1,087 research outputs found

    Part-to-whole Registration of Histology and MRI using Shape Elements

    Get PDF
    Image registration between histology and magnetic resonance imaging (MRI) is a challenging task due to differences in structural content and contrast. Too thick and wide specimens cannot be processed all at once and must be cut into smaller pieces. This dramatically increases the complexity of the problem, since each piece should be individually and manually pre-aligned. To the best of our knowledge, no automatic method can reliably locate such piece of tissue within its respective whole in the MRI slice, and align it without any prior information. We propose here a novel automatic approach to the joint problem of multimodal registration between histology and MRI, when only a fraction of tissue is available from histology. The approach relies on the representation of images using their level lines so as to reach contrast invariance. Shape elements obtained via the extraction of bitangents are encoded in a projective-invariant manner, which permits the identification of common pieces of curves between two images. We evaluated the approach on human brain histology and compared resulting alignments against manually annotated ground truths. Considering the complexity of the brain folding patterns, preliminary results are promising and suggest the use of characteristic and meaningful shape elements for improved robustness and efficiency.Comment: Paper accepted at ICCV Workshop (Bio-Image Computing

    Joint A Contrario Ellipse and Line Detection.

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/TPAMI.2016.2558150We propose a line segment and elliptical arc detector that produces a reduced number of false detections on various types of images without any parameter tuning. For a given region of pixels in a grey-scale image, the detector decides whether a line segment or an elliptical arc is present (model validation). If both interpretations are possible for the same region, the detector chooses the one that best explains the data (model selection ). We describe a statistical criterion based on the a contrario theory, which serves for both validation and model selection. The experimental results highlight the performance of the proposed approach compared to state-of-the-art detectors, when applied on synthetic and real images.This work was partially funded by the Qualcomm postdoctoral program at École Polytechnique Palaiseau, a Google Faculty Research Award, the Marie Curie grant CIG-334283-HRGP, a CNRS chaire d’excellence and chaire Jean Marjoulet, and EPSRC grant EP/L010917/1

    Clastic Polygonal Networks Around Lyot Crater, Mars: Possible Formation Mechanisms From Morphometric Analysis

    Get PDF
    Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (> 100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater

    Introducing symplectic billiards

    Full text link
    In this article we introduce a simple dynamical system called symplectic billiards. As opposed to usual/Birkhoff billiards, where length is the generating function, for symplectic billiards symplectic area is the generating function. We explore basic properties and exhibit several similarities, but also differences of symplectic billiards to Birkhoff billiards.Comment: 41 pages, 16 figure

    Sidewall control of static azimuthal bistable nematic alignment states

    Get PDF
    Stable azimuthal alignment states have been created in the plane of a homogeneous layer of nematic liquid crystal by the action of one or more sawtooth sidewalls. The alignment states in devices with two sawtooth sidewall structures, either in-phase or in anti-phase, and with one sawtooth wall opposite a flat wall have been investigated as a function of the sawtooth pitch. The optical textures of the observed states are in excellent agreement with the predictions of nematic Q-tensor theory. The frequencies of occurrence of the different states are broadly consistent with the expected inverse correlation with the Q-tensor predictions for their energy

    Detecting Weakly Simple Polygons

    Full text link
    A closed curve in the plane is weakly simple if it is the limit (in the Fr\'echet metric) of a sequence of simple closed curves. We describe an algorithm to determine whether a closed walk of length n in a simple plane graph is weakly simple in O(n log n) time, improving an earlier O(n^3)-time algorithm of Cortese et al. [Discrete Math. 2009]. As an immediate corollary, we obtain the first efficient algorithm to determine whether an arbitrary n-vertex polygon is weakly simple; our algorithm runs in O(n^2 log n) time. We also describe algorithms that detect weak simplicity in O(n log n) time for two interesting classes of polygons. Finally, we discuss subtle errors in several previously published definitions of weak simplicity.Comment: 25 pages and 13 figures, submitted to SODA 201
    • …
    corecore