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Abstract: Recent studies discovered that many of social, natural and
biological networks are characterised by scale-free power-law connectivity
distribution. We envision that wireless networks are directly deployed over
such real-world networks to facilitate communication among participating
entities. This paper proposes Clustered Mobility Model (CMM), in which
nodes do not move randomly but are attracted more to more populated
areas. Unlike most of prior mobility models, CMM is shown to exhibit
scale-free connectivity distribution. Extensive simulation study has been
conducted to highlight the difference between Random WayPoint (RWP)
and CMM by measuring network capacities at the physical, link and
network layers.
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1 Introduction

Since node mobility greatly affects the performance of mobile wireless networks,
a realistic mobility model is critically required to study such networks. Random
WayPoint (RWP) mobility model (Johnson and Maltz, 1996) is a synthetic mobility
model, which is extensively used in studying Mobile Ad hoc Networks (MANETs).
Recently, numerous efforts have been made to obtain statistics from either synthetic
(e.g., RWP) or real-life traces. For example, (Bettstetter et al., 2004; Yoon et al.,
2003; Jardosh et al., 2003) analysed spatial and temporal characteristics of RWP
and (Hsu et al., 2007; Rhee et al., 2007) attempted to characterise mobility pattern
based on real-life mobility data. However, most of previous works on mobility
models do not consider any explicit rationale behind the mobility behaviour.
In other words, a node does not make a move without referring to a certain demand
for the move (Oppenheim, 1995; Centonza et al., 2006). In the context of RWP, the
selection of a waypoint is random within a given terrain area and does not take a
certain behavioural rule or rationale into consideration.



On the contrary, this paper proposes a behaviour-based mobility model, called
Clustered Mobility Model (CMM), in which nodes move for a reason. They
tend to move towards a certain waypoint where more nodes are already present.
Mobility rationale incorporated in CMM is neither comprehensive nor universal.
In fact, a totally opposite rationale can also be employed in a different scenario.
For example, a node tries to move to a less populated area to avoid congestion.
However, our intention in this paper is to suggest that a mobility model can better
represent real-life scenarios when the rationale behind the move is captured and
incorporated in the mobility model. It is not difficult to expect that CMM results
in heterogeneous node densities across the terrain area. Some subareas are highly
populated with nodes but others are sparse. It could also lead to the creation of
highly connected nodes, called hubs, as well as clustering or gathering of nodes
around the hubs. This is a clear contrast to the conventional random mobility
models such as RWP (Johnson and Maltz, 1996), in which nodes are scattered
almost uniformly in the network.

Contributions of this paper are three-fold: First, the paper proposes a realistic
mobility model where nodes move for a reason. We believe this study opens up
future development of mobility models based on more sophisticated node behaviour.
Second, although hub nodes and their adverse impact on network performance
have been addressed recently (Kawadia and Kumar, 2003; Wang and Li, 2002a),
none of these research pays attention to how hub nodes are created and how to
model them. The proposed CMM explains one possible behavioural scenario. Third,
to demonstrate how CMM affects the network performance, this paper defines
network capacity at physical and link layers and compares CMM and RWP in terms
of the two capacities. While network capacity is a fundamental measure of a wireless
network, previous studies have evaluated at one particular level, which may not
accurately assess the true performance of a network or a system.

This paper is organised as follows. Section 2 summarises recent work
on small-world (Strogatz, 2001) and scale-free networks (Barabasi and
Bonabeau, 2003) to provide a brief introduction on hubs and node clustering.
Section 3 overviews previous research on mobility models by focusing on how
non-homogeneous node distribution arises and how it is modelled. Section 4
proposes CMM. Section 5 is devoted to the performance analysis of CMM and
its comparison to the conventional RWP in terms of network capacities. Section 6
concludes our work.

2 Background: scale-free networks

Recently there has been considerable interest in the structure and dynamics
of large complex networks found in natural, technological and social networks
(Strogatz, 2001; Barabasi and Bonabeau, 2003). Random graphs, pioneered
more than 40 years ago (Erdös and Rényi, 1960), are often used to model
such complex networks. However, it has consistently been shown that topologies
of real-life networks are not uncorrelated random graphs (Németh and Vatty,
2003). They include electric power grid, the World Wide Web, the internet
backbone, collaboration and citation networks in the scientific community, and
US airline connection networks. Strogatz (2001) introduced the concept of
small-world graphs, which exhibits small-world property as well as node clustering.



Barabasi and Bonabeau (2003) have studied the World Wide Web and found that
its connectivity (node degree) distribution follows a power law. It renders highly
connected nodes or hubs to have a large chance of occurring, which is unusual in
random networks. They call networks containing hubs scale-free in the sense that
some of the hubs have a seemingly unlimited connectivity and no node is typical of
the others. Formally speaking, a network is called scale-free if the moments 〈kν〉 for
ν ≥ νmax do not exist (diverge) in the limit of n → ∞, where k and n denote the
connectivity (node degree) and the number of nodes in the network, respectively.

A scale-free network has been explained with two generic mechanisms:
incremental growth and preferential attachment (Barabasi and Bonabeau, 2003).
As new nodes in a scale-free network appear, they tend to connect to the
more connected nodes. In other words, the probability ϕi that a new node will
be connected to a node i depends on the connectivity ki of that node, i.e.,
ϕi = ki+1

Σj(kj+1) (Barabasi and Bonabeau, 2003). Medina et al. built a parameterised
topology generator, called BRITE, which takes incremental growth and preferential
attachment into account to explore power laws in internet topologies (Medina
et al., 2000). It was shown analytically that these mechanisms lead to the power-law
connectivity distribution, i.e., pk ∝ k−β , where pk denotes the probability that
a node has k connectivity (Albert and Barabasi, 2000). For reasons not yet known,
the value of β tends to fall between 2 and 3 (Barabasi and Bonabeau, 2003).
An extended model has been introduced in Albert and Barabasi (2000), Chen et al.
(2002) to give a more realistic description of the local processes such as rewiring.
It allows for some additional flexibility in the formation of networks by removing
links connected to certain nodes and replacing them by new links in a way that
effectively amounts to a local type of re-shuffling connections.

It is important to note that majority of small-world and scale-free networks
assume relational graph model where distance is measured only by the graph
itself. MANETs as well as some real-life networks such as routers of internet and
transportation networks are embedded in physical Euclidean space and possess a
geography in addition to their topology. The spatial location of nodes and their
geographical proximity determines the connectivity among the nodes (Herrmann
et al., 2003; Németh and Vatty, 2003). In this type of spatial graphs, two neighbours
of a node have a better chance to be neighbours with each other, which is not
necessarily true in relational graphs. Large connectivities are usually obtained in
high density regions, called hub areas, and therefore, small-world graphs exhibit
scale-free property or vice versa unlike in relational graphs (Herrmann et al., 2003).

The above-mentioned studies on small-world and scale-free networks have
motivated us to consider a realistic mobility model because preferential attachment
could be a key mobility rationale. All the concepts and theories developed for
small-world and scale-free networks can also be utilised in developing a new mobility
model, which is discussed in Section 4.

3 Related work

Performance of MANETs is greatly affected by the mobility of nodes as
routing algorithms need to discover routes in the presence of frequent link
changes (Alchaita, 2008; Jolly and Latifi, 2007). Simulation tools used in ad hoc
network studies try to mimic the distribution and movement pattern of nodes in



real-life scenarios. This section discusses several mobility models proposed in the
literature and explains how they distribute nodes in the terrain area.

3.1 Mobility models

Mobility models can be divided into individual and group mobility models, where
the difference lies whether or not the position and movement pattern of a mobile
node is independent of others (Camp et al., 2002). Random Walk or Brownian
Motion is an individual mobility model that emulates the erratic movement of
various entities in nature, and also, in wireless mobile networks (Bar-Noy et al.,
1995). The main disadvantage of this model is that it results in sharp turns
and sudden stops. RWP has been proposed in Johnson and Maltz (1996) and
overcomes the shortcomings of Random Walk model. In RWP, each node pauses
for a predefined amount time, moves toward a randomly selected waypoint with
a random speed chosen uniformly from [Vmin, Vmax], and repeats the process.
The model has been extensively used in ad-hoc network simulations and has become
a reference model for other mobility models. Mobility models such as Manhattan
Mobility model and Obstacle Mobility model (Camp et al., 2002) are a step forward
towards realistic mobility models, but their applicability is limited to some particular
applications and the selection of a destination node and initial distribution is based
on RWP.

Another interesting idea of adding practicality in mobility models is group
mobility, wherein a group of nodes share a common mobility pattern. In Random
Point Group Mobility (RPGM) model (Wang and Li, 2002a), each group has
a logical centre and the movement pattern of a logical centre controls that of
its member nodes including speed, direction, and acceleration, etc. In Reference
Velocity Group Mobility (RVGM) model (Wang and Li, 2002b), each mobility
group is characterised by a common mean group velocity, that acts as the reference
velocity for the nodes in a group. The RWP has been extended to incorporate
the concept of group in Cano et al. (2004). Nodes in the network are evenly
divided into a number of groups to examine the impact of group scenarios on
network performance. Virtual Track (VT) is another group mobility model, which
can simulate group dynamics such as group split and merge (Zhou et al., 2004).

3.2 Node distribution

It is important to observe that most of the above-mentioned mobility models are still
based on random mobility pattern without referring to a certain rationale behind
the move and thus, produce uniformly random distribution of nodes. For example,
in RWP, initial positions of nodes as well as target waypoints are randomly
and independently selected. However, it is well known that mobility causes the
undesirable concentration of nodes at the centre of a network as time progresses
(Yoon et al., 2003; Bettstetter et al., 2003; Blough et al., 2004). This is because
the shortest path between two consecutive waypoints would pass across the centre
of the network area more probably than the boundaries. In this paper, a simple
modification has been made to RWP such that it leads to a uniformly random
node distribution. It follows the same movement as in the original RWP except that
the network is wrapped around. In other words, the shortest path to a waypoint



is determined assuming that the left and right sides of the network (and top and
bottom sides) are adjacent.

Now, consider the spatial distribution of nodes in a network area with RWP.
Assume that the entire area is divided into st equal-sized subareas. Each node is
positioned in a particular subarea i with independent probability, ϕi, where ϕi = 1

st

for all i’s. The probability pk that a subarea has exactly k nodes is given by the
binomial distribution, pk = Cn

k ϕk(1 − ϕ)n−k, where n is the total number of nodes.
As a limiting case, this probability becomes the well-known Poisson distribution
pk = zke−z

k! , where z is the mean number of nodes in a subarea, which is equal to
nϕ or n

st
. Both binomial and Poisson distributions are strongly peaked about the

mean z, and decays rapidly as a function of 1
k! (Watts and Strogatz, 1998). In other

words, with the uniformly random node distribution, the majority of subareas have
similar number of nodes (z or n

st
) and any significant deviation from the average

case (e.g., a subarea with a large number of nodes) is extremely rare.

Figure 1 Node distribution in an example ad hoc network: (a) rescue team at ground zero
(Sullivan, 2001) and (b) node density distribution (see online version for colours)



In a real network of mobile nodes, however, the node distribution can be very
different from the Poisson distribution. For example, Figure 1(a) shows an example
of a disaster area, where the infrastructure-less ad hoc network is well suited for
supporting communication. Many rescue team members gather at three subareas
(hubs), denoted as I, II and III in the figure, which may be a base camp or have
many casualties. The three subareas out of 36 (st = 36) include about the half of
the total rescue team members (66 out of 137). Figure 1(b) shows the node density
distribution of the disaster area in Figure 1(a) as well as that of the uniformly
random node distribution that follows the Poisson distribution. It is clear from
Figure 1(b) that RWP does not model the node distribution of a real ad hoc
network situation. As evident in Figure 1(b), the node distribution of the Ground
Zero example (Sullivan, 2001) contains a heavy-tail unlike the Poisson distribution.
Heavy-tail can be modelled by a power law distribution and the main cause of
this phenomenon can be explained using the principle of preferential attachment as
described in Section 2. The CMM model produces the heavy-tail distribution.

4 Clustered Mobility Model

This section presents a behaviour-based mobility model called the Clustered
Mobility Model (CMM), which produces node clustering and hubs as in the example
network in Figure 1. Note that the degree of node clustering is controllable in CMM.
The network evolution process is described in Sections 4.1 and 4.2 analyses the
characteristics of CMM.

4.1 Synthesis of CMM

The CMM model consists of two steps as in RWP, the first being to generate the
initial layout and the second being the selection of waypoints to induce mobility.
The two steps correspond to growth (Barabasi and Bonabeau, 2003) and rewiring
(Albert and Barabasi, 2000; Chen et al., 2002) (see Section 2). Pause time and node
speed are selected as in RWP. The difference lies in selecting the initial layout and
waypoints. The entire simulation area is logically divided into a number of subareas.
During both the growth and rewiring steps, a node is attracted to a subarea i with a
higher probability than a subarea j if i has more number of nodes than j. Note that
in Section 2, i, ki and ϕi denote a node, degree of node i and the probability that a
new node connects to node i, respectively. Here, they denote a subarea, the number of
nodes in subarea i, and the probability that a new node is positioned in subarea i.

The first step of CMM (growth) is to generate an initial layout. Initially all
subareas have no nodes, and therefore, the probability of a subarea being assigned
the next node is equal. But as a new node is assigned to a subarea, its probability
increases or decreases depending on the present number of nodes in that subarea.
For example, if a subarea i has ki nodes, its probability, ϕi, is

(ki+1)α

Σj(kj+1)α , where
α is the clustering exponent. During the process, some subareas will have a higher
probability than others and will become the hub areas. Within the chosen subarea,
a node is randomly located. The growth process ends when all the pre-determined
number of nodes have been assigned subareas and are positioned in the subareas.
Final ϕi’s will be used in the next step and would not be changed during the
simulation.



The second step of CMM (rewiring) is to induce mobility. Each node is
rewired from one subarea to another when it repeats the pause-and-mobility
cycle. A waypoint is selected by, first, choosing a subarea and then choosing
a position within that subarea. The choice of a subarea is again based on the
principle of preferential attachment using ϕi’s. Position inside the chosen subarea is
randomly chosen. The node selects a speed, which is uniformly distributed between
[Vmin, Vmax] as in RWP. Here, Vmin is set to nonzero so that the average node speed
does not diminish as time progresses (Bettstetter et al., 2004; Yoon et al., 2003).
The overall CMM algorithm is summarised in Figure 2.

Figure 2 The pseudo code of the CMM

There are two additional issues to be noted. First, two different interpretations of
the preferential attachment mechanism are possible; attracted to a node or to a
subarea. However, they are in fact not very different in spatial graphs as explained
in Section 2. A subarea with a hub node is essentially a hub subarea because a large
number of connectivity of a hub node directly translates to a large number of nodes
in the proximity. Second, the size of a subarea is carefully chosen so that a node in a
subarea directly connects to most of the other nodes in the same subarea but those
in neighbouring subareas may or may not connect depending on their locations in
the corresponding subareas. This paper uses the transmit range of the radio device
(i.e., 250 m) as each side of a subarea.

4.2 Analysis of CMM

This subsection shows an example initial node distribution produced by the growth
process of CMM and the node distribution at steady state when the simulation



time progresses enough. It is obvious that they are different as the degree of node
clustering is greatly reduced during the mobility (rewiring) step. This is because
nodes are not rewired to the chosen waypoints immediately. Rather, they need
to travel in between the waypoints. While waypoints are chosen based on the
preferential attachment mechanism, the position of nodes between the waypoints is
considered random. In order to quantify this effect, we define a mobility fraction, ξ,
as the fraction of time a node moves during its lifetime. Higher the node speed, lower
is the mobility fraction, and, smaller the pause time, lower is the mobility fraction.
Note that network size also affects the mobility fraction because a node moves for
a longer duration to reach a destination in a larger network.

Consider an example network where a node chooses its speed from [5, 20] m/s
and pauses for 60 s in a 3000 × 3000 m2 network area. It is not difficult to show that
the average distance between two waypoints is about 1148 m and that the average
move time is about 106 s. Since pause time is 60 s, ξ = 106

60+106 = 64%. It can be
interpreted that a node is uniformly randomly located in the network for 64% (ξ) of
the time but located in a scale-free fashion for the rest of the time (36% or 1 − ξ).

Figure 3 compares node distributions of CMM (α = 1.2 and α = 1.4) with
RWP. The total number of nodes is assumed to be 1000 in the network area of
3000 × 3000 m2, and a node speed is chosen from [5, 20] m/s. From Figure 3(a)
and (d), it would be safe to say that RWP provides uniformly random as well as
consistent node distribution during the simulation. In CMM(1.2), the level of node
concentration is higher in Figure 3(b) than in Figure 3(e), which are at initial and
steady state stages. In Figure 3(c) and (f), the same phenomenon is observed, while
nodes are more cluttered than the case with α = 1.2.

Figure 3 Node distributions in RWP and CMM models (N = 1, 000, 5 ≤ v ≤ 20.0 (m/s),
and Tpause = 106 (s)). α is set to be 1.2 (CMM(1.2)) for (b) and (e) and 1.4
(CMM(1.4)) for (c) and (f). Subfigures (a), (b), and (c) show the initial layouts
Subfigures (d), (e), and (f) show the steady-state layouts (see online version
for colours)



Definition: In order to analyse the node distribution at steady-state, we will
derive Pk, the probability that a subarea has k nodes in the steady-state. Then,
Pk =

∑
ki

pki
qki,k, where pki

denotes the probability that subarea i has ki nodes at
the initial stage (after the growth process). qki,k denotes the conditional probability
that the subarea will have k nodes in the steady state assuming ki nodes in the initial
stage.

By definition, pki = ck−β
i when the growth process ends, where c is a constant.

And, ϕi can be computed using the mobility fraction mentioned earlier. In other
words,

ϕi =
(ki + 1)α

Σj(kj + 1)α
(1 − ξ) +

1
st

ξ. (1)

The first part is the contribution during the pause time, which depends on the
principle of preferential attachment, and the second part is the contribution during
the move time, which is assumed to be uniform across all subareas in the network.
Since each node is positioned in a subarea i independently with the probability ϕi,
it is followed by

qki,k =
zk
i e−zi

k!
, (2)

where zi = nϕi and n is the total number of nodes in the network.
Now, Pk can be written as

Pk =
∑

ki

pkiqki,k =
∑

ki

ck−β
i

zk
i e−zi

k!
, (3)

where zi = nϕi.
To better understand the node dynamics represented by Pk, let us consider

the case α = 1 for simplicity. In fact, this is called linear preferential attachment
(Barabasi and Bonabeau, 2003). Researchers in the scale-free network area have
observed that the mechanism of preferential attachment should be linear; if it is
faster than linear, the network eventually assumes a star topology with a highly
concentrated central hub. However, in CMM, the linear preferential attachment fails
to capture the intended level of node clustering unless ξ is zero. This is not surprising
because the way we construct the network is not the same as in conventional
scale-free networks in the sense that rewiring occurs in the absence of network
growth. Then,

ϕi =
ki + 1

n
(1 − ξ) +

1
st

ξ, (4)

and

zi = (ki + 1)(1 − ξ) +
n

st
ξ. (5)



For a sparse subarea i whose number of nodes is smaller than the average, i.e.,
ki � n

st
,

zi ≈ n

st
ξ, (6)

and thus

qki,k ≈ ( n
st

ξ)ke− n
st

ξ

k!
, (7)

if we assume ξ ≈ 1 − ξ. In other words, a sparse subarea that has a smaller number
of nodes than the average, tends to gain more nodes and its average approaches to
n
st

with the factor ξ.
For a dense subarea i that has a larger number of nodes than the average,

i.e., ki 	 n
st
,

zi ≈ (ki + 1)(1 − ξ) ≈ ki(1 − ξ). (8)

This yields

qki,k ≈ (ki(1 − ξ))keki(1−ξ)

k!
, (9)

which means that the number of nodes after the growth (ki) decays with the
factor (1 − ξ).

5 Performance evaluation

This section evaluates CMM in comparison to RWP with respect to network
capacities. As in the last section, we use 1000 mobile nodes located in a
3000 × 3000 m2 rectangular area. Each node follows either CMM or RWP with
a maximum node speed of 20 m/s and a minimum node speed of 5 m/s. The
pause time (Tpause) is set to 106 s to make the mobility factor 50%. The radio
transmission range is assumed to be 250 m. Figure 4 shows the node connectivity
after the growth step and at steady-state. Nodes in hub subareas have been
relocated to achieve the level of node concentration at steady-state. Figure 4(a)
corresponds to the statistics just after the growth step and Figure 4(b) corresponds
to those at steady-state. They show the cumulative probability of nodes that has the
corresponding connectivity.

For RWP, steady-state data was measured after executing the simulation for
10,000 s. As seen in the figures, RWP demonstrates very different connectivity
distribution than CMM, which clearly shows a heavy-tail as in Figure 4. This
heavy-tail explains the existence of hub subareas. Also, as expected, the heavy-tail
of CMM is larger just after the growth step (Figure 4(a)) compared to that at steady
state (Figure 4(b)).

Since our primary goal is to understand the maximum achievable capacity rather
than the mechanism to achieve it, we make several simplifying assumptions, which
will be discussed later in this section. Section 5.1 defines three capacity measures and
Section 5.2 presents the comparison of CMM and RWP mobility models using an
event-driven simulator, CSIM (Schewetman, 1998).



Figure 4 Node connectivity in RWP and CMM models (N = 1, 000, 5 ≤ v ≤ 20.0 (m/s),
and Tpause = 106 (s)): (a) after growth and (b) steady state (see online version
for colours)

5.1 Capacity measures

Before presenting the network scenario and evaluation results, we define two
capacity measures for use in the simulation. They are PHY (nearest one-hop)
capacity and MAC (one-hop) capacity.

5.1.1 PHY (nearest one-hop) capacity

PHY capacity measures how much traffic the network can support without
considering MAC- and network-layer interventions. According to Grossglauser and
Tse (2001), the network capacity is constrained by the mutual interference of
concurrent transmission between nodes but can be maximised by allocating the
channel resource to a node that can best exploit it. This implies communications
among the nearest neighbours. Multiple communications can happen simultaneously
as long as their Signal-to-Interference Ratio (SIR) is larger than a certain threshold,
called capture ratio or z0, which is determined by the sensitivity and capability of the
radio receiver circuitry (Zorzi and Rao, 1994). Since signal strength greatly depends
on the communication distance, a transmission between nearest neighbours can
survive with a high probability even in the presence of interference in its proximity.

To elaborate more, for example, node w can withstand the interference
(from node v) and receive a signal from node u correctly as long as SIR is larger
than z0, i.e.,

SIR =
Pt,uγu,w

N0 + Σv �=uPt,vγv,w
> z0,

where N0 is the background noise power, Pt,u is node u’s radio transmit power, γu,w

is the channel gain from u to w and capture ratio z0 ranges from 1 (perfect capture)
to ∞ (no capture) (Zorzi and Rao, 1994). Under a simple two-ray ground radio
propagation model, γu,w ∝ d−θ

u,w, where du,w is the u-w distance and the power-loss
exponent θ ranges between nodes 2 and 4. Assuming that N0 is negligible and the



transmit power is constant, the above equation, for a single interfering node v,
becomes

SIR =
Pt,uγu,w

Pt,vγv,w
=

γu,w

γv,w
=

d−θ
u,w

d−θ
v,w

> z0

where du,w and dv,w denote the sender-to-receiver (u-w) and interferer-to-receiver
(v-w) distance, respectively (Yu et al., 2005).

The PHY capacity can be interpreted as the number of successful concurrent
transmissions using a fixed capture ratio (10 dB or 6 dB). We expect that the CMM
is not poorly performing with respect to PHY capacity because node pairs are
determined adaptively depending on the node density, ρ.

5.1.2 MAC (one-hop) capacity

While nearest-neighbour communication is attractive with respect to PHY
capacity, network layer protocols developed for multihop networks usually favour
farthest-neighbour communications so as to minimise the hop count to the final
destination. In conventional Carrier Sense (CS) based MAC protocols, such as IEEE
802.11 DCF (IEEE, 1999), the PHY capacity cannot be achievable due to carrier
sensing. When a node observes a carrier signal above the CS threshold, it holds
up pending transmission requests to avoid collisions. In this paper, MAC capacity
measures the number of concurrent transmissions, each of which communicates with
the farthest neighbour within the transmit range of a sender and offers higher SIR
than a fixed capture ratio, e.g., 10 dB. A complete coordination is assumed so that
no hidden or exposed terminal (Stallings, 2002) exists.

5.2 Performance analysis

This subsection describes simulation results on PHY, MAC and NET capacity
with respect to RWP and CMM. We observed that CMM exhibits a lower MAC
capacity than RWP as shown in Figure 7, which is due to the excessive congestion in
dense subareas and underutilisation in sparse subareas. However, in terms of PHY
capacity, CMM performs on par with RWP as in Figures 5 and 6.

5.2.1 PHY capacity

Figure 5 compares average PHY capacity of CMM(1.2) and CMM(1.4) with respect
to RWP. For this experiment, we need to determine the path loss exponent (θ),
which is a key parameter in packet radio communication. Propagation in the mobile
channel is described by means of three effects: attenuation due to distance between
the sender and the receiver, shadowing due to the lack of visibility between the
two nodes, and fading due to multipath propagation. The most popular two-ray
ground propagation model is a simple propagation model that considers only the
path loss due to communication distance. In other words, the mean received signal
power follows an inverse distance power loss law, where an exponent assumes values
between 2 and 4, and is typically 4 in land mobile radio environments. In the
915 MHz WaveLAN radio hardware, the transmit power is 24.5 dBm and the receive



sensitivity is −72 dBm, which is translated to 250 m or shorter distance between the
sender and the receiver for successful communication.

Figure 5 PHY capacities in RWP and CMM models (N = 1,000, 5 ≤ v ≤ 20.0 (m/s),
Tpause = 106 (s)): (a) θ = 2, z0 = 10 dB; (b) θ = 3, z0 = 10 dB; (c) θ = 2,
z0 = 6 dB and (d) θ = 3, z0 = 6 dB (see online version for colours)

Figure 6 PHY link capacities in RWP and CMM models (N = 1,000, 5 ≤ v ≤ 20.0 (m/s),
Tpause = 106 (s), z0 = 10 dB): (a) θ = 2 and (b) θ = 3 (see online version
for colours)



Figure 7 MAC capacities in RWP and CMM models (N = 1,000, 5 ≤ v ≤ 20.0 (m/s),
Tpause = 106 (s), z0 = 10 dB): (a) θ = 2 and (b) θ = 3 (see online version
for colours)

As shown in the Figure 5, CMM exhibits comparable performance with respect to
RWP. With a larger path loss exponent, signal strength attenuates more rapidly
and therefore, it opens a window for other pairs to communicate increasing the
communication concurrency. Figure 5(c) and (d) show a similar comparison with
the capture ratio of 6 dB, which means the communication has a better chance to be
successful even if its SIR is smaller. With a smaller capture ratio, the network can
achieve a higher throughput but at the cost of increased cost for radio hardware.
Capture ratio of 0 dB represents the case of perfect capture.

Figure 6 shows another PHY capacity, where we do not incorporate the capture
ratio. Instead, we assume that each radio device can communicate at any achievable
data rate allowed by the radio environment in the proximity. For each pair of
nodes, a receiver node calculates its SIR, and thus, the maximum data rate using
the Shannon’s theorem. Figure 6 shows the aggregate throughput assuming that the
link bandwidth is unity. As seen in the figure, CMM performs almost similar to that
of RWP. Again, the path loss exponent significantly affects the performance as seen
in Figure 6(a) and (b).

5.2.2 MAC capacity

Next, we present the results on MAC capacity in Figure 7. As discussed earlier,
each of the senders transmits to its farthest possible neighbour within its transmit
range. Here, it is shown that RWP performs better than CMM as explained
earlier. Simplicity in carrier sense-based MAC protocols comes at the cost of
performance loss. In particular, node clustering in CMM negatively affects the
network performance. It is also observed that as the sender density increases,
the MAC capacity of RWP and CMM decreases due to higher congestion. Path
loss exponent plays a key role in determining the maximum performance as well.
Comparing Figure 7(a) and (b), we observe that the network throughput is almost
double in both of CMM and RWP.



6 Discussions, managerial implications and concluding remarks

The field of wireless networking has received unprecedented attention during the
last decade due to its great success as well as even greater potential to create
new businesses and opportunities beyond what is being offered by using internet.
Wireless LANs, known as Wi-Fi hot spots, have become prevalent in modern
enterprises as well as public and residential areas. Numerous efforts, planned
or unplanned, have been made to provide internet connectivity over a larger
geographical area based on wireless mesh (Rooftop@Media; NYCwireless; MetroFi;
SeattleWireless) and WiMAX technologies. Seamless convergence with 3G and 4G
cellular networks would offer an unlimited set of interesting applications.

However, the strategic positioning of wireless networks in the value chain
requires an enumeration of a large number of factors, namely risk assessment of
potential investment under mobility, characterisation of QoS, knowledge transfer
of management and control experiences across an extended enterprise (Shriram
et al., 2008; Kivi, 2009). Historically, the recognition of value-centred strategic
understanding of mobile IT has been considered the key source of organisational
competitive advantages (Sheng et al., 2005). This approach identifies the major
strategic implications of mobile IT in improvement of working process, increment
of internal knowledge management and enhancement of sales and marketing
effectiveness.

Among those risk factors, mobility is the most fundamental and challenging
risk factor in wireless networks. For example, when a mobile user talks on
the phone using a Voice over IP (VoIP) application, a legitimate question is
whether the end-to-end delay can be bounded, say not greater than 50 ms
(ITU-T recommendation G.114, 1993), in the presence of mobility. If this cannot be
met in a large faction of cases, the corresponding technology is not recommended
for adoption. Therefore, it is not an overstatement that the study on mobility has
important managerial implications from the mobile IT point of view.

The main theme of this paper is to develop a new mobility model,
called Clustered Mobility Model (CMM), which allows non-homogeneous node
distribution driven by two principles: network growth and preferential attachment.
The level of non-homogeneity is controllable in CMM by changing the clustering
exponent, α, and is engineered not to vary during the simulation. For this,
we represent the non-homogeneity with the distribution of subarea population and
mobility fraction, ξ. The main contribution of this paper is to consider the rationale
behind the move and make it a driving force in the mobility model. We believe,
if properly stipulated and employed, the behaviour-based mobility model would
better represent the real-life scenarios.

To assess the strength and weakness of the scale-free phenomena, this paper
defines network capacities at PHY and MAC layers. Based on simulation-based
performance analysis, we observed that the network with CMM exhibits lower MAC
capacity but achieve as high PHY capacity as conventional mobility model such
as RWP. This suggests us that the network with CMM requires unique network
protocols to optimise performance. We strongly believe that the proposed CMM
can be usefully used to investigate the properties of networks that are likely to occur
in a real deployment of wireless multihop networks.



For the future work, we plan to evaluate the network or multihop capacity in
addition to PHY (nearest one-hop) and MAC (one-hop) capacity. Since the ultimate
goal of a wireless ad hoc network is to deliver packets to the desired destination,
it is important to measure the robustness of multihop connections between a pair of
nodes in the network. We also plan to delve into routing/multicasting issues under
the CMM in multihop networks. Due to the presence of hub nodes, it is essential to
reduce network congestion/collision that may cause serious network performance
degradation.
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