823 research outputs found

    PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation

    Full text link
    High-performance computing has recently seen a surge of interest in heterogeneous systems, with an emphasis on modern Graphics Processing Units (GPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by GPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source toolkits that support this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a compelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.Comment: Submitted to Parallel Computing, Elsevie

    Matching non-uniformity for program optimizations on heterogeneous many-core systems

    Get PDF
    As computing enters an era of heterogeneity and massive parallelism, it exhibits a distinct feature: the deepening non-uniform relations among the computing elements in both hardware and software. Besides traditional non-uniform memory accesses, much deeper non-uniformity shows in a processor, runtime, and application, exemplified by the asymmetric cache sharing, memory coalescing, and thread divergences on multicore and many-core processors. Being oblivious to the non-uniformity, current applications fail to tap into the full potential of modern computing devices.;My research presents a systematic exploration into the emerging property. It examines the existence of such a property in modern computing, its influence on computing efficiency, and the challenges for establishing a non-uniformity--aware paradigm. I propose several techniques to translate the property into efficiency, including data reorganization to eliminate non-coalesced accesses, asynchronous data transformations for locality enhancement and a controllable scheduling for exploiting non-uniformity among thread blocks. The experiments show much promise of these techniques in maximizing computing throughput, especially for programs with complex data access patterns

    Doctor of Philosophy

    Get PDF
    dissertationThe increase in computational power of supercomputers is enabling complex scientific phenomena to be simulated at ever-increasing resolution and fidelity. With these simulations routinely producing large volumes of data, performing efficient I/O at this scale has become a very difficult task. Large-scale parallel writes are challenging due to the complex interdependencies between I/O middleware and hardware. Analytic-appropriate reads are traditionally hindered by bottlenecks in I/O access. Moreover, the two components of I/O, data generation from simulations (writes) and data exploration for analysis and visualization (reads), have substantially different data access requirements. Parallel writes, performed on supercomputers, often deploy aggregation strategies to permit large-sized contiguous access. Analysis and visualization tasks, usually performed on computationally modest resources, require fast access to localized subsets or multiresolution representations of the data. This dissertation tackles the problem of parallel I/O while bridging the gap between large-scale writes and analytics-appropriate reads. The focus of this work is to develop an end-to-end adaptive-resolution data movement framework that provides efficient I/O, while supporting the full spectrum of modern HPC hardware. This is achieved by developing technology for highly scalable and tunable parallel I/O, applicable to both traditional parallel data formats and multiresolution data formats, which are directly appropriate for analysis and visualization. To demonstrate the efficacy of the approach, a novel library (PIDX) is developed that is highly tunable and capable of adaptive-resolution parallel I/O to a multiresolution data format. Adaptive resolution storage and I/O, which allows subsets of a simulation to be accessed at varying spatial resolutions, can yield significant improvements to both the storage performance and I/O time. The library provides a set of parameters that controls the storage format and the nature of data aggregation across he network; further, a machine learning-based model is constructed that tunes these parameters for the maximum throughput. This work is empirically demonstrated by showing parallel I/O scaling up to 768K cores within a framework flexible enough to handle adaptive resolution I/O

    Optimization of lattice Boltzmann simulations on heterogeneous computers

    Get PDF
    High-performance computing systems are more and more often based on accelerators. Computing applications targeting those systems often follow a host-driven approach, in which hosts offload almost all compute-intensive sections of the code onto accelerators; this approach only marginally exploits the computational resources available on the host CPUs, limiting overall performances. The obvious step forward is to run compute-intensive kernels in a concurrent and balanced way on both hosts and accelerators. In this paper, we consider exactly this problem for a class of applications based on lattice Boltzmann methods, widely used in computational fluid dynamics. Our goal is to develop just one program, portable and able to run efficiently on several different combinations of hosts and accelerators. To reach this goal, we define common data layouts enabling the code to exploit the different parallel and vector options of the various accelerators efficiently, and matching the possibly different requirements of the compute-bound and memory-bound kernels of the application. We also define models and metrics that predict the best partitioning of workloads among host and accelerator, and the optimally achievable overall performance level. We test the performance of our codes and their scaling properties using, as testbeds, HPC clusters incorporating different accelerators: Intel Xeon Phi many-core processors, NVIDIA GPUs, and AMD GPUs

    Maximizing Transmission Opportunities in Wireless Multihop Networks

    Get PDF
    Being readily available in most of 802.11 radios, multirate capability appears to be useful as WiFi networks are getting more prevalent and crowded. More specifically, it would be helpful in high-density scenarios because internode distance is short enough to employ high data rates. However, communication at high data rates mandates a large number of hops for a given node pair in a multihop network and thus, can easily be depreciated as per-hop overhead at several layers of network protocol is aggregated over the increased number of hops. This paper presents a novel multihop, multirate adaptation mechanism, called multihop transmission opportunity (MTOP), that allows a frame to be forwarded a number of hops consecutively to minimize the MAC-layer overhead between hops. This seemingly collision-prone nonstop forwarding is proved to be safe via analysis and USRP/GNU Radio-based experiment in this paper. The idea of MTOP is in clear contrast to the conventional opportunistic transmission mechanism, known as TXOP, where a node transmits multiple frames back-to-back when it gets an opportunity in a single-hop WLAN. We conducted an extensive simulation study via OPNET, demonstrating the performance advantage of MTOP under a wide range of network scenarios

    A Realistic Mobility Model for Wireless Networks of Scale-Free Node Connectivity

    Get PDF
    Recent studies discovered that many of social, natural and biological networks are characterised by scale-free power-law connectivity distribution. We envision that wireless networks are directly deployed over such real-world networks to facilitate communication among participating entities. This paper proposes Clustered Mobility Model (CMM), in which nodes do not move randomly but are attracted more to more populated areas. Unlike most of prior mobility models, CMM is shown to exhibit scale-free connectivity distribution. Extensive simulation study has been conducted to highlight the difference between Random WayPoint (RWP) and CMM by measuring network capacities at the physical, link and network layers

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
    • …
    corecore