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ABSTRACT 

 

 

 

 

This project proposes an obstacle avoiding path planning algorithm based on 

cell decomposition method for a car-like robot. Dijkstra’s algorithm is applied in 

order to find the shortest path. Using cell decomposition, the free space of the robot 

is exactly partitioned into cells. Then, the connectivity graph is created followed by 

calculating the shortest path by Dijkstra’s algorithm. This project also concerns the 

robot kinematic constraints such as minimum turning radius. Thus, kinematic 

modeling and Bezier curve have been used to obtain a feasible path. The algorithm is 

able to obtain a curvature bounded path with sub-optimal curve length while taking 

cell decomposition as reference skeleton. The C-space concept has been applied in 

this situation. The obstacles on the map are expanded according to the size of car-like 

robot, so that the robot could be treated as points on this map and the coordinates of 

the map is corresponding to these points. The simulation and experimental result 

shows the algorithm can obtain the collision free path which satisfies the curvature 

constraint and approaches the minimal curve length for a car-like robot. 
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ABSTRAK 

 

 

 

 

Projek ini mencadangkan satu perancangan laluan yang terhindar daripada 

sebarang halangan berdasarkan kepada kaedah penguraian sel untuk robot 

berkonsepkan kereta. Algoritma Dijkstra digunakan untuk mencari laluan terpendek. 

Dengan menggunakan kaedah penguraian sel, ruang bebas robot dibahagikan kepada 

sel-sel dengan tepat. Kemudian, graf penyambungan dibina antara sel diikuti dengan 

pengiraan laluan terpendek oleh algoritma Dijkstra. Projek ini juga mengambil kira 

aspek kekangan kinematik robot seperti penggunaan radius yang minimum bagi 

selekoh atau sudut. Oleh itu, model kinematik dan lengkung Bezier telah digunakan 

untuk mendapatkan laluan yang bersesuaian. Algoritma ini mampu mendapatkan 

laluan yang pendek di kawasan berlengkung dengan mengambil kira laluan 

penguraian sel sebagai rangka rujukan. Konsep ruang konfigurasi (C-space) telah 

digunakan dalam situasi ini. Halangan-halangan di ruang kerja dibesarkan mengikut 

kepada saiz robot berkonsepkan kereta, supaya robot boleh dianggap sebagai satu 

titik pada ruang ini dan koordinat ruang kerja ini adalah sepadan dengan titik 

tersebut. Hasil simulasi dan eksperimen menunjukkan algoritma ini boleh 

mendapatkan laluan yang terhindar dari sebarang halangan yang memenuhi kekangan 

bagi lengkung serta mencapai sasaran laluan terdekat bagi robot berkonsepkan 

kereta. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

1.1 Project Background 

 

 

Mobile robots are widely used in many industrial fields. Research on path 

planning for mobile robots is one of the most important aspects in mobile robots 

research. Path planning for a mobile robot is to find a collision-free route, through 

the robot’s environment with obstacles, from a specified start location to a desired 

goal destination while satisfying certain optimization criteria. Most of existing path 

planning methods, such as the visibility graph, the cell decomposition, and the 

potential field are designed with the focus on static environments, in which there are 

only stationary obstacles. However, in practical systems, robots usually face dynamic 

environments, in which both moving and stationary obstacles exist. 

At present, research on various algorithms for mobile robot path planning is 

an active topic. Mobile robots are widely used in many hazardous industrial fields 

where there may be dangers for people, such as aerospace research, the nuclear 

industry and the mining industry. To find a safe path in a dangerous environment for 

the mobile robot is an essential requirement for the success of any mobile robotic 

systems. Therefore, research on path planning algorithms to make the robot move 

from the start point to the termination point without collision with obstacles is 

fundamental requirement for the mobile robot safety in such environments. 

Moreover, to reduce the computation time communication delay and energy 
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consumption, the planned path is naturally required to be optimal with the shortest 

length. 

 

 

1.2 Problem Statements 

 

 

 The problem of planning a path for a mobile robot in a given workspace, 

while avoiding obstacles, has been studied for many years. The main problem in a 

motion of the robot is when there are many obstacles in their workspace 

environment. This problem faced especially when the obstacle block the robot path 

and cause the robot operations interrupted and stopped. Obstacles can be divided into 

several characteristics such as size, location, networks and roughness of the 

obstacles. In addition, the obstacles can also in moving or stationary condition during 

the robot moves. This factor actually creates a major problem to the robot. 

Most of the programs installed on the robot are fixed and difficult to alter. For 

example, if the obstacles position changed from the original position, the robot will 

not be able to detect obstacles and cannot proceed due to due to obstructed by the 

obstacles. Thus, the user needs to take action to alter the robot program to be 

compatible with the changing obstacles. This certainly takes a lot of time and energy.  

A program that can solve the problems mentioned above need to be 

developed to ensure the best robot path can be constructed and thus, provides 

benefits to all users. Solution methods fall into three broad categories: cell 

decomposition, roadmap methods and artificial potential field methods. The first two 

approaches transform the path planning problem into a graph search problem. In 

particular, cell decomposition methods partition the free space into convex, non-

overlapping regions, called cells, and then employed techniques, such as the Dijkstra 

algorithm, to search the connectivity graph for a sequence of adjacent cells from the 

initial point to the goal.  

 Although several sophisticated approaches for path planning have been 

reported in past literatures, cell decomposition is most common and widely used in 

applications because of their simplicity. It is also advantages to decompose the free 

space into as few cells as possible, in order to make search of the corresponding 

graph faster. Generally, working with multiresolution cell decompositions is 
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beneficial when one is primarily interested either in offline or online implementation. 

A multiresolution scheme can keep the size of the resulting graph search tractable so 

that its search can be achieved with the limited on-board computational resources, 

while keeping the required accuracy. 

 An impressive amount of research on path planning for mobile robot focuses 

on simple robot dynamics, either fully actuated or underactuated with differential-

wheel driven structure (close to unicycle). But in this project will be focus on car-like 

robots for offline path planning. 

 

 

1.3 Project Objectives 

 

 

The objective of this project is to develop an algorithmic method for 

constructing a solution to the navigation problem for a car-like robot. The study is 

proposed as follows: 

a) To carry out path planning algorithm using cell decomposition 

method through an environment containing obstacles bounded by 

simple polygons. 

b) To model the cell decomposition method on a car-like robot. 

c) To develop the algorithm that can reach a target position without 

colliding with obstacles during movement.  

 

 

1.4 Project Scopes 

 

 

The scopes of study are as follows:  

a) Cell decomposition algorithm is implemented for offline path 

planning. 

b) The cell decomposition method is implemented on a car-like robot. 

c) The car-like robot is operated in an enclosed indoor and the locations 

of all obstacles are known a priori. 
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d) The coordinates of starting point and target point are known 

beforehand. 

e) The obstacles are assumed to be in rectangular form, with random 

sizes and locations. 

f) The algorithm can distinguish collision avoidance with stationary 

obstacles. 

g) A car-like robot treated as a single point in its configuration space. 

h) Bezier curve will be applied in general in order to get a smooth path.  

 

 

1.5 Organization of Report 

 

 

As an overview, the structure of this report is organized as follows. Chapter 1 

describes a general introduction of the project, problem statement, project aims and 

project scope. Chapter 2 provides details literature review that includes an 

introduction to some basic concepts and a survey of existing work in the areas of 

robot path planning. Chapter 3 explains the methodology of the project which is 

provides a detailed description of the algorithms for path planning based on cell 

decomposition method. The simulation results and analysis are presented deeply in 

Chapter 4. Chapter 5 analyze comparison between cell decomposition and Voronoi 

diagram with the other method and also discuss whether the objectives have been 

achieved or not. Chapter 6 is for conclusion and recommendations.



 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW  

 

 

2.1 Theories  

 

 

The path planning problem was originally studied extensively in robotics. It 

has gained more relevance in areas such as computer graphics, simulations, 

geographic information systems (GIS), very-large-scale integration (VLSI) design 

and games. Path planning still remain one of the core problem in modern robotic 

applications, such as the design of autonomous vehicles and perceptive system [1]. 

The basic path planning problem is concerned with finding a good-quality path from 

a source point to a destination point that does not result in collision with any 

obstacles. Depending on the amount of the information available about the 

environment, which can be completely or partially known or unknown, the 

approaches to path planning vary considerably. Latombe [2] provides a 

comprehensive survey of different path-planning algorithms. 

The path planning problem is one of the most fundamental problems in 

robotics. In general, a physical motion planning problem is transformed into 

geometrical path planning problem. Accordingly, a robot is represented as a point in 

an appropriate search space, because the motion of a particle mass is easy to 

describe. Therefore, a path can be represented as a route from a point to another on 

the search space. The path planning problems are closed related with the collision 

avoidance problem. 



 

Actually, the path planning problem is to find a path connecting some points 

for avoiding the collision with obstacles in a workspace. 

map around the robot including the starting and target points is built. An obstacle in 

the workspace is represented as an approximated polygonal object. The size of a 

polygonal object is larger than the real size of the object. If 

to that of a polygonal object, a robot can be represented as a point in the workspace 

map, not a polygon, because the size of every polygonal object includes the size of 

the robot as illustrated in Figure 2.1. This method can sim

with any accuracy. However, the workspace map is still continuous. In order to 

reduce the search space size, the workspace map can be transformed into various 

types of search spaces from the visual point of view.

 

        (a) Real

Figure 2.1: Polygonal workspace approximated from a real environment 

 

A search space is built by cell decomposition methods, roadmap methods or 

artificial potential field methods. 

dimensional workspace is basically divided into a finite number of cells. The 

roadmap method transforms the workspace into the set of vertices and paths that 

enable a graph search. In the artificial potential field m

attractive force from the target point and repulsive force from the obstacles in the 

workspace. 

 

.  

 

 

 

Actually, the path planning problem is to find a path connecting some points 

for avoiding the collision with obstacles in a workspace. First, a two

map around the robot including the starting and target points is built. An obstacle in 

the workspace is represented as an approximated polygonal object. The size of a 

polygonal object is larger than the real size of the object. If the size of robot is added 

to that of a polygonal object, a robot can be represented as a point in the workspace 

map, not a polygon, because the size of every polygonal object includes the size of 

the robot as illustrated in Figure 2.1. This method can simplify the workspace map 

with any accuracy. However, the workspace map is still continuous. In order to 

reduce the search space size, the workspace map can be transformed into various 

types of search spaces from the visual point of view. 

(a) Real workspace          (b) Polygonal workspace

Figure 2.1: Polygonal workspace approximated from a real environment 

A search space is built by cell decomposition methods, roadmap methods or 

artificial potential field methods. In the cell decomposition method, a two 

dimensional workspace is basically divided into a finite number of cells. The 

roadmap method transforms the workspace into the set of vertices and paths that 

enable a graph search. In the artificial potential field method, a robot moves based on 

attractive force from the target point and repulsive force from the obstacles in the 
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Actually, the path planning problem is to find a path connecting some points 

First, a two-dimensional 

map around the robot including the starting and target points is built. An obstacle in 

the workspace is represented as an approximated polygonal object. The size of a 

the size of robot is added 

to that of a polygonal object, a robot can be represented as a point in the workspace 

map, not a polygon, because the size of every polygonal object includes the size of 

plify the workspace map 

with any accuracy. However, the workspace map is still continuous. In order to 

reduce the search space size, the workspace map can be transformed into various 

 

(b) Polygonal workspace 

Figure 2.1: Polygonal workspace approximated from a real environment [3]. 

A search space is built by cell decomposition methods, roadmap methods or 

In the cell decomposition method, a two 

dimensional workspace is basically divided into a finite number of cells. The 

roadmap method transforms the workspace into the set of vertices and paths that 

ethod, a robot moves based on 

attractive force from the target point and repulsive force from the obstacles in the 



7 

 

2.2 Configuration Space (C-space) 

 

 

 In path planning for mobile robotics, the vehicle and the world through which 

it travels must both be represented in some manner so that plans can be evaluated in 

a search space. The search space represents all the possible situations that can exist. 

In order to plan a robot's motions when there are many degrees of freedom, a 

construction called a configuration space is used. 

Lozano-Perez [4] has an idea to handle the first consideration of the 

configuration space. It suggested that instead of handling a complex geometrical 

representation of a robot in the Euclidean representation of the workspace, the robot 

can treated as a point in its configuration space. 

At every point in time, a robot can have exactly one combination of its 

position and orientation. This unique combination is called a configuration. A 

configuration space (C-space) represents each possible configuration as a single 

point and contains all of the possible configurations of the robot. All of the physical 

obstacles from the robot's working space are mapped or transformed into this 

configuration space. This c-space is used where the combination of position and 

orientation is mapped into a single configuration point, because it transforms the 

problem from planning complex object motion to planning the motion of a point. 

A good choice of configuration space will contain the fewest number of 

dimensions to allow the planning algorithms to work quickly. As degrees of freedom 

are added for a complex system, the configuration space grows quickly in size and 

number of dimensions, making planning much more difficult. Unfortunately, as it 

has been suggested by Latombe [2], the planning problem grows exponentially in 

time with the number of dimensions in the configuration space. This means that the 

fewer the number of dimensions that need to be considered the better. For this 

reason, researchers often use simplifications of the problems to attain faster 

performance of a path planner. For global path planning, the possible configurations 

are often reduced to simply the x, y co-ordinate space. 
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2.3 Classifications of robot path planning methods 

 

 

 The mobile robot path planning task is to find a collision free route, through 

an environment with obstacles, from a specified start location to a desired goal 

destination while satisfying certain optimization criteria. The path planning method 

could be classified into different kind based on different situations. Depending on the 

environment where the robot is located in, the path planning methods can be 

classified into the following two types: 

i. Offline types – path planning in static environment which only 

contains the static obstacles in the map. 

ii.  Online types – path planning in a dynamic environment which has 

static and dynamic obstacle in the map. 

Each of these two types could be further divided into two sub-groups 

depending on how much the robot knows about the entire information of the 

surrounding environment: 

i. Path planning in a clearly known environment in which the robot 

already knows the location of the obstacles before it starts to move. 

The path for the robot could be the global optimised result because the 

entire environment is known. 

ii.  Path planning in a partly known or uncertain environment in which 

the robot probes the environment using sensors to acquire the local 

information of the location, shape and size of obstacles, and then use 

the information to proceed local path planning. 
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Figure 2.2 shows the hierarchy of the classifications of the robot path planning 

methods. 

 

 

 

 

 

 

 

  

 

 

Figure 2.2: Classifications of the robot path planning methods 

 

However, this project only focussed on offline type which is static and known 

environment. In a static and known environment, the robot knows the entire 

information of the environment before it starts travelling. Therefore, the optimal path 

could be computed offline prior to the movement of the robot. 

The path planning techniques for a static and known environment are 

relatively mature. Representative path planning methods for a clearly known static 

environment include the visibility graph method, Voronoi diagrams method, the 

grids method, the cell decomposition method and potential field method. 

 

 

2.4 Comparisons of path planning methods. 

 

 

There exist a large number of methods for solving the basic motion planning 

problem. Most methods of planning use one of three types of configuration space 

representation, called roadmap, cell decomposition and potential fields. Roadmaps 

model connections between special points, cell decomposition methods break the 

world into grids, and potential fields apply mathematical fields to model the world.  

 

Path planning in 

known static 

environment 

Path planning in 

unknown static 

environment 

Path planning in 

known dynamic 

environment 

Path Planning 

Path planning in dynamic 

environment (online) 

Path planning in static 

environment (offline) 

Path planning in 

unknown dynamic 

environment 
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Among these three methods, cell decomposition is the one most widely used 

for outdoor robotics and quite attractive. It allows generation of collision-free paths, 

whereas visibility graph only guarantees semi-free paths. It is also practical 

compared to Voronoi diagram which appears more difficult to implement and it takes 

global knowledge into consideration, unlike local potential field. 

Furthermore, the path generation of cell decomposition has a channel as an 

intermediate result if one exists. This yields at least two advantages: 

i. The channel is an efficient way to answer the question if a collision-free 

path exists or not 

ii.  There are no restrictions on the generated path other than that it must be 

inside the channel (in contrast to Voronoi diagram and visibility graph 

where the path is immediately generated). 

Hence, cell decomposition constitutes a good foundation for a path planning method. 

However, each of these types may be either topological or metric in nature. 

All the methods mentioned below in general must be discrete, except for the 

potential field method, which can also be implemented in a continuous state space 

fashion. These approaches will be briefly introduced below. 

 

 

2.4.1 Cell Decomposition 

 

 

 Cell decomposition methods are the most studied and widely applied methods 

for outdoor robotics. In these methods the planning space is broken up into discrete, 

non-overlapping regions which are subsets of the c-space and whose union is makes 

up exactly the entire c-space. The result is a graph in which each cell is adjacent to 

other cells. The method for traversing from one cell to adjacent cells is called the 

connectivity graph. A planner then searches through the connectivity graph and the 

path generated is a sequence of cells the robot should traverse to reach the goal. The 

cost of traversing a cell may vary and the planner must apply a metric to determine 

which the optimal path is. Cell decompositions are often used to represent the 

physical space itself, but can also be used on a configuration space. 

There are several implementation of cell decomposition such as Approximate 

Cell Decomposition, Exact Cell Decomposition and Adaptive Cell Decomposition. 
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Adaptive cell decomposition is used to reduce the number of cells used in open areas 

(in order to waste less memory storage space and computation time) and to remove 

the digitization bias of the regular cell decomposition. The most common type of 

adaptive decomposition is a quadtree. 

The quadtree method is another algorithm for searching the collision free path 

for a robot. It uses small non-overlapping grid cells to represent the entire 

environment. The cells usually are simple squares. There are three types of cells: 

empty cell, mixed cell and full cell. An empty cell is a free space, where the robot 

could go through in the environment. A mixed cell contains obstacles and free space. 

A full cell is the block of the obstacles. In a two-dimensional map, a quadtree is used 

to decomposition the map as shown in Figure 2.3. 

 

 

Figure 2.3: Quadtree decomposition [5] 

 

It begins by imposing a large size cell over the entire planning space. If a grid 

cell is partially occupied, it is sub-divided into four equal subparts, which are then 

reapplied to the planning space. These subparts are then subdivided again and again 

until each of the cells is either entirely full or entirely empty. The resulting map has 

grid cells of varying size and concentration, but the cell boundaries coincide very 

closely with the obstacle boundaries. 

This chapter does not discuss Approximate Cell Decomposition and Exact 

Cell Decomposition method in detail. More information about as Approximate Cell 

Decomposition, Exact Cell Decomposition could be found in Chapter 3. 
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2.4.2 Roadmap methods 

 

 

 The second major types of representation for path planning are the Roadmap 

Methods. Roadmaps are graphs which represent how to get from one place to 

another. The roadmap approach to path generation consists of reducing the 

environmental information to a network of one-dimensional curves, called the 

roadmap. Once the roadmap has been constructed, a path can be calculated by 

connection the initial and final configurations to the network and finding a path in 

the roadmap.  

Roadmaps provide a huge advantage over cell decompositions in the number 

of nodes a planner needs to search through in order to find a path. The set of nodes 

does not consist of all of the configurations, but a select few that are special. This 

makes them harder to create, but easier to manipulate and use. On the downside, 

roadmaps are generally difficult to update or repair as the robot gains new 

information, because the entire roadmap typically needs to be remade. In addition, 

most of the methods of creating the graph use artifacts of the map, such as corners of 

objects or crossroad to generate the landmarks and area boundaries, rather than 

things that can be sensed by the robot.  

In general, roadmap methods are fast and most of them are easy to 

implement, but they do not provide an intrinsic way of describing the environmental 

information [2]. Examples of roadmap methods are the visibility graph, Voronoi 

diagram, free way net and silhouette graphs.  

 

 

2.4.2.1 Visibility graph 

 

 

One of the earliest roadmap methods, which apply to two dimensional c-

spaces, is the visibility graph. A visibility graph is used in robot motion planning 

when the geometry of the environment is known. The main idea of the visibility 

graph method is that if there is a collision free path between two points, then there is 

a polygonal path that bends only at the obstacles vertices. Collision free path (in 
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curves) could be transformed into line segments (straight line) as shown in Figure 

2.4. 

 

 

Figure 2.4: The visibility graph [6] 

 

Visibility graph methods are poor because the calculated paths are tangential 

to the obstacles and the robot will brush right up against the obstacles. In order to 

account for this, obstacle regions are generally grown to provide a safety margin, 

although this results in incompleteness and inefficiency of the planner. Another 

problem is that the obstacles must be clearly defined polygons. This is a problem for 

outdoor robots because obstacles almost always take on round or amorphous shapes.  

 

 

2.4.2.2 Voronoi diagrams 

 

 

A Voronoi diagram is another popular mechanism for generating a roadmap 

from a c-space. It can be constructed as the robot enters a new environment. The 

roadmap consists of paths, or Voronoi edges, which are equidistant from all the 

points in the obstacle region. Voronoi diagram create roadmaps that connect the 

initial and goal configurations by forming paths consisting of line segments and 

parabolic arcs (for polygonal obstacles) that maximise the clearance between the 

robot and the obstacles. 

In contrast to visibility graphs, Voronoi paths are by definition as far as 

possible from the obstacles. If a robot follows a Voronoi edge, it would not collide 

with any modelled obstacles, and there is no need to grow obstacle boundaries. This 

makes Voronoi methods safe, but the paths generated inefficient. 
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Figure 2.5: A Voronoi diagram. The dashed lines are the set of points equidistant to 

obstacles. The path is shown in solid darker lines. 

 

 

2.4.2.3 Probabilistic Roadmaps 

 

 

A much more recent advance in the roadmap methods is the Probabilistic 

Roadmap (PRM), which attempts to make planning in large or high-dimensional 

spaces tractable. A PRM is a discrete version of a continuous c-space which contains 

much fewer states than the original c-space. It is generated by randomly sampling the 

larger c-space and then connecting those points into a roadmap. PRMs are an 

improvement because most other planners, especially cell decomposition ones, tries 

to solve the planning problem in the entire search space. PRM methods solve in a 

roadmap built from a randomly chosen subset of the search space and then use a 

computationally inexpensive search algorithm to finish the job.  

PRMs are based on the premise that a relatively small number of points and 

milestones and paths are usually sufficient to capture the connectivity of free space. 

This assumption can greatly accelerate the planning process. In the query phase, 
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Randomly chosen points 

Start 

Goal 

when the robot needs to plan a path between two configurations, the algorithm uses 

the roadmap created in the first phase to search through the waypoint nodes to find 

the least-cost path between the start and goal configurations. The initial graph 

building process is computationally expensive, however, once it has been 

constructed, the search is very efficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: A PRM which nodes are chosen randomly 

 

One problem with a standard PRM method is that it is inefficient for narrow 

confined spaces. Because the points which make up the roadmap are chosen at 

random, the chance of catching a random point in the tight space is low, and no 

connectivity will be established between sections of the map. Greater coverage with 

a greater number of nodes leads to better paths and more chance of getting through 

tight spots, but makes the planning more complex.  

Another problem with PRMs is that they are usually based on binary 

obstacles that most other roadmap planners use, rather than a gradual costing. This 
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Start 

Goal 

means that obstacles need to be well defined and generating variable path costs is 

more difficult than with other methods. A third problem with PRM methods occurs 

when obstacles are added or removed from the map and the entire roadmap must be 

regenerated. Because generation of the roadmap is slow and cannot be done in real 

time, the planner functions poorly when the information is changing often or if the 

initial information is incorrect. That said, however, the roadmap construction is 

incremental, and can be expanded as necessary when the robot explores new terrain.  

 

 

2.4.2.4 Rapidly Exploring Random Trees 

 

 

A further variation of PRMs is the Rapidly Exploring Random Tree (RRT). 

Rather than randomly sampling the configuration space as a PRM does the planner 

begins at the start location and randomly expands a path, or tree, to cover the 

configuration space. The main focus is to build a roadmap in a fashion which draws 

the expansion of the connected paths toward the areas which have not been filled up 

yet. The planner pushes the search tree away from previously constructed vertices. 

This allows them to rapidly search large, high dimensional spaces. They are also well 

suited to the capture of dynamic or non-holonomic constraints, which with PRM 

methods have difficulty (although this capability is not critical for high level global 

path planning).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Path Planning using multiple RRTs 
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2.4.3 Potential Field 

 

 

Potential Fields is the third major type of representation used in path 

planning. The potential field method was initially proposed by Khatib in 1986 [5] for 

mobile robot path planning. Potential Field methods are quite different from the 

previously discussed methods of planning, and have been used extensively in the 

past. Instead of trying to map the search space they impose a mathematical function 

over the entire area of robot travel. 

 The main idea of the method is to imagine that all obstacles can generate 

repulsive force to the robot, while the destination point has attractive force to the 

robot. Potential field method treats the robot represented as a point in configuration 

space as a particle under the influence of an artificial potential field whose local 

variations are expected to reflect the “structure” of the free space [2]. 

The potential field can be imagined either as a charged particle navigating 

through a magnetic field or a marble rolling down a hill. The basic idea is that 

behaviour exhibited by the particle/marble will depend on the combination of the 

shape of the field/hill [7]. Unlike filed/hills where the topology is externally specified 

by environmental conditions, the topology of the potential fields that a robot 

experiences are determined by the designer. More specifically, the designer creates 

multiple behaviours, each assigned a particular task or function, represents each of 

these behaviours as a potential field, and combines all of the behaviours to produce 

the robot’s motion by combining the potential fields. The potential function is 

typically defined over free space as the sum of an attractive potential pulling the 

robot toward the goal configuration and a repulsive potential pushing the robot away 

from the obstacles.  
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Figure 2.8: Simplified potential fields. Field produced by obstacles in (a) and (b), the 

field produced to create goal attraction in (c), and the sum of the fields in (d). This 

summed field will be used to direct the vehicle along the levels of lowest potential. 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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2.5 Graph Search Algorithms 

 

 

Once a method of representing the environment has been established, it is 

then necessary to search for the best path through that representation. These search 

algorithms come from wide variety of applications including general problem 

solving, artificial intelligence, computer networking and mechanical manipulation. In 

robot planning situations, the cost function (typically based on time and cost 

considerations) that is usually minimized is the path length. Hence, algorithms for 

extracting this shortest path are required to allow efficient robot navigation. 

Many graph search algorithms require that every node in the graph be 

investigated to determine the best path. This work well when there are a small 

number of nodes such as in Voronoi diagram. However, when planning a path using 

a regular grid map over a large area, this becomes very computationally expensive. 

Therefore, there are many ways to traverse the graph with many adaptions. 

 

 

2.5.1 Breadth First Search (BFS) 

 

 

 BFS is a restriction of generic search in that it explores all neighbours of a 

selected vertex before it goes deeper in the graph. It uses queue as its data structure 

to obtain the restriction. However, it does not determine which order to push the 

neighbours of a chosen vertex. 

 Compare to DFS, breath first search is a simple algorithm. It timidly tries one 

edge and totally exhaust neighbours of a vertex then goes to next neighbours. It 

radiates in waves in balanced manner. BFS implemented using queues and whatever 

is in queues will tells what to explore next. Once the queue is empty algorithm comes 

to an end. BFS algorithms will always find the shortest path on its first run and more 

appropriate when there are a small number of solutions which take a relatively short 

number of steps. 
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Figure 2.9: Breadth First Search algorithm [8] 

 

 

2.5.2 Depth First Search (DFS) 

 

 

 DFS explores the graph differently than BFS. It progresses forward through 

the graph as much as possible, backtracking only when necessary whereas BFS first 

explores close vertices before going deeper to the far more vertices. It uses stack as 

its data structure to obtain this restriction. 

 The algorithm starts from a node, selects a node connected to it, then selects a 

node connected to this new node and so on, till no new nodes remain. Then, it 

backtracks to the latest node and discovers any new nodes connected to it. The data 

structure suitable for this purpose is a stack. Once stack is empty the algorithm ends. 

 DFS is an aggressive algorithm because it produces automatic ordering. DFS 

is written recursively as it uses stack. DFS work best for problems where there are 

many possible solutions, and only one of them is required. At this task, it will operate 

much faster than a BFS. DFS can only find the minimum length path by searching 

through the whole graph, rather than stopping at the first solution. 

 

 

 

 

Step 1: Explore paths     [A → B] 

(Goal not found)  [A → C]        

    [A → D] 

Step 2: Explore paths       [A →B→E](Dead end) 

 (Goal not found)  [A →B→F](Dead end) 

       [A →C→G] 

→ →

START A 

C D B 

F E 

END 

G H 
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Figure 2.10: Depth First Search algorithm (for this example, note that nodes D and H 

are never explored) [8] 

 

 

2.5.3 Dijkstra’s Algorithm 

 

 

Dijkstra’s algorithm is a widely used shortest path graph searching technique. 

It finds the shortest path between two nodes in a graph, and in the process also 

extracts the minimum cost path from all nodes to the source nodes [9].  

However, the ‘greedy’ nature of Dijkstra’s algorithm makes it inefficient (it 

must check all nodes), and hence inappropriate for searching large graphs or when 

limited computation time (for in real time applications) is available. Therefore, when 

such constraints exist, an algorithm that uses knowledge of the graph domain to 

improve computational efficiency is to be recommended. 

Dijkstra’s algorithm solves the single-source shortest path problem for a non-

negative weights graph. It finds the shortest path from an initial vertex to all the other 

vertices. For each vertex, the algorithm keeps track of its current distance from the 

starting vertex and the predecessor on the current path. 

 

 

 

 

 

Step 1: Explore paths  [A → B] 

Step 2: Explore paths  [A → B → E] (Dead end) 

    [A → B → F] (Dead end) 

Step 3: Explore paths  [A → C] 

Step 4:  Explore paths  [A → C→ G] 

Step 5:  Explore paths [A → C→ G→ END] 

START A 

C D B 

F E 

END 

G H 
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Figure 2.11: Dijkstra’s algorithm [8] 

 

 

2.5.4 The A* Algorithm 

 

 

A widely used heuristic graph searching approach is the A* algorithm, 

proposed by Hart, Nilsson and Raphael [9]. Unlike Dijkstra’s algorithm, this uses an 

‘intelligent’ and more complicated approach to directing the graph search. It 

evaluates the goodness of each node, but uses a combination of the two metrics to 

estimates the distance to the goal: distance from the start, but also an estimated 

distance to the goal, like greedy search. It can also be made to be optimal if it is not 

made too greedy. 

The goodness function for evaluating a path at each node can be expressed as 

follows:  

f(n) = h(n) + g(n)                             (2.1) 

Where f(n) is the goodness of the node, h(n) is the heuristic value of the node 

(nearness to the goal), and g(n) is the cost from the start position to the node. The 

algorithm will evaluate the node in the graph for which the resultant f(n) is the best. 

Step 1:  Explore paths [OAE → END]  

 Path length = 11 

Step 2:  Explore paths [OCK → END]  

 Path length = 12 

Step 3:  Explore paths [OBI → END]  

 Path length = 8 

Step 4: Explore paths [OBG → END]  

 Path length = 7 

 Path is success! 

START 

2 

2 

4 

3 

3 

3 

2 

2 

3 

2 

3 

3 

3 

C L A D 

B 

F E 

K 
J 

O 

I H 
G 

END 



23 

 

The heuristic estimate, or guess, is often a calculation of what the straight line 

distance to the goal would be if there were no obstacles. 

 

 

 

 

f(n) = Estimate of the cost of shortest solution path going through state n 

f(n) = g(n) + h(n) 

 

Figure 2.12: A* algorithm [8] 

 

A* has some very good properties, which is why the algorithm is very 

commonly used in mobile robotics. Firstly, it will be complete provided that h(n) 

does not underestimate how close the node is to the goal. Secondly, it is optimal in 

that it will provide the fastest search of any other shortest path algorithm which uses 

the same heuristic.  

 

 

2.6 Path Tracking 

 

 

Path with piece-wise linear segments is not suitable for car-like robot with 

physical constraints as it leads to an abrupt change in the robot path’s direction from 

one segment to the next segment of the path. This path might lead to collisions with 

the surrounding obstacles if the robot were to traverse the path and is thus unsafe. 

One of the approaches to cope with this issue is to use path tracker to eliminate the 

need of using path smoothing technique as it allows the robot to follow the planned 

path safely.   

The path tracking problem involves of generating a feedback control law u 

such that the distance to the path and orientation error tend to zero, in a mission in 

which a path has been planned and an autonomous vehicle has forward velocity V 

[10]. The following section establishes the car-like robot kinematic modeling. The 

the path tracking control law, which is based on car-like robot kinematic/physcal 

constraint is derived. 

g(n) h(n) 
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2.7 Car-like robot motion model 

 

 

 The car-like robots are widely used in robotics throughout the development of 

the path planning, obstacle avoidance and tracking systems. The model given below 

is based upon those described in [2]. 

 Let Ā be a car-like robot, capable of only forward motion, modelled as a rigid 

rectangular body moving on a planar (two-dimensional) workspace, Ⱳ ≡ ℝ2, which 

is free of obstacles. Ā is supported by four wheels making point contact with the 

ground, while it has two fixed rear wheels and two directional (steerable) front 

wheels. The wheelbase (distance between front and rear wheels) is denoted by L.  

For the car-like robot system, the kinematic model given by equation 2.2: 

ẋ = v cos (θ) 

ẏ = v sin (θ) 

•
θ =v tan (ϕ) / L    (2.2) 

where (x, y) are the Cartesian coordinates in a fixed frame (S) of the reference point 

Pm, located at mid-distance of the actuated wheels, angle θ characterizes the robot’s 

chassis orientation with respect to frame S, and L is the distance between the rear and 

front axle. The control input are v, which is the vehicle’s velocity, ensured by the 

rear wheels, and ϕ, which is the vehicle’s steering wheel angle, due to the front 

wheels, and measured with respect to the current chassis orientation, as depicted in 

Figure 2.13. 
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