1,128 research outputs found

    Cancer risk prediction with whole exome sequencing and machine learning

    Get PDF
    Accurate cancer risk and survival time prediction are important problems in personalized medicine, where disease diagnosis and prognosis are tuned to individuals based on their genetic material. Cancer risk prediction provides an informed decision about making regular screening that helps to detect disease at the early stage and therefore increases the probability of successful treatments. Cancer risk prediction is a challenging problem. Lifestyle, environment, family history, and genetic predisposition are some factors that influence the disease onset. Cancer risk prediction based on predisposing genetic variants has been studied extensively. Most studies have examined the predictive ability of variants in known mutated genes for specific cancers. However, previous studies have not explored the predictive ability of collective genomic variants from whole-exome sequencing data. It is crucial to train a model in one study and predict another related independent study to ensure that the predictive model generalizes to other datasets. Survival time prediction allows patients and physicians to evaluate the treatment feasibility and helps chart health treatment plans. Many studies have concluded that clinicians are inaccurate and often optimistic in predicting patients’ survival time; therefore, the need increases for automated survival time prediction from genomic and medical imaging data. For cancer risk prediction, this dissertation explores the effectiveness of ranking genomic variants in whole-exome sequencing data with univariate features selection methods on the predictive capability of machine learning classifiers. The dissertation performs cross-study in chronic lymphocytic leukemia, glioma, and kidney cancers that show that the top-ranked variants achieve better accuracy than the whole genomic variants. For survival time prediction, many studies have devised 3D convolutional neural networks (CNNs) to improve the accuracy of structural magnetic resonance imaging (MRI) volumes to classify glioma patients into survival categories. This dissertation proposes a new multi-path convolutional neural network with SNP and demographic features to predict glioblastoma survival groups with a one-year threshold that improves upon existing machine learning methods. The dissertation also proposes a multi-path neural network system to predict glioblastoma survival categories with a 14-year threshold from a heterogeneous combination of genomic variations, messenger ribonucleic acid (RNA) expressions, 3D post-contrast T1 MRI volumes, and 2D post-contrast T1 MRI modality scans that show the malignancy. In 10-fold cross-validation, the mean 10-fold accuracy of the proposed network with handpicked 2D MRI slices (that manifest the tumor), mRNA expressions, and SNPs slightly improves upon each data source individually

    A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns

    Full text link
    In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA

    A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns.

    Get PDF
    In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA

    Functional characterization of single amino acid variants

    Get PDF
    Single amino acid variants (SAVs) are one of the main causes of Mendelian disorders, and play an important role in the development of many complex diseases. At the same time, they are the most common kind of variation affecting coding DNA, without generally presenting any damaging effect. With the advent of next generation sequencing technologies, the detection of these variants in patients and the general population is easier than ever, but the characterization of the functional effects of each variant remains an open challenge. It is our objective in this work to tackle this problem by developing machine learning based in silico SAVs pathology predictors. Having the PMut classic predictor as a starting point, we have rethought the entire supervised learning pipeline, elaborating new training sets, features and classifiers. PMut2017 is the first result of these efforts, a new general-purpose predictor based on SwissVar and trained on 12 different conservation scores. Its performance, evaluated bothby cross-validation and different blind tests, was in line with the best predictors published to date. Continuing our efforts in search for more accurate predictors, especially for those cases were general predictors tend to fail, we developed PMut-S, a suite of 215 protein-specific predictors. Similar to PMut in nature, Pmut-S introduced the use of co-evolution conservation features and balanced training sets, and showed improved performance, specially for those proteins that were more commonly misclassified by PMut. Comparing PMut-S to other specific predictors we proved that it is possible to train specific predictors using a unique automated pipeline and match the results of most gene specific predictors released to date. The implementation of the machine learning pipeline of both PMut and PMut-S was released as an open source Python module: PyMut, which bundles functions implementing the features computation and selection, classifier training and evaluation, plots drawing, among others. Their predictions were also made available in a rich web portal, which includes a precomputed repository with analyses of more than 700 million variants on over 100,000 human proteins, together with relevant contextual information such as 3D visualizationsof protein structures, links to databases, functional annotations, and more.Les mutacions puntuals d’aminoàcids són la principal causa de moltes malalties mendelianes, i juguen un paper important en el desenvolupament de moltes malalties complexes. Alhora, són el tipus de variant més comuna que afecta l’ADN codificant de proteïnes, sense provocar, en general, cap efecte advers. Amb l’adveniment de la seqüenciació de nova generació, la detecció d’aquestes variants en pacients i en la població general és més fàcil que mai, però la caracterització dels efectes funcionals de cada variant segueix sent un repte. El nostre objectiu en aquest treball és abordar aquest problema desenvolupant predictors de patologia in silico basats en l’aprenentatge automàtic. Prenent el predictor clàssic PMut com a punt de partida, hem repensat tot el procés d’aprenentatge supervisat, elaborant nous conjunts d’entrenament, descriptors i classificadors. PMut2017 és el primer resultat d’aquests esforços, un nou predictor basat en SwissVar i entrenat amb 12 mètriques de conservació de seqüència. La seva precisió, mesurada mitjançant validació creuada i amb tests cecs, s’ha mostrar en línia amb els millors predictors publicats a dia d’avui. Continuant els nostres esforços en la cerca de predictors més acurats, hem desenvolupat PMut-S, un conjunt de 215 predictors específics per cada proteïna. Similar a PMut en la seva concepció, PMut-S introdueix l’ús de descriptors basats en la coevolució i conjunts d’entrenament balancejats, millorant el rendiment de PMut2017 en 0.1 punts del coeficient de correlació de Matthews. Comparant PMut-S a d’altres predictors específics hem provat que és possible entrenar predictors específics seguint un únic procediment automatitzat i assolir uns resultats tan bon com els de la majoria de predictors específics publicats. La implementació del procediment d’aprenentatge automàtic tant de PMut com de PMut-S ha sigut publicat com a un mòdul de Python de codi obert: PyMut, el qual inclou les funcions que implementen el càlcul dels descriptors i la seva selecció, l’entrenament i avaluació dels classificadors, el dibuix de diverses gràfiques... Les prediccions també estan disponibles en un portal web que inclou un repositori precalculat amb els anàlisis de més de 700 milions de variants en més de 100 mil proteïnes humanes, junt a rellevant informació de context com visualitzacions 3D de les proteïnes, enllaços a bases de dades, anotacions funcionals i molt més

    Cancer Classification from Healthy DNA using Machine Learning

    Get PDF
    The genome is traditionally viewed as a time-independent source of information; a paradigm that drives researchers to seek correlations between the presence of certain genes and a patient's risk of disease. This analysis neglects genomic temporal changes, which we believe to be a crucial signal for predicting an individual's susceptibility to cancer. We hypothesize that each individual's genome passes through an evolution channel (The term channel is motivated by the notion of communication channel introduced by Shannon in 1948 and started the area of Information Theory), that is controlled by hereditary, environmental and stochastic factors. This channel differs among individuals, giving rise to varying predispositions to developing cancer. We introduce the concept of mutation profiles that are computed without any comparative analysis, but by analyzing the short tandem repeat regions in a single healthy genome and capturing information about the individual's evolution channel. Using machine learning on data from more than 5,000 TCGA cancer patients, we demonstrate that these mutation profiles can accurately distinguish between patients with various types of cancer. For example, the pairwise validation accuracy of the classifier between PAAD (pancreas) patients and GBM (brain) patients is 93%. Our results show that healthy unaffected cells still contain a cancer-specific signal, which opens the possibility of cancer prediction from a healthy genome

    Integrative Transcriptomic Analysis of Long Intergenic Non-Coding RNAs in Cancer.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Role of AI and digital pathology for colorectal immuno-oncology

    Get PDF
    Immunotherapy deals with therapeutic interventions to arrest the progression of tumours using the immune system. These include checkpoint inhibitors, T-cell manipulation, cytokines, oncolytic viruses and tumour vaccines. In this paper, we present a survey of the latest developments on immunotherapy in colorectal cancer (CRC) and the role of artificial intelligence (AI) in this context. Among these, microsatellite instability (MSI) is perhaps the most popular IO biomarker globally. We first discuss the MSI status of tumours, its implications for patient management, and its relationship to immune response. In recent years, several aspiring studies have used AI to predict the MSI status of patients from digital whole-slide images (WSIs) of routine diagnostic slides. We present a survey of AI literature on the prediction of MSI and tumour mutation burden from digitised WSIs of haematoxylin and eosin-stained diagnostic slides. We discuss AI approaches in detail and elaborate their contributions, limitations and key takeaways to drive future research. We further expand this survey to other IO-related biomarkers like immune cell infiltrates and alternate data modalities like immunohistochemistry and gene expression. Finally, we underline possible future directions in immunotherapy for CRC and promise of AI to accelerate this exploration for patient benefits
    corecore