

PATH PLANNING ALGORITHM FOR A CAR-LIKE ROBOT BASED ON

CELL DECOMPOSITION METHOD

NURHANUM BINTI OMAR

A project report submitted in partial

Fulfillment of the requirement for the award of the

Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering

Universiti Tun Hussein Onn Malaysia

JANUARY 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/42954036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

v

ABSTRACT

This project proposes an obstacle avoiding path planning algorithm based on

cell decomposition method for a car-like robot. Dijkstra’s algorithm is applied in

order to find the shortest path. Using cell decomposition, the free space of the robot

is exactly partitioned into cells. Then, the connectivity graph is created followed by

calculating the shortest path by Dijkstra’s algorithm. This project also concerns the

robot kinematic constraints such as minimum turning radius. Thus, kinematic

modeling and Bezier curve have been used to obtain a feasible path. The algorithm is

able to obtain a curvature bounded path with sub-optimal curve length while taking

cell decomposition as reference skeleton. The C-space concept has been applied in

this situation. The obstacles on the map are expanded according to the size of car-like

robot, so that the robot could be treated as points on this map and the coordinates of

the map is corresponding to these points. The simulation and experimental result

shows the algorithm can obtain the collision free path which satisfies the curvature

constraint and approaches the minimal curve length for a car-like robot.

vi

ABSTRAK

Projek ini mencadangkan satu perancangan laluan yang terhindar daripada

sebarang halangan berdasarkan kepada kaedah penguraian sel untuk robot

berkonsepkan kereta. Algoritma Dijkstra digunakan untuk mencari laluan terpendek.

Dengan menggunakan kaedah penguraian sel, ruang bebas robot dibahagikan kepada

sel-sel dengan tepat. Kemudian, graf penyambungan dibina antara sel diikuti dengan

pengiraan laluan terpendek oleh algoritma Dijkstra. Projek ini juga mengambil kira

aspek kekangan kinematik robot seperti penggunaan radius yang minimum bagi

selekoh atau sudut. Oleh itu, model kinematik dan lengkung Bezier telah digunakan

untuk mendapatkan laluan yang bersesuaian. Algoritma ini mampu mendapatkan

laluan yang pendek di kawasan berlengkung dengan mengambil kira laluan

penguraian sel sebagai rangka rujukan. Konsep ruang konfigurasi (C-space) telah

digunakan dalam situasi ini. Halangan-halangan di ruang kerja dibesarkan mengikut

kepada saiz robot berkonsepkan kereta, supaya robot boleh dianggap sebagai satu

titik pada ruang ini dan koordinat ruang kerja ini adalah sepadan dengan titik

tersebut. Hasil simulasi dan eksperimen menunjukkan algoritma ini boleh

mendapatkan laluan yang terhindar dari sebarang halangan yang memenuhi kekangan

bagi lengkung serta mencapai sasaran laluan terdekat bagi robot berkonsepkan

kereta.

 vii

CONTENTS

CHAPTER ITEM PAGE

 TITLE

DECLARATION

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF APPENDICES

CHAPTER 1 INTRODUCTION 1

 1.1 Project Background 1

 1.2 Problem Statements 2

 1.3 Project Objectives 3

 1.4

1.5

Project Scopes

Organization of Report

 3

4

CHAPTER 2 LITERATURE REVIEW 5

 2.1

2.2

Theories

Configuration Space (C-space)

 5

7

 viii

 2.3

2.4

2.5

2.6

2.7

2.8

2.9

Classifications of robot path planning

methods

Comparisons of path planning

methods

2.4.1 Cell Decomposition

2.4.2 Roadmap methods

 2.4.2.1 Visibility graph

 2.4.2.2 Voronoi diagram

 2.4.2.3 Probabilistic Roadmap

 2.4.2.4 Rapidly Exploring

 Random Trees

2.4.3 Potential Field

Graph Search Algorithms

2.5.1 Breadth First Search (BFS)

2.5.2 Depth First Search (DFS)

2.5.3 Dijkstra’s Algorithm

2.5.4 A* Algorithm

Path Tracking

Car-like robot motion model

Bezier Curve

Description of Previous Method

 8

9

10

12

13

13

14

16

17

19

19

20

21

22

23

24

25

26

CHAPTER 3 METHODOLOGY 30

 3.1 Overview 30

 3.2

3.3

3.4

Software Development

Environmental Modelling Based On

Cell Decomposition

3.3.1 Approximate Cell

 Decomposition

3.3.2 Exact Cell

 Decomposition

Dijkstra’s Algorithm

 34

35

35

37

38

 ix

3.5

3.6

3.7

3.8

3.9

Path Tracking

Bezier Curve

Representation Technique in Path

Planning

Implementation of Cell

Decomposition using Matlab

Flow Chart of the Main Coding

40

42

44

45

48

CHAPTER 4

RESULTS AND ANALYSIS

 50

 4.1 Overview 50

 4.2

4.3

4.4

Matlab Programming

4.2.1 Implementation of workspace

 environment

4.2.2 Initial position and target

 position

4.2.3 Resolution and tolerance

4.2.4 Dijkstra algorithm

4.2.5 Kinematic modeling

4.2.6 Bezier curve

4.2.7 Path length calculation

4.2.8 Computational time

Graphical User Interface (GUI)

Algorithm analysis

4.4.1 The effect of resolution

 modification to the time

4.4.2 The effect of resolution

 modification to the path length

4.4.3 The effect of dimension

 modification to the time

4.4.4 The effect of dimension

 modification to the path length

4.4.5 The effect of obstacles

 51

51

52

52

53

53

54

54

55

55

57

57

60

61

62

63

 x

4.5

 modification to the time

4.4.6 The effect of obstacles

 modification to the path length

Result Analysis

64

65

CHAPTER 5

DISCUSSION

 68

 5.1

5.2

5.3

Overview

Comparison with other methods

Discussion

 68

68

72

CHAPTER 6

CONCLUSION AND
RECOMMENDATION

 74

 6.1

6.2

Conclusion

Recommendation

 74

75

 REFERENCES

 APPENDICES

 Appendix A

Appendix B

Appendix C

 xi

LIST OF TABLES

3.1 Classification for Approximate Cell

Decomposition

36

3.2 Classification for Exact Cell Decomposition 38

4.1 Resolution versus computational time 58

4.2 Resolution versus path length 60

4.3 Dimension versus computational time 61

4.4 Dimension versus path length 62

4.5 Number of obstacles versus computational

time

63

4.6 Number of obstacles versus path length 64

5.1 Comparison of time and path length for the

same parameter setting

71

 xii

LIST OF FIGURES

2.1 Polygonal workspace approximated from a

real environment

6

2.2 Classifications of the robot path planning

methods

9

2.3 Quadtree decomposition 11

2.4 The visibility graph 13

2.5 A Voronoi diagram. 14

2.6 A PRM which nodes are chosen randomly 15

2.7 Path Planning using multiple RRTs 16

2.8 Simplified potential fields 18

2.9 Breadth First Search algorithm 20

2.10 Depth First Search algorithm 21

2.11 Dijkstra’s algorithm 22

2.12 A* algorithm 23

2.13 Representation of car-like robot in a static

frame S

25

2.14 Random-based planning algorithm using

different scenarios

27

3.1 Project design and development for PS1 31

3.2 Project design and development for PS2 32

3.3 Path generation algorithm development 33

3.4 Testing programming using the Matlab

software

34

3.5 Calculation step of Dijkstra’s algorithm 39

 xiii

3.6 The tracked path in blue using kinematic

controller

41

3.7 A portion of Figure 3.6 is zoomed in. 42

3.8 A 2nd order (quadratic) Bezier curve with three

control points

43

3.9 A 3rd order (cubic) Bezier curve with four

control points

44

3.10 A scenario represented in (a) original form (b)

configuration space.

45

3.11 The black rectangular shapes are the obstacles. 47

3.12 The cell decomposition using Dijkstra’s

algorithm to find the shortest path.

47

3.13 A smooth path generated using Bezier curve. 48

3.14 The flow chart of the programming. 49

4.1 Programming code used to determine the

workspace environment

51

4.2 Programming code used to specify the initial

position and target position

52

4.3 Programming code used to specify the

resolution and tolerance

52

4.4 Programming code used to generate Dijkstra’s

algorithm

53

4.5 Programming code used to generate kinematic

modelling

53

4.6 Programming code used to generate Bezier

curve

54

4.7 Programming code used to calculate the path

length

54

4.8 Programming code used to calculate the

computational time

55

4.9 GUI for path planning algorithm using cell

decomposition method

55

4.10 Parameter panel 56

 xiv

4.11 Output display panel 56

4.12 Exploring panel 56

4.13 Resolution versus computational time 58

4.14 Difference in resolution 59

4.15 Resolution versus path length 60

4.16 Dimension versus computational time 61

4.17 Dimension versus path length 62

4.18 Number of obstacles versus computational

time

63

4.19 Number of obstacles versus path length 64

4.20 Tolerance surrounding the obstacles 65

4.21 Actual location for initial position and target

position

66

4.22 A smooth path generated using kinematic and

Bezier curve is zoomed in.

67

5.1 Parameter setting for cell decomposition and

Voronoi diagram method

69

5.2 Final path for cell decomposition and Voronoi

diagram with various number of obstacles.

69-71

 xv

LIST OF APPENDICES

APPENDIX TITLE

A Gantt Chart for Master Project 1 and 2

B Matlab Programming

C Glossary

CHAPTER 1

INTRODUCTION

1.1 Project Background

Mobile robots are widely used in many industrial fields. Research on path

planning for mobile robots is one of the most important aspects in mobile robots

research. Path planning for a mobile robot is to find a collision-free route, through

the robot’s environment with obstacles, from a specified start location to a desired

goal destination while satisfying certain optimization criteria. Most of existing path

planning methods, such as the visibility graph, the cell decomposition, and the

potential field are designed with the focus on static environments, in which there are

only stationary obstacles. However, in practical systems, robots usually face dynamic

environments, in which both moving and stationary obstacles exist.

At present, research on various algorithms for mobile robot path planning is

an active topic. Mobile robots are widely used in many hazardous industrial fields

where there may be dangers for people, such as aerospace research, the nuclear

industry and the mining industry. To find a safe path in a dangerous environment for

the mobile robot is an essential requirement for the success of any mobile robotic

systems. Therefore, research on path planning algorithms to make the robot move

from the start point to the termination point without collision with obstacles is

fundamental requirement for the mobile robot safety in such environments.

Moreover, to reduce the computation time communication delay and energy

2

consumption, the planned path is naturally required to be optimal with the shortest

length.

1.2 Problem Statements

 The problem of planning a path for a mobile robot in a given workspace,

while avoiding obstacles, has been studied for many years. The main problem in a

motion of the robot is when there are many obstacles in their workspace

environment. This problem faced especially when the obstacle block the robot path

and cause the robot operations interrupted and stopped. Obstacles can be divided into

several characteristics such as size, location, networks and roughness of the

obstacles. In addition, the obstacles can also in moving or stationary condition during

the robot moves. This factor actually creates a major problem to the robot.

Most of the programs installed on the robot are fixed and difficult to alter. For

example, if the obstacles position changed from the original position, the robot will

not be able to detect obstacles and cannot proceed due to due to obstructed by the

obstacles. Thus, the user needs to take action to alter the robot program to be

compatible with the changing obstacles. This certainly takes a lot of time and energy.

A program that can solve the problems mentioned above need to be

developed to ensure the best robot path can be constructed and thus, provides

benefits to all users. Solution methods fall into three broad categories: cell

decomposition, roadmap methods and artificial potential field methods. The first two

approaches transform the path planning problem into a graph search problem. In

particular, cell decomposition methods partition the free space into convex, non-

overlapping regions, called cells, and then employed techniques, such as the Dijkstra

algorithm, to search the connectivity graph for a sequence of adjacent cells from the

initial point to the goal.

 Although several sophisticated approaches for path planning have been

reported in past literatures, cell decomposition is most common and widely used in

applications because of their simplicity. It is also advantages to decompose the free

space into as few cells as possible, in order to make search of the corresponding

graph faster. Generally, working with multiresolution cell decompositions is

3

beneficial when one is primarily interested either in offline or online implementation.

A multiresolution scheme can keep the size of the resulting graph search tractable so

that its search can be achieved with the limited on-board computational resources,

while keeping the required accuracy.

 An impressive amount of research on path planning for mobile robot focuses

on simple robot dynamics, either fully actuated or underactuated with differential-

wheel driven structure (close to unicycle). But in this project will be focus on car-like

robots for offline path planning.

1.3 Project Objectives

The objective of this project is to develop an algorithmic method for

constructing a solution to the navigation problem for a car-like robot. The study is

proposed as follows:

a) To carry out path planning algorithm using cell decomposition

method through an environment containing obstacles bounded by

simple polygons.

b) To model the cell decomposition method on a car-like robot.

c) To develop the algorithm that can reach a target position without

colliding with obstacles during movement.

1.4 Project Scopes

The scopes of study are as follows:

a) Cell decomposition algorithm is implemented for offline path

planning.

b) The cell decomposition method is implemented on a car-like robot.

c) The car-like robot is operated in an enclosed indoor and the locations

of all obstacles are known a priori.

4

d) The coordinates of starting point and target point are known

beforehand.

e) The obstacles are assumed to be in rectangular form, with random

sizes and locations.

f) The algorithm can distinguish collision avoidance with stationary

obstacles.

g) A car-like robot treated as a single point in its configuration space.

h) Bezier curve will be applied in general in order to get a smooth path.

1.5 Organization of Report

As an overview, the structure of this report is organized as follows. Chapter 1

describes a general introduction of the project, problem statement, project aims and

project scope. Chapter 2 provides details literature review that includes an

introduction to some basic concepts and a survey of existing work in the areas of

robot path planning. Chapter 3 explains the methodology of the project which is

provides a detailed description of the algorithms for path planning based on cell

decomposition method. The simulation results and analysis are presented deeply in

Chapter 4. Chapter 5 analyze comparison between cell decomposition and Voronoi

diagram with the other method and also discuss whether the objectives have been

achieved or not. Chapter 6 is for conclusion and recommendations.

CHAPTER 2

LITERATURE REVIEW

2.1 Theories

The path planning problem was originally studied extensively in robotics. It

has gained more relevance in areas such as computer graphics, simulations,

geographic information systems (GIS), very-large-scale integration (VLSI) design

and games. Path planning still remain one of the core problem in modern robotic

applications, such as the design of autonomous vehicles and perceptive system [1].

The basic path planning problem is concerned with finding a good-quality path from

a source point to a destination point that does not result in collision with any

obstacles. Depending on the amount of the information available about the

environment, which can be completely or partially known or unknown, the

approaches to path planning vary considerably. Latombe [2] provides a

comprehensive survey of different path-planning algorithms.

The path planning problem is one of the most fundamental problems in

robotics. In general, a physical motion planning problem is transformed into

geometrical path planning problem. Accordingly, a robot is represented as a point in

an appropriate search space, because the motion of a particle mass is easy to

describe. Therefore, a path can be represented as a route from a point to another on

the search space. The path planning problems are closed related with the collision

avoidance problem.

Actually, the path planning problem is to find a path connecting some points

for avoiding the collision with obstacles in a workspace.

map around the robot including the starting and target points is built. An obstacle in

the workspace is represented as an approximated polygonal object. The size of a

polygonal object is larger than the real size of the object. If

to that of a polygonal object, a robot can be represented as a point in the workspace

map, not a polygon, because the size of every polygonal object includes the size of

the robot as illustrated in Figure 2.1. This method can sim

with any accuracy. However, the workspace map is still continuous. In order to

reduce the search space size, the workspace map can be transformed into various

types of search spaces from the visual point of view.

 (a) Real

Figure 2.1: Polygonal workspace approximated from a real environment

A search space is built by cell decomposition methods, roadmap methods or

artificial potential field methods.

dimensional workspace is basically divided into a finite number of cells. The

roadmap method transforms the workspace into the set of vertices and paths that

enable a graph search. In the artificial potential field m

attractive force from the target point and repulsive force from the obstacles in the

workspace.

.

Actually, the path planning problem is to find a path connecting some points

for avoiding the collision with obstacles in a workspace. First, a two

map around the robot including the starting and target points is built. An obstacle in

the workspace is represented as an approximated polygonal object. The size of a

polygonal object is larger than the real size of the object. If the size of robot is added

to that of a polygonal object, a robot can be represented as a point in the workspace

map, not a polygon, because the size of every polygonal object includes the size of

the robot as illustrated in Figure 2.1. This method can simplify the workspace map

with any accuracy. However, the workspace map is still continuous. In order to

reduce the search space size, the workspace map can be transformed into various

types of search spaces from the visual point of view.

(a) Real workspace (b) Polygonal workspace

Figure 2.1: Polygonal workspace approximated from a real environment

A search space is built by cell decomposition methods, roadmap methods or

artificial potential field methods. In the cell decomposition method, a two

dimensional workspace is basically divided into a finite number of cells. The

roadmap method transforms the workspace into the set of vertices and paths that

enable a graph search. In the artificial potential field method, a robot moves based on

attractive force from the target point and repulsive force from the obstacles in the

6

Actually, the path planning problem is to find a path connecting some points

First, a two-dimensional

map around the robot including the starting and target points is built. An obstacle in

the workspace is represented as an approximated polygonal object. The size of a

the size of robot is added

to that of a polygonal object, a robot can be represented as a point in the workspace

map, not a polygon, because the size of every polygonal object includes the size of

plify the workspace map

with any accuracy. However, the workspace map is still continuous. In order to

reduce the search space size, the workspace map can be transformed into various

(b) Polygonal workspace

Figure 2.1: Polygonal workspace approximated from a real environment [3].

A search space is built by cell decomposition methods, roadmap methods or

In the cell decomposition method, a two

dimensional workspace is basically divided into a finite number of cells. The

roadmap method transforms the workspace into the set of vertices and paths that

ethod, a robot moves based on

attractive force from the target point and repulsive force from the obstacles in the

7

2.2 Configuration Space (C-space)

 In path planning for mobile robotics, the vehicle and the world through which

it travels must both be represented in some manner so that plans can be evaluated in

a search space. The search space represents all the possible situations that can exist.

In order to plan a robot's motions when there are many degrees of freedom, a

construction called a configuration space is used.

Lozano-Perez [4] has an idea to handle the first consideration of the

configuration space. It suggested that instead of handling a complex geometrical

representation of a robot in the Euclidean representation of the workspace, the robot

can treated as a point in its configuration space.

At every point in time, a robot can have exactly one combination of its

position and orientation. This unique combination is called a configuration. A

configuration space (C-space) represents each possible configuration as a single

point and contains all of the possible configurations of the robot. All of the physical

obstacles from the robot's working space are mapped or transformed into this

configuration space. This c-space is used where the combination of position and

orientation is mapped into a single configuration point, because it transforms the

problem from planning complex object motion to planning the motion of a point.

A good choice of configuration space will contain the fewest number of

dimensions to allow the planning algorithms to work quickly. As degrees of freedom

are added for a complex system, the configuration space grows quickly in size and

number of dimensions, making planning much more difficult. Unfortunately, as it

has been suggested by Latombe [2], the planning problem grows exponentially in

time with the number of dimensions in the configuration space. This means that the

fewer the number of dimensions that need to be considered the better. For this

reason, researchers often use simplifications of the problems to attain faster

performance of a path planner. For global path planning, the possible configurations

are often reduced to simply the x, y co-ordinate space.

8

2.3 Classifications of robot path planning methods

 The mobile robot path planning task is to find a collision free route, through

an environment with obstacles, from a specified start location to a desired goal

destination while satisfying certain optimization criteria. The path planning method

could be classified into different kind based on different situations. Depending on the

environment where the robot is located in, the path planning methods can be

classified into the following two types:

i. Offline types – path planning in static environment which only

contains the static obstacles in the map.

ii. Online types – path planning in a dynamic environment which has

static and dynamic obstacle in the map.

Each of these two types could be further divided into two sub-groups

depending on how much the robot knows about the entire information of the

surrounding environment:

i. Path planning in a clearly known environment in which the robot

already knows the location of the obstacles before it starts to move.

The path for the robot could be the global optimised result because the

entire environment is known.

ii. Path planning in a partly known or uncertain environment in which

the robot probes the environment using sensors to acquire the local

information of the location, shape and size of obstacles, and then use

the information to proceed local path planning.

9

Figure 2.2 shows the hierarchy of the classifications of the robot path planning

methods.

Figure 2.2: Classifications of the robot path planning methods

However, this project only focussed on offline type which is static and known

environment. In a static and known environment, the robot knows the entire

information of the environment before it starts travelling. Therefore, the optimal path

could be computed offline prior to the movement of the robot.

The path planning techniques for a static and known environment are

relatively mature. Representative path planning methods for a clearly known static

environment include the visibility graph method, Voronoi diagrams method, the

grids method, the cell decomposition method and potential field method.

2.4 Comparisons of path planning methods.

There exist a large number of methods for solving the basic motion planning

problem. Most methods of planning use one of three types of configuration space

representation, called roadmap, cell decomposition and potential fields. Roadmaps

model connections between special points, cell decomposition methods break the

world into grids, and potential fields apply mathematical fields to model the world.

Path planning in

known static

environment

Path planning in

unknown static

environment

Path planning in

known dynamic

environment

Path Planning

Path planning in dynamic

environment (online)

Path planning in static

environment (offline)

Path planning in

unknown dynamic

environment

10

Among these three methods, cell decomposition is the one most widely used

for outdoor robotics and quite attractive. It allows generation of collision-free paths,

whereas visibility graph only guarantees semi-free paths. It is also practical

compared to Voronoi diagram which appears more difficult to implement and it takes

global knowledge into consideration, unlike local potential field.

Furthermore, the path generation of cell decomposition has a channel as an

intermediate result if one exists. This yields at least two advantages:

i. The channel is an efficient way to answer the question if a collision-free

path exists or not

ii. There are no restrictions on the generated path other than that it must be

inside the channel (in contrast to Voronoi diagram and visibility graph

where the path is immediately generated).

Hence, cell decomposition constitutes a good foundation for a path planning method.

However, each of these types may be either topological or metric in nature.

All the methods mentioned below in general must be discrete, except for the

potential field method, which can also be implemented in a continuous state space

fashion. These approaches will be briefly introduced below.

2.4.1 Cell Decomposition

 Cell decomposition methods are the most studied and widely applied methods

for outdoor robotics. In these methods the planning space is broken up into discrete,

non-overlapping regions which are subsets of the c-space and whose union is makes

up exactly the entire c-space. The result is a graph in which each cell is adjacent to

other cells. The method for traversing from one cell to adjacent cells is called the

connectivity graph. A planner then searches through the connectivity graph and the

path generated is a sequence of cells the robot should traverse to reach the goal. The

cost of traversing a cell may vary and the planner must apply a metric to determine

which the optimal path is. Cell decompositions are often used to represent the

physical space itself, but can also be used on a configuration space.

There are several implementation of cell decomposition such as Approximate

Cell Decomposition, Exact Cell Decomposition and Adaptive Cell Decomposition.

11

Adaptive cell decomposition is used to reduce the number of cells used in open areas

(in order to waste less memory storage space and computation time) and to remove

the digitization bias of the regular cell decomposition. The most common type of

adaptive decomposition is a quadtree.

The quadtree method is another algorithm for searching the collision free path

for a robot. It uses small non-overlapping grid cells to represent the entire

environment. The cells usually are simple squares. There are three types of cells:

empty cell, mixed cell and full cell. An empty cell is a free space, where the robot

could go through in the environment. A mixed cell contains obstacles and free space.

A full cell is the block of the obstacles. In a two-dimensional map, a quadtree is used

to decomposition the map as shown in Figure 2.3.

Figure 2.3: Quadtree decomposition [5]

It begins by imposing a large size cell over the entire planning space. If a grid

cell is partially occupied, it is sub-divided into four equal subparts, which are then

reapplied to the planning space. These subparts are then subdivided again and again

until each of the cells is either entirely full or entirely empty. The resulting map has

grid cells of varying size and concentration, but the cell boundaries coincide very

closely with the obstacle boundaries.

This chapter does not discuss Approximate Cell Decomposition and Exact

Cell Decomposition method in detail. More information about as Approximate Cell

Decomposition, Exact Cell Decomposition could be found in Chapter 3.

12

2.4.2 Roadmap methods

 The second major types of representation for path planning are the Roadmap

Methods. Roadmaps are graphs which represent how to get from one place to

another. The roadmap approach to path generation consists of reducing the

environmental information to a network of one-dimensional curves, called the

roadmap. Once the roadmap has been constructed, a path can be calculated by

connection the initial and final configurations to the network and finding a path in

the roadmap.

Roadmaps provide a huge advantage over cell decompositions in the number

of nodes a planner needs to search through in order to find a path. The set of nodes

does not consist of all of the configurations, but a select few that are special. This

makes them harder to create, but easier to manipulate and use. On the downside,

roadmaps are generally difficult to update or repair as the robot gains new

information, because the entire roadmap typically needs to be remade. In addition,

most of the methods of creating the graph use artifacts of the map, such as corners of

objects or crossroad to generate the landmarks and area boundaries, rather than

things that can be sensed by the robot.

In general, roadmap methods are fast and most of them are easy to

implement, but they do not provide an intrinsic way of describing the environmental

information [2]. Examples of roadmap methods are the visibility graph, Voronoi

diagram, free way net and silhouette graphs.

2.4.2.1 Visibility graph

One of the earliest roadmap methods, which apply to two dimensional c-

spaces, is the visibility graph. A visibility graph is used in robot motion planning

when the geometry of the environment is known. The main idea of the visibility

graph method is that if there is a collision free path between two points, then there is

a polygonal path that bends only at the obstacles vertices. Collision free path (in

13

curves) could be transformed into line segments (straight line) as shown in Figure

2.4.

Figure 2.4: The visibility graph [6]

Visibility graph methods are poor because the calculated paths are tangential

to the obstacles and the robot will brush right up against the obstacles. In order to

account for this, obstacle regions are generally grown to provide a safety margin,

although this results in incompleteness and inefficiency of the planner. Another

problem is that the obstacles must be clearly defined polygons. This is a problem for

outdoor robots because obstacles almost always take on round or amorphous shapes.

2.4.2.2 Voronoi diagrams

A Voronoi diagram is another popular mechanism for generating a roadmap

from a c-space. It can be constructed as the robot enters a new environment. The

roadmap consists of paths, or Voronoi edges, which are equidistant from all the

points in the obstacle region. Voronoi diagram create roadmaps that connect the

initial and goal configurations by forming paths consisting of line segments and

parabolic arcs (for polygonal obstacles) that maximise the clearance between the

robot and the obstacles.

In contrast to visibility graphs, Voronoi paths are by definition as far as

possible from the obstacles. If a robot follows a Voronoi edge, it would not collide

with any modelled obstacles, and there is no need to grow obstacle boundaries. This

makes Voronoi methods safe, but the paths generated inefficient.

14

Voronoi edge

Voronoi

Start

Goal

Figure 2.5: A Voronoi diagram. The dashed lines are the set of points equidistant to

obstacles. The path is shown in solid darker lines.

2.4.2.3 Probabilistic Roadmaps

A much more recent advance in the roadmap methods is the Probabilistic

Roadmap (PRM), which attempts to make planning in large or high-dimensional

spaces tractable. A PRM is a discrete version of a continuous c-space which contains

much fewer states than the original c-space. It is generated by randomly sampling the

larger c-space and then connecting those points into a roadmap. PRMs are an

improvement because most other planners, especially cell decomposition ones, tries

to solve the planning problem in the entire search space. PRM methods solve in a

roadmap built from a randomly chosen subset of the search space and then use a

computationally inexpensive search algorithm to finish the job.

PRMs are based on the premise that a relatively small number of points and

milestones and paths are usually sufficient to capture the connectivity of free space.

This assumption can greatly accelerate the planning process. In the query phase,

15

Randomly chosen points

Start

Goal

when the robot needs to plan a path between two configurations, the algorithm uses

the roadmap created in the first phase to search through the waypoint nodes to find

the least-cost path between the start and goal configurations. The initial graph

building process is computationally expensive, however, once it has been

constructed, the search is very efficient.

Figure 2.6: A PRM which nodes are chosen randomly

One problem with a standard PRM method is that it is inefficient for narrow

confined spaces. Because the points which make up the roadmap are chosen at

random, the chance of catching a random point in the tight space is low, and no

connectivity will be established between sections of the map. Greater coverage with

a greater number of nodes leads to better paths and more chance of getting through

tight spots, but makes the planning more complex.

Another problem with PRMs is that they are usually based on binary

obstacles that most other roadmap planners use, rather than a gradual costing. This

16

Start

Goal

means that obstacles need to be well defined and generating variable path costs is

more difficult than with other methods. A third problem with PRM methods occurs

when obstacles are added or removed from the map and the entire roadmap must be

regenerated. Because generation of the roadmap is slow and cannot be done in real

time, the planner functions poorly when the information is changing often or if the

initial information is incorrect. That said, however, the roadmap construction is

incremental, and can be expanded as necessary when the robot explores new terrain.

2.4.2.4 Rapidly Exploring Random Trees

A further variation of PRMs is the Rapidly Exploring Random Tree (RRT).

Rather than randomly sampling the configuration space as a PRM does the planner

begins at the start location and randomly expands a path, or tree, to cover the

configuration space. The main focus is to build a roadmap in a fashion which draws

the expansion of the connected paths toward the areas which have not been filled up

yet. The planner pushes the search tree away from previously constructed vertices.

This allows them to rapidly search large, high dimensional spaces. They are also well

suited to the capture of dynamic or non-holonomic constraints, which with PRM

methods have difficulty (although this capability is not critical for high level global

path planning).

Figure 2.7: Path Planning using multiple RRTs

17

2.4.3 Potential Field

Potential Fields is the third major type of representation used in path

planning. The potential field method was initially proposed by Khatib in 1986 [5] for

mobile robot path planning. Potential Field methods are quite different from the

previously discussed methods of planning, and have been used extensively in the

past. Instead of trying to map the search space they impose a mathematical function

over the entire area of robot travel.

 The main idea of the method is to imagine that all obstacles can generate

repulsive force to the robot, while the destination point has attractive force to the

robot. Potential field method treats the robot represented as a point in configuration

space as a particle under the influence of an artificial potential field whose local

variations are expected to reflect the “structure” of the free space [2].

The potential field can be imagined either as a charged particle navigating

through a magnetic field or a marble rolling down a hill. The basic idea is that

behaviour exhibited by the particle/marble will depend on the combination of the

shape of the field/hill [7]. Unlike filed/hills where the topology is externally specified

by environmental conditions, the topology of the potential fields that a robot

experiences are determined by the designer. More specifically, the designer creates

multiple behaviours, each assigned a particular task or function, represents each of

these behaviours as a potential field, and combines all of the behaviours to produce

the robot’s motion by combining the potential fields. The potential function is

typically defined over free space as the sum of an attractive potential pulling the

robot toward the goal configuration and a repulsive potential pushing the robot away

from the obstacles.

18

Figure 2.8: Simplified potential fields. Field produced by obstacles in (a) and (b), the

field produced to create goal attraction in (c), and the sum of the fields in (d). This

summed field will be used to direct the vehicle along the levels of lowest potential.

(a) (b)

(c) (d)

19

2.5 Graph Search Algorithms

Once a method of representing the environment has been established, it is

then necessary to search for the best path through that representation. These search

algorithms come from wide variety of applications including general problem

solving, artificial intelligence, computer networking and mechanical manipulation. In

robot planning situations, the cost function (typically based on time and cost

considerations) that is usually minimized is the path length. Hence, algorithms for

extracting this shortest path are required to allow efficient robot navigation.

Many graph search algorithms require that every node in the graph be

investigated to determine the best path. This work well when there are a small

number of nodes such as in Voronoi diagram. However, when planning a path using

a regular grid map over a large area, this becomes very computationally expensive.

Therefore, there are many ways to traverse the graph with many adaptions.

2.5.1 Breadth First Search (BFS)

 BFS is a restriction of generic search in that it explores all neighbours of a

selected vertex before it goes deeper in the graph. It uses queue as its data structure

to obtain the restriction. However, it does not determine which order to push the

neighbours of a chosen vertex.

 Compare to DFS, breath first search is a simple algorithm. It timidly tries one

edge and totally exhaust neighbours of a vertex then goes to next neighbours. It

radiates in waves in balanced manner. BFS implemented using queues and whatever

is in queues will tells what to explore next. Once the queue is empty algorithm comes

to an end. BFS algorithms will always find the shortest path on its first run and more

appropriate when there are a small number of solutions which take a relatively short

number of steps.

20

Figure 2.9: Breadth First Search algorithm [8]

2.5.2 Depth First Search (DFS)

 DFS explores the graph differently than BFS. It progresses forward through

the graph as much as possible, backtracking only when necessary whereas BFS first

explores close vertices before going deeper to the far more vertices. It uses stack as

its data structure to obtain this restriction.

 The algorithm starts from a node, selects a node connected to it, then selects a

node connected to this new node and so on, till no new nodes remain. Then, it

backtracks to the latest node and discovers any new nodes connected to it. The data

structure suitable for this purpose is a stack. Once stack is empty the algorithm ends.

 DFS is an aggressive algorithm because it produces automatic ordering. DFS

is written recursively as it uses stack. DFS work best for problems where there are

many possible solutions, and only one of them is required. At this task, it will operate

much faster than a BFS. DFS can only find the minimum length path by searching

through the whole graph, rather than stopping at the first solution.

Step 1: Explore paths [A → B]

(Goal not found) [A → C]

 [A → D]

Step 2: Explore paths [A →B→E](Dead end)

 (Goal not found) [A →B→F](Dead end)

 [A →C→G]

→ →

START A

C D B

F E

END

G H

21

Figure 2.10: Depth First Search algorithm (for this example, note that nodes D and H

are never explored) [8]

2.5.3 Dijkstra’s Algorithm

Dijkstra’s algorithm is a widely used shortest path graph searching technique.

It finds the shortest path between two nodes in a graph, and in the process also

extracts the minimum cost path from all nodes to the source nodes [9].

However, the ‘greedy’ nature of Dijkstra’s algorithm makes it inefficient (it

must check all nodes), and hence inappropriate for searching large graphs or when

limited computation time (for in real time applications) is available. Therefore, when

such constraints exist, an algorithm that uses knowledge of the graph domain to

improve computational efficiency is to be recommended.

Dijkstra’s algorithm solves the single-source shortest path problem for a non-

negative weights graph. It finds the shortest path from an initial vertex to all the other

vertices. For each vertex, the algorithm keeps track of its current distance from the

starting vertex and the predecessor on the current path.

Step 1: Explore paths [A → B]

Step 2: Explore paths [A → B → E] (Dead end)

 [A → B → F] (Dead end)

Step 3: Explore paths [A → C]

Step 4: Explore paths [A → C→ G]

Step 5: Explore paths [A → C→ G→ END]

START A

C D B

F E

END

G H

22

Figure 2.11: Dijkstra’s algorithm [8]

2.5.4 The A* Algorithm

A widely used heuristic graph searching approach is the A* algorithm,

proposed by Hart, Nilsson and Raphael [9]. Unlike Dijkstra’s algorithm, this uses an

‘intelligent’ and more complicated approach to directing the graph search. It

evaluates the goodness of each node, but uses a combination of the two metrics to

estimates the distance to the goal: distance from the start, but also an estimated

distance to the goal, like greedy search. It can also be made to be optimal if it is not

made too greedy.

The goodness function for evaluating a path at each node can be expressed as

follows:

f(n) = h(n) + g(n) (2.1)

Where f(n) is the goodness of the node, h(n) is the heuristic value of the node

(nearness to the goal), and g(n) is the cost from the start position to the node. The

algorithm will evaluate the node in the graph for which the resultant f(n) is the best.

Step 1: Explore paths [OAE → END]

 Path length = 11

Step 2: Explore paths [OCK → END]

 Path length = 12

Step 3: Explore paths [OBI → END]

 Path length = 8

Step 4: Explore paths [OBG → END]

 Path length = 7

 Path is success!

START

2

2

4

3

3

3

2

2

3

2

3

3

3

C L A D

B

F E

K
J

O

I H
G

END

23

The heuristic estimate, or guess, is often a calculation of what the straight line

distance to the goal would be if there were no obstacles.

f(n) = Estimate of the cost of shortest solution path going through state n

f(n) = g(n) + h(n)

Figure 2.12: A* algorithm [8]

A* has some very good properties, which is why the algorithm is very

commonly used in mobile robotics. Firstly, it will be complete provided that h(n)

does not underestimate how close the node is to the goal. Secondly, it is optimal in

that it will provide the fastest search of any other shortest path algorithm which uses

the same heuristic.

2.6 Path Tracking

Path with piece-wise linear segments is not suitable for car-like robot with

physical constraints as it leads to an abrupt change in the robot path’s direction from

one segment to the next segment of the path. This path might lead to collisions with

the surrounding obstacles if the robot were to traverse the path and is thus unsafe.

One of the approaches to cope with this issue is to use path tracker to eliminate the

need of using path smoothing technique as it allows the robot to follow the planned

path safely.

The path tracking problem involves of generating a feedback control law u

such that the distance to the path and orientation error tend to zero, in a mission in

which a path has been planned and an autonomous vehicle has forward velocity V

[10]. The following section establishes the car-like robot kinematic modeling. The

the path tracking control law, which is based on car-like robot kinematic/physcal

constraint is derived.

g(n) h(n)

24

2.7 Car-like robot motion model

 The car-like robots are widely used in robotics throughout the development of

the path planning, obstacle avoidance and tracking systems. The model given below

is based upon those described in [2].

 Let Ā be a car-like robot, capable of only forward motion, modelled as a rigid

rectangular body moving on a planar (two-dimensional) workspace, Ⱳ ≡ ℝ2, which

is free of obstacles. Ā is supported by four wheels making point contact with the

ground, while it has two fixed rear wheels and two directional (steerable) front

wheels. The wheelbase (distance between front and rear wheels) is denoted by L.

For the car-like robot system, the kinematic model given by equation 2.2:

ẋ = v cos (θ)

ẏ = v sin (θ)

•
θ =v tan (ϕ) / L (2.2)

where (x, y) are the Cartesian coordinates in a fixed frame (S) of the reference point

Pm, located at mid-distance of the actuated wheels, angle θ characterizes the robot’s

chassis orientation with respect to frame S, and L is the distance between the rear and

front axle. The control input are v, which is the vehicle’s velocity, ensured by the

rear wheels, and ϕ, which is the vehicle’s steering wheel angle, due to the front

wheels, and measured with respect to the current chassis orientation, as depicted in

Figure 2.13.

77

REFERENCES

[1] P. Bhattacharya and M. L. Gavrilova, "Roadmap-Based Path Planning using the

Voronoi Diagram for a Clearance-Based Shortest Path," pp. 58-66, June 2008.

[2] Latombe and Jean-Claude, Robot Motion Planning, Norwell, MA: Kluwer

Academic Publishers, 1991.

[3] T. Fukuda and N. Kubota, "Trajectory and Path Planning," Control Systems,

Robotics and Automation, vol. XXII.

[4] T. Lozano-Perez and M. A.Wesley, "An Algorithm for Planning Collision-Free

Paths Among Polyhedral Obstacles," Communications of the ACM, vol. 22, no.

10, pp. 560-570, 1979.

[5] H. Miao, "Robot Path Planning in Dynamic Environments using a Simulated

Annealing Based Approach," March 2009.

[6] N. H.Sleumer and N. Tschichold-Girman, "Exact Cell Decomposition of

Arrangements used for Path Planning in Robotics," Swiss Federal Institute of

Technology, Zurich, Switzerland, 1999.

[7] D. Glavaski, M. Volf and M. Bonkovic, "Mobile Robot Path Planning using

Exact Cell Decomposition and Potential Field Methods," WSEAS

TRANSACTIONS on CIRCUITS and SYSTEMS, vol. 8, no. 9, pp. 789-800,

September 2009.

78

[8] J.Giesbrecht and D. R. Canada, "Global Path Planning for Unmanned Ground

Vehicles," Technical Memorandum DRDC Suffield TM2004-272, Canada,

2004.

[9] M. J. Barton, "Controller Development and Implementation for Path Planning

and Following in an Autonomous Urban Vehicle," The University of Sydney,

Sydney, 2001.

[10] R. Omar and D.-W. Gu, "Visibility Line based methodsfor UAV path planning,"

in Proceedings of the International Conference on Control, Automation and

Systems (ICCAS-SICE), 2010.

[11] N. Ghita and M. Kloetzer, "Cell Decomposition-Based Strategy for Planning

and Controlling a Car-like robot," in 14th International Conference on System

Theory and Control, 2010.

[12] F. Zhou, B. Song and G. Tian, "Bezier Curve based Smooth Path Planning for

Mobile Robot," Journal of Information & Computational Science , vol. 8, no.

12, pp. 2441-2450, 2011.

[13] Christian Scheurer & Uwe E. Zimmermann, "Path Planning Method for

Palletizing Tasks using Workspace Cell Decomposition," ICRA

Communications, 2011.

[14] F. Lingelbach, "Path Planning using Probabilistc Cell Decomposition," in

Proceedings of the 2004 IEEE International Conference on Robotics &

Automation, New Orleans, LA, April 2004.

[15] R. Chatila, "Path planning and environment learning in a mobile robot system,"

in European Conference on Artificial Intelligence, 1982.

[16] T. Lozano-Perez, "Automatic planning of manipulator transfer movements,"

IEEE Transactions on Systems, pp. 681-698, 1981.

79

[17] F. Lingelbach, Path Planning using Probabilistic Cell Decomposition,

Stockholm, Sweden: KTH Publisher, 2005.

[18] R. Johansson, "Intelligent Motion Planning for a Multi-Robot System," Royal

Institute of Technology, Stockholm, Sweden, 2000.

[19] S. M. LaValle, Planning Algorithms, University of Illinois, 2003.

