
PATH PLANNING ALGORITHM FOR A CAR LIKE ROBOT

BASED ON VORONOI DIAGRAM METHOD

HAIDIE INUN

A project report submitted in partial

fulfillment of the requirement for the award of the

Degree of Master of Electrical & Electronic Engineering

Faculty of Electrical & Electronic Engineering

Universiti Tun Hussien Onn Malaysia

JANUARI 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/42954021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iv

ABSTRACT

The purpose of this study is to develop an efficient offline path planning algorithm

that is capable of finding optimal collision-free paths from a starting point to a goal

point. The algorithm is based on Voronoi diagram method for the environment

representation combined with Dijkstra’s algorithm to find the shortest path. Since

Voronoi diagram path exhibits sharp corners and redundant turns, path tracking was

applied considering the robot’s kinematic constraints. The results has shown that the

Voronoi diagram path planning method recorded fast computational time as it

provides simpler, faster and efficient path finding. The final path, after considering

robot’s kinematic constraints, provides shorter path length and smoother compared to

the original one. The final path can be tuned to the desired path by tuning the

parameter setting; velocity, v and minimum turning radius, Rmin. In comparison with

the Cell Decomposition method, it shows that Voronoi diagram has a faster

computation time. This leads to the reduced cost in terms of time. The findings of

this research have shown that Voronoi Diagram and Dijkstra’s Algorithm are a good

combination in the path planning problem in terms of finding a safe and shortest

path.

v

ABSTRAK

Kajian ini bertujuan untuk membangunkan satu algoritma perancang laluan secara

luar talian yang cekap serta berupaya mencari laluan selamat yang optimum dari titik

permulaan ke titik sasaran. Algoritma tersebut adalah berdasarkan

kepada kaedah gambar rajah Voronoi untuk mewakilkan persekitaran dan

digabungkan dengan algoritma Dijkstra untuk mendapatkan laluan terdekat. Oleh

kerana laluan yang diperoleh menggunakan gambar rajah Voronoi mempunyai sudut-

sudut tajam dan pusingan yang berlebihan, penjejakan laluan digunakan dengan

mengambil kira kekangan kinematik robot. Hasil kajian menunjukkan

bahawaperancang laluan menggunakan kaedah gambar rajah Voronoi merekodkan

masa pengiraan terpantas dan merupakan kaedah lebih mudah, lebih cepat dan

cekap. Selepas mengambil kira kekangan kinematic robot, laluan yang diperoleh

adalah lebih pendek dan licin berbanding dengan laluan asal. Laluan tersebut boleh

ditala dengan menala parameter halaju, v dan jejari pusingan minimum, Rmin.

Perbandingan dengan kaedah Cell Decomposition, menunjukkan bahawa kaedah

gambar rajah Voronoi mempunyai masa pengiraan yang lebih pantas. Ini membawa

kepada pengurangan kos dari segi masa. Penemuan kajian ini menunjukkan

bahawa gambar rajah Voronoi dan Algoritma Dijkstra adalah satu gabungan yang

baik dalam menyelesaikan masalah perancangan laluan iaitu untuk mencari satu

laluan terdekat yang selamat.

vi

CONTENTS

 THESIS STATUS APPROVAL

EXAMINERS’ DECLARATION

TITLE

DECLARATION

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAK

CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS AND ABBREVIATIONS

LIST OF APPENDICES

i

ii

iii

iv

v

vi

viii

x

CHAPTER 1 INTRODUCTION

1.1 Background

1.2 Problem Statement

1.3 Objectives

1.4 Scope of the Project

1.5 Organization of Report

1

1

2

4

4

5

6

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

2.2 Classical Path Planning Methods

2.3 Representation technique in Path Planning

2.4 Cell Decomposition (CD)

2.5 Roadmap (RM)

 2.5.1 Voronoi Diagram

6

6

7

7

8

9

9

vii

 2.5.2 Probabilistic Roadmap

 2.5.3 Rapidly-exploring Randomise Tree

2.6 Potential Field

2.7 Bezier Curve

2.8 Comparison of the method

2.9 Search Algorithm

 2.9.1 Bread-first Search

 2.9.2 Depth-first Search

 2.9.3 A* Algorithm

 2.9.4 Dijkstra’s Algorithm

 2.10 Car-like Robot Model

 2.11 Previous Study on Voronoi Diagrams

11

12

13

13

15

17

18

19

20

21

22

23

CHAPTER 3 METHODOLOGY

3.1 Introduction

3.2 Project Planning and development

3.3 Software Development

3.4 Voronoi Diagram Construction

3.5 Generation of Roadmap

3.6 Dijkstra Algorithm for Searching Shortest Path

3.7 Path Tracking Considering Robot’s kinematic

 Constraint

25

25

26

28

30

32

35

37

CHAPTER 4 RESULT AND ANALYSIS

4.1 Overview

4.2 Simulation Result

 4.2.1 Case One (Environment with 10 Obstacles)

 4.2.2 Case One (Environment with 20 Obstacles)

 4.2.3 Case One (Environment with 30 Obstacles)

 4.2.4 Case One (Environment with 40 Obstacles)

 4.2.5 Case One (Environment with 50 Obstacles)

4.3 Result Conclusion

40

40

40

41

43

45

46

48

51

viii

CHAPTER 5 DISCUSSION AND ANALYSIS

5.1 Introduction

5.2 Data Analysis

5.3 Comparison with Other Method

5.4 Discussion

53

53

53

56

60

CHAPTER 6

CONCLUSION AND RECOMMENDATION

6.1 Conclusion

6.2 Recommendation

62

62

63

 REFERENCES

APPENDICES

64

ix

LIST OF TABLES

4.1 Collected Data From Matlab (10 Obstacles) 42

4.2 Collected Data From Matlab (20 Obstacles) 44

4.3 Collected Data From Matlab (30 Obstacles) 46

4.4 Collected Data From Matlab (40 Obstacles) 48

4.5 Collected Data From Matlab (50 Obstacles) 50

5.1 Summary Of Calculation Time And Path Length For

Different Number Of Obstacles

 54

5.2 Summary Of Calculation Time And Path Length For

Different Number Of Obstacles With Increasing Velocity

 56

5.3 Comparison Of Computational Time And Path Length For

Voronoi Diagram And Cell Decomposition Method With

Same Parameter Setting

 59

x

LIST OF FIGURES

2.1 A Scenario Represented in Original Form and Configuration

Space

 7

2.2 Exact Cell Decomposition adn Approximate Cell

Decomposition

 8

2.3 A Voronoi Diagram 10

2.4 A PRM Which Nodes Are Chosen Randomly 11

2.5 Path Planning Using Multiple RRTs 12

2.6 The Potential Field Approach 13

2.7 A 2nd Order (Quadratic) Bezier Curve with Three Control

Points

 14

2.8 A 3rd Order (Cubic) Bezier Curve with Four Control Points

 15

2.9 Classifications of the Search Algorithms 17

2.10 Breadth First Search 18

2.11 Depth First Search 19

2.12 A* Algorithm 20

2.13 Dijkstra’s Algorithm 21

2.14 Car-Like Robot Model 22

3.1a Project Planning and Development of PSI 26

3.1b Project Planning and Development of PSII 27

3.1c Structures Approach For Finding The Path 28

3.2 Software Development Using Matlab 29

3.3 The Coding Flowchart Of The Proposed Algorithm 30

3.4 If The Distance Between Obstacles Is Less Than Cmin, The

Two Obstacles Merged Into Single Obstacles

 31

3.5 The Constructed Voronoi Diagram 32

xi

3.6a Obstacles 34

3.6b Line Of VD That Intersects The Obstacles 34

3.6c The Output Of The Pruning Function When It Received The

VD

 35

3.7 The Final Voronoi Diagram With The Shortest Path 37

3.8 The Tracked Path In Red Using Kinematic Controller 39

3.9 A Portion Of Figure 3.8 Is Zoomed 39

4.1a Voronoi Diagram That Avoids Obstacles (10 Obstacles) 41

4.1b Shortest Path Using Dijkstra’s Algorithm (10 Obstacles) 41

4.1c Shortest Path Considering Kinematic Constraints

(10 Obstacles)

 42

4.2a Voronoi Diagram That Avoids Obstacles (20 Obstacles) 43

4.2b Shortest Path Using Dijkstra’s Algorithm (20 Obstacles) 43

4.2c Shortest Path Considering Kinematic Constraints

(20 Obstacles)

 44

4.3a Voronoi Diagram That Avoids Obstacles (30 Obstacles) 45

4.3b Shortest Path Using Dijkstra’s Algorithm (30 Obstacles) 45

4.3c Shortest Path Considering Kinematic Constraints

(30 Obstacles)

 46

4.4a Voronoi Diagram That Avoids Obstacles (40 Obstacles) 47

4.4b Shortest Path Using Dijkstra’s Algorithm (40 Obstacles) 47

4.4c Shortest Path Considering Kinematic Constraints

(40 Obstacles)

 48

4.5a Voronoi Diagram That Avoids Obstacles (50 Obstacles) 49

4.5b Shortest Path Using Dijkstra’s Algorithm (50 Obstacles) 49

4.5c Shortest Path Considering Kinematic Constraints

(50 Obstacles)

 50

5.1 Number Of Obstacles VS Computational Time 54

5.2 Number Of Obstacles VS Path Length 55

xii

5.3a Final Path Of Voronoi Diagram And Cell Decomposition

Method With Ten Obstacles

57

5.3b Final Path Of Voronoi Diagram And Cell Decomposition

Method With Twenty Obstacles

 57

5.3c Final Path Of Voronoi Diagram And Cell Decomposition

Method With Thirty Obstacles

 58

5.3d Final Path Of Voronoi Diagram And Cell Decomposition

Method With Forty Obstacles

 58

5.3e Final Path Of Voronoi Diagram And Cell Decomposition

Method With Fifty Obstacles

 58

5.4 Path Planning Algorithm VS Computational Time 59

5.5 Path Planning Algorithm VS Optimized Path Length 60

xiii

LIST OF ABBREVIATIONS

CD Cell Decomposition

Cfree Free Space

Cf Free Space

RM Roadmap

VD Voronoi Diagram

Ed Voronoi Edge

PRM Probabilistic roadmap

Qfree Configuration Space Area

RRT Rapidly-exploring Randomise Tree

PF Potential field

BFS Breadth-First Search

DFS Depth-First Search

GUI Graphical User Interface

2D Two Dimensional Space

Cmin Minimum Free Space

xiv

LIST OF APPENDICES

 APPENDIX A

 APPENDIX B

 APPENDIX C

CHAPTER 1

INTRODUCTION

1.1 Background

The path planning is the basic element of the mobile robot. The so-called mobile robot

path planning is searching for an optimal or sub-optimal collision-free path connecting

the initial position and target position. According to the environmental information that

collected by the robot, the path planning can be divided into two categories: path

planning with fully known global environmental information and completely unknown

or partially unknown environmental information [1]. The common methods that have

been used, such as grid method and artificial potential field method and so on, but all

these algorithms have limitations. The shortcomings of the grid method are when the

space increases, it will lead to dramatic increase in storage space that required, and

decision is made slowly. The structure of artificial potential field is simple, convenient

for real-time control, but may generate minimal path and oscillation in front of obstacles.

Based on Voronoi diagram method for path planning the obstacles nodes and

edges will be used to construct the Voronoi diagram. Then the shortest path is calculated

using a search algorithm. The advantages of the Voronoi diagram are that it can generate

the origin robot path points, and reduce the computational time.

2

1.2 Problem Statement

The problem of path planning occurs in many areas, such as computational biology,

computer animations and computer-aided design. It is of particular importance in the

field of robotics. The basic path planning problem is concerned with finding a good-

quality path from a source point to a destination point that does not result in collision

with any obstacles. Depending on the amount of the information available about the

environment, which can be completely or partially known or unknown, the approaches

to path planning vary considerably. Also, the definition of a good-quality path usually

depends on the type of a mobile device (a robot) and the environment (space), which has

fostered the development of a rich variety of path-planning algorithms, each catering to

a particular set of needs.

The path planning problem criteria may include distance, time and energy. The

distance is the most common criterion. However common path planning approaches do

not take into consideration path safety or smoothness. Safety constraints are important to

both the robot and its surrounding objects. Smoothness is also another important

constraint. Most mobile robots need to consider this constraint because of the bounded

turning radius. For example car-like robots have this constraint due to mechanical

limitations and its steering angle.

Path planning algorithms are classified according to completeness as exact and

heuristic [4]. Exact algorithms aim to find an optimal solution if one exist, or prove that

there is no feasible solution. On the other hand, heuristic algorithms aim to search for a

good quality solution in a short time. Exact algorithms are usually computationally

expensive; however heuristic algorithm may fail to find a good solution for difficult

problems.

There are three basic types of robot path planning algorithms [14] based on

potential field, cell decompositions and roadmaps. The potential field methods are used

rarely because they often converge to a local minimum. Cell decompositions avoid this

drawback and, in a special case with the scene divided into squares, then they can be

simply used for 8-directional (horizontal, vertical and diagonal) robot motion. Their

main drawbacks are combinatorial explosion, limited granularity and generation of

3

infeasible solutions. The combinatorial explosion and time of computation may be

partially reduced using a case-based reasoning procedure [2].

There are several different methods for developing the roadmap such as visibility

graphs and Voronoi diagrams [3]. These methods do not have the drawbacks of the

previously-mentioned ones and thus are more promising for the task under investigation.

However, all these methods generate non-smooth trajectories and not be suitable for real

robots with kinematic and dynamic restrictions. Therefore, this research presents a path

planning algorithm based on Voronoi Diagram, considering those constraints for car-like

robot.

The goal of this project is to design a path planning algorithm using Voronoi

Diagram for a car-like robot, considering the car kinematic constraint. This induces two

main problems: the paths generated by this algorithm have to avoid obstacles of the

environment, but the vehicle must also be able to follow them precisely. The following

are the assumptions made in order to address the stated problem:

i. The start and goal configurations (x
s
,y

s
,θ

s
) and (x

g
,y

g
,θ

g
) of a car-like robot in a

plane are given;

ii. Dimensions of the robot-length L, width W, minimum turning radius R are

known;

iii. A collection O = {o
1
, o

2
,…,o

n
} of non-overlapping obstacles described by simple

polygons, each having a set of vertices V
i
= {v

ij
, j = 1, …, m

i
}, i = 1, …, n, and

such that the length of each edge is at least l
0

and the angle subtended at each

concave vertex is in the range [π/2, π]. (Note that O can be the empty set.)

iv. A set of vertices B = {b
1
, b

2
, …, b

N
} describing a simple polygon that defines a

boundary such that the length of each edge is at least l
0

and the angle subtended

at each convex vertex is in the range [π/2, π]. (Note that B can also be the empty

set.)

The car-like robot need to find a set of way points P = {P
1
, …., P

k
}starting with

the start position and ending with the goal position, that is an image of an admissible

trajectory of minimal distance for a robot moving only forward.

4

1.4 Objectives

The main objective of this project is to provide an algorithm of path planning for a car-

like robot moving through an environment containing obstacles bounded by simple

polygons. It will involve the following:

i. To develop an efficient offline path planning algorithm based on Voronoi

Diagram method that is capable of finding optimal collision free paths from a

starting point to a goal.

ii. To extend the path planning algorithm in order to find the shortest path from a

start point to a goal, considering the robot’s kinematic constraint.

1.5 Scope of the Project

The project will be implemented based on the following consideration:

i. The robot considered is a car-like robot represented by a single point or a

circle. Algorithms may identify a robot with a mere point enlarging the

obstacles in the workspace accordingly to avoid having to consider the

robot's size.

ii. The car-like robot will only move in forward direction. There will be no

capability for the car-like robot to move backward.

iii. The proposed algorithm is based on Voronoi diagram method for the path

planning and using the Dijkstra Algorithm to find the shortest path.

iv. The path planning algorithm will only effective in a static obstacle

environment.

v. The location of the start point, destination point and the coordinate of the

obstacles have been identified.

vi. The shape of the obstacles are considered to be rectangular

vii. The area of the environment will be given.

viii. No path smoothing will be implemented.

5

1.6 Organization of Report

As a whole, this report aims to documents all the concepts, activities and works related

to the implementation of this project. This report stressed on the aspects of designing

and developing an efficient offline path planning algorithm for a car-like robot.

This report consists of three chapters. In chapter 1, it describes the introduction

of the project, problem background, problem statement and project scope. Chapter 2

describes about the literature review that includes an introduction to some basic concepts

and a survey of existing work in the areas of path planning or car-like robot. Meanwhile

in chapter 3 describes the methodology of the project which is provides a detailed

description of the algorithms for path planning based on Voronoi diagrams.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Path planning is the basic element of an autonomous mobile vehiclefor both static

and dynamic environments and many researchers have worked on it since 80’s. It

deals with the search and execution of collision free paths by vehicles performing

specific tasks. Path planning is often broken down into two stages which are path

planning and path tracking. The path planning stage involves the search for a

collision free path, taking into consideration the geometry of the vehicle and it

surroundings, the vehicle's kinematic constraints and any other external constraints

that may affect the planning of a path. The path tracking stage involves the actual

navigation of a planned path, taking into consideration the kinematic and dynamic

constraints of the vehicle.

In robotics, one can envision a robot moving autonomously in a maze of

obstacles from a start to a goal configuration without collisions. An obstacle can be

defined as a region inaccessible to the robot while free space is the area external to

the obstacles. The problem becomes even more challenging when the nature of the

terrain is allowed to vary and the robot has to pick a path that is most suitable for it.

Many techniques have been researched to utilize multiple path schemes for different

applications as outlined in [21]. These applications have been dealt within two

strategies. One strategy is to use pre-known global environment information and

robot characteristics, while another builds up local environment with sensor

information and using robot characteristics.

7

2.2 Classical Path Planning Methods

The successful traditional computational geometry-based approaches to robot path

planning can be classified into three basic categories [14]:

i. Cell Decomposition

ii. Roadmap

iii. Potential Field

This chapter will present the basic ideas and a few different realizations for

each approach. For these methods, an explicit representation of C is assumed to be

known.

2.3 Representation Techniques in Path Planning

There are a number of environment representations based on C-space. The most

common representations are explained in the following sections, based on the

scenario represented by the C-space as depicted in Figure 2.1 (b).

Figure 2.1: A scenario represented in (a) original form (b) configuration space. The

darker rectangles in (a) are those with actual dimensions while in (b) are those

enlarged according to the size of vehicle A. The white areas denote the free space.

Start

Goal

A
Start

Goal

(a) (b)

8

2.4 Cell Decomposition (CD)

The cell decomposition method uses non overlapping cells to represent the free-space

(Cf) connectivity. The decomposition can be exact or approximate. An exact

decomposition divides Cf exactly [8]. An approximation scheme Kambhampati

discretizes Cf with cells. It decomposes the free space recursively, stopping when a

cell is entirely in Cf or entirely inside an obstacle. Otherwise, the cell is further

divided. Because of memory and time constraints, the recursive process stops when a

certain degree of accuracy has been reached. The cell decomposition method,

although simple to implement, seldom yields high-quality paths. The exact cell

decomposition technique is faster than the approximate one, but the path obtained is

not optimal. The approximate cell decomposition can yield near-optimal paths by

increasing the grid resolution, but the computation time will increase drastically.

There is also the known problem of digitization bias associated with using a grid.

This stems from the fact that while searching for the shortest path in a grid, the grid

distance is measured and not the Euclidean distance.A visualization of this approach

is shown in Figure 2.2.

a) b)

Figure 2.2: a) Exact cell decomposition, Cfree exactly decomposed into trapezoids;

b) Approximate cell decomposition, mixed cells are divideduntil a series of free cells

connects the start with the goal cell; free cells: light gray,obstacle cells: dark gray,

mixed cells: white, obstacles (- -)

9

2.5 Roadmap (RM)

The roadmap method is a popular approach to motion planning. Roadmap (RM)

represents the C-space of obstacles and vehicle with edges and nodes by constructing

graphs or maps. A graph G is made of a set of vertices or nodes V(G) as well as a set

of edges/lines E(G). E(G) is an unordered pair of distinct vertices of G [40]. RM

typically takes several steps to build a graph or map for path planning purpose,

starting with establishment of nodes’ connections with edges within the free C-space

area. Next the starting point pstart and target point ptarget of the vehicle are combined

to the network to complete the graph or map. A collision-free path through a series of

line segments is then searched from the pstart to ptarget [41] using graph search

algorithm. Roadmaps overweigh the cell decompositions method in the number of

nodes as path planner needs to search through (in cell decomposition method) in

order to find a path.

2.5.1 Voronoi Diagram

Voronoi diagram (VD) is a popular roadmap method in path planning. The idea

behind VD is to generate a line segment called Voronoi Edge (Ed) which is

equidistant from all the points of the obstacle area in C-space. The point where Ed

joins is called Voronoi Vertex (Vd). An example of VD representation, used for path

planning is shown in Figure 2.3. The resultant path is shown in solid black line. As

illustrated in the figure, VD has edges that give a maximum clearance path among set

of obstacles in the C-space. If a vehicle traverses the planned path, it is guaranteed

that the vehicle will not intersect any obstacle. One major disadvantage of VD is the

generated paths are not optimal in terms of path length as it produces path which is

undesirably long at areas where obstacles are far apart. In addition, the path are also

has many unnecessary turns and the length of the path may be undesirably long at

regions where obstacles are far apart. In fact, it is worth noting that minimizing path

length and maximizing clearance seemingly contradict each other as increasing the

clearance results in a longer path while reducing the path length necessarily reduces

the clearance from obstacles. It would be highly beneficial for many applications if

an algorithm could be developed that would accept the minimum clearance required

10

as an input parameter and produce a path that would be shortest while satisfying the

minimum clearance requirement. The shortest path problem on its own can be

viewed as only a special case when we set the clearance required to zero.

The Voronoi diagram of the configuration space is the set of collision-free

configurations, whose minimal distance to Cobst is achieved with atleast two points on

the boundary of Cobst [14].

v= {q∈Cfree|d=
 ∈

 , ∃q’, q”∈Cobstq’ ≠q”, d = dist(q,q’) = dist(q, q”)}

(2.1)

As can be seen from the example shown in Figure 2.3, if the agent moves

along the Voronoi diagram, it keeps a maximum distance to all C-obstacles.

Figure 2.3: A Voronoi diagram. The dashed lines are the set of points equidistant to

obstacles. The path is shown in solid darker lines.

Voronoi edge

Voronoi vertex

Start

Goal

11

2.5.2 Probabilistic Roadmap

Probabilistic Roadmap (PRM) is a popular method for path planning as it is easy to

apply. It makes path planning in large or high-dimensional spaces tractable and

provides a good approximation of the connectivity of the configuration space area

Qfree. This method consists of two phases i.e. learning phase and query phase.

Learning phase constructs a graph G whose nodes are on the free Qfree and the edges

connect the nodes without intersecting any obstacle.

On the other hand, query phase connects the starting point pstart and target

point ptarget to G. A search algorithm is then used to find a path from pstart to ptarget.

Figure 2.4 shows an example of PRM used in path planning. A path connecting the

starting point and target point is illustrated in solid black line. However, the

construction of roadmap is computationally expensive as it might sample thousands

of nodes to ensure a path exists. Furthermore the generated path often has poor

quality as a result of the randomness inherent in the graph that represents the Qfree

connectivity. This method may also be incomplete i.e. do not find a path between

two locations although there exist a path connecting them, in the present of narrow

passage. In addition, there is no way to know whether a path exists as long as no path

has been found [42].

Figure 2.4: A PRM which nodes are chosen randomly

Randomly chosen points

Start

Goal

12

2.5.3 Rapidly-exploring Randomise Tree

Rapidly-exploring Randomise Tree (RRT) which is introduced by [43] is a variation

of PRM. RRT begins at both starting point pstart and target point ptarget, and randomly

expands tree for the whole configuration space. The idea is to incrementally

construct a roadmap which expands the connected paths toward the areas which have

not been covered yet. In order to construct a map using RRT, consider a tree, T

which is one of Tps and Tpt originated at Pstart and Ptarget, respectively. T is then

extended incrementally by adding a random node, qr in Qfree in uniform manner at

each iteration by sampling a nearest node qn to qr. The T tries to connect qr to qn

subject to kinematic constraints which result in a new node qw. The new edge

connecting qn and qr is included in the set of edges of T [44]. Readers are referred to

[43] for a further explanation of RRT. One example of multiple RRTs which T

started from both pstart and ptarget is shown in Figure 2.5 where the planned path is

shown in solid dark lines. There are several advantages of RRT including relatively

simple, suitable for finding a path for vehicle with dynamic and physical constraints,

the expansion of RRT is heavily biased toward unexplored areas of C-space and it is

minimal in terms of the number of edges, to name just a few. However, the resulted

path from RRT is always not optimal.

Figure 2.5: Path Planning using multiple RRTs

Start

Goal

13

2.6 Potential Field

The idea behind the potential field (PF)method is to assign afunction similar to

theelectrostaticpotential to each obstacleand then derive the topological structure of

the free space in theform of minimum potential valleys. The robot is pulled

towardthe goal configuration as it generates a strong attractive force. Incontrast, the

obstacles generate a repulsive force to keep therobot from colliding with them. The

path from the start to thegoal can be found by following the direction of the

steepestdescent of the potential toward the goal [11]. The strength of thisapproach is

that path planning can be done in real time by consideringonly the obstacles close to

the robot. Information onthe locations of all obstacles is not required beforehand.

However,as only local properties are used in planning, the robot mayget stuck at

localminima and never reach the goal. The potential field approach is illustrated in

Figure 2.6.

Figure 2.6 The potential field approach

2.7 Bezier Curve

Bezier curves were introduced by Paul de Casteljau in 1959. The curves were then

patented and popularised by Pierre Bezier, an engineer at Renault in 1960s [32].

Bezier used the curve to design vehicles body. The curves are then widely used to

model smooth curves. Bezier curve results from the weighted sum of a number of

control points, P. Unlike the curves that are generated by splines, Bezier curve does

not go through the control points. An n degree of Bezier curve is specified by n+1

14

control points, P0, P1, ..., Pn. The generalised Bezier curve, CB(l) is defined as

follows [109]:

 (2.2)

where ∈ and are Bernstein basis polynomials.

In order to illustrate the curves generated by Bezier curve technique, consider

two piece-wise paths which are shown in blue in Figures 2.7 and 2.8 with one and

two waypoints, respectively. The Bezier curves (dotted magenta lines) are then

generated by second and third orders as shown in Figure 2.7 and Figure 2.8,

respectively.

Figure 2.7: A 2
nd

 order (quadratic) Bezier curve with three control points

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

P0

P1

Pf

15

Figure 2.8: A 3
rd

 order (cubic) Bezier curve with four control points

Both Figures 2.7 and 2.8 clearly show that the curves pass through the first,

P0 and last control points, Pf and pulled in the direction of the middle points. The

curve is also tangent to the P0P1 line segment at the start and the last line segment, Pf-

1Pf at the end. These characteristics present for any order of Bezier curve and are

advantageous for path smoothing as these will make the robot to gradually leave the

first line segment and go to the last line segment smoothly.

2.8 Comparison of the Method

Based on Voronoi diagram method for path planning, firstly, there needs known

static obstacles which construct the Voronoi diagram, then obtained the shortest path

by optimal search algorithm. The Voronoi diagram can generate the origin robot path

points, and reduce the path search time.

The advantage of using a Voronoi diagram as a roadmap over a visibility

graph is that the Voronoi diagram can be constructed in just O(nlogn) time whereas

even the fastest known algorithm for constructing visibility graph [9] can take O(n2)

time in worst case when the visibility graph has O(n2) edges. Since a Voronoi

0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

100
P2

P0

P1

Pf

16

diagram has O(n) edges, querying for a path in a Voronoi diagram based roadmap is

also much faster than querying in a visibility graph.

However, as mentioned before, the quality of path obtained directly from the

Voronoi diagram may not be good and is usually far from optimal. So in recent

years, improving the quality of the path has been an active area of research. In [15],

the authors combine the Voronoi diagram, visibility graph and potential field

approaches to path planning into a single algorithm to obtain a tradeoff between

safest and shortest paths. The algorithm is fairly complicated and although the path

length is shorter than those obtained from potential field method or Voronoi diagram,

it is still not optimal. The path exhibits bumps and rudimentary turns and is not

smooth. Another recent work on reducing the length of the path obtained from a

Voronoi diagram can be observed in [7]. The method involves constructing polygons

at the vertices in the roadmap where more than two Voronoi edges meet. The path is

smoother and shorter than that obtained directly from the Voronoi diagram but there

has been no attempt to reach optimality. In [20], the authors create a new diagram

called the V V(c) diagram (the Visibility-Voronoi diagram for clearance c). It is

similar to this project which is to obtain an optimal path for a specified clearance

value. The diagram evolves from the visibility graph to the Voronoi diagram as the

value of c increases.

Unfortunately, as the method is visibility based, the processing time is

O(n2logn) which renders it impractical for large spatial datasets. Apart from

roadmap based techniques, the potential field approach [10],[19] and cell

decomposition method [12], [5] are two popular path planning approaches. The

potential field approach is simple but has several potential problems, such as being

trapped in local minima or failure to pass through small openings [13]. In particular,

the robot may get stuck at a local minimum. The paths obtained by cell

decomposition are not optimal because of the connectivity limitations in a grid. The

method is also not suitable for spatial datasets as it becomes particularly difficult to

correctly estimate the grid resolution.

17

2.9 Search Algorithm

At its core, the search algorithm or a path finding method searches a graph by

starting at one vertex and exploring adjacent nodes until the destination node a

reached, generally with the intent of finding the shortest route. To find a path

between two nodes in a graph and to find the shortest path problem this algorithm

will be use. During the search, each configuration is allowed to have only one parent,

otherwise, the robot keep moving in cycle [33].

This section presents a brief review of basic graph searching principles for

edge detection applications. A graph consist a set of points called nodes and a set of

links that determine how the nodes can be connected [34]. The connections between

start node and end node are defined as set of links. There are several search method

develop here are several search method develop in artificial intelligence such as

Breadth First, Depth First, A* and Dijkstra’s Algorithm [33] as shown in Figure 2.9.

Figure 2.9: Classifications of the Search Algorithms

Search Algorithm

Dijkstra’s

Algorithm
A* Algorithm

Breadth First

Search

Depth First

Search

18

2.9.1 Breadth-first Search

In graph theory, breadth-first search (BFS) is a graph search algorithm that begins at

the root node and explores all the neighboring nodes. Then for each of those nearest

nodes, it explores their unexplored neighbor nodes, and so on, until it finds the goal

[36]. The theory support in [37] that states the search starts at the root and then visits

all of the children of the root first. Next, the search then visits all of the

grandchildren, and so forth. The belief here is that the target node is near the root, so

this search would require less time. BFS considers each of the nodes that are the

same link length from the start node before going onto second stages [37]. This

method seem like Dijkstra's algorithm, it is to find the shortest paths, but with every

edge having the same length. This algorithm more simple and does no need any data

structures.

Breadth-First searches keep all the possible paths to be keeping in memory at

once, evaluating them simultaneously. These algorithms will always find the shortest

path on its first run and are more appropriate when there are a small number of

solutions, which take a relatively short number of steps [36]. However, it will waste

time considering irrelevant cycles. These operations will typically require more time

and must be count as part of the algorithm’s complexity in practice [39].

 Step 1: Explore paths [A B]

 (Goal not found) [A C]

 [A D]

 Step 2: Explore paths [A B E](Dead end)

 (Goal not found) [A B F](Dead end)

 [A C G]

 [A D H](Dead end)

 Step 1: Explore paths [A C G END]

Path is success!

Figure 2.10: Breadth First Search. (Adapted from [36]). The gray line is

visited line while the red line is the path.

A

C D B

F E

END

G H

START

RT

19

2.9.2 Depth-first search

Depth-first search (DFS) algorithm searches a path by moving towards the ending

point as rapidly as possible and will continue moving to another path until it finds a

dead end. It's means, this algorithm doesn't explore every avenue simultaneously, but

chooses the avenue which gets it closer to the goal, and only explores that avenue

until it is proven successful or unsuccessful. It searches one path to a leaf before

following any other path [36]. DFS algorithm work best for problems where there are

many possible solutions, and only one of them is required. At this task, it will operate

much faster than a Breadth-First system.

Depth-First search can only find the minimum length path by searching

through the whole graph, rather than stopping at the first solution. It is the method of

choice when there is a known short length to paths but there are a large number of

alternatives to sort. In term of the memory space, this algorithm requirement less

than breadth because only linear with respect to the search graph [36]. However, this

algorithm explores as far as possible along each branch before backtracking. Even a

finite graph can generate an infinite tree. This method is also call brushfire, since it

resembles the way fire progresses in dry grassland. This method can find the shortest

path, but it examines a large part of the space. It is obvious that both of these are not

very efficient [33].

 Step 1: Explore paths [A B]

 Step 2: Explore paths [A B E] (Dead end)

 [A B F] (Dead end)

 Step 3: Explore paths [A C]

 Step 4: Explore paths [A C G]

 Step 5: Explore paths [A C G END]

 Path is success!

Figure 2.11: Depth first search. (Adapted from [36]) The gray line is visited

line while the red line is the path.

A

C D B

F E

END

G H

START

RT

20

2.9.3 A* Algorithm

The A* algorithm is one of the search algorithms which is quite popular among

programmer. This algorithm provides a solution that efficiently enough for optimal

path finding process [35]. This algorithm used when a solution with a minimum cost

desired and there must underestimate of the cost from the current configuration to the

goal. The better the cost-to-go approximates the actual cost, the more A* can prune

out partially generated paths, making it more efficiently [33, 37].

The advantages of this algorithm are it is complete provided that the node

does not underestimate how close the node is to goal and it is optimal in that it will

provide the fastest search of any other shortest path algorithm which uses the same

heuristic [36]. Although this algorithm can find a path in a relatively short time but in

fact the path are not optimal and smooth. It is also required a lot of memory.

 Step 1:Explore paths O

 {O,A} f=1+5=6 ,

 {O,B} f= 2+6=8

 Step 2:Explore paths A

 {O,B} f= 2+6=8

{O,A,F} f= (1+4)+5=10

{O,A,E} f= (1+7)+8=16

Step 3:Explore paths B

{O,A,F} f= (1+4)+5=10

{O,B,C} f= (2+7)+4=13

{O,A,E} f= (1+7)+8=16

{O,B,D} f= (2+1)+15=18

Step 3:Explore paths END

{O,A,F,END}is the best path(cost

7)

Figure 2.12: A* Algorithm. (Adapted from [38]). The gray line is visited line while

the red line is the path.

6 3

START

5 3

2

5 8 15
4

0

1

END

A B G J

E F

H

I

C
D

1

7

3

2

2

1

2

7

5

1

12

4

21

2.9.4 Dijkstra’s Algorithm

Dijkstra’s shortest part algorithm for graph is useful for path planning [33].

Dijkstra’s algorithm is the most efficient when it is searching for the shortest path

between two nodes [33,37]. Starting from a goal node, it finds the nodes connected to

the goal, puts them in a queue, and assigns each of them the cost to goal, which is the

weight of the edge connecting it to the goal.

Dijkstra’s algorithm is able to find a shortest path that connects a starting and

target points. This algorithm does much more searching than is necessary, but is

guaranteed to find the shortest path [36]. Although Dijkstra's algorithm is fast, it

suffers from its inability to deal with negative edge weights [38]. This algorithm is

often used in routing and as a subroutine in other graph algorithms. It also can be

used for finding costs of shortest paths from a single vertex to a single destination

vertex by stopping the algorithm once the shortest path to the destination vertex has

been determined [34]. Figure 2.13 below illustrates the Dijkstra’s Algorithm.

Step 1: Explore paths [OAE END]

(7)

Step 2: Explore paths [OCK END]

(8)

Step 3: Explore paths [OBI END]

(5)

Step 4: Explore paths [OBG END]

(4)

Path is success!

Figure 2.13 Dijkstra’s Algorithm. The green line is visited line while the red line is

the path.

C L

START

A D

B

F E K J

0

I H G

END

1

1

3

2

2

2

1

1

2

1

2

2

2

22

2.10 Car-Like Robot Model

Firstly, a ‘standard model’ for the vehicle and its workspace is introduced. This is the

representation of the car-like robot used throughout the development of the path

planning, obstacle avoidance and tracking systems. The model given below is based

upon those described in [14] and [31].

Let A be a car-like robot, capable of only forward motion, modeled as a rigid

rectangular body moving on a planar (two-dimensional) workspace, W ≡ R2, that is

free of obstacles. A is supported by four wheels making point contact with the

ground, while it has two fixed rear wheels and two directional (steerable) front

wheels. The wheelbase (distance between front and rear wheels) is denoted by L. Λ

is the configuration of A within W defined by the following quartet, (x, y, θ, κ) where

(x, y) are the coordinates of the rear axle midpoint. θ(the vehicle’s orientation) is the

angle between the x-axis and the main axis of the vehicle (−π _ θ _ π)5. Steering

angle is denoted as φ and determines the instantaneous centre of rotation Ω of the

robot. The position of Ω determines the instantaneous radius of curvature ρ of the

vehicle’s path, given by L/ tan φ [14]. The instantaneous curvature κ of the robot is

the inverse of the instantaneous radius of curvature (κ = ρ−1). Finally, the vehicle’s

velocity at the centre of its rear axle is defined as V. This vehicle model is shown in

Figure 2.14.

Figure 2.14: Car-Like Robot Model

23

2.11 Previous Study on Voronoi Diagrams

This section will review several recent papers that are using Voronoi diagram

method for path planning. [17] addresses the problem of on-line path following for a

car working in unstructured outdoor environments. The partially known map of the

environment is updated and expanded in real time by a Simultaneous Localization

and Mapping (SLAM) algorithm. This information is used to implement global path

planning. A cost graph is initially constructed followed by a search to find the near-

optimal path considering uncertainty in both vehicle location and map. Selected

points in the global path are connected by continuous-curvature paths. An improved

feedback linearization technique is presented to guide the car along the defined path.

[24] gives an algorithm for generating the Voronoi diagram from the points

set on a cylinder by modification process to improve the efficiency of the weld

testing for acylindrical oilcan performed by the wall-climbing robot. Based on this

algorithm the paper also provides a method about thedesign of cylindrical tank

wallboards and the weld testing pathplanning from Delaunay Triangulation. A

software simulationplatform is also developed. The simulation results show that

themethod is effective to the stand cylindrical tank design and thewall-climbing robot

weld testing path planning.

A new motion planning technique, which is built on the generalized Voronoi

diagram, for a robot with kinematic or dynamic constraints is proposed in [18]. The

generalized Voronoi diagram serves this task effectively as it maintains the largest

(the safest) possible distance from surrounding obstacles. Moreover, a novel

approximation geometric algorithm, which embodies a trade-off between the

efficiency of computation, implementation difficulty, and robustness, for computing

this diagram is presented.

[21] present a simulated annealing (SA) based algorithm for robot path

planning. The kernel of the SA engine is based on Voronoi diagram and composite

Bezier curve to obtain the shortest smooth path under given kinematic constraints. In

the algorithm, a Voronoi diagram is constructed according to the global environment.

The piecewise linear path in the Voronoi diagram which keeps away from the

obstacles is obtained by performing Dijkstra’s shortest path algorithm. The control

points on the reference path are used to create the control variables for the SA

engine. The SA engine then updates the control variables to obtain theshortest

24

composite Bezier curve path while satisfying givenkinematic constraints.

Experimental results on two mapscontaining sharp turns demonstrate the

effectiveness of theproposed SA-based smooth path planning algorithm.

Meanwhile [16] presents a new sensor based global Path Planner which

operates in two steps. In the first step the safest areas in the environment are

extracted by means of a Voronoi diagram. In the second step Fast Marching Method

is applied to the Voronoi extracted areas in order to obtain the shortest path. In this

way the trajectory obtained is the shortest between the safe possible ones. This two-

step method combines an extremely fast global planner operating on a simple sensor

based environment modeling, while it operates at the sensor frequency. The main

characteristics are speed and reliability, because the map dimensions are reduced to a

unidimensional map and this map represents the safest areas in the environment for

moving the robot.

REFERENCES

 [1] Cang, YE. (2005). A Method For Mobile Robot Obstacle Negotiation.

International Journal of Intelligent Control and Systems, 10(3), 188-200.

[2] M. Kruusmaa, J. Willemson. (2003). Covering the Path Space: A Casebase

Analysis for Mobile Robot Path Planning. Knowledge-Based Systems, 16, 235-

242.

[3] M. Ruehl, H. Roth. (2005). Robot Motion Planning by Approximation of

Obstacles in Configuration Space. 16th IFAC World Congress, 6.

[4] Y.K. Hwang, N. Ahuja. (1992). Gross Motion Planning - A Survey. ACM

Computing Survey, 24(3), 219-291.

[5] Chen, D.Z., Szczerba, R.J., Uhran, Jr., J.J. (1997). A Framed-Quadtree Approach

for Determining Euclidean Shortest Paths in a 2-D Environment. IEEE

Transactions on robotics and automation, 13(5).

[6] de Berg, Mark, Marc van Kreveld, Mark Overmars, Otfried Schwartzkopf.

(1997). Computational Geometry: Algorithms and Applications. Springer.

[7] Dong-Hoon, Y., Suk-Kyo, H. (2007). A roadmap construction algorithm for

mobile robotpath planning using skeleton maps. Advanced Robotics, 21(1-2), 51-

63.

[8] F. Avnaim, J. D. Boissonnat, B. Faverjon. (1988). A practical exact motion

planning algorithm for polygonal objects amidst polygonal obstacles. Proc.IEEE

Int. Conf. Robotics and Automation, 3, 1656–1661.

[9] Ghosh, S.K., Mount, D.M. (1991). An output-sensitive algorithm for computing

visibility graphs. SIAM J. Computing, 20.

[10] Hussien, B. (1989). Robot Path Planning and Obstacle Avoidance by Means of

Potential Function Method. Ph.D Dissertation. University of Missouri-Columbia.

[11] J. Borenstein, Y. Koren. (1998). Real-time obstacle avoidance for fast mobile

robot. IEEE Trans. Syst., Cybern, 19(5), 1179-1187.

[12] Kambhampati, S., Davis, L.S. (1986). Multiresolution path planning for mobile

robots. IEEE journal of robotics and automation, 2(33), 135-145.

65

[13] Koren, Y. B. (1991). Potential Field Methods and Their Inherent Limitations for

Mobile Robot Navigation. IEEE Conference on Robotics and Automation, (pp.

1398–1404).

[14] Latombe, J.C. (1991). Robot Motion Planning. USA: Kluwer Academic

Publishers.

[15] Masehian, E., Amin-Naseri, M.R. (2004). A voronoi diagram-visibility graph-

potential field compound algorithm for robot path planning. Journal of Robotic

System, 21(6).

[16] Santiago Garrido, Luis Moreno, Dolores Blanco, Piotr Jurewicz. (2011). Path

Planning for Mobile Robot Navigation using Voronoi Diagram and Fast

Marching. International Journal of Robotics and Automation, 2(1), 42-64.

[17] Shahram Rezaei, Jose Guivant, Eduardo M. Nebot. (2003). Car-Like Robot Path

Following In Large Unstructured Environments.

[18] Svec, P. (2008). Kinodynamic Robot Motion Planning Based On The

Generalised Voronoi Diagram. Engineering Mechanics, 15, 139-150.

[19] Warren, C. (1989). Global Path Planning Using Artificial Potential Fields. IEEE

Conference on Robotics and Automation, (pp. 316–321).

[20] Wein, R., Van den Berg, J.P., Halperin, D. (2005). The Visibility-Voronoi

complex and its applications. 21st Annual Symposium on Computational

geometry, (pp. 63-72).

[21] Yi-Ju Ho, Jing-Sin Liu. (2010). Simulated Annealing based Algorithm for

Smooth Robot Path Planning with Different Kinematic Constraints. 1277-1281.

[22] J. Cortes, F. Bullo. (2005). Coordination and geometric optimization via

distributed dynamical systems. SIAM J. Control Optim., 44(5), 1543–1574.

[23] Aurenhammer, F. (1991). Voronoi diagrams—A survey of a fundamental

geometric data structure. ACM Computing Surveys, 23(3).

[24] Zhuang Fu, Zhao Yan-zheng, Qian Zhi-yuan, Cao Qi-xin. (2006). Wall-climbing

Robot Path Planning for Testing Cylindrical Oilcan Weld Based on Voronoi

Diagram. IEEE/RSJ International Conference on Intelligent Robots and Systems,

(pp. 2749-2753).

[25] Gold, C. (1999). Crust and anti-crust: A one-step boundary and skeleton

extraction algorithm. Proc. 15th ACM Symp. Computational Geometry, (pp.

189–196).

66

[26] Guibas, L.J., Knuth, D.E., Sharir, M. (1992). Randomized incremental

construction of Delaunay and Voronoi diagrams. Algorithmica, 7, 381–413.

[27] M. L. Gavrilova, J. G. Rokne. (2003). Collision detection optimization in a

multi-particle system. Int. J. Comput. Geometry Appl., 13(4), 279–301.

[28] P. Bhattacharya, M. L. Gavrilova. (2006). CRYSTAL—A new densitybased fast

and efficient clustering algorithm. 3rd Int. Symp. Voronoi Diagrams in Science

and Engineering, (pp. 102–111).

[29] R. Apu, M. L. Gavrilova. (2006). Battle swarm: An evolutionary approach to

complex swarm intelligence. 9th Int. Conf. Computer Graphics and Artificial

Intelligence, (pp. 139–150).

[30] R. Graham, J. Cortes. (2009). Asymptotic optimality of multicenter Voronoi

configurations for random field estimation. IEEE Trans. Automat. Contr.

[31] Scheuer, A., Fraichard, T. (1997). Continuous-Curvature Path Planning for Car-

Like Vehicles. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.

[32] K. G. Joll, R. S. Kumar and R. Vijayakumar. (2009). A Bezier curve based path

planning in a multi-agent robot soccer system without violating the acceleration

limits. Elsevier Journal of Robotics and Autonomous Systems, 57(2009), pp 23–

33.

[33] Yong K.H and Ahuja.N, (1992), "Gross motion planning—a survey," ACM

Computing Surveys, vol. 24, pp. 219 - 291.

[34] M. L. Wager.(2000), "Making Roadmaps Using Voronoi Diagrams" [Online].

Available:http://www.cs.cmu.edu/~biorobotics/papers/sbp_papers/integrated4/mi

cha_voronoi.pdf.

[35] Khuswendi.T, Hindersah.H,and Adiprawita.W, (2011), "UAV Path Planning

Using Potential Field and Modified Receding Horizon A* 3D Algorithm," in

International Conference on Electrical Engineering and Informatics, Bandung.

[36] Giesbrecht, J, (2004), "Global Path Planning for Unmanned Ground Vehicles,"

Defence Research and Development Suffield 8, pp 56.

67

[37] Choset.H and all, (2007), "Principles of Robot Motion: Theory,Algortihms and

implementations", [Online]. Available: http://www.cs.cmu.edu/~

biorobotics/book/booboo_book.pdf, Retrieved on 1 April 2011.

[38] Graph Theory: Shortest Path. The shortest path problem [Online]. Available:

http://www.cs.cornell.edu/~wdtseng/icpc/notes/graph_part2.pdf, Retrieved on

2
nd

 Apr 2012.

[39] Omar.R and Gu.W.G, (2009), "Visibility Line Based Methods for UAV Path

Planning," in ICROS-SICE International Joint Conference 2009, Fukuoka, p.

3176.

[40] C. Godsil and G. Royle. (2001). “Algebraic Graph Theory”. Springer.

[41] R. Siegwart and I. R. Nourbakhsh. (2004). “Introduction to autonomous mobile

robots”. Bradford Company, Scituate, MA, USA.

[42] J. L. Latombe. (1999). “Motion planning: A journey of robots, molecules, digital

actors, and other artefacts”. In International Journal of Robotics Research,

18(11), pp 1119-1128.

[43] S. M. LaValle. (1998). “Rapidly-exploring random trees: A new tool for path

planning”. TR 98-11, Computer Science Dept., Iowa State University.

[44] H. Choset, G. Kantor, W. Burgard, L. Kavraki and S. Thrun. (2005). “Principles

of robot motion: Theory, algorithms, and implementations”. The MIT Press.

[45] Omar, R. and D.W. Gu. (2010). “3D path planning for unmanned aerial vehicles

using visibility line based method”. In Proceedings of the International Control

on Informatics in Control, Automation and Robotics, pages 80-85.

http://www.cs.cornell.edu/~wdtseng/icpc/notes/graph_part2.pdf

