 ≤ j ≤ r. Now to
dominate the vertices vi1+j (1 ≤ j ≤ 3k), we must have |T ∩ {vi1+1, . . . , vi1+3k}| ≥ k, and to dominate

the vertices vi1+3k+2, . . . , vi2−1, we must have |T ∩ {vi2+3k+2, . . . , vi2−1, vi2}| ≥
H(Q,i1)

3 − k. This implies
that |T| ≥ i(G), and so, i(G) = i(G − v).

Case 18. v ∈ S2
1. Assume that v = vi1+3k+2. Clearly, the set (∪r

j=2S3
j ) ∪ {vi1+3t+3 | 0 ≤ t ≤

k− 1} ∪ {vi1+3t+1 | k+ 1 ≤ t ≤
⌈

H(Q,i1)−3k−2
3

⌉
} is an independent dominating set of G − v of size i(G),

and so, i(G) ≥ i(G − v). To prove the inverse inequality, let T be an i(G − v)-set. As above, we have
|T ∩ {vij ,s,a, vij ,s,b}| ≥ 1 for each 1 ≤ j ≤ r and 1 ≤ s ≤ qij , and |T ∩ {vij+2, . . . , vij+1−1, vij+1}| ≥
H(Q,ij)

3 for 2 ≤ j ≤ r. If k = 0, then to dominate the vertices vi1+3, . . . , vi2−1, we must have

|T ∩ {vi2+3, . . . , vi2−1, vi2}| ≥
H(Q,i1)

3 yielding |T| ≥ i(G). If k ≥ 1, then to dominate the vertices
vi1+1, . . . , vi1+3k+1, we must have |T ∩ {vi1+2, . . . , vi1+3k+1}| ≥ k, and to dominate the vertices

vi1+3k+2, . . . , vi2−1, we must have |T ∩ {vi2+3k+2, . . . , vi2−1, vi2}| ≥
H(Q,i1)

3 − k, so |T| ≥ i(G). Therefore,
i(G) = i(G − v).

Case 19. v ∈ ⋃r
j=2 S1

j (the case v ∈ ⋃r
j=2 S3

j is similar).

Suppose, without loss of generality, that v = vi2+3k+1. Clearly, the set S2
1 ∪ (∪r

j=3S2
j ) ∪ {vi2+3t+2 |

0 ≤ t ≤ k − 1} ∪ {vi3 , vi2+3t | k + 1 ≤ t ≤
⌈

H(Q,i2)−3k−1
3

⌉
} is an independent dominating set of

G − v of size i(G), and so, i(G) ≥ i(G − v). Now, we show that i(G − v) ≥ i(G). Let T be a
i(G − v)-set. As above, we have |T ∩ {vij ,s,a, vij ,s,b}| ≥ 1 for each 1 ≤ j ≤ r and 1 ≤ s ≤ qij ,

and |T ∩ {vi1+1, vi1+2, . . . , vi2−1}| ≥ H(Q,i1)
3 . Furthermore, to dominate the vertices vij+2, . . . , vij+1−1,

we must have |T ∩ {vij+2, . . . , vij+1−1, vij+1}| ≥ H(Q,ij)
3 for 3 ≤ j ≤ r. Now, to dominate the

vertices vi2+1, . . . , vi2+3k, we must have |T ∩ {vi2+1, . . . , vi2+3k}| ≥ k, and to dominate the vertices

vi2+3k+2, . . . , vi3−1, we must have |T ∩ {vi2+3k+2, . . . , vi3−1, vi3}| ≥ H(Q,i2)
3 − k. This implies that

|T| ≥ i(G), yielding i(G) = i(G − v).

Case 20. v ∈ ⋃r
j=2 S2

j .

Suppose, without loss of generality, that v = vi2+3k+2. Clearly, the set S2
1 ∪ (∪r

j=3S2
j ) ∪ {vi2+3t |

0 ≤ t ≤ k} ∪ {vi2+3t+1 | k + 1 ≤ t ≤
⌈

H(Q,i2)−3k−2
3

⌉
} is an independent dominating set

of G − v of size i(G), and so, i(G) ≥ i(G − v). To prove the inverse inequality, let T be an
i(G − v)-set. As above, we have |T ∩ {vij ,s,a, vij ,s,b}| ≥ 1 for each 1 ≤ j ≤ r and 1 ≤ s ≤ qij , and

|T ∩ {vi1+1, vi1+2, . . . , vi2−1}| ≥ H(Q,i1)
3 . Furthermore, to dominate the vertices vij+2, . . . , vij+1−1, we
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must have |T ∩ {vij+2, . . . , vij+1−1, vij+1}| ≥ H(Q,ij)
3 for 3 ≤ j ≤ r. Now, to dominate the vertices

vi2+1, . . . , vi2+3k+1, we must have |T ∩ {vi2 , . . . , vi2+3k+1}| ≥ k + 1, and to dominate the vertices

vi2+3k+3, . . . , vi3−1, we must have |T ∩ {vi2+3k+3, . . . , vi3−1}| ≥ H(Q,i2)
3 − k − 1. This implies that

|T| ≥ i(G), and so, i(G) = i(G − v).
Thus, G is an independent domination stable graph, and the proof is complete.

The proof of the next result is straightforward and therefore omitted.

Proposition 13. If G ∈ J4, then G is an independent domination stable graph.

In order to present our constructive characterization of independent domination stable unicyclic
graphs, we define a family of graphs as follows. Let G be the family of graphs G that can be obtained
from a sequence G1, G2, . . . , Gk of graphs for some k ≥ 1, where G1 ∈ J − T if k = 1 and G1 ∈ J if
k ≥ 2, and G = Gk. If k ≥ 2, Gi+1 can be obtained from Gi by one of the following operations.

Operation O1: If u ∈ W(Gi), then O1 adds a spider S1 with head s and an edge us to obtain Gi+1 (see
Figure 3).

Operation O2: If u ∈ V(Gi), then O2 adds a spider Sq (q ≥ 2) with head s and an edge us to obtain
Gi+1 (see Figure 3).

Operation O3: If Gi is a tree and (x, y) ∈ W1,1(Gi), then O3 adds a graph Hk1,k2 (k1 = k2 = 0) and
edges ax, by to obtain Gi+1 (see Figure 1).

Operation O4: If Gi is a tree, x ∈ W(Gi) and y ∈ V(Gi), then O4 adds a graph Hk1,k2 (k1 = 0, k2 ≥ 1)
and edges ax, by to obtain Gi+1 (see Figure 1).

Operation O5: If Gi is a tree, x, y ∈ V(Gi), then O5 adds a graph Hk1,k2 (k1 ≥ 1, k2 ≥ 1) and edges ax,
by to obtain Gi+1 (see Figure 1).

Operation O6: If Gi is a tree, x, y ∈ V(Gi), then O6 adds a graph P(6, (0, 0, k1, k2, 0, 0)) (k1 ≥ 0, k2 ≥ 0)
and edges v3x, v4y to obtain Gi+1 (see Figure 4).

Theorem 4. Let G ∈ G be a graph of order n ≥ 3. Then, G is an independent domination stable graph.

Proof. Suppose that G ∈ G. Then, there exists a sequence of graphs G1, G2, . . . , Gk (k ≥ 1) such that
G1 ∈ J − T if k = 1 and G1 ∈ J if k ≥ 2, and if k ≥ 2, then Gi+1 can be obtained from Gi by one of the
operations O1,O2, · · · ,O6. We proceed by induction on the number of operations used to construct G.
If k = 1, the result holds by Propositions 11, 12, and 13. Assume that the result holds for each graph
G ∈ G, which can be obtained from a sequence of operations of length k − 1, and let G′ = Gk−1. By the
induction hypothesis, G′ is an independent domination stable graph. Since G = Gk is obtained by
one of the operations O1,O2, · · · ,O6 from G′, we conclude from Propositions 5, 7, and 9 that G is an
independent domination stable unicyclic graph.

Theorem 5. Let G be a unicyclic graph of order n ≥ 3. Then, G is an ID-stable graph if and only if G ∈ G.

Proof. According to Theorem 4, we need only to prove necessity. Let G be an ID-stable unicyclic
graph of order n ≥ 3. The proof is by induction on n. Let n ≥ 11, and let the statement hold for all
ID-stable unicyclic graphs of order less than n. Assume that G is an ID-stable unicyclic graph of order
n. Let C = (v1v2 . . . vp) be the unique cycle of G. If G is a cycle, then p = n, and Proposition 1 implies
that G ∈ J3 ⊆ G. Now, we consider the case p < n. Choose a vertex u ∈ V(G)− V(C) such that the
distance between the vertex u and the set V(C) is as large as possible. Assume that v1u1u2 · · · u�u is
the shortest (u, V(C))-path. If � ≥ 2, then similar to the proof of Theorem 2, G can be obtained from
Gk−1 by one of the operations O1 or O2, and so, G ∈ G. Assume that � ≤ 1.

First, assume vi is not a support vertex for each i ∈ {1, . . . , p}. Then, G = C(n, Q) for some
Q ∈ N n. If D(Q) = 0, then it follows from Corollary 1 that G ∈ J1. If D(Q) = 1, then it follows from
Theorem 3 that G ∈ J2. If D(Q) ≥ 2, then we conclude from Propositions 10 and 12 that G ∈ J3.
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Now, suppose that vi is a support vertex for some i ∈ {1, . . . , p}, say i = 2. Assume c is a leaf
adjacent to v2. We conclude from Propositions 2 and 3 that v2 is not a strong support vertex and is not
adjacent to a support vertex. It follows that dG(v2) = 3 and that v1, v3 are not support vertices. Let k1

be the number of pendant paths of length two beginning at v1 and k2 be the number of pendant paths
of length two beginning at v3. Let G′ be the graph obtained from G by removing v1, v2, v3 and the
vertices of all pendant paths at v1, v3. By Proposition 6, we have i(G) = i(G′) + k1 + k2 + 1. If G′ is not
an ID-stable graph, then i(G′ − v) �= i(G′) for some vertex v ∈ V(G′), and it follows from Proposition 6
that i(G − v) = i(G′ − v) + k1 + k2 + 1 �= i(G′) + k1 + k2 + 1 = i(G), which is a contradiction. Hence,
G′ is an ID-stable graph, and by the induction hypothesis, we have G′ ∈ G. If k1 ≥ 1, k2 ≥ 1, then T
can be obtained from G′ by operation O5, and so, G ∈ G. Assume that k1 = k2 = 0. Then, we have
dG(v1) = dG(v3) = 2. Let S be a i(G − v2)-set. Since G is an ID-stable graph, we have i(G) = i(G − v2).
To dominate the vertices c, v1, v3, we must have c ∈ S, |s ∩ {v1, vn}| ≥ 1 and |s ∩ {v3, v4}| ≥ 1.
Suppose, without loss of generality, that v4, vn ∈ S. Then, S − {c} is an i(G′)-set containing v4, vn, and
so, (v3, vn) ∈ W1,1. Now, T can be obtained from G′ by operation O3, and so, G ∈ G. Finally, let k1 = 0
and k2 ≥ 1. As above, we can see that v4 ∈ W(G′), and since T can be obtained from G′ by operation
O4, we have T ∈ G. This completes the proof.

Figure 4. The operation O6.

5. Bounds

In this section, we provide sharp bounds on ID-stable trees. First, we present a lower bound and
characterize all extremal trees. Let T1 be the family of trees T that can be obtained from a sequence T1,
T2, . . ., Tk of trees for some k ≥ 1, where T1 is P2 and T = Tk. If k ≥ 2, then all but at most one of Ti+1
can be obtained from Ti by operation T1, and that one (if any) can be obtained from Ti by operation T2

for q = 2.

Theorem 6. Let T be an ID-stable tree of order n ≥ 2. Then:

i(T) ≥
⌈n

3

⌉
with equality if and only if T ∈ T1.

Proof. By Theorem 2, we have T ∈ T . Thus, there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1)
such that T1 is P2, and if k ≥ 2, then Ti+1 can be obtained from Ti by one of the operations T1 or T2.
We proceed by induction on the number of operations used to construct T. If k = 1, the result is trivial.
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Assume the result holds for each tree T ∈ T , which can be obtained from a sequence of operations of
length k − 1, and let T′ = Tk−1. By Proposition 4 and the induction hypothesis, we obtain:

i(T) = i(T′) + i(Sq) ≥
⌈

n − 2q − 1
3

⌉
+

⌈
2q + 1

3

⌉
≥

⌈n
3

⌉
. (1)

The equality holds if and only if i(T′) =
⌈

n−2q−1
3

⌉
and i(Sq) =

⌈
2q+1

3

⌉
. It follows from the

induction hypothesis that T′ ∈ T1. Furthermore, we deduce from i(Sq) =
⌈

2q+1
3

⌉
that q ≤ 3. First,

let q = 3. It follows from Equation (1) that:⌈
n − 7

3

⌉
+

⌈
7
3

⌉
=

⌈n
3

⌉
yielding n ≡ 1(mod 3). This implies that 3|n(T′), which is a contradiction by construction of
trees in T1. Hence, q ≤ 2. If Ti+1 is obtained from Ti by operation T1 for each 2 ≤ i ≤ k − 1,
then clearly, T ∈ T1. Assume that one of the Ti+1’s is obtained from Ti by operation T2 for q = 2.
Then, clearly, n(T′) = n − 2q − 1 = 3(k − 1) + 1. If q = 2, then n(T) = 3(k − 1) + 6, and we have⌈

n−2q−1
3

⌉
+

⌈
2q+1

3

⌉
= k + 2 > k + 1 =

⌈
n(T)

3

⌉
, which is a contradiction. Thus, q = 1, and this implies

that T ∈ T1.

Let F1 be the family of all spiders Sq for q ≥ 2, F2 be the family of trees obtained from two spiders
Sp and Sq by joining their heads, F3 be the family of trees obtained from two spiders Sp and Sq by
joining the head of Sp to a knee of Sq, and F4 be the family of trees obtained from two spiders Sp and
Sq by joining the head of Sp to a foot of Sq where p ≥ q = 2 or p, q ≥ 3. For example, the trees obtained
by F2, F3, and F4 when p = q = 3 are illustrated in Figure 5.

(a) (b) (c)

Figure 5. (a) Tree F2; (b) tree F3; (c) tree F4.

The next result is an immediate consequence of Proposition 4.

Observation 1. If T ∈ ∪4
i=1Fi, then i(T) = � n−2

2 �.

Theorem 7. Let T be an ID-stable tree of order n ≥ 5. Then:

i(T) ≤
⌈

n − 2
2

⌉
with equality if and only if T ∈ ∪4

i=1Fi.

Proof. The proof is by induction on n. If n = 5, then by Propositions 2 and 3, we have T = P5,
and the result holds. Let n ≥ 6, and let the statement hold for all ID-stable trees of order less
than n. Assume that T is an ID-stable tree of order n. By Propositions 2 and 3, we deduce that
diam(T) ≥ 4. If diam(T) = 4, then by Propositions 2 and 3, T is the healthy spider Spider(dT(v3)),
and so, i(T) = dT(v3) =

⌈
n(T)−2

2

⌉
and T ∈ F1. Suppose that diam(T) ≥ 5. Let v1v2 . . . vk (k ≥ 5)

be a diametrical path in T such that dT(v3) is as large as possible and root T at vk. By Propositions 2
and 3, we have dT(v2) = 2 and that v3 is not a support vertex. Hence, Tv3 = SdT(v3)−1. Assume that
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p = dT(v3)− 1. Let T′ = T − Tv3 . Since T is an ID-stable tree, we deduce from Proposition 4 that for
any vertex v ∈ V(T′),

i(T′ − v) + p = i(T − v) = i(T) = i(T′) + p

and this implies that i(T′ − v) = i(T′). Hence, T′ is an ID-stable tree. It follows from the induction
hypothesis that i(T′) ≤

⌈
n−2p−3

2

⌉
, and hence,

i(T) ≤ i(T′) + i(Sp)

≤
⌈

n − 2p − 3
2

⌉
+ p

=

⌈
n − 3

2

⌉
≤

⌈
n − 2

2

⌉
.

The equality holds if and only if diam(T) = 4 or diam(T) ≥ 5 and i(T′) =
⌈

n(T′)−2
2

⌉
=

⌈
n−2p−3

2

⌉
and n is even, and this if and only if T ∈ F1 or diam(T) ≥ 5 and T′ ∈ F1 by the induction hypothesis.
Thus, the equality holds if and only if T ∈ ∪4

i=1Fi, and the proof is complete.

6. Conclusions

In this note, we studied the ID-stable graphs. Some basic properties of ID-stable graphs were
presented and new independent domination stable graphs constructed from an old one. We also
characterized all independent domination stable trees and unicyclic graphs. In addition, we proved
that for any tree T of order n ≥ 5,

⌈ n
3
⌉
≤ i(T) ≤

⌈ n−2
2

⌉
, and we characterized all trees attaining

the lower and upper bound. An interesting problem is to find sharp lower and upper bounds on
the independent domination number of ID-stable graphs. The other problem is to characterize all
ID-stable bicyclic graphs. Another problem is to study algorithm running times to decide independent
domination graphs.
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Appendix A

Appendix A.1. Trees

By applying the constructive method as above, we obtain all ID-stable trees with order up to 12,
and the statistics of the number of trees with different orders is presented in Table A1.

We list all the independent domination stable trees with orders from 5 to 12 in Figure A1.

Appendix A.2. Unicyclic Graphs

By applying the constructive method as above, we obtain all independent domination stable
unicyclic graphs with order from 3 to 10, and the statistics of the number of unicyclic graphs with
different orders is presented in Table A2.
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We here list all the independent domination stable unicyclic graphs with orders from 3 to 10 in
Figure A2.

T1
5 T1

7 T1
8 T2

8 T1
9

T1
10 T2

10 T3
10 T1

11 T2
11

T3
11 T4

11 T5
11 T6

11 T1
12

T2
12 T3

12 T4
12 T5

12

Figure A1. Independent domination stable trees with orders from 5 to 12.

Figure A2. All independent domination stable unicyclic graphs of orders from 3 to 10.
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Table A1. The number of independent domination stable trees with different orders.

Order 2 3 4 5 6 7 8 9 10 11 12
Number 1 0 0 1 0 1 2 1 3 4 5

Table A2. The number of independent domination stable unicyclic graphs with different orders.

Order 3 4 5 6 7 8 9 10
Number 1 0 1 3 0 8 10 9
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G. To study the strong metric dimension of graphs, a very important role is played by a structure
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some families of cactus graphs, and along the way, we give several structural properties of the strong
resolving graphs of the studied families of cactus graphs.
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1. Introduction

Topics concerning metric dimension and related parameters in graphs are nowadays very common
in the research community, probably based on its applicability to diverse practical problems of
identification of nodes in networks. One can find in the literature a large number of works dealing with
this topic, both from the applied and theoretical points of views. A popular research line in this subject
concerns studying different variants of metric dimension in graphs, which have had their beginnings
in the seminal standard metric dimension concept. Some of the most recent ones are probably the
edge metric dimension [1], the mixed metric dimension [2], the k-metric antidimension [3], the strong
partition dimension [4], and the multiset dimension [5,6], just to cite a few recent and remarkable cases.
One other interesting version is the strong metric dimension [7], which is now relatively well studied,
although a few open questions on this are still open. A fairly complete study on results and open
questions concerning the strong metric dimension of graphs can be found in [8].

One significant reason for the interest of several researchers in the strong metric dimension
of graphs concerns the closed relationship that exists between such parameter and the very well
known vertex cover number of graphs (and thus with the independence number, based on the Gallai’s
Theorem). To see this relationship, for a given graph G, the construction of a new related graph,
called strong resolving graph, was required. This graph transformation clearly raised some other
related questions on the transformation itself. That is for instance, given a graph G: can some properties
of the strong resolving graph of G be deduced? or; can we realize every graph H as the strong resolving
graph of another graph H′? These ones and several other questions were dealt with in [9], which was
the first work paying specific attention to the strong resolving graphs of graphs as a special graph
transformation. See also [10], where an open problem from [9] was settled.

Clearly, and as we will further notice, a good knowledge of the strong resolving graph of a graph
brings important contributions to studying the strong metric dimension of graphs. In this sense,
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this work is precisely aimed to study the strong resolving graphs and the strong metric dimension
of cactus graphs, with some emphasis on different special structures of such cactus graphs. As one
will also note through our exposition, strong resolving graphs are very challenging for those graphs
having a large number of induced cycles. Thus, cactus graphs represent a significant example of such
a situation. With this work, we also contribute to some open problems presented in [9].

The study of the strong metric dimension of some classes of cactus graphs was started in [11,12]
where the authors presented some general results for the strong metric dimension of corona product
graph and rooted product graphs, respectively. Clear definitions of these two graph products can be
found in [8]. A corona product graph or a rooted product graph can have the structure of a cactus
graph, depending on which are the graphs used as factors in the product. For instance, if G is a cycle
and H is a graph whose components are only singleton vertices or complete graphs K2, then it happens
that the corona product graph G � H is a cactus graphs. To generate a rooted product graph that is
a cactus graph, we may consider for example two graphs G and H which are paths or cycles.

On the other hand, we must mention that the strong metric dimension of unicyclic graphs (which
is a cactus graph too) was studied in [13]. There, among other results, several relationships between
the strong metric dimension of a unicyclic graph and that of its complement were given. A few other
sporadic results can be found in some other articles dealing with related topics that could include
examples of cactus graphs. However, we prefer to not include more references that are not essentially
connected with this article.

We hence now begin to formalize all the required notations and terminologies that shall be used
throughout the document. To this end, for the whole exposition, let G be a connected simple graph
with vertex set V(G). For two adjacent vertices x, y ∈ V(G), we use the notation x ∼ y. For a vertex x
of G, NG(x) denotes the set of neighbors that x has in G, i.e., NG(x) = {y ∈ V(G) : y ∼ x}. The set
NG(x) is called the open neighborhood of a vertex x in G and NG[x] = NG(x) ∪ {x} is called the closed
neighborhood of a vertex x in G. The degree of the vertex x is δG(x) = |NG(x)|. The diameter of G is
defined as D(G) = maxx,y∈V(G){dG(x, y)}, where dG(x, y) is the length of a shortest path between
x and y (a shortest x, y path). Two vertices x, y are called diametral if dG(x, y) = D(G). For a set
S ⊂ V(G), by 〈S〉 we represent the subgraph induced by S in G.

1.1. Strong Metric Dimension of Graphs

For two distinct vertices u, v ∈ V(G), a vertex w ∈ V(G) strongly resolves u, v if there is a shortest
u, w path containing v, or a shortest v, w path containing u. Note that it could happen w ∈ {u, v}.
A set S of vertices of G is a strong resolving set for G, if every two vertices of G are strongly resolved by
some vertex of S. The smallest cardinality among all strong resolving sets for G is called the strong
metric dimension of G, and is denoted by dims(G). We say that a strong resolving set for G of cardinality
dims(G) is a strong metric basis of G. It next appears the value of the strong metric dimension of some
basic graphs.

Observation 1. Let G be a connected graph G of order n ≥ 2.

(a) dims(G) = n − 1 if and only if G ∼= Kn.
(b) If G �∼= Kn, then dims(G) ≤ n − 2.
(c) dims(G) = 1 if and only if G ∼= Pn.
(d) If G ∼= Cn, then dims(G) = �n/2�.
(e) If G is a tree with l leaves, dims(G) = l − 1.

It is said that a vertex u of G is maximally distant from v if for every w ∈ NG(u), it happens
dG(v, w) ≤ dG(u, v). If u is maximally distant from v and v is maximally distant from u, then u and v
are mutually maximally distant, and we write that u, v are MMD in G. The set of MMD vertices of G is
denoted by ∂(G). Note that the set of MMD vertices of a graph G is also known as the boundary of G,
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as defined in [14,15]. An explanation on the equivalence of these two objects can be readily observed,
but also found in [16]. From these definitions, the following remarks are straightforward to observe.

Remark 1. Let G be a connected graph. Then every two vertices with degree 1 are MMD in G.

For any two mutually maximally distant vertices in G, there is no vertex of G that strongly resolves
them, except themselves. This allows to claim the following.

Remark 2. For every pair of mutually maximally distant vertices x, y of a connected graph G, and for every
strong metric basis S of G, it follows that x ∈ S or y ∈ S.

1.2. Strong Resolving Graph of a Graph

Given a connected graph G, the strong resolving graph of G, denoted by GSR, has vertex set ∂(G)

and two vertices u, v are adjacent if and only if u and v are MMD in G. We must remark that the strong
resolving graph of a graph G was defined in [7] as the graph with vertex set V(G) and two vertices
u, v are adjacent if and only if u and v are MMD in G. Observe that the difference between these two
definitions is the existence of isolated vertices in the strong resolving graph from [7]. The main reason
of using in this work the slightly different version is to have a simpler notation and more clarity while
proving the results. Moreover, this fact does not influence on the computations we made.

For several basic families of graphs, describing their strong resolving graphs is a straightforward
problem. We next recall some examples, which will maybe further useful, and to this end, we recall
that a vertex v of a graph G is simplicial, if its closed neighborhood induces a complete graph, and also
that a graph G is 2-antipodal if every vertex of G is diametral with exactly one other vertex of G.

Observation 2.

(a) If ∂(G) equals the set of simplicial vertices of G, then GSR ∼= K|∂(G)|. In particular, (Kn)SR ∼= Kn and for
any tree T, TSR ∼= Kl(T).

(b) For any 2-antipodal graph G of order n, GSR ∼= ⋃ n
2
i=1 K2. In particular, (C2k)SR ∼= ⋃k

i=1 K2.
(c) For odd cycles (C2k+1)SR ∼= C2k+1.

(d) For any complete k-partite graph G = Kp1,p2,...,pk such that pi ≥ 2, i ∈ {1, 2, . . . , k}, GSR ∼= ⋃k
i=1 Kpi .

In [9], realization and characterization problems of the strong resolving graph of a graph as
a graph transformation were firstly dealt with. That is, the following problems were studied.

• Realization Problem. Determine which graphs have a given graph as their strong resolving graphs.
• Characterization Problem. Characterize those graphs that are strong resolving graphs of some

graphs.

For instance, in [9] was proved that complete graphs, paths and cycles of order larger than four
are realizable as the strong resolving graph of other graphs. On the other hand, it was also proved
in [9] that stars and cycles of order four are not realizable as strong resolving graphs. Based on these
two facts, a conjecture concerning the not realization of complete bipartite graphs in general was
pointed out. Such conjecture was recently shown in [10].

In connection with these comments, it would be desirable to continue obtaining some realization
(and also characterization - although much more complicated) results for the strong resolving graphs of
graphs. We are then aimed in this work to present some realization results which are involving cactus
graphs.

1.3. Strong Metric Dimension of G versus Vertex Cover Number of GSR

Oellermann and Peters-Fransen [7] showed that the problem of finding the strong metric
dimension of graphs can be transformed into the well-known problem regarding the vertex cover of
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graphs. A set S of vertices of G is a vertex cover of G if every edge of G is incident with at least one
vertex of S. The vertex cover number of G, denoted by β(G), is the smallest cardinality of a vertex cover
of G. We refer to a β(G)-set in a graph G as a vertex cover set of cardinality β(G).

Theorem 1 ([7]). For any connected graph G,

dims(G) = β(GSR).

Recall that the largest cardinality of a set of vertices of G, no two of which are adjacent, is
called the independence number of G and is denoted by α(G). We refer to an α(G)-set in a graph G as
an independent set of cardinality α(G). The following well-known and useful result, due to Gallai,
states the relationship between the independence number and the vertex cover number of a graph.

Theorem 2 (Gallai’s theorem). For any graph G of order n,

α(G) + β(G) = n.

Thus, by using Theorems 1 and 2 we immediately obtain the next result.

Corollary 1. For any graph G,
dims(G) = |∂(G)| − α(GSR).

2. Cactus Graphs: General Issues

A cactus graph (also called a cactus tree) is a connected graph in which any two simple cycles have
at most one vertex in common. Equivalently, every edge of the graph belongs to at most one simple
cycle. Next we study the strong metric dimension of cactus graphs, and we first give some necessary
terminology. Note that a cycle of two vertices is precisely a path on two vertices. A vertex belonging to
at least two simple cycles is a cut vertex. A cycle having only one cut vertex is called a terminal cycle.
In a terminal cycle A, every vertex being diametral, in the subgraph induced by A, with respect to the
cut vertex of A is a terminal vertex. From now on, τ(G) denotes the set of terminal vertices of G. Also,
ς2(G) denotes the set of vertices v, of degree two, belonging to a cycle of order larger than two, being
MMD only with vertices of the same cycle which v belongs. Moreover, ι2(G) denotes the set of vertices
u, of degree two, belonging to a cycle of order larger than two being MMD with at least one vertex of
a different cycle which u belongs. The following remark can be easily observed.

Remark 3. Let G be a cactus graph. Then, two vertices x, y are MMD in G if and only if x, y ∈ ς2(G) ∪
ι2(G) ∪ τ(G).

Corollary 2. For any cactus graph G, ∂(G) = ς2(G) ∪ ι2(G) ∪ τ(G).

Theorem 3. Let G be a cactus graph. Then

|τ(G)|+
⌊ |ς2(G)|

2

⌋
− 1 ≤ dims(G) ≤ |τ(G)|+ |ι2(G)|+

⌊ |ς2(G)|
2

⌋
.

Proof. The lower bound follows from the following facts. Any two terminal vertices of G are MMD
on G, and thus, they induce a complete graph of order |τ(G)|. Also, vertices of ς2(G) induce at least
a graph with

⌊
|ς2(G)|

2

⌋
independent edges that need to be covered in GSR. Thus, one needs at least

|τ(G)| − 1 +
⌊
|ς2(G)|

2

⌋
to strongly resolve all the vertices of G.

To see the upper bound, it is only necessary to observe that the set τ(G) ∪ ι2(G) together with
half of vertices of the set ς2(G) form a strong resolving set of G, and so, we are done.
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Despite the fact that the bounds above are easily proved, we might notice that the problem of
describing the strong resolving graph, and similarly, of computing the strong metric dimension of
cactus graphs seems to be very challenging based on the situation that we can not control things like
the orders of the involved cycles, the number of terminal vertices and cut vertices, their adjacencies, etc.
In this sense, it is desirable to introduce extra conditions on the cactus graphs to have more possibilities
to give some practical results.

3. Strong Resolving Graphs

In this section we aim to describe the structure of the strong resolving graphs of several different
families of cactus graphs. We specifically center our attention into unicyclic graphs, bouquet of cycles
and chains of even cycles. With some of these results we contribute to the problem of realization of
some graphs as strong resolving graphs, that is, to the problems previously presented.

3.1. Unicyclic Graphs

Given a unicyclic graph G different from a cycle, from now on we will denote by Cr = v1v2 . . . vrv1

the subgraph induced by the unique cycle of G. A vertex v ∈ V(G) of degree one is a terminal vertex of
G, and T(G) is the set of terminal vertices of G. Note that the terminal vertices defined here represent
a particular case of the terminal vertices defined for cactus graphs in general. If the vertex vi of Cr has
degree greater than two, then we say that ui is a terminal vertex of vi, if dG(ui, vi) = min{dG(ui, vj, ) :
vj �= vi}. The set of terminal vertices of a vertex vi is denoted by t(vi). We will denote by c2(G) the set
of vertices of the cycle Cr having degree two. If v ∈ c2(G), then we will say that t(v) = ∅.

Notice that if the unicyclic graph G is isomorphic to the cycle Cn, then for n even (Cn)SR ∼= ⋃ n
2
i=1 K2

and for n odd (Cn)SR ∼= Cn as already presented in Observation 2. Thus, we will study the cases that
G �∼= Cn.

We begin with the following straightforward observations that are useful to describe the strong
resolving graph of any unicyclic graph.

Remark 4. Let G be a unicyclic graph. For every vertex x ∈ c2(G) there exists at least one vertex
y ∈ c2(G) ∪ T(G) such that x, y are MMD in G.

Remark 5. Let G be a unicyclic graph. Then two vertices x, y are MMD in G if and only if x, y ∈ c2(G) ∪
T(G).

Corollary 3. For any unicyclic graph G, ∂(G) = c2(G) ∪ T(G).

Notice that every two vertices x, y ∈ T(G) are MMD. Also, every vertex v ∈ c2(G) is MMD with
every vertex w satisfying one of the following conditions.

• w is a terminal vertex of a vertex u of Cr such that u, v are diametral vertices in Cr.
• w is a diametral vertex with v in Cr and w ∈ c2(G).

As a consequence of the above comments, we can deduce the structure of the strong resolving
graph of any unicyclic graph G in the following way. First notice that, according to Corollary 3,
GSR has vertex set equal to c2(G) ∪ T(G), and to describe the adjacency of vertices in GSR we consider
two cases.

GSR for r even.

• The set T(G) forms a clique in GSR and each vertex of T(G) has at most one neighbor in c2(G).
• If x, y ∈ c2(G) are diametral vertices in Cr, then 〈{x, y}〉 is a connected component of GSR

isomorphic to K2.
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• If x, y are diametral vertices in Cr, x ∈ c2(G) and y /∈ c2(G), then {x} ∪ t(y) forms a subgraph of
GSR isomorphic to K|t(y)|+1 and NGSR(x) = t(y).

As a consequence of the description above, we can observe that β(GSR) ≤ |c2(G)|−1
2 + |T(G)|.

GSR for r odd.

• The set T(G) forms a clique in GSR and each vertex of T(G) has at most two neighbors in c2(G).
• Let u ∈ c2(G) and let x, y being diametral vertices with u in Cr.

– If x, y ∈ c2(G), then 〈{u, x, y}〉 is a subgraph of GSR isomorphic to P3, NGSR(u) = {x, y} and
for every w ∈ {x, y}, δGSR(w) ≥ 2.

– If x, y /∈ c2(G), then 〈{u} ∪ t(x) ∪ t(y)〉 is a subgraph of GSR isomorphic to K|t(x)|+|t(y)|+1,
NGSR(u) = t(x) ∪ t(y) and for every w ∈ t(x) ∪ t(y), δGSR(w) ≥ |t(x)|+ |t(y)|+ 1 for r ≥ 5
(notice that if r = 3, then δGSR(w) = |t(x)|+ |t(y)|).

– If x ∈ c2(G) and y /∈ c2(G), then the set {u, x} ∪ t(y) form a subgraph (not induced) (Notice
that the vertices t(y) are adjacent between them in GSR.) of GSR isomorphic to a star graph
S1,|t(y)|+1 with central vertex u, NGSR(u) = {x} ∪ t(y), δGSR(x) ≥ 2 and for every w ∈ t(y),
δGSR(w) ≥ |t(y)|+ 1.

Similarly to the case when r is even, we can observe here that β(GSR) ≤ |c2(G)|
2 + |T(G)|.

We define the branch restricted unicyclic graph T (G) associated to a unicyclic graph G in the
following way. We begin with taking the cycle Cr in G and removing the remaining vertices of G.
Then we add t(vi) pendant edges to every vertex vi in Cr. Figure 1 shows an example of a unicyclic
graph, its branch restricted unicyclic graph and its strong resolving graph.

G T (G) GSR

Figure 1. A unicyclic graph G, T (G) and GSR.

Lemma 1. Let G be a unicyclic graph and T (G) be its branch restricted unicyclic graph. Then (T (G))SR is
isomorphic to GSR

Proof. From Remarks 4 and 5, and by the definition of the branch restricted unicyclic graph, we deduce
that (T (G))SR is isomorphic to GSR.

Our next step is dedicated to present a realization result for some corona product graphs, where
the solution precisely involves the use of unicyclic graphs. We first recall that the corona product graph
G � H is defined as the graph obtained from a graph G of order n and a graph H, by taking one copy of
G and n copies of H, and then joining by an edge each vertex from the ith-copy of H with the ith-vertex
of G.

Proposition 1. For any integer n ≥ 3, there exists a graph G such that GSR ∼= Kn � K1.

Proof. We consider the unicyclic graph G with a cycle C2n = v1v2 . . . v2nv1 such that the vertices v1,
v2, . . . , vn form the set c2(G) and the remaining ones from the cycle have exactly one terminal vertex.
Since 2n is an even number according to the Description of GSR it clearly follows that GSR is isomorphic
to K|T(G)| where each vertex of T(G) has exactly one neighbor in c2(G).
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3.2. Bouquet of Cycles

Let Ba,b,c be a family of graphs obtained in the following way. Each graph B ∈ Ba,b,c is a bouquet
of a + b + c cycles where a of them are even cycles (of order at least four), b are odd cycles of order
larger than three, c are cycles of order three, a, b, c ≥ 0, and a + b + c ≥ 2. All cycles of B ∈ Ba,b,c have
the common vertex w. One example of a bouquet of cycles is given in Figure 2. Let Cr1 , Cr2 , . . . , Cra be
the even cycles of order at least four in B ∈ Ba,b,c and Cs1 , Cs2 , . . . , Csb be the odd cycles of order larger
than three in B ∈ Ba,b,c.

Figure 2. A bouquet of cycles B ∈ B2,2,1 containing the cycles C6, C4, C9, C7 and C3.

In [17], the authors have described the structure of the strong resolving graph of the graph
B ∈ Ba,b,c as follows. By completeness of our exposition, we copy exactly the description presented
there, since it makes no sense to do some changes on it, as it is fairly well written.

• The set of a vertices of the cycles Cr1 , Cr2 , . . . , Cra which are diametral with w induces a complete
graph in BSR. We denote such set as Va (in Figures 2 and 3, the black colored vertices).

• The set of 2b vertices of the cycles Cs1 , Cs2 , . . . , Csb which are diametral with w induces a complete
multipartite graph K2,...,2 with b bipartition sets each of cardinality two in BSR. We denote such
set as V2b (in Figures 2 and 3, the red colored vertices).

• The set of 2c vertices of the cycles C3 different from w induces a complete graph in BSR. We denote
such set as V2c (in Figures 2 and 3, the blue colored vertices).

• The set of vertices of each odd cycle Csi , i ∈ {1, . . . , b}, which are different from w induces a path
of order si − 1, in BSR, whose leaves are the two vertices that are diametral with w.

• The set of vertices of each cycle Crj , j ∈ {1, . . . , a}, which are not diametral with w induces a graph
isomorphic to the disjoint union of (rj − 2)/2 complete graphs K2 in BSR.

• Every three vertices x, y, z such that x ∈ Va, y ∈ V2b and z ∈ V2c are pairwise adjacent.

Figure 3 shows the strong resolving graph of the graph illustrated in Figure 2.

Figure 3. The strong resolving graph BSR of the graph illustrated in Figure 2.

If we study the bouquet of cycles B ∈ Ba,b,c with b = 0 (or equivalently, B has not odd cycles of
order larger than three), and Cr1 , Cr2 , . . . , Cra are the cycles of even order, then the strong resolving
graph BSR is composed by the complete graph Ka+2c and ∑a

i=1
ri−2

2 components isomorphic to K2.

Now, we again give some realization results for strong resolving graphs. To this end, we need
to define a graph structure which we call a partial multisubdivided complete graph K2n(p1, p2, . . . , pn).
That is, a complete graph K2n where each edge of a perfect matching of this graph is subdivided pi ≥ 0
times for i ∈ {1, 2, ..., n} (the case when some pi = 0 means that the edge corresponding to pi is not
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subdivided). Moreover, recall that the cocktail party graph Rn, also called the hyperoctahedral graph,
is a n − 2 regular graph on n vertices.

Proposition 2. For any integer n ≥ 2, there exists a graph G such that GSR is isomorphic to
K2n(p1, p2, . . . , pn).

Proof. We consider the bouquet of cycles B ∈ Ba,b,c with a, c = 0, b = n and Cp1+3, Cp2+3, . . . , Cpn+3

are the cycles of odd order larger than three. According to the construction of the strong resolving
graph BSR, the subgraph 〈Vb〉 is isomorphic to R2n and the set of vertices of each odd cycle Cpi+3,
i ∈ {1, . . . , b}, which are different from w induces a path of order pi + 2, in BSR, whose leaves are the
two vertices of this cycle that are not adjacent in R2n.

Corollary 4. For any integer n ≥ 2, there exists a graph G such that GSR contains the cocktail party graph
R2n as an induced subgraph.

3.3. Chains of Even Cycles

A chain of cycles is a cactus graph in which, every cycle has order at least three and there are only
two terminal cycles. Notice that in such case every non-terminal cycle has exactly two cut vertices,
such that each cut vertex belongs to exactly two cycles. We next center our attention into the case of
chains of even cycles. To this end, we need some terminology and notation. A chain of even cycles is
a straight chain, if the cut vertices of every cycle in the chain are diametral in the cycle. Note that each
straight chain contains two diametral vertices, which are the unique terminal vertices of this chain.

For the purposes of simplifying, given an integer k ≥ 0, we shall define the next family Fk of
graphs. Each graph F ∈ Fk is a chain of even cycles constructed as follows.

• We begin with k + 1 straight chains of even cycles, say G0, . . . , Gk, satisfying that the last cycle
of the straight chain Gi is isomorphic to the first cycle of the straight chain Gi+1 for every i ∈
{0, . . . , k − 1}.

• Assume that the last cycle of each straight chain Gi is Ci
r = vi

0vi
1 · · · vi

r−1vi
0, for every i ∈ {0, . . . , k}.

By the item above, this Ci
r (in Gi) is isomorphic to the first cycle of the straight chain Gi+1 with

i ∈ {0, . . . , k − 1}.
• Assume also that the terminal vertices of each straight chain Gi are ai, bk−i, for every i ∈ {0, . . . , k}.
• To construct our chain of even cycles F ∈ Fk, for every i ∈ {0, . . . , k − 1}, we identify the last

cycle Ci
r of Gi with the first cycle Ci+1

r of Gi+1 (that are isomorphic) as follows. Every vertex vi
j of

Ci
r is identified with the vertex vi+1

j+t for some t �= 0 and every j ∈ {0, r − 1} (operations with the
subindex of v are done modulo r).

Notice that for instance, for the chain of even cycles F ∈ Fk described above, the two terminal
vertices of it are a0 and b0. Figure 4 shows a fairly representative example of a chain of even cycles.
Recall that the way of drawing such graph (with respect to directions of the “turns” in the chain) does
not influence in our purposes. The chain of even cycles F ∈ Fk presented in the Figure 4 has four
straight chains of even cycles: G0 contains C1 and C2, G1 contains C2, C3 and C4, G2 contains C4, C5

and C6, and G3 contains C6, C7 and C8 .
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a0 C1

b3
a1

C2

C3

a2

b2

C4 C5

a3

b1C6

C7

b0

C8

Figure 4. A chain of cycles F ∈ F3 containing six cycles C4 and two cycles C6.

We next describe the strong resolving graph of a chain of even cycles F ∈ Fk. We need first the
following observations.

Remark 6. For any chain of even cycles F ∈ Fk, a vertex x belongs to ∂(F) if and only if x has degree two.

Remark 7. In a straight chain of cycles, the two terminal vertices form a pair of MMD vertices, as well as each
pair of diametral vertices in each cycle.

Observation 3. For a chain of even cycles F ∈ Fk, and for every i ∈ {0, . . . , k} and j ∈ {i, . . . , k} it follows.

• The terminal vertex ai of the straight chain Gi is MMD with every vertex bk−j of the straight chain Gj.

• The terminal vertex bi of the straight chain Gk−i is MMD with every vertex ak−j of the straight chain
Gk−j.

• In any cycle of F, any pair of diametral (in the cycle) vertices being not cut nor terminal vertices of F are
MMD.

For instance, in Figure 4, the red vertex a1 is MMD with the blue vertices b2, b1, b0, while the
blue vertex b1 is MMD with the red vertices a2, a1, a0. Moreover, again in Figure 4, any pair of green
diametral vertices belonging to the same cycle are MMD in F.

With these observations above, we are able to describe the structure of FSR for every chain of
even cycles F ∈ Fk. To do so, we shall need the following construction, which represents a bipartite
graph Jr of order 2r + 2 for some r ≥ 3. The two bipartition sets of the bipartite graph Jr are the sets
U = {a0, . . . , ar} and V = {b0, . . . , br}. The edges of Jr are as follows. For every i ∈ {0, . . . , �r/2�} and
every j ∈ {0, . . . , r − i}, there exist the edges aibj and biaj.

• The set of vertices ai and bi, with i ∈ {0, . . . , k}, forms a component of the graph FSR isomorphic
to a bipartite graph Jk.

• In each cycle of F, each pair of diametral vertices in the cycle, not including terminal nor cut
vertices, induces a graph isomorphic to K2 in FSR.

We may remark that, the strong resolving graph of a straight chain of cycles is simply a union of
several complete graphs K2. The strong resolving graph of the chain of even cycles shown in Figure 4
is drawn in Figure 5.

a0

b0

a1

b1

a2

b2

a3

b3

Figure 5. The strong resolving graph FSR of the graph illustrated in Figure 4.
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We end this subsection by giving a realization result for strong resolving graphs involving chains
of even cycles.

Corollary 5. For any integer k ≥ 2, there exists a chain of even cycles F ∈ Fk such that FSR contains the
bipartite graph Jk as a component.

4. The Strong Metric Dimension

We are next centered into computing or bounding the strong metric dimension of the cactus
graphs which we have studied in the previous section.

4.1. Unicyclic Graphs

Our first results shows the relationship between the strong metric dimension of a unicyclic graph
and that of its branch restricted unicyclic graph.

Lemma 2. Let G be a unicyclic graph and T (G) be its branch restricted unicyclic graph. Then

dims(G) = dims(T (G)).

Proof. By Lemma 1 and Theorem 1, we derive that dims(G) = β(GSR) = β((T (G))SR) = dims(T (G))

and the proof is complete.

Theorem 4. Let G be a unicyclic graph with unique cycle Cr. Then

max
{⌈ r

2

⌉
, |T(G)| − 1

}
≤ dims(G) ≤ |T(G)|+

⌊ |c2(G)|
2

⌋
.

Proof. From Remark 1 we have that every strong resolving basis must contain at least |T(G)| − 1
vertices of degree one. So, dims(G) ≥ |T(G)| − 1. On the other hand, for every vertex i ∈ {1, . . . , r}
there exists at least a vertex wi ∈ t(vi) ∪ {vi} such that wi ∈ ∂(G) (notice that it could happen wi = vi).
Thus we have that dims(G) = β(GSR) ≥ |∂(G)|

2 ≥
⌈ r

2
⌉
.

On the other side, since T(G) forms a clique in GSR and for every u ∈ c2(G) there exists at least one
vertex v ∈ ∂(G) such that they are MMD, according to the description of GSR presented in the previous
section, we have dims(G) = β(GSR) ≤ |T(G)|+

⌊
|c2(G)|

2

⌋
. Therefore the proof is complete.

As we can see in the following, the bounds above are tight. In particular, we characterize all the
unicyclic graphs having a unique cycle of even order that are attaining the upper bound.

Theorem 5. Let G be a unicyclic graph with a unique cycle Cr of even order. Then dims(G) = |T(G)| +⌊
|c2(G)|

2

⌋
if and only if |c2(G)| = r − 1.

Proof. (⇐) We assume |c2(G)| = r − 1. Let v be the only vertex of Cr with degree greater than two,
and let u be the diametral vertex with v in Cr. So, every two vertices in t(v)∪ {u} are MMD. Also, every
two diametral vertices in c2(G)− {u} are MMD. Thus, GSR is formed by r−2

2 = |c2(G)|−1
2 connected

components isomorphic to K2 and one component isomorphic to K|t(v)|+1. Since T(G) = t(v),
we have that

dims(G) = β(GSR) = β(K|T(G)|+1) + β

⎛⎜⎝
|c2(G)|−1

2⋃
i=1

K2

⎞⎟⎠ = |T(G)|+ |c2(G)| − 1
2

= |T(G)|+
⌊ |c2(G)|

2

⌋
.
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(⇒) We assume now that dims(G) = |T(G)|+
⌊
|c2(G)|

2

⌋
is satisfied. If |c2(G)| < r − 1, then there

are at least two vertices x, y such that t(x) ≥ 1 and t(y) ≥ 1. We consider two cases.
Case 1: x, y are diametral in Cr. Hence, t(x) ∪ t(y) forms a clique in GSR of cardinality |t(x)|+

|t(y)|. Also, the vertices in t(x) ∪ t(y) have no neighbor from c2(G) in GSR. Note that, there could be
some other vertices in T(G) having neighbors from c2(G) in GSR, and if there is one of such vertices,
say z, then |t(z)| ≥ 1 and t(x) ∪ t(y) ∪ t(z) is also a clique in GSR. However, this will not influence on
the fact that, in order to cover the edges of GSR, one can leave one vertex w of t(x) ∪ t(y) outside of the
vertex cover set, by simply taking T(G) \ {w} as a part of such vertex cover set. Thus, we have that
β(GSR) ≤ |T(G)| − 1 +

⌊
|c2(G)|

2

⌋
, a contradiction.

Case 2: x, y are not diametral in Cr. Let x′, y′ ∈ c2(G) being diametral vertices with x, y,
respectively. Hence, t(x) ∪ t(y), t(x) ∪ {x′} and t(y) ∪ {y′} form cliques in GSR. Also, x′, y′ have
no neighbor in GSR other than that ones in t(x), t(y), respectively. Thus, in order to cover the edges of
GSR, we can leave outside of the vertex cover set both vertices x′, y′, by simply taking T(G) in such
vertex cover set. On the other hand, to cover the remaining vertices in c2(G) \ {x′, y′} we will need
at most

⌊
|c2(G)|−2

2

⌋
. We then deduce that β(GSR) ≤ |T(G)|+ |c2(G)|−2

2 = |T(G)| − 1 + |c2(G)|/2 − 1,
a contradiction again.

Since we have contradiction on both cases above, it must happen that |c2(G)| = r − 1, and the
proof is completed.

Note that the upper bound of Theorem 4 is also tight when the unique cycle of G is odd, but the
characterization of the limit case seems to be a hard working task. For instance, if G has a unique cycle
of odd order and |c2(G)| = r − 1, then a “relatively” similar argument to the first part of the proof of
Theorem 5 leads to conclude that dims(G) = |T(G)|+

⌊
|c2(G)|

2

⌋
. Other cases, when |c2(G)| < r − 1 can

be hand computed, and we leave this to the reader.

Proposition 3. Let G be a unicyclic graph with a unique cycle Cr of even order. Then dims(G) = r
2 if and only

if the following items hold.

(i) |t(x)| ≤ 1 for every x of Cr.
(ii) There is at most one pair of diametral vertices in Cr each one having one terminal vertex.

Proof. (⇒) Assume dims(G) = r
2 . If |t(x)| > 1 for some x of Cr, then let x′ be the vertex of Cr being

diametral with x in Cr. Hence, t(x) ∪ t(x′) (or t(x) ∪ {x′} if x′ ∈ c2(G)) is a clique in GSR, and so,
in order to cover the edges of GSR, we need at most r

2 in connection with pairs of diametral vertices
in Cr together with at least one extra vertex from t(x), since |t(x)| > 1 (there are at least two MMD
vertices in t(x)). Thus, (i) follows.

Now, let a be the number of pairs of diametral vertices in Cr each one having one terminal
vertex. Suppose that a ≥ 2. Also, let b be the number of pairs of diametral vertices in Cr, in which
one of them has one terminal vertex and the other one belongs to c2(G), and let c be the number
of pairs of diametral vertices in Cr, each one belonging to c2(G). Note that the a + b + c = r

2 and
that |T(G)| = 2a + b. Also, the 2a vertices and the b vertices of T(G), corresponding to that pairs
mentioned above, form a clique in GSR such that the 2a vertices has no neighbors other than that ones
in such clique, and such that each of the b vertices has exactly one other neighbor from c2(G) in GSR.
Moreover, the c pairs of vertices also mentioned above, form c components of GSR isomorphic to K2.
In consequence, we observe that β(GSR) = 2a − 1 + b + c = r

2 − 1 + a ≥ r
2 + 1. This is a contradiction,

and the proof of (ii) is complete.
(⇐) Assume on the other hand that G satisfies (i) and (ii). We shall use the same notation of

a, b and c from the implication above. By (ii), 0 ≤ a ≤ 1. If a = 1, then dims(G) = β(GSR) =

2a − 1 + b + c = r
2 − 1 + a = r

2 (note that the equality β(GSR) = 2a − 1 + b + c follows by using (i)).
Also, if a = 0, then dims(G) = β(GSR) = b + c = r

2 (we again use (i) as explained before).
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To conclude this section, we next show that the differences between the lower (partially) and
upper bounds of Theorem 4, and the real value of the strong metric dimension of some unicyclic
graphs can be as large as possible.

We consider the unicyclic graph Gk with a cycle C2n = v1v2 · · · v2nv1 and 1 ≤ k ≤ n such that the
vertices vk+1, vk+2, . . . , v2n form the set c2(G), and each vertex vi for i ∈ {1, . . . , k} has one terminal
vertex denoted by xi. Since 2n is an even number, and according to the description of the strong
resolving graph of a unicyclic graph, it clearly follows that (Gk)SR consists of a graph isomorphic to
K|T(G)| � K1 and

⌊
|c2(G)|−k

2

⌋
graphs isomorphic to K2. Thus, dims(Gk) = |T(G)|+

⌊
|c2(G)|−k

2

⌋
. Since

1 ≤ k ≤ |c2(G)|, we can easily observe that |T(G)|+
⌊
|c2(G)|

2

⌋
− dims(Gk) and dims(Gk)− (|T(G)| − 1)

can be arbitrarily large.

4.2. Bouquet of Cycles

For the results of this subsection, we use the terminology and notations given in Section 3.2.

Theorem 6. For any bouquet of cycles B ∈ Ba,b,c,

dims(B) = a +
a

∑
i=1

ri − 2
2

+ 2b +
b

∑
j=1

sj − 3
2

+ 2c − 1.

Proof. According to the description of BSR presented before, it follows that BSR consist of a graph
isomorphic to Ka+2b+2c(s1 − 3, s2 − 3, . . . , sb − 3, 0, 0, . . . , 0) and ∑a

i=1
ri−2

2 graphs isomorphic to K2.
First we consider the subgraph H induced by NBSR [Va ∪ V2b ∪ V2c]. Notice that β(H) = a + 2b +

2c − 1. In order to compute β(Ka+2b+2c(s1 − 3, s2 − 3, . . . , sb − 3, 0, 0, . . . , 0)) we need to cover the
remaining edges in BSR corresponding to edges of the odd cycles in B. Since for each odd cycle Csi for
i ∈ {1, . . . , b}, two edges of it are already considered in H, it remains to cover si − 4 edges which are
inducing a path of order si − 3. Thus, to cover each cycle Csi we need si−3

2 vertices.
On the other hand, to cover the ∑a

i=1
ri−2

2 graphs isomorphic to K2, ∑a
i=1

ri−2
2 extra vertices are

needed. The sum of these three quantities above gives the vertex cover number of BSR, and also the
strong metric dimension of B, by using Corollary 1, which completes the proof.

4.3. Chains of Even Cycles

In order to give a formula for the strong metric dimension of chains of even cycles, we need to
first compute the value of the vertex cover number of a bipartite graph Jr as described in Section 3.3.

Lemma 3. For any bipartite graph Jr, β(Jr) = r + 1.

Proof. We first note that if r is an even integer, then the set of edges Er = {a0br, a1br−1, . . . , ar/2br/2} ∪
{b0ar, b1ar−1, . . . , br/2−1ar/2+1} is a maximum matching in Jr of cardinality r/2 + 1 + r/2 = r + 1.

On the other hand, if r is odd, then the set of edges Er = {a0br, a1br−1, . . . , a(r−1)/2b(r+1)/2} ∪
{b0ar, b1ar−1, . . . , b(r−1)/2a(r+1)/2} is a maximum matching in Jr of cardinality (r − 1)/2 + 1 + (r −
1)/2 + 1 = r + 1.

Thus, since Jr is bipartite, by using the famous Kőnig’s Theorem, we obtain the required result.

Theorem 7. For any chain of even cycles F ∈ Fk of order n with c cut vertices,

dims(F) =
n − c

2
.

Proof. According to the description of FSR presented before, the vertices ai and bi, with i ∈ {0, . . . , k},
forms a component of the graph FSR isomorphic to a bipartite graph Jk of order 2k + 2. For completing
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the graph FSR, we need to add n−c−2k−2
2 graphs isomorphic to K2. Hence, by using Theorem 1,

Lemma 3 and Observation 1, we have dims(F) = β(Jk) +
n−c−2k−2

2 β(K2) =
n−c

2 .

5. Concluding Remarks

We have studied the strong metric dimension of cactus graphs in this work. Along the way, we
have given several contributions to the realization and characterization results of strong resolving
graphs involving cactus graphs. The results shown allow to observe that working in this topic for the
specific case of cactus graphs is very challenging, although some particular structures of such graphs
can be easier handled. These are the cases of unicyclic graphs, chains of even cycles and bouquet
of cycles, for which we have given the constructions of their strong resolving graphs and bounds
or closed formulas for the values of their strong metric dimensions. As a consequence of this study,
the following open questions are raised.

• Describe the structure of the strong resolving graphs of some classes of cactus graphs, and compute
the strong metric dimension of the graphs in such families.

• Apply the results concerning the descriptions of the strong resolving graphs of the graphs given
in the work to other problems, like for instance computing the strong partition dimension (see [4])
of such graphs.

• Continue the lines of this study for other more general families that cactus graphs. This could
include for instance, planar graphs or chordal graphs.
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1. Introduction and Preliminaries

The graph isomorphism problem is not known to be solvable in polynomial time nor to be
NP-complete (see [1]) and moreover, it is well known that constructing the automorphism group
is at least as difficult (in terms of computational complexity) as solving the graph isomorphism
problem (see [2]). Therefore, it is interesting to provide tools that give information about such
automorphism groups.

Determining sets were introduced simultaneously by Boutin [3] and Erwin and Harary [4] (they
called them fixing sets) in 2006, to deal with the problem of identifying the automorphism group
of a graph. These sets are a generalization of resolving sets, independently introduced by Slater [5]
and Harary and Melter [6], motivated by the problem of identifying the location of an intruder in a
network, by means of distances. Resolving sets and some related sets were recently studied in [7–12].
Determining sets and resolving sets were jointly studied (see [13,14]). Furthermore, determining sets
are closely related to the notion of “symmetry breaking”, firstly studied by Alberson and Collins [15]
in 1996. The interest of this notion, beyond the information it provides about the automorphism group,
was pointed out by Bailey and Cameron in their survey paper [16] of 2011, citing Babai’s words [17]:

“In fact, breaking regularity is one of the key tools in the design of algorithms for graph
isomorphism; the graph isomorphism problem has therefore been one of the strongest
motivators of the study of all sorts of resolving/discriminating sets, and perhaps the only
deep motivator of the study of those in contexts where no group is present.”

In this paper, we deepen the study of determining sets of general graphs, providing both lower
and upper bounds of this parameter in terms of the so-called twin graph. We follow the same spirit
as other works that find general bounds involving other aspects of graphs, such as the number of
automorphisms [3] or the number of orbits [4]. Furthermore, our bounds allow us to obtain the
determining number of some graph classes (cographs and unit interval graphs), which is a problem of
interest due to the NP-hardness of the computation of this parameter in arbitrary graphs [18]. Indeed,
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many papers in the literature are devoted to study the determining number of specific graph families:
trees [4,13], Cartesian products [4,13,19], Kneser and Johnson graphs [3,20], twin-free graphs [14], and
Cayley graphs [21]; among others.

We now introduce the definitions and notations that we shall need throughout the rest of the
paper. All graphs considered here are finite, simple and undirected. An automorphism of a graph G
is a bijective mapping φ : V(G) −→ V(G) so that φ(u)φ(v) ∈ E(G) if and only if uv ∈ E(G). The
set Aut(G) of all automorphisms of G forms a group under composition, and its identity element is
denoted by idG. We recall the definition of determining set and determining number from [3].

Definition 1 ([3]). A subset S of the vertices of a graph G is called a determining set if whenever g, h ∈ Aut(G)

agree on the vertices of S, they agree on all vertices of G. That is, S is a determining set if whenever g and h
are automorphisms with the property that g(s) = h(s) for all s ∈ S, then g = h. The determining number of a
graph G is the smallest integer r so that G has a determining set of size r. Denote this by Det(G).

We quote from [3] the following example illustrating this concept.

Example 1. The Petersen graph is shown in Figure 1, where the vertices are identified with the 2-subsets of a
5-set. The Persersen graph has a determining number equal to three and examples of minimum determining sets
of this graph are S = {{1, 2}, {2, 4}, {2, 5}} and T = {{1, 2}, {2, 3}, {3, 4}} (see [3]).

{1, 2}

{1, 3}

{1, 4}

{1, 5}

{2, 3}

{2, 4}

{2, 5}
{3, 4}

{4, 5}
{3, 5}

Figure 1. The Petersen graph.

The following useful characterization of determining sets, in terms of the stabilizer of a vertex
subset, can be also found in [3]. The stabilizer of a vertex subset S ⊆ V(G) is the automorphism
subset StabG(S) = {φ ∈ Aut(G) : φ(u) = u, ∀u ∈ S}. Observe that StabG(S) =

⋂
s∈S StabG({s}), and

moreover S ⊆ T implies that StabG(T) ⊆ StabG(S).

Proposition 1 ([3]). Let S be a subset of the vertices of a graph G. Then S is a determining set of G if and only
if StabG(S) = {idG}.

We now quote from [22] the construction of the twin graph G1 associated with a given graph
G. This graph will be the main tool to obtain our new bounds. For a vertex u ∈ V(G), the open
and the closed neighborhood of u are respectively denoted by N(u) and N[u] and the degree of u
is deg(u) = |N(u)|. We say that two different vertices u, v ∈ V(G) are twins when N(u) = N(v) or
N[u] = N[v]. This notion induces the following equivalence relation on V(G): u ≡ v if and only if
either u = v or u and v are twins. This allows defining the twin class of u as [u] = {v ∈ V(G) : u ≡ v}.
We say that a twin class is trivial if it contains just one vertex and non-trivial in other case. When each
twin class is trivial, we say that G is twin-free. For S ⊆ V(G), we write [S] = ∪u∈S[u].

Assuming that there are exactly n(1) different equivalence classes, we can consider the partition
[u1], . . . , [un(1) ] of V(G) induced by them, where every ui is a representative of [ui]. The twin graph of
G, denoted by G1, is the graph with vertex set the set of equivalence classes of G. The vertex of G1
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representing the equivalence class [u] is denoted by u1. The edge set is E(G1) = {u1v1 : uv ∈ E(G)}.
For S ⊆ V(G), we denote S1 = {u1 ∈ V(G1) : u ∈ S}.

Please note that G1 is well defined, as shown in the following lemma.

Lemma 1 ([22]). Let G1 be the twin graph of a graph G. Then, u1v1 ∈ E(G1) if and only if xy ∈ E(G) for all
x ∈ [u],y ∈ [v].

We illustrate the construction of the twin graph of a given graph G with the following example.

Example 2. A graph G and its twin graph G1 are shown in Figure 2a,b, respectively. Please note that u2 and
u4 are twin vertices of G, so u1

2 = u1
4 in G1.

u0

u1 u2 u3 u4

(a) A graph G

u1
0

u1
1 u1

3 u1
2 = u1

4

(b) The graph G1

Figure 2. A graph G and its twin graph G1.

This paper is organized as follows. In Section 2 we use the twin graph G1 to provide a lower
bound of the determining number of an arbitrary graph G, whereas in Section 3 we use similar tools to
give an upper bound. Section 4 is devoted to use these bounds to compute the determining number
of cographs and unit interval graphs. We conclude the paper in Section 5 with some remarks and
future work.

2. A Lower Bound of Det(G) from Removing Twins

In this section, we present a new lower bound of the determining number of a graph. A lower
bound in terms of both orders of G and G1 is already known (see [14]).

Lemma 2 ([14]). Let G be a graph of order n such that G1 has order n(1). Then,

n − n(1) ≤ Det(G).

We present a different approach that relates the determining numbers of G and G1. To this end,
we need to define the following natural mapping between the automorphism groups of both G and G1:

T̃ : Aut(G) → Aut(G1)

given by T̃ (φ)(u1) = φ(u)1. In the following lemma, we show that this mapping is a well-defined
group automorphism.

Lemma 3. For every graph G, the mapping T̃ satisfies the following properties:

1. T̃ is well-defined.
2. T̃ is a group homomorphism.

Proof. 1. Firstly, we have to check that T̃ (φ)(u1) does not depend on the choice of the
representative of u1. By definition of graph automorphism, it is clear that N(u) = N(v) if
and only if N(φ(u)) = N(φ(v)), and also N[u] = N[v] if and only if N[φ(u)] = N[φ(v)], so u, v
are twin vertices if and only of φ(u), φ(v) are twin vertices. Let u, v ∈ V(G) be two different
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vertices such that v1 = u1, then u, v are twin vertices and φ(v), φ(u) are also twin vertices, that
means that φ(v)1 = φ(u)1. Therefore T̃G(φ)(u1) = φ(u)1 = φ(v)1 = T̃ (φ)(v1).

On the other hand, for u1, v1 ∈ V(G1), Lemma 1 yields u1v1 ∈ E(G1) if and only if uv ∈ E(G),
or equivalently φ(u)φ(v) ∈ E(G), that is φ(u)1φ(v)1 = T̃ (φ)(u1)T̃ (φ)(v1) ∈ E(G1), as desired.

2. Clearly T̃ (φ ◦ φ′)(u1) = (φ ◦ φ′)(u)1 = φ(φ′(u))1 = T̃ (φ)(φ′(u)1) = T̃ (φ) ◦ T̃ (φ′)(u1), so
T̃ (φ ◦ φ′) = T̃ (φ) ◦ T̃ (φ′).

We will also need the following definition of a special type of vertex subset. We say that a set
Ω ⊆ V(G) is a plenty twin set if no pair of vertices of V(G) \ Ω are twins. Equivalently, Ω is a plenty
twin set if it contains all but at most one vertices of every non-trivial twin class. In particular, this
gives that every determining set is a plenty twin set (see [14], proof of Lemma 3.3). However, there are
plenty twin sets that are not determining sets, as we show with the following example.

Example 3. The graph G in Figure 3 has exactly two non-trivial twin classes, [u1] = {u1, v1}, [u2] = {u2, v2},
therefore {u1, u2} is a plenty twin set. Moreover, the mapping φ satisfying φ(w) = w for every vertex
w ∈ {u, u1, v1, u2, v2}, φ(a1) = a2, φ(a2) = a1, φ(b1) = b2, φ(b2) = b1 is a non-trivial graph automorphism
fixing both u1, u2, so {u1, u2} is not a determining set of G.

u

u2 v2u1 v1
a1 a2

b1 b2

Figure 3. {u1, u2} is a plenty twin set but it is not a determining set.

A basic property of plenty twin sets is the following.

Lemma 4. If Ω is a plenty twin set of a graph G, then Ω1 is a plenty twin set of G1.

Proof. On the contrary, let us assume that there is a pair of twins x1, y1 ∈ V(G1) \ Ω1. Thus, we have
that x, y ∈ V(G) \ [Ω], and so [x] = {x} and [y] = {y}, because Ω is a plenty twin set.

In particular, x, y are not twins in G, and so we may assume without loss of generality the existence
of a vertex z ∈ V(G) \ {x, y} such that z ∈ NG(x) and z �∈ NG(y). By Lemma 1, z1 ∈ NG1(x1) and
z1 /∈ NG1(y1). This contradicts the fact that x1 and y1 are twins.

In the following lemma, we present the general behaviour of the stabilizer of a vertex subset
under the mapping T̃ and also the special situation of plenty twin sets.

Lemma 5. Let G be a graph. For any subset S ⊆ V(G), it holds that

T̃ (StabG(S)) ⊆ StabG1(S1).

Furthermore, if S is a plenty twin set, then the equality holds.

Proof. Let φ ∈ Aut(G) such that φ(u) = u for all u ∈ S. Thus, T̃ (φ)(u1) = φ(u)1 = u1, and so
T̃ (φ) ∈ StabG1(S1), which gives the desired inclusion.

Now, assume that S is a plenty twin set and let ψ ∈ StabG1(S1), and let us construct the mapping
φ : V(G) −→ V(G) in the following way. If u ∈ V(G) satisfies u1 ∈ S1 then we define φ(u) = u (in
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particular φ(u) = u for all u ∈ S). In this case, it is clear that ψ(u1) = u1 = φ(u)1. On the other hand,
if u ∈ V(G) satisfies u1 ∈ V(G1) \ S1 then, ψ(u1) ∈ V(G1) \ S1, because ψ ∈ StabG1(S1). Thus there
exists v1 ∈ V(G1) \ S1 such that ψ(u1) = v1. Using that S is a plenty twin set, we obtain that [v] = {v},
and we define φ(u) = v. Please note that in this case, again ψ(u1) = v1 = φ(u)1.

Let us check that φ is an automorphism of G. Indeed, uv ∈ E(G) if and only if u1v1 ∈ E(G1),
which is equivalent to φ(u)1φ(v)1 = ψ(u1)ψ(v1) ∈ E(G1) since ψ is an automorphism of G1. Again,
this is equivalent to φ(u)φ(v) ∈ E(G), by Lemma 1. This proves that φ ∈ Aut(G).

By construction, ψ(u1) = φ(u)1 = T̃ (φ)(u1) for all u ∈ V(G), and so ψ = T̃ (φ). Furthermore, φ

fixes each element of S, which means φ ∈ StabG(S). Therefore, T̃ (StabG(S)) ⊇ StabG1(S1).

We now present the announced lower bound of the determining number of a graph, in terms of
the corresponding parameter of its twin graph.

Theorem 1. If S is a determining set of a graph G then S1 is a determining set of the twin graph G1.
Consequently, Det(G1) ≤ Det(G) and this bound is tight.

Proof. Let S be a determining set of G. Thus, S is a plenty twin set and Lemma 5 gives

T̃G(StabG(S)) = StabG1(S1). (1)

On the other hand, T̃ is a group homomorphism and StabG(S) = {idG}, which implies that
T̃ (StabG(S)) = T̃ ({idG}) = {idG1}. Combining this with Equality (1), we obtain that StabG1(S1) =

{idG1} and S1 is a determining set of G1. Furthermore, |S1| ≤ |S| and therefore Det(G1) ≤ Det(G).
To prove the tightness of the bound, let Hs, with s ≥ 1, be a graph with vertex set V(Hs) =

{u, u0} ∪ {u1, v1, . . . , us, vs} and edge set E(Hs) = {uui : 0 ≤ i ≤ s} ∪ {uvi : 1 ≤ i ≤ s} ∪ {uivi :
1 ≤ i ≤ s}; its twin graph H1

s is a star on s + 2 vertices (see Figure 4). It is easy to check that
S = {u1, . . . , us} and S1 = {u1

1, . . . , u1
s} are minimum determining sets of Hs and H1

s , respectively, and
so Det(Hs) = Det(H1

s ) = s.

u

u0 u1 u2 usv1 v2 vs

(a) Hs

u1

u1
0 u1

1 u1
2 u1

s

(b) H1
s

Figure 4. Det(Hs) = Det(H1
s ) = s.

In order to compare our new lower bound with that showed in Lemma 2, we provide the following
two examples.

Example 4. Consider the graph G with s + 2 vertices consisting of a complete graph with s ≥ 3 vertices, a
vertex v that is not a neighbor of any vertex in the complete graph and a vertex u which is a neighbor of v and
of every vertex in the complete graph (see Figure 5a). Clearly G1 is a path with three vertices (see Figure 5b),
so n(1) = 3 and Det(G1) = 1. Therefore Det(G1) = 1 < n − n(1) = s + 2 − 3 = s − 1 and in this case, the
lower bound in Lemma 2 is greater than the new one.
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u
Ks

v

(a) G

u1 v1w1

(b) G1

Figure 5. Det(G1) = 1 < n − n(1) = s − 1.

Example 5. Consider the graph G, with n = 3s + 3 vertices (s ≥ 3), shown in Figure 6a, whose twin graph
G1 is depicted in Figure 6b. In this case, n(1) = n − 1 and S = {u1

1, u1
2, . . . u1

s−1} is a minimum determining
set of G1, so Det(G1) = s − 1. Therefore n − n(1) = 1 < Det(G1) and our new lower bound is a better option
than the old one.

u1
u2

u3

us

v

w

(a) G

u1
1u1

2

u1
3

u1
s

v1 = w1

(b) G1

Figure 6. n − n(1) = 1 < Det(G1) = s − 1.

Therefore, both lower bounds are independent and we obtain the following corollary.

Corollary 1. Let G be a graph. Then, it holds that

max{n − n(1), Det(G1)} ≤ Det(G).

3. An Upper Bound on Det(G) from Removing Twins

In the previous section, we explored the relationship between the determining number of graphs
G and G1, and thereby providing a new general lower bound for the determining number of a graph.
We now focus on using such relationship to obtain an upper bound for the determining number.

Our strategy is now to obtain a twin-free graph by iterating the process of building G1 from
G. Contrary to what one might think, the twin graph G1 of a graph G is not twin-free in general
(see Figure 7).

u0

u1 u2 u3 u4

(a) u2, u4 are twins

u1
0

u1
1 u1

3 u1
2 = u1

4

(b) u1
3, u1

4 are twins

Figure 7. G1 is not necessarily a twin-free graph.

This fact suggests the iterative process of defining, for any integer i ≥ 2, the graph Gi as the
twin graph of Gi−1; its order is denoted by n(i). So, having in mind that G is a finite graph, we can
iterate this process thus obtaining a graph sequence G = G0, G1, . . . , Gr, where Gr is the only twin-free
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graph of the sequence. Clearly, if G is a non twin-free graph with n vertices, then 1 ≤ r ≤ n − 1.
The following example illustrates the extreme case r = n − 1.

Example 6. In Figure 8 we show a graph G with n = 5 vertices, and its sequence of twin graphs G1, G2, G3, G4.
Please note that G, G1, G2, G3 are not twin-free whereas G4 is, so r = 4 = 5 − 1 = n − 1.

u0

u1 u2 u3 u4

(a) G

u1
0

u1
1 u1

3 u1
2 = u1

4

(b) G1

u2
0

u2
1 u2

2 = u2
3 = u2

4

(c) G2

u3
0

u3
1 = u3

2 = u3
3 = u3

4

(d) G3

u3
1 = u3

2 = u3
3 = u3

4

= u4
3 = u4

4

u4
0 = u4

1 = u4
2 =

(e) G4

Figure 8. The sequence of twin graphs obtained from G.

We denote by T i : V(Gi−1) → V(Gi) the natural projection of Gi−1 onto its twin graph Gi, for any
1 ≤ i ≤ r. Let us denote ui = (T i ◦ T i−1 ◦ . . . ◦ T 1)(u) and [u]i = {v ∈ V(G) : ui = vi} for any vertex
u ∈ V(G). In general, for any subset S ⊆ V(G), we denote by Si = {ui ∈ V(Gi) : u ∈ S}, note that it is
a vertex subset of Gi, and by [S]i = {u ∈ V(G) : ui ∈ Si}, note that it is a vertex subset of G.

The proof of the following properties is trivial.

Lemma 6. Let G be a graph, let u ∈ V(G) and let S ⊆ V(G). Then, the following statements hold

1. [u]1 = [u] and [S]1 = [S].
2. [u] ⊆ [u]i and this inclusion is not an equality in general, for i ≥ 2.
3. S ⊆ [S]1 ⊆ [S]2 ⊆ . . . ⊆ [S]r ⊆ V(G). In particular, if S is a plenty twin set, then [S]i is also a plenty

twin set, for every i.

Remark 1. In Figure 8 we can see an example of the second property of Lemma 6. In this case
[u4]

1 = {u2, u4} � [u4]
2 = {u2, u3, u4} � [u4]

3 = {u1, u2, u3, u4} � [u4]
4 = {u0, u1, u2, u3, u4}.

The iterated application of the construction process of the twin graph easily provides this
straightforward generalization of Lemma 4.

Lemma 7. If Ω is a plenty twin set of a graph G, then Ωi is a plenty twin set of Gi, for i ≥ 1.

We now present three technical lemmas that will be useful to obtain the main result of this section.
These lemmas collect the behavior of plenty twin sets and their stabilizers under the successive twin
graph operations.

Lemma 8. Let Ω be a plenty twin set of a graph G, and let x ∈ V(G). If x ∈ V(G) \ [Ω]i for some i ≥ 1, then
[x]i = {x}.

Proof. We proceed by induction on i ≥ 1. For i = 1, let x ∈ V(G) \ [Ω]1 = V(G) \ [Ω]; in particular,
x �∈ Ω. Suppose on the contrary that there exists y �= x such that y ∈ [x]1 = [x]. Then, x and y are
twin vertices of G, and using that Ω is a plenty twin set, we obtain that y ∈ Ω. However, this means
x ∈ [y] ⊆ [Ω], which is a contradiction.

Our inductive hypothesis is the following: if x ∈ V(G) \ [Ω]i−1 then [x]i−1 = {x}. Suppose now
that x ∈ V(G) \ [Ω]i (and so xi /∈ Ωi by definition of Ωi); in particular, by Statement 3 of Lemma 6,
x /∈ [Ω]i−1 (and so xi−1 /∈ Ωi−1) and by the inductive hypothesis [x]i−1 = {x}. Assume that there
exists y �= x such that y ∈ [x]i, which yields xi = yi. This implies that xi−1 and yi−1 are twins in Gi−1.
We know that [x]i−1 = {x}, so yi−1 �= xi−1. On the other hand, Ωi−1 is a plenty twin set because of
Lemma 7, so yi−1 ∈ Ωi−1. Finally, this gives that xi = yi ∈ Ωi, a contradiction.
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Lemma 9. Let Ω be a plenty twin set of a graph G. Then, for every i ≥ 1,

StabGi−1(Ωi−1) = StabGi−1((T i)−1(Ωi)).

Proof. Recall that G0 = G and Ω0 = Ω. We only have to prove the inclusion StabGi−1(Ωi−1) ⊆
StabGi−1((T i)−1(Ωi)), so let φ ∈ StabGi−1(Ωi−1) and let ui−1 ∈ (T i)−1(Ωi). We need to show that
φ(ui−1) = ui−1. If ui−1 ∈ Ωi−1, then φ(ui−1) = ui−1, by hypothesis about φ. Assume now that
ui−1 ∈ (T i)−1(Ωi) \ Ωi−1. Then T i(ui−1) = ui ∈ Ωi.

On the other hand, φ ∈ StabGi−1(Ωi−1) implies that T̃ i(φ) ∈ T̃ i(StabGi−1(Ωi−1)) = StabGi (Ωi),
by Lemma 5, and so T̃ i(φ)(ui) = ui. Moreover, by definition, T̃ i(φ)(ui) = (φ(ui−1))1, and this means
that (φ(ui−1))1 = ui. In other words, φ(ui−1) and ui−1 belong to the same twin class in Gi−1.

Finally, if φ(ui−1) �= ui−1, using that Ωi−1 is a plenty twin set not containing ui−1, we have that
φ(ui−1) ∈ Ωi−1, however this is not possible because φ is a bijective mapping that fixes every vertex in
Ωi−1, and no vertex outside Ωi−1 have its image in Ωi−1. So φ(ui−1) = ui−1, as desired.

Lemma 10. Let G be a graph, and let Ω ⊆ V(G) be a plenty twin set. Then, for each i ≥ 1:

StabG(Ω) = StabG([Ω]i).

Proof. We proceed by induction on i ≥ 1. Firstly, for i = 1, Lemma 9 gives StabG(Ω) =

StabG((T 1)−1(Ω1)) and (T 1)−1(Ω1) = [Ω]1, by definition.
We now assume that StabG(Ω) = StabG([Ω]i−1). Let φ ∈ StabG(Ω) = StabG([Ω]i−1). We need

to prove that φ ∈ StabG([Ω]i). Indeed, the iteration of Lemma 5 on the plenty twin set [Ω]i−1 gives
T̃ i−1 ◦ . . . ◦ T̃ 1(StabG([Ω]i−1) = StabGi−1(T i−1 ◦ . . . ◦ T 1([Ω]i−1)) = StabGi−1(Ωi−1). Furthermore,
by using again Lemma 9, we obtain that StabGi−1(Ωi−1) = StabGi−1((T i)−1(Ωi)). This means that
T̃ i−1 ◦ . . . ◦ T̃ 1(φ) ∈ StabGi−1(Ωi−1) = StabGi−1((T i)−1(Ωi)).

Let x ∈ [Ω]i \ [Ω]i−1. This implies that xi−1 /∈ Ωi−1 but xi ∈ Ωi, so xi−1 ∈ (T i)−1(Ωi). Hence,
T̃ i−1 ◦ . . . ◦ T̃ 1(φ)(xi−1) = xi−1. On the other hand, T̃ i−1 ◦ . . . ◦ T̃ 1(φ)(xi−1) = φ(x)i−1 by definition.
Thus, φ(x)i−1 = xi−1, which implies that φ(x) ∈ [x]i−1 = {x}, by Lemma 8, so φ(x) = x. Hence,
φ ∈ StabG([Ω]i).

We finally present the main result of this section, that provides an upper bound for Det(G).

Theorem 2. Let G be a graph of order n, and let r be the smallest integer such that Gr is twin-free. Then,

Det(G) ≤ n − n(1) + Det(Gr)

and moreover, this bound is tight.

We first prove the following assertion.
Claim 1. For any plenty twin set Ω of G, we have that

StabG([Ω]r) ∩ Ker(T̃ r ◦ . . . ◦ T̃ 1) = {idG}.

Proof. (Proof of Claim 1)
Let φ ∈ StabG([Ω]r) ∩ Ker(T̃ r ◦ . . . ◦ T̃ 1) and let u ∈ V(G). We need to prove that φ(u) =

u. Clearly, we may assume that u ∈ V(G) \ [Ω]r. Since φ ∈ Ker(T̃ r ◦ . . . ◦ T̃ 1), we have that
T̃ r ◦ . . . ◦ T̃ 1(φ)(ur) = ur, but T̃ r ◦ . . . ◦ T̃ 1(φ)(ur) = φ(u)r by definition. Thus, φ(u)r = ur, or
equivalently φ(u) ∈ [u]r = {u}, where the last equality is a consequence of Lemma 8, as [Ω]r is a
plenty set. Therefore, φ(u) = u and this proves the claim.

Let R be a minimum determining set of Gr, and let S ⊆ V(G) be a subset of cardinality |R| such
that Sr = R. By Lemma 5, we have that T̃ (StabG(S)) ⊆ StabG1(S1), and therefore we obtain that
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T̃ 2 ◦ T̃ (StabG(S)) ⊆ T̃ 2(StabG1(S1)) ⊆ StabG2(S2), where the last inclusion is given again by the
same lemma. Thus, iterating this process yields

T̃ r ◦ . . . ◦ T̃ 1(StabG(S)) ⊆ StabGr (Sr) = StabGr (R) = {idGr}

since R is a determining set of Gr. Hence, StabG(S) ⊆ Ker(T̃ r ◦ . . . ◦ T̃ 1).
On the other hand, let Ω ⊆ V(G) be a vertex subset composed by all but one vertices of each twin

class in G. Clearly, Ω is a plenty twin set and |Ω| = n− n(1). Lemma 10 yields StabG(Ω) = StabG([Ω]r),
and Claim 1 yields StabG([Ω]r) ∩ Ker(T̃ r ◦ . . . ◦ T̃ 1) = {idG}. Therefore, we obtain that StabG(Ω) ∩
Ker(T̃ r ◦ . . . ◦ T̃ 1) = {idG} but StabG(Ω) ∩ StabG(S) ⊆ StabG(Ω) ∩ Ker(T̃ r ◦ . . . ◦ T̃ 1) = {idG}. This
means that StabG(S ∪ Ω) = StabG(S) ∩ StabG(Ω) = {idG} and so S ∪ Ω is a determining set of G.
This gives the desired bound, since |S| = Det(Gr) and |Ω| = n − n(1).

To show the tightness of the bound, we consider the graph G in Figure 9a, with 2s + 4 vertices
(s ≥ 2). Clearly, G1 (see Figure 9b) is not twin-free whereas G2 is (see Figure 9c). Moreover, S =

{u1, u2, . . . , us−1, w} is a minimum determining set of G, so Det(G) = s. On the other hand, R =

{u2
1, u2

2, . . . , u2
s−1} is a minimum determining set of G2 and Det(G2) = s − 1. Finally, note that n −

n(1) = 1 and therefore Det(G) = n − n(1) + Det(G2).

u1
u2

u3

us

v

w

z

(a) G

u1
1u1

2

u1
3

u1
s

v1

w1 = z1

(b) G1

u2
1u2

2

u2
3

u2
s

v2 = w2 = z2

(c) G2

Figure 9. Det(G) = n − n(1) + Det(G2).

Corollary 2. Let r be the smallest integer such that Gr is twin-free. Then,

max{n − n(1), Det(G1)} ≤ Det(G) ≤ n − n(1) + Det(Gr).

Remark 2. It is proved in [14] that a twin-free graph has determining number at most the half of its order.

Then, max{n − n(1), Det(G1)} ≤ Det(G) ≤ n − n(1) +
n(r)

2
·

4. Determining Number of Cographs and Unit Interval Graphs

As an application of the bounds obtained in the previous sections, we can compute the
determining number of cographs and unit interval graphs. A cograph is a graph that can be constructed
from the single-vertex graph K1 by complementation and disjoint union. This graph class was
independently described by several authors (see [23–26]). Examples of cographs are, among others,
the complete graphs, the complete bipartite graphs, the cluster graphs and the threshold graphs.

Proposition 2. Let G be a cograph of order n with twin graph G1 of order n(1), then

Det(G) = n − n(1).

Proof. Cographs are precisely the graphs without an induced P4 as a subgraph (see [27,28]), and so
the resulting graph from removing any vertex of a cograph is also a cograph. Thus, given a cograph G,
G1 can be seen as a graph obtained by deletion of vertices of G, so it is clear that G1 is also a cograph.
Iterating this argument we obtain that Gi is a cograph, for any index i; in particular, if r is the smallest
integer such that Gr is twin-free, then Gr is a cograph.
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It is known that a non-trivial cograph has at least a pair of twins (see [27]), hence Gr is necessarily
isomorphic to K1, and so Det(Gr) = Det(K1) = 0. Finally, by Corollary 2, we obtain that n − n(1) ≤
max{n − n(1), Det(G1)} ≤ Det(G) ≤ n − n(1) + Det(Gr) = n − n(1), and Det(G) = n − n(1), as
desired.

Please note that the proof of Theorem 2 and Proposition 2 give that minimum determining sets
of cographs are exactly plenty twin sets with n − n(1) vertices, that is, containing exactly all but one
vertices of every non-trivial twin class. In the following example we illustrate this property of cographs.

Example 7. The graph in Figure 10a is a cograph (see [29]) with n = 7 vertices and its twin graph, that
is shown in Figure 10b, has n(1) = 4 vertices. Therefore, Det(G) = n − n(1) = 3 and Ω = {a, c, e} is a
minimum determining set of G because it is composed by all but one vertices of each non-trivial twin class of G.

a

b

c

d

e

f

g

(a) G

a1 = b1

c1 = d1 e1 = f 1

g1

(b) G1

Figure 10. A cograph G and its twin graph G1.

We now focus on unit interval graphs. A graph is a unit interval graph if it is possible to assign to
each of its vertices a unit interval of the real line in such a way that two vertices are adjacent exactly
if the associated intervals intersect (see [30]). We will apply again our previous results to bound the
determining number of these graphs, and we first need the following technical lemma.

Lemma 11. Let S be a vertex subset of a graph G, and let x ∈ V(G) \ S be such that for every y ∈ V(G) \
(S ∪ {x}) either deg(x) �= deg(y) or (N(x) \ N(y)) ∩ S �= ∅. Then, StabG(S) = StabG(S ∪ {x}).

Proof. Clearly we just need to prove that StabG(S) ⊆ StabG(S ∪ {x}). To this end, let φ ∈ StabG(S),
which means that φ(u) = u, for every u ∈ S. Let us see that φ(x) = x. Suppose, on the contrary, that
φ(x) = y �= x, (note that y /∈ S, because if y ∈ S then, y = φ(y)). Clearly deg(x) = deg(φ(x)) = deg(y),
because automorphisms preserve degrees of vertices, so (N(x) \ N(y)) ∩ S �= ∅, by hypothesis. Let
z ∈ (N(x) \ N(y)) ∩ S. Then, z ∈ N(x) and φ(z) ∈ N(φ(x)) = N(y). On the other hand, z ∈ S
implies that φ(z) = z, a contradiction with z /∈ N(y).

Proposition 3. Let G be a connected unit interval graph of order n with twin graph G1 of order n(1). Then,
Det(G) ∈ {n − n(1), n − n(1) + 1}.

Proof. It is well known that unit interval graphs and indifference graphs are equivalent graphs classes
(see [31]), so the vertices of G can be represented as real numbers {x1, . . . , xn}, with xi < xj when i < j,
and E(G) = {xixj : |xi − xj| ≤ 1}.

We first consider the particular case when G is a connected unit interval twin-free graph. Let us
see that, in this case, StabG({x1, . . . , xi−1}) = StabG({x1, . . . , xi−1, xi}), for every i ∈ {2, . . . n}. If i = n,
clearly StabG({x1, . . . , xn−1}) = StabG({x1, . . . , xn−1, xn}). We now fix i ∈ {2, . . . n − 1}, and suppose
that (N(xi) \ N(xj)) ∩ {x1, . . . , xi−1} �= ∅, for every j ∈ {i + 1, . . . , n}. Then, by Lemma 11, we obtain
StabG({x1, . . . , xi−1}) = StabG({x1, . . . , xi−1, xi}).
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Assume now that there exits j > i such that N(xi) ∩ {x1, . . . , xi−1} ⊆ N(xj) ∩ {x1, . . . , xi−1}.
Since G is twin-free, there is xk ∈ (N(xi) \ N(xj)) ∪ (N(xj) \ N(xi)). Please note that N(xi) ∩
{x1, . . . , xi−1} �= ∅, since G is connected, and the hypothesis of this case N(xi) ∩ {x1, . . . , xi−1} ⊆
N(xj) ∩ {x1, . . . , xi−1} gives that |xi − xj| ≤ 1. This also means that N(xi) ∩ {xi+1, . . . , xn} ⊆
N(xj) ∩ {xi+1, . . . , xn} and therefore, N[xi] ⊆ N[xj]. This means that deg(xi) ≤ deg(xj). In addition,
xk ∈ N(xj) \ N(xi) gives that deg(xi) < deg(xj). Again, by Lemma 11, StabG({x1, . . . , xi−1}) =

StabG({x1, . . . , xi−1, xi}).
Applying repeatedly this condition we obtain that StabG({x1}) = StabG({x1, . . . , xn}) =

StabG(V(G)). So {x1} is a determining set of G and Det(G) ∈ {0, 1}, whenever G is a connected unit
interval twin-free graph.

Finally, let us consider the general case and let G be any connected unit interval graph. Observe
that every Gi is also a connected unit interval graph. In particular, if r is the smallest integer such that
Gr is twin-free, then Det(Gr) ∈ {0, 1}. Finally, by Corollary 2, we obtain that n − n(1) ≤ Det(G) ≤
n − n(1) + Det(Gr) ≤ n − n(1) + 1, as desired.

We illustrate the behavior of minimum determining sets of unit interval graphs with the following
examples.

Example 8. We show a unit interval graph G and its representation through intersections of intervals of length
one (see [32]) in Figure 11a. The twin graph of G is in Figure 11b and it is clearly a twin-free graph satisfying
Det(G1) = 1. Proposition 3 gives Det(G) ∈ {n − n(1), n − n(1) + 1} = {5 − 4, 5 − 4 + 1} = {1, 2}. In this
case, it is easy to check that Det(G) = n − n(1) = 1 and both {b} and {c} are minimum determining sets of G.

a

b

c

d e

a
b

c
d

e

(a) G

a1 b1 = c1 d1 e1

a
b

c
d

e

(b) G1

Figure 11. A unit interval G and its twin graph G1.

Example 9. We now show a unit interval graph G and its representation through intersections of intervals of
length one in Figure 12a. The twin graph of G (see Figure 12b) is a twin-free graph satisfying Det(G1) = 1. In
this case, it is easy to check that Det(G) = n − n(1) + 1 = 2 and {b, f } is an example of minimum determining
set of G.
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e

f 1

(b) G1

Figure 12. A unit interval G and its twin graph G1.
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5. Concluding Remarks

In this paper, we provided a lower bound and an upper bound, each of them being tight, of the
determining number of general graphs. We also showed that our lower bound is independent from
the one obtained in [14]. The main tool that we used is the twin graph, defined in [22] to study the
metric dimension of graphs, and which has proven to be also useful for obtaining determining sets
and for computing the determining number. Indeed, as an application of our bounds, we computed
the exact value of the determining number of cographs. In the case of unit interval graphs, we placed
this parameter in an set of two consecutive integers. In both cases, the obtained values depend only on
the number of vertices of both graphs G and its twin graph G1.

We think that our bounds could be useful to deal with other graph families (e.g., distance-
hereditary graphs or parity graphs) in order to obtain the exact value of their determining numbers, or
at least to bound the range of possible values. Actually, we could find other techniques, different from
twin deletion, to provide new bounds of the determining number of a graph: addition of vertices or
edges, vertex contraction, etc. Furthermore, it could be of interest to apply all those techniques to other
types of sets different from determining sets such as dominating sets, cut sets, and independent sets.
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Abstract: We consider in this work a new approach to study the simultaneous strong metric
dimension of graphs families, while introducing the simultaneous version of the strong resolving
graph. In concordance, we consider here connected graphs G whose vertex sets are represented as
V(G), and the following terminology. Two vertices u, v ∈ V(G) are strongly resolved by a vertex
w ∈ V(G), if there is a shortest w − v path containing u or a shortest w − u containing v. A set A
of vertices of the graph G is said to be a strong metric generator for G if every two vertices of G
are strongly resolved by some vertex of A. The smallest possible cardinality of any strong metric
generator (SSMG) for the graph G is taken as the strong metric dimension of the graph G. Given a
family F of graphs defined over a common vertex set V, a set S ⊂ V is an SSMG for F , if such set
S is a strong metric generator for every graph G ∈ F . The simultaneous strong metric dimension
of F is the minimum cardinality of any strong metric generator for F , and is denoted by Sds(F ).
The notion of simultaneous strong resolving graph of a graph family F is introduced in this work,
and its usefulness in the study of Sds(F ) is described. That is, it is proved that computing Sds(F )

is equivalent to computing the vertex cover number of the simultaneous strong resolving graph of
F . Several consequences (computational and combinatorial) of such relationship are then deduced.
Among them, we remark for instance that we have proved the NP-hardness of computing the
simultaneous strong metric dimension of families of paths, which is an improvement (with respect to
the increasing difficulty of the problem) on the results known from the literature.

Keywords: simultaneous strong resolving set; simultaneous strong metric dimension; simultaneous
strong resolving graph

MSC: 05C12

1. Introduction

Topics concerning distances in graphs are widely studied in the literature, and a high number
of applications to real life problems can be found in the literature. As a sporadic example of a work
that gives some ideas on the vastness of this topic we cite, for instance [1]. Metric graph theory is a
significant area in graph theory that deals with distances in graphs, and a large number of works on
this topic is nowadays being developed. One of the lines belonging to metric graph theory is that of
the metric dimension parameters. Such topic is indeed a huge area of research that is lastly intensively
dealt with. It is then not our goal to enter into citing several articles which are not connected exactly
with our exposition. To those readers interested in metric dimension things, we suggest for instance the
Ph.D. dissertation [2] (and references cited therein), which contains a good background on the topic.

For any given simple and connected graph G whose vertex set is represented as V(G) and its
edge set by E(G), while considering it as a metric space, several styles of metrics over the vertex set
V, provided with the standard vertex distance, are nowadays defined and studied in the literature.
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For instance, the metric dG : V(G)× V(G) → N∪ {0}, where N represents the set of positive integers
numbers, and dG(x, y) is taken as the length of a shortest u − v path, is one of the most commonly
studied. In this sense, the pair (V(G), dG) is clearly a metric space. Concerning such a metric space, it
is said that a vertex v ∈ V(G) distinguishes (recognizes or determines are also used terms) two vertices
x and y if dG(v, x) �= dG(v, y). A set S ⊂ V(G) is said to be a metric generator for the graph G if it is
satisfied that any pair of vertices of G is uniquely determined by some element of S. Consider that
S = {w1, w2, . . . , wk} is an ordered subset of vertices of G. The metric vector (or metric representation)
of a given vertex v ∈ V(G), with respect to S, is the vector of distance (d(v, w1), d(v, w2), . . . , d(v, wk)).
In this sense, the subset of vertices S is called a metric generator for the graph G, if any two distinct
vertices produce distinct metric vectors relative to such set S. A metric generator of G having the
minimum possible cardinality is called a metric basis, and its cardinality is precisely the metric dimension
of G, which is usually denoted by dim(G). The definitions of these concepts (for general metric spaces)
are coming from the earliest 1950s from the work [3], although its popularity was not developed
until relatively recently (about 15 years before). On the other hand, for the specific case of graphs,
and motivated by a problem of uniquely recognizing intruder’s locations in networks, these concepts
were presented and studied by Slater in [4]. In such work, metric generators were called locating sets.
On the other hand, Harary and Melter (see [5]) also independently came out with the same concept.
In such work, metric generators were called resolving sets. It is interesting to remark that some examples
of applications of the metric dimension concern navigation of robots in networks as discussed in the
work [6], or to chemistry as appearing in [7–9].

An interesting variant of metric dimension in graphs was described by Sebö and Tannier in [10],
where they have asked the following question. “For a given metric generator T of a graph H, whenever H
is a subgraph of a graph G, and the metric vectors of the vertices of H relative to T agree in both H and G, is H
an isometric subgraph of G?” The situation is that, despite the fact that metric vectors of all vertices of a
graph G (relative to a given metric generator) distinguish all pairs of vertices in such graph, it happens
that they do not always uniquely recognize all distances in this graph, a fact that was already shown
in [10]. Addressed to give a positive answer to their own question, the authors of [10] replaced the
notion of “metric generator” by a stronger one. This is described next.

Given a pair of vertices u, v ∈ V(G), the interval IG[u, v] between such two vertices u and v is
defined as the collection of all vertices that belong to some shortest u − v path. In this sense, a vertex w
strongly resolves two other different vertices u and v, if it is satisfied that v ∈ IG[u, w] or u ∈ IG[v, w],
or equivalently, if dG(u, w) = dG(u, v) + dG(v, w) or dG(v, w) = dG(v, u) + dG(u, w). In connection
with this, it is also said that u, v are strongly resolved by w. From now on, all graphs considered are
connected. A set S of vertices of G is a strong metric generator for G if any two distinct vertices x, y of
such graph are strongly resolved by some vertex u ∈ S (it could happen that u equals x or y). Then,
the smallest possible cardinality of any set being a strong metric generator for G is called the strong
metric dimension of G, and this cardinality is denoted by dims(G). In addition, a strong metric generator
for G whose cardinality is precisely equal to dims(G) is called a strong metric basis of G. It is now readily
observed that any strong metric generator of G also satisfies the property of being a metric generator for
G. The computational problem concerning finding the strong metric dimension of a given graph is now
relatively well studied, and one can find a rich literature concerning it. For more information on this
issue, we suggest, for instance, the articles [11,12], the Ph.D. Thesis [13], the survey [14], and references
cited therein.

More recently, an extension of the notion of the strong metric dimension of graphs to families
of graphs was presented in [15]. The following was stated: Consider that G = {G1, G2, ..., Gk} is a
family of connected graphs Gi = (V, Ei) having a common vertex set V. Note that the edge sets of
the graphs belonging to the family are not necessarily edge-disjoint, and also that the union of their
edge sets is not necessarily the complete graph. Concerning such family, it was said in [15] that a
simultaneous strong metric generator (SSMG for short) for the family G is taken as a set S ⊂ V with the
property that S forms a strong metric generator for every graph Gi of the family. As usual, an SSMG
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having the minimum possible cardinality for G is called a simultaneous strong metric basis of G. This
smallest cardinality is then precisely called the simultaneous strong metric dimension of G, and this is
denoted by Sds(G), or by Sds(G1, G2, ..., Gt) when it is necessary to clarify the graphs of the family. It is
worthwhile mentioning that such concepts arise from a related version of simultaneity for the standard
metric dimension studied in [16,17].

The notion of the simultaneous metric dimension of graphs families (and its strong related version)
was first studied in the Ph.D. thesis [18], based on the following problem, which arises in relation with a
similar problem for the standard metric dimension. It is assumed that the topology of robots navigation
network changes within some amount of possible simple networks, say a set (or family) of graphs F .
Nodes of the networks remain the same, but their links could appear or disappear. This setting could
require the use of a dynamic network whose links change over the time. In this sense, the problem
concerning uniquely identifying the robots (by using the smallest resources) navigating in such a
“variable” network can be understood as the problem of determining the minimum cardinality of a
set of vertices that is simultaneously a metric generator for each graph belonging to this set F . That
is, if a set of vertices S gives a solution to this problem, then the position of a robot can be uniquely
determined by the distance to the elements of S, independently of the graph which is being used in
each moment in this dynamic network.

We now present some basic terminology and notation to beused throughout our exposition.
Given a vertex v of a graph G, NG(v) denotes the open neighborhood of v in G, while the closed
neighborhood is represented by NG[v] and it equals NG(v) ∪ {v}. If there is no confusion, we then
simply use N(v) or N[v]. Two vertices x, y ∈ V(G) are called twins if they satisfy NG[x] = NG[y]
or NG(x) = NG(y). Specifically, when NG[x] = NG[y], they are known as true twins, and similarly
whether NG(x) = NG(y), they are called false twins. Now, if the open neighborhood N(v) of a vertex v
induces a complete graph, then such v is known as an extreme vertex. The set of extreme vertices of G is
denoted by σ(G). The largest possible distance between any two vertices of G is denoted by D(G),
also called the diameter of G. In this sense, a graph G is called 2-antipodal if, for every vertex x ∈ V(G),
there is exactly one other vertex y ∈ V(G) satisfying the fact that dG(x, y) = D(G). Examples of
2-antipodal graphs are, for instance, even cycles C2k, and the hypercubes Qr. Finally, for a given set
W ⊂ V(G), by 〈W〉G, we represent the subgraph of G induced by W. Any other definition used shall
be introduced whenever a concept is firstly needed.

Since all the definitions above require the connectedness of the graph in question, throughout
the whole exposition, we will consider that our graphs are connected; even so, we will not explicitly
mention this fact.

2. The Simultaneous Strong Resolving Graph

In this section, we describe an approach which was first presented in [19], in order to transform
the problem of finding the strong metric dimension of a graph to computing the vertex cover number
of another related graph. To this end, we need some terminology and notation. A vertex u of G is said
to be maximally distant from other v, if every vertex w ∈ NG(u) satisfies that dG(v, w) ≤ dG(u, v). For a
pair of vertices, u, v, if it happens that u is maximally distant from v and v is also maximally distant
from u, then these u and v are called a pair of mutually maximally distant vertices (MMD for short).
The set of vertices of G that are MMD with at least one other vertex of G is denoted by ∂(G). The strong
resolving graph of G, which is denoted by GSR, is another graph whose vertex set is V(GSR) = V(G).
In addition, there is an edge between two vertices u, v in GSR if such vertices u and v are mutually
maximally distant in the original graph G. Clearly, those vertices which are not MMD with any other
vertex of G are isolated vertices in GSR. The recent work [20] (a kind of survey) contains a number of
results concerning characterizations, realizability, and several other properties of the strong resolving
graphs of graphs.

Now, by a vertex cover set of a graph G, we mean a set of vertices S of G satisfying that every
edge of G has at least one end vertex in the set S. The vertex cover number of G, which is denoted by
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α(G), is taken as the smallest possible cardinality of a subset of vertices of G being a vertex cover
set of G. By an α(G)-set, we represent a vertex cover set of cardinality α(G). In connection with this
concept, the authors Oellermann and Peters-Fransen (see [19]) have proved that finding the strong
metric dimension of a connected graph G is equivalent to finding the vertex cover number of GSR,
which is the next result.

Theorem 1 ([19]). For any connected graph G, dims(G) = α(GSR).

There are several different and non trivial families of connected graphs for which the strong
resolving graphs can relatively easily be obtained. We next mention some of these cases, mainly based
on the fact that we further on shall refer to them. Such following observations have already appeared
(in an identical presentation) in other works like, for instance [20].

Observation 1.

(a) If ∂(G) = σ(G), then GSR ∼= K|∂(G)| ∪
(⋃n−|∂(G)|

i=1 K1

)
. In particular, (Kn)SR ∼= Kn and for any tree T

of order n with l(T) leaves, (T)SR ∼= Kl(T) ∪
(⋃n−l(T)

i=1 K1

)
.

(b) For any 2-antipodal graph G of order n, GSR ∼= ⋃ n
2
i=1 K2. Even cycles are 2-antipodal. Thus, (C2k)SR ∼=⋃k

i=1 K2.
(c) For odd cycles, (C2k+1)SR ∼= C2k+1.

We now turn our attention to the simultaneous strong metric dimension of graph families and
look for an equivalent version of the strong resolving graph in a simultaneous version. That is,
given a family of graphs G = {G1, G2, ..., Gk} defined over the set of vertices V (as described above),
we say that the simultaneous strong resolving graph of G, denoted by GSSR, is a graph whose vertex
set is V(GSSR) = V. In addition, two vertices u, v are adjacent in GSSR if the vertices u and v are
mutually maximally distant in some graph Gi ∈ G. It is readily seen that GSSR can be obtained from
the overlapping of the strong resolving graphs of the graphs G1, G2, . . . , Gk. An equivalent result to
that of Theorem 1 can be then derived for the simultaneous case. To this end, the next remarks make
an important role.

Remark 1. Let G be any connected graph. For any two vertices x, y ∈ V(G), there are two MMD vertices
x′, y′ of G, such that a shortest x′ − y′ path contains the vertices x, y.

We must recall that at least one of the vertices x, y in the result above could precisely be at least
one of the vertices x′, y′, respectively (this could happen in case x, y are MMD or whether one of them
is maximally distant from the other).

Theorem 2. For any family of graphs, G = {G1, G2, ..., Gk}, Sds(G) = α(GSSR).

Proof. We shall prove that any set is an SSMG for G if and only if it is a vertex cover of GSSR.
Assume each graph of G is defined over the set of vertices V. Let W ⊂ V be an SSMG of G and let uv
be an edge of GSSR. By the definition of GSSR, there is a graph Gi ∈ G such that u, v are MMD in Gi.
Thus, W ∩ {u, v} �= ∅, which means that the edge uv is covered by W in GSSR. Thus, W is a vertex
cover of GSSR.

On the other hand, let W ′ ⊂ V be a vertex cover of GSSR and let x, y be any two different vertices
of V. If x, y are MMD in some Gj ∈ G, then xy is an edge of GSSR, which means that W ′ ∩ {x, y} �= ∅,
since such edge must be covered by W ′. Assume x ∈ W ′. Thus, the pair of vertices x, y is strongly
resolved by x in every Gi ∈ G. On the contrary, if x, y are not MMD in every Gi ∈ G, then the edge xy
does not exist in GSSR. Moreover, by Remark 1, in every graph Gl ∈ G, there are two MMD vertices
xl , yl such that a shortest xl − yl path of Gl contains x and y. Clearly, for every Gl ∈ G, the edge
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xlyl belongs to GSSR and so, W ′ ∩ {xl , yl} �= ∅. Hence, for any Gl ∈ G, we observe that x, y are
strongly resolved by xl or by yl . As a consequence, W ′ is a strong resolving set for any Gi ∈ G and
therefore W ′ is a simultaneous strong resolving set of G, which completes the proof of the equality
Sds(G) = α(GSSR).

3. Realization of the Simultaneous Strong Resolving Graphs with Some Consequences

In the recent work [20], several results concerning the realization of the strong resolving graphs of
graphs were presented. For instance, there was proved that there is not any graph G whose strong
resolving graph is isomorphic to a complete bipartite graph K2,r for every r ≥ 2. In contrast with these
facts, we shall prove that every graph G can represent the simultaneous strong resolving graph of
some family of graphs.

Proposition 1. For any graph G of order n and size m with vertex set V, there exist a family of m paths
P = {P1

n , P2
n , . . . , Pm

n } defined over the set of vertices V such that PSSR is isomorphic to G.

Proof. Let V = {v1, v2, . . . , vn} be the vertex set of G. For any edge eij = vivj of G, consider a path

Pij
n whose leaves are vi and vj and the remaining vertices are V − {vi, vj}. Since the strong resolving

graph of Pij
n is formed by a graph K2 on the vertices {vi, vj} and the n − 2 isolated vertices V − {vi, vj},

it is readily seen that the union (overlapping) of the m paths P2 constructed in this way, corresponding
to the edges of G, together with the other n − 2 isolated vertices, is precisely the graph G.

Since the realization family given above is formed only by paths, one may now wonder if a
given graph can be realized as the simultaneous strong resolving graph of a family of other graphs
different from paths. For instance, the following two results show two other different realizations.
To this end, a multisubdivided star Sr,t of order r + t + 1 is obtained from a star S1,t by subdividing some
edges with some vertices until we have a graph of order r + t + 1 (clearly r vertices were used in this
multisubdivision process). In addition, a comet graph Cr,t (where r ≥ 4 is an even integer and t ≥ 0) is a
unicyclic graph of order r + t whose unique cycle has order r, and there is at most one vertex of degree
three and at most one leaf. Note that this comet graph can be a cycle graph when t = 0 (in such case
an even cycle indeed). In other words, a comet graph is obtained from a cycle Cr by attaching a path of
order t ≥ 0 to one of its vertices.

Proposition 2. For any graph G of order n with vertex set V, there exists a family of multisubdivided star
graphs F = {G1, G2, . . . , Gk} defined over the set of vertices V such that FSSR is isomorphic to G.

Proof. Let V = {v1, v2, . . . , vn} be the vertex set of G. Now, for every clique Qj of G of cardinality j,
consider a multisubdivided star graph Sj,t such that j + t + 1 = n whose leaves are the vertices of Qj,
and the remaining vertices are V − Qj (taken in any order). Since the strong resolving graph of every
multisubdivided star graph Sj,t is formed by a complete graph Kj on the vertices of Qj and the n − |Qj|
isolated vertices in V − Qj (by using Observation 1), it is readily seen that the overlapping of the strong
resolving graphs of the graphs belonging to this set of multisubdivided star graphs constructed in this
way, corresponding to the cliques of G, together with the other corresponding isolated vertices, gives
precisely the graph G.

In order to present our next construction, we remark (which can be easily observed) that the
strong resolving graph of a comet graph is given by the disjoint union of r graphs K2 and t isolated
vertices. We also need the following terminology. A matching in a graph G is a set of pairwise disjoint
edges in the graph, and a maximum matching is a matching M such that the inclusion of any other edge
of G to M leads to at least two not disjoint edges.
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Proposition 3. For any graph G of order n with vertex set V, there exist a family F = {G1, G2, . . . , Gk}
containing comet graphs and paths, defined over the set of vertices V such that FSSR is isomorphic to G.

Proof. Let V = {v1, v2, . . . , vn} be the vertex set of G. We consider all possible maximum matchings
of G. If there is a maximum matching which has only one edge e = uv, then we consider a path graph
Pn, for the family F , whose leaves are u and v. Clearly, the strong resolving graph of this path is the
graph K2 on the vertex set {u, v} and n − 2 isolated vertices. Next, we take every other maximum
matching Mi of G having i ≥ 2 edges. Now, consider a comet graph C2i,t with 2i + t = n, such that
any two vertices being an edge of Mi are diametral in the cycle C2i of C2i,t, and the remaining vertices
are V − Mi (taken in any order) forming the path of C2i,t of order t that are attached to one vertex of
C2i. Note that the strong resolving graph of any comet graph is given by the disjoint union of i graphs
K2 and t isolated vertices. Thus, by using all the graphs constructed as mentioned above for all the
maximum matchings of G, it is readily seen that the overlapping of the strong resolving graphs of the
graphs belonging to this set constructed in this way, corresponding to the maximum matchings of G,
together with the other corresponding isolated vertices, gives precisely the graph G.

Based on the constructions above, it looks like several different families of graphs can produce the
same simultaneous strong resolving graph. In this sense, it is natural to raise the following question,
which roughly speaking, seems to be very challenging.

Open question: Given a graph G, is it possible to characterize all the possible families of graphs
F = {G1, G2, . . . , Gk} such that FSSR is isomorphic to G?

It was proved in [15] that computing the simultaneous strong metric dimension of graph families
is NP-hard, even when restricted to families of trees. An interesting consequence of Proposition 1
shows that such problem, which next appears, remains NP-hard, even when restricted to a couple of
simpler families.

Simultaneous Strong Metric Dimension Problem (SSD Problem for Short)

INSTANCE: A graph family G = {G1, G2, . . . , Gk} defined on a common vertex set V and an integer k, 1 ≤ k ≤ |V| − 1.
PROBLEM: Deciding whether Sds(G) is less than k.

By using Proposition 1, we next present a reduction of the problem of computing the vertex cover
number of graph to the problem of computing the simultaneous strong metric dimension of families
of paths.

Theorem 3. The SSD problem is NP-complete for families of paths or multisubdivided star graphs.

Proof. The problem is clearly in NP since verifying that a given set of vertices is indeed an SSMG
for a graph family can be done in polynomial time. Now, let G be any graph with vertex set V of
order n and size m. From Proposition 1 (resp. Proposition 2), we know there is a family of m paths
P = {P1

n , P2
n , . . . , Pm

n } (resp. of multisubdivided star graphs) defined over the set of vertices V such that
PSSR is isomorphic to G. Therefore, from Theorem 2, we have that Sds(P) = α(PSSR) = α(G), which
completes the NP-completeness reduction based on the fact that the decision problem concerning the
vertex cover number of graphs is an NP-complete problem (see [21]).

Another interesting consequence of Theorem 2 concerns the approximation of computing the
simultaneous strong metric dimension of graphs families. We first note that finding the simultaneous
strong resolving graph of a graph family can be polynomially done. This fact, together with the fact
that computing the vertex cover number of graphs admits a polynomial-time 2-approximation, allows
for claiming that computing the simultaneous strong metric dimension of graphs families also admits
a polynomial-time 2-approximation.
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4. Applications of the Simultaneous Strong Resolving Graph

Since computing the simultaneous strong metric dimension of graph families is NP-hard even
when restricted to very specific families, it is then desirable to describe as many families as possible
for which its simultaneous strong metric dimension can be computed. In this sense, from now on
in this section we are devoted to make this so, and a fundamental tool for it shall precisely be the
simultaneous strong resolving graph and, connected with it, Theorem 2.

Proposition 4. If F is a family of bipartite graphs, each of them is defined over the common bipartition sets
U, V, then Sds(F ) ≤ |U|+ |V| − 2.

Proof. If any two vertices are MMD in some graph Gi ∈ F , then they belong to the same bipartition
set of Gi. Thus, it must happen that FSSR is a subgraph of a graph with two connected components
isomorphic to K|U| and K|V|. By using Theorem 2, we obtain that Sds(F ) = α(FSSR) ≤ α(K|U| ∪
K|V|) = |U|+ |V| − 2.

Next, we particularize the result above and show that such bound is achieved in several situations.

Proposition 5. If F is a family of bipartite graphs, each of them is defined over the common bipartition sets
U, V, and such that it contains the complete bipartite graph K|U|,|V|, then Sds(F ) = |U|+ |V| − 2.

Proof. The result directly follows from the fact that, if K|U|,|V| ∈ F , then (F )SR is isomorphic to
K|U| ∪ K|V|. Thus, from Theorem 2, we get the desired result, since α(K|U| ∪ K|V|) = |U|+ |V| − 2.

Let Cr = v0v1 . . . vr−1, with r ≥ 4 and even be a cycle. Then, let FC be a family of cycles defined
on a common vertex set with Cr ∈ FC, and every other cycle C ∈ FC is obtained from Cr, by making a
permutation of two vertices vi, vj of Cr such that either i, j ∈ {0, . . . , r/2 − 1} or i, j ∈ {r/2, . . . , r − 1}.

Proposition 6. If FC is a family of cycles obtained from a cycle Cr as described above, then Sds(FC) =
r
2 .

Proof. We first note (by Observation 1) that the strong resolving graph of any cycle C(j)
r ∈ FC is

isomorphic to ∪r/2
i=1K2. Now, since any cycle of FC is obtained from Cr, by making a permutation of

two vertices vi, vj of Cr such that either i, j ∈ {0, . . . , r/2 − 1} or i, j ∈ {r/2, . . . , r − 1}, we deduce that
there are no edges in (FC)SSR between any two vertices of the set {v0, v1, . . . , vr/2−1}, in addition to
no edges between any two vertices of the set {vr/2, v(r/2+1, . . . , vr−1}. Moreover, for any vertex of
the set vj ∈ {v0, v1, . . . , vr/2−1}, there is an edge joining vj with a vertex vk ∈ {vr/2, vr/2+1, . . . , vr−1}
and vice versa. As a consequence of such facts, we obtain that (FC)SSR is a bipartite graph, which is
a subgraph of the complete bipartite graph Kr/2,r/2. Since α(Kr/2,r/2) = r/2, by using Theorem 2,
we have Sds(FC) = α((FC)SSR) ≤ α(Kr/2,r/2) = r

2 . On the other hand, since Cr ∈ FC, the edges
v0vr/2, v1vr/2+1, . . . , vr/2−1vr−1 belong to (FC)SSR. Consequently, in order to cover such edges, it must
happen α((FC)SSR) ≥ r/2. Therefore, by using again Theorem 2, we complete the proof.

Let T be a tree having all the vertices with a degree larger than two unless they are leaves.
Hence, let FT be the family of trees defined on a common vertex set with T ∈ FT , and every other tree
T′ ∈ FT is obtained from T, by making a permutation of two vertices u, v of T such that u is a leaf of T
and v is not a leaf.

Proposition 7. If FT is a family of trees obtained from a tree T with t leaves as described above, then t − 1 ≤
Sds(FT) ≤ t. Moreover, Sds(FT) = t if and only if every leaf of T has been used to make a permutation with
other non leaf vertex of T in order to obtain another tree of FT.

Proof. By Observation 1, the strong resolving graph of the tree T ∈ FT is isomorphic to the complete
graph Kt together with n − t isolated vertices. Thus, Kt is a subgraph of the graph (FT)SSR and so,
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by using Theorem 2, we obtain Sds(FT) = α((FT)SSR) ≥ α(Kt) = t − 1, which is the lower bound.
Now, observe that the strong resolving graph of any tree, other than T, is obtained from the strong
resolving graph of T by removing all edges incident to one vertex, say y, corresponding to a leaf of
T, choosing an isolated vertex x corresponding to a non leaf of T, and adding all the possible edges
between x and the vertices corresponding to leaves of T other than y. Moreover, since there are no
edges between any two of such chosen isolated vertices mentioned above, it is clear that the set of
t vertices corresponding to the leaves of T represents a vertex cover set of (FT)SSR. By using again
Theorem 2, we obtain Sds(FT) = α((FT)SSR) ≤ t, which is the upper bound.

On the other hand, in order for this set of t vertices to correspond to the leaves of T, which will
represent a vertex cover set of minimum cardinality in (FT)SSR, it is required that all such vertices
will have a neighbor not in this set of leaves. This means that every leaf of T has been used to make a
permutation with another non leaf vertex of T in order to obtain a tree of FT other than T. The opposite
direction is straightforward to observe. Therefore, the proof is complete.

Again, let T be a tree having all the vertices with a degree larger than two unless they are leaves.
Let HT be the family of at least two unicyclic graphs H defined on a common vertex set such that
every graph H ∈ HT is obtained from T, by adding an edge between any two vertices u, v of T.
Before studying the simultaneous strong metric dimension of HT , we introduce some terminology and
basic properties of the strong resolving graph of unicyclic graphs. Given a unicyclic graph G = (V, E)
with the unique cycle Cr, we denote by c2(G) the set of vertices of the cycle Cr having degree two.
By T(G), we represent the set of vertices of degree one in G.

Remark 2. Let G be a unicyclic graph. For every vertex x ∈ c2(G), there exists at least one vertex y ∈
c2(G) ∪ T(G) such that x, y are mutually maximally distant in G.

Remark 3. Let G be a unicyclic graph. Then, two vertices x, y are mutually maximally distant in G if and only
if x, y ∈ c2(G) ∪ T(G).

We note that any graph H ∈ HT satisfies that c2(H) is empty (whether the unicyclic graph H
has been obtained from T by adding an edge between two non leaf vertices of T), or has cardinality
1 (whether H has been obtained from T by adding an edge between a leaf a non leaf vertex of T),
or cardinality 2 (whether H has been obtained by an added edge between two leaves of T).

Proposition 8. If HT is a family of unicyclic graphs obtained from a tree T with t leaves as described above,
then Sds(HT) = t − 1.

Proof. By Remarks 2 and 3, and the fact that 0 ≤ |c2(H)| ≤ 2, we deduce that, for any graph H ∈ HT ,
it follows that HSR contains |V(G)| − t isolated vertices together with either

(i) a subgraph isomorphic to Kt or,
(ii) a subgraph isomorphic to Kt−1 and one extra vertex adjacent to a subset of vertices of the subgraph

Kt−1 or,
(iii) a subgraph isomorphic to Kt−2 and two extra vertices (in which case such two vertices are not

adjacent), which are adjacent to two different subsets of vertices of the subgraph Kt−2.

We note that these, one or two, extra vertices are precisely the leaves of T, for which an incident
edge has been added to the tree T in order to obtain H. According to these facts, the simultaneous
strong resolving graph (HT)SSR has a connected component which is a subgraph of a complete graph
Kt whose vertex set is precisely the set of leaves of T. In this sense, by using Theorem 2, we obtain
Sds(HT) = α((HT)SSR) ≤ t − 1.

On the other hand, consider Q is the subgraph induced by the set of vertices corresponding
to the leaves of T. If item (i) above occurs for every H ∈ HT , then clearly (HT)SSR ∼= Kt and so
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Sds(HT) = α((HT)SSR) = t − 1. Suppose now that Sds(HT) < t − 1. This means that there are two
vertices x, y corresponding to two leaves of T which are not adjacent in (HT)SSR. In consequence,
there is a unicyclic graph Gx,y ∈ HT which was obtained from T by adding the edge xy. However,
since HT has at least two graphs, there is at least a graph G′ ∈ HT , other than Gx,y in which the vertices
x, y are not adjacent. Thus, x, y are MMD in G′ and so the edge xy exists in (HT)SSR, a contradiction
with our supposition. Therefore, Sds(HT) ≥ t − 1 and we have the desired equality.

A similar process as described above can be developed in order to get families of graphs for which
the simultaneous strong metric dimension of graphs can be computed. However, one may need to use
several assumptions while constructing such families. This is based on the fact that computing the
simultaneous strong metric dimension is NP-complete for several “very simple” families of graphs
(like families of paths, for instance). In connection with this, it would be desirable to find some
“properties” satisfied by a graph family in order to decide if it is “easy” to compute its simultaneous
strong metric dimension or not.

5. The Particular Case of Cartesian Product Graphs Families

Given two graph families F1 = {G1, . . . , Gr} and F2 = {H1, . . . , Ht} defined over the common
sets of vertices V1 and V2, respectively, the Cartesian product graph family F1�F2 is given by the family
{Gi�Hj : Gi ∈ F1, Hj ∈ F2}. In order to study the simultaneous strong metric dimension of
Cartesian product graphs families, we also need the following definition. The direct product graph family
F1 ×F2 is given by the family {Gi × Hj : Gi ∈ F1, Hj ∈ F2}.

We shall next need the following definitions. Given two graphs G and H, the Cartesian product
graph of G and H is a graph, denoted by G�H, having vertex set V(G�H) = V(G) × V(H). In
addition, there is an edge between two vertices (a, b), (c, d) ∈ V(G�H) if it is satisfied that either
(a = c and bd ∈ E(H)) or (b = d and ac ∈ E(G)). In a similar way, the direct product of graphs can be
defined. That is, the direct product graph of G and H is a graph, denoted by G × H, having vertex set
V(G × H) = V(G)× V(H). Now, two vertices (a, b), (c, d) are adjacent in the direct product G × H
whenever ac ∈ E(G) and bd ∈ E(H).

The first result concerning Cartesian product graphs families is a relationship between the
simultaneous strong resolving graph of Cartesian product graphs families and that of its factors.
The following equivalent result for the strong metric dimension of graph was given in [22].

Theorem 4 ([22]). Let G and H be two connected graphs. Then, (G�H)SR ∼= GSR × HSR.

By using the result above and the fact that the simultaneous strong resolving graph of a graph
family equals the union (overlapping) of the strong resolving graph of each graph of the family,
we deduce the next result.

Theorem 5. Let F1 = {G1, . . . , Gr} and F2 = {H1, . . . , Ht} be two graph families defined over the common
sets of vertices V1 and V2, respectively. Then, (F1�F2)SSR ∼= (F1)SSR × (F2)SSR.

Proof. Since (F1�F2)SSR is given by
⋃

Gi∈F1,Hj∈F2
(Gi�Hj)SR and (Gi�Hj)SR ∼= (Gi)SR × (Hj)SR

(by Theorem 4), we get that

(F1�F2)SSR ∼=
⋃

Gi∈F1,Hj∈F2

(Gi�Hj)SR ∼=
⋃

Gi∈F1,Hj∈F2

(Gi)SR × (Hj)SR ∼= (F1 ×F2)SSR,

which gives our claim.

We next give several results concerning the simultaneous strong metric dimension of Cartesian
product graph families. In this sense, the result above plays an important role. Now, our next result,
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which is obtained by using Theorem 2 and Theorem 5, shall be used as an important tool to develop
our exposition.

Corollary 1. Let F1 = {G1, . . . , Gr} and F2 = {H1, . . . , Ht} be two graph families defined over the common
sets of vertices V1 and V2, respectively. Then, Sds(F1�F2) = α((F1)SSR × (F2)SSR).

Due to the similarity of the results above (in this section) with those obtained in [22] concerning
the strong metric dimension of graphs, we note that some analogous reasonings as that ones in [22]
shall lead to several results concerning the simultaneous strong metric dimension of graph families.
In this sense, we now close our exposition with some problems that are of interest in our point of view.

6. Conclusions and Open Problems

A new approach to study the simultaneous strong metric dimension of graphs families has been
presented in this work. That is, we have introduced the notion of simultaneous strong resolving graph
of graphs families, and proved the computing the simultaneous strong metric dimension of a family of
graphs is equivalent to compute the vertex cover number of this newly introduced simultaneous strong
resolving graph. Based on this equivalence, several computational and combinatorial results have been
deduced. For instance, we have proved that computing the simultaneous strong metric dimension
of families of paths and families of multisubdivided star graphs is NP-hard. As a consequence of
the study, a number of open questions have been raised. We next point out several of the most
interesting ones:

• Since finding the simultaneous strong metric dimension of graph families is NP-hard, even for
relatively simple families of graphs (like families of paths for instance), it would be desirable to
describe several other graph families in which this problem could be solved in polynomial time.

• Based on the fact that computing the simultaneous strong metric dimension is NP-hard for several
“very simple” families of graphs (like families of paths for instance), it would be desirable to
find some structural properties satisfied by a graph family in order to claim that computing its
simultaneous strong metric dimension can be efficiently done.

• One of the families studied in [15] was that one containing a graph G and its complement G.
In this sense, it would be interesting to consider the problem of describing the strong resolving
graph of G and its possible relationship with the strong resolving graph of G, in order to construct
the simultaneous strong resolving graph of {G, G} and thus study its simultaneous strong metric
dimension. With this problem, we would also contribute to some open problem presented in [20]
concerning describing the structure of the strong resolving graph of several graphs.
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