120 research outputs found

    Path Planning and Smoothing for 4WDs Hydraulic Heavy-Duty Field Robots

    Get PDF
    This paper discusses the path planning and path-following control for a four wheel drive (4WD), steer-articulated boom lift driven by hydraulic actuators. The environment is assumed to be both static and known. The path planning will be done in two phases, where the first one finds a crude, collision-free path accounting for the vehicle dimensions, and this path will be smoothed with a path smoothing algorithm to satisfy the kinematic and dynamic constraints imposed by the vehicle and its actuators. The path smoothing algorithm will be chosen from several candidates by using a simulated test scenario. Then, the simulation results will be used to verify the path planners feasibility in heavy-duty, four-wheel-steered field robots having hydraulic actuators and high inertia.publishedVersionPeer reviewe

    Toolpath Smoothing using Clothoids for High Speed CNC Machines

    Full text link
    As a result of this research, new methods for CNC toolpath smoothing were developed. Utilising these methods can increase the speed, decrease vibrations and improve the cut quality of a CNC machine. In the developed techniques, Euler spirals have been used to smooth the corners

    Path trajectory of autonomous vehicles using Bezier curves

    Get PDF
    This research explores the nature of the parametric Bezier Curves and its application in determining the path trajectory of an autonomous vehicle using Bezier curves. The research uses the MATLAB scripting language to find the optimal distance between control points of a fifth degree Bezier curve. This was found by finding the integral of the second derivative of the Bezier curve's curvature. The results of this research indicate an increasing linear dependency between the distance of the six control points and the length of the vehicle's trajectory, assuming that the width remains constant. The approximated correlation derived from the generated program will assist in finding a precise relationship between the two variables and will reduce the time in which autonomous vehicles plans its path

    Magnetic suspension turbine flow meter

    Get PDF
    Measurement of liquid flow in certain area such as industrial plant is in critical. Inaccurate measurement can cause serious result. Most of the liquid flow are using Bernoulli principle‘s but in turbine flow meter the flow rate is determine differently by using kinetic energy. Turbine flow meter is one of flow rate transducer that widely used in metallurgical, petroleum, chemical and other industrial and agricultural areas, as shown in Figure 1.1. It is present as high precision of flow meter and when fluid flow troughs it the impeller that faces the fluid will rotate due to flow force exist. The rotation speed is directly proportional to the speed of fluid. During the process, the working states of impeller and bearing are very complicated due the interactive effects from the fluid axial thrust, impeller rotating, and static and dynamic components. In current turbine flow meter design, the common material use for meter bulk body is 1Cr18Ni9Ti, while for the blade 2Gr13 are used. Axis and bearing are made from stainless steel or carbide alloy. The space between the axis and bearing determines it minimum flow rate and life span, and also determines its measurement range (1:10~1:15 - maximum flow rate to minimum flow rate). Since the turbine has movable parts it can produce friction between the axis and ring during the operation. This will cause accuracy of the measurement decrease and can damage the impeller blade. In this research, the friction can be reduced by adopting the principle of magnetic suspension. Rotating shaft will levitate in the magnetic field due to the forces. Friction coefficient reduced because of rotating shaft rotates without abrasion and mechanical contact in space

    Hybrid PSO-cubic spline for autonomous robots optimal trajectory planning

    Get PDF
    This paper presents a new version of the Particle Swarm Optimization algorithm where the particles are replaced by spline functions. The developed algorithm generates smooth motion trajectories with two times continuously differentiable curvature avoiding obstacles placed in the workspace. It can be used for autonomous robot path planning or transport problems. The spline based trajectory generation gives us continuous, smooth and optimized path trajectories. Simulation and experimental results demonstrate the effectiveness of the proposed method.info:eu-repo/semantics/publishedVersio

    Bezier Curve Interpolation On Road Design

    Get PDF
    This research focuses on reconstructing the road curve by using Bezier curve fitting on a map. The usual way of constructing the Bezier curve is by using control points which can be very tedious. Since Bezier curves do not interpolate the control points, designers need to estimates the position of control points so that the curve fits well. In order to ease up the process, we will construct the Bezier curve by using the parameterization method where the data point information is required instead of the usual way of using control points. However, this method does not work on Bezier curve of high degree as the curves tend to become perturbed. One way of solving the problem is by using piecewise Bezier curve made up of several parameterized Bezier curves of lower degree. We propose a method to satisfy the continuity properties along this piecewise parameterized Bezier curve. The method had been implemented on two-dimensional model and spatial model. By using this method, we manage to construct a Bezier curve that can interpolate high number of data points while satisfying the continuity properties along the curve

    Path Planning Based on Parametric Curves

    Get PDF
    Parametric curves are extensively used in engineering. The most commonly used parametric curves are, Bézier, B-splines, (NURBSs), and rational Bézier. Each and every one of them has special features, being the main difference between them the complexity of their mathematical definition. While Bézier curves are the simplest ones, B-splines or NURBSs are more complex. In mobile robotics, two main problems have been addressed with parametric curves. The first one is the definition of an initial trajectory for a mobile robot from a start location to a goal. The path has to be a continuous curve, smooth and easy to manipulate, and the properties of the parametric curves meet these requirements. The second one is the modification of the initial trajectory in real time attending to the dynamic properties of the environment. Parametric curves are capable of enhancing the trajectories produced by path planning algorithms adapting them to the kinematic properties of the robot. In order to avoid obstacles, the shape modification of parametric curves is required. In this chapter, an algorithm is proposed for computing an initial Bézier trajectory of a mobile robot and subsequently modifies it in real time in order to avoid obstacles in a dynamic environment

    Comparative analysis of firefly algorithm for solving optimization problems

    Get PDF
    Firefly algorithm was developed by Xin-She Yang [1] by taking inspiration from flash light signals which is the source of attraction among fireflies for potential mates. All the fireflies are unisexual and attract each other according to the intensities of their flash lights. Higher the flash light intensity, higher is the power of attraction and vice versa. For solving optimization problem, the brightness of flash is associated with the fitness function to be optimized. The light intensity I (r) of a firefly at distance r is given by equation (1
    corecore