
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2014

Matching non-uniformity for program optimizations on Matching non-uniformity for program optimizations on

heterogeneous many-core systems heterogeneous many-core systems

Bo Wu
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wu, Bo, "Matching non-uniformity for program optimizations on heterogeneous many-core systems"
(2014). Dissertations, Theses, and Masters Projects. Paper 1539624006.
https://dx.doi.org/doi:10.21220/s2-7zmy-bz85

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539624006&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539624006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-7zmy-bz85
mailto:scholarworks@wm.edu

Matching Non-Uniformity for Program Optimizations
on Heterogeneous Many-Core Systems

Bo Wu

Puyang, Henan, China

Master of Science, Central South University, 2008

Bachelor of Science, Central South University, 2005

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
August, 2014

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

 L _
Bo Wu

Approved by the Committee, July, 2014

o(T\
Committee Chair

Associate Professor Xipeng Shen, Computer Science
The College of William and Mary

A /Jjla J/KjkSr'
Professor Weizhen Mao, Computer Science

The College of William and Mary

o - r y

Associate Professor Haining Wang, CompuTeFScience
The College of William and Mary

Senior computer scientist Jie Chen
Jefferson Lab

bf&sor Keshav Pingfli, Computgt-Science
University ofJex^-AdsSn

ABSTRACT

As computing enters an era of heterogeneity and massive parallelism, it exhibits
a distinct feature: the deepening non-uniform relations among the computing
elements in both hardware and software. Besides traditional non-uniform
memory accesses, much deeper non-uniformity shows in a processor, runtime,
and application, exemplified by the asymmetric cache sharing, memory
coalescing, and thread divergences on multicore and many-core processors.
Being oblivious to the non-uniformity, current applications fail to tap into the full
potential of modern computing devices.

My research presents a systematic exploration into the emerging property. It
examines the existence of such a property in modern computing, its influence on
computing efficiency, and the challenges for establishing a non-uniformity-aware
paradigm. I propose several techniques to translate the property into efficiency,
including data reorganization to eliminate non-coalesced accesses,
asynchronous data transformations for locality enhancement and a controllable
scheduling for exploiting non-uniformity among thread blocks. The experiments
show much promise of these techniques in maximizing computing throughput,
especially for programs with complex data access patterns.

TABLE OF CONTENTS

Acknowledgements .. iv

Dedication .. v

List of Tab les ... vi

List of Figures ... ix

Chapter

1 Introduction.. 1

1.1 The P ro b lem .. 1

1.2 Existing Approaches to Optimizing Memory Performance . . . 4

1.3 Our Non-Uniformity-Aware Approach... 8

1.3.1 Addressing the Quality-Space Overhead Dilemma . . . 8

1.3.2 Addressing the Quality-Time Overhead Dilemma 9

1.3.3 Addressing the Non-Uniformity-Oblivious Scheduling . . 10

2 Exploiting Non-Uniform Effects of Irregular References on G P U 12

2.1 Introduction... 12

2.2 Problem Setting and Complexity A nalysis............................. 15

2.2.1 Background... 15

2.2.2 Objective and Complexity.. 16

2.2.3 Discussion ... 20

2.3 Algorithms that Circumvent the Complexity 20

2.3.1 Review of the Duplication Algorithm 21

2.3.2 Limitations and Tradeoff.. 22

2.3.3 Padding Algorithm... 23

2.3.4 Sharing Algorithm ... 28

2.3.5 Discussion ... 33

2.4 Evaluation... 34

i

2.5 Algorithm Selection and Integration.. 43

2.6 Related W o rk ... 47

2.7 Sum m ary... 49

3 Capitalizing Non-Uniform Data Affinity by Overcoming Data Dependences 50

3.1 Introduction.. 50

3.2 Background on Irregular References and Runtime Locality En

hancement ... 54

3.3 Asynchronous Data Transformation... 55

3.3.1 An Example Irregular Dynamic Simulation Program . . 56

3.3.2 Synchronous Data Transformations 57

3.3.3 Decomposition and Dependence Relaxation 59

3.3.4 Thread Coordination.. 62

3.4 TLayout: A Transformation Algorithm for

Throughput-Oriented Processors... 65

3.5 Asynchronous Data Transformation Library (ATrans)................ 70

3.6 Adapting On The F ly ... 72

3.7 Evaluation... 74

3.7.1 Methodology... 75

3.7.2 Experimental Results .. 78

3.8 Related W o rk ... 86

3.9 Sum m ary... 87

4 Enabling Program-Level Control of Scheduling on G P U 89

4.1 Introduction.. 89

4.2 Background.. 93

4.3 SM-Centric Transformation... 95

4.3.1 SM-Centric Task Selection ... 96

4.3.2 Filling-Retreating Schem e.. 98

4.3.3 Implementation..100

4.3.4 Soundness... 103

4.4 Uses and Complexities...105

4.4.1 Example U s e s ... 106

4.4.2 Complexities.. 107

4.5 Designs for Validation...108

4.5.1 Optimal Configuration Search... 108

4.5.2 Affinity-Based Scheduling... 110

4.6 Evaluations... 112

4.6.1 Methodology...113

4.6.2 Results in Co-Runs ...117

4.6.3 Results in Single-Kernel Runs ...120

4.6.4 Overhead from the SM-centric Transformation 122

4.7 Discussion ... 123

4.8 Related W o rk ...124

4.9 Sum m ary.. 125

5 Limitations and Future Work..126

5.1 Application Coverage ... 126

5.2 Automatic Optimization .. 127

5.3 Energy Concerns.. 128

6 Conclusion...130

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank my research advisor, Professor Xipeng Shen, for
his top-notch guidance throughout my Ph.D. study. An extremely passionate
researcher, Xipeng showed me the beauty of scientific research, the correct
attitudes towards details and the dedication to make things done. My research
journey with him was full of adventures and excitement, through which I
developed myself to be a better researcher and also a better person.

I also owe thanks to my committee members, Professor Weizhen Mao, Haining
Wang, Keshav Pingali and Dr. Jie Chen. Their kind advice made me more
confident; their comments and suggestions helped shape this research.

I thank Yaoqing Gao, Raul Silvera, Graham Yiu, Dong Li, Jeffrey Vetter, Dong
Ping Zhang and Nuwan Jayasena for their help during my internships. Those
experiences taught me a lot of real-world practice.

I was lucky to be part of a great research group. The paper discussions with
Yunlian jiang, Zheng Zhang, Kai Tian, Zhijia Zhao, Mingzhou Zhou and Ziyu Guo
tremendously helped me develop my knowledge of the field. I also thank
Guoyang Chen, Tao Wang, Qi Zhu, Yue Zhao, Weilin Wang and Yufei Ding for
creating an inspiring spirit in this group.

Very importantly, I thank Zhijia Zhao, Jianhua Sun, Yunhan Long, Jianing Zhao,
Xing Gao, Zijiang Hao, Yubao Zhang, Yue Li, Gang Zhou, Shanhe Yi and many
others for playing basketball regularly with me. It was not only helpful for me to
keep physically healthy during the tough Ph.D. journey, but also provided me
with the relaxing moments to keep me a happy person.

I thank my family for always being there whenever I need help. My parents and
parents in-law gave me substantial support, without which I could not focus on
research. My little sister made so many great changes in her college life, which
cheered me up to change myself to be a better person. Finally and most
importantly, my wife and daughter deserve my greatest gratitude. Their love and
support make what I do meaningful.

iv

This Ph.D. is dedicated to my wife, my daughter and my parents for their love
and support

LIST OF TABLES

1 Benchmarks and selected optimization algorithms................................. 35

2 Transformation ratios ... 35

3 Inputs*... 78

4 Benchmarks ...114

vi

LIST OF FIGURES

1 (a) A simplified codelet of the force computation in a molecular dynam

ics simulation. The values in neighbors decides the access pattern

of pos. (b) and (c) show a regular and irregular pattern respectively. 13

2 Positions of various algorithms in the space-quality-complexity coordi

nates. Graph (b) omits partial duplication for legibility....................... 23

3 The pseudo-code of the padding algorithm... 25

4 An example that illustrates the algorithms of duplication, padding, and

sharing. Assume 4 objects per memory segment, 4 threads per

warp, and 4 warps per block... 26

5 The pseudo-code of the sharing algorithm.. 30

6 Speedup of selected algorithms... 36

7 Speedup of all algorithms (Tesla C 1060).. 37

8 Memory load efficiency of selected algorithms.. 37

9 Potential speedups of all algorithms (Tesla C1 0 6 0).............................. 38

10 Normalized space overhead {padding is only applicable to MERGE.) . 39

11 Guidelines for algorithm selection... 45

12 The main loop of Moldyn.. 57

13 Dependence graph (left) and the synchronous data transformation (right)

for the Moldyn example, (“r” and “w” lists the sets of data that are

read and written respectively.)... 58

14 Dependences between data transformation and the application. Each

edge is a data dependence edge labeled with the related data. Bro

ken edges show dependences that are relaxed in asynchronous

data transformation.. 60

15 Control flow of asynchronous data transformation for Moldyn............... 61

vii

16 State transitions for thread coordination in asynchronous data trans

formation... 63

17 Use of the ATrans library in Moldyn. Inserted codes are function calls

with prefix “ATrans_”.. 72

18 Speedup of the overall executions for single-threaded benchmarks.

The speedups are over single-threaded benchmarks without any

data transformation applied.. 79

19 Optimization cost on critical path. The results are normalized over

those of synchronous transformation.. 80

20 Speedup of IRREG with different transformation frequencies. Neigh

bor list is updated every 20 iterations.. 81

21 L2 cache performance comparison between synchronous and asyn

chronous data transformation. Results are normalized over those

without any transformation.. 81

22 The time per iteration of the computation loop after a transformation

is applied. It is the average of 100 iterations following the transfor

mation. The results are normalized over those of single-threaded

benchmarks with no transformations applied..................................... 82

23 Speedup of the overall executions for parallelized benchmarks. The

speedups are over parallelized benchmarks without any transfor

mation... 84

24 An example showing the membership propagation in TLayout. The

filled node is already clustered; the others are not............................ 86

25 Scalability of T L ay o u t.. 86

26 Conceptual relations among jobs, workers, and SMs............................... 96

27 Psuedo code of a GPU kernel in a filling-retreating scheme................... 100

28 Speedup of average normalized turnaround time...114

29 Improvement on system throughput................................ 118

viii

30 Prediction accuracy.. 119

31 Speedups of single-kernel runs.. 121

32 Normalized L1 miss ratios... 121

33 The percentage of overhead from SM-centric transformation.....................123

ix

Chapter

Introduction

1.1 The Problem

Heterogeneous systems leverage Graphics Processing Unites (GPUs) to speedup

both compute-intensive and memory-intensive applications in many domains, in

cluding high-performance simulation [7,74], database systems [8,30], Big Data [64,

94] and so on. Being able to execute a large number of threads simultaneously

on hundreds or even thousands of cores, GPUs provide tremendous peak com

puting power (e.g., 1.31 TFLOPS of double precision floating point performance

on NVIDIA K20 GPUs) and great power efficiency (e.g., 9 times more energy

efficient for some applications over CPU [42]). Previous studies [10,80,91] ob

served 1.16X to 431X speedups for various applications and workloads on GPUs

compared to single-threaded CPU computations.

Off-chip memory access, however, is a bottleneck to fully exert the computing

power of GPUs. The many cores issue a huge number of memory requests that

the current memory system cannot handle efficiently. A recent study showed that

for some applications GPU cores are idle for more than 90% of the execution time,

waiting for data from main memory [47]. Due to the trend of designing simpler

cores and integrating more cores on the same die, the gap between on-chip com

puting power and off-chip memory bandwidth is even widening. It is expected that

1

2

in future exascale supercomputers produced around 2020, the aggregate comput

ing power will increase by hundreds of times, while the main memory bandwidth

will only increase by around ten times [32], The issue is further underscored by

the advent of the Big Data processing era. Many data-intensive applications (e.g.,

dynamic simulation and graph processing) only do lightweight processing on each

data element and hence do not significantly reuse the data in fast on-chip caches,

further increasing the burden on the memory system.

Algorithm 1 Molecular Dynamics Simulation
1 Initialize atoms and neighbor J is t
2 for ite r = 0 to max iterations — 1 do
3 for i = 0 to num atoms do
4 atomi — atoms[i\;
5 for j = 0 to num_neighbors — 1 do
6 atomj = atoms [neighbor J is t [i] [j]];
7 atomt = update_atom{atomi) a to m j
8 if ite r mod K = = 0 then
9 update{neighborJist);

While memory optimization is the key to convert computing power to perfor

mance, it faces challenges posed by two trends in software and hardware. First,

data-intensive applications usually have irregular memory access patterns that

change during run time. For example, Algorithm 1 shows the pseudo-code of

molecular dynamics simulation, which simulates the interactions among a large

number of atoms. In the initialization phase (line 1), the code initializes the atoms

array, which stores various types of information of the atoms, and a neighbor J is t

array, which records the neighborhood relations among the atoms. Note that

we need the neighbor J is t array because of the atoms' non-uniform interactions:

Each atom is modeled to only interact with its several neighbor atoms. Two atoms

are neighbors if the distance between them is smaller than some threshold. The

computation phase (line 3-7), updates every atom according to the interaction be

tween itself and each of its neighbors. The accesses to the neighbor atoms (line

7) are through an index array neighbor J is t . Hence, the access pattern is de-

termined by the values in neighbor J is t and can be rather irregular. Meanwhile,

this pattern may change during run-time in that neighbor J is t is updated every K

iterations as shown by line 8 and 9.

The second trend is that the hardware shows deepened non-uniformity in both

inter-core resource sharing and intra-core execution. The complex resource shar

ing complicates memory optimizations. For example, an NVIDIA Kepler GPU [71]

contains multiple streaming multi-processors (named SMX), each having a pri

vate read-only data cache that can not be accessed by other multi-processors.

But the L2 cache is uniformly shared by all multi-processors. Like traditional

CPUs, GPU’s cache efficiency also heavily depends on the regularity of mem

ory accesses. Inside one multi-processor, the threads are organized into Single-

Instruction-Multiple-Data (SIMD) groups, each of which executes in lockstep. Mem

ory throughput significantly improves through memory coalescing if the threads in

the same warp access close-by memory elements. Unfortunately, irregular mem

ory accesses seriously limit the benefit of memory coalescing. On an NVIDIA

GPU, the throughput degradation due to irregular memory accesses can be up to

32 times.

The non-uniformity in software and hardware leads to a mismatch that causes

a double-digit performance degradation compared to peak performance [80,99],

In this dissertation, we aim to bridge this gap through systematically exploring

the influence of non-uniformity and designing a holistic non-uniformity-aware op

timization framework.

4

1.2 Existing Approaches to Optimizing Memory Per

formance

Existing memory optimization studies for heterogeneous systems can be grouped

into three categories: static approaches, dynamic approaches and hardware ap

proaches. We briefly discuss their applicability and limitations.

Static Approaches: Static memory optimizations are usually integrated into

compilers and try to infer memory access patterns through code analysis. Yang

et al. [97] designed a source-to-source optimizing compiler, which considers mul

tiple performance aspects, including vectorization, coalescing and data prefetch

ing. For memory performance improvement, their main technique is to transform

non-coalesced pattern—in which the threads in the same warp need to load more

than one memory segment—into a coalesced one through using shared memory.

Their access pattern detection can handle constant index, predefined index and

loop index. However, in some applications like the one shown in Algorithm 1,

the pattern depends on the values in some index array, which fails their detection

algorithm and is hence ignored.

Verdoolaege et. al. [90] leverage polyhedral analysis to automatically paral

lelize affine loops and generate GPU code, with optimizations for memory coa

lescing and cache reuses. Similar to Yang’s work, their technique’s application is

limited to code whose memory access pattern can be analyzed statically. Jia and

others [44] observe the benefit of L1 cache bypassing for NVIDIA GPUs and pro

posed a compiler transformation to selectively enable bypassing for each global

memory load instruction. They try to reduce the negative influence of the private

data cache, rather than leverage the non-uniformity to improve data sharing.

5

Sung and others [86] focus on structured grid many-core applications. Since

the memory access pattern is mostly determined by the source code, they propose

compiler optimizations to transform data layout for better memory coalescing.

Dynamic Approaches: The idea of dynamically optimizing code whose mem

ory access pattern is determined online dates back to the seminal work from Das

et al. [25], The work considers distributed irregular programs and transforms se

quential loops into two constructs: the inspector and the executor. The inspector

examines the access pattern and prepares optimized data (e.g., through prefetch

ing) for the executor, which computes the output.

Chen and Kennedy [26] use the inspector-executor strategy for shared-memory

programs—which are also the focus of this dissertation—and propose runtime

analysis and data transformation to address dynamic memory access irregularity

for CPU programs. Following their work, Han et al. [37] propose some more so

phisticated data transformation techniques. The proposed techniques all happen

on the critical path of the program: Only after they finish can the optimized code

be executed. But the transformation overhead of some algorithms is non-trivial.

For example, the recursive coordinate bisection algorithm may run as long as

tens of invocations of the kernel function. Although lightweight algorithms, such

as data packing, have much smaller overhead, their benefit is also significantly

reduced. The overhead-benefit dilemma seriously limits the applicability of data

transformation in real-world applications.

Zhang and others [99] propose the first runtime approach to address dy

namic irregular memory references on GPU. They design a pipelined framework,

in which the CPU transforms data for the GPU execution. The key insight is that

irregularity can be easily removed through data duplication. However, space over

head seriously limits the applicability due to the capped device memory size and

the transformation benefit due to the increased volume of data to be transferred

6

between CPU and GPU. The study lacks an in-depth study of the trade-off among

transformation overhead, space cost and benefit.

Some studies use domain-specific knowledge to reorder data for better local

ity. Nasre and others [67,68] optimize the layout for graph algorithms by grouping

the graph elements logically close to each other close in memory. Using a similar

optimization method, Burtscher and others [14] find that some applications sig

nificantly benefit from the optimized layout, while some other applications are not

sensitive to the layout change. Comparing with these studies, we try to be gen

eral. Furthermore, they only consider data reordering, but overlook the benefit

from data duplication.

Hardware Approaches: Rhu and others [77] design a locality-aware memory

hierarchy that can automatically adjust the memory fetching granularity. For work

loads of good spatial locality, the system fetches large chunks of data. For work

loads of poor spatial locality, the system reduces the memory fetch width to save

bandwidth. To reduce threads stall time, Meng and others [63] propose a threads

subdivision scheme, which allows part of the SIMD group to continue the exe

cution if the data for the involved threads are ready. It significantly reduces the

memory latency imposed by irregular memory accesses.

The hardware thread scheduler also received some attention to improve mem

ory performance. Rogers and others [78] design a cache-conscious warp sched

uler. It explores the fact that exploring intra-warp locality is critical for irregular

GPU applications. With the help from a intra-warp locality detector, the scheduler

gives more exclusive accesses to the L1 data cache to the warps losing intra

warp locality. In their following work [79], proactive predictions help the scheduler

schedule warps whose working set can fit into the L1 data cache.

The hardware approaches show great promise, but to our best knowledge

have not been implemented in any off-the-shelf many-core processors.

7

1.3 Our Non-Uniformity-Aware Approach

We design a software framework centered around non-uniformity matching, which

addresses three main limitations of existing approaches: 1) the quality-space

overhead dilemma, 2) the quality-time overhead dilemma and 3) non-uniformity-

oblivious thread scheduling. The first two limitations are relevant to run-time data

reorganization, while the last one is a serious limitation from the GPU scheduler

design. In the remainder of this section, we briefly describe those limitations and

how this work addresses them.

1.3.1 Addressing the Quality-Space Overhead Dilemma

To reduce the number of off-chip memory transactions, modern GPUs have a key

hardware optimization feature: memory coalescing. If the memory requests from

one GPU SIMD group access the same memory segment (usually 128 byets),

one memory transaction loads the whole memory segment to meet all the re

quests. However, the irregular memory access pattern caused by the mismatch

of non-uniformity greatly degrades the benefit from memory coalescing. The full

duplication algorithm proposed by Zhang and others [99], while guaranteeing to

coalesce all memory accesses, introduces non-trivial space overhead. The space

overhead throttles the benefit from data reorganization, as it increases the amount

of data to be transferred from CPU to GPU. However, naively reducing the space

overhead through partial duplication affects the layout quality, thereby degrading

the final performance.

Our Contributions. We point out that the essence for designing an appropriate

data reorganization algorithm can be reduced to a classical tradeoff among space,

time, and complexity. Based on the insights, we develop two new data reorgani

zation algorithms that complement prior algorithms with respective strengths. We

8

show that the new algorithms reduce space cost significantly with non-coalesced

memory accesses kept minimized. We also compare the various algorithms, unify

them into an assembly, and develop some selection guidelines and an automatic

algorithm selector to address GPU dynamic irregular accesses in various scenar

ios. We experiment with a set of dynamic irregular applications and show that the

developed assembly, along with the algorithm selector, circumvents the inherent

complexity in finding optimal data layouts, making it feasible to minimize non

coalesced memory accesses for a variety of irregular applications and settings

that are beyond the reach of existing techniques.

1.3.2 Addressing the Quality-Time Overhead Dilemma

The existing data reorganization algorithms have different levels of complexity.

Typically, the more complex the algorithm is, the better quality the produced data

layout has. However, complex algorithms incur large run-time overhead, which

lies on the critical path and hence seriously limits their benefit. One tempting

design is to offload data reorganization from critical path, which is, however, not

feasible because of the data dependence between data reorganization and the

irregular computation.

Our Contributions. We observe that the reorganization algorithm can be de

composed into two parts: transformation analysis and data repositioning. The

former component figures out how to reorganize the data elements to match the

non-uniform data interactions, while the latter component moves data to form the

final data layout. The overhead of the analysis part is usually multiple times larger

than that of the repositioning part. Fortunately, we can ensure the execution cor

rectness as long as the data dependence between irregular computation and data

repositioning is respected. Based on this insight, we offload the expensive analy

sis component to an originally idle processor and keep the lightweight data repo-

g

sitioning component on critical path. As such, we successfully hide data transfor

mation overhead as well as guaranteeing the program’s correctness.

1.3.3 Addressing the Non-Uniformity-Oblivious Scheduling

On current GPUs, the workloads processed by different threads show strong non

uniformity: 1) The data sharing degree varies across thread blocks and 2) Thread

blocks from different kernels have different levels of memory access intensity.

Nevertheless, the hardware scheduler, which is out of the reach of programmers

or compilers, is unaware of such non-uniformity. As a result, we miss optimization

opportunities from exploiting the non-uniformity of the hardware and the work

loads. For example, scheduling threads that share much data to the same core

can enhance inter-thread data reuses in the private data cache.

Our Contributions. We propose a compiler transformation and a runtime to en

able flexible scheduling on modern GPUs. The key insight is that what matters is

the mapping between jobs (the work a thread block processes) and the underlying

hardware. By retrieving the IDs of cores during run-time, our framework flexibly

determines which set of jobs should be processed by which processor. The flex

ibility enables several optimizations, including parallelism control, resource parti

tioning and affinity-based scheduling.

Chapter

Exploiting Non-Uniform Effects of

Irregular References on GPU

2.1 Introduction

Recent years have seen a rapid adoption of GPU for high performance computing.

As a massively parallel architecture, GPU significantly accelerates many regular,

data-parallel applications. But its benefits for irregular applications are far less

substantial, especially when the application contains dynamic, irregular memory

references.

The reason comes from the hardware properties of GPU. GPU organizes its

threads in groups and memory in segments. Every W threads with consecutive

ID numbers form a warp\ every S consecutive bytes in the global memory form

a segment. At a memory reference, the number of memory transactions needed

to load the data accessed by a warp equals the number of segments the data fall

onto. When that number is larger than the possible minimum, the accesses are

called non-coalesced memory accesses.

Non-coalesced memory accesses are common in irregular applications. Fig

ure 1 (a) shows a simplified codelet in the core computation in a molecular dy

namics simulation. The underlined statement “pos [neighbors [j*M + tid]]" gets

10

11
(a) codelet

I I tid: the global ID of a thread
/ / M: num. o f neighbors per molecule
ipos = pos [tid];
for (j=0; j< m; j++){

jpos = d o s f neighbors f j*M + tid]]:
computeForce (f, ipos, jpos);

}
force [tid] = f;

(b) case 1: neighbors [0...3] = {4, S, 6,7}

(c) case 2: neighbors [0...3] = {9 ,103,23,67}

Figure 1: (a) A simplified codelet of the force computation in a molecular dynamics simulation. The values in neighbors
decides the access pattern of pos. (b) and (c) show a regular and irregular pattern respectively.

the coordinates of a neighbor of the current molecule. As a typical dynamic irreg

ular reference, it may manifest various access patterns, determined by the values

contained in neighbors. In the case of Figure 1 (b), all accesses by the warp are to

a single memory segment; only one memory transaction is necessary, assuming

a segment can contain four molecules’ positions. But in the case of Figure 1 (c),

because of irregular values in neighbors, the accesses are non-coalesced and re

quire four memory transactions. This kind of irregularity is common in a molecular

dynamics simulation, thanks to molecules’ movements and their dynamic neigh

borhood. It is a key feature of many scientific simulations.

Non-coalesced accesses may result in memory transactions as many as W

times of the minimum, leading to a throughput a number of factors lower than

the peak of GPU [9,18,99], They have been the focused target of some recent

studies. However, most prior explorations [9,41,56,80,97] concentrate on static

irregularities, where the memory access patterns are known at compilation time.

The type of irregularity in our focus is dynamic: For instance, the content of the

indexing array neighbors in Figure 1 depends on the input to the program and is

updated throughout the simulation of the molecules movement.

Dynamic irregular accesses have to be treated during runtime. Some earlier

studies [87] have relied on special hardware extensions that modern GPUs do

not have. A recent study [99] shows the promise of pure software solutions. It

develops a pipeline scheme that makes it possible for CPU to reorganize data

12

and threads for a near-future GPU kernel invocation while GPU is working on the

current kernel. A related study [18] demonstrates the feasibility of moving the

reorganization to GPU so that CPU can also involve in workload processing.

Despite that these studies have shown promising speedups, the understand

ing to data reorganization for minimizing non-coalesced GPU memory accesses

remains preliminary. Although it has been shown that minimizing the number

of non-coalesced memory accesses is an NP-complete problem [93,99], there

only exist ad hoc algorithms to circumvent the complexity result. This chapter

describes the first principled understanding of GPU data reorganization for mini

mizing non-coalesced accesses.

2.2 Problem Setting and Complexity Analysis

In this section, we first provide some background on GPU that closely relates with

the following discussions. We then describe the main approaches researchers

have been pursuing to tackle non-coalesced GPU accesses. We finally reveal

the fundamental challenges for such approaches by proving that using those ap

proaches to minimize non-coalesced accesses for general irregular references is

computational infeasible unless NP equals P.

2.2.1 Background

As a massively parallel device, GPU contains hundreds or thousands of cores

residing on a number of streaming multiprocessors (SM). When a GPU kernel

is launched, the runtime usually creates thousands of GPU threads running on

these cores in parallel. These threads are organized hierarchically. A number of

threads (32 in NVIDIA GPU) with consecutive IDs compose a warp, a number of

warps compose a thread block, and all thread blocks compose a grid. (This paper

13

uses CUDA terminology.) A warp is the unit in GPU scheduling; all threads in a

warp proceed in lockstep.

GPU is equipped with several types of memory. The largest is off-chip main

memory called global memory. It consists of a large number of segments (of 32,

64, or 128 bytes depending on the access mode.) For the large size and long ac

cess latency of global memory, its access efficiency is critical. GPU hence offers

memory coalescing, a hardware-enabled feature that uses one memory transac

tion to load/store all the data in a memory segment that are requested by a warp

at a load/store instruction. As a result, the execution of a load/store instruction by

a warp incurs K memory transactions, where K equals the number of memory

segments the requested data fall onto. Suppose the data to load/store by a warp

at a reference contain D bytes and a memory segment is 5-byte long. The refer

ence is a non-coalesced reference when K > \D/S). The corresponding memory

accesses are non-coalesced accesses. Another type of memory on GPU worth

mentioning is shared memory, which is on-chip with access latency comparable

to that of register files. A thread can access an element that is loaded or stored

into shared memory by another thread if and only if the two threads belong to

the same thread block. In the remainder of the thesis, memory refers to global

memory by default.

2.2.2 Objective and Complexity

The objective of non-coalesced access minimization is to minimize the number of

non-coalesced accesses of a GPU kernel. The minimization, for its importance

for GPU performance, has drawn lots of attentions. However, satisfying solutions

are still limited to some special scenarios. In this section, we examine the inherent

complexity of the previous approach and prove that in general cases, using the

approach is infeasible to reach the objective unless NP equals P. The results may

14

guide the direction of future research, and also lays the theoretical foundation for

the rest of this work.

A GPU kernel may contain multiple references. We focus on one reference

first and discuss other scenarios later.

Data Repositioning and NP-Completeness

Data repositioning has been the main direction pursued by previous work for min

imizing non-coalesced accesses [9,56,87]. The essential idea is to reorder data

elements on memory so that the data to be accessed by a warp can reside con

secutively, covering the minimum number of memory segments. For the example

in Figure 1 (c), the transformation would create a new array Pos’ with the same

elements as Pos has but in a different order, such that the four elements Pos[9],

Pos[103], Pos[23], Pos[67] fall into a single memory segment. Matrix transpos

ing [87] is another example: By repositioning elements on memory to create a

column-major data layout, it can minimize non-coalesced accesses for a column

wise reference to the matrix.

Although it seems simple, using data repositioning can be complicated when

the data accessed by multiple warps overlap. Consider a reference A[P\tid)\, with

P as follows

P[]={8, 23, 46, 93, 8, 9, 10, 67, 5, 11, 41, 67, 9, 41, 55, 59}.

Assume memory segment length 5 = 4 and warp size W = 4. The repetitive

values in P (highlighted in bold font) dictate that some elements in A are accessed

by multiple warps. Which segment to put those values is tricky. For instance,

putting A[8] into a segment with A[23], A[46], A[93] would coalesce the first warp’s

accesses but leave the second warp’s accesses non-coalesced.

The issue has been largely limiting the applicability of data repositioning. De

spite many recent efforts, this approach has been effective for only the cases

where each target data element is accessed by only one warp in a kernel. In

15

an application with dynamic irregular references, that condition rarely holds: In a

molecular dynamics, a molecule is often the neighbor of more than one molecules;

in a sparse matrix multiplication, an element in the vector is often used to multiply

multiple elements in the matrix; in a mesh simulation, a vertex is often shared by

several triangles.

Complexity Theorem Prompted by the various difficulties people have so far

encountered in finding a general data repositioning algorithm to guarantee mini

mum non-coalesced accesses, we conduct a systematic analysis on the inherent

complexity of the problem. An important finding we obtain is that such an algo

rithm does not exist unless NP=P. Formally, we develop the following theorem:

Theorem 2.2.1 Creating a new data layout through only data repositioning (which

implies that each item in the original data structure has only one copy in the new

structure) to minimize the non-coalesced accesses for an arbitrary data reference

on GPU is an NP-complete problem.

As this is the first strong claim on the complexity of non-coalesced access

minimization, it is worth providing a formal proof, for verifying its correctness as

well as offering insights that may be useful for analyzing the complexity of other

GPU optimization problems.

Proof The proof is a result of a joint work, which was published in the dissertation

of Zhang [98]. We elide the proof here.

When Warp Reorganization is Allowed

The above theorem assumes that only data repositioning is applied for reduc

ing non-coalesced memory accesses. Some recent study [99] has shown that

warp reorganization can help remove non-coalesced accesses as well, and can

be used together with data repositioning for the optimization. In this subsection,

16

we complement Theorem 2.2.1 with Theorem 2.2.2, stating that reorganization

does not change the NP-completeness of the problem.

Theorem 2.2.2 It is an NP-complete problem to minimize the non-coalesced ac

cesses for an arbitrary data reference on GPU through data repositioning, warp

reorganization, or both.

See the proof in [98],

2.2.3 Discussion

This section has analyzed the computational complexity of using data reposition

ing for minimizing non-coalesced accesses. The proved NP-completeness should

not rule out the possibility that through some heuristic algorithms, the approach

may still yield good speedup on some special types of kernels. However, it does

indicate the extreme challenge to use it for achieving the optimal for general cases.

We next show that the challenge can be circumvented if a constraint assumed by

the approach is relaxed.

2.3 Algorithms that Circumvent the Complexity

We design two new algorithms to circumvent the complexity facing data repo

sitioning. The key observation is that the essential difficulty in data repositioning

comes from an implicit constraint that the produced new data layout uses no more

space than the original. If we allow more space to be used, the complexity of the

problem may reduce significantly.

Previous studies have not exploited this insight, except for the one by Zhang

and others [99], which takes advantage of extra space but in an ad-hoc man

ner. In this section, we first review that previous method, reveal its limitation, and

crystalize the analysis into an insight in the key tradeoff in designing a practical

solution. We then describe the two new algorithms we design.

17

The following discussion is based on reference A[P{tid}), a conceptual form

of dynamic irregular references. It assumes the memory segment size (5) is a

multiple of the working set size of a warp. This condition often holds given that

the warp size and S are typically powers of 2. But even when it does not hold, the

following discussions are still valid except that some preprocessing needs to be

done to align data with memory segments.

2.3.1 Review of the Duplication Algorithm

The duplication algorithm is used by Zhang and others to optimize irregular mem

ory accesses [99]. For an irregular reference, such as A[P[tid]], the algorithm

creates a new array A' such that A’[tid] = A[P[tid]\\ the reference to A[P[tid\\ in

the kernel is then replaced with A'[tid\. The algorithm naturally ensures that all

accesses of a warp are to a consecutive memory region and there are no non-

coalesced memory accesses, as illustrated by Figure 4 (b).

The algorithm is called “duplication” as it creates duplicated copies of a data

element when the indexing array P contains repetitive values. Apparently, the

new array A' is as large as the number of GPU threads (T), no matter how small

the original array A is. Even worse is when there are multiple references to the

same array (e.g., A[P[tid\] + A[P[tid] + v]), the algorithm creates a new T-long

array for each of the references.

2.3.2 Limitations and Tradeoff

The duplication algorithm converts irregular accesses to regular ones. However, it

may dramatically inflate space usage. For a /f-element array referenced n times

by T GPU threads, the space overhead is as much as a factor of n * T /K . In a

modern GPU, T can be comparable with the number of bytes in the entire memory.

The large space overhead has two consequences. First, the basic duplica

tion algorithm fails to apply when the space inflation exceeds the capacity of the

18

' ‘ duplication f * unmanageable

I
I
•
I
I
■
I

manageable ! repo^tion

...... - i i »
NP-complete

no. of non-coalesced accesses computational complexity

fa) space-quality space (b) space-complexity space

Figure 2: Positions of various algorithms in the space-quality-complexity coordinates. Graph (b) omits partial duplication
for legibility.

memory. Second, the creation and transfer of the large volume of data may intro

duce substantial time overhead, throttling the optimization benefits. The previous

work has used partial duplication to alleviate the issues [99], The idea is to apply

the transformation to only a fraction of the GPU threads. Although it can reduce

the space overhead, it compromises the quality of the optimization proportionally.

As Section 4.6 will show, it may result in substantially lower speedup than what is

possible.

Figure 2 shows the conceptual positions of the previous approaches in a

space of optimization quality, complexity, and space cost. Data repositioning and

the duplication algorithm are at two extreme ends of the spectrum of space cost.

The partial duplication lowers the space cost but also proportionally degrades the

transformation quality and lengthens the kernel execution time. Data reposition

ing has the lowest space cost but the highest complexity. So the key for having

a practical algorithm is to find a sweet design point that reduces the space cost

without compromising the transformation quality and meanwhile possesses man

ageable complexity. We next describe two new algorithms towards that goal.

2.3.3 Padding Algorithm

The padding algorithm tries to avoid some unnecessary data copies made in the

duplication algorithm without compromising the optimization quality. Its basic ob

servation is that if two threads (tx and t2) from the same warp access the same

duplication

• reposition

19

data element (a), there is no need to create two copies of that data element. We

can simply let them access the same copy of the data element. It will change the

one to one regular mapping between data and threads created by the duplica

tion algorithm, however, it will not create non-coalesced accesses since the two

threads still access the same memory segment.

A Simple Design

A simple design is to just make the following modification to the duplication al

gorithm. When the algorithm is about to create a copy of an element in the new

array A', it checks whether the current thread is the first of the current warp that

accesses that element and avoids the creation if it is not. (An entailed change

is that the original reference, say A[P[tid\\, needs to be replaced with A'[Q[tid\\

rather than A'[tid\, where Q contains the new mapping between a thread and the

data it accesses in ,4'.)

Unfortunately, this simple modification is insufficient for two reasons. First,

the avoided duplications cover only a small portion of all the duplications because

the chance for two threads accessing the same data element to come from the

same warp is often small. Second, the avoidance of some duplications often

causes a misalignment between the working set of a warp and memory segments.

As a consequence, the working set of a warp may span over the boundary of a

segment, causing new non-coalesced accesses.

An Enhanced Design

Our enhanced design addresses the two problems of the simple design through

sorting and padding. Figure 3 shows the pseudo code of the algorithm. It includes

three steps.

The first step reorders data elements based on their access frequencies. At a

data reference, the access frequency of a data element is the number of threads

20
II inputlndArray, outputlndArray: the original and produced indexing arrays
// inputArroy, outputArray: the original data array and its new copy after padding
function Paddlng(inputlndArray, outputlndArray, inputArray, outputArray)

inputlndArray = SortByFrequency(inputlndArray);
for each warp w,

uniqueRefSet = FindUniqueRefs(w, inputlndArray, inputArray);
nRemainingSlots = FindRemainingSlots(currentMemSegment);
if uniqueRefSetsize <= nRemainingSlots,
for each e in uniqueRefSet,

add element e to outputArray;
update outputlndArray;

end
else

pad dummy values to outputArray for memory segment alignment;
for each e in uniqueRefSet,

add element e to outputArray;
update outputlndArray;

end
end

end
end

Figure 3: The pseudo-code of the padding algorithm.

that access it. The second step reorganizes threads into warps. It reorders

threads according to the order of data elements—that is, all threads accessing

data X must precede all threads accessing Y if X precedes Y in the new data

sequence. Starting from the first thread, every W adjacent threads form a warp

in the resulting thread organization. These two steps address the first problem of

the simple design: By making threads accessing the same data element locate

closely and form warps, they reveal more opportunities for saving duplications.

The third step puts data elements into memory segments. Starting from the

first data element in the new order, the data are greedily packed into a memory

segment one after one. But when it finds that the current segment cannot hold all

the data the current thread warp accesses (e.g., the first segment in Figure 4 (c)),

it moves all the data accessed by that warp into the next memory segment, leaving

some empty slots at the end of the previous memory segment. Data is duplicated

only when necessary—that is, when one data element is accessed by multiple

thread warps whose working data sets do not fall into the same memory segment.

Examples are the two “c”s in the layout in Figure 4 (c). This step addresses the

second problem of the simple design. By padding a memory segment with some

21

threads: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

accessed
object: a a b b c c d d e e a a b b c d e f g h a a . . .

original
layout: a c e g b d f h ...

acc freq: 6 3 31 4 3 1 1

(a) Original layout and accesses

new
layout: 2LabJ2ccd .de s.. a a b b cd e f. g h a _ a ■■■

acc freq: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b) Layout from Duplication

new
layout: a b c x c d e f g h.. .

acc freq: 6 4 2 0 1 3 3 1 1 1

(c) Layout from Padding (“x” for empty slot)

new
layout: a b cd e f g h ...

acc freq: 6 4 3 3 3 2 1 1

(d) Layout from Sharing

Figure 4: An example that illustrates the algorithms of duplication, padding, and sharing. Assume 4 objects per memory
segment, 4 threads per warp, and 4 warps per block.

empty slots when necessary, it aligns the working set of a warp with memory

segments.

Analysis This padding algorithm guarantees zero non-coalesced access since

it puts the working set of every warp into a single memory segment. Its space over

head comes from the padded empty slots and some duplicated data elements. If

k threads in a warp access one single data element, the empty slot in a memory

segment is at most as long as mod(S, \Wjk}) , where \W/k] computes the num

ber of unique elements accessed by a warp and S is the number of data elements

a segment can contain. Both S and W are usually power of two. So the worst

case happens when k is small (hence the remainder is large) but is not a power

of two. Specifically, when k = 3, the empty slot is the longest, up to W j 3 - l.

But even in that case, the space cost is much lower than that of the duplication

22

algorithm. The number of threads a memory segment serves in that case must be

no fewer than t = (S - W / 3 + l)/(W /3). Following the assumption that S is the

multiple of W, let S = r * W with r being a positive integer. The number of threads

served, t, must be no smaller than 3r - l, which is at least 2. In the duplication

algorithm, these threads would use at least 2S memory (given that r = l means

S = w), double what they use in the padding algorithm.

When analyzing the number of duplications in the padding algorithm, it is im

portant to notice that among all the warps accessing the current memory segment,

only the first of them may have some data elements duplicated. It is because only

when the working set of a warp overlaps with the data elements in the previous

memory segment, those overlapped elements may have a duplicate in the current

memory segment (e.g., the second “c” in Figure 4 (c).) That overlap must be par

tial since at a complete overlap, the previous memory segment can already hold

the working set of that first warp, and hence that warp would have corresponded

to the previous rather than current memory segment. Due to the way threads are

ordered, that partial overlap entails that the working sets of the other warps can

not overlap with the data in the previous segment, and hence have no duplicated

data. Following the observation, we can see that in the case mentioned in the

previous paragraph, the duplicated part of a segment is at most W / 3 - l , smaller

than i /3 r of S. In comparison, the duplication algorithm creates at least 3 copies

per data element in that case. The data element contained in one memory seg

ment in the padding result would become 3 * (S - W/3 + 1) /S (which is greater

than 3 — l/3 r and 2.67) segments in the result from the duplication algorithm.

Limitation Despite its appealing properties, the padding algorithm has one ma

jor limitation. Because it reorganizes not only data but also threads, it may cause

side effects to other references in the kernel. For example, if a kernel contains

“B[tid]+A[P[tid]]”, after the third and ninth threads switch positions, they swap their

23

jobs, and the accesses to B must also be swapped. In another word, B[tid) must

be replaced with B[R[tid\] where, R[3] = 9, and R[9] = 3. Otherwise, the new

thread 3 would add .4[P[9]] with B[3] rather than B[9], causing wrong computa

tion results. As a result, the optimization of A[P[tid\\ makes accesses to B non-

coalesced. So the padding algorithm is most beneficial when all references in a

kernel follow the same access pattern (e.g., B[P[tid\] + A[P[tid}].)

2.3.4 Sharing Algorithm

This algorithm overcomes the limitation of the padding algorithm by increasing

duplication avoidance from a different angle. It uses the shared memory in GPU

to enlarge the scope of duplication avoidance. Shared memory is a type of on-

chip memory in GPU. Data written to shared memory by a thread is visible only

to threads in the same thread block. Shared memory has an access latency a

hundred times smaller than that of the global memory, and more importantly, its

performance is largely insensitive to irregularities in accesses.

Insight The key insight of this algorithm is to shift irregular accesses from global

memory to shared memory. As shared memory is visible within a whole thread

block, the sharing algorithm enlarges the scope of duplication avoidance from a

warp to a thread block. Its basic idea is to create a copy of all the data accessed

by a thread block (a single copy per data element) and put them into a consecutive

chunk of memory. Then, it loads these data in a consecutive (hence coalesced)

manner into shared memory. It redirects memory accesses by the thread block

to the corresponding copies in the shared memory. By keeping only one copy for

all data elements accessed by a whole thread block, it avoids many duplications.

By shifting irregular accesses to shared memory, it eliminates non-coalesced ac

cesses to global memory. It uses clustering to further increase the opportunity for

duplication saving. The detailed algorithm is as follows.

24
/ / inputlndArray, outputlndArray: the original and produced indexing arrays;
II inputArray, outputArray: the original and produced data arrays;
II blockPos, blockSizes: the starting position and size of the working set o f a thread block
function Sharing(inputlndArray, outputlndArray, inputArray, outputArray,
blockPos, blockSizes)

[inputlndArray, inputArray] = DataClustering(inputlndArray, inputArray);
for each thread block b,

uniqueRefSet = findUniqueReferences(b, inputlndArray, inputArray);
blockSizes[b] = uniqueRefSetsize;
blockPos[b] = outputArray.size;
for each e in uniqueRefSet,
Add element e to outputArray;
outputlndArray[e] = position(outputArray, e) - blockPos[b];

end
pad dummy values to outputArray for memory segment alignment;

end
end

Figure 5: The pseudo-code of the sharing algorithm.

Algorithm Figure 5 outlines the pseudo-code of the sharing algorithm. It in

cludes two steps. In the first step, it conducts clustering to swap threads among

thread blocks so that the threads in a block have as many accesses to the same

data elements as possible, while different blocks have as few as possible.

Many clustering algorithms can serve for the purpose. In our implementation,

we use two. The first is a graph partition-based clustering [92], which is espe

cially suitable for applications with a graph topology, such as the distribution of

molecules in a molecular dynamics simulation, the structure of a mesh in a mesh

simulation. In these applications, typically each thread is in charge of one node

in the graph. The algorithm randomly selects some nodes as seeds and assign

each of them a distinct cluster number. The nodes then iteratively propagate the

cluster memberships to their neighbors. The threads are clustered by inheriting

the cluster ID of their corresponding nodes. The second clustering algorithm is

suitable for other cases. It uses the working set of a thread as its feature and

applies the standard hierarchical clustering to build up the clusters.

After clustering, the second step prepares data to be loaded into shared mem

ory and creates a new indexing array to reference them. Specifically, it places the

data elements accessed by each thread block continuously into a global array. It

is possible that even after the clustering, the working sets of two thread blocks

may still overlap. In that case, some data will have to be duplicated across thread

25

blocks. Some trivial padding fills up the final memory segment a thread block

uses. Figure 4 (d) shows an example. The clustering switches threads 9 and 10

with threads 21 and 22. After that, each thread block accesses four unique data

elements and there is no overlaps between the working sets of the two blocks

and hence no duplications. Two meta-arrays, blockPos and blockSizes, record

the starting offset and the number of accessed data elements in the new data

array for each thread block. They add minor space cost. When the GPU ker

nel executes, each thread block loads the corresponding block of data to shared

memory according to the meta-arrays.

Notes We make several notes. First, the clustering step is optional. It increases

the chance for saving data duplications, but even if it is not used, the algorithm

can still remove all non-coalesced accesses and avoid duplications inside a thread

block.

Second, when clustering is used, threads in different blocks may get swapped.

However, unlike the padding algorithm case, even with the swapping, the sharing

algorithm can still apply to a kernel containing multiple references with different

access patterns. It is because the sharing algorithm does not require data ref

erences to remain or become regular. Consider the example mentioned earlier,

B[tid] + A[P[tid)]. After clustering-incurred thread swapping, the references may

become B'[Q[tid]] + A'[P'[tid\\ and both references become irregular. However,

the second step of the sharing algorithm ensures that both arrays will be loaded

into the shared memory in a coalesced manner. Accesses to the copies in the

shared memory may be irregular, but recall that the performance of shared mem

ory is resilient to access irregularity. It is worth noting that for this algorithm to

work properly, the clustering and data reorganization need to put all the refer

ences (B[tid] and A[P\tid]} in our example) into consideration.

26

Third, the usage of shared memory may have two side effects on the perfor

mance of the kernel. The first is the time overhead of the introduced accesses to

shared memory, which is often negligible compared to the time incurred by global

memory accesses, especially for the irregular applications that are often memory

latency bound. The second effect is that because shared memory is partitioned

to all active thread blocks on a streaming multiprocessor, a large usage of shared

memory by a thread block may reduce the number of thread blocks that can be

active at the same time (called GPU occupancy.) Our experimental results in

Section 4.6 show that the effect is not obvious on irregular applications.

Finally, when a problem size is large, the working set of a thread block could

be larger than the shared memory. Fortunately, we observe that for most kernels,

when the problem size increases, the problem size per thread block often remains

unchanged but more thread blocks are created. In exceptional cases, to apply the

sharing algorithm, the kernel can be modified to break the task of one block into

smaller tasks and assign them to more thread blocks.

Analysis Quality-wise, as described in the algorithm, after the sharing algorithm

applies, the accesses to the global memory become consecutive and coalesced.

It maintains the zero non-coalesced accesses guaranteed by the duplication al

gorithm.

Space-wise, the algorithm saves space cost by avoiding data duplications

for threads inside a block. The maximum number of copies of a data element is

the number of thread blocks, rather than the number of threads in the duplication

algorithm. If on average k(k < B, B for the number of threads per block) threads

access one data element, with a perfect clustering that puts threads accessing

the same data element into a single block, the algorithm can virtually avoid ail

data duplications. In practice, the amount of savings depends on the clustering

27

quality (or how frequently multiple thread blocks access the same data elements

if clustering is not used.) Section 4.6 provides the empirical results.

2.3.5 Discussion

The two new algorithms introduced in this section guarantee zero non-coalesced

access as the duplication algorithm does. Although they reduce the space over

head of the duplication method substantially, it should be noted that they do not

guarantee minimum space cost. Designing an algorithm with that guarantee and

zero non-coalesced accesses is not the goal of this work. In fact, that task is

no easier than the data positioning problem (they form dual problems with each

other.) Section 4.6 will show that the two algorithms do provide practical solutions

to a variety of programs.

2.4 Evaluation

In this section, we evaluate the proposed algorithm assembly on eight bench

marks in Table 1, which all have dynamic irregular memory accesses. For com

paring with the state of the art [99], they include all memory benchmarks used

in the previous work: CFD is an unstructured grid finite volume solver; CG is a

conjugate gradient method with sparse matrix-vector multiplication as its kernel;

NN is for nearest-neighbor clustering; UNWRAP is for 3-D reconstruction. MD is

a molecular dynamics simulation from the Shoe benchmark suite [22]; NBF and

IRREG are derived from two irregular CPU applications heavily used by previous

research [37]. The former is part of GROMOS, a force field simulation; the lat

ter is the core of an iterative partial differential equation solver. The benchmark

MERGE is a database update program. All code has gone through performance

tuning to fit the execution models of GPU. The inputs to MD, IRREG, NBF and

CFD consist of some nodes and neighbor lists generated randomly. The input to

28
Table 1: Benchmarks and selected optimization algorithms

(M1 Tesla C1060; M2: GTX480)

benchmark description alg. on M1 alg. on M2
MD molecular dynamics Sharing Sharing
IRREG partial diff. solver Sharing Sharing
NBF force field Sharing Sharing
CFD finite volume solver Sharing Sharing
CG conjugate gradient Sharing Sharing
UNWRAP 3-D reconstruction Dup. (not runnable)
NN nearest neighbor Dup. Dup.
MERGE database update Padding Padding

unwrap cannot run on GTX480 for unknown reasons.

Table 2: Transformation ratios

benchmark Dup. Sharing
C1060 GTX480 C1060 GTX480

MD 0.25 0.1 0.85 0.65
IRREG 0.4 0.1 0.9 0.7
NBF 0.4 0.15 0.95 0.8
CFD 0.35 * 0.6 *
CG 0.45 0.15 0.5 0.2
UNWRAP 1 - 1 -

NN 0.7 0.4 0.7 0.4
MERGE 0.3 0.3 0.6 0.6

»: optimization is shut down; not runnable.

MERGE includes some indexing arrays of a set of data generated randomly. The

inputs to CG contain a sparse matrix and vector. The locations of the non-zero

elements in the matrix exhibit some patterns such that multiple rows of the matrix

happen to multiple with a similar set of elements in the vector. The inputs to NN

and UNWRAP come with the benchmarks.

We experiment on two types of GPU devices. One is NVIDIA Tesla C1060

hosted in a quad-core Intel Xeon E5640 machine, and the other is NVIDIA GTX480

hosted in a quad-core Intel Xeon E5520 machine. Both machines have CUDA4.2

installed. We obtain hardware performance through the NVIDIA’s CUDA profiler.

29

■ GTX480 '• Tesla C1060

a .

Figure 6: Speedup of selected algorithms

■ Duplication Sharing ■ Padding
2.2 i

1.9 !

Figure 7: Speedup of all algorithms (Tesla C1060)

Results Overview Figure 6 reports the kernel speedups on both machines with

the baseline as the execution time of the original GPU version. All overhead,

including transformation and extra data transfer, is included. The selector-based

algorithm assembly produces up to 21 % speedup on GTX480. It gives even larger

speedup (up to 109%) on C1060 because that device is more sensitive to irregular

accesses for its lack of on-chip cache. (It is worth noting that having cache or not

on massively parallel processors is still a debatable topic; some recent chips, such

as Intel SCC, do not have cache for power efficiency.)

For further confirmation, we use the NVIDIA hardware performance profiler

to measure the memory load efficiency. Load efficiency is defined as the ratio of

requested global memory load throughput to actual global memory load through-

30

■ Tesla C1060 • GTX480

Figure 8: Memory load efficiency of selected algorithms.

put. As Figure 8 shows, the algorithm assembly improves the average efficiency

by 4.9X on C1060 and 7.2X on GTX480 over the original version.

The two rightmost columns of Table 1 report the selected algorithms on the

two machines. Figure 7 shows the speedups brought by each algorithm on Telsa

C1060, confirming that all selections except for the one for CG on Telsa C1060

are correct. (We explain the selection error later in the detailed analysis on CG.)

Six of the eight benchmarks benefit the most from the newly designed algo

rithms on at least one machine. As Figure 7 shows, the new algorithms produce

extra speedup as much as 8-60% over the duplication algorithm. It is mainly due

to the larger transformation ratios (shown in Table 2) enabled by their large reduc

tion of the overhead in data copy and transfer. The padding algorithm, due to its

constraint on access patterns, is applicable to only the MERGE benchmark in the

suite.

Overall, the results show that the two new algorithms significantly enhance

the power of data reorganization for irregular memory optimizations. The algo

rithm assembly and online selector produce some promising speedups for most

of the benchmarks. We next discuss each benchmark in further details.

31

■ Duplication Sharing ■ Padding
4

3.7
3.4

Figure 9: Potential speedups of all algorithms (Tesla C1060)

■ Duplication Sharing ■ Padding

■£ 0.9 I

Figure 10: Normalized space overhead {padding is only applicable to MERGE.)

32

MD, IRREG and NBF MD simulates the interactions of a number of molecules

in a 3-D space. Two molecule nodes are neighbors if their distance is smaller

than some predefined threshold. One thread is in charge of each node. In a

simulation iteration, that thread traverses all its neighbors to calculate the force

between each neighbor and that node. The inefficient memory references come

from reading neighbors’ positions.

The duplication algorithm improves the performance by duplicating position

values to make sure adjacent threads load adjacent memory locations. Figure 9

shows that the full duplication can give 2X speedup on C1060 when overhead is

not counted. But the overhead of data creation and transfer throttles the speedup

to only 15%. The sharing algorithm has a higher performance potential than the

duplication algorithm for the smaller working sets. Figure 10 reports that the shar

ing algorithm cuts the space overhead by 96%, which explains the seven times

more speedup it creates than the duplication algorithm does when overhead is

counted as Figure 6 shows.

The tremendous space reduction comes from two reasons. First, the irregular

reference to data array is surrounded by a loop to traverse all neighbors, and in

each iteration the memory access pattern of all threads is different depending

on the topology of the interaction graph. The duplication algorithm, therefore,

duplicates the same array the same number of times as the iteration number.

Second, Sharing benefits greatly from clustering, which places adjacent nodes in

topology closely in memory accessed by threads in the same block.

IRREG and NBF, like MD, have a graph topology. Figure 9 shows different

potentials, because their kernels have different ratios of computation to memory

accesses. Nonetheless, the sharing algorithm is also shown to be the best choice

for them due to the reasons similar to MD. It is worth mentioning that the benefits of

the optimizations also depend on the frequency of the neighbor list update in these

simulation programs. When the update is frequent, the data transformations need

33

to be applied often and hence lead to higher transformation overhead. When the

overhead cannot be hidden completely, the runtime control of G-Streamline can

adaptively adjust the fraction of data to transform to trade data layout quality for

transformation efficiency [99]. A detailed study on various tradeoffs of the different

algorithms in these frequent update scenarios are our future work.

CFD The program, CFD, computes force field of many particles. Each particle

has substancially more features than the molecules in MD, and so each thread

block processes more data. Figure 9 shows a potential of more than 3 times

speedup from the duplication algorithm. But the data transfer overhead throttles

the potential. The algorithm eventually produces 31% benefit with a 0.35 opti

mization ratio on C1060. The smaller space overhead of the sharing algorithm

leads to a larger optimization ratio (0.6) and a higher speedup (37%).

CG The kernel in CG does sprase matrix multiplication. The matrix is stored in

the Compresses Sparse Rows (CSR) format. In the irregular kernel, one thread

is in charge of one non-zero element in the sparse matrix. The accesses to the

vector may not be coalesced depending on the sparsity in each row. The duplica

tion and sharing perform similarly well in the potential graph. The best speedup

on C1060 is 1.85 times, while the performance gain is around 20% on GTX480

due to the cache effects on the reuses of the elements in the vector. Figure 9

reports that the sharing algorithm has slightly larger potential than the duplication

on C1060. The better algorithm, however, is duplication, because of the overhead

caused by shared memory accesses. The subtle difference is not captured by the

online algorithm selector, causing the sharing algorithm being selected. But the

speedup lost is only less than 5%.

UNWRAP The kernel of this program is in a central loop, which transforms an

image from the Cartesian coordinate system to the Polar coordinate system. Un-

34

like the other programs, this program do not have data dependences carried by

the different invocations of the kernel. The first tens of iterations of the program

successfully overlap the overhead of both the duplication and sharing algorithms.

The duplication was shown to be the better algorithm for its lack of the side effects

in shared memory usage. (For unknown reasons, the benchmark cannot run on

GTX480.)

NN The nearest neighbor identification program, NN, has a central loop to pro

cess an unstructured input file chunk by chunk. The kernel is launched once

for each chunk, and calculates the Euclidean distances from the target location

to each record in that chunk. At the end of the program, the main thread pro

cesses all distance results and obtains the K nearest neighbors. Figure 9 shows

the large speedup potential on both C1060 and GTX480. The sharing algorithm

does not reduce any space overhead as reported in Figure 10. The reason is

that one record is only processed once, and the duplication algorithm essentially

just transposes the data, creating no extra data copies. Like UNWRAP, there is

no loop-carried dependence for NN, but the transformation and transfer overhead

can not be fully overlapped, and we obtained 0.7 and 0.4 optimization ratios on

C1060 and GTX480 respectively. On this special benchmark, the duplication al

gorithm is a better algorithm in both machines, producing higher speedup than

sharing.

MERGE MERGE has the same access pattern for both loads and stores. Padding

algorithm is applicable. As Figure 9 shows, Duplication and Padding have quite

similar potential. Padding has a larger potential than Sharing because it needs

no shared memory accesses. Padding reduces the size of transformed data sig

nificantly. Duplication, due to the memory size limit, only manages to transform

30% of data. Padding is the best choice on both GPUs for this program. The

speedups on the two machines are quite similar on this program. The reason is

35

that the program has few short reuse distances and hence does not benefit from

cache much.

2.5 Algorithm Selection and Integration

The three algorithms described in the previous section have different strengths

and weaknesses. In this section, we provide a qualitative comparison, and de

scribe an automatic selector and its integration in a runtime library.

Qualitative Comparison We summarize the qualitative differences among the

three algorithms as follows.

• Applicability: The padding algorithm is applicable to kernels that have a sin

gle reference pattern. While the other two algorithms do not have such a con

straint, the sharing algorithm may need kernel modification when the working

set of a thread block is too large to fit into shared memory, and the duplication

algorithm may be applicable to only part of the data when the space limit is

reached.

• Space cost: By avoiding unnecessary duplications, the padding and sharing

algorithms use much less space than the duplication algorithm does.

• Optimization capability: All three algorithms have the capability to eliminate

all non-coalesced memory accesses (in their applicable scenarios.) However,

when being applied at runtime, the realizable benefits also depend on their

runtime overhead.

• Transformation overhead: The time overhead of the duplication algorithm is

in the creation and transfer of the new data copies, which can be substantial

when the number of threads is very large or there are multiple references of

different patterns to the same array. For the padding algorithm, the overhead

36

// T: # of threads; D: the set of memory references;
// D i: working set of a thread block;
II Z: the size of the irregularly accessed data;
if T is less or comparable with Z:

use duplication;
else if D has a single access pattern:

use padding;
else if D i is smaller than shared memory:

use sharing;
else:

use duplication or change kernel to use sharing.
Figure 11: Guidelines for algorithm selection.

includes the data and threads sorting time in addition to the creation and trans

fer of the new arrays. The overhead of the sharing algorithm consists of data

creation and transfer time, the clustering time, the accesses to shared mem

ory and the side effect on occupancy. Due to the large space reduction, the

data creation and transfer in the two new algorithms usually take much less

time than in the duplication algorithm. Data creation and transfer usually re

side on the critical path of dynamic simulation applications, but the sorting and

clustering in those two algorithms do not and hence can be largely hided (e.g.,

through the CPU-GPU pipeline in G-Streamline [99].) We will come back to

this point later in this section.

Algorithm Selection Based on the differences, we develop some simple guide

lines, as Figure 11 shows, to help programmers select the suitable algorithm when

writing a new program.

Meanwhile, we provide an automatic selector based on the online profiling

and adaptive control offered by G-Streamline, a runtime library we previously de

veloped [99]. The runtime library works when the GPU kernel is invoked in a

loop. By profiling the initial several iterations during runtime along with some per

formance models of the system (e.g., the time to transfer a data from CPU to

GPU, the time to create a data copy) built ahead of time through offline profiling,

37

it estimates the kernel running time and optimization overhead to determine the

suitable optimization algorithm to apply and the appropriate optimization param

eters to use (e.g., the fraction of data to optimize in partial duplication.) Many

irregular applications, including dynamic simulations and numerical calculations,

are of that iterative pattern and are amenable for the runtime library to work. Our

automatic selector employs the online profiling to estimate the amount of over

head of the algorithms and the kernel running time to pick the algorithm with the

largest performance potential.

Integration with G-Streamline We integrate the selector and the reorganization

algorithms into G-Streamline. G-Streamline uses a CPU-GPU pipelining scheme

to allow runtime optimization of a future kernel invocation to happen on CPU when

GPU is running the current invocation. However, if the future kernel's optimization

depends on its previous invocation result, the optimization has to happen on the

critical path. In that case, to make the optimization still happen asynchronously,

kernel splitting is used so that the computations of a kernel are split and put into

two parallel sub-kernels. The optimization of the second sub-kernel can run with

the invocation of the first sub-kemel. The ratio between the amount of task be

tween the second and first sub-kernel is called transformation ratio. The more

costly the optimization is, the lower the ratio has to be so that the invocation of

the first sub-kernel can hide the optimization overhead.

For all irregular applications we find, among the major operations in the three

algorithms, sorting and clustering can happen across kernel invocations, but data

creation and transfer are on the critical path due to dependences across kernel

calls. They have to rely on kernel splitting to hide their overhead. In Section 4.6,

we will see that the padding and sharing algorithms have much higher transfor

mation ratio than duplication for their much smaller overhead in data creation and

transfer. It is worth noting that G-Streamline uses its online profiling scheme to

38

determine the suitable transformation ratio to ensure all overhead is hidden. If an

optimization is infeasible to give benefits, G-Streamline shuts it down automati

cally to prevent any slowdown to the kernel.

Integrating the data reorganization algorithms into G-Streamline does not

change the library’s interface. It only adds a handful of functions as alternatives

to the duplication algorithm already presenting in G-Streamline. The usage of the

modified G-Streamline is the same as before [99]: Users insert several function

calls into the GPU application to invoke the runtime asynchronous optimizations

and online profiling; some minor changes to the kernel may be needed, including

replacing old indexing arrays with new ones.

2.6 Related Work

Sections 2.1 and 4.6 have compared this work with previous studies [18,87,99]

on optimizing dynamic irregular memory accesses on GPU. This section reviews

some other related studies.

A number of studies have proposed compiler techniques to optimize GPU

memory references. Examples include GPU optimizing compilers [41,97], OpenMP-

to-CUDA compilers [56], polyhedral models [9], performance tuning [80], and

many others that cannot be listed for lack of space. All these techniques have

focused on static irregularities that are amenable for compiler analysis. The us

age of shared memory in the design of our sharing algorithm is inspired by some

of those previous work [9]. But to our best knowledge, the sharing algorithm is the

first algorithm that uses clustering and shared memory to avoid data duplications

for runtime data reorganizations.

There are some recent studies exploring the synergistic usage of CPU and

GPU, including the execution strategies proposed by Huo and others [43], the ex

ploitation of OpenCL [51], and so on. In this work, we use the CPU-GPU pipeline

39

created in G-Streamline [99] as it meets the needs for hiding transformation over

head.

Thread divergence is another type of dynamic irregularity in GPU, defined

as the threads in a warp follow different paths of a kernel. Some hardware ex

tensions have been proposed to remove thread divergences from a kernel exe

cution [31,63]. Carrillo and others [15] have proposed loop splitting and branch

splitting to alleviate register pressure caused by diverging branches. As pointed

out by an earlier work [99], thread divergence and non-coalesced memory ac

cesses essentially stem from the similar source, a mismatch between threads

and data. It suggests that the findings from this study are potentially usable for

helping eliminate thread divergences as well.

Data reorganization has been used for many CPU data locality enhance

ments (e.g. [5,16,20,28,48,96].) Some of them have especially concentrated on

irregular applications [37,85]. Kulkarni and others have studied locality issues of

irregular data structures in the contexts of optimistic parallelism [53] and schedul

ing [45]. As a massively parallel architecture, GPU displays different memory ac

cess properties from CPU, exemplified by the hierarchical thread organizations,

hardware enabled memory coalescing, and the SIMT execution model. All these

features create differences in the challenges and opportunities in applying data re

organization, triggering the new set of innovations in this work on both complexity

analysis and transformation techniques.

2.7 Summary

This chapter presents some fundamental understanding in exploiting data reor

ganization for minimizing non-coalesced memory accesses on GPU. It points out

that it is possible to circumvent the complexity by relaxing the space constraint in

data repositioning. It introduces two new algorithms for minimizing non-coalesced

40

memory accesses while avoiding the space inflation problem of a previous algo

rithm. It compares the various algorithms, presents some selection guidelines,

and develops an automatic selector in a runtime library. Experiments show that

the new algorithms excel previous techniques especially under space pressure.

The algorithm assembly, assisted by the algorithm selector, enhances the perfor

mance of a set of dynamic irregular applications significantly, providing promising

solutions to a large class of dynamic irregular references.

Chapter

Capitalizing Non-Uniform Data Affinity

by Overcoming Data Dependences

3.1 Introduction

Due to the memory wall problem on traditional architecture, data locality has been

one of the most prominent factors that determine the performance of a program.

Its importance is even more pronounced on modern Chip Multiprocessors (CMP),

where, the last-level cache and memory bus bandwidth are typically shared by

multiple cores. The sharing causes contention among co-running applications,

and the effect intensifies as the number of cores grows on a chip. Data locality

enhancement is an important approach to tackling the problem. It reduces the

required accesses to the last-level cache and memory to alleviate the pressure

on shared memory hierarchy.

Special difficulties for locality enhancement come from irregular memory ref

erences. Such references often arise in dynamic simulation applications—such

as unstructured mesh simulation and molecular dynamics simulation—due to the

use of sparse and irregular data structures. A representative form of irregular ref

erences is A[P[i]\, where the index array P may be embodied in real applications

41

42

by an input array or intermediate computation results that are difficult to know until

run time.

Irregular memory references have several properties. First, because the con

tent of the index array P may be arbitrary, the references to A tend to cause seri

ous locality issues. Second, the memory access patterns of those references are

unknown until execution time. Third, applications having such references tend to

contain a main loop—such as, the mesh refinement loop in mesh generation, the

time elapse loop in molecular dynamics simulation—-that encloses the irregular

memory references. The access patterns of the references (e.g., the values in P)

often vary across the loop iterations. These properties make locality enhancement

of irregular references extremely difficult for static compilation techniques.

A number of prior studies [28,37,62,65,85] have pursued runtime data trans

formations to attack dynamic irregular references. The strategy is to reorder data

objects during an execution based on their exhibited access patterns.

However, the power of the prior transformations has been restrained by a

dilemma. In all prior techniques, the runtime data or computation reordering hap

pens synchronously—that is, the reordering is on the critical path of the applica

tion. This feature results in a tension between transformation quality and runtime

overhead: More sophisticated transformations often yield better locality and save

more execution time, but at the same time, they add more transformation over

head to the overall execution. The overhead can be substantial, especially for

sophisticated transformations. For instance, one application of RCB— a classic

data transformation approach—takes more than 20 simulation time steps in most

experiments reported in Section 3.7. Moreover, the transformation have to be ap

plied repetitively due to the iterative computations in dynamic simulations. Some

studies propose to apply the transformation occasionally rather than everytime

when access pattern changes [36,61], Unfortunately, it is subject to the same

43

quality-overhead dilemma: The less frequently the transformation applies, the

less overhead it causes, but the worse the data layout is.

In this chapter, we propose three orthogonal techniques to resolve the quality-

overhead dilemma.

The first is asynchronous data transformation, supported by a dependence-

circumventing decomposition. The basic idea is to hide the transformation over

head by offloading the main transformations from the critical path, making them

happen asynchronously (on an idle processor) in parallel with the execution of

the application. Despite the simplicity of the idea, to the best of our knowledge,

asynchronous data transformation has not been proposed previously. The plausi

ble reason exists in the circular data dependences between data transformations

and the execution of the application. On one hand, the transformation modifies

the data structure that the application needs to read; on the other hand, the trans

formation needs to read some results computed by the application to figure out

the appropriate data order. So, inherently, one invocation of a data transformation

must run serially with the corresponding iteration of the application. In this work,

we circumvent the problem by decomposing data transformation into two parts

and safely relaxing some dependences through a careful analysis and layout ap

proximation.

The second technique we develop aims at overhead minimization, especially

for a system equipped with massive parallel devices (e.g., GPU). We propose

a novel data transformation algorithm, named TLayout (T for throughput), which

reduces transformation overhead significantly with little compromise to the result

ing quality. Unlike traditional data transformation algorithms, TLayout is a mas

sively data-parallel algorithm, specially customized to the strengths of throughput-

oriented co-processors. It is novel in using an almost dependence-free approach

to grouping nodes into a number of clusters such that the nodes referenced adja

44

cently fall into the same cluster. The algorithm shows high efficiency and scala

bility.

Asynchronous data transformation and TLayout tackle the limitations of previ

ous data transformations in two orthogonal directions; one for overhead hiding, the

other for overhead minimization. Together, they help resolve the quality-overhead

dilemma that prior approaches have been facing.

The third technique we develop is an online adaptive scheme. By transpar

ently selecting the appropriate transformation strategy during runtime, the scheme

gains the best of both asynchronous and synchronous transformations, proving

able to overcome the limitations of both strategies.

Overall, the proposed techniques yield 65% higher performance improvement

than previous techniques do, accelerating the original dynamic simulations by as

much as a factor of 3.1 (2.4X on average) on five representative dynamic simula

tion benchmarks.

3.2 Background on Irregular References and Run

time Locality Enhancement

Irregular references commonly exist in dynamic simulation programs due to the

use of sparse and irregular data structures. They are typically in forms of indirect

references like -4[P[i]].

Previous solutions to irregular references use runtime data and computation

reordering. In computation reordering, the iterations of the central computation

loop are reordered so that the iterations accessing the same or adjacent data

elements are adjacent in time. This transformation requires that there are no de

pendences across the iterations. Techniques for determining the suitable iteration

order include lexicographical sort [24], bucket sort [65], z-sort [37], and so on.

45

Data reordering repositions elements in an array to improve spatial locality.

The basic strategy is to relocate the elements such that the elements that tend

to be accessed closely in time become close in memory space. Because deter

mining optimal data orders is an NP-hard problem in general [73], researchers

have proposed various heuristics-based algorithms, including consecutive pack

ing (CPACK) [28], Reverse Cuthill-McKee (RCM) [58], space filling curve (SFC) [62],

recursive coordinate bisection (RCB) [12], multilevel graph partitioning (METIS) [49],

and hierarchical clustering algorithm (GPART) [37], Previous studies [28,37] have

found that in most cases, the combination of the two— a data reordering followed

by a computation reordering—gives better results than each alone. In the follow

ing discussion, we use data transformation to refer to the transformations that use

data reordering or/and computation reordering for locality enhancement.

In all prior research, data transformation is applied synchronously with the

application. It is placed on the critical path of the application execution, hence

subject to the quality-overhead dilemma mentioned in Section 3.1.

3.3 Asynchronous Data Transformation

Asynchronous data transformation is our first technique for resolving the dilemma

between transformation quality and overhead. The basic idea is simple: putting

data transformation on a helper processor so that it can happen in parallel with

the application execution. However, to the best of our knowledge, this simple idea

has never been realized before. A plausible reason for the absence is the inherent

data dependences between data transformation and the transformed application.

To help explanation, we first outline the sketch of a dynamic simulation program,

Moldyn, as our example.

46

for each time step
if time_to_update()
IList “ update.IList (.Location);

end if

/* main computation with irreg. references to Location */
for each (i,J) in IList
f m calculate_force (Location[i], Location[j]);
Force[i] +“ f;
Force [j] -■ f;

end for

for each particle i
Location[i] » update.loc (Location[i], Force!i]);

end for
end for

Figure 12: The main loop of Moldyn.

3.3.1 An Example Irregular Dynamic Simulation Program

Moldyn is a program for simulating the movements of many particles caused by

their interactions. The program maintains a list, named “interaction list", to record

the particles that are close enough to interact with each other. The list consists

of a number of pairs; each pair contains the IDs of two particles that are close

enough in the particle space to have interactions. Figure 12 shows the pseudo

code of the computation kernel of Moldyn. It contains a time-step loop. In each

iteration, the program first checks if it is time to update the interaction list IList,

if so, it makes the update based on the current locations of the particles. It then

traverses the interaction list, and computes the force that a particle receives from

its neighbors. After that, the program updates the locations of each particle based

on the newly computed forces.

Apparently, the major computation is on the force calculation loop. The ref

erences to the Location and Force arrays in that loop are irregular references;

the IList array plays the role of an index array, whose content decides which ele

ments of Location and Force are referenced at which iteration of the loop. Each

time when IList gets updated, the patterns of the references to Location and Force

change accordingly.

47

This example shows some representative features of irregular dynamic sim

ulations. These applications usually contain a main loop (e.g., the time-step loop)

that encloses irregular references. The irregular references involve two data struc

tures; one is the reference target (e.g., Location and Force), the other is the ref

erence clue (e.g., ILisf)\ The values of the reference clue often vary across the

main loop iterations.

3.3.2 Synchronous Data Transformations

Runtime data transformation can benefit the force calculation loop in the Moldyn

example. The basic strategy of a typical transformation is to reorder the items

in the reference target according to the content of reference clue—for example,

moving particles that have interactions (by reading IList) close to one another in

Location and Force in the Moldyn example. Very often, a following computation

reordering is applied as part of the data transformation, in which, the iterations of

the loop (e.g., the force computation loop) that encloses the irregular references

are reordered. For the Moldyn example, it can be realized by reordering the pairs

in IList based on the new order of particles to further improve the locality.

One place to put the transformation is between the update of the reference

clue and the accesses to the reference target, as shown in Figure 13. This place

ment is natural because of the data dependences among those components. In

fact, this placement is what prior studies adopt. Because the data transformation

is put on the critical path of the execution, we call it synchronous data transforma

tion.

T h e s e terms are similar to “index array” and “data array" in some earlier work; using them
helps avoid confusion with some other terms in this chapter.

48

ILisr u pd a t e

r: lust, Location
w: IList

r: IList Force, Location
w: IList Force, Location

for each time step
t ime_to_update()
iat « update.IList (Location);

dA^TransjlList.Location.Force);
end

end for'

r; IList Force, Location
w: Force, Location

Figure 13: Dependence graph (left) and the synchronous data transformation (right) for the Moldyn example. (Y and V
lists the sets of data that are read and written respectively.)

3.3.3 Decomposition and Dependence Relaxation

Data dependences between data transformation and the application form a major

obstacle for asynchronous data transformation. Figure 14 (a) summarizes the

bi-directional (true) dependences.

We circumvent the dependences based on two properties of data transfor

mations. The first is that most data transformations can be decomposed into an

order analysis step and a data relocation step. The order analysis step computes

a locality-favorable order according to the reference clue, and the relocation step

repositions items in the reference target (and reference clue) based on the pro

duced order. When a data transformation is decomposed into these two com

ponents, the two dependence edges from the application to the transformation

become pointing to the two components respectively, as Figure 14 (b) shows.

The second is that not all dependences between data transformations and

the application are critical. Among the four dependences shown in Figure 14 (b),

the dependence from the application to the analysis component is not critical for

the correctness of the execution. In another word, if we violate the dependence,

the produced locality-favorable order may not lead to a desirable layout for the

(a) Before decomposition (b) After decomposition

Figure 14: Dependences between data transformation and the application. Eacb edge is a data dependence edge labeled
with the related data. Broken edges show dependences that are relaxed in asynchronous data transformation.

reference target, but the execution of the application will be correct still. Similarly,

if we violate the dependence from the relocation component to the application,

the application may have to use an old layout of the reference target rather than

the enhanced one; it may hence run slower than it could, but will still produce the

correct result. The same is true for the dependence from the analysis component

to the relocation component. On the other hand, the dependence from the appli

cation to the relocation component is critical. A violation of this dependence may

cause the transformed reference target (e.g., the Location and Force arrays) to

contain obsolete values and impair the correctness of the execution.

Based on the two properties, we develop asynchronous data transformation

by relaxing the three non-critical dependences in Figure 14 (b). The key of the

implementation is to decompose data transformation into two components, leave

the relocation component on the critical path but make the analysis component

run by a helper thread asynchronously, and allow the use of obsolete reference

clues for the computation of new data orders.

Figure 15 outlines the basic control flow for the Moldyn example. The master

thread executes the application and the relocation component, while the helper

thread runs the analysis component in parallel. At an update to the interaction

list, the master thread sends the new IList (or some other reference clue, e.g.,

coordinates of nodes) to the helper thread, and then continues its execution while

the helper thread computes for a new locality-favorable data order. If the new

50
Master Thread

Helper Thread

new order

Figure 15: Control flow of asynchronous data transformation for Moldyn.

order is not ready yet when the master thread reaches the “new order ready?"

check, it continues executing the following part of the application using current

data layouts. When the helper thread finishes computing the order (several time

steps may have passed since the order computation starts), it sets a flag so that

when the master thread reaches the “new order ready?” check again, it can use

the new order to reposition the reference target and reference clue to improve the

locality of some following iterations.

This design makes the analysis component of data transformation proceed

asynchronously with the application, but leaves the reposition component on the

critical path. In many data transformations, the most costly part is in the order

analysis rather than the data repositioning-as Figure 19 will show, the time ra

tios between them are between 6:4 and 8:2 for RCB. This design hence hides

the majority of the data transformation overhead. Meanwhile, because the place

ment of reposition component maintains the critical dependence (the solid line in

Figure 14 (b)), the application still runs correctly.

We now examine how the asynchronous data transformation relaxes the

three non-critical data dependences (the broken lines in Figure 14 (b)), and the

consequences. For the dependence from an application to the analysis com

ponent, in the asynchronous transformation, the reference clue passed to the

analysis component may be obsolete. It happens when the order analysis takes

longer time than an update period of the reference clue. As a result, the new order

51
ref. clue

.updated

analysis
rftnishedl
f <H> 1

ref. clue
updated

state
check

analysis <M>: M u te r thread
charges the state

<H>: Helper thread
changes the state

Figure 16: State transitions for thread coordination in asynchronous data transformation.

passed from the analysis component to the repositioning component may be not

as good as the computed data order if the current reference clue was used. The

ultimate consequence is that the layouts of the reordered reference target and

reference clue fit the obsolete rather than the current reference clue well. This

analysis reveals a potential loss of the data transformation benefits incurred by

the asynchronous scheme. Section 3.6 will show how this loss can be largely

prevented.

3.3.4 Thread Coordination

In this part, we present some implementation details on supporting the coordina

tion between a master thread and a helper thread in asynchronous data trans

formation. The implementation is based on a 6-state transition graph to ensure

in-time data transfers and meanwhile avoid unnecessary data copies.

We use a shared variable, protected by a lock, to coordinate the master thread

and the helper thread. Figure 16 shows the states recorded by the variable and

the state transitions.

When an execution starts and a helper thread is created, the master thread

sends the current reference clue to the helper thread, and sets the state to “busy".

From the “busy" state, there are two circular paths.

• Bottom circular path. When the master thread finishes an update to the ref

erence clue and the state is still “busy", it changes the state to “dirty", indicat-

52

ing that a new order needs to be computed because the reference clue has

changed. When the helper thread finishes its current job and passes its com

puted order to the master thread, it changes the state from “dirty” to “dready”. At

the next state check by the master thread, it will see that the helper thread has

just prepared a new data order and also it needs to get the current reference

clue to compute another data order. The master thread then sends the current

reference clue to the helper thread, conducts a reposition transformation using

the new order, and then changes the state to “busy”.

• Right circular path. If the helper thread finishes its job within one update period

of the reference clue, it changes the state to "ready”. At the next state check

by the master thread, it will see that the helper thread has just prepared a new

data order. It conducts the reposition transformation and then changes the

state to “done”. Note that it does not send the current reference clue to the

helper thread because the clue is identical to what the helper thread already

has, which is the key difference between the “read” and “dready” states. At

the next update of the reference clue, the master thread sends the clue to the

helper thread and changes the state to “busy”.

The design of the state transitions ensures that both threads receive neces

sary data in time, and meanwhile avoids unnecessary data transportation. For

instance, consider a case where during the computation of one new data order,

the master thread updates the reference clue three times. The state will remain

“dirty” after the first update until the helper thread finishes its job. As the master

thread sends no data in the "dirty” state, only the most recent reference clue (i.e.

the one after the third updates) is sent to the helper thread.

Asynchronous data transformation hides most transformation overhead, but

is subject to the use of obsolete reference clue. The longer a transformation takes,

the more obsolete the used reference clue is. Even though in many cases, the

53

gain exceeds the loss as Section 3.7 will show, reduction of the transformation

time will make its benefit more pronounced—the goal of the technique presented

next.

3.4 TLayout: A Transformation Algorithm for

Throughput-Oriented Processors

The second technique we develop is TLayout, a data transformation algorithm for

reducing transformation overhead by exploiting the special features of throughput-

oriented processors.

The motivation comes from the trend in modern architecture development.

Due to the high throughput and power efficiency, throughput-oriented proces

sors (e.g., GPU) are being increasingly adopted to co-run with general-purpose

CPUs. This trend is underscored by the recent Intel Sandy Bridge and upcoming

AMD Fusion processors, which have CPU and GPU on a single chip. Exploiting

throughput-oriented co-processors for irregular applications is a challenge, given

that these massively parallel co-processors are typically weak in handling com

putations with complex memory references, dependences, and control flows.

Our idea is to use such co-processors to accelerate data transformations for

CPU executions. This use of the co-processors is especially appealing for legacy

CPU code, because it needs virtually no code changes. Programmers only need

to insert three function calls (see Section 3.5) to invoke a data transformation

function we have developed for the co-processors. In contrast, many efforts are

needed for porting and tuning an irregular application to co-processors [99,100],

The paradigm of using co-processors for program optimizations offers an easy,

quick way for legacy programs to benefit from the co-processors (even though

the performance from manual code porting may be higher).

54

Unfortunately, none of previous data transformation algorithms is designed for

massively parallel architectures. Their complex control flows and dependences

make them unsuitable for throughput-oriented processors.

TLayout Algorithm TLayout is our solution to the problem. It is designed to be

massively data parallel. It produces locality of the similar quality as sophisticated

classic transformation algorithms do, but with one third of the overhead (on GPU).

As with many previous data transformation algorithms [37], TLayout is based

on the underlying graph structure of data references in the application. Simply

speaking, data elements that are referenced closely (e.g., in one iteration of an

inner loop) are regarded as neighbor nodes in a reference graph, having an edge

in between. Data locality optimizations are then mapped to a graph partitioning

problem. Partitioning the graph and putting nodes in a partition close in memory

usually improves spatial and temporal locality. In dynamic simulation programs,

the reference graphs are often already embedded in the reference clue— such

as the interaction list in Moldyn, and the mesh structure in a mesh refinement

application. As the reference graphs of these applications usually come from the

spatial or topological relations among objects (e.g., particles in a physical space),

it is typical that one reference graph covers all interesting data objects.

The strategy of TLayout is incremental clustering through iterative membership-

propagation based on the topology of the reference graph. The input to TLayout is

a reference graph, encoded as a number of node pairs, with each pair consisting

of two nodes that are connected by an edge in the reference graph. The output

is a number of clusters that partition the nodes of the graph completely in a way

that the nodes close in topology belong to the same cluster. The algorithm starts

by setting the membership of each node (i.e., which cluster it belongs to) to null.

It then proceeds in the following steps:

55

1. SEED PLANTING: TLayout randomly selects K nodes as the seeds for K clus

ters.

2. PROPAGATION: Every node whose membership is null checks the member

ship of its neighbors one after one. As soon as it encounters a neighbor whose

membership is not null, this node changes its own membership from null to the

membership of that neighbor.

3. LOOP: Repeat STEP 2 until the fraction of nodes having null membership is

below a preset threshold 6, or the number of times the propagation step has

been invoked reaches a preset upperbound U.

4. (optional) HIERARCHY CONSTRUCTION: Recursively merging the clusters

based on their closeness on the reference graph into a hierarchy.

5. LAYOUT: Finally, arrange nodes according to the resulting clusters. Nodes

in the same cluster are laid out nearby in memory. If a cluster hierarchy is

created, the leaf clusters are processed following their appearance order in

the hierarchy.

The propagation step dominates the time cost of the algorithm. But it is a

completely data-parallel process, meeting the strength of throughput-oriented pro

cessors.

Parameters and Adaptive Control There are two parameters in the TLayout

algorithm. The use of a small positive value of the parameter delta allows the

algorithm to stop with a small portion of nodes carrying null membership. These

nodes will be attached to the end of the final data layout. As the number is small,

they have little influence on the quality of the resulting data layout. But using

such a value may save one or multiple invocations of the propagation step. Like

many parameters used in practical systems, users set this value based on their

experiences and preferences. We use 1% as its value for all our experiments.

56

The second parameter is the number of clusters K. A large value of K leads

to quick membership propagation, hence few invocations of the propagation step.

However, it may hurt the quality of the resulting data layout: Many nodes that

have good reference affinity may fall into different clusters. The optimal value of

K depends on the graph properties and the application. As the reference graph

periodically changes throughout the execution of a dynamic simulation program,

its value is difficulty for users to set.

We design an adaptive control to automatically adjust the value of K. Af

ter each data transformation, TLayout compares the transformation time and the

length of the update period of the reference clue. If the transformation time is too

long, TLayout doubles the value of K to accelerate the next data transformation.

Typically, K starts with a small value (100 in all our experiments).

Implementation on GPU TLayout is designed for general massively parallel

architecture. We implement it using CUDA [3] in machines equipped with GPU.

CUDA is a C-like interface for GPU programming. A CUDA program consists of

a CPU code and a GPU code. The code executed on GPU is wrapped in func

tions called GPU kernels. A GPU typically contains hundreds of cores. There is

a certain amount of on-chip memory (called shared memory) and a large chunk

of off-chip memory (called global memory). When a GPU kernel is invoked, hun

dreds of GPU threads are launched to run the same GPU kernel with the same

parameters. Each thread has one unique ID number; the kernel may use thread

ID to trigger different behaviors of different threads.

In our implementation, each GPU thread manages one node in the graph.

Algorithms 2 and 3 outline the CPU code and GPU kernel respectively.

Discussions TLayout has some appealing characteristics worth mentioning.

First, it well exploits the massive parallelism of GPU. Assigning a thread to every

node makes the algorithm simple to implement and proceed efficiently. Second,

57

Algorithm 2 TLayout(num_nodes, numjedges, neighborjist)________________
1: // build a single array to store neighborhood info to prepare for GPU kernel

execution
2: for i = 0 to num_edges — 1 do
3: le f t = neighbor _ list[i\[0]]
4: r ig h t = neighbor J ,is t[i\[1];
5: if neighbor_size[left\ < M A X _N B _P er_N ode then
6: neighbor s[neighbor_size[left\ + +] = r ig h t ;
7: if neighbor_size[right] < M A X _N B _P er_N ode then
8: neighbor s[neighbor_size[right\ + ■+•] = le ft]
9: //randomly select K nodes as the seeds for K clusters

10: for i = OtO K — 1 do
11: member ship[rand()%(num_nodes)} = i\
12: while too many nodes have null membership do
13: //invoke GPU kernel for neighborhood-based clustering
14: TLayoutKemel«< ... »>(neighbors, membership);
15: //merge clustering results to generate a new data order
16: for / = 0 to num_nodes — 1 do
17: id jc lu s te r = member ship[i\]
18: cluster_lists[id_cluster\.append(i)]
19: ind = m erge_ lis ts(c luste rjlis ts);
20: return ind__

a node having a high degree tends to grab more nodes into its cluster than other

nodes do, which is a desirable property for spatial locality. Third, the algorithm

adaptively selects the appropriate number of clusters. This adaptivity fits the dy

namic properties of irregular simulation well. We note that TLayout specifically

exploits the massive parallelism in throughput-oriented devices (e.g., GPU). It is

not intended to be used on CPU. (Experiments show it is tens of times slower than

RCB on a CPU.)

3.5 Asynchronous Data Transformation Library (ATrans)

We integrate the techniques, along with previous transformation techniques, into

a Asynchronous Data Layout Transformation library (ATrans) to simplify their use.

ATrans consists of all the support for asynchronous transformation, the adaptive

TLayout algorithm, and a set of previously implemented data transformation func-

58

Algorithm 3 TLayoutKemel(neighbors, membership)_______________________
1: // load neighbors into shared memory
2 : . . .

3: // membership propagation
4: i = global_thread_number]
5: for j = 0 to M A X _N B _P er_N ode - 1 do
6: neighbor — get_neighbor{);
7: if membership[neighbor\ & \membership\i) then
8: //propagate membership
9: member ship[i] = member ship[neighbor};

10: break;

tions from University of Maryland [37]. It supports the asynchronous data trans

formation on both CPU and GPU.

Its usage is simple. To enable asynchronous data transformation for an appli

cation, it typically requires just an insertion of three function calls in the application

program, one in the initialization stage, one after the update of the reference clue,

and one at the beginning of the central loop (e.g., the time-step loop in Moldyn).

Figure 17 illustrates the use of the library for Moldyn. The ATransJnit_pipeline

function indicates whether CPU or GPU is to be used for analysis component,

creates a helper thread, initializes the state of the pipeline and necessary data

structures, and prepares the GPU execution if GPU is used. When the interaction

list is updated, the ATrans_analysis function checks the pipeline state and wakes

helper thread up to do transformation analysis if necessary. At the beginning of

each iteration of the time-step loop, the ATrans_reposition function checks the

state and reposition the data if it is time to do so.

3.6 Adapting On The Fly

The benefits of asynchronous transformation do not come for free. Recall that to

circumvent the data dependence, it uses obsolete reference clues as heuristics for

data transformations. Although in many cases the benefits outweigh the catch, it

is not always so. Whether an asynchronous transformation excels a synchronous

59

int main (int argc, char **argv)
{

/* * ̂ initialization of the simulation* * * /

ATrans_init_pipeline(ATRANS_CPU, interaction_list,
MAX_EDGE, coordinates, MAX_N0DE, forces);

for(iter = 0; iter < NUM ITER; iter++)
{
if(update_interaction_list() == true)
ATrans_analysis();
ATrans_reposition();
/***simulation kernel code***/

>
/***deal with result***/

}

Figure 17: Use of the ATrans library in Moldyn. Inserted codes are function calls with prefix “ATrans_".

transformation is subject to the ratio between transformation overhead and per

iteration computation time, the frequency of the update to reference clues, the

speedup, and so on.

We devise an online adaptive scheme to select the suitable transformation

strategy on the fly. The basic idea is to estimate the benefits of different strategies

during the initial time steps, and then apply that strategy to the remaining time

steps.

To figure out the overall benefits of synchronous transformation, it is neces

sary to determine the best frequency to apply it. Because of its transformation

overhead, applying it at every update of reference clues is often sub-optimal. We

employ a prior method [61] to solve the problem. By applying the synchronous

transformation only once, it can determine the best frequency and estimate the

overall benefits by observing the computation speed in a number of iterations fol

lowing the transformation. The process introduces no extra overhead.

Figuring out the overall benefits of asynchronous transformation is less straight

forward. As asynchronous transformation is off the critical path, it can be applied

often. In our design, it is applied at the reference clue update following the fin

ish of the previous asynchronous transformation. Because the per iteration time

60

varies across update periods, it is difficult to get a closed form to compute all the

ending/starting time points of asynchronous transformations, causing difficulty for

benefit estimation.

Our solution is to emulate the timeline of the kernel computation and the ap

plications of asynchronous transformations. For space constraint, we describe it

briefly. It requires the following parameters: the analysis and reposition times of

a data transformation, the frequency of reference clue update, the total time steps

of the kernel computation, and computation speed in a number of iterations fol

lowing the transformation. Attainment of these numbers needs one application of

the transformation only. An emulation of the timeline involves the computation of

a number of linear expressions for calculating when each asynchronous transfor

mation will apply and how many time steps of computation can benefit from it. The

emulation takes less than 0.01% of overall running times in all our experiments.

After estimation of the overall benefits of synchronous and asynchronous

transformations, the winner will serve for the rest of the execution. Although the

program may not be using the optimal transformation scheme during the initial

time steps, the next section will show that the influence is small as these steps

take only a small portion of the entire simulation.

The adaptive scheme may suffer if some key factors (e.g., frequency of ref

erence clue update) change dramatically across time steps. Fortunately, most

dynamic simulations do not see such drastic changes.

3.7 Evaluation

We conduct a series of comparisons to evaluate the values of the techniques. We

give an overview of the results first.

• Asynchronous Transformation: As Section 3.3 mentions, asynchronous trans

formation hides most overhead, but its use of obsolete reference clues may

61

have certain side effects on the resulting locality. We conduct a head-to-head

comparison between asynchronous and synchronous transformations (both

using RCB on CPU) in terms of the overall performance and resulting local

ity of the transformed applications. The result shows both the strength and

weakness of the asynchronous transformations. On three benchmarks, asyn

chronous transformations lead to 18% more speedup than synchronous trans

formations do. In addition, for these benchmarks, using an extra CPU core

for transformation brings 15% more speedup than using that core for compu

tation, justifying the resource usage of the asynchronous transformations. On

the other hand, the negative effects of obsolete reference clues outweigh the

benefits of asynchronous transformations on two other benchmarks, leading to

slightly less speedup than the synchronous transformations do.

• Runtime Adaptation: The runtime adaption scheme is able to identify the best

transformation strategy for all benchmarks. With low overhead, it helps exert

the strength of both asynchronous and synchronous transformations.

• TLayout: By comparing with a prior sophisticated algorithm (RCB), we observe

that in most cases, the TLayout algorithm produces data layout of similar quality

as the prior algorithm does, but takes around one third time to run.

• Overall: When the techniques are applied together, they generate 1.3-3.1X

speedup over the original performance of five benchmarks, outperforming the

state-of-the-art data transformation techniques significantly.

The conclusions obtained are based on measured wall-clock times and con

firmed by hardware performance counters results.

3.7.1 Methodology

Platform All experiments happen on a dual-socket dual-core AMD Opteron 2216

machine in the National Center for Supercomputing Applications. The machine

62

is equipped with an NVIDIA Tesla S1070 GPU with 16GB DDR3 memory. It con

sists of four Tesla T10 C1060 GPUs, with each containing 240 cores, organized in

30 streaming multiprocessors. We use only one of the GPUs in our experiment.

The machine runs Linux 2.6.33. We use GCC 4.3.2 (with ,,-03 ’’ flag) as the com

piler and CUDA 3.0 as the GPU programming model. We employ Iibpfm4 [1] for

collecting cache performance data.

Benchmarks We concentrate our experiments on a dynamic simulation bench

mark suite from Han and Tseng [37], and two other programs, Mesh and CFD, re

spectively from the Chaos group [25,103] and the Fluid Dynamics community [21].

The suite from Han and Tseng consists of three representative programs, Nbf, Ir-

reg, and Moldyn. They are all derived from real applications. Nbf is abstracted

from GROMOS, a force field of molecular dynamics simulation; Irreg is the ker

nel of an iterative partial differential equation solver; Moldyn is from a molecular

dynamics simulation named CHARMM. These three benchmarks have been com

monly perceived to be representative, and have served as the only benchmarks in

some influential data locality studies in dynamic simulations [37,52,85], We add

two more benchmarks to increase the coverage. Mesh is an unstructured mesh

simulation. CFD is an unstructured grid finite volume solver for three-dimensional

Euler equations for compressible flow. Similar to the extensions Han and Tseng

made to Irreg [37], both Mesh and CFD are modified to accommodate dynamic

changes in the underlying mesh or grid structures.

Table 3 lists the properties of the inputs used with these benchmarks. FOIL

and AUTO are 3D meshes of a parafoil and GM Saturn automobile, respectively.

MOL1 and MOL2 are small and large 3D molecule models originally obtained

from MOLDYN application. The results on all inputs show similar performance

trends. Due to space constraints, our discussion concentrates on the results on

large inputs (AUTO and MOL2) for the severity of their locality issues.

63

The frequency of the update to reference clues affects the problem setting

and the potential of runtime data transformations. We experiment three typical

frequencies: one update in every 10, 20, or 30 iterations of the main computation

loop of the applications.

Transformation Frequency Data transformation can be applied as often as

once per update of the reference clue, or once every several updates. The more

frequent it is applied, the better the locality of the application is, but meanwhile,

the more overhead it incurs.

For the asynchronous paradigm, the transformation frequency is automati

cally determined by the 6-state master-helper coordination scheme as described

in Section 3.3.4. The problem is tricky for synchronous transformations. For a fair

comparison, one seemingly straightforward option is to use the same transfor

mation frequency as the asynchronous transformation uses. But this option is in

fact unfair to the synchronous scheme. That frequency often causes much worse

performance than some other frequencies for synchronous transformations. A

previous study [61] introduces a method to analytically determine the optimal fre

quency for synchronous transformations. We have verified the optimality of the

method through a sequence of empirical measurements. In all our experiments,

we use optimal frequencies found in that way for synchronous transformations.

Algorithm and Others We select previously proposed RCB algorithm (imple

mented by Han and Tseng [37]) as the analysis algorithm in all CPU experiments,

synchronous or asynchronous. RCB has been shown to be one of the most

sophisticated algorithms that produce the largest locality enhancement for most

benchmarks [37], Our experiments echo that despite it is more expensive than

some other methods (e.g., CPACK), its overall performance is often among the

best when it is applied synchronously at the best frequency.

64
Table 3: Inputs*

Name # Nodes # Edges Description
FOIL

AUTO
MOL1
MOL2

144649
448695
131072
442368

1074393
3314611
1179648
3981312

3D mesh of a parafoil
3D mesh of GM’s Saturn

3D molecule distribution (sm)
3D molecule distribution (Ig)

*: come from Han and Tseng [37],

As the asynchronous transformation is mainly on data reordering, we apply

the same computation reordering (lexicographical sort) to all experiments. The

computation reordering overhead is small (less than one seventh of RCB) and is

counted in data repositioning overhead in all experiments.

3.7.2 Experimental Results

We experiment both single-thread and parallel executions of the benchmarks.

They show similar conclusions. We first give a detailed analysis using the single

thread results, and then report the parallel results at the end, along with the justi

fication of the resource usage by asynchronous transformations.

Sequential Executions

Figure 18 shows the comparison of overall running times. Each time consists of

the application running time and all transformation overhead that is not hidden

(including data transfer between CPU and GPU).

^^■ syn c fccpu
H H s s y n c h c p u
HHjssynchgpu
I I adaptive selection

III
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

IRHEG NBF MOUJYN CFO MESH

Iterations Per Update

Figure 18: Speedup of the overall executions for single-threaded benchmarks. The speedups are over single-threaded
benchmarks without any data transformation applied.

65

IRREG, NBF, MOLDYN On the first three benchmarks, the synchronous trans

formations show 77% average speedup. The asynchronous transformations on

CPU show 18% more average speedup. The benefits come from two aspects.

First, the asynchronous scheme hides significant transformation overhead, as

Figure 19 reports. The second benefit relates with the first. Because the transfor

mation incurs smaller overhead on the critical path than the synchronous scheme

does, it is automatically applied more frequently by the master-helper coordina

tion scheme than the synchronous one. The more frequent transformation yields

better locality, confirmed by the L2 cache miss rates shown in Figure 21. The fig

ure shows a few exceptional cases (e.g., the configuration "Moldyn 30"), in which,

the two transformations are applied at the similar frequencies; the use of obsolete

reference clues causes the relatively less locality enhancement. However, thanks

to the overhead hiding by the asynchronous transformation, it leads to the better

or similar overall performance still, as Figure 18 shows.

We stress that the synchronous results are what we get when

the optimal transformation frequency is used. Increasing invocation frequency of

the synchronous transformations yields only worse overall performance due to

the large overhead incurred, while decreasing the frequency worsens the perfor

mance as well due to the less locality enhancement to the application, as Figure 20

illustrated.

co0l
.3 0 8Eo
O 06
S
8
£ 0 4
aK
I
oz

10 20 30

MESH
10 20 30 10 20 30 10 20 30

CFO

10 20 30

IRREG MOLDYNNBF

Iterations Per Update

Figure 19: Optimization cost on critical path. The results are normalized over those of synchronous transformation.

66

20 40 60 80

Iterations Per Transformation

Figure 20: Speedup of ERREG with different transformation frequencies. Neighbor list is updated every 20 iterations.

0.8

0.6

Q 0.4

.a 0.2

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

iRREG NBF MOLDYN CFO MESH

Iterations Per Update

Figure 21: L2 cache performance comparison between synchronous and asynchronous data transformation. Results are
normalized over those without any transformation.

The asynchronous TLayout produces even larger benefits than the asyn

chronous CPU approach. The extra speedup ranges from 28% to 112% with an

average of 65% over those of the synchronous scheme, and 25-58% better than

those of the asynchronous CPU results. The extra benefits come from two ap

pealing features of the TLayout algorithm. First, it runs 2.8 to 3.3 times faster

than the RCB algorithm, thanks to its effective exploitation of the throughput-

oriented processors. Second, it produces data layout of comparable quality as

the sophisticated RCB algorithm does as Figure 22 reports. These two features

together explain why asynchronous TLayout produces better data locality than

the asynchronous CPU does. The second feature ensures that each invocation

of the data transformation in the two schemes are similarly powerful, while the

67

first feature entails much more affordable invocations of data transformations in

the asynchronous TLayout than in the asynchronous CPU.

I - 0.8

s

s< 0.4

H B r c s
C........iTLayom

i " iIt I■■II-
IRREG NBE MOLDYN

Figure 22: The time per iteration of the computation loop after a transformation is applied. It is the average of 100 iterations
following the transformation. The results are normalized over those of single-threaded benchmarks with no transformations
applied.

CFD and MESH The results on these two programs show a trend different from

the other three programs. On both of them, changes to the reference clue dur

ing the simulations are less significant than on the other programs. The overall

speedups from the transformations are still large because the initial data layout

is inferior. However, because the changes are small during the simulation, there

is no need to apply transformations often. There is limited overhead for asyn

chronous transformations to hide. Consequently, the negative effects of the use

of obsolete reference clues become noticeable. So on both programs, regardless

the reference clue update frequencies, the asynchronous transformations per

form slightly worse than the synchronous transformation. The L2 cache results of

Mesh in Figure 21 seem counter-intuitive: Asynchronous ones are lower than the

synchronous one. A plausible reason is that the locality of the program is mainly

embodied by other metrics. For instance, the synchronous scheme has L1 cache

miss rate half of that of the asynchronous GPU scheme.

Adaptive Selection The adaptive selection scheme successfully selects the

best strategy to use for all cases. Because some transformations in the initial

time steps do not use the optimal strategy, there are slight differences between

68

the speedups from the adaptive scheme and those of the best strategy. How

ever, overall, it achieves the near best performance on all benchmarks, show

ing the promise for exerting the strength of both asynchronous and synchronous

transformations.

Parallel Executions

Figure 23 reports the similar comparison but on parallel executions of the bench

marks. For the baseline (i.e. no transformations applied) and “synchronous CPU",

we use 4 threads for each benchmark as the machine contains 4 cores. In “asyn

chronous CPU" and "asynchronous GPU" case, we use 3 threads for each bench

mark so that the transformation can happen on the remaining core.

■ ■ synch cpu
M B Myochcpu
H H ju y n c h g p u
I I a d u tty selection

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

IRREG NBF MOLDYN CFO MESH

Iterations Per Update

Figure 23: Speedup of the overall executions for parallelized benchmarks. The speedups are over parallelized benchmarks
without any transformation.

The results show similar conclusions as the single-thread experiments do.

One particular point we want to mention is that even though the “asynchronous

CPU” uses one fewer worker threads than “synchronous CPU", with the help from

the asynchronous transformation, it still excels in resulting performance. Part of

the reason is that the irregular applications have many communications among

threads due to the inherent properties of the applications. As a result, the par

allel program shows sub-linear performance scalability in the number of threads.

Adding the fourth worker thread improves the performance of the programs by 6%,

exceeded by the benefits from the asynchronous transformations. The results

69

justify the resource usage of the asynchronous transformations. In addition, the

parallelization imposes different influence on the locality of different benchmarks.

The locality issue of CFD becomes especially serious after the parallelization,

hence the large benefits from data transformations.

More Results on TLayout Algorithm

The speed of membership propagation in the algorithm determines the number

of iterations the propagation has to happen (to reach the predefined threshold <S).

In all the experiments reported in previous sub-sections, the average numbers of

needed propagation iterations are no larger than four. This result indicates the

high speed of membership propagation. Analytically, it may be attempting to think

that if the closest center is K hops away from a node, it would take K iterations

of propagation for that node to be clustered. However, because global memory is

used for membership labels, during an iteration of propagation, the membership

of a node becomes visible to all threads (e.g., all nodes) immediately after the

node gains its membership. For instance, in Figure 24, node N3 can be clustered

in one propagation if either of the following two conditions is met: (1) N3 is visited

after N2 and N2 is visited after Ni, (2) N3 is visited after N5 and N5 is visited after

Na. In TLayout, the visiting order of nodes is random; in the GPU implementation,

the order is determined by the scheduling of GPU threads, which exhibits large

randomness.

To examine the scalability of the algorithm, we create a spectrum of problems

of different sizes. At each size, we run the algorithm 7 times to get the average

number of propagations required to duster 99% nodes. As the focus is on as

sessing the propagation speed, we fix the number of clusters to be 100 in all runs.

Results in Figure 25 demonstrates the good scalability of the algorithm.

Overall, the results demonstrate that both the asynchronous data transforma

tion and the TLayout algorithm are able to produce certain degrees of benefits for

70

N s
Figure 24: An example showing the membership propagation in TLayout. The filled node is already clustered; the others
are not.

35

z
(A

25

O

i
z

350 650
Num. of Nodes(K)

800 110Q

Figure 25: Scalability of TLayout

the enhancement of data locality of irregular dynamic simulations. Together with

the online adaption scheme, they resolve the quality-dilemma faced by existing

data transformation techniques, and yield significant performance improvement.

3.8 Related Work

In Section 3.2, we reviewed some prior data reordering and computation reorder

ing techniques for the enhancement of data locality of dynamic simulation pro

grams. In addition, Strout and others have proposed a compile-time framework

that allows the explicit composition of run-time data and iteration reordering trans

formations [85], Kulkarni and others [53] have studied locality issues of irregular

applications in the context of optimistic parallelism. They concentrate on the par

tition of data among threads rather than data layout reorganizations for locality

improvement.

Recent years have seen a rapid increase of the use of GPU for data-parallel

computing. Previous work on CPU-GPU cooperative computing concentrates on

71

offloading some computation-intensive and easily parallelizable parts of an appli

cation to GPU. In this scenario, the key issue is how to partition the jobs among

GPU and CPU [76], and how to optimize GPU code to maximize the comput

ing efficiency on GPU through compiler techniques [9,56,97], runtime optimiza

tions [99,100], or empirical search-based optimizations [59]. Some recent studies

attemp to enable seamless translation between GPU and CPU code [33,34,84],

We are not aware of prior proposals in using GPU to do runtime optimizations for

CPU computing.

There are many clustering algorithms developed in the machine learning

area [39], But most of them are distance-based (e.g. K-Means) rather than

topology-based. Our search yields no satisfied topology-based clustering algo

rithm that is simple and fits GPU well, hence our development of TLayout.

3.9 Summary

This chapter presents three techniques for resolving the quality-overhead dilemma

of data transformations for irregular references. The first, asynchronous data

transformation, moves data reordering off the critical path through dependence

circumvention and layout approximation. The second, TLayout, is a novel data

transformation algorithm designed to take advantage of modern throughput-oriented

processors. The third technique, adaptive control, allows transparent selection

of suitable transformation schemes for an execution. Together, they improve

the performance of some irregular dynamic simulations significantly. In addition,

this study initiates a new way of collaborations between CPU and co-processors,

which may lead to some unconventional directions for program optimizations in a

heterogeneous computing environment.

Chapter

Enabling Program-Level Control of

Scheduling on GPU

4.1 Introduction

With hundreds of cores integrated, GPU often creates tens of thousands of threads

for an application. The massive parallelism produces large potential throughput,

but also imposes grand challenges for thread management, or scheduling.

Scheduling determines when and where a task is processed. It is essential

for matching communication and memory access patterns with underlying archi

tecture, in order to fully tap into the power of a parallel system. Scheduling is

usually controlled by thread schedulers. On CPU, the thread scheduling is imple

mented through system APIs. But on GPU, there is no such software API; the

scheduling on GPU has been controlled by hardware and runtime. Such a de

sign is demanded by the scale of parallelism: Hundreds of thousands of threads

need to be scheduled in no time. However, the lack of software-level control

of scheduling forms a major barrier for software to leverage scheduling to opti

mize program executions. What increases the barrier is that the scheduling al

gorithms employed by GPU hardware and runtime have remained non-disclosed;

4

72

73

the schedulers vary substantially across generations and have exhibited some

obscure and non-deterministic behaviors (detailed in the next section).

The restrictions have drawn some recent attentions from researchers in var

ious domains. A number of studies independently invented the method of per

sistent threads to go around the hardware scheduling problem [6,19,35,89,95].

The idea is to create only a small number of threads that can simultaneously run

actively on a GPU. Unlike in traditional kernels where a thread terminates as it

finishes a task, these threads stay alive throughout the execution of a kernel func

tion. They continuously fetch and execute tasks from one or more task queues.

By controlling the order of the tasks in the queues, one can match the executions

with some communication patterns among tasks—-for example, putting a producer

and its consumer into the same queue, thread.

Although persistent threads offers some support to task scheduling on GPU,

the support is restrictive. It only decides which tasks map to which persistent

thread and their execution order; it gives no support for deciding where or on which

processor a task should run. Such location control is still up to the hardware and

proprietary runtime, which decide the placement of persistent threads, and hence

the placement of tasks associated with those threads.

Lack of such scheduling control at the spatial dimension hinders persistent

threads in supporting optimizations that are related with non-uniformity in proces

sors. For instance, a modern GPU consists of multiple streaming multiprocessors

(SM), with each containing tens of cores. Cores on one SM usually share some

on-chip storage on that SM (e.g., L1 cache and texture cache). As a result, one

task may be able to read the data in a cache brought by another task that con

currently runs on the same SM. With location control, one could make two tasks

that share lots of data run concurrently on the same SM1. Such optimizations are

especially beneficial for tasks with non-uniform data sharing, which include tasks

1 Mapping two tasks to the same persistent thread can also make them map to the same SM,
but the tasks have to run serially by that thread, throttling the benefits of synergistic data fetching.

74

of many irregular applications (e.g., N-body simulations), as well as tasks coming

from different kernels (or applications) that are deployed concurrently on a GPU.

Besides for data sharing, the spatial control is critical when there are architectural

variations among SMs. Unintentional variations among SMs in a GPU already

widely exist today [40]; with frequency scaling [54] possibly implemented in future

GPU, even more substantial (intentional) variations (e.g., different SMs could be

reconfigured to different clock frequencies to balance energy and performance)

are possible. In these scenarios, spatial control of scheduling is important for

matching tasks with the suitable SMs.

in this work, we show that spatial scheduling control actually can be enabled

through a simple program transformation, called SM-centric transformation.

SM-centric transformation includes two essential techniques. The first is SM-

based task selection. In a traditional GPU kernel execution, with or without per

sistent threads, what tasks a thread executes are usually based on the ID of the

thread (or determined randomly in a dynamic task management). While with SM-

based task selection, what tasks a thread executes is based on the ID of the SM

that the thread runs on. By replacing the binding between tasks and threads with

the binding between tasks and SMs, the scheme enables a direct, precise control

of task placement on SM.

The second technique is filling-retreating scheme, which offers a flexible con

trol of the amount of active threads on an SM. Importantly, the control is re

silient to the randomness and obscuration in GPU hardware thread scheduling. It

helps SM-centric transformation in two aspects. First, it ensures an even distri

bution of active threads on SMs, which is vital for guaranteeing the correctness

of SM-centric transformations. Second, it facilitates online determination of the

parallelism level suitable for a kernel, which is especially important for the per

formance of multiple-kernel co-runs, a scenario benefiting significantly from SM-

centric transformation.

75

SM-centric transformation, by enabling flexible program-level control of task

scheduling, opens up many new opportunities for optimizations. In our experi

ments on 72 co-runs of kernels, it helps produce on average 33% improvement in

system throughput and turnaround time. When applied to locality enhancement,

the enabled spatial scheduling shortens the execution times of four irregular appli

cations by 20% on average. In both cases, it significantly outperforms the support

that persistent threads provide. These results indicate that SM-centric transfor

mation, by complementing prior methods, provides a critical missing piece of the

puzzle for enabling a flexible control of task scheduling on GPU.

4.2 Background

We base our discussions on terms in NVIDIA CUDA [2J; but the technique could

be applied to other GPU programming models.

Organization of Cores and Threads As a massively parallel architecture, a

GPU consists of a number of streaming multiprocessors (SM), with each contain

ing tens of cores. A GPU usually creates a large number of threads at the launch

of a kernel (i.e., a CPU-invoked function that runs on GPU). These threads are

typically organized in a hierarchy: 32 compose a warp, many warps compose a

thread block or called a cooperative thread array (CTA) and many CTAs compose

a grid.

Spatial Scheduling A CTA is the unit for spatial scheduling: At a kernel launch,

the GPU hardware scheduler named GigaThread [70] assigns each CTA to one

of its SMs. The assignment algorithm has not been disclosed to the public. It

differs from one generation of GPU to another, and exhibits lots of irregularity.

For example, our experiments on Tesla M2075, a type of widely used workstation

GPU, show different CTA-to-SM assignments in two repeated invocations of the

76

same kernel on the same input, and neither is in a round-robin or other regular

predictable pattern.

Temporal Scheduling A warp is the unit for temporal scheduling: All threads

in a warp proceed in lockstep. Many CTAs may be assigned to an SM, but at

one time point, only a limited number of them can be active— meaning that they

attain enough registers and other hardware resources and are ready to run. All

other CTAs have to wait until some active CTA finishes executing the entire kernel

function and releases some hardware resources.

Non-Uniformity on GPU Spatial scheduling is potentially beneficial to GPU, as

non-uniformity exists on both GPU resource sharing and its workload.

On the resource sharing aspect, modern GPU features non-uniform cache

sharing. In Tesla M2075, for instance, there are 14 SMs, with each containing

some cache—such as, instruction cache, L1 data cache, constant cache, and

texture cache—that is shared by all cores on that SM but is not accessible by

other SMs.

On the workload aspect, non-uniformity shows in two levels. For a single

GPU kernel, a CTA may share different amounts of data with different CTAs.

Molecular Dynamics (MD) simulation is such an example. It simulates interac

tions among neighbor atoms. The atoms simulated by two CTAs may have many

or few neighbors, depending on the distances among them in the simulated space.

That naturally leads to non-uniform data sharing among CTAs. Meanwhile, recent

generations of GPU start to support concurrent executions of multiple kernels on

a single GPU. Although currently the kernels have to be launched from a single

CUDA context, a more general support for concurrent executions of multiple GPU

applications is expected to come in the near future. In these co-run scenario’s,

non-uniformity becomes even more common: CTAs from the same kernel often

share more instructions and data than CTAs from different kernels do.

77
createJobQ4sms(); II on CPU

createJobQ4workers(); / / on CPU
kernel_org() kernel_smc()

jobID = f (w orkerlD); kernel_persist() smID = getSMID();
processjob (jobID); while (jobID = JobQ [workerlD].next() != null) jobID =]obQ [sm lD].next();

processjob (jobID); if (jobID != null)
processjob (jobID);

(a) original kernel (b) w ith persistent thread (c) w ith SM-centric task selection

Figure 26: Conceptual relations among jobs, workers, and SMs.

The non-uniformity suggests the potential of spatial scheduling. As Sec

tion 4.6 quantitatively confirms, a good spatial scheduling may bring an over 30%

speedup on average.

4.3 SM-Centric Transformation

At the center of SM-centric transformation are two techniques: SM-centric task

selection, and a filling-retreating scheme. In this section, we first explain the ba

sic ideas of the two techniques and how they complement each other to form

a single solution to circumvent the limitation from the hardware scheduler. As

the techniques are generally applicable to various GPU programming models, we

use high-level pseudo-code for description and skip detailed complexities in im

plementation so that the ideas can be easily grasped by general readers. We

then use CUDA as an example programming model to explain the detailed imple

mentation of the techniques, including some subtle considerations that are critical

for the techniques to work efficiently. We show that the entire SM-centric trans

formation can be conducted through a simple pass by compilers. At the end, we

give some discussions on the soundness of the transformation and its applicable

conditions.

4.3.1 SM-Centric Task Selection

Basic Idea SM-centric task selection associates tasks with SMs. We explain it

based on the following abstract model of GPU kernel executions.

78

Commonly, an invocation of a GPU kernel causes many GPU threads to cre

ate, which are often organized in a hierarchical structure. At an abstract level, the

execution of a GPU kernel can be regarded as consisting of many jobs2 conducted

in parallel by a number of workers on some SMs. Here, a worker corresponds to

a group of GPU threads (e.g., a CTA), and a job corresponds to the operations

conducted by such a thread group, including all their data accesses. There is a

unique ID number associated with each job, worker, and SM.

In traditional GPU programs, which job a worker does has been determined

by the worker’s ID, as the pseudo code in Figure 26 (a) shows. The technique of

Persistent threads maps multiple jobs to a single worker, but the set of jobs for

a worker is still determined by the worker’s ID, as shown in Figure 26 (b). Since

the placement of workers on SMs is controlled by the hardware schedulers, the

job-worker binding makes the placement of jobs on SMs solely depend on the

hardware schedulers.

The idea behind SM-centric task selection is to replace the job-worker binding

with a binding established between jobs and SMs. As Figure 26 (c) shows, a job

queue is built for every SM before the invocation of a kernel function. Inside the

kernel function, each worker first figures out on what SM it resides, and then uses

the SM ID to fetch the next job in the corresponding job queue to execute. In this

way, controlling the placement of a job on a specific SM becomes simple: Just

putting that job’s ID into the job queue of that SM.

The idea is straightforward. But some complexities must be addressed to

implement the idea soundly and efficiently.

Correctness Issues by Hardware Schedulers Through a close look at the

pseudocode in Figure 26 (c), one will see that for it to work correctly on a GPU

program, the number of workers assigned to an SM must be no fewer than the

2ln this work, “job" and “task” are interchangable terms, although we tend to use “job" more
often when referring to entities in this abstract kernel execution model.

79

number of jobs assigned to the SM. It is because in that code, one worker on an

SM processes only one job assigned to that SM. Some jobs on that SM would be

left unprocessed if the number of workers is less than the number of jobs.

However, how many workers are assigned to an SM is determined by the

GPU hardware scheduler. Our experiments indicate that the assignment by hard

ware schedulers is often unpredictable. On a Tesla M2075 with 14 SMs, for in

stance, when running a kernel with 1400 workers (i.e., CTAs), we observe an

uneven distribution of workers: the number of workers per SM varies from 92 to

110. And when running the kernel with 14 workers, some SMs get multiple work

ers while others get none. Moreover, the worker distribution varies from run to

run, displaying lots of randomness.

Such non-determinism jeopardizes the soundness of the basic SM-centric

task selection. An option is to allow dynamic job stealing such that workers on

one SM can steal jobs left on another SM. It requires more complicated code to

be inserted into the GPU kernel to implement the job stealing logic, and hence in

creases register pressure and reduces parallelism. More importantly, the stealing

changes the intended job-to-SM mapping.

4.3.2 Filling-Retreating Scheme

We address the complexity through a filling-retreating scheme. This scheme of

fers a simple way to precisely control the number of active workers on each SM.

The scheme works hand-in-hand with the concept of persistent threads. Sim

ilar to persistent threads, with this scheme, a small number of workers are kept

alive for each SM throughout the kernel execution. These workers continuously

fetch and process the jobs assigned to the SM until the queue gets empty. The

tricky part is on how to precisely control the number of active persistent threads

(or in our term, active workers) for each SM.

80

Filling-retreating offers a simple solution. It leverages a common property

of GPU schedulers. On GPU, each SM can only support a limited number of

active workers at the same time due to hardware limitation. On all GPUs we

tested, despite the differences in their schedulers, one common property is that

they always try to assign a worker to an SM that can still accommodate some

active workers if there is any (rather than putting the worker into a waiting queue

of an SM).

Suppose that one SM can support at most m active workers at the same time.

In the filling-retreating scheme, a total of m * M workers are created at a kernel

launch, where M is the number of SMs in the GPU. Due to the aforementioned

common property, each SM gets m workers assigned. This step is the “filling” part

of the scheme.

Although the “filling” step ensures every SM gets m workers, as multiple stud

ies have shown [50,59], having the largest number of workers on an SM is not

always the best for maximizing the computing efficiency due to cache and bus

contention. This phenomenon is also confirmed in Section 4.6. The “retreating"

part of our scheme facilitates flexible adjustment of the number of active workers

on an SM. Suppose one wants to have ntarget active workers per SM. A counter is

created for each SM to record the number of workers that have started process

ing jobs on that SM. Each worker, before starting working on a job, first atomically

increases the corresponding counter and then checks whether the counter value

already exceeds ntarget. If so, the worker exits immediately. Figure 27 shows the

pseudo code.

The correctness of the filling-retreating scheme relies on the fast distribution

of thread blocks by the hardware scheduler. That is, the filling phase should fin

ish before any thread block retreats (i.e., exiting its execution). Otherwise, the

hardware scheduler could assign totally more than m workers onto an SM be

cause of the vacancy on that SM formed by the early retreat of some workers on

81
createJobQ4sms(); II on CPU

kernel smcO
smID = getSMIDO:
workers = workerCounters[smlD]++; //atomic
if (workers > wantedNumPerSM)

return;
while (jobID = JobQ[smlD].next() != null)

processjob (jobID);

Figure 27: Psuedo code of a GPU kernel in a filling-retreating scheme.

it. Correspondingly, some other SMs would get less than m workers assigned.

Fortunately, our experiments show that such cases have never happened, plau

sibly due to the extreme speed of the hardware-based assignment of workers. A

check put into the runtime driver could further ensure the condition to hold, the

necessity of which is not shown in our experiments.

The benefits of the precise control of the number of active workers on an

SM goes beyond helping with the correctness of SM-centric task selection. It also

enables a precise control of parallelism on GPU, which facilitates flexible partitions

of SMs among co-running kernels shown in Section 4.5.

4.3.3 Implementation

The SM-centric transformation can be easily applied either manually or through

a compiler. For proof of concept, we build a prototype source-to-source compiler

based on Cetus [55], in which the transformation is implemented as a pass over

the input code. The experience taught us the importance of several subtle con

siderations in the design, which we highlight next before showing the full details

of the implementation.

First, the dequeue operation in the while loop in Figure 27 is good for illus

trating the basic idea but poor for performance. An atomic operation could cause

substantial overhead especially when the work in the loop body is small. When

implementing the transformation, it is important to avoid such atomic operations

in the while loop. In our design, we circumvent the needs for atomic job fetching

82

by leveraging a property offered by the filling-retreating scheme: There are pre

cisely Ntarget active workers on an SM. With that property, each active worker only

needs to process W / N target jobs, where W is the total number of jobs assigned to

the SM. So if we put the job IDs of an SM into an array, the set of jobs for a worker

just corresponds to a segment of the array. The starting and ending indices of

the segment can be easily attained before the worker enters the job fetching and

processing loop. With this improvement, the while loop in Figure 27 can be con

verted into a simple for loop, iterating the elements in the segment assigned to

the worker, and the atomic operation can be hence removed from the loop. In our

implementation, we actually use a single array to store the IDs of all jobs. The set

of jobs of an SM corresponds to just one section of the array. The position of a

job ID in the array hence determines on which SM it will be processed. (Lines 9

to 16 in Listing 4.1 implement this design; explained later.)

Second, the ID of an SM can be obtained efficiently. CUDA, like the C pro

gramming language, allows programmers to insert assembly code, which is de

signed by NVIDIA as an intermediate representation named Parallel Thread Exe

cution (PTX) [75]. It has a special register, %smid, which stores the SM identifier.

One “mov” instruction can copy the value in %smid to an integer variable. Line 27

in Listing 4.1 shows the code.

Details In this part, we describe some low-level complexities that our description

has skipped. The discussion is based on CUDA, but the implementation can be

done for other GPU programming models, such as OpenCL.

On GPU, the spatial scheduling unit is not a thread but a CTA, an array of

threads. Correspondingly, the job assignments to processors in our design is in

the unit of job chunks—the set of jobs executed by a CTA in the original GPU

program. In a typical GPU program, the thread ID is used to distinguish jobs, and

83

one CTA handles one job chunk; the ID of a CTA in the original program is hence

treated as the ID of the job chunk that CTA processes.

To minimize changes needed to the original GPU program, we encapsulate

most parts of the code for SM-centric transformation into four macros. With them,

applying SM-centric transformation involves only several minor changes to the

original GPU program. As Listing 4.2 shows, on the CPU-side code, it inserts one

macro, SMCJnit, before the invocation of a GPU kernel, and appends three

arguments to the kernel call. On the GPU-side code, it inserts the calls to two

other macros, SMC_Begin and SMC_End, and replaces the appearances of

the ID of CTA in the kernel with SMC_chunklD. These can be done easily by

the compiler in one pass over the original GPU program.

The above four macros are defined in Listing 4.1. The first, SMCJnit, ini

tiates the three variables with the number of workers needed, the array of the

desired sequence of IDs of job chunks, and an all-zero counter array to count ac

tive workers. The functions used to initiate the first two variables can be provided

by the programmer or the optimizing compiler; their definitions depend on the pur

pose of the specific application of the SM-centric transformation, as Section 4.5

will illustrate. The second macro, SMC_Begin, first calls the fourth macro to get

the ID of the SM by reading the particular register, then checks whether the SM

already has enough active CTAs. If not, it computes the starting and ending po

sitions of the sets of jobs it should work on, gets into the for loop to process them

one by one. The third macro, SMC_End, is trivial, just putting in the ending

bracket of the “for" loop in the second macro.

4.3.4 Soundness

At a high level, SM-centric transformation manipulates the association between

jobs and processors, and hence alters the mapping between jobs and threads

and possibly the execution order of the jobs. As a kind of remapping transforma-

1
2
3
4
5
6
7
8
0

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

84

ttdefine SM CJnit \
unsigned Int * SMC_workersNeeded = SMC_numNeeded(); \
unsigned Int * SMC_newChunkSeq = SMC_buildChunkSeq(); \
unsigned Int * SMC_workerCount= SMCJnitiateArray();

#define SMC_Begin \
 shared in t SMC workingCTAs; \
 SMC _getSMid;\
H(offsetlnCTA == 0) \

 SMC workingCTAs = atomiclnc (& SMC_workerCount[SMC_smid],\
INT_MAX); \

synchthreads(); \
lf(SMCS_workingCTAs > = SMC_workersNeeded) return; \
In t SMC_chunksPerCTA = SMC_chunksPerSM / SMC_workersNeeded; \
In t SMC_startChunklDidx = SMC_smid * SMC_chunksPerSM + \

 SMC_workingCTAs * SMC_chunksPerCTA;\
fo r (In t SMC_chunklDidx = SMC_startChunklDidx; \

 SMC_chunklDidx< SMC_startChunklDidx+ SMC chunksPerCTA ; \
 SMC_chunklDidx++) { \
 SMC_chunklD = SMC_newChunkSeq[SMC_chunklDidx);

#define _S M C _E n d)

/ /g e t the ID of the current SM
#defme SMCjgetSMid \
uint SMC_smid;\
asmfm ov.u32 %0, %smid;"; "=r”(SMC_sm id))

Listing 4.1: Macros that materialize SM-centric transformation (N jobs; M SMs).

tion as persistent threads is, for SM-centric transformation to work soundly, the

GPU program needs to meet the same conditions as in the case of persistent

threads [19,35]:

(1) The operations by different threads are discriminated only by the thread

ID; (2) The execution order of the CTAs does not disturb the correctness of the

kernel.

The first condition ensures that SM-centric transformation does not change

integrity of a job even though all appearances of the CTA ID in a kernel are re

placed with the SMC_chunkld. We note that even though current GPU does

not migrate CTAs across SMs, the job integrity holds even if CTA migrates—given

that the attainment of SMC_chunkld is atomic. The second condition ensures

that the new order of execution maintains the meaning of the program.

The two conditions hold for well-formed GPU programs, due to the nature of

GPU execution models. At a high level, they are Single-Program-Multiple-Data

(SPMD) models; all GPU threads at a kernel launch execute the same function,

while their specific operations are determined only by the thread ID. Meanwhile,

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19

85

/ * * " C P U -s id e code *•**/
main (X

 SMCJnit;
invoke original kernel with three extra arguments:

 SMC_chunkCount, SMC_newChunkSeq, K/M

}

/»*** G P U -s id e code '*** /
 global kernel (...,
unsigned Int * SMC_chunkCount, unsigned Int * SMC_newChunkSeq,
unsigned in t SMC_chunksPerSM)
{

 SMC_Begin
/ / the original kernel with the ID o f CTA replaced with SMC chunkID

 SMCJEnd
J __

Listing 4.2: GPU program after SM-centric transformation (N vector elements; K job chunks; M SMs).

for a GPU program to work properly, it should not rely on the execution order of

CTAs, because due to the non-determinism in CTA scheduling on GPU, it is hard

to know what order would be taken in a run. Free from data race helps ensure

the conditions hold. Recent years have seen a number of studies on data race

detection for GPU [13,101], which could serve as part of the automatic check of

the applicability of SM-centric transformation.

4.4 Uses and Complexities

By enabling program-level spatial scheduling, SM-centric transformation opens

up some new opportunities for GPU optimizations. This section discusses some

of them, and examines the main complexities associated with these new oppor

tunities.

4.4.1 Example Uses

SM Partition for Multi-kernel Co-runs It has been observed that many GPU

kernels exhibit sublinear speedups when the number of SMs used for the kernel

increases [4,72]. As a result, simulations have shown that if the set of SMs in

a GPU can be partitioned such that different subsets of SMs work for different

86

kernels concurrently, the system often gives higher throughput and the kernels

manifest better overall responsiveness [4], However, such partitions have not

been feasible in practice for lack of scheduler controllability. On NVIDIA GPUs,

for instance, when two kernels are launched concurrently (each usually has many

CTAs), their CTAs are assigned to all SMs. And if the threads by one kernel al

ready use too much register or shared memory on an SM, before its completion,

the other kernel cannot start, hence resulting in a serial execution of the two ker

nels.

With minor extension to the SM-centric transformation, partitions of SMs among

concurrent kernels becomes possible. For instance, if we want the first 6 SMs to

work for kernel / Xl and the remaining 8 SMs for kernel / 2, we can set the mapping

array used in SM-centric transformation such that all jobs of f i map to the first 6

SMs and those of / 2 to the other 8 SMs. When the two kernels get launched, the

GPU scheduler still assigns CTAs of both kernels to every SM. However, a state

ment is inserted in each kernel after obtaining the SM ID, which checks whether

the ID of this SM is one of the SMs supposed to work for this kernel. If not, the

CTA returns immediately so that the SM can work for the other kernel.

Affinity-Based Scheduling Many GPU applications have inherent non-uniform

data interactions, such as the MD example mentioned in Section 4.2. It causes

non-uniform data sharing among job chunks. Following the concepts on traditional

CPU [103], we state that two job chunks have good reference affinity if they share

lots of data. As Section 4.2 mentions, each SM has an on-chip cache. So, if we

can manage to assign onto the same SM the job chunks with good affinity, we

may enhance the performance of the cache. SM-centric transformation makes

this affinity-based scheduling possible.

87

4.4.2 Complexities

There are some complexities for applying SM-centric transformation to the use

cases mentioned earlier.

For SM partition for co-runs, the key is to decide the best partition. For affinity-

based scheduling, the key is to compute the affinity among job chunks and then

group job chunks accordingly.

Additionally, there is a common complexity existed in both use cases: deter

mining the suitable number of active CTAs for a kernel. As some studies have

shown [50], creating the maximum number of CTAs that an SM can hold of

ten gives suboptimal performance, because of cache and bus contention among

them. The CTA aggregation employed in SM-centric transformation allows flexible

control of the number of active CTAs for a kernel.

However, determining the suitable numbers of active CTAs is challenging. It

depends on many factors, including the interaction between SM partitioning and

data locality, program inputs, kernels’ resource requirement and so on. Moreover,

when coupling with the various methods to partition SMs (for co-runs), they could

result in a large search space. For 2 kernels on a 14-SM GPU, if an SM can

support at most 6 active CTAs, the search space contains 6 x 6 x 14 = 504 cases.

4.5 Designs for Validation

In this section, we describe our design to address the complexities listed in the

previous section. Our goal is to validate the practical value of the spatial schedul

ing enabled by SM-centric transformation, rather than to find the best solution to

those complexities. Simplicity and practicality are the principles in our design. The

rationale is that if the enabled spatial scheduling could bring substantial benefits

with minimum support, the promise of the technique is validated.

88

4.5.1 Optimal Configuration Search

We first discuss the challenges for determining the best number of active CTAs

(i.e., the ntarget mentioned in Section 4.3.2, which is also called parallelism con

trol) for a kernel and for finding the best partition of SMs between co-running

kernels. We call these parameters together as a configuration in our discussion.

The difficulty is that the space of the configuration values is large and the best

configuration depends on many factors. It is often too costly to try every possible

configuration at runtime. We employ the standard sampling method to efficiently

approximate the best configuration. When a kernel is inside a loop, the sampling

may happen during the first several iterations; otherwise, the sampling may hap

pen offline or across runs.

Because SM partition mainly affects interactions across SMs, while the par

allelism control is mainly related with resource usage inside an SM, we observe

that the optimal level of parallelism for a kernel is only loosely connected with

how we partition SMs. Hence our search scheme first evenly partitions the SMs

among kernels, and tries to find the appropriate numbers of active CTAs for each

kernel. It starts with the maximum CTAs supported by an SM for the kernel (no

larger than 8), and decreases the number by 1 in each iteration until it observes

decreased performance or the number reaches 1. This is a typical process of hill

climbing. After that, our search scheme fixes the CTA numbers but adjusts SM

partition by setting the number of SMs assigned to a co-run kernel from 1 to the

maximum-1 (in a step size of three) while the rest SMs are used for the other

co-running kernel. As a prior study [72] does, this work considers only co-runs

of two kernels. Based on the sampled data, the optimal partition is approximated

through interpolation.

Like other online sampling-based approaches, our search scheme cannot

work well when different iterations behave dramatically differently. Combining the

89

sampling approach with domain knowledge about the behavior patterns of the

program may help, which is out of the scope of this work. In our experiment, we

encountered only one such program, reduction. We did not give special treatment

to it. The results in Section 4.6 show that even though the sampling method finds

only suboptimal configurations for some programs, the overall benefits are still

substantial, confirming the value of the SM-centric transformation.

4.5.2 Affinity-Based Scheduling

To implement the affinity-based scheduling, we model the scheduling problem as

a graph partitioning problem. The modeling consists of two steps: graph con

struction and graph partitioning.

Graph Construction This step establishes a set of graphs named affinity graphs,

in which, each vertex represents a job chunk and each edge weight represents

the affinity score between two job chunks. Affinity score is defined as follows. Let

Si and S2 be the set of data blocks assessed by two job chunks Jv and J2 respec

tively. Their affinity score is There is no edge between two vertices when

their affinity score is less than a threshold (0.05 in our experiment). If the affinity

score is too small, there is only a small amount of data sharing and its effects

on performance is negligible; ignoring them often breaks one affinity graph into

multiple smaller graphs, allowing efficient graph partitioning in the next step.

Compiler techniques exist for analyzing working sets [81] for regular appli

cations. On irregular applications, it is challenging as data access patterns may

be unknown until run time. Runtime inspection techniques have been proposed

to analyze data access patterns [65], For GPU programs, prior work has shown

the feasibility to employ CPU to implement the inspection asynchronously when

GPU is executing the kernel [99], In this work, we used simple synchronous par-

90

allel inspection for irregular programs. But the asynchronous method may further

reduce the overhead.

Graph Partitioning Given M SMs, this step partitions the set of vertices into M

equal-size dusters. The job chunks corresponding to a cluster are scheduled to

one single SM. This problem is known to be NP-hard. There are some existing

heuristic algorithms, but we find them costly. Instead, we design a random and

lightweight algorithm. Its basic idea is to select a seed vertex for each cluster and

greedily enlarge each cluster to include the vertices that have high affinity scores

with the selected vertices. The algorithm has three steps. (1) Seeds selection.

Selecting the seed vertices is important for the partitioning quality; we try to mini

mize the affinity among them. The initial seed set is formed by randomly selecting

a vertex from each of the affinity graphs. If the number of affinity graphs is no less

than M , only M of them are randomly selected. If there are less than M seeds

in the set, we iterate over the remaining vertices until we find one, whose affinity

scores with all current seeds are smaller than a threshold (initialized to 0) and

add it to the seed set. This step stops once we get M seeds. After iterating all

vertices if we still need more seeds, we increase the threshold by 0.1 and start

the next round of search. Ten rounds are needed at most as the threshold would

grow to 1, the largest possible affinity score. In practice, we have not seen the

need for more than 1 round. After the seeds selection, we have M clusters, each

containing 1 vertex. (2) Sorted lists construction. For each seed vertex Tt, we

create a descending list of all the vertices that fall into the same affinity graph as

Ti. (3) Cluster enlargement. This step repetitively iterates through all clusters until

all vertices are partitioned. In each iteration, it randomly selects a vertex from the

current cluster, and includes the vertex that, among all remaining vertices, has the

largest affinity score with this vertex, which can be determined in constant time

with the sorted lists produced in step 2.

In our implementation, this graph partitioning happens in parallel on CPU.

Its time complexity, in the worst case when all vertices fall into one graph, is

0 (N 2logN) (N for number of job chunks). But in practice, as graphs are never

very large, the algorithm terminates quickly shown in the next section.

4.6 Evaluations

We focus our experiments on answering the following main questions:

• How much potential does spatial scheduling enabled by SM-centric transfor

mation have?

• How much overhead does SM-centric transformation have?

• How much benefit can it bring in practice with the simple support outlined in

the previous section?

To that end, we implement the two use cases of STM-centric transformation

as described in Section 4.4: One is SM partition for multi-kernel co-runs, and the

other is affinity-based scheduling for single-kernel runs. The implementation inte

grates the solutions described in Section 4.5. For comparison, we also implement

the persistent threads with the best efforts to support these two use cases.

4.6.1 Methodology

Benchmarks Given that the focus of our use cases are on enhancing mem

ory performance, we need a set of memory intensive programs for the valida

tion. Meanwhile, for a comprehensive assessment of the applicability of our tech

niques, the benchmark set should consist of programs of a broad range of do

mains, and have a good coverage of both regular and irregular programs. For

these reasons, we select nine benchmarks to form our test set. As Table 4 shows,

92
Table 4: Benchmarks

Benchmark Source Description Irregular

irreg Maryland [38] partial diff. solver Y
nbf Maryland [38] force field Y
md SHOC [23] molecular dynamics Y
spmv SHOC [23] sparse matrix vector multi. Y
cfd Rodinia [17] finite volume solver Y
nn Rodinia [17] nearest neighbor N
Pi Rodinia [17] dynamic programming N
mm CUDA SDK [69] dense matrix multiplication N
reduce CUDASDK [69] reduction N

■ SMC Predicted ■ SMC O ptim a l Persistent Thread

Figure 28: Speedup of average normalized turnaround time.

these programs come from four benchmark suites, cover a broad set of domains,

and include a similar number of regular and irregular programs. Those irregular

benchmarks impose special challenges for GPGPU optimization, and have drawn

a lot of attention from the community recently [14,57,67,68,93,99].

We give a brief description for these benchmarks. IRREG (a partial differential

solver kernel) and NBF (a molecular dynamics kernel) were rewritten to CUDA

from C benchmarks [38]. These two benchmarks were studied heavily by previous

work [27,36,85,92]. MD and SPMV are both from the SHOC benchmark suite

developed by Oak Ridge National Laboratory [23]. CFD from Rodinia benchmark

suite [17] simulates fluid dynamics. MM and REDUCE taken from the CUDA SDK

samples represent two compute-intensive applications used widely in real-world.

We also take NN and PF from the popular Rodinia benchmark suite for a broader

coverage.

93

Co-runs of Kernels As current GPUs cannot support the co-existence of two

different contexts yet, following prior work [72], we combine two programs into one

and use two separate CUDA streams to execute the kernels of the two original

programs. Since which kernels run together depends on the practical context, we

co-run each pair of the benchmarks for a comprehensive coverage. We use two

metrics, System Throughput (STP) and Average Normalized Turnaround Time

(ANTT), proposed in [29] and used in [72], STP shows overall throughput of the

whole system, and ANTT shows programs’ responsiveness. We measure the

execution time of kernel executions and the extra overhead introduced by the

transformation (if any) for the calculation of STP and ANTT. Since we are only

interested in the overlapped execution, we modify the approach proposed by Tuck

and Tullsen [88] and immediately invoke a kernel after it finishes until both kernels

are invoked at least 7 times. The last instance of the kernel invocation that finishes

later than the other co-run kernel is discarded, because the execution of the last

instance of the kernel invocation is not fully overlapped.

Versions based on Persistent Threads We compare SM-centric transforma

tion with persistent threads using both SM partition and affinity-based scheduling.

As aforementioned, persistent threads by itself cannot directly dictate mappings

between jobs and SMs. But with careful designs, it could still support SM partition

and affinity-based scheduling, although the support is very limited and requires

an awkward implementation. Our specific implementations are as follows.

For SM partition between two co-running kernels, we generate N i(l < N x <

M) persistent CTAs for kernel 1, and (M - N t) persistent CTAs for kernel 2 (where

M is the number of SMs in the GPU). In this way, if the hardware scheduler hap

pens to assign one CTA onto each SM, the two kernels would run on different sets

of SMs, and the SM partition is materialized. Given that an even distribution is not

guaranteed by hardware schedulers, in our experiments, we repeat the experi-

94

ments many times and use only the results when the distribution happens to be

even (performance under uneven distributions is much worse as some SMs are

left idle). In order to maintain a good amount of parallelism, each CTA is set to the

largest allowable size for the particular kernel, as prior usage of persistent threads

often does [19,95]. Our experiments enumerate all possible partitions (i.e., all val

ues of Ni), and the best performance in these settings is used to compare with

the performance of SM-centric transformation results.

We employ a similar idea to let persistent threads support affinity-based schedul

ing of single-kernel runs. The launch of a kernel creates M (i.e., number of SMs)

persistent CTAs. We again use the performance measured only in the runs where

the CTAs are evenly distributed on the SMs. When creating the job queue for a

persistent CTA, we try to put into the queue the jobs from the same affinity group

as identified with the method in Section 4.5.2. We again make each persistent

CTA as large as allowed such that the maximum number of jobs from the CTA

queue could get concurrently executed by the CTA. This method, in effect, makes

the jobs run concurrently on the same SM, just as what affinity-based scheduling

aims to achieve— but only to a limited degree, subject to the number of jobs a CTA

can concurrently execute.

Machine Environment We run all workloads on an NVIDIA M2075 GPU with

CUDA runtime 4.2, compiled by NVCC with the highest optimization level. The

host machine has an Intel 8-core Xeon X5672 CPU and 48 GB main memory and

runs 64-bit Redhat enterprise 6.2. Without notice, each reported timing result is

an average of 10 repeated measurements, and includes all overhead incurred by

the transformed code.

95

4.6.2 Results in Co-Runs

Figure 28 shows the speedup in terms of ANTT brought by the optimized co-runs

respectively supported with SM-centric transformation and persistent threads. The

baseline is the traditional and default way to concurrently execute the original ker

nels. The speedup is defined as the ratio of the optimized ANTT to the original

ANTT. “SMC Predicted” and “SMC Optimal” represent the speedups from the SM-

centric transformation with, respectively, the parameters predicted by the online

model and the best parameters found through offline exhaustive search. We ob

serve the potential speedup because of SM-centric transformation 1.36X. Our

prediction model successfully exploits most of the potential by providing 1.33X

speedup on average. Three co-runs benefit from the SM-centric transformation

substantially with a potential of more than 1.8X speedup. The results validate

that SM-centric transformation with the prediction model better exploits the SM

and cache resources than the default co-runs. We also observe that the improve

ment of ANTTs varies across benchmarks. In some cases (e.g., the co-run of

mm and reduce), the optimized co-runs have around 2% slowdown. There are

two plausible reasons. First, the kernels already have good scalability and hence

reducing the number of SMs allocated to them significantly degrades their perfor

mance. Second, since those kernels efficiently use shared memory, they do not

heavily rely on L1 cache’s performance. For example, when MM's thread blocks

size is 256, one matrix element is reused 16 times after being loaded into shared

memory.

Persistent threads perform much worse than SM-centric transformation. Its

best partition leads to more than 50% ANTT degradation for 3 co-run programs.

On average, we observe 17% slowdown. The main reason comes from the rigid

control of parallelism in persistent threads. As the previous subsection describes,

without the capability for a direct control of the job-to-SM mapping, the design of

96
■ SMC Predicted ■ SMC O ptim al Persistent Thread

Figure 29: Improvement on system throughput.

persistent threads support is subject to some restrictions on the number of a CTAs

and their size, which cause suboptimal performance on the kernels.

Figure 29 provides the results on system throughput. The baseline is of the

same case in Figure 28. SM-centric transformation offers up to 71% (an average

of 37%) improvement on STP. The predicted configurations exploit the poten

tial well by providing an average improvement of 33%. We did not observe any

throughput degradation for the optimized co-runs, but some co-runs (e.g., cfd and

mm) have trivial throughput improvement due to the same reasons as explained

for the worsened ANTTs. As known [29], ANTT and STP measure different as

pects of a co-run execution; a better ANTT does not always mean a better STP.

For instance, the co-run of reduce and pf has the largest ANTT speedup of 2.3X,

but its STP improvement is below the average.

Different from the results on ANTT, persistent threads produce an average

of 11% STP improvement. The influence of persistent threads on ANTT varies

greatly across co-run programs, yielding results between 63% slowdown and

64% improvement. As explained for the increased ANTT, We observe non-trivial

throughput loss for some programs because of the suboptimal level of parallelism.

Overall, the results showed that SM-centric transformation is a much better choice

for SM partitioning than persistent threads.

The SM-centric results also indicate that the simple method for predicting

configurations outlined in Section 4.5.1 is sufficient for SM-centric transforma

tion to effectively support SM partition. To get a direct measure of the method’s

Accuracy Requirement

Figure 30: Prediction accuracy

effectiveness, we report in Figure 30 its accuracy in predicting the suitable con

figurations. The percentage on the X axis shows the accuracy requirement of

the predicted configuration. To be more specific, P% means that the predicted

configuration outperforms at least N x (1 - P%) configurations, where N (N =

36 in this evaluation) is the total number of configurations. The bar height shows

the percentage of co-runs whose predicted configuration satisfies the accuracy

requirement. So the bars on the right should be higher than the bars on the left,

because a larger percentage on the X axis indicates a more relaxed requirement.

For ANTT, when the accuracy requirement is 1%, 63% of co-runs satisfy it. Note

that 1% is a harsh requirement, as only the optimal configuration can satisfy it in

a limited configuration space. If we relax the requirement to 2%, 83% of co-runs

satisfy it, showing a high prediction accuracy. When the requirement is 16%, we

notice that the predicted configuration of every co-run satisfies the requirement.

For STP, the prediction accuracy is a bit lower, but over 90% of co-runs satisfy

the accuracy requirement of 4%. The results echo our improvement on ANTT

and STP and show that a simple online model suffices to yield reasonably good

configurations.

4.6.3 Results in Single-Kernel Runs

We also evaluate persistent threads and SM-centric transformations on single

kernel runs. We consider 4 programs (md, irreg, cfd and nbf), as they show a

98

1-5 !

■ Persistent thread
• Persistent thread w ith affinity-based scheduling

SMC w ith affinity-based scheduling

1.4 j - -
1.3 j-------

5.0.9 i
0.8] ll ll II u lli l !
0.5 * 1

irreg md cfd nbf GEOMEAN

Figure 31: Speedups o f single-kernel runs.

nbf GEOMEAN

O ■ Persistent thread
ra • Persistent thread w ith affinity-based scheduling
vl SMC w ith affinity-based scheduling

Figure 32: Normalized L1 miss ratios.

significant level of non-uniform data sharing and rely heavily on the data cache’s

performance due to their irregular memory access pattern.

Figure 31 provides the speedup results for single-kernel runs of four bench

marks over the original code. Without affinity-based scheduling, persistent threads

suffer from insufficient parallelism and produce 22% performance degradation.

Affinity-based scheduling improves its performance and reduces the average degra

dation to 15%. The results indicate that persistent threads, unlike SM-centric

transformation, fails to achieve a good balance between parallelism and locality:

Keeping one active thread block on each SM enables scheduling jobs with lots of

data sharing to one SM, but due to the limitation of the block size, does not have

enough concurrent active threads to fully explore the computing power. On the

contrary, SM-centric transformation’s precise control enables us to find a better

trade-off between parallelism and locality, leading to an average of 21% speedup.

Figure 32 shows the L1 cache performance improvement obtained through

CUDA hardware performance monitors. The reduction of the cache miss ratios

99

shows the trends largely aligning with the speedup trends. It confirms that L1

cache performance is critical to irregular applications, and the parallelism con

trol and affinity-based scheduling enabled by SM-centric transformation exploit

L1 data cache more effectively than the default scheduling does. CFD is an ex

ception, on which, the SM-centric approach performs less well than the persistent

threads with affinity-based scheduling. A plausible reason is the effects of warp

scheduling, which is out of the control of SM-centric scheduling but could some

times affect the cache performance substantially.

4.6.4 Overhead from the SM-centric Transformation

SM-centric transformation adds extra code to the kernels. To quantify the over

head, for each benchmark we run the transformed kernel (with the same num

ber of active threads as the default runs of the original kernels have) but without

affinity-based scheduling, whose execution time is denoted as Ttrans. The over

head is defined as (Ttrans - Torg)/Torg, where Torg is the execution time of the

original kernel. Figure 33 provides the overhead results. We notice that the over

head can be non-trivial for some benchmarks (e.g., 6.5% for pf) due to two rea

sons. First, the transformation introduces atomic operations and extra memory

accesses to obtain the mapping decision data. Second, the aggregation (i.e., the

enhanced version of the transformation) introduces a loop, which does not exist in

the original kernels. On average, the overhead from the transformation is 2.8%,

but as the previous results show, the overhead is substantially outweighed by the

overall benefits.

4.7 Discussion

Currently, the SM-centric optimization works only on CUDA programs. The reason

is that other GPU programming models, such as OpenCL, do not support run-

100

Figure 33: The percentage of overhead from SM-centric transformation.

time retrieval of compute unit identifier yet. We hope that this research provides

enough evidence for the need of such a functionality. Once OpenCL provides a

similar interface, the proposed optimization techniques can be easily extended to

cover OpenCL programs.

OpenCL, starting from specification 1.2, introduced the concept of sub-device,

which wraps a subset of the computing unites. While the idea behind it is also to

enable resource partition among different applications, it is not yet supported by

main-stream GPU vendors. Our SM-centric optimization, as an alternative ap

proach for the partitioning, not only works for current NVIDIA GPU cards, but also

enables programmers to control which SMs should be in the same sub-device.

The job selection component determines the job-to-SM mapping before the

kernel is invoked. This fixed mapping could incur load-unbalance due to the non

uniformity in SM processing capability and jobs. It is possible to detect the load-

unbalance during the sampling phase. The framework can then invoke the original

kernel if load-unbalance happens. Some kernels may change dramatically across

invocations in terms of execution time and memory access intensity, rendering

great challenges to any sampling based approach. Combination with program

phase detection and prediction [82,83] could help address such complexities.

101

4.8 Related Work

Prior software methods on circumventing the hardware restrictions for task schedul

ing on GPU mainly concentrate on persistent threads with either static or dynamic

(e.g., job stealing) partition of task sets [6,19,35,89,95], which has been covered

in our previous sections.

There are some studies on changing hardware schedulers for performance,

such as the large warp architecture by Narasiman and others [66], the two-level

warp scheduler (and interactions with prefetching) by Jog and his colleagues [46,

47], and the thread block scheduler by Kayiran and others [50]. The SM-centric

scheduling is a software solution to the restrictions of hardware schedulers, or

thogonal to these hardware approaches. There are some software scheduling

works published before, the focus of which have been dealing with the load bal

ance between CPUs and GPUs through task scheduling [11,60],

Recent years have seen an increasing interest in supporting concurrent ex

ecutions of GPU kernels. Pai et al. [72] observed significant resource under

utilization during concurrent kernel executions. They proposed elastic kernels

that have fine-grained controls over their resource usage to balance resource us

age among concurrent kernels. According to the authors of elastic kernels, the

technique does not control SM partitions, and cannot be applied to kernels that

use shared memory [72], The spatial scheduling enabled in this work is com

plementary to elastic kernels, in the sense that it is not subject to the shared-

memory limitation, and it improves co-run performance from a different angle,

spatial scheduling. These two techniques can be used together. Adriaens and

others [4] proposed hardware extensions to partition SMs to different applications

for more efficient resource utilization, and evaluated it on a simulator. Zhong and

He [102] proposed a runtime system, named Kernelet, which slices kernels into

sub-kernels and schedule them for better resource control. It does not enable

102

spatial scheduling of GPU. CTA aggregation itself is not new. Earlier work has

used a similar idea to control resources a kernel uses [72], It is for the first time

used for supporting spatial scheduling.

4.9 Summary

This chapter presents SM-centric transformation, a simple method that for the

first time offers a systematic solution to enable program-level spatial scheduling

on GPU. It reveals the potential of the enabled scheduling control for executions of

both single-kernel runs and multi-kernel co-runs. It lists some main challenges for

leveraging spatial scheduling on GPU, and develops a set of practical solutions. It

opens up opportunities for leveraging scheduling for optimizing GPU executions.

Chapter

Limitations and Future Work

We briefly discuss some limitations and possible future work to address them.

5.1 Application Coverage

All the applications considered in this work are iterative: The kernel functions are

invoked many times until some condition is met. As such, although the overhead

from the data layout usually outweighs the benefit for one kernel invocation, it can

be amortized by the many invocations, as shown by the speedup results. How

ever, some applications (e.g.,breadth-first search) may have few iterations, de

pending on the inputs, and hence may not benefit from the proposed approaches.

One promising direction is to quantify the benefit and overhead from the optimiza

tions. Given an application, we can estimate the tradeoff between the benefit and

overhead of an optimization and decide whether or not to apply it.

There are two challenges if we pursue in this direction. First, we need to build

a reasonably accurate performance model to estimate the overhead of data layout

change and the application’s performance given a specific layout. Performance

modeling, however, is shown to be a hard problem for complicated heterogeneous

systems. Some state-of-the-art performance models yield estimation errors up

to 50%, which are comparable to the benefit from some memory optimizations.

103

104

Such accuracies make them hard to use in our context. Furthermore, current per

formance models typically ignore data caches and treat non-coalesced memory

accesses naively for simplification, thereby not suitable for irregular applications.

Second, we need to make the performance estimation fast. Current perfor

mance models only consider simple input features, such as data size, array di

mension and so on. For our purpose, the performance model should take into

account the delicate memory behavior changes due to the layout differences.

Modeling such behaviors is non-trivial and may itself take too much time to apply

online.

5.2 Automatic Optimization

Most of our proposed optimizations are implemented in libraries. To optimize the

programs, the programmers need to pinpoint the statements that cause irregular

memory accesses and insert corresponding library calls. Despite our efforts to

make the library easy to use, the process unavoidably increases the burden of

programmers.

It is possible to automate the optimizations through two steps. The first step

locates the points in the program that need to be optimized. Since we focus on

indirect memory accesses, the compiler can find out all the occurrences of the pat

tern A[P[id\}. But the appearance of such a pattern does not necessarily mean

the need for optimization, as the values in P may indicate regular (or slightly ir

regular) accesses. To refine the selection, we may use offline profiling to find the

statements that cause great irregularity.

The second step automatically transforms the target statements to activate

layout reorganization and use the optimized layout. We see no challenges in this

part; a simple pass during compilation can do the job.

105

5.3 Energy Concerns

Some of the proposed optimizations work on a pipelined engine, which uses one

processor to reorganize the data to help another processor. This scheme raises

concerns on energy cost, due to the introduction of an additional processor as the

helper. Since the goal of the dissertation is to minimize overall execution time, we

did not measure energy consumption. But we contend that the pipelined engine

may not necessarily increase energy consumption, because the optimized layout

reduces the total execution time and off-chip memory accesses, thereby lowering

the energy consumption on the execution processor.

In the future, we can change the optimization goal to the minimization of en

ergy cost. We will study the potential by measuring the ratio of energy consump

tion from irregular memory accesses to that of the whole application. We will

quantify the energy consumption characteristics of different optimizations, design

an online method to select the appropriate optimization and tune relevant param

eters, such as the set of arrays to optimize and their corresponding optimization

ratios.

Chapter

Conclusion

Heterogeneous systems, in which the CPU runs sequential workloads and the

GPU runs parallel workloads, already become mainstream. While such systems

show tremendous throughput improvement over homogeneous systems for regu

lar applications, efficiently handling irregular applications is still an open problem.

One serious problem is the irregular memory accesses commonly seen in many

applications, whose pattern can only be determined during runtime. Since the

hardware fail to coalesce the memory accesses or reuse data in caches, ineffec

tive off-chip memory bandwidth drags down the overall system performance.

This work systematically explores matching the non-uniformity of software

with that of hardware to tap into the full potential of heterogeneous systems. To

address non-coalesced memory accesses on GPU, in Chapter 2, we analyzed the

complexity of minimizing non-coalesced memory accesses without extra space

overhead. We proposed several optimization algorithms to make a good trade

off among time, space cost and complexity. We designed an online algorithm

selector to adapt to inputs and hardware settings. In chapter 3, we proposed

asynchronous data transformation to address the dilemma between transforma

tion overhead and benefit. By decomposing the transformation into analysis and

repositioning, we circumvent the critical data dependences and offload the heavy

analysis component from the critical path. In Chapter 4, we provide scheduling

106

107

support to enable complete control of the mapping between jobs and processors.

We leveraged the software scheduling to optimize non-uniform co-run workloads

and non-uniform data sharing within one application.

This dissertation has introduced new perspectives for memory optimization

on many-core heterogeneous systems. It is the first of its kind to systematically

consider space overhead for data reorganization. The proposed asynchronous

transformation framework and the software-level scheduling support open up many

opportunities to new optimizations.

Bibliography

[1] Iibpfm4. http://perfmon2.sourceforge.net/docs.html.

[2] NVIDIA CUDA. http://www.nvidia.com/cuda.

[3] NVIDIA CUDA. http://www.nvidia.com/cuda.

[4] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The Case for

GPGPU Spatial Multitasking. In International Symposium on High Perfor

mance Computer Architecture, 2012.

[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison Wesley, 2nd edition, August 2006.

[6] T. Aila and S. Laine. Understanding the efficiency of ray traversal on gpus.

In Proceedings of the Conference on High Performance Graphics 2009,

HPG ’09, 2009.

[7] J. A. Anderson, C. D. Lorenz, and A. Travesset. General purpose molecular

dynamics simulations fully implemented on graphics processing units. J.

Comput. Phys., 227(10):5342-5359, May 2008.

[8] P. Bakkum and K. Skadron. Accelerating sql database operations on a

gpu with cuda. In Proceedings of the 3rd Workshop on General-Purpose

108

http://perfmon2.sourceforge.net/docs.html
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

109

Computation on Graphics Processing Units, GPGPU ’10, pages 94-103,

New York, NY, USA, 2010. ACM.

[9] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,

A. Rountev, and P. Sadayappan. A compiler framework for optimization

of affine loop nests for GPGPUs. In ICS’08: Proceedings of the 22nd An

nual International Conference on Supercomputing, pages 225-234, 2008.

[10] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication

on throughput-oriented processors. In Proceedings of the Conference on

High Performance Computing Networking, Storage and Analysis, SC ’09,

pages 18:1-18:11, New York, NY, USA, 2009. ACM.

[11] M. E. Belviranli, L. N. Bhuyan, and R. Gupta. Adynamic self-scheduling

scheme for heterogeneous multiprocessor architectures. ACM Trans. Ar

chil Code Optim., 9(4), Jan. 2013.

[12] M. Berger and S. Bokhari. A partitioning strategy for non-uniform problems

on multiprocessors. IEEE Trans. Computers, 37(12):570-580, 1987.

[13] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson. Gpuverify:

A verifier for gpu kernels. In OOPSLA, 2012.

[14] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study of irregular

programs on gpus. In IISWC, pages 141-151, 2012.

[15] S. Carrillo, J. Siegel, and X. Li. A control-structure splitting optimization for

gpgpu. In Proceedings of ACM Computing Frontiers, 2009.

[16] G. C. Cascaval. Compile-time Performance Prediction of Scientific Pro

grams. PhD thesis, University of Illinois at Urbana-Champaign, 2000.

110

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.

In IISWC, 2009.

[18] S. Che, J. W. Sheaffer, and K. Skadron. Dymaxion: Optimizing memory ac

cess patterns for heterogeneous systems. In Proceedings of the ACM/IEEE

conference on Supercomputing, 2011.

[19] L. Chen, O. Villa, S. Krishnamoorthy, and G. Gao. Dynamic load balancing

on single-and multi-gpu systems. In IPDPS, 2010.

[20] T. M. Chilimbi and R. Shaham. Cache-conscious coallocation of hot data

streams. In Proceedings of ACM SIGPLAN Conference on Programming

Languages Design and Implementation, 2006.

[21] A. Corrigan, F. Camelli, R. Lohner, and J. Wallin. Running unstructured grid

based cfd solvers on modern graphics hardware. In Proceedings of the

19th AIAA Computational Fluid Dynamics, 2009.

[22] A. Danalis, G. Marin, C. McCurdy, J. Meredith, R Roth, K. Spafford, V. Tip-

paraju, and J. Vetter. The scalable heterogeneous computing (shoe) bench

mark suite. 2010.

[23] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf

ford, V. Tipparaju, and J. S. Vetter. The scalable heterogeneous computing

(shoe) benchmark suite. In GPGPU, 2010.

[24] R. Das, D. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design

and implementation of a parallel unstructured euler solver using software

primitives. In Proceedings of the 30th Aerospace Science Meeting, Reno,

Navada, January 1992.

111

[25] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communication optimizations

for irregular scientific computations on distributed memory architectures. J.

Parallel Distrib. Comput., 22(3):462-478, Sept. 1994.

[26] C. Ding and K. Kennedy. Improving cache performance in dynamic appli

cations through data and computation reorganization at run time. In PLDI,

pages 229-241, 1999.

[27] C. Ding and K. Kennedy. Improving cache performance in dynamic appli

cations through data and computation reorganization at run time. In PLDI,

1999.

[28] C. Ding and K. Kennedy. Improving effective bandwidth through compiler

enhancement of global cache reuse. Journal of Parallel and Distributed

Computing, 64(1): 108-134, 2004.

[29] S. Eyerman and L. Eeckhout. System-level performance metrics for multi

program workloads. IEEE Micro, 28(3), May 2008.

[30] W. Fang, B. He, and Q. Luo. Database compression on graphics proces

sors. Proc. VLDB Endow., 3(1-2):670-680, Sept. 2010.

[31] W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic warp formation and

scheduling for efficient gpu control flow. In MICRO '07: Proceedings of

the 40th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 407-420, Washington, DC, USA, 2007. IEEE Computer Society.

[32] A. Geist. Paving the roadmap to exascale. SciDAC Review, 2010.

[33] Z. Guo and X. Shen. Fine-grained treatment to synchronizations in gpu-

to-cpu translation. In Proceedings of the International Workshop on Lan

guages and Compilers for Parallel Computing, 2011.

112

[34] Z. Guo, E. Zhang, and X. Shen. Correctly treating synchronizations in com

piling fine-grained spmd-threaded programs for cpu. In Proceedings of

International Conference on Parallel Architectures and Compilation Tech

niques, 2011.

[35] K. Gupta, J. A. Stuart, and J. D. Owens. A study of persistent threads style

gpu programming for gpgpu workloads. In Innovative Parallel Computing,

2012 .

[36] H. Han and C. W. Tseng. Improving locality for adaptive irregular scientific

codes. In LCPC, 2000.

[37] H. Han and C.-W. Tseng. Exploiting locality for irregular scientific codes.

IEEE Transactions on Parallel Distributed Systems, 17(7):606-618, 2006.

[38] H. Han and C.-W. Tseng. Exploiting locality for irregular scientific codes.

TPDS, 17(7):606-618, 2006.

[39] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learn

ing. Springer, 2001.

[40] S. Herbert and D. Marculescu. Characterizing chip-multiprocessor

variability-tolerance. In DAC, 2008.

[41] A. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke. Sponge:

portable stream programming on graphics engines. In Proceedings of the

International Conference on Architectural Support for Programming Lan

guages and Operating Systems, 2011.

[42] S. Huang, S. Xiao, and W. Feng. On the energy efficiency of graphics

processing units for scientific computing. In Proceedings of the 2009 IEEE

International Symposium on Parallel&Distributed Processing, IPDPS '09,

pages 1-8, 2009.

113

[43] X. Huo, V. Ravi, W. Ma, and G. Agrawal. An execution strategy and opti

mized runtime support for parallelizing irregular reductions on modern gpus.

In ICS, 2011.

[44] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and improving the

use of demand-fetched caches in gpus. In Proceedings of the 26th ACM

international conference on Supercomputing, ICS '12, 2012.

[45] Y. Jo and M. KulKarni. Enhancing locality for recursive traversals of recur

sive structures. In OOPSLA, 2011.

[46] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and

C. R. Das. Orchestrated scheduling and prefetching for gpgpus. In ISCA,

2013.

[47] A. Jog, 0 . Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir,

O. Mutlu, R. Iyer, and C. R. Das. OWL: Cooperative Thread Array Aware

Scheduling Techniques for Improving GPGPU performance. In International

Conference on Architectural Support for Programming Languages and Op

erating Systems, 2013.

[48] M. Kandemir. A compiler technique for improving whole-program locality.

In POPL, 2001.

[49] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. In Proceedings of International Conference

on Parallel Processing, August 1995.

[50] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither More Nor Less:

Optimizing Thread-level Parallelism for GPGPUs. In PACT, 2013.

[51] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. Opencl as a unified

programming model for heterogeneous cpu/gpu clusters. In PPoPP, 2012.

114

[52] S. Kim, H. Han, and K. Choe. Region-based parallelization of irregular

reductions on explicitly managed memory hierarchies. Journal of Super

computing, 2009.

[53] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and L. R

Chew. Optimistic parallelism benefits from data partitioning. In ASPLOS

XIII: Proceedings of the 13th international conference on Architectural sup

port for programming languages and operating systems, pages 233-243,

2008.

[54] J. Lee, V. Sathisha, M. J. Schulte, K. Compton, and N. S. Kim. Improv

ing throughput of power-constrained gpus using dynamic voltage/frequency

and core scaling. In PACT, 2011.

[55] S. Lee, T. Johnson, and R. Eigenmann. Cetus - an extensible compiler

infrastructure for source-to-source transformation. In In Proceedings of the

16th Annual Workshop on Languages and Compilers for Parallel Computing

(LCPC), pages 539-553, 2003.

[56] S. Lee, S. Min, and R. Eigenmann. Openmp to gpgpu: A compiler frame

work for automatic translation and optimization. In Proceedings of ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming,

2009.

[57] J. Li, G. Tan, M. Chen, and N. Sun. Smat: an input adaptive auto-tuner for

sparse matrix-vector multiplication. In PLDI, 2013.

[58] W. Liu and A. Sherman. Comparative analysis of the cuthill-mckee and

the reverse cuthill-mckee ordering algorithms for sparse matrices. SIAM J.

Numerical Analysis, 13(2), April 1976.

115

[59] Y. Liu, E. Z. Zhang, and X. Shen. A cross-input adaptive framework for

gpu programs optimization. In Proceedings of International Parallel and

Distribute Processing Symposium (IPDPS), pages 1-10, 2009.

[60] C. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism on heterogeneous

multiprocessors with adaptive mapping. In MICRO, 2009.

[61] G. Marin, G. Jin, and J. Mellor-Crummey. Managing locality in grand chal

lenge applications: a case study of the gyrokinetic toroidal code. 2008.

[62] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improving memory hierar

chy performance for irregular applications. In Proceedings of International

Conference on Supercomputing, Rhodes, Greece, June 1999.

[63] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivision for inte

grated branch and memory divergence tolerance. In ISCA, 2010.

[64] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu graph traversal.

SIGPLAN Not, 47(8): 117-128, Feb. 2012.

[65] N. Mitchell, L. Carter, and J. Ferrante. Localizing non-affine array refer

ences. In PACT, 1999.

[66] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and

Y. N. Patt. Improving gpu performance via large warps and two-level warp

scheduling. In MICRO, 2011.

[67] R. Nasre, M. Burtscher, and K. Pingali. Data-driven versus topology-driven

irregular computations on gpus. In IPDPS, pages 463-474, 2013.

[68] R. Nasre, M. Burtscher, and K. Pingali. Morph algorithms on gpus. In

PPOPP, pages 147-156, 2013.

[69] NVIDIA. Cuda software development toolkit v4.2.

https://developer.nvidia.com/cuda-toolkit-42-archive.

https://developer.nvidia.com/cuda-toolkit-42-archive

116

[70] NVIDIA. Nvidia’s next generation cuda computer architecture: Fermi.

[71] NVIDIA. Nvidia’s next generation cuda compute architecture: Ke

pler gk110, 2012. http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GKl10-Architecture-Whitepaper.pdf.

[72] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving GPGPU

Concurrency with Elastic Kernels. In ASPLOS, 2013.

[73] E. Petrank and D. Rawitz. The hardness of cache conscious data place

ment. In Proceedings of ACM Symposium on Principles of Programming

Languages, Portland, Oregon, January 2002.

[74] T. Preis, P. Virnau, W. Paul, and J. J. Schneider. Gpu accelerated

monte carlo simulation of the 2d and 3d ising model. J. Comput. Phys.,

228(12):4468-4477, July 2009.

[75] NVIDIA Parallel Thread Execution, http://docs.nvidia.com/cuda/parallel-

thread-execution/index.html.

[76] V. Ravi, W. Ma, D. Chiu, and G. Agrawal. compiler and runtime support

for enabling generalized reduction computations on heterogeneous parallel

configurations. In Proceedings of the ACM International Conference on

Supercomputing (ICS), 2010.

[77] M. Rhu, M. Sullivan, J. Leng, and M. Erez. A locality-aware memory hi

erarchy for energy-efficient gpu architectures. In Proceedings of the 46th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-

46, pages 86-98, New York, NY, USA, 2013. ACM.

[78] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-conscious wavefront

scheduling. In MICRO, pages 72-83, 2012.

http://www.nvidia.com/content/PDF/kepler/
http://docs.nvidia.com/cuda/parallel-

117

[79] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-aware warp

scheduling. In MICRO, pages 99-110, 2013.

[80] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and

W.-m. W. Hwu. Optimization principles and application performance evalu

ation of a multithreaded gpu using cuda. In Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’08, pages 73-82, New York, NY, USA, 2008. ACM.

[81] X. Shen, Y. Gao, C. Ding, and R. Archambault. Lightweight reference affinity

analysis. In ICS, Cambridge, MA, June 2005.

[82] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In Proceedings

of the International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 165-176, 2004.

[83] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In

Proceedings of International Symposium on Computer Architecture, pages

336-349, San Diego, CA, June 2003.

[84] J. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu, and W. Hwu.

Efficient compilation of fine-grained spmd-threaded programs for multicore

cpus. In CGO ’10: Proceedings of the International Symposium on Code

Generation and Optimization, 2010.

[85] M. M. Strout, L. Carter, and J. Ferrante. Compile-time composition of run

time data and iteration reorderings. In PLDI, 2003.

[86] l.-J. Sung, J. A. Stratton, and W. mei W. Hwu. Data layout transformation

exploiting memory-level parallelism in structured grid many-core applica

tions. In PACT, pages 513-522, 2010.

118

[87] D. Tarjan, J. Meng, and K. Skadron. Increasing memory miss tolerance for

simd cores. In SC, 2009.

[88] N. Tuck and D. M. Tullsen. Initial observations of the simultaneous multi

threading pentium 4 processor. In PACT, 2003.
#

[89] S. Tzeng, A. Patney, and J. D. Owens. Task management for irregular-

parallel workloads on the gpu. In Proceedings of the Conference on High

Performance Graphics, HPG '10, 2010.

[90] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio G6mez, C. Tenllado,

and F. Catthoor. Polyhedral parallel code generation for cuda. ACM Trans.

Archit. Code Optim., 9(4):54:1-54:23, Jan. 2013.

[91] V. Volkov and J. W. Demmel. Benchmarking gpus to tune dense linear

algebra. In Proceedings of the 2008 ACM/IEEE Conference on Supercom

puting, SC '08, pages 31:1-31:11, Piscataway, NJ, USA, 2008. IEEE Press.

[92] B. Wu, E. Zhang, and X. Shen. Enhancing data locality for dynamic simula

tions through asynchronous data transformations and adaptive control. In

PACT, 2011.

[93] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen. Complexity analysis and

algorithm design for reorganizing data to minimize non-coalesced memory

accesses on gpu. In PPoPP, 2013.

[94] R. Wu, B. Zhang, and M. Hsu. Clustering billions of data points using gpus.

In Proceedings of the Combined Workshops on Unconventional High Per

formance Computing Workshop Plus Memory Access Workshop, UCHPC-

MAW ’09, pages 1-6, New York, NY, USA, 2009. ACM.

[95] S. Xiao and W. chun Feng. Inter-block gpu communication via fast barrier

synchronization. In IPDPS, 2010.

119

[96] Y. Yan, X. Zhang, and Z. Zhang. Cacheminer: A runtime approach to exploit

cache locality on smp. IEEE Transactions on Parallel Distributed Systems,

11 (4):357—374, 2000.

[97] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A gpgpu compiler for memory

optimization and parallelism management. In PLDI, 2010.

[98] E. Zhang. Dynamic Optimizations for Irregular Applications on Many-Core

Architectures. PhD thesis, Computer Science Dept., The College of William

and Mary, July 2012.

[99] E. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-fly elimination of

dynamic irregularities for gpu computing. In ASPLOS, 2011.

[100] E. Z. Zhang, Y. Jiang, Z. Guo, and X. Shen. Streamlining gpu applications

on the fly. In Proceedings of the ACM International Conference on Super

computing (ICS), pages 115-125, 2010.

[101] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal. Grace: A low-overhead

mechanism for detecting data races in gpu programs. In PPoPP, 2011.

[102] J. Zhong and B. He. Kernelet: High-throughput gpu kernel executions with

dynamic slicing and scheduling. CoRR, abs/1303.5164, 2013.

[103] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array regrouping and structure

splitting using whole-program reference affinity. In PLDI, 2004.

	Matching non-uniformity for program optimizations on heterogeneous many-core systems
	Recommended Citation

	00001.tif

