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ABSTRACT

This project proposes an obstacle avoiding pathrnaheg algorithm based on
cell decomposition method for a car-like robot. kSffa’'s algorithm is applied in
order to find the shortest path. Using cell decositpmn, the free space of the robot
is exactly partitioned into cells. Then, the cortngty graph is created followed by
calculating the shortest path by Dijkstra’s aldumt This project also concerns the
robot kinematic constraints such as minimum turnnaglius. Thus, kinematic
modeling and Bezier curve have been used to ohtéasible path. The algorithm is
able to obtain a curvature bounded path with subvab curve length while taking
cell decomposition as reference skeleton. The Cespancept has been applied in
this situation. The obstacles on the map are exgthadcording to the size of car-like
robot, so that the robot could be treated as paintthis map and the coordinates of
the map is corresponding to these points. The sitioml and experimental result
shows the algorithm can obtain the collision fre¢hpwhich satisfies the curvature

constraint and approaches the minimal curve lefayth car-like robot.
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ABSTRAK

Projek ini mencadangkan satu perancangan laluag tenhindar daripada
sebarang halangan berdasarkan kepada kaedah pangwsal untuk robot
berkonsepkan kereta. Algoritma Dijkstra digunakatuk mencari laluan terpendek.
Dengan menggunakan kaedah penguraian sel, ruaag baot dibahagikan kepada
sel-sel dengan tepat. Kemudian, graf penyambunipmadantara sel diikuti dengan
pengiraan laluan terpendek oleh algoritma Dijksianjek ini juga mengambil kira
aspek kekangan kinematik robot seperti penggunadiug yang minimum bagi
selekoh atau sudut. Oleh itu, model kinematik gargkung Bezier telah digunakan
untuk mendapatkan laluan yang bersesuaian. Algaritmh mampu mendapatkan
laluan yang pendek di kawasan berlengkung denganganebil kira laluan
penguraian sel sebagai rangka rujukan. Konsep rikanfigurasi(C-space) telah
digunakan dalam situasi ini. Halangan-halangaruding kerja dibesarkan mengikut
kepada saiz robot berkonsepkan kereta, supaya kuelh dianggap sebagai satu
titik pada ruang ini dan koordinat ruang kerja adalah sepadan dengan titik
tersebut. Hasil simulasi dan eksperimen menunjukla@dgoritma ini boleh
mendapatkan laluan yang terhindar dari sebararangah yang memenuhi kekangan
bagi lengkung serta mencapai sasaran laluan tdrded@ robot berkonsepkan

kereta.
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CHAPTER 1

INTRODUCTION

1.1 Project Background

Mobile robots are widely used in many industrialds. Research on path
planning for mobile robots is one of the most intapt aspects in mobile robots
research. Path planning for a mobile robot is mal fa collision-free route, through
the robot’s environment with obstacles, from a #peet start location to a desired
goal destination while satisfying certain optimiaatcriteria. Most of existing path
planning methods, such as the visibility graph, del decomposition, and the
potential field are designed with the focus onistahvironments, in which there are
only stationary obstacles. However, in practicatems, robots usually face dynamic
environments, in which both moving and stationdrgtacles exist.

At present, research on various algorithms for meotmbot path planning is
an active topic. Mobile robots are widely used iany hazardous industrial fields
where there may be dangers for people, such aspa® research, the nuclear
industry and the mining industry. To find a saféhpa a dangerous environment for
the mobile robot is an essential requirement fer shccess of any mobile robotic
systems. Therefore, research on path planning itiigts to make the robot move
from the start point to the termination point witthacollision with obstacles is
fundamental requirement for the mobile robot saf@ty such environments.

Moreover, to reduce the computation time commuitoatdelay and energy



consumption, the planned path is naturally requicede optimal with the shortest
length.

1.2 Problem Statements

The problem of planning a path for a mobile robota given workspace,
while avoiding obstacles, has been studied for mggayrs. The main problem in a
motion of the robot is when there are many obssadle their workspace
environment. This problem faced especially whendbstacle block the robot path
and cause the robot operations interrupted anghstbDbstacles can be divided into
several characteristics such as size, locationwarks and roughness of the
obstacles. In addition, the obstacles can alsoowimg or stationary condition during
the robot moves. This factor actually creates aomajoblem to the robot.

Most of the programs installed on the robot arediand difficult to alter. For
example, if the obstacles position changed fromatiginal position, the robot will
not be able to detect obstacles and cannot prodeedo due to obstructed by the
obstacles. Thus, the user needs to take actiortd¢o the robot program to be
compatible with the changing obstacles. This celydbakes a lot of time and energy.

A program that can solve the problems mentionedveboeed to be
developed to ensure the best robot path can betrogotes] and thus, provides
benefits to all users. Solution methods fall intwree broad categories: cell
decomposition, roadmap methods and artificial piedefield methods. The first two
approaches transform the path planning problem anggraph search problem. In
particular, cell decomposition methods partitioe finee space into convex, non-
overlapping regions, called cells, and then emmgdgehniques, such as the Dijkstra
algorithm, to search the connectivity graph foeguence of adjacent cells from the
initial point to the goal.

Although several sophisticated approaches for paA#imning have been
reported in past literatures, cell decompositiomst common and widely used in
applications because of their simplicity. It iscadvantages to decompose the free
space into as few cells as possible, in order t@ensearch of the corresponding

graph faster. Generally, working with multiresotuti cell decompositions is



beneficial when one is primarily interested eitimeoffline or online implementation.
A multiresolution scheme can keep the size of ésellting graph search tractable so
that its search can be achieved with the limiteeboard computational resources,
while keeping the required accuracy.

An impressive amount of research on path planfongnobile robot focuses
on simple robot dynamics, either fully actuateduoderactuated with differential-
wheel driven structure (close to unicycle). Buthis project will be focus on car-like

robots for offline path planning.

1.3 Project Objectives

The objective of this project is to develop an alionic method for
constructing a solution to the navigation probleon d car-like robot. The study is
proposed as follows:

a) To carry out path planning algorithm using cd#composition
method through an environment containing obstablesnded by
simple polygons.

b) To model the cell decomposition method on alikarrobot.

C) To develop the algorithm that can reach a tapgedition without

colliding with obstacles during movement.

1.4  Project Scopes

The scopes of study are as follows:

a) Cell decomposition algorithm is implemented foffline path
planning.

b) The cell decomposition method is implemente@ @ar-like robot.

C) The car-like robot is operated in an encloselban and the locations

of all obstacles are knovanpriori.



d) The coordinates of starting point and targetnpoare known
beforehand.
e) The obstacles are assumed to be in rectangodar, fvith random

sizes and locations.

f) The algorithm can distinguish collision avoidanwith stationary
obstacles.

Q) A car-like robot treated as a single point snabnfiguration space.

h) Bezier curve will be applied in general in orteget a smooth path.

1.5  Organization of Report

As an overview, the structure of this report isammged as follows. Chapter 1
describes a general introduction of the projeapfam statement, project aims and
project scope. Chapter 2 provides details liteetueview that includes an
introduction to some basic concepts and a survegxisting work in the areas of
robot path planning. Chapter 3 explains the metluggyoof the project which is
provides a detailed description of the algorithros fpath planning based on cell
decomposition method. The simulation results aralyais are presented deeply in
Chapter 4. Chapter 5 analyze comparison betweérdeebmposition and Voronoi
diagram with the other method and also discuss hvenghe objectives have been

achieved or not. Chapter 6 is for conclusion andcomemendations.



CHAPTER 2

LITERATURE REVIEW

2.1 Theories

The path planning problem was originally studieteagively in robotics. It
has gained more relevance in areas such as compughics, simulations,
geographic information systems (GIS), very-largalesdntegration (VLSI) design
and games. Path planning still remain one of the gooblem in modern robotic
applications, such as the design of autonomouscheshand perceptive system [1].
The basic path planning problem is concerned viittliig a good-quality path from
a source point to a destination point that does restilt in collision with any
obstacles. Depending on the amount of the infoonatavailable about the
environment, which can be completely or partiallpown or unknown, the
approaches to path planning vary considerably. rhba® [2] provides a
comprehensive survey of different path-planningatgms.

The path planning problem is one of the most furelaal problems in
robotics. In general, a physical motion planninghpem is transformed into
geometrical path planning problem. Accordinglyolat is represented as a point in
an appropriate search space, because the motian pHrticle mass is easy to
describe. Therefore, a path can be represented@gefrom a point to another on
the search space. The path planning problems asedlrelated with the collision

avoidance problem.



Actually, the path planning problem is to find alpaonnecting some poin
for avoiding the collision with obstacles in a wsplace.First, a tw«-dimensional
map around the robot including the starting anddipoints is built. An obstacle
the workspace is represented as an approximatedj@wl object. The size of
polygonal object is larger than the real size efdbject. Iithe size of robot is adde
to that of a polygonal object, a robot can be repnéed as a point in the workspi
map, not a polygon, because the size of every pabigobject includes the size
the robot as illustrated in Figure 2.1. This metlead sinplify the workspace ma
with any accuracy. However, the workspace map ils cgintinuous. In order t
reduce the search space size, the workspace mapectmansformed into variot

types of search spaces from the visual point o

Start I&] Start E
Rl =
Robot ‘ Robol<
X
ol Goal E(ioal

(a) Rea workspace (b) Polygonal workspat

Figure 2.1: Polygonal workspace approximated fromeah environmen[3].

A search space is built by cell decomposition meésheoadmap methods
artificial potential field methods.In the cell decomposition method, a t
dimensional workspace is basically divided into iaitd number of cells. Th
roadmap method transforms the workspace into theofseertices and paths th
enable a graph search. In the artificial poteriigddl method, a robot moves based
attractive force from the target point and repwdsforce from the obstacles in t

workspace.



2.2 Configuration Space (C-space)

In path planning for mobile robotics, the vehictelahe world through which
it travels must both be represented in some masménat plans can be evaluated in
a search space. The search space represents ptighible situations that can exist.
In order to plan a robot's motions when there asmyndegrees of freedom, a
construction called a configuration space is used.

Lozano-Perez [4] has an idea to handle the firgtsiceration of the
configuration space. It suggested that instead avfdling a complex geometrical
representation of a robot in the Euclidean represiem of the workspace, the robot
can treated as a point in its configuration space.

At every point in time, a robot can have exactlye awombination of its
position and orientation. This unique combinatien called a configuration. A
configuration space (C-space) represents each bp@ssonfiguration as a single
point and contains all of the possible configunasi@f the robot. All of the physical
obstacles from the robot's working space are mappettransformed into this
configuration space. This c-space is used wherectimebination of position and
orientation is mapped into a single configuratiarinp because it transforms the
problem from planning complex object motion to plengy the motion of a point.

A good choice of configuration space will contahme tfewest number of
dimensions to allow the planning algorithms to wqulckly. As degrees of freedom
are added for a complex system, the configuratpate grows quickly in size and
number of dimensions, making planning much moré&cdit. Unfortunately, as it
has been suggested by Latombe [2], the planninglgmo grows exponentially in
time with the number of dimensions in the configiora space. This means that the
fewer the number of dimensions that need to beidered the better. For this
reason, researchers often use simplifications ef pinoblems to attain faster
performance of a path planner. For global pathmplay the possible configurations

are often reduced to simply the x, y co-ordinatscep



2.3 Classifications of robot path planning methods

The mobile robot path planning task is to find dision free route, through
an environment with obstacles, from a specifiedt dtacation to a desired goal
destination while satisfying certain optimizationteria. The path planning method
could be classified into different kind based offiedent situations. Depending on the
environment where the robot is located in, the paldmning methods can be
classified into the following two types:

i. Offline types — path planning in static environmemhich only
contains the static obstacles in the map.

ii.  Online types — path planning in a dynamic environimg&hich has
static and dynamic obstacle in the map.

Each of these two types could be further dividetb itwo sub-groups
depending on how much the robot knows about thé&eemformation of the
surrounding environment:

i.  Path planning in a clearly known environment in ebhithe robot
already knows the location of the obstacles befostarts to move.
The path for the robot could be the global optimiisesult because the
entire environment is known.

ii.  Path planning in a partly known or uncertain enwin@nt in which
the robot probes the environment using sensorsdaoii@ the local
information of the location, shape and size of atlss, and then use

the information to proceed local path planning.



Figure 2.2 shows the hierarchy of the classific&iof the robot path planning
methods.

Path Planning

Path planning in static w Path planning in dynamic

environment (offline) environment (online)

| |

Path planning in Path planning in Path planning in Path planning in
known static unknown static known dynamic unknown dynamic
environment environment environment environment

Figure 2.2: Classifications of the robot path pilagmethods

However, this project only focussed on offline typleich is static and known
environment. In a static and known environment, thbot knows the entire
information of the environment before it starts/éiéing. Therefore, the optimal path
could be computed offline prior to the movementhef robot.

The path planning techniques for a static and knemwironment are
relatively mature. Representative path planninghoas for a clearly known static
environment include the visibility graph method, reieoi diagrams method, the
grids method, the cell decomposition method andmgal field method.

2.4  Comparisons of path planning methods.

There exist a large number of methods for solvirggliasic motion planning
problem. Most methods of planning use one of thypes of configuration space
representation, called roadmap, cell decomposgioa potential fields. Roadmaps
model connections between special points, cell mgosition methods break the

world into grids, and potential fields apply matretimal fields to model the world.
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Among these three methods, cell decompositionasotie most widely used
for outdoor robotics and quite attractive. It allgeneration of collision-free paths,
whereas visibility graph only guarantees semi-fyggths. It is also practical
compared to Voronoi diagram which appears morécditfto implement and it takes
global knowledge into consideration, unlike locatgntial field.

Furthermore, the path generation of cell decompositas a channel as an
intermediate result if one exists. This yieldseatsit two advantages:

i.  The channel is an efficient way to answer the gqomest a collision-free

path exists or not

ii.  There are no restrictions on the generated patr thlan that it must be

inside the channel (in contrast to Voronoi diagrama visibility graph
where the path is immediately generated).
Hence, cell decomposition constitutes a good fotioddor a path planning method.

However, each of these types may be either topcdb@ir metric in nature.
All the methods mentioned below in general mustdigcrete, except for the
potential field method, which can also be implerednin a continuous state space

fashion. These approaches will be briefly introadubelow.

2.4.1 Cell Decomposition

Cell decomposition methods are the most studiedradely applied methods
for outdoor robotics. In these methods the plansipgce is broken up into discrete,
non-overlapping regions which are subsets of tepace and whose union is makes
up exactly the entire c-space. The result is algrapvhich each cell is adjacent to
other cells. The method for traversing from ond t®ladjacent cells is called the
connectivity graph. A planner then searches thrabhghconnectivity graph and the
path generated is a sequence of cells the robolicim@verse to reach the goal. The
cost of traversing a cell may vary and the plammast apply a metric to determine
which the optimal path is. Cell decompositions aften used to represent the
physical space itself, but can also be used omagtwation space.

There are several implementation of cell decommosguch as Approximate

Cell Decomposition, Exact Cell Decomposition andapiive Cell Decomposition.
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Adaptive cell decomposition is used to reduce tmalmer of cells used in open areas
(in order to waste less memory storage space amghutation time) and to remove
the digitization bias of the regular cell decomgiosi The most common type of
adaptive decomposition is a quadtree.

The quadtree method is another algorithm for seéagaie collision free path
for a robot. It uses small non-overlapping gridIsefo represent the entire
environment. The cells usually are simple squafégre are three types of cells:
empty cell, mixed cell and full cell. An empty cé&ll a free space, where the robot
could go through in the environment. A mixed celhtains obstacles and free space.
A full cell is the block of the obstacles. In a tdmensional map, a quadtree is used

to decomposition the map as shown in Figure 2.3.
4 27
N

Figure 2.3: Quadtree decomposition [5]

Omo

[ empty ] mixed N run

It begins by imposing a large size cell over therermplanning space. If a grid
cell is partially occupied, it is sub-divided intour equal subparts, which are then
reapplied to the planning space. These subparthanesubdivided again and again
until each of the cells is either entirely full entirely empty. The resulting map has
grid cells of varying size and concentration, the tell boundaries coincide very
closely with the obstacle boundaries.

This chapter does not discuss Approximate Cell Dgmasition and Exact
Cell Decomposition method in detail. More infornaatiabout as Approximate Cell

Decomposition, Exact Cell Decomposition could benid in Chapter 3.
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2.4.2 Roadmap methods

The second major types of representation for pithning are the Roadmap
Methods. Roadmaps are graphs which represent hogetofrom one place to
another. The roadmap approach to path generatiorsiste of reducing the
environmental information to a network of one-disienal curves, called the
roadmap. Once the roadmap has been constructedthacpn be calculated by
connection the initial and final configurationsttee network and finding a path in
the roadmap.

Roadmaps provide a huge advantage over cell dectigps in the number
of nodes a planner needs to search through in ¢odiémd a path. The set of nodes
does not consist of all of the configurations, buselect few that are special. This
makes them harder to create, but easier to mamgoalad use. On the downside,
roadmaps are generally difficult to update or repas the robot gains new
information, because the entire roadmap typicalgds to be remade. In addition,
most of the methods of creating the graph useaatsifof the map, such as corners of
objects or crossroad to generate the landmarksaaea boundaries, rather than
things that can be sensed by the robot.

In general, roadmap methods are fast and most e tlare easy to
implement, but they do not provide an intrinsic vedydescribing the environmental
information [2]. Examples of roadmap methods are ¥isibility graph, Voronoi

diagram, free way net and silhouette graphs.

2.4.2.1 Visibility graph

One of the earliest roadmap methods, which applywim dimensional c-
spaces, is the visibility graph. A visibility graps used in robot motion planning
when the geometry of the environment is known. Tan idea of the visibility
graph method is that if there is a collision freghpbetween two points, then there is

a polygonal path that bends only at the obstacketices. Collision free path (in
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curves) could be transformed into line segmentsifgit line) as shown in Figure
2.4,

Figure 2.4: The visibility graph [6]

Visibility graph methods are poor because the daled paths are tangential
to the obstacles and the robot will brush rightag@inst the obstacles. In order to
account for this, obstacle regions are generalywgrto provide a safety margin,
although this results in incompleteness and inefficy of the planner. Another
problem is that the obstacles must be clearly @dfipolygons. This is a problem for

outdoor robots because obstacles almost alwaystakeund or amorphous shapes.

2.4.2.2 Voronoi diagrams

A Voronoi diagram is another popular mechanismgenerating a roadmap
from a c-space. It can be constructed as the rebtdrs a new environment. The
roadmap consists of paths, or Voronoi edges, whieh equidistant from all the
points in the obstacle region. Voronoi diagram t@e@admaps that connect the
initial and goal configurations by forming pathsnswsting of line segments and
parabolic arcs (for polygonal obstacles) that mas@nthe clearance between the
robot and the obstacles.

In contrast to visibility graphs, Voronoi paths arg definition as far as
possible from the obstacles. If a robot follows erdhoi edge, it would not collide
with any modelled obstacles, and there is no neeggdw obstacle boundaries. This
makes Voronoi methods safe, but the paths geneirsétient.
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——Yoronoi edge

Voronoi

\

Figure 2.5: A Voronoi diagram. The dashed linestheeset of points equidistant to

obstacles. The path is shown in solid darker lines.

2.4.2.3 Probabilistic Roadmaps

A much more recent advance in the roadmap methodkei Probabilistic
Roadmap (PRM), which attempts to make planningangd or high-dimensional
spaces tractable. A PRM is a discrete versionamfrdinuous c-space which contains
much fewer states than the original c-space.deigerated by randomly sampling the
larger c-space and then connecting those points antoadmap. PRMs are an
improvement because most other planners, especellligecomposition ones, tries
to solve the planning problem in the entire seaghce. PRM methods solve in a
roadmap built from a randomly chosen subset ofsimrch space and then use a
computationally inexpensive search algorithm teshrthe job.

PRMs are based on the premise that a relativelyl smaber of points and
milestones and paths are usually sufficient tow&pthe connectivity of free space.

This assumption can greatly accelerate the planpnogess. In the query phase,
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when the robot needs to plan a path between twbgtwmations, the algorithm uses
the roadmap created in the first phase to searcugh the waypoint nodes to find
the least-cost path between the start and goaligtoafions. The initial graph
building process is computationally expensive, haeve once it has been

constructed, the search is very efficient.

Randomly chosen points

Figure 2.6: A PRM which nodes are chosen randomly

One problem with a standard PRM method is that ibefficient for narrow
confined spaces. Because the points which makeheprdadmap are chosen at
random, the chance of catching a random point éntitpht space is low, and no
connectivity will be established between sectiohthe map. Greater coverage with
a greater number of nodes leads to better pathsname chance of getting through
tight spots, but makes the planning more complex.

Another problem with PRMs is that they are usuddgsed on binary
obstacles that most other roadmap planners udeerrtitan a gradual costing. This
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means that obstacles need to be well defined andrggng variable path costs is
more difficult than with other methods. A third ptem with PRM methods occurs
when obstacles are added or removed from the mapha&nentire roadmap must be
regenerated. Because generation of the roadmdpwsasd cannot be done in real
time, the planner functions poorly when the infotiora is changing often or if the
initial information is incorrect. That said, howeyeéhe roadmap construction is

incremental, and can be expanded as necessarytiesbot explores new terrain.

2.4.2.4 Rapidly Exploring Random Trees

A further variation of PRMs is the Rapidly ExplagilRandom Tree (RRT).
Rather than randomly sampling the configurationcepas a PRM does the planner
begins at the start location and randomly expangsath, or tree, to cover the
configuration space. The main focus is to builadmap in a fashion which draws
the expansion of the connected paths toward thesavhich have not been filled up
yet. The planner pushes the search tree away fremioosly constructed vertices.
This allows them to rapidly search large, high disienal spaces. They are also well
suited to the capture of dynamic or non-holononoastraints, which with PRM
methods have difficulty (although this capabilisyriot critical for high level global
path planning).

Gona

Star

Figure 2.7: Path Planning using multiple RRTs
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2.4.3 Potential Field

Potential Fields is the third major type of repreagéon used in path
planning. The potential field method was initiglisoposed by Khatib in 1986 [5] for
mobile robot path planning. Potential Field methade quite different from the
previously discussed methods of planning, and Hmen used extensively in the
past. Instead of trying to map the search spageithpose a mathematical function
over the entire area of robot travel.

The main idea of the method is to imagine thatoaltacles can generate
repulsive force to the robot, while the destinatmint has attractive force to the
robot. Potential field method treats the robot espnted as a point in configuration
space as a particle under the influence of ani@alifpotential field whose local
variations are expected to reflect the “structukethe free space [2].

The potential field can be imagined either as argdwh particle navigating
through a magnetic field or a marble rolling dowrhil. The basic idea is that
behaviour exhibited by the particle/marble will ded on the combination of the
shape of the field/hill [7]. Unlike filed/hills wiie the topology is externally specified
by environmental conditions, the topology of thetemtial fields that a robot
experiences are determined by the designer. Mazeifggally, the designer creates
multiple behaviours, each assigned a particulde tasfunction, represents each of
these behaviours as a potential field, and comlatesf the behaviours to produce
the robot’s motion by combining the potential feldThe potential function is
typically defined over free space as the sum ofattractive potential pulling the
robot toward the goal configuration and a repulggéential pushing the robot away

from the obstacles.
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Figure 2.8: Simplified potential fields. Field proced by obstacles in (a) and (b), the

field produced to create goal attraction in (c)Yj #me sum of the fields in (d). This

summed field will be used to direct the vehiclengithe levels of lowest potential.
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2.5 Graph Search Algorithms

Once a method of representing the environment kas lestablished, it is
then necessary to search for the best path thrthaghrepresentation. These search
algorithms come from wide variety of applicationscluding general problem
solving, artificial intelligence, computer netwankji and mechanical manipulation. In
robot planning situations, the cost function (tgbigz based on time and cost
considerations) that is usually minimized is théhp@ngth. Hence, algorithms for
extracting this shortest path are required to akdéficient robot navigation.

Many graph search algorithms require that everyenod the graph be
investigated to determine the best path. This wwell when there are a small
number of nodes such as in Voronoi diagram. Howenvken planning a path using
a regular grid map over a large area, this becorags computationally expensive.

Therefore, there are many ways to traverse thehgnaghh many adaptions.

2.5.1 Breadth First Search (BFS)

BFS is a restriction of generic search in thaxplores all neighbours of a
selected vertex before it goes deeper in the grapises queue as its data structure
to obtain the restriction. However, it does notedeine which order to push the
neighbours of a chosen vertex.

Compare to DFS, breath first search is a simgerdghm. It timidly tries one
edge and totally exhaust neighbours of a vertex thges to next neighbours. It
radiates in waves in balanced manner. BFS implesdemsing queues and whatever
is in queues will tells what to explore next. Otize queue is empty algorithm comes
to an end. BFS algorithms will always find the ghst path on its first run and more
appropriate when there are a small number of solgtivhich take a relatively short
number of steps.
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START ° Step 1: Explore paths [A B]
(Goal not found) [A- C]
O OO
Step 2: Explore paths [AB—E](Dead end)
e e ° (Goal not found) [A>B—F](Dead end)
[A-C-(]
&

Figure 2.9: Breadth First Search algorithm [8]

2.5.2 Depth First Search (DFS)

DFS explores the graph differently than BFS. Itgpesses forward through
the graph as much as possible, backtracking ongnwiecessary whereas BFS first
explores close vertices before going deeper tdahenore vertices. It uses stack as
its data structure to obtain this restriction.

The algorithm starts from a node, selects a nodaected to it, then selects a
node connected to this new node and so on, tilhee nodes remain. Then, it
backtracks to the latest node and discovers anynoeles connected to it. The data
structure suitable for this purpose is a stack.e3stack is empty the algorithm ends.

DFS is an aggressive algorithm because it prodacgsnatic ordering. DFS
IS written recursively as it uses stack. DFS woektlfor problems where there are
many possible solutions, and only one of themdsiired. At this task, it will operate
much faster than a BFS. DFS can only find the mimmength path by searching
through the whole graph, rather than stoppingeafitkt solution
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START Step 1: Explore paths [A B]

Step 2: Explore paths [A B — E] (Dead end)

° @ [A - B — F] (Dead end)
Step 3: Explore paths [A C]

Step 4: Explore paths [A C- G]

Step 5: Explore paths [A C— G- END]

Figure 2.10: Depth First Search algorithm (for gwsimple, note that nodes D and H

are never explored) [8]

2.5.3 Dijkstra’s Algorithm

Dijkstra’s algorithm is a widely used shortest pgtaph searching technique.
It finds the shortest path between two nodes irraply and in the process also
extracts the minimum cost path from all nodes &gtburce nodes [9].

However, the ‘greedy’ nature of Dijkstra’s algornthmakes it inefficient (it
must check all nodes), and hence inappropriateséarching large graphs or when
limited computation time (for in real time applicats) is available. Therefore, when
such constraints exist, an algorithm that uses keage of the graph domain to
improve computational efficiency is to be recommeshd

Dijkstra’s algorithm solves the single-source sasirjppath problem for a non-
negative weights graph. It finds the shortest raim an initial vertex to all the other
vertices. For each vertex, the algorithm keepsktrddts current distance from the

starting vertex and the predecessor on the cupaght
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START Step 1: Explore paths [OAE END]
Path length = 11

@. -- __ @ Step 2: Explore paths [OC# END]
Path length = 12
3

Step 3: Explore paths [OB+ END]
Path length = 8

Step 4: Explore paths [OBS END]
Path length =7

Path is success!
4 3

3 END 3

Figure 2.11: Dijkstra’s algorithm [8]

2.5.4 The A* Algorithm

A widely used heuristic graph searching approactthes A* algorithm,
proposed by Hart, Nilsson and Raphael [9]. Unlikigk$dra’'s algorithm, this uses an
‘intelligent’ and more complicated approach to dinreg the graph search. It
evaluates the goodness of each node, but uses l@nadion of the two metrics to
estimates the distance to the goal: distance froenstart, but also an estimated
distance to the goal, like greedy search. It can Be made to be optimal if it is not
made too greedy.

The goodness function for evaluating a path at eacle can be expressed as
follows:

f(n) = h(n) + g(n) (2.1)
Where f(n) is the goodness of the node, h(n) isHaeristic value of the node
(nearness to the goal), and g(n) is the cost fleenstart position to the node. The
algorithm will evaluate the node in the graph fdrieh the resultant f(n) is the best.
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The heuristic estimate, or guess, is often a calicl of what the straight line

distance to the goal would be if there were noauties.

@—»@@@ @—» eee @

g(n) h(n)
f(n) = Estimate of the cost of shortest solutiothpgoing through state n

f(n) = g(n) + h(n)

Figure 2.12: A* algorithm [8]

A* has some very good properties, which is why #igorithm is very
commonly used in mobile robotics. Firstly, it wile complete provided that h(n)
does not underestimate how close the node is tgdahe Secondly, it is optimal in
that it will provide the fastest search of any otbleortest path algorithm which uses

the same heuristic.

2.6 Path Tracking

Path with piece-wise linear segments is not swetdbt car-like robot with
physical constraints as it leads to an abrupt chamghe robot path’s direction from
one segment to the next segment of the path. Hiispight lead to collisions with
the surrounding obstacles if the robot were toerse the path and is thus unsafe.
One of the approaches to cope with this issue iss&path tracker to eliminate the
need of using path smoothing technique as it allthesrobot to follow the planned
path safely.

The path tracking problem involves of generatinfe@dback control law
such that the distance to the path and orientaroor tend to zero, in a mission in
which a path has been planned and an autonomoudesélas forward velocity
[10]. The following section establishes the caelitobot kinematic modeling. The
the path tracking control law, which is based onlié@ robot kinematic/physcal

constraint is derived.
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2.7 Car-like robot motion model

The car-like robots are widely used in robotiag®tighout the development of
the path planning, obstacle avoidance and trackys¢ems. The model given below
is based upon those described in [2].

Let A be a car-like robot, capable of only forward motimodelled as a rigid
rectangular body moving on a planar (two-dimendjowarkspace W = R?, which
is free of obstaclesA is supported by four wheels making point contaith whe
ground, while it has two fixed rear wheels and tdicectional (steerable) front
wheels. The wheelbase (distance between fronteardvheels) is denoted hy

For the car-like robot system, the kinematic magietn by equation 2.2:

x=vcos ()
y=vsin Q)
6=v tan ) / L 2.2)

where(X, y) are the Cartesian coordinates in a fixed frameo{3$he reference point
Pm, located at mid-distance of the actuated wheelgle#@ characterizes the robot’s
chassis orientation with respect to frame S, amlthe distance between the rear and
front axle. The control input are v, which is thehicle’s velocity, ensured by the
rear wheels, and, which is the vehicle’s steering wheel angle, doghe front
wheels, and measured with respect to the curreagsch orientation, as depicted in
Figure 2.13.
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