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ABSTRACT 

 
CANCER RISK PREDICTION WITH WHOLE EXOME SEQUENCING AND 

MACHINE LEARNING 

by 
Abdulrhman Fahad M Aljouie 

Accurate cancer risk and survival time prediction are important problems in personalized 

medicine, where disease diagnosis and prognosis are tuned to individuals based on their 

genetic material. Cancer risk prediction provides an informed decision about making 

regular screening that helps to detect disease at the early stage and therefore increases the 

probability of successful treatments. Cancer risk prediction is a challenging problem. 

Lifestyle, environment, family history, and genetic predisposition are some factors that 

influence the disease onset. Cancer risk prediction based on predisposing genetic variants 

has been studied extensively. Most studies have examined the predictive ability of variants 

in known mutated genes for specific cancers. However, previous studies have not explored 

the predictive ability of collective genomic variants from whole-exome sequencing data. It 

is crucial to train a model in one study and predict another related independent study to 

ensure that the predictive model generalizes to other datasets. Survival time prediction 

allows patients and physicians to evaluate the treatment feasibility and helps chart health 

treatment plans. Many studies have concluded that clinicians are inaccurate and often 

optimistic in predicting patients’ survival time; therefore, the need increases for automated 

survival time prediction from genomic and medical imaging data. 

For cancer risk prediction, this dissertation explores the effectiveness of ranking 

genomic variants in whole-exome sequencing data with univariate features selection 



 

methods on the predictive capability of machine learning classifiers. The dissertation 

performs cross-study in chronic lymphocytic leukemia, glioma, and kidney cancers that 

show that the top-ranked variants achieve better accuracy than the whole genomic variants. 

For survival time prediction, many studies have devised 3D convolutional neural 

networks (CNNs) to improve the accuracy of structural magnetic resonance imaging (MRI) 

volumes to classify glioma patients into survival categories. This dissertation proposes a 

new multi-path convolutional neural network with SNP and demographic features to 

predict glioblastoma survival groups with a one-year threshold that improves upon existing 

machine learning methods. The dissertation also proposes a multi-path neural network 

system to predict glioblastoma survival categories with a 14-year threshold from a 

heterogeneous combination of genomic variations, messenger ribonucleic acid (RNA) 

expressions, 3D post-contrast T1 MRI volumes, and 2D post-contrast T1 MRI modality 

scans that show the malignancy. In 10-fold cross-validation, the mean 10-fold accuracy of 

the proposed network with handpicked 2D MRI slices (that manifest the tumor), mRNA 

expressions, and SNPs slightly improves upon each data source individually.  
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CHAPTER 1 

INTRODUCTION 

 

Deep learning convolutional neural network (CNN) and existing machine learning 

methods such as support vector machine (SVM) and random forest (RF) successfully 

applied to a wide range of fields [1-4]. With the high availability of genomic and medical 

imaging data, the need increases for automated and accurate cancer risk and survival time 

predictions. 

 

1.1 Cancer Risk Prediction 

Cancer is the second leading cause of death in the United States [5]. The dissertation 

explores chronic lymphocytic leukemia, kidney cancer, and brain cancer risk predictions. 

Chronic lymphocytic leukemia accounts for 1.2% of all projected new cancer cases and 

0.7% of projected cancer deaths in 2018 in the United States [5]. Kidney and renal pelvis 

account for 3.7% of the expected new cancer cases and 2.4% of estimated cancer deaths 

in the United States in 2018 [5]. Brain and other nervous system cancer new expected 

cases is 1.3% of all cancer new incidents, and 2.7% of all cancer deaths in 2018 [5]. 

Recent advances in deoxyribonucleic acid (DNA) sequencing technologies 

allowed sequencing massive parallel DNA fragments, which reduced the time and cost to 

generate human whole-genome and whole-exome sequencing data. A DNA sequence 

consists of a chain of letters from four nucleotides: adenine (A), guanine (G), cytosine 

(C), and thymine (T). The human genome comprises about three billion base pairs, and 

only identical twins may have the same or very similar DNA sequence. There are 
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different types of variation between human genomes. The most common variation type is 

Single Nucleotide Polymorphism (SNPs), which is a substitution at a specific locus of the 

genome. When comparing two human genomes, an SNP happens once about every 1000 

nucleotides. The other types of variations, which involve one or more base pairs, are 

insertion, deletion, duplication, translocation, inversion, and copy number. Causes of 

many genetic differences in humans are vital in explaining heritable disease susceptibility 

and the presence of specific phenotypic traits. Linkage analysis and genome-wide 

association studies (GWAS) revealed more than 450 mutations [6], which predispose to 

glioma [7], colorectal [8], beast [9], ovarian [7], and other cancers types [6].  

Areas of increasing interest in personalized medicine that utilizes DNA 

sequencing data are cancer risk prediction, gene editing, and cancer targeted therapy. 

Cancer risk prediction is vital to recommend specific regular checkups and tests for 

individuals with a high risk for a particular disease that could lead to early detection, 

which could enhance treatment outcomes. 

The dissertation proposes the use of univariate ranking of genomic variations by 

computing Pearson correlation absolute value and chi-squared test statistic between each 

variant site and cancer status to weed out noisy features and reduce variants set 

dimensionality. The analysis shows that by decreasing variants' data set dimensionality 

support vector machine, and random forest classifiers achieved better classification 

performance. 
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1.2 Cancer Survival Time Estimation 

Predicting glioma survival time helps patients and their clinicians evaluate available 

treatment plans and make informed choices. Glioblastoma multiforme (GBM) is the most 

common and aggressive type of brain cancer, with a median survival rate of 15 months 

[10]. Most advanced cancer patients prefer to know their estimated survival time [11]. 

However, clinicians’ survival time estimates are inaccurate, and often optimistic [11, 12]. 

Many studies have devised 3D convolutional neural networks (CNNs) to improve the 

accuracy of structural magnetic resonance imaging (MRI) volumes to classify glioma 

patients into survival categories [3, 13-15].  

This dissertation proposes a multi-path neural network system to predict 

glioblastoma survival categories from a heterogeneous combination of genomic 

variations, messenger ribonucleic acid (RNA) expressions, 3D post-contrast T1 MRI 

volumes, and 2D post-contrast T1 MRI modality scans that show the malignancy. The 

dissertation also proposes a new multi-path convolutional neural network with 

demographic features and SNP data to predict glioblastoma survival groups that 

improved upon SVM and random forest prediction accuracy. 

 

1.3 Dissertation Contribution and Outline 

The contribution of this dissertation is four-fold: 1) to investigate the predictive ability of 

support vector machine model and the effect of ranking SNPs with Pearson’s correlation 

coefficient and chi-squared statistics in normal versus tumor samples in chronic 

lymphocytic leukemia (CLL) and kidney cancer subtypes, 2) to compare support vector 

machine and random forests prediction accuracy of germline SNPs in glioma subtypes 
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cases and healthy controls from the 1000 Genomes Project [16], 3) to propose a multi-

path neural network from heterogeneous data sources: SNP, gene expression, 2D 

magnetic resonance imaging (MRI) scans, and 3D MRI volumes to classify glioma 

patients into short- versus long-term survival groups, and 4) to propose a new multi-path 

convolutional neural network for glioblastoma survival group prediction with SNP and 

demographic features. 

In Chapter 2, the dissertation provides a problem description and a literature 

review. In Chapter 3, the dissertation proposes using SVM and feature selection to 

predict normal and tumor samples obtained from exome sequences variants in chronic 

lymphocytic leukemia (CLL). In Chapter 4, the study investigates the effectiveness of 

ranking SNPs on the predictive ability of SVM in kidney cancer subtypes normal and 

tumor samples. Chapter 5 compares the prediction accuracy of random forests and SVM 

in top-ranked SNPs to classify glioma subtypes individuals (cases) and healthy 

individuals (controls) from the 1000 Genomes Project. Chapter 6 proposes a multi-path 

neural network of combined neuroimaging, SNP, gene expression data to predict 

glioblastomas survival groups at the 14-year threshold. In Chapter 7, the dissertation 

devises a multi-path neural network architecture to predict short- and long-term survival 

classes in glioblastomas with multi-modal data. 
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CHAPTER 2 

BACKGROUND 

 

Human genomes differ among individuals in the population. The variations in human 

genomes give a rise to many phenotypic traits and diseases. First-degree relatives have 

the most similar genomes when compared to the population. Different types of variations 

occur between individuals’ DNA sequences, such as substitution, insertion, deletion, 

translocation, inversion, and duplication. Figure 2.1 shows a toy example of human DNA 

variations.   

 

 
Figure 2.1  Example of different human DNA variations, bases on red color represent the 
change occurred to the original sequence (in green shade background). Underlined bases 
represent the repeated subsequence in the DNA sequence. Bases with strikethrough 
represent deleted nucleotides from the original sequence. 

 

Substitution, also called single nucleotide polymorphism (SNP), involves a one 

base change in the DNA sequence that can be a transition or transversion. Transition is a 

type of a SNP where the base change is between purines bases [A, G] or pyrimidines [C, 
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T] bases. Transversion is single change in the DNA sequence that is between purine and 

pyrimidines bases. Even though the number of possible transversion are higher, 

transitions happen more frequently in human genome [17]. 

A single change in the DNA sequence results in missense, nonsense, or silent 

mutation. Missense and nonsense mutations alter the protein sequence and are more 

likely to effect protein function. Silent mutations do not modify amino acid sequence and 

often have no effect on protein function; however, these mutations can make a 

phenotypic change such as increasing/decreasing protein synthesis time [18].  

Insertion/deletion (InDel) variations, which are the second common variations in 

human genome [19], are insertion, adding a subsequence to the DNA, or deletion, 

removing a subsequence from the DNA.  

Translocations happen when a part of the DNA sequence is moved from one 

chromosome to another. Inversions occur when part of the DNA sequence is reverse 

complemented; for example, in Figure 2.1, the subsequence CCT is first reversed to TCC 

and then complemented to AGG. The complement for the base A is T and vice versa, and 

the complement for the base C is G and vice versa.   

Copy number variation (CNV) is a type of structural variation where the number 

of copies in a DNA region varies among the population and involves thousands of 

nucleotides. There are two types of CNV: duplication and deletion. Duplication is where 

a one kilobase or more is repeated, and deletion is where one kilobase or more is lost 

from the DNA sequence. 

For cancer risk predictions, there are different genomic-based data that can be 

used such as Polygenic Risk Scores (PRS) [20-22], DNA variants identified through 
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Genome-Wide Association Studies (GWAS) [23, 24], genomic variants detected by SNP 

arrays, and variants discovered from Next Generation Sequencing (NGS) data [25]. 

 

2.1 Polygenic Risk Score (PRS) 

Polygenic Risk Score (PRS) is a continuous variable that is calculated from an ensemble 

of known markers for the disease of interest, which are obtained from published (GWAS) 

findings, one way to construct the PRS feature is to count the number of the known risk 

alleles present in each sample. Another way is to calculate the risk alleles and assign a 

weight specifically to each risk allele [26]. Many studies attempt to use PRS to estimate 

breast cancer risk in high-risk women [27-29]. In [27], the authors found that including 

PRS from known breast cancer SNPs have improved cancer risk prediction in high-risk 

women when compared to family history alone [26]. 

 

2.2 Genome-Wide Association Studies (GWAS)  

The goal of GWAS is to interrogate human genome variation to identify statistically 

significant variations that differentiate large cohort of cases (individuals with the disease 

present) from controls (disease-free individuals) [30]. A common measure of the effect 

size of the association between a given SNP and a particular disease in GWAS is the odds 

ratio (OR). For example, in a biallelic SNP, which have only two possible bases, for the 

two allele copies in the DNA there are three unordered possible genotypes A/A, A/a, or 

a/a, where the letter ‘A’ represents the major allele and the letter ‘a’ represents the minor 

allele (less frequent allele). Table 2.1 gives an example of calculating alleles at a 

particular SNP for case and control groups in a 2X2 contingency table. 
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Table 2.1  Dominant Genotypic Model 2x2 Contingency Table 

 A/A or A/a a/a Total 

Disease (cases) e f r1 = e+f 

Healthy (controls) g h r2 = g+h 

Total c1 = e+g c2 = f+h t = (r1+r2+c1+c2) 

 

The odds ratio under the dominant model is then calculated from Table 2.1 as: 

!"($/$)	()	($/*) =
, × ℎ

/ × 0
 (2.1) 

To compute odds ratio or chi-squared statistic in a given SNP for cases and 

controls, there are different models to group the genotypes into two classes (2x2) instead 

of having a 2x3 table for genotypes ‘a/a’, ‘A/a’, and ‘A/A’. These models are additive, 

multiplicative, recessive, and dominant.  

To calculate the odds ratio under a dominant model for ‘A’, the model assumes 

that having an ‘A’ increases the risk and for recessive model vice versa, one needs to 

compute the odds of disease given that an individual carries an ‘A’ genotype and the odds 

of disease giving that an individual carries an ‘a/a’ genotype, then takes the ratio of the 

two odds. In Equation 2.1, if the OR is greater than one, then the ‘A’ genotype increases 

the risk of the disease. If the OR is less than one, then having a genotype of ‘A’ decreases 

a person’s risk of having the disease. However, if the OR is equal to one, then there is no 

association between the genotype and the disease. The chi-squared test is a standard test 

used in GWAS for calculating the statistical significance of a genotype, assuming a 

dominant/recessive model, for a particular disease. From Table 2.1, the chi-squared can 

be calculated, with a degree of freedom = 1 as: 
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12,4 =
52
6
×
74
6
× 6 

Χ9 =::
;!2,4 − 12,4=

9

12,4

9

4>?

9

2>?

 

(2.2) 

(2.3) 

Where !2,4 is the observed count in each cell in Table 2.1 for cases and controls, and 12,4 

is the expected count for each cell under independence assumption.  

Many genome-wide association studies (case and control) have singled out SNPs 

and genes that are individually significant for gliomas [31-33]. Other studies identified 

several SNPs that are strongly associated with kidney renal clear cell carcinoma (KIRC) 

[34], cervical kidney renal papillary cell carcinoma (KIRP) [35], and chronic 

lymphocytic leukemia (CLL) [36]. 

GWA studies have identified many susceptibility loci for many cancers, but these 

novel variants cover only a small portion of the genome. Variants called from Next 

Generation Sequencing or SNPs array data have higher genome coverage, and therefore, 

there is a need to exploit these collective SNP data to assess its cancer risk predictive 

ability using machine learning methods.  

 

2.3 SNP Array 

An SNP array is a chip-based microarray technology offered primarily by Affymetrix and 

Illumina companies. Affymetrix genome-wide human SNP array 6.0 has 906,600 probes 

to genotype SNPs. The array is composed of hundreds of thousands of probes on a glass. 

Each probe contains multiple fixed short single-strand complement sequences for specific 

locus in the DNA sequence that binds to specific target sequence fragments (the ones 
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from the sample) and produces an intensity value for each allele. If two allele intensities 

have the same values, then the sample is heterozygous, which means the individual 

carries two different allele at that locus. 

The dissertation analyzes Affymetrix arrays from CEL files, which are 

Affymetrix file format, raw data containing intensity values of the individual probes and 

locations for the hybridized array, after the array scan finishes [37]. In Chapter 3, the 

dissertation compares linear SVM classification accuracy in chronic lymphocytic 

leukemia (CLL) cases and controls with Affymetrix SNP array variants versus variants 

obtained from whole-exome sequencing (WES). The research obtained 232 samples’ 

CEL files (for case and control samples) from the National Institute of Health (NIH) 

database of Genotypes and Phenotypes (dbGaP) portal and SNPs that are discovered with 

next-generation sequencing and genome analysis toolkit (GATK) [38, 39] of the same 

samples set. The dissertation uses Affymetrix Genotyping Console software to create 

samples genotype calls. 

Affymetrix Genotyping software employs the Birdseed algorithm, which	 makes	 a 

multi-chip analysis to estimate a signal intensity of each SNP’s allele, to make a genotype 

call, the algorithm fits a gaussian mixture model in two-dimensional A-signal vs. B-

signal space [40]. The Birdseed algorithm assigns a confidence score for each genotype 

call between 0 and 1, where 0 is the highest quality, and 1 is the lowest [41]. The 

dissertation uses the program default contrast quality control threshold ≥ 0.4 for each 

sample. 
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2.4 Next Generation Sequencing (NGS) Variants Discovery 

NGS technology allows faster and cheaper sequencing of human genomes than Sanger 

sequencing. The NGS technology sequences millions of short DNA fragments in parallel, 

and can sequence the whole-genome, or only whole-exome (coding regions). After 

obtaining the short reads from the sequencing machine, it needs to be mapped to a 

reference genome using alignment software like Burrows-Wheeler aligner (BWA), 

Bowtie, or Tophat. Once the short reads are mapped. A BAM/SAM file will be generated 

and used for downstream variants discovery analysis tools like GATK and SAMtools. 

Cancer predictive ability depends on the cancer primary site with some cancers 

are more likely to be caused by germline mutations. For example, breast cancer is 

associated with mutations in gene BRCA1 and BRCA2. Therefore, it is expected to 

achieve higher prediction accuracy in some cancers, and low on others [42]. 

Many genomic variations are due to ancestry and geographical location of 

individuals [43]. Studies were able to determine the geographical origin of people based 

on their genetic makeup with high accuracy [43, 44]. Therefore, to build a model for 

cancer predication based on genetic variation, it is better to include specific individuals 

with common ethnicity and race. 

Genomic factors are not the sole cause of most cancers. In fact, 90% of cancers 

are caused by somatic mutations, non-inherited changes in the DNA sequence, that are 

triggered by combination of contributing factors such as environmental, lifestyle, and 

genomic predisposition [42].  

Recent studies suggest that some cancers share genetic mutation causes [45, 46]. 

Figure 2.2 shows the most closely correlated cancers and their P-values [46]. Shared 
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heritability among some cancers makes it theoretically possible to learn on one cancer 

and predict on related rare cancer. In Chapter 3, the dissertation explores the ability of 

generalizing predictive model learned on CLL and to predict lymphoma, and head and 

neck cancers. In Chapter 4 the dissertation preforms a cross-study where it learns a 

predictive model in one kidney subtype and predicts unseen samples from another kidney 

subtype.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  Cancer primary sites correlation; dots denote P < .01. 

Source: [46] 
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CHAPTER 3 

CROSS-VALIDATION AND CROSS-STUDY VALIDATION OF CHRONIC 
LYMPHOCYTIC LEUKAEMIA WITH EXOME SEQUENCES AND MACHINE 

LEARNING 
 

3.1 Introduction 

In the last few years, there have been many studies exploring disease risk prediction with 

machine learning methods and genome-wide association studies (GWAS) [47-56]. This 

includes various cancers and common diseases [57-61]. Most studies employ a two-fold 

machine learning approach. First, they identify variants from a set of training individuals 

that consist of both case and controls. This is usually a set of single nucleotide 

polymorphisms (SNPs) that pass a significance test, or a number of top-ranked SNPs 

given by a univariate ranking method. In the second part they learn a model with the 

reduced set of variants on the training data and predict the case and control of a validation 

set of individuals.  

For diseases of low and moderate frequency, SNPs have been shown to be more 

accurate than family history under a theoretical model of prediction [62]. However, for 

diseases with high frequency and heritability family history-based models perform better 

[62]. Clinical factors with SNPs yield an area under curve (AUC) of 0.8 in a Japanese 

type 2 diabetes dataset but their SNPs have a marginal contribution of 0.01 to the 

accuracy [63]. With a large sample size, the highest known AUC of 0.86 and 0.82 for 

Crohn’s disease and ulcerative colitis were reported [64]. There the authors contend this 

may be a peak or considerably larger sample sizes would be needed for higher AUCs. 

Bootstrap methods have given AUCs of 0.82 and 0.83 for type 2 diabetes and bipolar 

disease on the Wellcome Trust Case Control Consortium (2007) datasets, considerably 
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higher than previous studies. Some studies have also used interacting SNPs in GWAS to 

boost risk prediction accuracy [65, 66].  

Many of these studies are cross-validation studies. They split the original dataset 

into training and validation several times randomly and for each split predict case and 

controls in the validation. Recent work has shown that this may not necessarily generalize 

to data from different studies [67]. Thus, in any risk prediction study it is now essential to 

include cross-study validation on an independent dataset. 

While continuing efforts are made to improve risk prediction accuracy with 

GWAS datasets, the AUCs are still below clinical risk prediction particularly for cancer. 

The reasons posed for this failure include lack of rare variants, insufficient sample size, 

and low coverage (.1% of the genome sequenced) [68-70]. In this study, we detect 

variants from whole exome data that has a much larger coverage. We seek to determine 

the cross-validation and cross-study prediction accuracy achieved with variants detected 

in whole exome data and a machine learning pipeline.  

The study obtained a chronic lymphocytic leukemia 140X coverage whole exome 

dataset [71] [72] of 186 tumor and 169 matched germline controls from the NIH dbGaP 

[73]. The whole exome dataset is composed of short next generation sequence reads of 

exomes as shown in Figure 3.1. This is one of the largest datasets available, and is an 

adult leukemia with an onset median age of 70 [74]. There is currently no known early 

SNP based detection test for this cancer. Current tests include physical exam, family 

history, blood count, and other tests given by the National Cancer Institute (see 

http://www. cancer.gov/cancertopics/pdq/treatment/cll/patient).  
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Figure 3.1  Whole-exome sequences are short reads of exomes obtained by next 
generation sequencing. 

 

Short read exome sequences were mapped to the human genome reference 

GRCh37 with the popular Burrows-Wheeler aligner (BWA) [75] a short read alignment 

program. This research then used the genome analysis toolkit (GATK) [38, 39, 76] and 

the Broad Institute exome capture kit (bundle 2.8 b37) in a rigorous quality control 

procedure to obtain SNP and InDel variants. Cases and controls that contained excessive 

missing variants were excluded, and in the end 122,392 SNPs and 2200 InDels across 

153 cases and 144 controls were obtained.  

To better understand the risk prediction value of these variants, the research 

performs a cross-validation technique on the total 153 cases and 144 controls by creating 

random training validation splits. Then the dissertation compares the same cross-

validation accuracy to that on an Affymetrix 6.0 panel genome wide association study for 
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the same subjects to see the improvement given by the exome analysis. The study 

obtained exome sequences from three different studies from dbGaP for independent 

external validation (also known as cross-study validation; [67]). The study ranked SNPs 

in training set with the Pearson correlation coefficient [77] and predicted labels of cases 

and controls with the support vector machine classifier in an external validation dataset. 

The research studied the biological significance of top Pearson ranked SNPs in the data. 

 

3.2 Materials and Methods 

Rigorous analysis on raw exome sequences was performed. First, sequences were 

mapped to the human genome and variants obtained. Then variants were encoded into 

integers to create feature vectors for each case and control sample.  

 
3.2.1 Whole Exome Sequencing Data and Human Genome Reference  

Whole exome sequences of 169 chronic lymphocytic leukemia patients [71, 72] was 

obtained from the NIH dbGaP website [73] with dbGaP study ID phs000435.v2.p1. Each 

of the 169 patients has matched tumor-normal sequencing data. In addition, exome tumor 

sequences of 17 patients were obtained from dbGaP after publication of the original study 

[71, 72]. This gives a total of 186 cases and 169 controls. The ancestry of the patients is 

not given in the publications or in the dbGaP files except that we know they were 

obtained from the Dana Farber Cancer Institute in Boston, Massachusetts, USA. The data 

comprises of 76 base pair (bp) paired-end reads produced by Illumina Genome Analyzer 

II and Hiseq2000 machines and the Agilent SureSelect capture kit by the Broad Institute 

[71]. The data was sequenced to obtain mean coverage of approximately 140X.  
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The research uses the human genome reference sequence version GRCh37.p13 

from the Genome Reference Consortium (http://www.ncbi.nlm.nih.gov/projects/genome/ 

assembly/grc/). At the time of doing this experiment, version 38 of the human genome 

sequence was introduced. However, the mapping process was started well before its 

release and demanded considerable computational resources. Therefore, this work 

continued the analysis with version 37. 

 
3.2.2 Next Generation Sequencing Analysis Pipeline  

The pipeline includes mapping short reads to the reference genome, post processing of 

alignment, variant calling, and filtering candidate variants. The total exome data was in 

approximately 3 Terabytes (TB) and required high performance computing infrastructure 

to process. Perl and various bioinformatics tools were used to automate the analysis 

pipeline.  

Mapping Reads:  As a first step, exome short read sequences of 186 tumor cases and 

169 matched germline controls were mapped to the human genome reference GRCh37 

with the BWA MEM program [75]. Six cases and 14 controls were excluded due to 

excessively large dataset size and downloading problems, and reads with mapping quality 

(MAPQ) below 15 were removed.  

The read mapping is a process where short read DNA sequences mapped to a 

reference genome. There are many different programs available for this task, and each 

one differs in mapping methodology, accuracy, and speed. This pipeline uses the popular 

program BWA MEM program (version 0.7a-r405) [75] that implements the Burrows-

Wheeler transform. BWA MEM is relatively accurate for its fast processing speed while 
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mapping against vast reference genome such as humans [78, 79]. Default parameters 

were used for mapping reads to the human reference genome. 

BWA MEM produces its output in a standard format called Sequence Alignment Map 

(SAM). SAMtools version 0.1.18 [75] were used for further analysis of the SAM output 

files. Each alignment in SAM format was converted into its binary format (BAM), 

alignments were sorted with respect to their chromosomal position, and then indexed. 

SAMtools were used to generate mapping statistics and merging alignments of the same 

patient across different files. PICARD tool (version 1.8, http://broad 

institute.github.io/picard/) were used to add read groups, which connects the reads to the 

patient subject. The pipeline removed duplicates reads introduced by the PCR 

amplification process to avoid artifacts using the PICARD MarkDuplicates program. 

Finally, using SAMtools, unmapped reads and the ones with mapping score (given in the 

MAPQ SAM field) smaller than 15 were removed.  

Variants Detection:  GATK [38, 39, 76] version 3.2-2 with the Broad Institute exome 

capture kit (bundle 2.8 b37 available from ftp://ftp.broadinstitute.org/) was used to detect 

SNPs and InDels in the alignments. These SNPs and InDels are referred to as variants. 

These variants pass a series of rigorous statistical tests [39, 76]. If a variant does not pass 

the quality control or no high-quality alignment of a read to the genome was found in that 

region, then GATK reports a missing value. 

The analysis found 38 individuals that contain at least 10% missing values. These 

samples were removed from the data and variants recomputed for the remaining 153 

cases and 144 controls again with GATK and the exome capture kit. The study also 

removes all variants that have at least one missing value, and so eliminate the need for 
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imputation. Note that if these variant features with missing values were removed before 

the 38 individual samples with many missing values, it going to generate just a few 

variants with limited predictive value.  

The variant detection procedure gave a total of 122392 SNPs and 2200 InDels. 

These variants were then encoded into integers thus obtaining feature vectors for each 

case and control. Figure 3.2 shows the encoding process to get integer values for variant 

features. 

 

  
Figure 3.2  Encoding of SNPs and InDels into 0,1 and 2 integers. GATK program [39] 
identifies homozygous and heterozygous genotypes when there is a mutation or insertion 
deletion. For individuals where a SNP is not reported but found in a different individual, 
the study uses a value of 0. 
 

3.2.3 Machine Learning Pipeline 

After completing the variant analysis in the previous step, the study proceeds with the 

machine learning analysis. Machine learning methods are widely used to learn models 
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from classified data to make predictions on unclassified data. They consider each data 

item as a vector in the space of dimension given by the number of features. In this study, 

each data item is a case or control set of exome sequences. By mapping each set to the 

human genome, variants were obtained, which represent features. Thus, the number of 

variants determines the number of dimensions in the feature space.  

Data Encoding:  Since the input to machine learning programs must be feature vectors, 

each SNP and InDel converted into an integer. The variants reported by GATK are in 

standard genotype form A/B where both A and B denote the two alleles found in the 

individual. The GATK output is in VCF file format whose specifications (available from 

http://samtools.gith ub.io/hts-specs/VCFv4.1.pdf) provide details on the reported 

genotypes. When A = 0 this denotes the allele in the reference. Other values of 1 through 

6 denote alternate alleles and gaps. The study kept the max alternative allele option to six, 

which is also the default value in GATK. The pipeline performs the encoding 7 A + B to 

represent all possible outputs.  

Each feature vector represents variants from a human individual and is labeled –1 

for a case and +1 for a control. The labels +1 and –1 are standard in the machine learning 

literature [80].  

Feature Selection: The research ranks the features with the Pearson correlation 

coefficient (PCC) [77]. 

ABB = 	
∑ (D2,4 − D4,EF*G)(H2 − HEF*G)
G
2

I∑ ;D2,4 − D4,EF*G=
9G

2
I∑ ;H2, − HEF*G=

9G
2

 
(3.1) 

where D2,4	represents the encoded value of the JKL variant in the MKL individual and H2 is 
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the label (+1 for a case and –1 for a control) of the MKL individual. The Pearson correlation 

ranges between +1 and –1 where the extremes denote perfect linear correlation and 0 

indicates none. The study ranks the features by the absolute value of the Pearson 

correlation. 

Classifier:  The pipeline uses the popular soft margin support vector machine (SVM) 

method [81] implemented in the SVM-light program [82] to train and classify a given set 

of feature vectors created with the above encoding. In brief, the SVM finds the optimally 

separating hyperplane between feature vectors of two classes (case and control in our 

case) that minimizes the complexity of the classifier plus a regularization parameter C 

times error on the training data. For all experiments, the pipeline uses the default 

regularization parameter given by: 

B =
1

∑ D2
OD2

G
2

 (3.2) 

where n is the number of vectors in the input training (case and control individuals in this 

study) and D2 is the feature vector of the MKL individual [82], in other words, the C is the 

inverse of the average squared length of feature vectors in the data.  

Measure of Accuracy:  We define the classification accuracy as 1-BER, where BER is 

the balanced error rate [83]. The balanced error is the average misclassification rate 

across each class and ranges between 0 and 1. For example, suppose class case has 10 

individuals, and class control has 100. If the pipeline incorrectly predicted 3 cases and 10 

controls, then the balanced error is:  

P
3
10 +

10
100T

2
= 0.2 

(3.3) 
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3.2.4 High Performance Computing  

The research uses the Kong computing cluster and the condor distributed computing 

system at NJIT to speed up the computation. 

 

3.3 Results 

Next-generation sequencing pipeline and data encoding give feature vectors each 

representing a case or control sample and each dimension representing an SNP or InDel 

variant. The study employs a machine learning procedure to understand the predictive 

value of the variants.  

 
3.3.1 Cross-Validation 

Cross-validation is a standard approach to evaluate the accuracy of a classifier from a 

given dataset [80]. The pipeline randomly shuffles the feature vectors and picks 50% for 

training and leaves the remaining for validation. On the training, the study ranks the 

variants with the Pearson correlation coefficient. This step is key to performing feature 

selection in a cross-validation study. Alternatively, one may perform feature selection on 

the whole dataset and then split it into 50% training. However, this method is unrealistic 

because in practice test labels are not available. In the cross-validation study simulates 

that setting by using a validation dataset in place of the test data. The validation labels are 

only to evaluate the accuracy of the classifier and should not be used for any model 

training, including feature selection. Some studies make this mistake (as previously 

identified; [84], but here the pipeline performs all SNP selection only on the training data.  

The pipeline then learns a support vector machine [81] with the SVM-light 

software [82] and default regularization on the training set with k top-ranked SNPs (see 
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Figure 3.3). This study considers increments of ten variants up to 100 and increments of 

100 up to 1000. Thus, the values of k=10, 20, 30, ..., 100, 200, ...,1000. For each value of 

k, this experiment predicts the case and control status of the validation samples and 

record the accuracy. The pipeline repeats this for 100 random splits and graph the 

average with standard deviations. 

 

Figure 3.3  Illustration of cross-validation technique.  
 

Figure 3.4 shows the mean cross-validation accuracy of the support vector 

machine on 50% training data across 100 random splits. It shows that InDels alone have 

much poorer accuracy than SNPs alone and contribute marginally to the SNPs. This 

experiment achieved a top accuracy of about 82% with the top 20 SNPs. The accuracy 

drops after the top 20 SNPs threshold. 

Accuracies shown in Figure 3.4 are averaged across 100 training validation splits. 

In each split, this study first ranks the SNPs and compute prediction on validation with 

top k ranked ones. There is no one set of 20 SNPs to be identified recall that the 

accuracies shown in Figure 3.4 are averaged across 100 training validation splits. In each 
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split, the pipeline first ranks the SNPs and computes prediction on validation with top k 

ranked ones. Thus, there is no one set of 20 SNPs to be identified here, and this is 

certainly not the same as the top 20 SNPs from the ranking on the full dataset (although 

there are some in common with top-ranked ones from different splits). Alternatively, one 

may consider the intersection of the top 20 SNPs from all 100 split and use them for 

prediction on an independent external dataset. The drawback here is that not all of the 

SNPs in the intersection may pass the GATK quality control filtering thresholds. This is 

why this research ranks SNPs on the full dataset and considers the first top 100 that are 

found in the external dataset. 

 

  
 

 

 
 

 
 
 
 

 
 
 
 
 
 

Figure 3.4  Average cross-validation accuracy of support vector machine with top 
Pearson ranked SNPs and InDels together and separately on 100 50:50 training validation 
splits. Error bars indicate the standard deviation.  
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3.3.2 Comparison to Cross-Validation on GWAS 

To better understand the cross-validation results from SNPs obtained in the whole-exome 

sequencing analysis, this study examines a GWAS for the same subjects. This is an 

Affymetrix 6.0 genome-wide human SNP array of the same disease and subjects that 

have been obtained from the dbGaP site for the whole exome study. The study first 

removes SNPs with more than 10% missing entries and excludes samples that do not pass 

the quality control test with 0.4 threshold in the Affymetrix Genotyping Console. The 

quality control test measures the differences in contrast distributions for homozygote and 

heterozygote genotypes in each cel file. Following this, the research ranks the SNPs with 

the Pearson correlation coefficient. Then creates one hundred random 50:50 train and 

validation splits and determines the average prediction accuracy of the support vector 

machine in the same manner as described above for the whole-exome sequencing study.  

Figure 3.5 shows that the GWAS SNPs give the highest prediction accuracy of 

57% in the top 10 SNPs, but then it gradually decreases. Thus, the SNPs given by the 

whole exome analysis, which yields higher prediction accuracy, may serve as better 

markers that are not found in the GWAS. Upon closer examination, one sees that there is 

no overlap between the top 1000 ranked SNPs from the exome sequencing and GWAS 

datasets except for the four that have low Pearson correlation values. 
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Figure 3.5  Average cross-validation accuracy of support vector machine with top 
Pearson ranked SNPs on 100 50:50 training validation splits of the GWAS dataset. 
 

3.3.3 Cross-Study Validation  

For cross-study validation on an independent dataset the pipeline considers a lymphoma 

whole exome study that has case subjects for lymphocytic leukemia as well as a few 

controls. This research considers controls from a head and neck cancer and a breast 

cancer study.  

• Eighteen cases and three controls from a lymphoma whole exome study with 
dbGaP study ID phs000328.v2.p1 [85]. Reads are 101bp length produced from 
Illumina HiSeq 2000 machine and have 3.4X coverage. The ancestry or origins of 
data in this study are unavailable in the publication and the dbGaP site. 
 

• Three controls from neck and head cancer whole exome study with dbGaP study 
ID phs000328.v2.p1 [86]. Reads are 77bp length produced from Illumina HiSeq 
2000 and have 6.9X coverage. Individuals in this study are from the University of 
Pittsburgh Head and Neck Spore neoplasm virtual repository. 
 

• Seven controls from breast cancer whole exome study with dbGaP study 
phs000369.v1.p1 ID [87]. Reads are 77bp length produced from Illumina HiSeq 
2000 of coverage 5.9X. Individuals in this study have Mexican and Vietnamese 
ancestry.  

In all three datasets, this research follows a similar procedure that used for the chronic 
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lymphocytic leukemia exome dataset. The pipeline maps the short reads to the human 

genome with the BWA program and detects variants with GATK using the same software 

and parameters as for the lymphocytic leukemia dataset. 

Since this is a validation dataset, one cannot use the labels to perform any feature 

selection or model training. Instead, one learns the support vector machine model from 

the full original dataset. The study refers to that as the training set here. The study does 

not consider all SNPs from the training dataset to build a model. First, the study obtains 

the top 1000 Pearson correlation coefficient ranked SNPs in the full training. Many of 

these SNPs do not pass the GATK quality control tests on some of the external validation 

samples. One reason for this is the much lower coverage (<10X) of the external datasets. 

Amongst the ones that were detected, this research considers just the top 100 ranked 

ones. For each top k ranked ones (for k =10,20,30,...,100), the research learns a support 

vector machine model on the training and uses it to predict labels of the validation data. 

As previously discussed, the top k ranked SNPs here are not the same as the top k ranked 

SNPs in the earlier cross-validation study. 
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Figure 3.6  Accuracy of support vector machine with top Pearson ranked SNPs on just 
the external independent samples. Since this is a validation dataset one cannot uses the 
labels for any type of model training including ranking of features. Thus, the ranking of 
SNPs is obtained from the original full dataset.  

 

Figure 3.6 shows that only the top-ranked SNPs give prediction accuracy above 

0.5. The study examines the number of cases and controls predicted correctly by the top 

20 ranked SNPs in Table 3.1. Note that the imbalanced accuracy from the table is 64.5%. 

However, this research uses the balanced accuracy that accounts for different sizes of 

each class, and that value, which is plotted in Figure 3.6, is 69.4%. Table 3.1 shows that 

the controls for the head and neck cancer are correctly predicted. In the lymphoma 

dataset also, all controls are correctly classified, but more than half cases are incorrectly 

classified as controls. 
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Table 3.1  Number of Correctly Predicted Case and Controls in Three External Datasets  

Study Cases Controls Correct cases Correct controls 

Lymphoma 18 3 7 3 

Head and neck cancer 0 3 0 3 

Breast cancer 0 7 0 7 

 

3.3.4 Biological Significance of Top Tanked SNPs  

The study considers the top 200 ranked SNPs in the Pearson correlation ranking of all 

SNPs in the full dataset. Those variants were fed to the popular ANNOVAR program 

[88] to determine genes and genomic regions they lie on.  

The study founds SNPs in genes SF3B1 and MYD88 both of which were reported 

as significant genes in the original study of the dataset [71]. It also founds SNPs in genes 

STRN4 and HLA-DRB5 both of which have been shown to be previously associated with 

this disease in genome wide association studies [89-92] . Table 3.2 provides additional 

details of the SNPs in these genes. All four are exonic but don’t necessarily rank high in 

Pearson correlation coefficient. 

 

Table 3.2  Variants Found in Genes Previously Known to be Associated with CLL  

Pearson Chr Pos Rank Region Gene Ref Alt Type 

0.19 19 47230736 93 Exonic STRN4 G T Hom 

0.19 3 38182641 98 Exonic MYD88 T C Hom 

0.19 2 198266834 98 Exonic SF3B1 T C Hom 

0.17 6 32497985 159 Exonic HLA-

DRB5 

A G Hom 

Note: The first column gives the Pearson correlation coefficient value, followed by chromosome number, 
position in chromosome, SNP rank given by the Pearson correlation coefficient, genomic region, gene, 
reference nucleotide, alternate nucleotide, and the type. 
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The research also provides the SNPs information from the top three high-ranking 

genes in Table 3.3. There it shows that the Pearson correlation of the top ranked SNPs is 

considerably higher than the SNPs in known genes identified above. While their direct 

association with lymphocytic leukemia is unknown, they are well implicated in many 

different cancers. The highest rank is the Aminoacyl tRNA synthetases (AARS) gene that 

is known to be associated with various cancers [93]. Following this is the valyl-tRNA 

synthetase (VARS) gene that is also known to be associated with cancer [94]. The WD 

repeat domain 89 (WDR89) is associated with many cancers as given by the Human 

Protein Atlas (http://www.proteinatlas.org/ENSG00000140006-WDR89/cancer) and The 

Cancer Network Galaxy (http://tcng.hgc.jp/index.html?t=gene id=112840).  

 

Table 3.3  Details of Top-Ranking Variants on the Full Dataset 

Pearson Chr Pos Rank Region Gene Ref Alt Type 

0.72 16 70305806 1 Exone AARS  G A Hom 

0.71 16 70305809 2 Exone AARS  G A Hom 

0.59 16 70305812 3 Exone AARS  C A Hom 

0.36 6 31749930 5 Exone VARS  C G Hom 

0.33 14 64066352 9 Exone WDR89  T A Hom 

 

Table 3.4 lists top ranking SNPs from the GWAS with previous association to this 

disease and that lie on known genes. Some of these genes are previously linked to 

leukemia. For example, EML1 [95], KDM4C [96], NEBL [97], BNC2 [98], and ANO10 

[99] are all known to be associated with leukemia while RGS20 and ZNF25 are known to 

be expressed in leukemia. However, none of the top 1000 ranked SNPs in the GWAS 

overlap with the ones from the exome study except for four that lie far down in the 
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rankings. 

 

Table 3.4  Details of Top-Ranking Variants on the GWAS Dataset 

dbSNP ID Pearson Chr Pos Rank Gene 

rs1951574 0.33 14 100346664 4 EML1 

rs1905359 0.33 8 54851272 5 RGS20 

rs2792228 0.32 9 6976680 6 KDM4C 

rs11011415 0.31 10 38264389 7 ZNF25 

rs3900922 0.31 10 21287528 8 NEBL 

rs3739714 0.31 9 16435848 9 BNC2 

rs9844641 0.31 3 43476335 10 ANO10 

 

3.4 Discussion 

In addition to the results shown here two variations were explored in the machine 

learning pipeline to see if they would increase prediction accuracy. First, the study looked 

at a naive encoding where it converts homozygous alleles to 0 and 2 and the 

heterozygous to 1. This marginally lowered the accuracy. Second, the research 

considered the chi-square ranking of SNPs instead of Pearson correlation and this also 

marginally lowered the accuracy.  

One main challenge in this study is the size of the training set that is considerably 

smaller than sample sizes (of several thousand) used in GWAS based risk prediction 

studies. The primary source of data is the NIH dbGaP repository and so the sample sizes 

are limited to the data accumulated there.  



	
32 

Another challenge is the quality and coverage of data in dbGaP. For the three 

external studies, the research aimed to predict case and control of many samples. Yet for 

several of the downloaded datasets coverage was insufficient and the analysis founds the 

top-ranked variants only in a few samples.  

Finally, differences in ancestry can affect risk prediction [100-102]. In this case 

the pipeline learned a model from data obtained in patients at the Dana Farber Cancer 

Institute in Boston, Massachusetts. In the three external datasets one is of Mexican and 

Vietnamese ancestry whose genetics are likely to be different from patients at the Dana 

Farber Institute.  

 

3.5 Conclusion 

Starting from raw exome sequences this study obtained a model for predicting chronic 

lymphocytic leukemia after a rigorous next generation sequencing and machine learning 

pipeline. The analysis evaluated the model in cross-validation studies as well as on three 

independent external datasets as part of cross-study validation. In cross-validation, the 

pipeline achieves a mean prediction of 82% compared to 57% obtained on an Affymetrix 

6.0 panel genome wide association study. In the external cross-study validation, the 

pipeline obtains 70% accuracy with a model learned entirely from the original dataset. 

Finally, the study shows biological significance of top-ranking SNPs in the dataset. The 

research shows that even with a small sample size we can obtain moderate to high 

accuracy with exome sequences and is thus encouraging for future work. 
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CHAPTER 4 

CROSS-VALIDATION AND CROSS-STUDY VALIDATION OF KIDNEY 
CANCER WITH MACHINE LEARNING AND WHOLE EXOME SEQUENCES 

FROM THE NATIONAL CANCER INSTITUTE 
 

4.1 Introduction 

Cancer risk prediction from one’s DNA is of considerable interest in modern medicine 

[103, 104]. One way to achieve this is to determine mutations by comparing DNA in 

tumor cells to healthy ones. Such mutations are called somatic and could potentially be 

used for early detection and prevention of cancer [105-107]. 

The majority of efforts on predicting cancer are focused on using SNPs obtained 

from genome-wide association studies and from whole exome sequences [108-112]. 

However, there are also dangerous pitfalls associated with SNP-based cancer risk 

prediction [113]. The most common one is lack of validation on an independent dataset, 

also known as cross-study validation [67]. Most studies focus on the cross-validation 

accuracy, which is obtained by splitting a given dataset randomly into training and 

validation several times and obtaining the average accuracy on the validation. In a cross-

study validation we want to see how well SNPs determined on data for one disease from 

a specific study generalizes to the same disease or a related one from a different study. 

This research explores the accuracy of predicting kidney cancer case and controls 

with somatic mutations across two different whole exome sequence datasets obtained 

from the National Cancer Institute Genomic Data Commons database [114]. This 

research considers datasets of renal papillary cell carcinoma and chromophobe renal cell 

carcinoma. The data are pre-aligned short read sequences from which the pipeline 

determines variants. Three quality control methods of variant detection were examined 
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and the most rigorous one gives the most parsimonious model with the highest accuracy. 

The important result is the cross-study validation between the two datasets, and 

this experiment achieves an accuracy of 66.2% when predicting chromophobe individuals 

after learning a model of ten SNPs from the renal papillary dataset. The work here 

suggests that it can predict kidney chromophobe carcinoma with high quality SNPs 

obtained from a kidney papillary carcinoma dataset. The following sections describe the 

methods in detail followed by experimental results. 

 

4.2 Methods 

This section describes the data along with the quality control protocol used. Then it 

describes the machine learning pipeline. 

 
4.2.1 Data 

There are several kidney cancer whole exome datasets at the National Cancer Institute 

(NCI) Genomic Data Commons (GDC) portal from across three different projects: The 

Cancer Genome Atlas (TCGA), TARGET, and Foundation Medicine Adult Cancer 

Clinical Dataset (FM-AD). Authorization to the TCGA project only was obtained, and 

two of the TCGA three datasets were downloaded. 

• Kidney Renal Papillary Cell Carcinoma (KIRP): total of 291 individuals.  

• Kidney Chromophobe (KICH): total of 113 individuals. 

  Both datasets contain individuals of European, African, and Asian ancestry, and 

have older patients between cancer stages I and III. For each individual in each dataset 

exome sequences of the affect cell and a healthy cell (from the same person) are made 

available. 
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To avoid mutations that occur from ancestry differences, only individuals of 

European ancestry (which is also the majority ancestry) were considered. Due to time 

constraints and checksum/download errors, only some male subjects from each study 

were downloaded. Table 4.1 gives the number of case and controls that were obtained for 

each study. 

 

Table 4.1  Kidney Cancer Datasets Used in the Study 

Dataset Cases Controls 

TCGA-KIRP 110 110 

TCGA-KICH 34 34 

 

Each case and control file that was downloaded is a pre-aligned exome sequence 

mapped to the human genome reference (build 38, version GRCh38.d1.vd1) with the 

BWA program [75]. Thus, from the GDC portal BAM files were obtained [75] for each 

individual’s tumor and healthy exome sequences. These are binary files of the SAM 

format that show the alignment of each short read to the reference genome.  

The NCI GDC portal also contains files with already detected variants for each 

individual. However, those variants were obtained by comparing each individual’s 

healthy exome sequences to their tumor ones. In this analysis, a collective analysis of all 

the individuals at the same time to determine variants were performed, so it can detect 

missing values as explained below. 

4.2.2 Quality Control for Determining SNPs 

The pipeline combines all the case and controls and performs a collective variant calling 

with the popular Genome Analysis Toolkit (GATK) software [38, 39, 76]. In the 
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collective analysis, the study was able to identify SNPs that are not reported across 

samples. For example, if a SNP does not pass quality control it is not reported and is thus 

a missing value. The study explores three filtering methods of obtaining SNPs with the 

popular Genome Analysis Toolkit (GATK) software [38, 39, 76]. By default, any reads 

with a MAPQ quality score (which is a measure of the alignment quality) below 25 is 

eliminated in the analysis: 

• Soft filtering: This is the GATK Variant Quality Score Recalibration, which uses 
machine learning to identify good variants from bad ones. 
  

• Hard filtering: Any SNP with a genotype quality score below 30 and a depth 
below 5 is ignored. The genotype quality score is a statistical quantity the gives us 
the accuracy of the SNP and the depth is the minimum of reads that contain the 
SNP. These are default values used in the GATK program. 

 
• Soft and hard filtering: Both of the above are applied. 

   After each filtering method, the pipeline removes any SNP that is missing (not 

reported by GATK) in at least one sample, thus eliminating the need for imputation. After 

filtering, the number of SNPs that are obtained is given in Table 4.2. The same table also 

shows the number of SNPs common in the two studies, this set is used for the cross-study 

validation. 

 

Table 4.2  Total Numbers of SNPs in Datasets after Three Filtering Methods 

 

Dataset 

Filtering Method 

Soft Hard Soft + Hard 

TCGA-KIRP 264858 131141 109700 

TCGA-KICH 246290 135937 111394 

Intersection of 

KIRP and KICH 

131157 44426 36029 
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4.2.3 SNP Encoding  

Once a dataset of SNPs is obtained after the quality control described previously, the 

pipeline performs encoding. The GATK program outputs variants in the VCF format 

[115], which encodes the reference allele as 0 and alternate alleles (including gap) from 1 

onwards. For example, a genotype of 0/0 means the individual is homozygous in the 

reference allele, 0/2 means heterozygous in the second alternate allele, and 1/1 means 

homozygous in the second alternate allele. Therefore, it can be encoded to unique 

numbers with the simple formula 4A+B for a SNP encoded as A/B. 

To evaluate the predictive capability of SNPs, the research performs cross-

validation and a cross-study validation experiments. In the cross-validation, the analysis 

splits a given dataset into training and test and evaluates the error of predicting the test. A 

high accuracy does not necessarily mean the SNPs would generalize to other datasets or 

related diseases. Thus, a cross-study validation was performed to determine 

generalization to another dataset. 

4.2.4 Cross-Validation and Machine Learning 

A step-wise cross-validation procedure is as follow:  

1. First, the analysis performs 10-fold cross-validation, where data roughly divided 
into ten equal parts. The first 90% set is the training data, and the remaining 10% 
is the test data.  
 

2. The pipeline ranks the SNPs according to the Pearson correlation coefficient [80] 
as implemented in the Python scikit-learn machine learning library [116]. The 
Pearson correlation coefficient is the sample correlation coefficient that measures 
the covariance between two variables divided by their variances to normalize. A 
value close to 1 or -1 indicates a linear correlation whereas 0 means the variables 
are uncorrelated [80]. 
 

3. The pipeline considers the top k ranked SNPs for increasing values of k and trains 
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a support vector machine (SVM) [81], a fast linear classifier with known powerful 
generalization capabilities, also with the linear SVM in the Python scikit-learn 
library [116]. Then cross-validate the regularization parameter C of the SVM by 
cross-validating on the training set only. 
 

4. With the trained model, the pipeline predicts cases and controls of the individuals 
in the test dataset and determines the error (since their true case and control status 
is known). 

 
5. Steps 1 through 4 are repeated ten times, and then the average error is calculated. 

4.2.5 Cross-Study Validation  

The research aims to determine the error of predicting case and controls across two 

independently obtained studies. It measures the error of a predicting case and control in 

the KICH dataset, which contain individuals with renal chromophobe carcinoma, with a 

model trained on the KIRP dataset, which are renal papillary carcinoma individuals.  

 

4.3. Results 

Here the results of The Cancer Genome Atlas Kidney Chromophobe (TCGA-KICH) and 

The Cancer Genome Atlas Cervical Kidney renal papillary cell carcinoma (TCGA-KIRP) 

datasets cross-validation are outlined.  

4.3.1 Cross-Validation 

Figure 4.1 shows the average accuracy of the support vector across 10-fold cross-

validation of the KIRP dataset. The research makes several interesting observations 

consistent with previous findings.  

• Top ranked SNPs with the Pearson correlation coefficient give a higher accuracy 
than lower ranked ones and all SNPs. This is consistent with previous findings on 
predicting cancer and disease risk with genomic SNPs [50, 109, 110]. 
 

• The soft filtering gives a slightly higher accuracy (reaching 0.76 with 500 SNPs) 
and fluctuating curve compared to hard and combined filtering. 
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• The hard and combined filtering achieve their top accuracies of 0.72 and 0.71 
with just top 20 and 10 ranked SNPs respectively. 
 

• The combined filtering gives us the most parsimonious model; it achieves its 
highest accuracy with the fewest number of SNPs (10). 

 

(a) Soft filtering (b) Hard filtering 
  
 
 
 
 

 
 
 
 

(c) Soft and hard filtering combined 

Figure 4.1  KIRP data three filtering average CV accuracy of SVM on top ranked SNPs. 
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(a) Soft filtering (b) Hard filtering 
  
  
 
 
 
 

 
 
 

(c) Soft and hard filtering combined 
Figure 4.2  KICH data three filtering average CV accuracy of SVM on top ranked SNPs. 

 

Figure 4.2 depicts the average accuracy of the support vector across 10-fold cross-

validation of the KICH dataset. This dataset is less than one third the size of the KIRP 

dataset, and so it shows different trends. Due to its small sample size, the accuracy 

fluctuates in all three filtering and peaks equally with a few and many SNPs. This dataset 

is used primarily as an independent set.  
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(a) Soft filtering (b) Hard filtering 
  
  
  
 
 
 
 

 
 

 
(c) Soft and hard filtering combined 

Figure 4.3  Accuracy of support vector machine on the KICH dataset after trained on top 
ranked SNPs in the KIRP dataset. 
 

4.3.2 Cross-Study Validation 

For the cross-study validation, the pipeline learns a support vector machine model on the 

top-ranked SNPs in the KIRP dataset and predicts individuals in the KICH dataset. Figure 

4.3 illustrates that the most parsimonious model is given by the soft and hard filtering. 

There, the accuracy obtained is 0.66 with just 10 SNPs. In comparison the hard filtering 

peaks at 0.63 with 10 SNPs and soft peaks at 0.7 with 100,000 SNPs.  

 

 

 

 



	
42 

Table 4.3  Top Ten Ranked SNPs Used in the Cross-Study (Soft+Hard Filtering) 

SNP Ref Alt Pearson Gene/Region Chromosome 

1 A G,C 0.35 ANO2 12 

2 A C 0.07 ADAMTS9 3 

3 G A 0.07 Non-coding  

4 A C 0.07 GORAB 1 

5 T C 0.06 NR2C2 3 

6 G A 0.06 SELP 1 

7 A T 0.06 Non-coding  

8 C T 0.06 LOC100421093 6 

9 A C 0.06 C9orf71 9 

10 G A 0.06 FBXL4 6 

 

While the focus is on the cross-study prediction accuracy, Table 4.3 shows the top 

10 ranked SNPs in the cross- study validation. These SNPs are present in both studies, 

but the ranking is performed on just the KIRP (training) dataset. Most of the SNPs are in 

coding regions except for two. The SNP in the ANO2 gene has the highest Pearson 

correlation whereas the others are lower by a large margin. The same SNP is also highly 

ranked in both of the datasets separately.  

The ANO2 gene belongs to the family of anoctamins that are known to be 

expressed in gastrointestinal stromal tumors and neck and head carcinoma [117]. This 

gene is known to have a functional role in calcium activated chloride currents [118] but it 

is unclear how that relates kidney cancer. The ANO1 gene that comes from the same 

family, however, is known to be expressed in pancreatic cancer [119]. 

4.3.3 Ranking of Previously Known Kidney Cancer Genes 

Table 4.4 shows the ranking of SNPs present in genes previously known to be associated 
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with kidney cancer [120]. It shows the rankings as well as the Pearson correlation 

coefficients in the KIRP and KICH datasets separately and the intersection of their SNPs 

(as in the cross-study). The MET gene is the highest ranked in the KIRP study in this 

dataset, and is also a drug target for clinical treatment of renal papillary carcinoma [121]. 

It shows that these genes have low Pearson correlation coefficients indicating that while 

they are associated with kidney cancer from previous studies their predictive value is 

limited here.  

 

Table 4.4  Rank of SNPs (PCC) Hard+Soft Filtering in Known Kidney Cancer Genes 

Gene KIRP KICH KIRP and KICH 

VHL 28296 (5.39e-18) 58117 (1.026e-17) 15831 (5.39e-18) 

FH 107511 (0) 6437 (0.07) 35682 (0) 

FLCN 15889 (1.88e-17) 2777 (0.096) 13308 (7.26e-18) 

MET 1975 (0.026) 20909 (3.86e-17) 799 (0.026) 

TSC1 5732 (0.009) 4327 (0.088) 7430 (2.05e-17) 

TSC2 16060 (1.85e-17) 4295 (0.088) 7816 (1.85e-17) 

 

4.4 Conclusion and Future Work 

The pipeline performs an initial cross-validation and cross-study validation across two 

kidney cancer datasets obtained from the NCI GDC database. The results show that it can 

predict kidney chromophobe carcinoma case and controls with 66% accuracy with SNPs 

learned from a kidney papillary cell carcinoma dataset. More samples from the existing 

datasets and other datasets from the NCI GDC database is needed to confirm the 

predictive ability of SNPs in kidney cancer. 

  



	
44 

CHAPTER 5 

MACHINE LEARNING BASED PREDICTION OF GLIOMAS WITH 
GERMLINE MUTATIONS OBTAINED FROM WHOLE EXOME SEQUENCES 

FROM TCGA AND 1000 GENOMES PROJECT 
 

5.1 Introduction 

Estimating susceptibility to cancer from germline variants is important for recommending 

regular screening that helps in early cancer detection and enhances patient chances of 

successful treatment. Linkage analysis studies show that gliomas may cluster within 

families [122-125]. Also, many genome-wide association studies have identified 

germline genomic loci that increase glioma risk [7, 126, 127]. 

This work looks into the collective germline SNPs predictive ability for brain 

cancer predisposition. The research preforms a Genome Analysis Toolkit (GATK) joint 

germline SNPs discovery workflow for TCGA Glioblastoma Multiforme (GBM) and 

Lower-Grade Glioma (LGG) white individual cases and 1000 Genomes Project white 

individual controls. The SNPs that failed GATK Variant Quality Score Recalibration soft 

filtering or hard filtering (genotype quality ≤ 20, depth ≤ 5, or missing genotype) quality 

control were discarded from further machine learning analysis. 

On the training set, SNPs with zero variance were excluded and each SNP is 

scaled so that it remains between zero and one. Then, the best K SNPs were selected 

based on chi-squared test value. For cross-validation, 1000 Genomes Project, GBM, and 

LGG samples and their common SNPs were combined. The data were split into 10-fold 

(90% for training and 10% for testing) and a predictive model was learned with SVM and 

random forest classifiers. In each training fold, SVM C hyperparameters and the number 

of trees to grow for RF were cross-validated with 3-fold for each top K selected SNPs. 
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Then the predictive ability with average balanced accuracy across all folds were 

measured. For cross-study, the research ran linear SVM on best K selected SNPs on 50% 

randomly selected samples from 1000 Genomes Project and GBM and predicted LGG 

and the remaining half of the 1000 Genomes Project samples. 

To confirm that all samples came from the same population, principal component 

analysis (PCA) was performed on the entire dataset (before feature selection), and the 

first two principal components were projected. Figure 5.3 shows that the two datasets 

(case and controls) are related. This step is done to confirm that the cases and controls are 

not separable to limit the effect of ethnicity differences on cases and control 

classification. SNPs departure from Hardy-Weinberg Equilibrium (HWE) can be a sign 

of genotyping error or population stratification. Top SNPs in controls that violate HWE 

are removed from further machine learning analysis. Plink software [128] was used to 

perform HWE with exact test since using chi-squared test is not suitable for multi-allelic 

sites. 

The research shows that it can predict GBM and LGG white individual cases and 

1000 Genomes Project white individual controls with 90% mean balanced accuracy of 

10-fold cross-validation (CV) when learning in best 10 germline variants selected by chi-

squared value with support vector machine (SVM) and random forest (RF). In cross-

study, learning with GBM+controls and predicting LGG achieved 89% balanced 

accuracy, and 88% balanced accuracy the other way around. 

The most contribution to the accuracy comes from SNP rs10792053. When this 

SNP was removed, cross-validation mean balanced accuracy drops to 54% with top 10 

SNPs, and 50% in cross-study. The research looked into the original alignments of SNP 
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rs10792053 in cases and controls samples with the Integrative Genomics Viewer (IGV). 

In both cases and controls, reads coverage and mapping quality at this locus were high. 

 

5.2 Methods 

5.2.1 Data 
 
For case individuals, white normal samples (germline) whole-exome sequencing (WES) 

data pre-aligned to Genome Reference Consortium Human Build 38 (GRCh38) in binary 

alignment map (BAM) format were obtained from The Cancer Genome Atlas (TCGA) 

through National Cancer Institute’s Genomic Data Commons (GDC) portal for two brain 

cancer studies (males: 477, females: 331, mean age: 52.08). For control individuals, 

Europeans samples WES pre-aligned to GRCh38 in CRAM format were downloaded 

from 1000 Genomes Project phase 3 (males: 250, females: 297). This analysis considered 

only white individuals, to reduce race differences effect on phenotype occurrence. It then 

performed a variant calling workflow followed by a machine learning pipeline on these 

samples. Table 5.1 summarizes cohort studies used in this analysis. Table 5.2 shows the 

number of SNPs for 1000 Genomes Project, GBM, and LGG as well as common SNPs 

after applying soft+hard filtering. 
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Table 5.1  Samples Population  

Population (sub-population) Count 

1K Genomes Project (CEU) 102 

1K Genomes Project (FIN) 105 

1K Genomes Project (GBR) 102 

1K Genomes Project (IBS) 108 

1K Genomes Project (TSI) 112 

1K Genomes Europeans (all) 529 

GBM white (not Hispanic) 274 

GBM white (Hispanic) 5 

GBM white (not reported) 58 

GBM white (all) 337 

LGG white (not Hispanic) 421 

LGG white (Hispanic) 27 

LGG white (not reported) 23 

LGG white (all) 471 

 

5.2.2 Joint Genotyping 

For germline variant discovery, the Genome Analysis Toolkit (GATK) version 4 [39] 

were used. GATK HaplotypeCaller variant calling walker produces an intermediate 

Genomic Variant Call Format (GVCF) file for each sample. The intermediate GVCF files 

of all samples were pooled together for genotyping by passing it to GATK 

genotypeGVCFs to obtain a VCF file for samples cohort. Passing samples GVCFs with 

the whole-exome regions is computationally intensive, to speed up the variants calling 

workflow each chromosome is divided into roughly 10 equal intervals in a scatter and 

gather fashion and were executed simultaneously on a cluster. Figure 5.2 illustrates the 
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joint variant discovery workflow. After obtaining the final VCF file, quality control 

measures were applied to reduce sequencing artifacts and false-positive genotypes. 

 
5.2.3 SNPs Encoding 

The output of the GATK GenotypeGVCFs tool is in a VCF format. In the header, it has 

the reference base (REF), one of A, C, G, T, N bases, and alternate non-reference alleles 

(ALT) base(s). It is possible but not common to have a multiallelic site (two or more 

ALT bases). All permutations of genotypes were considered as input features to learn a 

predictive model. An SNP encoding to a numerical value is an essential pre-processing 

step to machine learning. Each SNP is encoded as follows: 

  4 × X + Y (5.1) 

where A and B are the two alleles (copies) for a given sample at a particular locus of the 

genome. 

 

 

Figure 5.1  A toy example for encoding a multiallelic site. 
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Table 5.2  SNPs Count after Applying Soft+Hard Filtering 

 Number of SNPs 

1000 Genomes Project 184690 

GBM 297106 

LGG 485115 

Common SNPs 118439 

 

5.2.4 Missing Genotypes 

In GATK, a genotype with low supporting reads is encoded as “./.” to denote no variant 

call was made at that site for a given sample. Imputation is a method that is commonly 

used in GWA studies to increase the number of genotypes in the as- sociation analysis. 

Imputation algorithms predict ungenotyped loci in individuals that were genotyped on a 

subset of loci of SNPs chip to boost SNPs array coverage utilizing haplotype information 

across samples and HapMap data as an imputation reference panel [129-131]. This study 

excluded column features that have a missing genotype in any sample from further 

analysis. Thus, this eliminated the need for imputation. 
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Figure 5.2  Germline SNPs calling pipeline with genome analysis toolkit performed on a 
cluster to speed up computation. 
 

5.2.5 Variants Calling Quality Control 

GATK HaplotypeCaller by default excludes sites with mapping quality (MAPQ) ≤ 20. 

This analysis used two layers of quality controls: SNPs soft filtering followed by hard 

filtering to minimize false-positive SNPs. To confirm that the samples came from the 
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same population, the research ran principal components analysis (PCA) on the whole 

dataset before SNPs selection. In Figure 5.3, the projection of the first two components 

shows that the samples are related. Two outlier samples were removed and PCA 

projections of the first two components were replotted in Figure 5.4, and case and control 

individuals do not form distinct clusters. Plink version (1.9) [128] were used to test for 

departure from Hardy Weinberg equilibrium with an exact test in control samples. SNPs 

that deviate from HWE were excluded. Only top SNPs in HWE are included in the 

analysis, Table 5.3 shows the exact test p-values of top 10 SNPs in control individuals 

from 1000 Genomes Project dataset. 

 

Table 5.3  Hardy-Weinberg Equilibrium Exact Test P-Values 

SNP Observed Het Expected Het P-Value 

rs80356578 0.06049 0.05866 1 

rs150707706 0.03592 0.03527 1 

rs143139551 0.03214 0.03162 1 

rs145172249 0.04159 0.04072 1 

rs148782546 0.02268 0.02243 1 

rs10792053 0.2042 0.2069 0.6774 

rs144518683 0.02268 0.2243 1 

rs140561687 0.03025 0.02979 1 

rs138772802 0.03403 0.03345 1 

rs147042091 0.02836 0.02795 1 
Note: Hardy-Weinberg equilibrium exact test P-values on top selected ten SNPs in control individuals from 
the 1000 Genomes Project. 
 



	
52 

 
Figure 5.3  Projection of principal component analysis with the first two components. 
 

 
Figure 5.4  Projection of principal component analysis with the first two components 
after excluding the two outlier data points. 
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5.2.6 Soft Filtering 

The soft filtering method assigns a probability for each variant call with GATK variant 

quality recalibration score (VQSR) that uses machine learning by training on external 

databases with known variant sites, and then it assigns a probability score to each variant 

in the cohort. The truth sensitivity filter for VQSR were set to a 99.0% threshold. The 

following VCF annotations with VQSR to build a recalibration model were used: 

InbreedingCoeff, QD, MQ, MQRankSum, ReadPosRankSum, FS, SOR. variants that 

failed soft filtering are removed from further analysis. 

5.2.7 Hard Filtering 

At the sample level, variant sites that have genotype quality (GQ) > 20 and depth (DP) > 

5 for all samples are considered. DP is the number of reads to support the genotyping, 

and GQ is a confidence score between 0 and 99, the higher the more confident the 

program in its assigned genotype. BCFtools (version 1.3) [132] were used for hard 

filtering and to extract VCF fields into table format. 

5.2.8 Soft+Hard Filtering 

Only SNPs that passed both soft filtering and hard filtering are considered for further 

machine learning analysis. 

5.2.9 Feature Scaling 

Features with zero variance in training split were removed. The remaining features were 

linearly transformed based on the training subset using Min-Max normalization to keep 

the data between zero and one while preserving distance. Scikit-learn [116] 

minMaxScaler were used and the implementation is as follows: 
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D24
Z =

D24 − min;D4=

max;D4= − min	(D4)
 (5.2) 

were D′24 is the current scaled value for the MKL individual in the JKL SNP, min	(D4) and 

max	(D4) are the minimum and maximum values for JKL SNP, and max;D4= − min;D4= is 

the range of the JKL SNP. We applied the exact same transformation to validation data 

where we determined SNPs min and max from training data only. 

5.2.10 Chi-Squared Features Selection 
 
Top SNPs are selected based on the chi-squared statistic between each SNP and the label. 

In the chi-squared test, a higher value is an indicator of dependence between the SNP and 

the label. SNPs were ranked based on their chi-squared value using the scikit-learn chi2 

function. 

Χ9 = 	:
(!2 − 12)

9

12

G

2

 
(5.3) 

where a is the number of classes, !2 is the sum of SNP alleles encoding for the MKLclass. 

,/ = ∑ !2
G
2 , and ,12 =

?

G
× /.  

Table 5.4 shows the top chi-squared ranked 1000 Genomes Project+GBM+LGG common 

SNPs. 

5.2.11 Classifiers 

Support vector machine (SVM) with linear kernel [81] and random forest (RF) [133] 

classifiers were performed using scikit-learn package [116]. 

Support vector machine:  SVM finds a hyperplane that maximizes the distance between 

classes: 
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min
b,bc

‖e‖9

2
+ Bmax(0, 1 − H2(e

OD2 + ef)) 
(5.3) 

where D2  is the genotype vector of the MKL  individual, H2 is the label, e  is the weight 

vector, B is a regularization parameter, max	(0, 1 − H2(eOD2 + ef)) is the hinge loss and 

the sign of (eOD2 + ef) assigns the input D into class −1 or +1. We cross-validated the 

hyperparameter B with 3-fold cross-validation from the set (0.1, 1).  

Random forest:  An ensemble method that builds decision trees by selecting random 

samples with replacement to construct each tree and randomly generating a subset of 

features to choose from for each candidate split, the one with the highest Gini impurity or 

entropy, then it takes the majority vote of trees predictions to output a class prediction. 

We used the default parameters for the quality measure of the split, and 3-fold cross-

validation from the set (100, 1000) for the number of trees to construct. 

 

5.2.12 Performance Metrics  

Since classes are imbalanced in the studies included in our analysis, it is inappropriate to 

use accuracy as a measure of classifiers performance. We used balanced accuracy for 

performance evaluation. Balanced accuracy is the average of true positive rate and true 

negative rate. 

Yghga7,i	g77j5g7H = 	
k
65j,	lmnM6Mo,
lmnM6Mo, +

65j,	a,0g6Mo,
a,0g6Mo, p

2
 

(5.3) 
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Table 5.4  Top SNPs for 1000 Genomes Project, GBM and LGG Datasets 

Alt allele frequency   
1K Genomes GBM+LGG SNP rs ID Chi2 score 

0.0302 0.0068 rs80356578 21.84 

0.0180 0.0019 rs150707706 20.15 
0.0161 0.0006 rs143139551 22.67 
0.0208 0.0006 rs145172249 30.26 
0.0113 0 rs148782546 18.33 
0.1096 0.4963 rs10792053 50.63 
0.0113 0 rs144518683 18.33 
0.0151 0 rs140561687 24.44 
0.0170 0 rs138772802 27.49 
0.0142 0.0006 rs147042091 19.65 

 

Table 5.5  Top SNPs for 1000 Genomes Project and GBM Datasets 

Alt allele frequency   

1K Genomes GBM SNP rs ID Chi2 score 

0.0047 0.0237 rs140717526 12.28 
0.0038 0.0341 rs782010133 12.78 
0.0076 0.0312 rs779492064 13.69 

0 0.0134 rs202040378 14.13 
0.0009 0.0148 rs146032550 12.51 
0.0019 0.0386 rs759512484 34.27 
0.0009 0.0163 rs76672487 14.05 
0.0009 0.0148 rs148088117 12.51 
0.1096 0.4926 rs10792053 42.67 
0.0019 0.0341 rs768904765 24.25 
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Table 5.6  Top SNPs for 1000 Genomes Project and LGG Datasets 

Alt allele frequency   

1K Genomes LGG SNP rs ID Chi2 score 

0.0302 0.0074 rs80356578 13.30 
0.0076 0.0308 rs12721607 14.53 
0.0009 0.0159 rs35723440 13.97 
0.0208 0 rs145172249 19.59 
0.0076 0.0297 rs2232449 13.60 
0.0236 0.0032 rs61734485 14.88 
0.0085 0.0329 rs2069548 14.84 
0.1096 0.4989 rs10792053 45.18 
0.0151 0 rs140561687 14.25 
0.0170 0 rs138772802 16.03 

 

5.3 Results 

5.3.1 Cross-Validation 

With chi-squared statistic best ten SNPs, linear SVM and RF achieved 90% mean 

balanced accuracy of 10-fold cross-validation when predicting the 1000 Genomes Project 

controls and GBM+LGG cases. The predictive ability deteriorates when all SNPs were 

considered to 65% and 54% for SVM and RF, respectively. Figure 5.6 shows the results 

for predicting three-classes of 1000 Genomes, GBM, and LGG with linear SVM, one-vs-

one. The mean balanced accuracy attained is 68% on top 10 SNPs, however, the accuracy 

drops to 46% with all SNPs. The accuracy declines as more SNPs are added in both 

binary and three-class classification of glioma subtypes individuals and control 

individuals. 
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Figure 5.5  10-fold cross-validation of learning and classifying binary labels. 

 

 

Figure 5.6  10-fold cross-validation of learning and classifying 3-class labels. 
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5.3.2 Cross-Study Validation 

To test the generalization of the model, the research trained the data on GBM and 

randomly selected 50% of 1000 Genomes samples and predicted the labels of the unseen 

LGG dataset and the remaining 50% of 1000 Genomes samples. Top 10 ranked SNPs 

obtained the highest balanced accuracy of 89%, again the advantage of ranking the SNPs 

with chi-squared is shown, the accuracy drops when more SNPs are included to learn a 

model. The worst accuracy of 63% was attained by considering all SNPs. The research 

also tested the accuracy the other way around, where it learned in LGG and 50% 

randomly selected samples from 1000 Genomes and predict the labels of GBM and the 

remaining 50% samples of 1000 Genomes. It observed the same thing, where ranking the 

SNPs with chi-squared boost the balanced accuracy from 60% with all SNPs to 88% with 

only 10 SNPs. As expected, ranking SNPs by their dependence on labels improved the 

balanced accuracy greatly on all cross-validation and cross-study validation experiments. 
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Figure 5.7  Cross-study validation. 

 

5.3.3 Cancer Significance of Top Ranked SNPs 

A point mutation could be nonsynonymous (missense, or nonsense) or synonymous 

(silent). Missense mutations, which is a change in a single nucleotide that substitutes 

amino acid encoding and influences protein function [134, 135], are heavily investigated 

in cancer research because it can alter protein function. Synonymous mutations are often 

called silent mutations due to their inability to change the amino acid sequence, therefore, 

these mutations usually are disregarded in cancer research [135]. However, synonymous 

variants can affect protein folding, and thus it plays a role in cancer [136]. In this work, 

we investigated both synonymous and nonsynonymous variants. SNPs rs76672487 (in 

gene ABCC2) and rs2069548 (in gene TG) are cancer-related genes according to The 

Human Atlas Protein. SNP rs76672487 ranked fifth on the selected SNPs by chi-squared 
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from the GBM+1000 Genomes dataset, while SNP rs2069548 ranked fourth on 

GBM+1000 Genomes top SNPs. From the 1000 Genomes+GBM+LGG datasets’ top ten 

ranked SNPs six genes are reported by The Human Atlas Protein to be prognostic 

markers for survival in glioma, liver, renal, cervical, urothelial, pancreatic, and 

endometrial cancers based on gene expression FPKM values. 

 

Table 5.7  All Datasets Genes Expression and Survival Time Association 

Gene Survival prognostic marker in cancer 

OTOF No 
EAF2 Prognostic marker. 

ALPK1 Prognostic marker. 
LOC108783645, HFE No 

PTPRJ Prognostic marker. 
OR9G1 No 
P4HA3 Prognostic marker. 

ATF7IP Prognostic marker. 
PLBD1 Prognostic marker. 
KCNC2 No 

Note: top ranked SNPs genes expression and survival time association in the 1000 Genomes Project, LGG, 
and GBM datasets based on The Human Atlas Protein database. 
 

Tables 5.7 through 5.9 show top-ranked genes in the 1000 Genomes+GBM+LGG, 1000 

Genomes+GBM, and 1000 Genomes+LGG datasets that are prognostic for survival time 

in cancer. Five genes of the top-ranked in the 1000 Genomes+GBM+LGG dataset are 

expressed in all cancers according to The Human Atlas Protein. KCNC2 gene is 

expressed in breast and prostate cancers. P4HA3 gene is expressed in pancreatic, breast, 

renal, glioma, and lung cancers. Genes OR9G1 and OTOF are not expressed in cancer. 

Tables 5.10 through 5.12 show the genes that are expressed in cancer in top-ranked SNPs 
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in the 1000 Genomes+GBM+LGG, 1000 Genomes+GBM, and 1000 Genomes+LGG 

datasets. 

 

Table 5.8  1000 Genomes and GBM Genes Expression and Survival Time Association 

Gene Survival prognostic marker in cancer 

SARS Prognostic marker 
CA14 No 
LHX9 No 
DGKG No 
OSMR Prognostic marker. 

DMXL1 Prognostic marker. 
ABCC2 Prognostic marker. 
OR56B4 No 
OR9G1 No 
ZNF641 Prognostic marker. 

Note: top ten ranked SNPs genes expression and survival time association based on The Human Protein 
Atlas database.  
 

Table 5.9  1000 Genomes and LGG Genes Expression and Survival Time Association  

Gene Survival prognostic marker in cancer significance (P<0.001) 

OTOF No 
NR1I2 No 
IGSF10 No 

LOC108783645, HFE No 
MICAL1, ZBTB24 Prognostic marker. 

CA1 No 
TG No 

OR9G1 No 
ATF7IP Prognostic marker. 
PLBD1 Prognostic marker. 

Note: Top ten ranked SNPs in the 1000 Genomes Project and LGG and their genes expression and survival 
time association as reported by The Human Protein Atlas database. 
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Table 5.10  Top SNPs in All Datasets Genes and Functional Consequences 

SNP rs ID Gene Functional consequence Cancer mRNA expression 

rs80356578 OTOF synonymous Not detected 
rs150707706 EAF2 missense Expressed in all 

rs143139551 ALPK1 missense Expressed in all 
rs145172249 HFE intron variant Expressed in all 
rs148782546 PTPRJ synonymous Expressed in all 
rs10792053 OR9G1 synonymous Not detected 

rs144518683 P4HA3 synonymous Mixed 
rs140561687 ATF7IP missense Expressed in all 
rs138772802 PLBD1 intron Expressed in all 
rs147042091 KCNC2 missense Group enriched 

Note: Top ten SNPs and their genes functional consequences in the 1000 Genomes project, GBM, and 
LGG datasets as reported by The Human Protein Atlas database.  
 

Table 5.11  Top SNPs of 1000 Genomes and GBM Genes and Functional Consequences 

SNP rs ID Gene Functional consequence Cancer mRNA expression 

rs140717526 SARS missense Expressed in all 
rs782010133 CA14 missense Group enriched 
rs779492064 LHX9 intron Mixed 

rs202040378 DGKG intron Tissue enhanced 
rs146032550 OSMR synonymous Expressed in all 

rs759512484 DMXL1 missense Expressed in all 
rs76672487 ABCC2 intron Tissue enhanced 

rs148088117 OR56B4 missense Not detected 
rs10792053 OR9G1 synonymous Not detected 

rs768904765 ZNF641 intron Expressed in all 
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Table 5.12  Top SNPs of 1000 Genomes and LGG Genes and Functional Consequences 

rs ID Gene Functional consequence Cancer mRNA expression 

rs80356578 OTOF synonymous Not detected 
rs12721607 NR1I2 missense Group enriched 
rs35723440 IGSF10 synonymous Mixed 

rs145172249 HFE intron Expressed in all 
rs2232449 ZBTB24 synonymous Expressed in all 

rs61734485 CA1 missense Group enriched 
rs2069548 TG missense Tissue enriched 

rs10792053 OR9G1 synonymous Not detected 
rs140561687 ATF7IP missense Expressed in all 
rs138772802 PLBD1 intron Expressed in all 

 

5.3.4 SNP rs10792053 Mapping Quality 

To confirm that there is no issue with reads mapping quality or coverage, eight 

individuals from both cases and controls alignments were inspected with the Integrative 

Genomics Viewer (IGV) in the original reads mapping at locus 11:56701017 and its 

adjacent loci. Figure 5.8 shows alignments with IGV of four samples from cases vs four 

from controls against the GRCh38 reference genome. The red arrow in Figure 5.8 points 

SNP rs10792053 position. The tangerine color in the tracks at the position refers to allele 

C and the green refers to reference allele A. 
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Figure 5.8  Alignments of four cases vs four controls at SNP rs10792053 the upper four 
tracks for cases (LGG, GBM) viewed with IGV. 

 

In IGV, if both allele copies in the sample is homozygous reference, then it is 

shown in gray. Three of the four cases viewed are heterozygous and the remaining one is 

homozygous alternate allele. All controls in Figure 5.8 are homozygous reference. In 

IGV the mapping quality threshold were set to 1 since GATK HaplotypeCaller discards 

reads with a mapping quality of 0. The original alignments of both cases and controls 

have high coverage at this location. Although GATK HaplotypeCaller reassembles 

alignments at active regions and discards original alignments, the final VCF is consistent 

with what is observed in original alignments. For SNP rs10792053, the average depth 

across all cases is 407.15 and across all controls is 63.58. These average depths are after 

running the GATK germline variant discovery workflow. The research tested for Hardy 

Weinberg equilibrium exact test in controls individual and the p-value is 0.677, which 
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confirms that this SNP is in HWE, however, it is out of HWE in cases. 

5.3.5 Alternate Allele Frequency of Top SNPs 

Table 5.13 shows the alternate allele frequency of dbSNP 1000 Genomes Project 

Europeans samples, GBM, LGG and 1000 Genomes Project samples that are considered 

in this study, which is slightly larger than 1000 Genomes sample size in dbSNPs since 

this study downloaded samples from 1000 Genomes Project phase 3.  

 

Table 5.13  Cases and Controls Top Ranked SNPs Alternate Allele Frequencies 

rs ID dbSNP (EUR) Controls Cases 

rs80356578 A=0.029 0.0302 0.0068 
rs150707706 C=0.019 0.0179 0.0018 
rs143139551 A=0.017 0.0160 0.0006 

rs145172249 C=0.019 0.0207 0.0006 
rs148782546 T=0.012 0.0113 0 
rs10792053 G=0.116 0.1096 0.4962 

rs144518683 C=0.012 0.0113 0 
rs140561687 T=0.016 0.0151 0 
rs138772802 C=0.017 0.0170 0 
rs147042091 C=0.013 0.0141 0.0006 

Note: 1000 Genomes Project (Controls) and GBM+LGG (Cases). The third and fourth columns contain the 
alternate allele frequencies in this research (white individuals). The second column shows the reported 
allele frequencies by dbSNP (European samples) database. 

 

For example, SNP rs80356578 sample size in dbSNP is 503 and the sample size 

for our 1K Genomes is 526. Our alternate allele frequency is close to what is reported by 

dbSNP for 1000 Genomes Project Europeans samples. 
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5.4 Conclusion 

This chapter shows that it can predict glioma cases with few germline SNPs selected 

based on the chi-squared statistics with 90% mean balanced accuracy in cross-validated 

TCGA-GBM and TCGA-LGG white individual cases and 1000 Genomes Project 

Europeans controls whole-exome sequences with linear SVM and random forest 

classifiers. The chapter also shows that in cross-study linear SVM achieves 89% 

predictive accuracy when learning with GBM and 1000 Genomes Project controls and 

predicting LGG and 88% contrariwise on the top-ranked germline SNPs. However, most 

of the accuracy comes from SNP rs10792053, a replication study is needed to verify its 

discriminative power in glioma. 
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CHAPTER 6 

CHALLENGES IN PREDICTING GLIOMA SURVIVAL TIME IN MULTI-
MODAL DEEP NETWORKS 

 

6.1 Introduction 

Predicting glioma survival time helps patients and their clinicians evaluate available 

treatment plans and make informed choices. Glioblastoma Multiforme (GBM) is the most 

common and lethal glioma type in adults [137]. In GBM, less than 5% of patients reach 

five years survival threshold after diagnosis with a median survival time of 15 months 

[138]. Most advanced cancer patients prefer to know their estimated prognostic 

information [11]. However, clinicians’ survival time estimates are inaccurate and often 

optimistic [11, 12]. 

Many studies have devised 3D convolutional neural networks (CNNs) to improve 

the accuracy of structural MRI scans to classify glioma patients into survival categories 

[3, 13-15]. This work looks into a heterogeneous combination of somatic and germline 

genetic single variations, messenger RNA expressions, and post-contrast T1 MRI 

modality data that show the malignancy. Whole exome sequencing data (WES) were 

obtained from The Cancer Genome Atlas (TCGA) portal (https://www.cancer.gov/tcga), 

messenger RNA, and post-contrast axial T1 MRI sequences from The Cancer Imaging 

Archive (TCIA [139]) for all European ancestry individuals with GBM. In this analysis, 

only samples for which all three data types are available were included, which gives a 

total of 126 samples. Each sample is assigned a label of zero if the survival time is 

below14 months and a label of one otherwise (to obtain a balanced set), thus converting 

the survival time prediction problem into a classification one. 
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This work designed a multi-path neural network that takes as input all three data 

sources and evaluates its accuracy in a 10-fold cross-validation experiment. Genome 

Analysis Toolkit (GATK4) pipeline was performed to obtain single mutations with 

exhaustive site-level and sample-level quality controls to eliminate sequencers artifacts 

and false-positive SNPs. Both and multiallelic loci were included, and the two allele 

copies of each SNP were converted into a numerical format using an in-house python 

script. Then, SNPs were ranked on each training split to select the best 100 SNPs to use 

as predictive markers. The mRNA expression information for the TCGA-GBM was 

obtained from the Broad Institute TCGA Genome Data Analysis Center Firehose after 

Robust Multi-array Analysis (RMA) normalization. 

MRI sequences in Digital Imaging and Communications in Medicine (DICOM) 

format were downloaded from TCIA. From the 3D axial T1 MRI sequences. Both 3D 

volumes and 2D slices were explored. For 3D scans, the DICOM images were converted 

to the Neuroimaging Informatics Technology Initiative (NIfTI) format. The non-brain 

tissue was extracted with FSL BET, and the images were registered to T1 MRI MNI152 

reference with FSL FLIRT. A model was trained with 3D U- Net [140] separately as well 

as simultaneously with SNPs and mRNA data. 

For 2D slices, one slice that shows the tumor for each sample was manually 

selected. Then these 2-D image slices were used to train a 2D CNN with ResNet18 [141] 

encoder and measured the accuracy of predicting test samples in 10-fold cross-validation. 

This study compared the accuracy of predicting survival time with SNPs, mRNA 

expressions, and MRI scans separately as well as when combining the three data sources. 

For SNPs and mRNA expressions, separate multi-layer neural nets were used, and for 
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images, 2D and 3D convolutional neural networks were explored. 

A slight improvement within combined model with 2D images is observed over 

the individual data sources but considerable variation in test accuracy across different 

train test folds. This work conjecture that this may be due to the small training set of 126 

individuals. By synthetically augmenting the data with a generative model, this research 

may improve sample representation and consequently model accuracy. 

 

6.2 Methods 

 6.2.1 Data  

Data is composed of TCGA-GBM European ancestry individuals 

(https://www.cancer.gov/tcga) that have all of the following data: 1) Survival time (days 

from diagnosis to death), also, right censoring to increase the dataset size was performed, 

where samples for which days to the last follow-up are above the 14 months threshold 

were included, 2) WES data, 3) mRNA expressions information, and 4) post-contrast T1 

axial MRI sequence. Samples that do not meet the inclusion criteria were excluded. The 

total number of samples included in the analysis is 126. Table 6.1 shows the clinical 

characteristic of these samples. 
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Table 6.1  Samples Clinical Characteristics 

Clinical Characteristics TCGA-GBM 

Ancestry (European) 126 

Ethnicity (not reported/not Hispanic) 25/101 

Gender (male/female) 76/51 

Average age 60.38 ± 13.37	
Vital status (dead/alive) 123/3 

Average survival (days) 483.44 ± 431.95 

# of samples in each class (short-term/long-term) 63/63 

 

SNPs:  TCGA-GBM 126 European ancestry individuals pre-aligned WES for each 

sample that met the inclusion criteria were obtained from the TCGA 

(https://www.cancer.gov/tcga) through the NCI Genomic Data Commons (GDC) data 

portal (https://gdc.cancer.gov/). GATK (version 4) HaplotypeCaller [38, 39, 76] was 

performed on each sample. All samples were then pooled together for joint genotyping 

utilizing a computing cluster in a scatter and gather approach on each chromosome to 

expedite variant discovery process. To filter out low-quality SNPs, the GATK variant 

quality recalibration score (VQSR) was performed, which uses a machine learning 

trained on external datasets to assign a quality score to each site-level variant. The truth 

sensitivity of 99% as a threshold is used for VQSR. Those SNPs that passed VQSR are 

further interrogated on sample- level genotype quality (GQ) and depth (DP). SNPs that 

passed VQSR at the site-level and GQ > 20 and DP ≥ 5 at the sample-level are included 

for further analysis. This work performed the widely used multi-allelic encoding of SNPs 

shown in Figure 6.1. 

The chi-squared statistic [142] between each SNP and the binary class label was 

calculated, and SNPs were ranked based on the test statistics. The higher the statistic, the 
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more important the SNP in its predictive ability. We included top-ranked 100 SNPs for 

further analysis. 

mRNA expressions: Gene expression information was downloaded for the samples that 

were normalized with Robust Multi-array Analysis (RMA) from the Broad Institute 

TCGA Genome Data Analysis Center Firehose [143]. 

3D MRI scans: Axial T1 MRI sequences in DICOM format were obtained from The 

Cancer Imaging Archive (TCIA). DICOM images were converted to NIfTI format with 

dcmtonii software, and non-brain tissue was removed with FSL BET [144] with option -

B (an option that leads to overall better performance in skull-stripping [145]). Then 

images were aligned to T1 axial MNI152 reference with FSL FLIRT. 

2D MRI slices: For each subject, an image slice was manually selected that best shows 

the tumor and its surrounding tumor enhancing-area. Table 6.2 shows the vector and 

matrix dimensions for the three data sources that were used in this analysis. 

 

Table 6.2  SNP, mRNA, and T1 MRI Data 

Dataset Vector (matrix) dimension 

SNPs (passed filtering) 79980 

mRNA expressions 12042 

3D post-contrast T1 MRI scans (182, 218, 182) 

2D post-contrast T1 MRI slices (256,256)	
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Figure 6.1  Multiallelic SNP encoding into a numerical values example. 
 

6.2.2 Network Architecture and Training 

Three separate neural nets were constructed using PyTorch [146] to evaluate the 

predictive power of each data source alone. the output of these nets was concatenated to 

evaluate combining SNPs, mRNA expressions, and images predictive ability. 

For SNPs, a neural net with two hidden layers was constructed. Relu activation 

function, 0.01 learning rate, batch size of five, and 30 epochs with Stochastic Gradient 

Descent (SGD) [147] and Nesterov Momentum update. For mRNA expressions, the 

parameters were set to exactly what was used for SNPs but with three hidden layers 

(1000, 100, 10). For 2D T1 MRI sequence slices, ResNet18 convolutional neural network 

[141] was used which has 18 hidden layers and has 18 output nodes. Because the 

ResNet18 input size shape is (244, 244), all slice images were resized to (256, 256) 

dimensions and randomly center cropped (224, 224), the cropped images were used as an 

input for the ResNet18 convolutional neural network. The following parameters with 

ResNet18 were used: learning rate of 0.01, batch size of 6, 15 epochs. For 3D volumes, 
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the 3D U-Net [140] where employed, and the original images were padded with zero to 

fit the network input dimensions (192, 224, 192). The same hyperparameters that were 

used to train the 2D slices in ResNet18 were used for the 3D U-net.  

 

Figure 6.2  Proposed multi-modal deep neural network. One can see three paths each for 
SNP, gene expression, and images. The study trains the network as one model instead of 
training the three paths separately. 
 

To combine each of SNPs and mRNA dataset with MRI slices, a one more dense layer 

was added to the end of ResNet18. After Relu activation, the output was concatenated to 

the network’s output. Then, it was fed into a dense layer with 50 input nodes and two 

output nodes. For combining the three data sources, all the three outputs of each network 

were concatenated. Figure 6.2 shows the network architecture for combined data sources. 
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6.3 Results 

Here the 10-fold cross-validation results on all three data sources combined as well as 

individual data sources with both 2D and 3D images is reported. The accuracy is 

evaluated as the sum of correct predictions over the total number of the test set. Survival 

threshold at 14 months was intentionally selected so that the data is balanced: the number 

of samples in both classes is equal. 

 
6.3.1  Combined Data with 3D Volumes 

Figure 6.3 shows the mean accuracy of our model across 10-folds and 15 epochs for each 

of the three data sources separately and the combined data model. The model with 

combined data sources can achieve a 100% accuracy on the individual and combined data 

models. In the test, however, the accuracies are lower. The combined data model does not 

perform better than the individual ones. In fact, here the gene expression data source 

gives the best test accuracy of 62.4% at epoch 13.  

 

 

Figure 6.3  Mean 10-fold accuracy of our network across 15 epochs for training and test 
sets with 3D volumes as the image data. 
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Figure 6.4 shows the test accuracy of each of the ten folds of the combined model. 

In some folds, the test accuracy goes to 75%, whereas in others as low as 25%. This 

suggests that some folds have a diverse enough training set that captures the distribution 

of test data points, whereas, in other folds, the training and test image datasets are very 

different. 

 

 

Figure 6.4  Test accuracy of each of the 10-folds of our network across 15 epochs on all 
three data sources combined with 3D volumes as the images. 
 

6.3.2  Combined Data with 2D Slices 

Figure 6.5 shows the mean 10-fold accuracy on training and test sets across 15 epochs of 

the model with 2D slices as images. Here one can see an overall better test accuracy with 

the combined model but by a small margin. At epoch 11, the combined data gives 63% 

accuracy, whereas the gene expression alone gives 62.4% at epoch 13. This difference, 

however, is not statistically significant. 
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Figure 6.5  Mean 10-fold accuracy of our network across 15 epochs for training and test 
sets with handpicked 2D slices (that manifest the tumor) as the image data). 

 

The test accuracy of each of the ten folds on the combined data, one can see a 

considerable variation, as shown in Figure 6.4. Again, this shows that in some folds, the 

train and test distributions are likely to be the same, while in others, the distribution is 

very different, thus making it hard to classify. 

 

Figure 6.6  Test accuracy of each of the 10-folds of our network across 15 epochs on all 
three data sources combined with 2D slices as the images.  
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6.4 Discussion 

Combining data into three sources yields a slight improvement that is not statistically 

significant. Clearly, by simply combining more data, one cannot expect to predict 

survival time accurately, but this study also possibly needs to enlarge the training set size. 

The variation in test accuracy across the folds suggests model instability, which is 

attributed to insufficient data. One possible avenue to solve this is to generate artificial 

samples for all three sources with a generative model like a generative adversarial 

network [148]. 

Another thing in the results is the 100% accuracy in training on the combined data 

in both 2D and 3D. Could the model be overfitting? A dropout [149], which is a popular 

and powerful method to reduce overfitting, was added. It reduces the training accuracy all 

the way down to in the 50-60% range and does not improve test accuracy. This suggests 

we may need a richer model with dropout since even fitting training samples becomes 

very hard with this method. 

Finally, one can see that the 2D combined model performs better than the 3D. A 

3D model, in general, requires much more data than a 2D, which is one likely reason for 

the 3D model’s poorer performance. The 3D U-Net was fine-tuned, but it did not improve 

accuracy. Again, the research conjecture that additional data points via generative 

modeling may increase accuracy. 

 

6.5  Conclusion 

Integrating genomic and neuroimages in a multi-path neural network slightly improve 

glioma survival time prediction at the 14-month threshold. One can see instability in test 
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accuracy in the model, and this study conjecture that a larger sample size produced via a 

generative model may improve stability and overall accuracy. 
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CHAPTER 7 

MULTI-PATH CONVOLUTIONAL NEURAL NETWORK FOR 
GLIOBLASTOMA SURVIVAL GROUP PREDICTION WITH POINT 

MUTATIONS AND DEMOGRAPHIC FEATURES 
 

7.1 Introduction 

Glioblastoma multiforme (GBM) is the most common and aggressive type of brain 

cancer, with a median survival rate of 15 months [10]. Untreated patients with GBM have 

a median survival time of 3 months [150]. It is well-established that age is a strong 

independent predictor of survival time in gliomas [151-153]. Several studies have found 

that gender is significantly correlated [154-156]. A study that analyzed 6586 GBM 

patients shows that age and gender, among other seven features, are independent survival 

prognostic factors [157]. Other studies investigated the role of Single Nucleotide 

Polymorphisms (SNPs) on GBM overall survival outcomes [158, 159]. One study found 

that GBM patients who carry both TERT mutations and homozygous C-allele mutation 

for SNP rs2853669 have shorter survival time versus patients with wild-type allele [160]. 

There is accumulating evidence in the literature that GBM patients with IDH1 somatic 

mutation have significantly higher overall survival time compared to patients who carry a 

wild-type allele [161-163]. 

This work hypothesizes that combining tumor sample’s SNP, age, and gender 

data increases the predictive power of GBM survival outcome. The research proposes a 

multi-path neural network to predict short (< one-year) and long (≥ one-year) survival 

groups. The predictive ability of combined SNPs, demographic features (age, age groups, 

and gender) versus each data source alone was assessed, and the proposed method was 

compared to support vector machine (SVM) with linear kernel, and random forest 
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classifiers. 

This study downloaded The Cancer Genome Atlas Glioblastoma Multiforme 

(TCGA-GBM) of 272 white individuals demographics (age, gender), survival (days from 

diagnosis to death), and tumor samples’ pre-aligned whole-exome sequencing data from 

National Cancer Institute’s Genomic Data Commons (GDC) portal. To obtain SNP data 

from sequence alignment files, a variant calling workflow was performed with Genome 

Analysis Toolkit (GATK, version 3.8) [39, 76] followed by two-layers quality controls: 

1) variant quality score recalibration (VQSR), and 2) hard filtering (depth < 5, genotype 

quality < 20). SNPs that have any missing value were excluded from further analysis. 

The pipeline randomly held out 10% of the whole data set, 5% from each class to 

create a balanced subset, and kept it as a test set. The other 90% of data was used for 

training and hyperparameters tuning by employing 10-fold cross-validation. The pipeline 

then fit a model with the 90% of data that is kept for training with best-performing 

hyperparameters and predict the test data set. The accuracy of SNPs alone, age and 

gender alone, and combined SNPs, age, and gender were reported. The research then 

compares the performance of the proposed method to SVM and random forest. 

On the test dataset, the best classification performance is reached by feeding SNP 

and demographic features into the proposed multi-path convolutional neural network. 

There we achieved an accuracy of 67%, where linear SVM and random forest attained an 

accuracy of 60% and 46%. When considering demographic features alone, the linear 

SVM has 60% accuracy, our method has an accuracy of 60%, and random forest reaches 

53% prediction accuracy. 
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7.2  Methods 

7.2.1  Patients Cohort 

TCGA-GBM data were obtained for all white individuals that have tumor sample’s 

binary alignment map (BAM) files, survival information (days from cancer index to 

death), and demographic features (age and gender) from NIH’s GDC portal. A total of 

272 patients met the inclusion criteria. The pipeline converted age, and gender into 

numerical values, and also created an age group binary feature with 70 years threshold 

since GBM patients with age ≥70 have significantly lower survival time [164]. Table 7.1 

shows GBM patients’ characteristics. 

 

Table 7.1  Cohort Characteristics 

 n=272 

Short-/long-term survival 128/144 
Average age 61.14 (±12.83) 

Age ≥70 71 
Male/female 177/95	

 

 

7.2.2. SNPs Calling and Quality Control 

Variants calling were performed with tumor samples only, and GATK HaplotypeCaller 

(version 3.8) [39, 76] was used. GATK scans samples’ genomes to identify regions with 

variability that exceed a defined threshold. From these regions, it builds an assembly 

directed graph with a reference genome as a template. It uses the most likely graph paths, 

the ones that have higher read data, to list candidate haplotypes. The candidate haplotype 

sequences are aligned against the reference genome with the Smith-Waterman algorithm 

to produce a CIGAR string. GATK determines the likelihood of haplotype by aligning 



	
83 

every read against each haplotype with the PairHMM algorithm, which gives a likelihood 

for each haplotype given read data. From read data likelihoods, the program assigns allele 

likelihoods (possible genotypes). Finally, GATK uses Bayes’ Theorem to assign 

genotypes for each sample from the list of possible genotypes. 

All subjects’ samples were pooled together for variant discovery. To speed up the 

variants calling stage, each chromosome was cut into roughly ten equal chunks and 

executed at the same time on a cluster in a scatter-gather approach. In the final variant 

call set, the GATK variant quality score recalibration (VQSR) algorithm was performed, 

which uses machine learning to filter out low-quality variants. After applying VQSR 

filtering (soft filtering). The truth sensitivity filter for VQSR was set to a “99.0%” 

threshold. We used the following annotations with VQSR to build a recalibration model: 

InbreedingCoeff, QD, MQ, MQRankSum, ReadPosRankSum, FS, SOR. This study also 

filtered out variants that have a depth (number of supporting reads) ≤ 5 or genotyping 

quality ≤ 20. Also, non-SNPs variants and sites that have any missing value were 

removed. The final output contains a matrix of SNPs and samples. Each SNP column is 

in the form A/B where A and B are the two alleles copies. Table 7.2 shows the number of 

SNPs after applying each filtering method. 

 

Table 7.2  TCGA-GBM SNPs Count after Applying Three Filtering Methods 

Filtering method Number of SNPs 

Soft filtering (VQSR) 304302 

Hard filtering 155673 

Soft+hard filtering 107777 
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7.2.3 SNPs Encoding 

To encode an SNP into a numerical format to perform machine learning tasks, the 

formula: 4 × A + B were used, where A and B are the two alleles copies for a given 

individual sample. This study multiplies A by 4 to consider all permutations in a 

multiallelic site (the maximum alternate alleles for an SNP is 3). For example, if an 

individual is homozygous at the third alternate allele for a particular SNP, then this 

specific SNP encoding is 15. SNPs were sorted in increasing order according to their 

genomic position. 

7.2.4 Training and Test Sets 

Separate training and test data sets were created to ensure the validity of the results. In 

the original TCGA-GBM dataset of 272 samples, the pipeline shuffled the data and 

randomly selected 5% from each class, to get a balanced subset, and kept this 10% 

balanced dataset for model testing. The remaining 90% was used for hyperparameters 

tuning, by employing 10-fold cross-validation, and to fit a model to predict the unseen 

test dataset with the best performing hyperparameters. Table 7.3 displays patients’ 

characteristics in training and test data sets. 

 

Table 7.3  Training and Test Sets Characteristics 

 Training set n=244 Test set n=28 

Survival < 1 year 114 14 

Survival ≥ 1 year 130 14 

Average age 61.1 (±12.5) 61.4 (±14.6) 

Age ≥70 62 9 

Male/female 157/87 20/8 
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7.2.5  Hyperparameter Selection 

Classifiers hyperparameters, such as the SVM C regularization value, need to be set 

before model training begins, and thus are not optimized during the learning stage. To 

choose the best learning rate and the number of epochs hyperparameters for the proposed 

neural network, all possible pairs in the Cartesian product of the two sets were evaluated: 

learning rate = (0.001, 0.01, 1) and the number of epochs = (1,2,3, ..., 20) using 10-fold 

cross-validation in the 90% of the original dataset (number of samples= 244) that are kept 

for training. This research also employed the same method, with the same data in each 

fold, to select the best regularization C hyperparameter from the set C= (0.01, 0.1, 1) for 

linear SVM, as well as the number of trees to grow for random forest from the set (10, 

100, 1000). The pipeline then fits a model on the whole training dataset with the best 

performing hyperparameters and uses the model built to predict the unseen 10% of the 

original data that was reserved as a test dataset. 

 
7.2.6  Classifiers 

Convolutional Neural Network (CNN):  CNNs typically are stacked layers of 

convolution operations with pooling (downsampling of original data for training 

efficiency) and batch normalization layers in between convolutional layers. The 

convolution runs on sliding windows of a specified size and fixed step size, to control the 

moving dot product over training data. A non-linear and differentiable activation 

function, such as a rectified linear unit (Relu), is then applied to the flattened output. 

Multi-path Model: The research proposes a new neural network system, where it feeds 

the network two inputs: 1) SNPs data, 2) demographic data (age, age groups, and gender). 

Since SNP data were sorted in an increasing order based on its genomic position, the 
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SNPs were passed through a series of 1D convolutions, with different kernel sizes and a 

step size of one, Relu activation function, 1D average pooling, batch normalization 

layers. Simultaneously, the pipeline fed the three demographic features into two hidden-

layers and merge the two paths and train the weights together through three fully 

connected layers. Then the network passes the weights into a sigmoid function that 

outputs a value between zero and one. If the output is ≥ 0.5, the network assigns it to 

class one, and class zero otherwise. The network trained the model with stochastic 

gradient descent with a momentum that was set to 0.9. The pipeline used 10-fold cross-

validation to select the number of epochs and learning rate (lr) value. The batch size was 

set to 128. Figure 7.1 shows the multi-path model’s architecture, all input and output 

shapes, and convolutions kernel and average pooling sizes. The network is implemented 

using  Keras library [165]. 
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Figure 7.1  The proposed multi-path model architecture with SNP and demographic 
features. 
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Single-path Model:  The research compares fitting a combined SNP and demographic 

features with our multi-path model to fitting a single-path 1D convolutional neural net 

with SNPs only and with three demographic features alone neural network. 

Support Vector Machine (SVM):  SVM with a linear kernel was used. Briefly, SVM 

finds a hyperplane that maximizes the distance between the two classes’ data points that 

are closest to the margin (support vectors). In its soft-margin version, SVM allows 

misclassification of noisy data points and introduces a trade-off hyperparameter C that 

needs to be tuned. As C approaches infinity, the classifier gets closer to the hard-margin 

solution. The pipeline uses 10-fold cross-validation to select the best performing C in the 

training dataset. The research compared combining SNP and demographic features to 

fitting an SVM model with each data source individually. For SVM and random forest 

experiments, the scikit-learn library [116] was used. 

Random Forest:  Random forest is an ensemble method that constructs many decision 

trees by choosing random samples with replacement to build each tree and randomly 

generates a subset of features to select from for each candidate split, usually the one with 

the highest Gini impurity or entropy, then it takes the majority vote of all trees 

predictions to output a class prediction. The default parameters for the quality measure of 

the split were used. The pipeline employed 10-fold cross-validation to select the optimal 

hyperparameter for the number of trees to construct. The pipeline fits a model with 

combined SNP and demographic features, SNP alone, and age+age group+gender 

individually. 
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7.2.8  Evaluation Metrics 

Accuracy, which is the number of correctly classified samples over the number of all 

predicted samples, was used to measure classifiers’ prediction power in the test data set. 

However, in training and validation data sets, we used the balanced accuracy, which is 

the average of true positive rate and true negative rate, since it has imbalanced class 

distribution. 

 

7.3  Results 

7.3.1  Cross-Validation 

In the training set, the pipeline performed 10-fold cross-validation to select the best 

number of epochs and learning rates for single- and multi-path neural network system. 

Figure 7.2 shows the mean balanced accuracy attained with different learning rates and 

the number of epochs across the ten folds. The best mean balanced accuracy of 63% 

(±0.08) across ten folds is realized when we fed both SNP and demographic features into 

our multi-path model with 0.01 as the learning rate. The mean balanced accuracy slightly 

drops after it reaches its peak at the 13th epoch. With SNP data alone, the best learning 

rate was 0.001 with nine epochs, where the single-path convolutional neural network 

attained 54% (±0.12) mean balanced accuracy. With the demographic features alone, the 

single-path neural network reached its highest mean balanced accuracy of 59% (±0.12) at 

epoch 14 with a learning rate of 0.1. 
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Figure 7.2  Cross-validation average balanced accuracy across 10-folds as a function of 
the number of epoch and learning rate for multiple data inputs: demographic 
characteristics (age+age groups+gender) only, SNPs only, or SNPs and demographic 
characteristics combined. Each line color, which is shown in the series color legends, 
represents input data (learning rate in parentheses). 
 

SVM C regularization hyperparameter and the number of trees to grow for 

random forest classifiers were tuned. Figure 7.3 shows that the SVM achieved its best 

results when C= (1, 0.1), where both values are equally the best in combined SNP and 

demographic features, SNP alone, and demographic features alone. When learning with 

demographic features alone, SVM attained 61% (±0.08) mean balanced accuracy. SVM 

achieved 56% (±0.11) mean balanced accuracy with SNPs data alone, and the mean 

balanced accuracy drops to 50% (±0.10) when combining SNP and demographic 

features. 

For random forest, setting the number of trees to 10 yielded a better performance 

for SNPs alone with 50% (±0.12) mean balanced accuracy and demographic features 

alone 52% (±0.08) mean balanced accuracy. In combined SNPs and demographics, with 

the optimal number of trees of 100 that was selected with cross-validation in the training 

set, achieved 49% (±0.11) mean balanced accuracy. Figure 7.3 shows the average 10-fold 
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cross-validation with different hyperparameters for SVM and random forest. 

 

Figure 7.3  Cross-validation mean balanced accuracy across 10-folds with linear SVM 
(with different C regularization values) and random forest (with different number of trees 
values) and multiple data inputs: demographic characteristics (age+age groups+gender) 
only, SNPs only, or SNPs and demographic characteristics combined. Each bar color 
represents a data source. 
 

7.3.2  Test Set Prediction Performance 

After cross-validating, the optimal hyperparameters for each classifier with each data 

source. The pipeline fits a model on the full training and validation sets and predicts an 

independent and balanced test set. Table 7.4 shows the accuracies attained by the 

proposed model, SVM, and random forest accuracies with and without combining SNP 

and demographic features. The proposed multi-path model, with combined SNP and 

demographic features (age, age group, and gender), achieved the highest classification 

accuracy of 67%, when learning with the optimal hyperparameters that were selected 

with the 10-fold cross-validation: learning rate of 0.01, and 13 epochs. 
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Table 7.3  Prediction Accuracy on Test Set with the Optimal Hyperparameters 

 SNP and demographic SNP Demographic 

 0.67 0.60 0.60 
Our method lr =0.01 lr =0.001 lr =0.1 

 epoch =13 epoch =9 epoch =14 
SVM 0.60 0.57) 0.60 

 C =1 C =1 C =1 
Random forest 0.46 0.50 0.53 

 # of trees =10 # of trees =10 # of trees =100 
 

Combined SNP and Demographic Features: When combining SNP and demographic 

features, the proposed multi-path model achieved an accuracy of 67%, which 

outperformed both SVM (60%) and random forest (47%) accuracies. Furthermore, 

passing SNP, age, age groups, and gender yielded a nicer training curve that is stable 

across training epochs. Figure 7.4 compares the training balanced accuracy of the 

combined SNP and demographic features with SNP data alone and demographics 

individually. 

 

 

Figure 7.4  Training accuracy on training set (n=244) for combined SNP and 
demographic features, and each data source individually.  
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SNP and Demographic Features: In the test set, fitting a model with SNPs individually 

or age+age groups+gender alone had lower accuracy than combining SNPs and 

demographic features. With SNP data only, the proposed single-path CNN had an 

accuracy of 60% with a learning rate of 0.001 and 9 epochs. SVM achieved an accuracy 

of 57% with C=1, and random forest accuracy is 50% with 100 trees. Figure 7.5 displays 

the proposed model prediction accuracy with different data sources on the test set. With 

demographic features alone, SVM and the proposed single-path neural network 

performed equally with 60% accuracy. Random forest attained 50% accuracy. Table 7.4 

compares the accuracy achieved by the proposed CNN, SVM, and random forest with 

combined SNP and demographic features and with each data source individually. 

 

Figure 7.5  Test set prediction accuracy for combined SNP and demographic features, 
and each data source alone. 
 

7.4 Conclusion 

This chapter proposes a new multi-path convolutional neural network for combined SNP 

and age, age group, and gender that improved upon SVM and random forest in terms of 

model accuracy in cross-validation and an independent test set. The research shows that 
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using combined SNP and demographic features in a multi-path network attains a better 

classification performance than each data source individually and stabilized the learning 

process. 
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