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ABSTRACT 

 

 

 

The purpose of this study is to develop an efficient offline path planning algorithm 

that is capable of finding optimal collision-free paths from a starting point to a goal 

point. The algorithm is based on Voronoi diagram method for the environment 

representation combined with Dijkstra’s algorithm to find the shortest path. Since 

Voronoi diagram path exhibits sharp corners and redundant turns, path tracking was 

applied considering the robot’s kinematic constraints. The results has shown that the 

Voronoi diagram path planning method recorded fast computational time as it 

provides simpler, faster and efficient path finding. The final path, after considering 

robot’s kinematic constraints, provides shorter path length and smoother compared to 

the original one. The final path can be tuned to the desired path by tuning the 

parameter setting; velocity, v and minimum turning radius, Rmin. In comparison with 

the Cell Decomposition method, it shows that Voronoi diagram has a faster 

computation time. This leads to the reduced cost in terms of time. The findings of 

this research have shown that Voronoi Diagram and Dijkstra’s Algorithm are a good 

combination in the path planning problem in terms of finding a safe and shortest 

path.  
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ABSTRAK 

 

 

 

Kajian ini bertujuan untuk membangunkan satu algoritma perancang laluan secara 

luar talian yang cekap serta berupaya mencari laluan selamat yang optimum dari titik 

permulaan ke titik sasaran. Algoritma tersebut adalah berdasarkan 

kepada kaedah gambar rajah Voronoi untuk mewakilkan persekitaran dan 

digabungkan dengan algoritma Dijkstra untuk mendapatkan laluan terdekat. Oleh 

kerana laluan yang diperoleh menggunakan gambar rajah Voronoi mempunyai sudut-

sudut tajam dan pusingan yang berlebihan, penjejakan laluan digunakan dengan 

mengambil kira kekangan kinematik robot. Hasil kajian menunjukkan 

bahawaperancang laluan menggunakan kaedah gambar rajah Voronoi merekodkan 

masa pengiraan terpantas dan merupakan kaedah lebih mudah, lebih cepat dan 

cekap. Selepas mengambil kira kekangan kinematic robot, laluan yang diperoleh 

adalah lebih pendek dan licin berbanding dengan laluan asal. Laluan tersebut boleh 

ditala dengan menala parameter halaju, v dan jejari pusingan minimum, Rmin. 

Perbandingan dengan kaedah Cell Decomposition, menunjukkan bahawa kaedah 

gambar rajah Voronoi mempunyai masa pengiraan yang lebih pantas. Ini membawa 

kepada pengurangan kos dari segi masa. Penemuan kajian ini menunjukkan 

bahawa gambar rajah Voronoi dan Algoritma Dijkstra adalah satu gabungan yang 

baik dalam menyelesaikan masalah perancangan laluan iaitu untuk mencari satu 

laluan terdekat yang selamat. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

The path planning is the basic element of the mobile robot. The so-called mobile robot 

path planning is searching for an optimal or sub-optimal collision-free path connecting 

the initial position and target position. According to the environmental information that 

collected by the robot, the path planning can be divided into two categories: path 

planning with fully known global environmental information and completely unknown 

or partially unknown environmental information [1]. The common methods that have 

been used, such as grid method and artificial potential field method and so on, but all 

these algorithms have limitations. The shortcomings of the grid method are when the 

space increases, it will lead to dramatic increase in storage space that required, and 

decision is made slowly. The structure of artificial potential field is simple, convenient 

for real-time control, but may generate minimal path and oscillation in front of obstacles. 

Based on Voronoi diagram method for path planning the obstacles nodes and 

edges will be used to construct the Voronoi diagram. Then the shortest path is calculated 

using a search algorithm. The advantages of the Voronoi diagram are that it can generate 

the origin robot path points, and reduce the computational time. 
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1.2 Problem Statement 

 

 

The problem of path planning occurs in many areas, such as computational biology, 

computer animations and computer-aided design. It is of particular importance in the 

field of robotics. The basic path planning problem is concerned with finding a good-

quality path from a source point to a destination point that does not result in collision 

with any obstacles. Depending on the amount of the information available about the 

environment, which can be completely or partially known or unknown, the approaches 

to path planning vary considerably. Also, the definition of a good-quality path usually 

depends on the type of a mobile device (a robot) and the environment (space), which has 

fostered the development of a rich variety of path-planning algorithms, each catering to 

a particular set of needs.  

The path planning problem criteria may include distance, time and energy. The 

distance is the most common criterion. However common path planning approaches do 

not take into consideration path safety or smoothness. Safety constraints are important to 

both the robot and its surrounding objects. Smoothness is also another important 

constraint. Most mobile robots need to consider this constraint because of the bounded 

turning radius. For example car-like robots have this constraint due to mechanical 

limitations and its steering angle. 

Path planning algorithms are classified according to completeness as exact and 

heuristic [4]. Exact algorithms aim to find an optimal solution if one exist, or prove that 

there is no feasible solution. On the other hand, heuristic algorithms aim to search for a 

good quality solution in a short time. Exact algorithms are usually computationally 

expensive; however heuristic algorithm may fail to find a good solution for difficult 

problems. 

There are three basic types of robot path planning algorithms [14] based on 

potential field, cell decompositions and roadmaps. The potential field methods are used 

rarely because they often converge to a local minimum. Cell decompositions avoid this 

drawback and, in a special case with the scene divided into squares, then they can be 

simply used for 8-directional (horizontal, vertical and diagonal) robot motion. Their 

main drawbacks are combinatorial explosion, limited granularity and generation of 
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infeasible solutions. The combinatorial explosion and time of computation may be 

partially reduced using a case-based reasoning procedure [2]. 

There are several different methods for developing the roadmap such as visibility 

graphs and Voronoi diagrams [3]. These methods do not have the drawbacks of the 

previously-mentioned ones and thus are more promising for the task under investigation. 

However, all these methods generate non-smooth trajectories and not be suitable for real 

robots with kinematic and dynamic restrictions. Therefore, this research presents a path 

planning algorithm based on Voronoi Diagram, considering those constraints for car-like 

robot.  

The goal of this project is to design a path planning algorithm using Voronoi 

Diagram for a car-like robot, considering the car kinematic constraint. This induces two 

main problems: the paths generated by this algorithm have to avoid obstacles of the 

environment, but the vehicle must also be able to follow them precisely. The following 

are the assumptions made in order to address the stated problem: 

i. The start and goal configurations (x
s
,y

s
,θ

s
) and (x

g
,y

g
,θ

g
) of a car-like robot in a 

plane are given;  

 

ii. Dimensions of the robot-length  L, width W, minimum turning radius R are 

known;  

 

iii. A collection O = {o
1
, o

2
,…,o

n
} of non-overlapping obstacles described by simple 

polygons, each having a set of vertices V
i 
= {v

ij
, j = 1, …, m

i 
}, i = 1, …, n, and 

such that the length of each edge is at least l
0 

and the angle subtended at each 

concave vertex is in the range [π/2, π]. (Note that O can be the empty set.)  

 

iv. A set of vertices B = {b
1
, b

2
, …, b

N
} describing a simple polygon that defines a 

boundary such that the length of each edge is at least l
0 

and the angle subtended 

at each convex vertex is in the range [π/2, π]. (Note that B can also be the empty 

set.)  

The car-like robot need to find a set of way points P = {P
1
, …., P

k
}starting with 

the start position and ending with the goal position, that is an image of an admissible 

trajectory of minimal distance for a robot moving only forward.  
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1.4 Objectives 

 

 

The main objective of this project is to provide an algorithm of path planning for a car-

like robot moving through an environment containing obstacles bounded by simple 

polygons. It will involve the following: 

i. To develop an efficient offline path planning algorithm based on Voronoi 

Diagram method that is capable of finding optimal collision free paths from a 

starting point to a goal. 

ii. To extend the path planning algorithm in order to find the shortest path from a 

start point to a goal, considering the robot’s kinematic constraint. 

 

 

1.5 Scope of the Project 

 

 

The project will be implemented based on the following consideration: 

 

i. The robot considered is a car-like robot represented by a single point or a 

circle. Algorithms may identify a robot with a mere point enlarging the 

obstacles in the workspace accordingly to avoid having to consider the 

robot's size. 

ii. The car-like robot will only move in forward direction. There will be no 

capability for the car-like robot to move backward. 

iii. The proposed algorithm is based on Voronoi diagram method for the path 

planning and using the Dijkstra Algorithm to find the shortest path. 

iv. The path planning algorithm will only effective in a static obstacle 

environment.  

v. The location of the start point, destination point and the coordinate of the 

obstacles have been identified. 

vi. The shape of the obstacles are considered to be rectangular 

vii. The area of the environment will be given. 

viii. No path smoothing will be implemented. 
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1.6 Organization of Report 

 

 

As a whole, this report aims to documents all the concepts, activities and works related 

to the implementation of this project. This report stressed on the aspects of designing 

and developing an efficient offline path planning algorithm for a car-like robot. 

This report consists of three chapters. In chapter 1, it describes the introduction 

of the project, problem background, problem statement and project scope. Chapter 2 

describes about the literature review that includes an introduction to some basic concepts 

and a survey of existing work in the areas of path planning or car-like robot. Meanwhile 

in chapter 3 describes the methodology of the project which is provides a detailed 

description of the algorithms for path planning based on Voronoi diagrams. 

 
 



 
 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

 

Path planning is the basic element of an autonomous mobile vehiclefor both static 

and dynamic environments and many researchers have worked on it since 80’s. It 

deals with the search and execution of collision free paths by vehicles performing 

specific tasks. Path planning is often broken down into two stages which are path 

planning and path tracking. The path planning stage involves the search for a 

collision free path, taking into consideration the geometry of the vehicle and it 

surroundings, the vehicle's kinematic constraints and any other external constraints 

that may affect the planning of a path. The path tracking stage involves the actual 

navigation of a planned path, taking into consideration the kinematic and dynamic 

constraints of the vehicle.  

In robotics, one can envision a robot moving autonomously in a maze of 

obstacles from a start to a goal configuration without collisions. An obstacle can be 

defined as a region inaccessible to the robot while free space is the area external to 

the obstacles. The problem becomes even more challenging when the nature of the 

terrain is allowed to vary and the robot has to pick a path that is most suitable for it. 

Many techniques have been researched to utilize multiple path schemes for different 

applications as outlined in [21]. These applications have been dealt within two 

strategies. One strategy is to use pre-known global environment information and 

robot characteristics, while another builds up local environment with sensor 

information and using robot characteristics. 
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2.2 Classical Path Planning Methods 

 

 

The successful traditional computational geometry-based approaches to robot path 

planning can be classified into three basic categories [14]: 

i. Cell Decomposition 

ii. Roadmap  

iii. Potential Field 

This chapter will present the basic ideas and a few different realizations for 

each approach. For these methods, an explicit representation of C is assumed to be 

known.  

 

 

2.3 Representation Techniques in Path Planning 

 

 

There are a number of environment representations based on C-space. The most 

common representations are explained in the following sections, based on the 

scenario represented by the C-space as depicted in Figure 2.1 (b). 

 

 

Figure 2.1: A scenario represented in (a) original form (b) configuration space. The 

darker rectangles in (a) are those with actual dimensions while in (b) are those 

enlarged according to the size of vehicle A. The white areas denote the free space. 

 

 

 

 

Start 

Goal 

A 
Start 

Goal 

(a) (b) 
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2.4 Cell Decomposition (CD) 

 

 

The cell decomposition method uses non overlapping cells to represent the free-space 

(Cf) connectivity. The decomposition can be exact or approximate. An exact 

decomposition divides Cf exactly [8]. An approximation scheme Kambhampati 

discretizes Cf with cells. It decomposes the free space recursively, stopping when a 

cell is entirely in Cf or entirely inside an obstacle. Otherwise, the cell is further 

divided. Because of memory and time constraints, the recursive process stops when a 

certain degree of accuracy has been reached. The cell decomposition method, 

although simple to implement, seldom yields high-quality paths. The exact cell 

decomposition technique is faster than the approximate one, but the path obtained is 

not optimal. The approximate cell decomposition can yield near-optimal paths by 

increasing the grid resolution, but the computation time will increase drastically. 

There is also the known problem of digitization bias associated with using a grid. 

This stems from the fact that while searching for the shortest path in a grid, the grid 

distance is measured and not the Euclidean distance.A visualization of this approach 

is shown in Figure 2.2. 

 

 

a)                                                              b) 

Figure 2.2: a) Exact cell decomposition, Cfree exactly decomposed into trapezoids;  

b) Approximate cell decomposition, mixed cells are divideduntil a series of free cells 

connects the start with the goal cell; free cells: light gray,obstacle cells: dark gray, 

mixed cells: white, obstacles (- -) 
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2.5 Roadmap (RM) 

 

 

The roadmap method is a popular approach to motion planning. Roadmap (RM) 

represents the C-space of obstacles and vehicle with edges and nodes by constructing 

graphs or maps. A graph G is made of a set of vertices or nodes V(G) as well as a set 

of edges/lines E(G). E(G) is an unordered pair of distinct vertices of G [40]. RM 

typically takes several steps to build a graph or map for path planning purpose, 

starting with establishment of nodes’ connections with edges within the free C-space 

area. Next the starting point pstart and target point ptarget of the vehicle are combined 

to the network to complete the graph or map. A collision-free path through a series of 

line segments is then searched from the pstart to ptarget [41] using graph search 

algorithm. Roadmaps overweigh the cell decompositions method in the number of 

nodes as path planner needs to search through (in cell decomposition method) in 

order to find a path.  

 

 

2.5.1 Voronoi Diagram 

 

 

Voronoi diagram (VD) is a popular roadmap method in path planning. The idea 

behind VD is to generate a line segment called Voronoi Edge (Ed) which is 

equidistant from all the points of the obstacle area in C-space. The point where Ed 

joins is called Voronoi Vertex (Vd). An example of VD representation, used for path 

planning is shown in Figure 2.3. The resultant path is shown in solid black line. As 

illustrated in the figure, VD has edges that give a maximum clearance path among set 

of obstacles in the C-space. If a vehicle traverses the planned path, it is guaranteed 

that the vehicle will not intersect any obstacle. One major disadvantage of VD is the 

generated paths are not optimal in terms of path length as it produces path which is 

undesirably long at areas where obstacles are far apart. In addition, the path are also 

has many unnecessary turns and the length of the path may be undesirably long at 

regions where obstacles are far apart. In fact, it is worth noting that minimizing path 

length and maximizing clearance seemingly contradict each other as increasing the 

clearance results in a longer path while reducing the path length necessarily reduces 

the clearance from obstacles. It would be highly beneficial for many applications if 

an algorithm could be developed that would accept the minimum clearance required
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as an input parameter and produce a path that would be shortest while satisfying the 

minimum clearance requirement. The shortest path problem on its own can be 

viewed as only a special case when we set the clearance required to zero. 

The Voronoi diagram of the configuration space is the set of collision-free 

configurations, whose minimal distance to Cobst is achieved with atleast two points on 

the boundary of Cobst [14]. 

 

v= {q∈Cfree|d=           
  ∈     

         , ∃q’, q”∈Cobstq’ ≠q”, d = dist(q,q’) = dist(q, q”)}  

(2.1) 

 

As can be seen from the example shown in Figure 2.3, if the agent moves 

along the Voronoi diagram, it keeps a maximum distance to all C-obstacles. 

 

 
 

 

Figure 2.3: A Voronoi diagram. The dashed lines are the set of points equidistant to 

obstacles. The path is shown in solid darker lines. 

 

 
 

 

 

 

 
 

Voronoi edge 

Voronoi vertex 

Start 

Goal 
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2.5.2 Probabilistic Roadmap 

 

 

Probabilistic Roadmap (PRM) is a popular method for path planning as it is easy to 

apply. It makes path planning in large or high-dimensional spaces tractable and 

provides a good approximation of the connectivity of the configuration space area 

Qfree. This method consists of two phases i.e. learning phase and query phase. 

Learning phase constructs a graph G whose nodes are on the free Qfree and the edges 

connect the nodes without intersecting any obstacle. 

On the other hand, query phase connects the starting point pstart and target 

point ptarget to G. A search algorithm is then used to find a path from pstart to ptarget. 

Figure 2.4 shows an example of PRM used in path planning. A path connecting the 

starting point and target point is illustrated in solid black line. However, the 

construction of roadmap is computationally expensive as it might sample thousands 

of nodes to ensure a path exists. Furthermore the generated path often has poor 

quality as a result of the randomness inherent in the graph that represents the Qfree 

connectivity. This method may also be incomplete i.e. do not find a path between 

two locations although there exist a path connecting them, in the present of narrow 

passage. In addition, there is no way to know whether a path exists as long as no path 

has been found [42]. 

 

 

Figure 2.4: A PRM which nodes are chosen randomly 

Randomly chosen points 

 

Start 

Goal 
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2.5.3 Rapidly-exploring Randomise Tree 

 

 

Rapidly-exploring Randomise Tree (RRT) which is introduced by [43] is a variation 

of PRM. RRT begins at both starting point pstart and target point ptarget, and randomly 

expands tree for the whole configuration space. The idea is to incrementally 

construct a roadmap which expands the connected paths toward the areas which have 

not been covered yet. In order to construct a map using RRT, consider a tree, T 

which is one of Tps and Tpt originated at Pstart and Ptarget, respectively. T is then 

extended incrementally by adding a random node, qr in Qfree in uniform manner at 

each iteration by sampling a nearest node qn to qr. The T tries to connect qr to qn 

subject to kinematic constraints  which result in a new node qw. The new edge 

connecting qn and qr is included in the set of edges of T [44]. Readers are referred to 

[43] for a further explanation of RRT. One example of multiple RRTs which T 

started from both pstart and ptarget is shown in Figure 2.5 where the planned path is 

shown in solid dark lines. There are several advantages of RRT including relatively 

simple, suitable for finding a path for vehicle with dynamic and physical constraints, 

the expansion of RRT is heavily biased toward unexplored areas of C-space and it is 

minimal in terms of the number of edges, to name just a few. However, the resulted 

path from RRT is always not optimal. 

 

 

Figure 2.5: Path Planning using multiple RRTs 

Start 

Goal 
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2.6 Potential Field 
 

 

The idea behind the potential field (PF)method is to assign afunction similar to 

theelectrostaticpotential to each obstacleand then derive the topological structure of 

the free space in theform of minimum potential valleys. The robot is pulled 

towardthe goal configuration as it generates a strong attractive force. Incontrast, the 

obstacles generate a repulsive force to keep therobot from colliding with them. The 

path from the start to thegoal can be found by following the direction of the 

steepestdescent of the potential toward the goal [11]. The strength of thisapproach is 

that path planning can be done in real time by consideringonly the obstacles close to 

the robot. Information onthe locations of all obstacles is not required beforehand. 

However,as only local properties are used in planning, the robot mayget stuck at 

localminima and never reach the goal. The potential field approach is illustrated in 

Figure 2.6. 

 

 
 

 

Figure 2.6 The potential field approach 

 

 

2.7 Bezier Curve 

 

 

Bezier curves were introduced by Paul de Casteljau in 1959. The curves were then 

patented and popularised by Pierre Bezier, an engineer at Renault in 1960s [32]. 

Bezier used the curve to design vehicles body. The curves are then widely used to 

model smooth curves. Bezier curve results from the weighted sum of a number of 

control points, P. Unlike the curves that are generated by splines, Bezier curve does 

not go through the control points. An n degree of Bezier curve is specified by n+1 
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control points, P0, P1, ..., Pn. The generalised Bezier curve, CB(l) is defined as 

follows [109]: 

 

                     
 
           

  

       
                     (2.2) 

where   ∈       and         are Bernstein basis polynomials. 

 

In order to illustrate the curves generated by Bezier curve technique, consider 

two piece-wise paths which are shown in blue in Figures 2.7 and 2.8 with one and 

two waypoints, respectively. The Bezier curves (dotted magenta lines) are then 

generated by second and third orders as shown in Figure 2.7 and Figure 2.8, 

respectively. 

 

Figure 2.7: A 2
nd

 order (quadratic) Bezier curve with three control points 
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Figure 2.8: A 3
rd

 order (cubic) Bezier curve with four control points 

 

 

Both Figures 2.7 and 2.8 clearly show that the curves pass through the first, 

P0 and last control points, Pf  and pulled in the direction of the middle points.  The 

curve is also tangent to the P0P1 line segment at the start and the last line segment, Pf-

1Pf at the end. These characteristics present for any order of Bezier curve and are 

advantageous for path smoothing as these will make the robot to gradually leave the 

first line segment and go to the last line segment smoothly.  

 

 

2.8 Comparison of the Method 

 

 

Based on Voronoi diagram method for path planning, firstly, there needs known 

static obstacles which construct the Voronoi diagram, then obtained the shortest path 

by optimal search algorithm. The Voronoi diagram can generate the origin robot path 

points, and reduce the path search time. 

The advantage of using a Voronoi diagram as a roadmap over a visibility 

graph is that the Voronoi diagram can be constructed in just O(nlogn) time whereas 

even the fastest known algorithm for constructing visibility graph [9] can take O(n2) 

time in worst case when the visibility graph has O(n2) edges. Since a Voronoi 

0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

100
P2 

P0 

P1 

Pf 



16 
 

diagram has O(n) edges, querying for a path in a Voronoi diagram based roadmap is 

also much faster than querying in a visibility graph.  

However, as mentioned before, the quality of path obtained directly from the 

Voronoi diagram may not be good and is usually far from optimal. So in recent 

years, improving the quality of the path has been an active area of research. In  [15], 

the authors combine the Voronoi diagram, visibility graph and potential field 

approaches to path planning into a single algorithm to obtain a tradeoff between 

safest and shortest paths. The algorithm is fairly complicated and although the path 

length is shorter than those obtained from potential field method or Voronoi diagram, 

it is still not optimal. The path exhibits bumps and rudimentary turns and is not 

smooth. Another recent work on reducing the length of the path obtained from a 

Voronoi diagram can be observed in [7]. The method involves constructing polygons 

at the vertices in the roadmap where more than two Voronoi edges meet. The path is 

smoother and shorter than that obtained directly from the Voronoi diagram but there 

has been no attempt to reach optimality. In [20], the authors create a new diagram 

called the V V(c) diagram (the Visibility-Voronoi diagram for clearance c). It is 

similar to this project which is to obtain an optimal path for a specified clearance 

value. The diagram evolves from the visibility graph to the Voronoi diagram as the 

value of c increases. 

Unfortunately, as the method is visibility based, the processing time is 

O(n2logn) which renders it impractical for large spatial datasets. Apart from 

roadmap based techniques, the potential field approach [10],[19] and cell 

decomposition method [12], [5] are two popular path planning approaches. The 

potential field approach is simple but has several potential problems, such as being 

trapped in local minima or failure to pass through small openings [13]. In particular, 

the robot may get stuck at a local minimum. The paths obtained by cell 

decomposition are not optimal because of the connectivity limitations in a grid. The 

method is also not suitable for spatial datasets as it becomes particularly difficult to 

correctly estimate the grid resolution. 
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2.9 Search Algorithm 

 

 

At its core, the search algorithm or a path finding method searches a graph by 

starting at one vertex and exploring adjacent nodes until the destination node a 

reached, generally with the intent of finding the shortest route. To find a path 

between two nodes in a graph and to find the shortest path problem this algorithm 

will be use. During the search, each configuration is allowed to have only one parent, 

otherwise, the robot keep moving in cycle [33]. 

This section presents a brief review of basic graph searching principles for 

edge detection applications. A graph consist a set of points called nodes and a set of 

links that determine how the nodes can be connected [34]. The connections between 

start node and end node are defined as set of links. There are several search method 

develop here are several search method develop in artificial intelligence such as 

Breadth First, Depth First, A* and Dijkstra’s Algorithm [33] as shown in Figure 2.9. 

 

 

 

Figure 2.9: Classifications of the Search Algorithms  

 

 

 

 

 

 

 

 

 

 

 

Search Algorithm 

Dijkstra’s 

Algorithm 
A* Algorithm 

Breadth First 

Search 

Depth First 

Search 



18 
 

2.9.1 Breadth-first Search 

 

 

In graph theory, breadth-first search (BFS) is a graph search algorithm that begins at 

the root node and explores all the neighboring nodes. Then for each of those nearest 

nodes, it explores their unexplored neighbor nodes, and so on, until it finds the goal 

[36]. The theory support in [37] that states the search starts at the root and then visits 

all of the children of the root first. Next, the search then visits all of the 

grandchildren, and so forth. The belief here is that the target node is near the root, so 

this search would require less time. BFS considers each of the nodes that are the 

same link length from the start node before going onto second stages [37]. This 

method seem like Dijkstra's algorithm, it is to find the shortest paths, but with every 

edge having the same length. This algorithm more simple and does no need any data 

structures.  

Breadth-First searches keep all the possible paths to be keeping in memory at 

once, evaluating them simultaneously. These algorithms will always find the shortest 

path on its first run and are more appropriate when there are a small number of 

solutions, which take a relatively short number of steps [36]. However, it will waste 

time considering irrelevant cycles. These operations will typically require more time 

and must be count as part of the algorithm’s complexity in practice [39]. 

           Step 1: Explore paths [A   B] 

          (Goal not found) [A   C]        

  [A   D] 

    Step 2: Explore paths [A  B E](Dead end) 

         (Goal not found) [A  B F](Dead end)

                [A  C G] 

       [A  D H](Dead end) 

  Step 1: Explore paths [A C G END] 

Path is success! 

 

Figure 2.10:  Breadth First Search. (Adapted from [36]). The gray line is 

visited line while the red line is the path. 

 

 

A 

C D B 

F E 

END 

G H 

START 

RT 

 



19 
 

2.9.2 Depth-first search 

 

 

Depth-first search (DFS) algorithm searches a path by moving towards the ending 

point as rapidly as possible and will continue moving to another path until it finds a 

dead end. It's means, this algorithm doesn't explore every avenue simultaneously, but  

chooses the avenue which gets it closer to the goal, and only explores that avenue 

until it is proven successful or unsuccessful. It searches one path to a leaf before 

following any other path [36]. DFS algorithm work best for problems where there are 

many possible solutions, and only one of them is required. At this task, it will operate 

much faster than a Breadth-First system.  

Depth-First search can only find the minimum length path by searching 

through the whole graph, rather than stopping at the first solution. It is the method of 

choice when there is a known short length to paths but there are a large number of 

alternatives to sort. In term of the memory space, this algorithm requirement less 

than breadth because only linear with respect to the search graph [36]. However, this 

algorithm explores as far as possible along each branch before backtracking. Even a 

finite graph can generate an infinite tree. This method is also call brushfire, since it 

resembles the way fire progresses in dry grassland. This method can find the shortest 

path, but it examines a large part of the space. It is obvious that both of these are not 

very efficient [33]. 

   

  Step 1: Explore paths [A   B] 

  Step 2: Explore paths [A   B   E] (Dead end) 

                           [A   B   F] (Dead end) 

     Step 3: Explore paths [A   C] 

     Step 4: Explore paths [A   C  G] 

   Step 5: Explore paths [A   C  G  END] 

 Path is success! 

 

Figure 2.11: Depth first search. (Adapted from [36]) The gray line is visited 

line while the red line is the path. 
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2.9.3 A* Algorithm  

 

 

The A* algorithm is one of the search algorithms which is quite popular among 

programmer. This algorithm provides a solution that efficiently enough for optimal 

path finding process [35]. This algorithm used when a solution with a minimum cost 

desired and there must underestimate of the cost from the current configuration to the 

goal. The better the cost-to-go approximates the actual cost, the more A* can prune 

out partially generated paths, making it more efficiently [33, 37]. 

The advantages of this algorithm are it is complete provided that the node 

does not underestimate how close the node is to goal and it is optimal in that it will 

provide the fastest search of any other shortest path algorithm which uses the same 

heuristic [36]. Although this algorithm can find a path in a relatively short time but in 

fact the path are not optimal and smooth. It is also required a lot of memory. 

      

    Step 1:Explore paths O 

    {O,A} f=1+5=6 , 

    {O,B} f= 2+6=8  

    Step 2:Explore paths A 

                   {O,B} f= 2+6=8 

{O,A,F} f= (1+4)+5=10 

{O,A,E} f= (1+7)+8=16 

Step 3:Explore paths B 

{O,A,F} f= (1+4)+5=10 

{O,B,C} f= (2+7)+4=13 

{O,A,E} f= (1+7)+8=16 

{O,B,D} f= (2+1)+15=18 

Step 3:Explore paths END 

{O,A,F,END}is the best path(cost 

7) 

 

Figure 2.12: A* Algorithm. (Adapted from [38]). The gray line is visited line while 

the red line is the path. 
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2.9.4 Dijkstra’s Algorithm  
 

 

Dijkstra’s shortest part algorithm for graph is useful for path planning [33]. 

Dijkstra’s algorithm is the most efficient when it is searching for the shortest path 

between two nodes [33,37]. Starting from a goal node, it finds the nodes connected to 

the goal, puts them in a queue, and assigns each of them the cost to goal, which is the 

weight of the edge connecting it to the goal. 

Dijkstra’s algorithm is able to find a shortest path that connects a starting and 

target points. This algorithm does much more searching than is necessary, but is 

guaranteed to find the shortest path [36]. Although Dijkstra's algorithm is fast, it 

suffers from its inability to deal with negative edge weights [38]. This algorithm is 

often used in routing and as a subroutine in other graph algorithms. It also can be 

used for finding costs of shortest paths from a single vertex to a single destination 

vertex by stopping the algorithm once the shortest path to the destination vertex has 

been determined [34]. Figure 2.13 below illustrates the Dijkstra’s Algorithm. 

 

Step 1: Explore paths [OAE END] 

(7) 

 

Step 2: Explore paths [OCK END] 

(8) 

 

Step 3: Explore paths [OBI END] 

(5) 

 

Step 4: Explore paths [OBG END] 

(4) 

Path is success! 

 

Figure 2.13 Dijkstra’s Algorithm. The green line is visited line while the red line is 

the path. 
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2.10 Car-Like Robot Model 
 

 

Firstly, a ‘standard model’ for the vehicle and its workspace is introduced. This is the 

representation of the car-like robot used throughout the development of the path 

planning, obstacle avoidance and tracking systems. The model given below is based 

upon those described in [14] and [31].  

Let A be a car-like robot, capable of only forward motion, modeled as a rigid 

rectangular body moving on a planar (two-dimensional) workspace, W ≡ R2, that is 

free of obstacles. A is supported by four wheels making point contact with the 

ground, while it has two fixed rear wheels and two directional (steerable) front 

wheels. The wheelbase (distance between front and rear wheels) is denoted by L. Λ 

is the configuration of A within W defined by the following quartet, (x, y, θ, κ) where 

(x, y) are the coordinates of the rear axle midpoint. θ(the vehicle’s orientation) is the 

angle between the x-axis and the main axis of the vehicle (−π _ θ _ π)5. Steering 

angle is denoted as φ and determines the instantaneous centre of rotation Ω of the 

robot. The position of Ω determines the instantaneous radius of curvature ρ of the 

vehicle’s path, given by L/ tan φ [14]. The instantaneous curvature κ of the robot is 

the inverse of the instantaneous radius of curvature (κ = ρ−1). Finally, the vehicle’s 

velocity at the centre of its rear axle is defined as V. This vehicle model is shown in 

Figure 2.14. 

 

 
 

Figure 2.14: Car-Like Robot Model 
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2.11 Previous Study on Voronoi Diagrams  

 

 

This section will review several recent papers that are using Voronoi diagram 

method for path planning. [17] addresses the problem of on-line path following for a 

car working in unstructured outdoor environments. The partially known map of the 

environment is updated and expanded in real time by a Simultaneous Localization 

and Mapping (SLAM) algorithm. This information is used to implement global path 

planning. A cost graph is initially constructed followed by a search to find the near-

optimal path considering uncertainty in both vehicle location and map. Selected 

points in the global path are connected by continuous-curvature paths. An improved 

feedback linearization technique is presented to guide the car along the defined path. 

[24] gives an algorithm for generating the Voronoi diagram from the points 

set on a cylinder by modification process to improve the efficiency of the weld 

testing for acylindrical oilcan performed by the wall-climbing robot. Based on this 

algorithm the paper also provides a method about thedesign of cylindrical tank 

wallboards and the weld testing pathplanning from Delaunay Triangulation. A 

software simulationplatform is also developed. The simulation results show that 

themethod is effective to the stand cylindrical tank design and thewall-climbing robot 

weld testing path planning. 

A new motion planning technique, which is built on the generalized Voronoi 

diagram, for a robot with kinematic or dynamic constraints is proposed in [18]. The 

generalized Voronoi diagram serves this task effectively as it maintains the largest 

(the safest) possible distance from surrounding obstacles. Moreover, a novel 

approximation geometric algorithm, which embodies a trade-off between the 

efficiency of computation, implementation difficulty, and robustness, for computing 

this diagram is presented. 

[21] present a simulated annealing (SA) based algorithm for robot path 

planning. The kernel of the SA engine is based on Voronoi diagram and composite 

Bezier curve to obtain the shortest smooth path under given kinematic constraints. In 

the algorithm, a Voronoi diagram is constructed according to the global environment. 

The piecewise linear path in the Voronoi diagram which keeps away from the 

obstacles is obtained by performing Dijkstra’s shortest path algorithm. The control 

points on the reference path are used to create the control variables for the SA 

engine. The SA engine then updates the control variables to obtain theshortest 
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composite Bezier curve path while satisfying givenkinematic constraints. 

Experimental results on two mapscontaining sharp turns demonstrate the 

effectiveness of theproposed SA-based smooth path planning algorithm. 

Meanwhile [16] presents a new sensor based global Path Planner which 

operates in two steps. In the first step the safest areas in the environment are 

extracted by means of a Voronoi diagram. In the second step Fast Marching Method 

is applied to the Voronoi extracted areas in order to obtain the shortest path. In this 

way the trajectory obtained is the shortest between the safe possible ones. This two-

step method combines an extremely fast global planner operating on a simple sensor 

based environment modeling, while it operates at the sensor frequency. The main 

characteristics are speed and reliability, because the map dimensions are reduced to a 

unidimensional map and this map represents the safest areas in the environment for 

moving the robot. 
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