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ABSTRACT

As computing enters an era of heterogeneity and massive parallelism, it exhibits 
a distinct feature: the deepening non-uniform relations among the computing 
elements in both hardware and software. Besides traditional non-uniform 
memory accesses, much deeper non-uniformity shows in a processor, runtime, 
and application, exemplified by the asymmetric cache sharing, memory 
coalescing, and thread divergences on multicore and many-core processors. 
Being oblivious to the non-uniformity, current applications fail to tap into the full 
potential of modern computing devices.

My research presents a systematic exploration into the emerging property. It 
examines the existence of such a property in modern computing, its influence on 
computing efficiency, and the challenges for establishing a non-uniformity-aware 
paradigm. I propose several techniques to translate the property into efficiency, 
including data reorganization to eliminate non-coalesced accesses, 
asynchronous data transformations for locality enhancement and a controllable 
scheduling for exploiting non-uniformity among thread blocks. The experiments 
show much promise of these techniques in maximizing computing throughput, 
especially for programs with complex data access patterns.
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Chapter

Introduction

1.1 The Problem

Heterogeneous systems leverage Graphics Processing Unites (GPUs) to speedup 

both compute-intensive and memory-intensive applications in many domains, in­

cluding high-performance simulation [7,74], database systems [8,30], Big Data [64, 

94] and so on. Being able to execute a large number of threads simultaneously 

on hundreds or even thousands of cores, GPUs provide tremendous peak com­

puting power (e.g., 1.31 TFLOPS of double precision floating point performance 

on NVIDIA K20 GPUs) and great power efficiency (e.g., 9 times more energy 

efficient for some applications over CPU [42]). Previous studies [10,80,91] ob­

served 1.16X to 431X speedups for various applications and workloads on GPUs 

compared to single-threaded CPU computations.

Off-chip memory access, however, is a bottleneck to fully exert the computing 

power of GPUs. The many cores issue a huge number of memory requests that 

the current memory system cannot handle efficiently. A recent study showed that 

for some applications GPU cores are idle for more than 90% of the execution time, 

waiting for data from main memory [47]. Due to the trend of designing simpler 

cores and integrating more cores on the same die, the gap between on-chip com­

puting power and off-chip memory bandwidth is even widening. It is expected that

1
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in future exascale supercomputers produced around 2020, the aggregate comput­

ing power will increase by hundreds of times, while the main memory bandwidth 

will only increase by around ten times [32], The issue is further underscored by 

the advent of the Big Data processing era. Many data-intensive applications (e.g., 

dynamic simulation and graph processing) only do lightweight processing on each 

data element and hence do not significantly reuse the data in fast on-chip caches, 

further increasing the burden on the memory system.

Algorithm 1 Molecular Dynamics Simulation
1 Initialize atoms and neighbor J is t
2 for ite r  = 0 to max iterations  — 1 do
3 for i  = 0 to num atoms do
4 atomi — atoms[i\;
5 for j  =  0 to num_neighbors — 1 do
6 atomj =  atoms [neighbor J is t  [i] [j] ];
7 atomt =  update_atom{atomi) a to m j
8 if ite r  mod K  = =  0 then
9 update{neighborJist);

While memory optimization is the key to convert computing power to perfor­

mance, it faces challenges posed by two trends in software and hardware. First, 

data-intensive applications usually have irregular memory access patterns that 

change during run time. For example, Algorithm 1 shows the pseudo-code of 

molecular dynamics simulation, which simulates the interactions among a large 

number of atoms. In the initialization phase (line 1), the code initializes the atoms 

array, which stores various types of information of the atoms, and a neighbor J is t  

array, which records the neighborhood relations among the atoms. Note that 

we need the neighbor J is t  array because of the atoms' non-uniform interactions: 

Each atom is modeled to only interact with its several neighbor atoms. Two atoms 

are neighbors if the distance between them is smaller than some threshold. The 

computation phase (line 3-7), updates every atom according to the interaction be­

tween itself and each of its neighbors. The accesses to the neighbor atoms (line 

7) are through an index array neighbor J is t .  Hence, the access pattern is de-



termined by the values in neighbor J is t  and can be rather irregular. Meanwhile, 

this pattern may change during run-time in that neighbor J is t  is updated every K  

iterations as shown by line 8 and 9.

The second trend is that the hardware shows deepened non-uniformity in both 

inter-core resource sharing and intra-core execution. The complex resource shar­

ing complicates memory optimizations. For example, an NVIDIA Kepler GPU [71] 

contains multiple streaming multi-processors (named SMX), each having a pri­

vate read-only data cache that can not be accessed by other multi-processors. 

But the L2 cache is uniformly shared by all multi-processors. Like traditional 

CPUs, GPU’s cache efficiency also heavily depends on the regularity of mem­

ory accesses. Inside one multi-processor, the threads are organized into Single- 

Instruction-Multiple-Data (SIMD) groups, each of which executes in lockstep. Mem­

ory throughput significantly improves through memory coalescing if the threads in 

the same warp access close-by memory elements. Unfortunately, irregular mem­

ory accesses seriously limit the benefit of memory coalescing. On an NVIDIA 

GPU, the throughput degradation due to irregular memory accesses can be up to 

32 times.

The non-uniformity in software and hardware leads to a mismatch that causes 

a double-digit performance degradation compared to peak performance [80,99], 

In this dissertation, we aim to bridge this gap through systematically exploring 

the influence of non-uniformity and designing a holistic non-uniformity-aware op­

timization framework.
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1.2 Existing Approaches to Optimizing Memory Per­

formance

Existing memory optimization studies for heterogeneous systems can be grouped 

into three categories: static approaches, dynamic approaches and hardware ap­

proaches. We briefly discuss their applicability and limitations.

Static Approaches: Static memory optimizations are usually integrated into 

compilers and try to infer memory access patterns through code analysis. Yang 

et al. [97] designed a source-to-source optimizing compiler, which considers mul­

tiple performance aspects, including vectorization, coalescing and data prefetch­

ing. For memory performance improvement, their main technique is to transform 

non-coalesced pattern—in which the threads in the same warp need to load more 

than one memory segment—into a coalesced one through using shared memory. 

Their access pattern detection can handle constant index, predefined index and 

loop index. However, in some applications like the one shown in Algorithm 1, 

the pattern depends on the values in some index array, which fails their detection 

algorithm and is hence ignored.

Verdoolaege et. al. [90] leverage polyhedral analysis to automatically paral­

lelize affine loops and generate GPU code, with optimizations for memory coa­

lescing and cache reuses. Similar to Yang’s work, their technique’s application is 

limited to code whose memory access pattern can be analyzed statically. Jia and 

others [44] observe the benefit of L1 cache bypassing for NVIDIA GPUs and pro­

posed a compiler transformation to selectively enable bypassing for each global 

memory load instruction. They try to reduce the negative influence of the private 

data cache, rather than leverage the non-uniformity to improve data sharing.
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Sung and others [86] focus on structured grid many-core applications. Since 

the memory access pattern is mostly determined by the source code, they propose 

compiler optimizations to transform data layout for better memory coalescing.

Dynamic Approaches: The idea of dynamically optimizing code whose mem­

ory access pattern is determined online dates back to the seminal work from Das 

et al. [25], The work considers distributed irregular programs and transforms se­

quential loops into two constructs: the inspector and the executor. The inspector 

examines the access pattern and prepares optimized data (e.g., through prefetch­

ing) for the executor, which computes the output.

Chen and Kennedy [26] use the inspector-executor strategy for shared-memory 

programs—which are also the focus of this dissertation—and propose runtime 

analysis and data transformation to address dynamic memory access irregularity 

for CPU programs. Following their work, Han et al. [37] propose some more so­

phisticated data transformation techniques. The proposed techniques all happen 

on the critical path of the program: Only after they finish can the optimized code 

be executed. But the transformation overhead of some algorithms is non-trivial. 

For example, the recursive coordinate bisection algorithm may run as long as 

tens of invocations of the kernel function. Although lightweight algorithms, such 

as data packing, have much smaller overhead, their benefit is also significantly 

reduced. The overhead-benefit dilemma seriously limits the applicability of data 

transformation in real-world applications.

Zhang and others [99] propose the first runtime approach to address dy­

namic irregular memory references on GPU. They design a pipelined framework, 

in which the CPU transforms data for the GPU execution. The key insight is that 

irregularity can be easily removed through data duplication. However, space over­

head seriously limits the applicability due to the capped device memory size and 

the transformation benefit due to the increased volume of data to be transferred
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between CPU and GPU. The study lacks an in-depth study of the trade-off among 

transformation overhead, space cost and benefit.

Some studies use domain-specific knowledge to reorder data for better local­

ity. Nasre and others [67,68] optimize the layout for graph algorithms by grouping 

the graph elements logically close to each other close in memory. Using a similar 

optimization method, Burtscher and others [14] find that some applications sig­

nificantly benefit from the optimized layout, while some other applications are not 

sensitive to the layout change. Comparing with these studies, we try to be gen­

eral. Furthermore, they only consider data reordering, but overlook the benefit 

from data duplication.

Hardware Approaches: Rhu and others [77] design a locality-aware memory 

hierarchy that can automatically adjust the memory fetching granularity. For work­

loads of good spatial locality, the system fetches large chunks of data. For work­

loads of poor spatial locality, the system reduces the memory fetch width to save 

bandwidth. To reduce threads stall time, Meng and others [63] propose a threads 

subdivision scheme, which allows part of the SIMD group to continue the exe­

cution if the data for the involved threads are ready. It significantly reduces the 

memory latency imposed by irregular memory accesses.

The hardware thread scheduler also received some attention to improve mem­

ory performance. Rogers and others [78] design a cache-conscious warp sched­

uler. It explores the fact that exploring intra-warp locality is critical for irregular 

GPU applications. With the help from a intra-warp locality detector, the scheduler 

gives more exclusive accesses to the L1 data cache to the warps losing intra­

warp locality. In their following work [79], proactive predictions help the scheduler 

schedule warps whose working set can fit into the L1 data cache.

The hardware approaches show great promise, but to our best knowledge 

have not been implemented in any off-the-shelf many-core processors.
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1.3 Our Non-Uniformity-Aware Approach

We design a software framework centered around non-uniformity matching, which 

addresses three main limitations of existing approaches: 1) the quality-space 

overhead dilemma, 2) the quality-time overhead dilemma and 3) non-uniformity- 

oblivious thread scheduling. The first two limitations are relevant to run-time data 

reorganization, while the last one is a serious limitation from the GPU scheduler 

design. In the remainder of this section, we briefly describe those limitations and 

how this work addresses them.

1.3.1 Addressing the Quality-Space Overhead Dilemma

To reduce the number of off-chip memory transactions, modern GPUs have a key 

hardware optimization feature: memory coalescing. If the memory requests from 

one GPU SIMD group access the same memory segment (usually 128 byets), 

one memory transaction loads the whole memory segment to meet all the re­

quests. However, the irregular memory access pattern caused by the mismatch 

of non-uniformity greatly degrades the benefit from memory coalescing. The full 

duplication algorithm proposed by Zhang and others [99], while guaranteeing to 

coalesce all memory accesses, introduces non-trivial space overhead. The space 

overhead throttles the benefit from data reorganization, as it increases the amount 

of data to be transferred from CPU to GPU. However, naively reducing the space 

overhead through partial duplication affects the layout quality, thereby degrading 

the final performance.

Our Contributions. We point out that the essence for designing an appropriate 

data reorganization algorithm can be reduced to a classical tradeoff among space, 

time, and complexity. Based on the insights, we develop two new data reorgani­

zation algorithms that complement prior algorithms with respective strengths. We
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show that the new algorithms reduce space cost significantly with non-coalesced 

memory accesses kept minimized. We also compare the various algorithms, unify 

them into an assembly, and develop some selection guidelines and an automatic 

algorithm selector to address GPU dynamic irregular accesses in various scenar­

ios. We experiment with a set of dynamic irregular applications and show that the 

developed assembly, along with the algorithm selector, circumvents the inherent 

complexity in finding optimal data layouts, making it feasible to minimize non­

coalesced memory accesses for a variety of irregular applications and settings 

that are beyond the reach of existing techniques.

1.3.2 Addressing the Quality-Time Overhead Dilemma

The existing data reorganization algorithms have different levels of complexity. 

Typically, the more complex the algorithm is, the better quality the produced data 

layout has. However, complex algorithms incur large run-time overhead, which 

lies on the critical path and hence seriously limits their benefit. One tempting 

design is to offload data reorganization from critical path, which is, however, not 

feasible because of the data dependence between data reorganization and the 

irregular computation.

Our Contributions. We observe that the reorganization algorithm can be de­

composed into two parts: transformation analysis and data repositioning. The 

former component figures out how to reorganize the data elements to match the 

non-uniform data interactions, while the latter component moves data to form the 

final data layout. The overhead of the analysis part is usually multiple times larger 

than that of the repositioning part. Fortunately, we can ensure the execution cor­

rectness as long as the data dependence between irregular computation and data 

repositioning is respected. Based on this insight, we offload the expensive analy­

sis component to an originally idle processor and keep the lightweight data repo-
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sitioning component on critical path. As such, we successfully hide data transfor­

mation overhead as well as guaranteeing the program’s correctness.

1.3.3 Addressing the Non-Uniformity-Oblivious Scheduling

On current GPUs, the workloads processed by different threads show strong non­

uniformity: 1) The data sharing degree varies across thread blocks and 2) Thread 

blocks from different kernels have different levels of memory access intensity. 

Nevertheless, the hardware scheduler, which is out of the reach of programmers 

or compilers, is unaware of such non-uniformity. As a result, we miss optimization 

opportunities from exploiting the non-uniformity of the hardware and the work­

loads. For example, scheduling threads that share much data to the same core 

can enhance inter-thread data reuses in the private data cache.

Our Contributions. We propose a compiler transformation and a runtime to en­

able flexible scheduling on modern GPUs. The key insight is that what matters is 

the mapping between jobs (the work a thread block processes) and the underlying 

hardware. By retrieving the IDs of cores during run-time, our framework flexibly 

determines which set of jobs should be processed by which processor. The flex­

ibility enables several optimizations, including parallelism control, resource parti­

tioning and affinity-based scheduling.
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Exploiting Non-Uniform Effects of 

Irregular References on GPU

2.1 Introduction

Recent years have seen a rapid adoption of GPU for high performance computing. 

As a massively parallel architecture, GPU significantly accelerates many regular, 

data-parallel applications. But its benefits for irregular applications are far less 

substantial, especially when the application contains dynamic, irregular memory 

references.

The reason comes from the hardware properties of GPU. GPU organizes its 

threads in groups and memory in segments. Every W  threads with consecutive 

ID numbers form a warp\ every S consecutive bytes in the global memory form 

a segment. At a memory reference, the number of memory transactions needed 

to load the data accessed by a warp equals the number of segments the data fall 

onto. When that number is larger than the possible minimum, the accesses are 

called non-coalesced memory accesses.

Non-coalesced memory accesses are common in irregular applications. Fig­

ure 1 (a) shows a simplified codelet in the core computation in a molecular dy­

namics simulation. The underlined statement “pos [neighbors [j*M + tid]]" gets

10
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(a) codelet

I I  tid: the global ID  of a thread 
/ /  M: num. o f neighbors per molecule 
ipos = pos [tid]; 
for (j=0; j< m; j++){

jpos = d o s  f neighbors f j*M  + tid ]]: 
computeForce (f, ipos, jpos);

}
force [tid] = f;

(b) case 1: neighbors [0...3] = {4, S, 6,7}

(c) case 2: neighbors [0...3] = {9 ,103,23,67}

Figure 1: (a) A simplified codelet of the force computation in a molecular dynamics simulation. The values in neighbors 
decides the access pattern of pos. (b) and (c) show a regular and irregular pattern respectively.

the coordinates of a neighbor of the current molecule. As a typical dynamic irreg­

ular reference, it may manifest various access patterns, determined by the values 

contained in neighbors. In the case of Figure 1 (b), all accesses by the warp are to 

a single memory segment; only one memory transaction is necessary, assuming 

a segment can contain four molecules’ positions. But in the case of Figure 1 (c), 

because of irregular values in neighbors, the accesses are non-coalesced and re­

quire four memory transactions. This kind of irregularity is common in a molecular 

dynamics simulation, thanks to molecules’ movements and their dynamic neigh­

borhood. It is a key feature of many scientific simulations.

Non-coalesced accesses may result in memory transactions as many as W  

times of the minimum, leading to a throughput a number of factors lower than 

the peak of GPU [9,18,99], They have been the focused target of some recent 

studies. However, most prior explorations [9,41,56,80,97] concentrate on static 

irregularities, where the memory access patterns are known at compilation time. 

The type of irregularity in our focus is dynamic: For instance, the content of the 

indexing array neighbors in Figure 1 depends on the input to the program and is 

updated throughout the simulation of the molecules movement.

Dynamic irregular accesses have to be treated during runtime. Some earlier 

studies [87] have relied on special hardware extensions that modern GPUs do 

not have. A recent study [99] shows the promise of pure software solutions. It 

develops a pipeline scheme that makes it possible for CPU to reorganize data
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and threads for a near-future GPU kernel invocation while GPU is working on the 

current kernel. A related study [18] demonstrates the feasibility of moving the 

reorganization to GPU so that CPU can also involve in workload processing.

Despite that these studies have shown promising speedups, the understand­

ing to data reorganization for minimizing non-coalesced GPU memory accesses 

remains preliminary. Although it has been shown that minimizing the number 

of non-coalesced memory accesses is an NP-complete problem [93,99], there 

only exist ad hoc algorithms to circumvent the complexity result. This chapter 

describes the first principled understanding of GPU data reorganization for mini­

mizing non-coalesced accesses.

2.2 Problem Setting and Complexity Analysis

In this section, we first provide some background on GPU that closely relates with 

the following discussions. We then describe the main approaches researchers 

have been pursuing to tackle non-coalesced GPU accesses. We finally reveal 

the fundamental challenges for such approaches by proving that using those ap­

proaches to minimize non-coalesced accesses for general irregular references is 

computational infeasible unless NP equals P.

2.2.1 Background

As a massively parallel device, GPU contains hundreds or thousands of cores 

residing on a number of streaming multiprocessors (SM). When a GPU kernel 

is launched, the runtime usually creates thousands of GPU threads running on 

these cores in parallel. These threads are organized hierarchically. A number of 

threads (32 in NVIDIA GPU) with consecutive IDs compose a warp, a number of 

warps compose a thread block, and all thread blocks compose a grid. (This paper
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uses CUDA terminology.) A warp is the unit in GPU scheduling; all threads in a 

warp proceed in lockstep.

GPU is equipped with several types of memory. The largest is off-chip main 

memory called global memory. It consists of a large number of segments (of 32, 

64, or 128 bytes depending on the access mode.) For the large size and long ac­

cess latency of global memory, its access efficiency is critical. GPU hence offers 

memory coalescing, a hardware-enabled feature that uses one memory transac­

tion to load/store all the data in a memory segment that are requested by a warp 

at a load/store instruction. As a result, the execution of a load/store instruction by 

a warp incurs K  memory transactions, where K  equals the number of memory 

segments the requested data fall onto. Suppose the data to load/store by a warp 

at a reference contain D  bytes and a memory segment is 5-byte long. The refer­

ence is a non-coalesced reference when K  > \D/S).  The corresponding memory 

accesses are non-coalesced accesses. Another type of memory on GPU worth 

mentioning is shared memory, which is on-chip with access latency comparable 

to that of register files. A thread can access an element that is loaded or stored 

into shared memory by another thread if and only if the two threads belong to 

the same thread block. In the remainder of the thesis, memory refers to global 

memory by default.

2.2.2 Objective and Complexity

The objective of non-coalesced access minimization is to minimize the number of 

non-coalesced accesses of a GPU kernel. The minimization, for its importance 

for GPU performance, has drawn lots of attentions. However, satisfying solutions 

are still limited to some special scenarios. In this section, we examine the inherent 

complexity of the previous approach and prove that in general cases, using the 

approach is infeasible to reach the objective unless NP equals P. The results may
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guide the direction of future research, and also lays the theoretical foundation for 

the rest of this work.

A GPU kernel may contain multiple references. We focus on one reference 

first and discuss other scenarios later.

Data Repositioning and NP-Completeness

Data repositioning has been the main direction pursued by previous work for min­

imizing non-coalesced accesses [9,56,87]. The essential idea is to reorder data 

elements on memory so that the data to be accessed by a warp can reside con­

secutively, covering the minimum number of memory segments. For the example 

in Figure 1 (c), the transformation would create a new array Pos’ with the same 

elements as Pos has but in a different order, such that the four elements Pos[9], 

Pos[103], Pos[23], Pos[67] fall into a single memory segment. Matrix transpos­

ing [87] is another example: By repositioning elements on memory to create a 

column-major data layout, it can minimize non-coalesced accesses for a column­

wise reference to the matrix.

Although it seems simple, using data repositioning can be complicated when 

the data accessed by multiple warps overlap. Consider a reference A[P\tid)\, with 

P  as follows

P[]={8, 23, 46, 93, 8, 9, 10, 67, 5, 11, 41, 67, 9, 41, 55, 59}.

Assume memory segment length 5  =  4 and warp size W =  4. The repetitive 

values in P (highlighted in bold font) dictate that some elements in A are accessed 

by multiple warps. Which segment to put those values is tricky. For instance, 

putting A[8] into a segment with A[23], A[46], A[93] would coalesce the first warp’s 

accesses but leave the second warp’s accesses non-coalesced.

The issue has been largely limiting the applicability of data repositioning. De­

spite many recent efforts, this approach has been effective for only the cases 

where each target data element is accessed by only one warp in a kernel. In
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an application with dynamic irregular references, that condition rarely holds: In a 

molecular dynamics, a molecule is often the neighbor of more than one molecules; 

in a sparse matrix multiplication, an element in the vector is often used to multiply 

multiple elements in the matrix; in a mesh simulation, a vertex is often shared by 

several triangles.

Complexity Theorem Prompted by the various difficulties people have so far 

encountered in finding a general data repositioning algorithm to guarantee mini­

mum non-coalesced accesses, we conduct a systematic analysis on the inherent 

complexity of the problem. An important finding we obtain is that such an algo­

rithm does not exist unless NP=P. Formally, we develop the following theorem:

Theorem 2.2.1 Creating a new data layout through only data repositioning (which 

implies that each item in the original data structure has only one copy in the new 

structure) to minimize the non-coalesced accesses for an arbitrary data reference 

on GPU is an NP-complete problem.

As this is the first strong claim on the complexity of non-coalesced access 

minimization, it is worth providing a formal proof, for verifying its correctness as 

well as offering insights that may be useful for analyzing the complexity of other 

GPU optimization problems.

Proof The proof is a result of a joint work, which was published in the dissertation 

of Zhang [98]. We elide the proof here.

When Warp Reorganization is Allowed

The above theorem assumes that only data repositioning is applied for reduc­

ing non-coalesced memory accesses. Some recent study [99] has shown that 

warp reorganization can help remove non-coalesced accesses as well, and can 

be used together with data repositioning for the optimization. In this subsection,
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we complement Theorem 2.2.1 with Theorem 2.2.2, stating that reorganization 

does not change the NP-completeness of the problem.

Theorem 2.2.2 It is an NP-complete problem to minimize the non-coalesced ac­

cesses for an arbitrary data reference on GPU through data repositioning, warp 

reorganization, or both.

See the proof in [98],

2.2.3 Discussion

This section has analyzed the computational complexity of using data reposition­

ing for minimizing non-coalesced accesses. The proved NP-completeness should 

not rule out the possibility that through some heuristic algorithms, the approach 

may still yield good speedup on some special types of kernels. However, it does 

indicate the extreme challenge to use it for achieving the optimal for general cases. 

We next show that the challenge can be circumvented if a constraint assumed by 

the approach is relaxed.

2.3 Algorithms that Circumvent the Complexity

We design two new algorithms to circumvent the complexity facing data repo­

sitioning. The key observation is that the essential difficulty in data repositioning 

comes from an implicit constraint that the produced new data layout uses no more 

space than the original. If we allow more space to be used, the complexity of the 

problem may reduce significantly.

Previous studies have not exploited this insight, except for the one by Zhang 

and others [99], which takes advantage of extra space but in an ad-hoc man­

ner. In this section, we first review that previous method, reveal its limitation, and 

crystalize the analysis into an insight in the key tradeoff in designing a practical 

solution. We then describe the two new algorithms we design.
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The following discussion is based on reference A[P{tid}), a conceptual form 

of dynamic irregular references. It assumes the memory segment size (5) is a 

multiple of the working set size of a warp. This condition often holds given that 

the warp size and S are typically powers of 2. But even when it does not hold, the 

following discussions are still valid except that some preprocessing needs to be 

done to align data with memory segments.

2.3.1 Review of the Duplication Algorithm

The duplication algorithm is used by Zhang and others to optimize irregular mem­

ory accesses [99]. For an irregular reference, such as A[P[tid]], the algorithm 

creates a new array A' such that A’[tid] =  A[P[tid]\\ the reference to A[P[tid\\ in 

the kernel is then replaced with A'[tid\. The algorithm naturally ensures that all 

accesses of a warp are to a consecutive memory region and there are no non- 

coalesced memory accesses, as illustrated by Figure 4 (b).

The algorithm is called “duplication” as it creates duplicated copies of a data 

element when the indexing array P  contains repetitive values. Apparently, the 

new array A' is as large as the number of GPU threads (T), no matter how small 

the original array A is. Even worse is when there are multiple references to the 

same array (e.g., A[P[tid\] +  A[P[tid] +  v]), the algorithm creates a new T-long 

array for each of the references.

2.3.2 Limitations and Tradeoff

The duplication algorithm converts irregular accesses to regular ones. However, it 

may dramatically inflate space usage. For a /f-element array referenced n times 

by T GPU threads, the space overhead is as much as a factor of n * T /K .  In a 

modern GPU, T  can be comparable with the number of bytes in the entire memory.

The large space overhead has two consequences. First, the basic duplica­

tion algorithm fails to apply when the space inflation exceeds the capacity of the
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Figure 2: Positions of various algorithms in the space-quality-complexity coordinates. Graph (b) omits partial duplication 
for legibility.

memory. Second, the creation and transfer of the large volume of data may intro­

duce substantial time overhead, throttling the optimization benefits. The previous 

work has used partial duplication to alleviate the issues [99], The idea is to apply 

the transformation to only a fraction of the GPU threads. Although it can reduce 

the space overhead, it compromises the quality of the optimization proportionally. 

As Section 4.6 will show, it may result in substantially lower speedup than what is 

possible.

Figure 2 shows the conceptual positions of the previous approaches in a 

space of optimization quality, complexity, and space cost. Data repositioning and 

the duplication algorithm are at two extreme ends of the spectrum of space cost. 

The partial duplication lowers the space cost but also proportionally degrades the 

transformation quality and lengthens the kernel execution time. Data reposition­

ing has the lowest space cost but the highest complexity. So the key for having 

a practical algorithm is to find a sweet design point that reduces the space cost 

without compromising the transformation quality and meanwhile possesses man­

ageable complexity. We next describe two new algorithms towards that goal.

2.3.3 Padding Algorithm

The padding algorithm tries to avoid some unnecessary data copies made in the 

duplication algorithm without compromising the optimization quality. Its basic ob­

servation is that if two threads (tx and t2) from the same warp access the same

duplication

•  reposition



19

data element (a), there is no need to create two copies of that data element. We 

can simply let them access the same copy of the data element. It will change the 

one to one regular mapping between data and threads created by the duplica­

tion algorithm, however, it will not create non-coalesced accesses since the two 

threads still access the same memory segment.

A Simple Design

A simple design is to just make the following modification to the duplication al­

gorithm. When the algorithm is about to create a copy of an element in the new 

array A', it checks whether the current thread is the first of the current warp that 

accesses that element and avoids the creation if it is not. (An entailed change 

is that the original reference, say A[P[tid\\, needs to be replaced with A'[Q[tid\\ 

rather than A'[tid\, where Q contains the new mapping between a thread and the 

data it accesses in ,4'.)

Unfortunately, this simple modification is insufficient for two reasons. First, 

the avoided duplications cover only a small portion of all the duplications because 

the chance for two threads accessing the same data element to come from the 

same warp is often small. Second, the avoidance of some duplications often 

causes a misalignment between the working set of a warp and memory segments. 

As a consequence, the working set of a warp may span over the boundary of a 

segment, causing new non-coalesced accesses.

An Enhanced Design

Our enhanced design addresses the two problems of the simple design through 

sorting and padding. Figure 3 shows the pseudo code of the algorithm. It includes 

three steps.

The first step reorders data elements based on their access frequencies. At a 

data reference, the access frequency of a data element is the number of threads
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II inputlndArray, outputlndArray: the original and produced indexing arrays 
// inputArroy, outputArray: the original data array and its new copy after padding 
function Paddlng(inputlndArray, outputlndArray, inputArray, outputArray) 

inputlndArray = SortByFrequency(inputlndArray); 
for each warp w, 

uniqueRefSet = FindUniqueRefs(w, inputlndArray, inputArray); 
nRemainingSlots = FindRemainingSlots(currentMemSegment); 
if uniqueRefSetsize <= nRemainingSlots, 
for each e in uniqueRefSet, 

add element e to outputArray; 
update outputlndArray; 

end  
else

pad dummy values to outputArray for memory segment alignment; 
for each e in uniqueRefSet, 

add element e to outputArray; 
update outputlndArray; 

end 
end 

end 
end

Figure 3: The pseudo-code of the padding algorithm.

that access it. The second step reorganizes threads into warps. It reorders 

threads according to the order of data elements—that is, all threads accessing 

data X  must precede all threads accessing Y  if X  precedes Y  in the new data 

sequence. Starting from the first thread, every W  adjacent threads form a warp 

in the resulting thread organization. These two steps address the first problem of 

the simple design: By making threads accessing the same data element locate 

closely and form warps, they reveal more opportunities for saving duplications.

The third step puts data elements into memory segments. Starting from the 

first data element in the new order, the data are greedily packed into a memory 

segment one after one. But when it finds that the current segment cannot hold all 

the data the current thread warp accesses (e.g., the first segment in Figure 4 (c)), 

it moves all the data accessed by that warp into the next memory segment, leaving 

some empty slots at the end of the previous memory segment. Data is duplicated 

only when necessary—that is, when one data element is accessed by multiple 

thread warps whose working data sets do not fall into the same memory segment. 

Examples are the two “c”s in the layout in Figure 4 (c). This step addresses the 

second problem of the simple design. By padding a memory segment with some
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threads: 1 2 3 4  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

accessed
object: a a b b c c d d e  e a a b b c d e f g h a a . . .

original
layout: a c e g b d f h ...

acc freq: 6 3 31  4 3 1 1

(a) Original layout and accesses

new
layout: 2LabJ2ccd .de s.. a a b b ..... c ....d e f. g h a _ a ■■■

acc freq: 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1  1 1 1 1

(b) Layout from Duplication

new
layout: a b c x c  d e f  g h.. .

acc freq: 6 4  2 0 1  3 3 1  1 1

(c) Layout from Padding (“x” for empty slot)

new
layout: a b  cd  e f g h ...

acc freq: 6 4 3 3 3 2 1 1

(d) Layout from Sharing

Figure 4: An example that illustrates the algorithms of duplication, padding, and sharing. Assume 4 objects per memory 
segment, 4 threads per warp, and 4 warps per block.

empty slots when necessary, it aligns the working set of a warp with memory 

segments.

Analysis This padding algorithm guarantees zero non-coalesced access since 

it puts the working set of every warp into a single memory segment. Its space over­

head comes from the padded empty slots and some duplicated data elements. If 

k threads in a warp access one single data element, the empty slot in a memory 

segment is at most as long as mod(S, \Wjk}) ,  where \W/k]  computes the num­

ber of unique elements accessed by a warp and S is the number of data elements 

a segment can contain. Both S and W  are usually power of two. So the worst 

case happens when k is small (hence the remainder is large) but is not a power 

of two. Specifically, when k =  3, the empty slot is the longest, up to W j 3 -  l. 

But even in that case, the space cost is much lower than that of the duplication
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algorithm. The number of threads a memory segment serves in that case must be 

no fewer than t =  ( S - W / 3 +  l)/(W /3). Following the assumption that S is the 

multiple of W, let S =  r * W  with r  being a positive integer. The number of threads 

served, t, must be no smaller than 3r -  l, which is at least 2. In the duplication 

algorithm, these threads would use at least 2S memory (given that r =  l means 

S =  w), double what they use in the padding algorithm.

When analyzing the number of duplications in the padding algorithm, it is im­

portant to notice that among all the warps accessing the current memory segment, 

only the first of them may have some data elements duplicated. It is because only 

when the working set of a warp overlaps with the data elements in the previous 

memory segment, those overlapped elements may have a duplicate in the current 

memory segment (e.g., the second “c” in Figure 4 (c).) That overlap must be par­

tial since at a complete overlap, the previous memory segment can already hold 

the working set of that first warp, and hence that warp would have corresponded 

to the previous rather than current memory segment. Due to the way threads are 

ordered, that partial overlap entails that the working sets of the other warps can­

not overlap with the data in the previous segment, and hence have no duplicated 

data. Following the observation, we can see that in the case mentioned in the 

previous paragraph, the duplicated part of a segment is at most W / 3 - l ,  smaller 

than i /3 r  of S. In comparison, the duplication algorithm creates at least 3 copies 

per data element in that case. The data element contained in one memory seg­

ment in the padding result would become 3 * (S -  W/3 + 1 ) /S (which is greater 

than 3 — l/3 r  and 2.67) segments in the result from the duplication algorithm.

Limitation Despite its appealing properties, the padding algorithm has one ma­

jor limitation. Because it reorganizes not only data but also threads, it may cause 

side effects to other references in the kernel. For example, if a kernel contains 

“B[tid]+A[P[tid]]”, after the third and ninth threads switch positions, they swap their
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jobs, and the accesses to B must also be swapped. In another word, B[tid) must 

be replaced with B[R[tid\] where, R[3] =  9, and R[9] =  3. Otherwise, the new 

thread 3 would add .4[P[9]] with B[3] rather than B[9], causing wrong computa­

tion results. As a result, the optimization of A[P[tid\\ makes accesses to B non- 

coalesced. So the padding algorithm is most beneficial when all references in a 

kernel follow the same access pattern (e.g., B[P[tid\] +  A[P[tid}].)

2.3.4 Sharing Algorithm

This algorithm overcomes the limitation of the padding algorithm by increasing 

duplication avoidance from a different angle. It uses the shared memory in GPU 

to enlarge the scope of duplication avoidance. Shared memory is a type of on- 

chip memory in GPU. Data written to shared memory by a thread is visible only 

to threads in the same thread block. Shared memory has an access latency a 

hundred times smaller than that of the global memory, and more importantly, its 

performance is largely insensitive to irregularities in accesses.

Insight The key insight of this algorithm is to shift irregular accesses from global 

memory to shared memory. As shared memory is visible within a whole thread 

block, the sharing algorithm enlarges the scope of duplication avoidance from a 

warp to a thread block. Its basic idea is to create a copy of all the data accessed 

by a thread block (a single copy per data element) and put them into a consecutive 

chunk of memory. Then, it loads these data in a consecutive (hence coalesced) 

manner into shared memory. It redirects memory accesses by the thread block 

to the corresponding copies in the shared memory. By keeping only one copy for 

all data elements accessed by a whole thread block, it avoids many duplications. 

By shifting irregular accesses to shared memory, it eliminates non-coalesced ac­

cesses to global memory. It uses clustering to further increase the opportunity for 

duplication saving. The detailed algorithm is as follows.
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/ /  inputlndArray, outputlndArray: the original and produced indexing arrays;
II inputArray, outputArray: the original and produced data arrays;
II blockPos, blockSizes: the starting position and size of the working set o f a thread block 
function Sharing(inputlndArray, outputlndArray, inputArray, outputArray, 
blockPos, blockSizes)

[inputlndArray, inputArray] = DataClustering(inputlndArray, inputArray); 
for each thread block b, 

uniqueRefSet = findUniqueReferences(b, inputlndArray, inputArray); 
blockSizes[b] = uniqueRefSetsize; 
blockPos[b] = outputArray.size; 
for each e in uniqueRefSet,
Add element e to  outputArray;
outputlndArray[e] = position(outputArray, e) - blockPos[b]; 

end
pad dummy values to  outputArray for memory segment alignment; 

end 
end

Figure 5: The pseudo-code of the sharing algorithm.

Algorithm Figure 5 outlines the pseudo-code of the sharing algorithm. It in­

cludes two steps. In the first step, it conducts clustering to swap threads among 

thread blocks so that the threads in a block have as many accesses to the same 

data elements as possible, while different blocks have as few as possible.

Many clustering algorithms can serve for the purpose. In our implementation, 

we use two. The first is a graph partition-based clustering [92], which is espe­

cially suitable for applications with a graph topology, such as the distribution of 

molecules in a molecular dynamics simulation, the structure of a mesh in a mesh 

simulation. In these applications, typically each thread is in charge of one node 

in the graph. The algorithm randomly selects some nodes as seeds and assign 

each of them a distinct cluster number. The nodes then iteratively propagate the 

cluster memberships to their neighbors. The threads are clustered by inheriting 

the cluster ID of their corresponding nodes. The second clustering algorithm is 

suitable for other cases. It uses the working set of a thread as its feature and 

applies the standard hierarchical clustering to build up the clusters.

After clustering, the second step prepares data to be loaded into shared mem­

ory and creates a new indexing array to reference them. Specifically, it places the 

data elements accessed by each thread block continuously into a global array. It 

is possible that even after the clustering, the working sets of two thread blocks 

may still overlap. In that case, some data will have to be duplicated across thread
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blocks. Some trivial padding fills up the final memory segment a thread block 

uses. Figure 4 (d) shows an example. The clustering switches threads 9 and 10 

with threads 21 and 22. After that, each thread block accesses four unique data 

elements and there is no overlaps between the working sets of the two blocks 

and hence no duplications. Two meta-arrays, blockPos and blockSizes, record 

the starting offset and the number of accessed data elements in the new data 

array for each thread block. They add minor space cost. When the GPU ker­

nel executes, each thread block loads the corresponding block of data to shared 

memory according to the meta-arrays.

Notes We make several notes. First, the clustering step is optional. It increases 

the chance for saving data duplications, but even if it is not used, the algorithm 

can still remove all non-coalesced accesses and avoid duplications inside a thread 

block.

Second, when clustering is used, threads in different blocks may get swapped. 

However, unlike the padding algorithm case, even with the swapping, the sharing 

algorithm can still apply to a kernel containing multiple references with different 

access patterns. It is because the sharing algorithm does not require data ref­

erences to remain or become regular. Consider the example mentioned earlier, 

B[tid] +  A[P[tid)]. After clustering-incurred thread swapping, the references may 

become B'[Q[tid]] +  A'[P'[tid\\ and both references become irregular. However, 

the second step of the sharing algorithm ensures that both arrays will be loaded 

into the shared memory in a coalesced manner. Accesses to the copies in the 

shared memory may be irregular, but recall that the performance of shared mem­

ory is resilient to access irregularity. It is worth noting that for this algorithm to 

work properly, the clustering and data reorganization need to put all the refer­

ences (B[tid] and A[P\tid]} in our example) into consideration.
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Third, the usage of shared memory may have two side effects on the perfor­

mance of the kernel. The first is the time overhead of the introduced accesses to 

shared memory, which is often negligible compared to the time incurred by global 

memory accesses, especially for the irregular applications that are often memory 

latency bound. The second effect is that because shared memory is partitioned 

to all active thread blocks on a streaming multiprocessor, a large usage of shared 

memory by a thread block may reduce the number of thread blocks that can be 

active at the same time (called GPU occupancy.) Our experimental results in 

Section 4.6 show that the effect is not obvious on irregular applications.

Finally, when a problem size is large, the working set of a thread block could 

be larger than the shared memory. Fortunately, we observe that for most kernels, 

when the problem size increases, the problem size per thread block often remains 

unchanged but more thread blocks are created. In exceptional cases, to apply the 

sharing algorithm, the kernel can be modified to break the task of one block into 

smaller tasks and assign them to more thread blocks.

Analysis Quality-wise, as described in the algorithm, after the sharing algorithm 

applies, the accesses to the global memory become consecutive and coalesced. 

It maintains the zero non-coalesced accesses guaranteed by the duplication al­

gorithm.

Space-wise, the algorithm saves space cost by avoiding data duplications 

for threads inside a block. The maximum number of copies of a data element is 

the number of thread blocks, rather than the number of threads in the duplication 

algorithm. If on average k(k < B, B for the number of threads per block) threads 

access one data element, with a perfect clustering that puts threads accessing 

the same data element into a single block, the algorithm can virtually avoid ail 

data duplications. In practice, the amount of savings depends on the clustering
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quality (or how frequently multiple thread blocks access the same data elements 

if clustering is not used.) Section 4.6 provides the empirical results.

2.3.5 Discussion

The two new algorithms introduced in this section guarantee zero non-coalesced 

access as the duplication algorithm does. Although they reduce the space over­

head of the duplication method substantially, it should be noted that they do not 

guarantee minimum space cost. Designing an algorithm with that guarantee and 

zero non-coalesced accesses is not the goal of this work. In fact, that task is 

no easier than the data positioning problem (they form dual problems with each 

other.) Section 4.6 will show that the two algorithms do provide practical solutions 

to a variety of programs.

2.4 Evaluation

In this section, we evaluate the proposed algorithm assembly on eight bench­

marks in Table 1, which all have dynamic irregular memory accesses. For com­

paring with the state of the art [99], they include all memory benchmarks used 

in the previous work: CFD is an unstructured grid finite volume solver; CG is a 

conjugate gradient method with sparse matrix-vector multiplication as its kernel; 

NN is for nearest-neighbor clustering; UNWRAP is for 3-D reconstruction. MD is 

a molecular dynamics simulation from the Shoe benchmark suite [22]; NBF and 

IRREG are derived from two irregular CPU applications heavily used by previous 

research [37]. The former is part of GROMOS, a force field simulation; the lat­

ter is the core of an iterative partial differential equation solver. The benchmark 

MERGE is a database update program. All code has gone through performance 

tuning to fit the execution models of GPU. The inputs to MD, IRREG, NBF and 

CFD consist of some nodes and neighbor lists generated randomly. The input to
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Table 1: Benchmarks and selected optimization algorithms 

(M1 Tesla C1060; M2: GTX480)

benchmark description alg. on M1 alg. on M2
MD molecular dynamics Sharing Sharing
IRREG partial diff. solver Sharing Sharing
NBF force field Sharing Sharing
CFD finite volume solver Sharing Sharing
CG conjugate gradient Sharing Sharing
UNWRAP 3-D reconstruction Dup. (not runnable)
NN nearest neighbor Dup. Dup.
MERGE database update Padding Padding

unwrap cannot run on GTX480 for unknown reasons. 

Table 2: Transformation ratios

benchmark Dup. Sharing
C1060 GTX480 C1060 GTX480

MD 0.25 0.1 0.85 0.65
IRREG 0.4 0.1 0.9 0.7
NBF 0.4 0.15 0.95 0.8
CFD 0.35 * 0.6 *
CG 0.45 0.15 0.5 0.2
UNWRAP 1 - 1 -

NN 0.7 0.4 0.7 0.4
MERGE 0.3 0.3 0.6 0.6

»: optimization is shut down; not runnable.

MERGE includes some indexing arrays of a set of data generated randomly. The 

inputs to CG contain a sparse matrix and vector. The locations of the non-zero 

elements in the matrix exhibit some patterns such that multiple rows of the matrix 

happen to multiple with a similar set of elements in the vector. The inputs to NN 

and UNWRAP come with the benchmarks.

We experiment on two types of GPU devices. One is NVIDIA Tesla C1060 

hosted in a quad-core Intel Xeon E5640 machine, and the other is NVIDIA GTX480 

hosted in a quad-core Intel Xeon E5520 machine. Both machines have CUDA4.2 

installed. We obtain hardware performance through the NVIDIA’s CUDA profiler.
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■  GTX480 '• Tesla C1060
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Figure 6: Speedup of selected algorithms
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Figure 7: Speedup of all algorithms (Tesla C1060)

Results Overview Figure 6 reports the kernel speedups on both machines with 

the baseline as the execution time of the original GPU version. All overhead, 

including transformation and extra data transfer, is included. The selector-based 

algorithm assembly produces up to 21 % speedup on GTX480. It gives even larger 

speedup (up to 109%) on C1060 because that device is more sensitive to irregular 

accesses for its lack of on-chip cache. (It is worth noting that having cache or not 

on massively parallel processors is still a debatable topic; some recent chips, such 

as Intel SCC, do not have cache for power efficiency.)

For further confirmation, we use the NVIDIA hardware performance profiler 

to measure the memory load efficiency. Load efficiency is defined as the ratio of 

requested global memory load throughput to actual global memory load through-
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■  Tesla C1060 • GTX480

Figure 8: Memory load efficiency of selected algorithms.

put. As Figure 8 shows, the algorithm assembly improves the average efficiency 

by 4.9X on C1060 and 7.2X on GTX480 over the original version.

The two rightmost columns of Table 1 report the selected algorithms on the 

two machines. Figure 7 shows the speedups brought by each algorithm on Telsa 

C1060, confirming that all selections except for the one for CG on Telsa C1060 

are correct. (We explain the selection error later in the detailed analysis on CG.)

Six of the eight benchmarks benefit the most from the newly designed algo­

rithms on at least one machine. As Figure 7 shows, the new algorithms produce 

extra speedup as much as 8-60% over the duplication algorithm. It is mainly due 

to the larger transformation ratios (shown in Table 2) enabled by their large reduc­

tion of the overhead in data copy and transfer. The padding algorithm, due to its 

constraint on access patterns, is applicable to only the MERGE benchmark in the 

suite.

Overall, the results show that the two new algorithms significantly enhance 

the power of data reorganization for irregular memory optimizations. The algo­

rithm assembly and online selector produce some promising speedups for most 

of the benchmarks. We next discuss each benchmark in further details.
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Figure 9: Potential speedups of all algorithms (Tesla C1060)

■  Duplication Sharing ■  Padding
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Figure 10: Normalized space overhead {padding is only applicable to MERGE.)



32

MD, IRREG and NBF MD simulates the interactions of a number of molecules 

in a 3-D space. Two molecule nodes are neighbors if their distance is smaller 

than some predefined threshold. One thread is in charge of each node. In a 

simulation iteration, that thread traverses all its neighbors to calculate the force 

between each neighbor and that node. The inefficient memory references come 

from reading neighbors’ positions.

The duplication algorithm improves the performance by duplicating position 

values to make sure adjacent threads load adjacent memory locations. Figure 9 

shows that the full duplication can give 2X speedup on C1060 when overhead is 

not counted. But the overhead of data creation and transfer throttles the speedup 

to only 15%. The sharing algorithm has a higher performance potential than the 

duplication algorithm for the smaller working sets. Figure 10 reports that the shar­

ing algorithm cuts the space overhead by 96%, which explains the seven times 

more speedup it creates than the duplication algorithm does when overhead is 

counted as Figure 6 shows.

The tremendous space reduction comes from two reasons. First, the irregular 

reference to data array is surrounded by a loop to traverse all neighbors, and in 

each iteration the memory access pattern of all threads is different depending 

on the topology of the interaction graph. The duplication algorithm, therefore, 

duplicates the same array the same number of times as the iteration number. 

Second, Sharing benefits greatly from clustering, which places adjacent nodes in 

topology closely in memory accessed by threads in the same block.

IRREG and NBF, like MD, have a graph topology. Figure 9 shows different 

potentials, because their kernels have different ratios of computation to memory 

accesses. Nonetheless, the sharing algorithm is also shown to be the best choice 

for them due to the reasons similar to MD. It is worth mentioning that the benefits of 

the optimizations also depend on the frequency of the neighbor list update in these 

simulation programs. When the update is frequent, the data transformations need
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to be applied often and hence lead to higher transformation overhead. When the 

overhead cannot be hidden completely, the runtime control of G-Streamline can 

adaptively adjust the fraction of data to transform to trade data layout quality for 

transformation efficiency [99]. A detailed study on various tradeoffs of the different 

algorithms in these frequent update scenarios are our future work.

CFD The program, CFD, computes force field of many particles. Each particle 

has substancially more features than the molecules in MD, and so each thread 

block processes more data. Figure 9 shows a potential of more than 3 times 

speedup from the duplication algorithm. But the data transfer overhead throttles 

the potential. The algorithm eventually produces 31% benefit with a 0.35 opti­

mization ratio on C1060. The smaller space overhead of the sharing algorithm 

leads to a larger optimization ratio (0.6) and a higher speedup (37%).

CG The kernel in CG does sprase matrix multiplication. The matrix is stored in 

the Compresses Sparse Rows (CSR) format. In the irregular kernel, one thread 

is in charge of one non-zero element in the sparse matrix. The accesses to the 

vector may not be coalesced depending on the sparsity in each row. The duplica­

tion and sharing perform similarly well in the potential graph. The best speedup 

on C1060 is 1.85 times, while the performance gain is around 20% on GTX480 

due to the cache effects on the reuses of the elements in the vector. Figure 9 

reports that the sharing algorithm has slightly larger potential than the duplication 

on C1060. The better algorithm, however, is duplication, because of the overhead 

caused by shared memory accesses. The subtle difference is not captured by the 

online algorithm selector, causing the sharing algorithm being selected. But the 

speedup lost is only less than 5%.

UNWRAP The kernel of this program is in a central loop, which transforms an 

image from the Cartesian coordinate system to the Polar coordinate system. Un-
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like the other programs, this program do not have data dependences carried by 

the different invocations of the kernel. The first tens of iterations of the program 

successfully overlap the overhead of both the duplication and sharing algorithms. 

The duplication was shown to be the better algorithm for its lack of the side effects 

in shared memory usage. (For unknown reasons, the benchmark cannot run on 

GTX480.)

NN The nearest neighbor identification program, NN, has a central loop to pro­

cess an unstructured input file chunk by chunk. The kernel is launched once 

for each chunk, and calculates the Euclidean distances from the target location 

to each record in that chunk. At the end of the program, the main thread pro­

cesses all distance results and obtains the K nearest neighbors. Figure 9 shows 

the large speedup potential on both C1060 and GTX480. The sharing algorithm 

does not reduce any space overhead as reported in Figure 10. The reason is 

that one record is only processed once, and the duplication algorithm essentially 

just transposes the data, creating no extra data copies. Like UNWRAP, there is 

no loop-carried dependence for NN, but the transformation and transfer overhead 

can not be fully overlapped, and we obtained 0.7 and 0.4 optimization ratios on 

C1060 and GTX480 respectively. On this special benchmark, the duplication al­

gorithm is a better algorithm in both machines, producing higher speedup than 

sharing.

MERGE MERGE has the same access pattern for both loads and stores. Padding 

algorithm is applicable. As Figure 9 shows, Duplication and Padding have quite 

similar potential. Padding has a larger potential than Sharing because it needs 

no shared memory accesses. Padding reduces the size of transformed data sig­

nificantly. Duplication, due to the memory size limit, only manages to transform 

30% of data. Padding is the best choice on both GPUs for this program. The 

speedups on the two machines are quite similar on this program. The reason is
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that the program has few short reuse distances and hence does not benefit from 

cache much.

2.5 Algorithm Selection and Integration

The three algorithms described in the previous section have different strengths 

and weaknesses. In this section, we provide a qualitative comparison, and de­

scribe an automatic selector and its integration in a runtime library.

Qualitative Comparison We summarize the qualitative differences among the 

three algorithms as follows.

• Applicability: The padding algorithm is applicable to kernels that have a sin­

gle reference pattern. While the other two algorithms do not have such a con­

straint, the sharing algorithm may need kernel modification when the working 

set of a thread block is too large to fit into shared memory, and the duplication 

algorithm may be applicable to only part of the data when the space limit is 

reached.

• Space cost: By avoiding unnecessary duplications, the padding and sharing 

algorithms use much less space than the duplication algorithm does.

• Optimization capability: All three algorithms have the capability to eliminate 

all non-coalesced memory accesses (in their applicable scenarios.) However, 

when being applied at runtime, the realizable benefits also depend on their 

runtime overhead.

•  Transformation overhead: The time overhead of the duplication algorithm is 

in the creation and transfer of the new data copies, which can be substantial 

when the number of threads is very large or there are multiple references of 

different patterns to the same array. For the padding algorithm, the overhead



36

// T: #  of threads; D: the set of memory references;
// D i: working set of a thread block;
II Z: the size of the irregularly accessed data; 
if T  is less or comparable with Z: 

use duplication; 
else if D  has a single access pattern: 

use padding; 
else if D i is smaller than shared memory: 

use sharing; 
else:

use duplication or change kernel to use sharing.
Figure 11: Guidelines for algorithm selection.

includes the data and threads sorting time in addition to the creation and trans­

fer of the new arrays. The overhead of the sharing algorithm consists of data 

creation and transfer time, the clustering time, the accesses to shared mem­

ory and the side effect on occupancy. Due to the large space reduction, the 

data creation and transfer in the two new algorithms usually take much less 

time than in the duplication algorithm. Data creation and transfer usually re­

side on the critical path of dynamic simulation applications, but the sorting and 

clustering in those two algorithms do not and hence can be largely hided (e.g., 

through the CPU-GPU pipeline in G-Streamline [99].) We will come back to 

this point later in this section.

Algorithm Selection Based on the differences, we develop some simple guide­

lines, as Figure 11 shows, to help programmers select the suitable algorithm when 

writing a new program.

Meanwhile, we provide an automatic selector based on the online profiling 

and adaptive control offered by G-Streamline, a runtime library we previously de­

veloped [99]. The runtime library works when the GPU kernel is invoked in a 

loop. By profiling the initial several iterations during runtime along with some per­

formance models of the system (e.g., the time to transfer a data from CPU to 

GPU, the time to create a data copy) built ahead of time through offline profiling,



37

it estimates the kernel running time and optimization overhead to determine the 

suitable optimization algorithm to apply and the appropriate optimization param­

eters to use (e.g., the fraction of data to optimize in partial duplication.) Many 

irregular applications, including dynamic simulations and numerical calculations, 

are of that iterative pattern and are amenable for the runtime library to work. Our 

automatic selector employs the online profiling to estimate the amount of over­

head of the algorithms and the kernel running time to pick the algorithm with the 

largest performance potential.

Integration with G-Streamline We integrate the selector and the reorganization 

algorithms into G-Streamline. G-Streamline uses a CPU-GPU pipelining scheme 

to allow runtime optimization of a future kernel invocation to happen on CPU when 

GPU is running the current invocation. However, if the future kernel's optimization 

depends on its previous invocation result, the optimization has to happen on the 

critical path. In that case, to make the optimization still happen asynchronously, 

kernel splitting is used so that the computations of a kernel are split and put into 

two parallel sub-kernels. The optimization of the second sub-kernel can run with 

the invocation of the first sub-kemel. The ratio between the amount of task be­

tween the second and first sub-kernel is called transformation ratio. The more 

costly the optimization is, the lower the ratio has to be so that the invocation of 

the first sub-kernel can hide the optimization overhead.

For all irregular applications we find, among the major operations in the three 

algorithms, sorting and clustering can happen across kernel invocations, but data 

creation and transfer are on the critical path due to dependences across kernel 

calls. They have to rely on kernel splitting to hide their overhead. In Section 4.6, 

we will see that the padding and sharing algorithms have much higher transfor­

mation ratio than duplication for their much smaller overhead in data creation and 

transfer. It is worth noting that G-Streamline uses its online profiling scheme to
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determine the suitable transformation ratio to ensure all overhead is hidden. If an 

optimization is infeasible to give benefits, G-Streamline shuts it down automati­

cally to prevent any slowdown to the kernel.

Integrating the data reorganization algorithms into G-Streamline does not 

change the library’s interface. It only adds a handful of functions as alternatives 

to the duplication algorithm already presenting in G-Streamline. The usage of the 

modified G-Streamline is the same as before [99]: Users insert several function 

calls into the GPU application to invoke the runtime asynchronous optimizations 

and online profiling; some minor changes to the kernel may be needed, including 

replacing old indexing arrays with new ones.

2.6 Related Work

Sections 2.1 and 4.6 have compared this work with previous studies [18,87,99] 

on optimizing dynamic irregular memory accesses on GPU. This section reviews 

some other related studies.

A number of studies have proposed compiler techniques to optimize GPU 

memory references. Examples include GPU optimizing compilers [41,97], OpenMP- 

to-CUDA compilers [56], polyhedral models [9], performance tuning [80], and 

many others that cannot be listed for lack of space. All these techniques have 

focused on static irregularities that are amenable for compiler analysis. The us­

age of shared memory in the design of our sharing algorithm is inspired by some 

of those previous work [9]. But to our best knowledge, the sharing algorithm is the 

first algorithm that uses clustering and shared memory to avoid data duplications 

for runtime data reorganizations.

There are some recent studies exploring the synergistic usage of CPU and 

GPU, including the execution strategies proposed by Huo and others [43], the ex­

ploitation of OpenCL [51], and so on. In this work, we use the CPU-GPU pipeline
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created in G-Streamline [99] as it meets the needs for hiding transformation over­

head.

Thread divergence is another type of dynamic irregularity in GPU, defined 

as the threads in a warp follow different paths of a kernel. Some hardware ex­

tensions have been proposed to remove thread divergences from a kernel exe­

cution [31,63]. Carrillo and others [15] have proposed loop splitting and branch 

splitting to alleviate register pressure caused by diverging branches. As pointed 

out by an earlier work [99], thread divergence and non-coalesced memory ac­

cesses essentially stem from the similar source, a mismatch between threads 

and data. It suggests that the findings from this study are potentially usable for 

helping eliminate thread divergences as well.

Data reorganization has been used for many CPU data locality enhance­

ments (e.g. [5,16,20,28,48,96].) Some of them have especially concentrated on 

irregular applications [37,85]. Kulkarni and others have studied locality issues of 

irregular data structures in the contexts of optimistic parallelism [53] and schedul­

ing [45]. As a massively parallel architecture, GPU displays different memory ac­

cess properties from CPU, exemplified by the hierarchical thread organizations, 

hardware enabled memory coalescing, and the SIMT execution model. All these 

features create differences in the challenges and opportunities in applying data re­

organization, triggering the new set of innovations in this work on both complexity 

analysis and transformation techniques.

2.7 Summary

This chapter presents some fundamental understanding in exploiting data reor­

ganization for minimizing non-coalesced memory accesses on GPU. It points out 

that it is possible to circumvent the complexity by relaxing the space constraint in 

data repositioning. It introduces two new algorithms for minimizing non-coalesced
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memory accesses while avoiding the space inflation problem of a previous algo­

rithm. It compares the various algorithms, presents some selection guidelines, 

and develops an automatic selector in a runtime library. Experiments show that 

the new algorithms excel previous techniques especially under space pressure. 

The algorithm assembly, assisted by the algorithm selector, enhances the perfor­

mance of a set of dynamic irregular applications significantly, providing promising 

solutions to a large class of dynamic irregular references.



Chapter

Capitalizing Non-Uniform Data Affinity 

by Overcoming Data Dependences

3.1 Introduction

Due to the memory wall problem on traditional architecture, data locality has been 

one of the most prominent factors that determine the performance of a program. 

Its importance is even more pronounced on modern Chip Multiprocessors (CMP), 

where, the last-level cache and memory bus bandwidth are typically shared by 

multiple cores. The sharing causes contention among co-running applications, 

and the effect intensifies as the number of cores grows on a chip. Data locality 

enhancement is an important approach to tackling the problem. It reduces the 

required accesses to the last-level cache and memory to alleviate the pressure 

on shared memory hierarchy.

Special difficulties for locality enhancement come from irregular memory ref­

erences. Such references often arise in dynamic simulation applications—such 

as unstructured mesh simulation and molecular dynamics simulation—due to the 

use of sparse and irregular data structures. A representative form of irregular ref­

erences is A[P[i]\, where the index array P  may be embodied in real applications

41
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by an input array or intermediate computation results that are difficult to know until 

run time.

Irregular memory references have several properties. First, because the con­

tent of the index array P  may be arbitrary, the references to A tend to cause seri­

ous locality issues. Second, the memory access patterns of those references are 

unknown until execution time. Third, applications having such references tend to 

contain a main loop—such as, the mesh refinement loop in mesh generation, the 

time elapse loop in molecular dynamics simulation—-that encloses the irregular 

memory references. The access patterns of the references (e.g., the values in P) 

often vary across the loop iterations. These properties make locality enhancement 

of irregular references extremely difficult for static compilation techniques.

A number of prior studies [28,37,62,65,85] have pursued runtime data trans­

formations to attack dynamic irregular references. The strategy is to reorder data 

objects during an execution based on their exhibited access patterns.

However, the power of the prior transformations has been restrained by a 

dilemma. In all prior techniques, the runtime data or computation reordering hap­

pens synchronously—that is, the reordering is on the critical path of the applica­

tion. This feature results in a tension between transformation quality and runtime 

overhead: More sophisticated transformations often yield better locality and save 

more execution time, but at the same time, they add more transformation over­

head to the overall execution. The overhead can be substantial, especially for 

sophisticated transformations. For instance, one application of RCB— a classic 

data transformation approach—takes more than 20 simulation time steps in most 

experiments reported in Section 3.7. Moreover, the transformation have to be ap­

plied repetitively due to the iterative computations in dynamic simulations. Some 

studies propose to apply the transformation occasionally rather than everytime 

when access pattern changes [36,61], Unfortunately, it is subject to the same
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quality-overhead dilemma: The less frequently the transformation applies, the 

less overhead it causes, but the worse the data layout is.

In this chapter, we propose three orthogonal techniques to resolve the quality- 

overhead dilemma.

The first is asynchronous data transformation, supported by a dependence- 

circumventing decomposition. The basic idea is to hide the transformation over­

head by offloading the main transformations from the critical path, making them 

happen asynchronously (on an idle processor) in parallel with the execution of 

the application. Despite the simplicity of the idea, to the best of our knowledge, 

asynchronous data transformation has not been proposed previously. The plausi­

ble reason exists in the circular data dependences between data transformations 

and the execution of the application. On one hand, the transformation modifies 

the data structure that the application needs to read; on the other hand, the trans­

formation needs to read some results computed by the application to figure out 

the appropriate data order. So, inherently, one invocation of a data transformation 

must run serially with the corresponding iteration of the application. In this work, 

we circumvent the problem by decomposing data transformation into two parts 

and safely relaxing some dependences through a careful analysis and layout ap­

proximation.

The second technique we develop aims at overhead minimization, especially 

for a system equipped with massive parallel devices (e.g., GPU). We propose 

a novel data transformation algorithm, named TLayout (T for throughput), which 

reduces transformation overhead significantly with little compromise to the result­

ing quality. Unlike traditional data transformation algorithms, TLayout is a mas­

sively data-parallel algorithm, specially customized to the strengths of throughput- 

oriented co-processors. It is novel in using an almost dependence-free approach 

to grouping nodes into a number of clusters such that the nodes referenced adja­
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cently fall into the same cluster. The algorithm shows high efficiency and scala­

bility.

Asynchronous data transformation and TLayout tackle the limitations of previ­

ous data transformations in two orthogonal directions; one for overhead hiding, the 

other for overhead minimization. Together, they help resolve the quality-overhead 

dilemma that prior approaches have been facing.

The third technique we develop is an online adaptive scheme. By transpar­

ently selecting the appropriate transformation strategy during runtime, the scheme 

gains the best of both asynchronous and synchronous transformations, proving 

able to overcome the limitations of both strategies.

Overall, the proposed techniques yield 65% higher performance improvement 

than previous techniques do, accelerating the original dynamic simulations by as 

much as a factor of 3.1 (2.4X on average) on five representative dynamic simula­

tion benchmarks.

3.2 Background on Irregular References and Run­

time Locality Enhancement

Irregular references commonly exist in dynamic simulation programs due to the 

use of sparse and irregular data structures. They are typically in forms of indirect 

references like -4[P[i]].

Previous solutions to irregular references use runtime data and computation 

reordering. In computation reordering, the iterations of the central computation 

loop are reordered so that the iterations accessing the same or adjacent data 

elements are adjacent in time. This transformation requires that there are no de­

pendences across the iterations. Techniques for determining the suitable iteration 

order include lexicographical sort [24], bucket sort [65], z-sort [37], and so on.
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Data reordering repositions elements in an array to improve spatial locality. 

The basic strategy is to relocate the elements such that the elements that tend 

to be accessed closely in time become close in memory space. Because deter­

mining optimal data orders is an NP-hard problem in general [73], researchers 

have proposed various heuristics-based algorithms, including consecutive pack­

ing (CPACK) [28], Reverse Cuthill-McKee (RCM) [58], space filling curve (SFC) [62], 

recursive coordinate bisection (RCB) [12], multilevel graph partitioning (METIS) [49], 

and hierarchical clustering algorithm (GPART) [37], Previous studies [28,37] have 

found that in most cases, the combination of the two— a data reordering followed 

by a computation reordering—gives better results than each alone. In the follow­

ing discussion, we use data transformation to refer to the transformations that use 

data reordering or/and computation reordering for locality enhancement.

In all prior research, data transformation is applied synchronously with the 

application. It is placed on the critical path of the application execution, hence 

subject to the quality-overhead dilemma mentioned in Section 3.1.

3.3 Asynchronous Data Transformation

Asynchronous data transformation is our first technique for resolving the dilemma 

between transformation quality and overhead. The basic idea is simple: putting 

data transformation on a helper processor so that it can happen in parallel with 

the application execution. However, to the best of our knowledge, this simple idea 

has never been realized before. A plausible reason for the absence is the inherent 

data dependences between data transformation and the transformed application. 

To help explanation, we first outline the sketch of a dynamic simulation program, 

Moldyn, as our example.
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for each time step 
if time_to_update()
IList “ update.IList (.Location); 

end if

/* main computation with irreg. references to Location */ 
for each (i,J) in IList 
f m calculate_force (Location[i], Location[j]);
Force[i] +“ f;
Force [j] -■ f; 

end for

for each particle i 
Location[i] » update.loc (Location[i], Force!i]); 

end for 
end for

Figure 12: The main loop of Moldyn.

3.3.1 An Example Irregular Dynamic Simulation Program

Moldyn is a program for simulating the movements of many particles caused by 

their interactions. The program maintains a list, named “interaction list", to record 

the particles that are close enough to interact with each other. The list consists 

of a number of pairs; each pair contains the IDs of two particles that are close 

enough in the particle space to have interactions. Figure 12 shows the pseudo­

code of the computation kernel of Moldyn. It contains a time-step loop. In each 

iteration, the program first checks if it is time to update the interaction list IList, 

if so, it makes the update based on the current locations of the particles. It then 

traverses the interaction list, and computes the force that a particle receives from 

its neighbors. After that, the program updates the locations of each particle based 

on the newly computed forces.

Apparently, the major computation is on the force calculation loop. The ref­

erences to the Location and Force arrays in that loop are irregular references; 

the IList array plays the role of an index array, whose content decides which ele­

ments of Location and Force are referenced at which iteration of the loop. Each 

time when IList gets updated, the patterns of the references to Location and Force 

change accordingly.
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This example shows some representative features of irregular dynamic sim­

ulations. These applications usually contain a main loop (e.g., the time-step loop) 

that encloses irregular references. The irregular references involve two data struc­

tures; one is the reference target (e.g., Location and Force), the other is the ref­

erence clue (e.g., ILisf)\ The values of the reference clue often vary across the 

main loop iterations.

3.3.2 Synchronous Data Transformations

Runtime data transformation can benefit the force calculation loop in the Moldyn 

example. The basic strategy of a typical transformation is to reorder the items 

in the reference target according to the content of reference clue—for example, 

moving particles that have interactions (by reading IList) close to one another in 

Location and Force in the Moldyn example. Very often, a following computation 

reordering is applied as part of the data transformation, in which, the iterations of 

the loop (e.g., the force computation loop) that encloses the irregular references 

are reordered. For the Moldyn example, it can be realized by reordering the pairs 

in IList based on the new order of particles to further improve the locality.

One place to put the transformation is between the update of the reference 

clue and the accesses to the reference target, as shown in Figure 13. This place­

ment is natural because of the data dependences among those components. In 

fact, this placement is what prior studies adopt. Because the data transformation 

is put on the critical path of the execution, we call it synchronous data transforma­

tion.

T h e s e  terms are similar to “index array” and “data array" in some earlier work; using them 
helps avoid confusion with some other terms in this chapter.
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ILisr u pd a t e

r: lust, Location 
w: IList

r: IList Force, Location 
w: IList Force, Location

for each time step 
t ime_to_update() 
iat « update.IList (Location); 

dA^TransjlList.Location.Force); 
end

end for'

r; IList Force, Location 
w: Force, Location

Figure 13: Dependence graph (left) and the synchronous data transformation (right) for the Moldyn example. ( Y  and V  
lists the sets of data that are read and written respectively.)

3.3.3 Decomposition and Dependence Relaxation

Data dependences between data transformation and the application form a major 

obstacle for asynchronous data transformation. Figure 14 (a) summarizes the 

bi-directional (true) dependences.

We circumvent the dependences based on two properties of data transfor­

mations. The first is that most data transformations can be decomposed into an 

order analysis step and a data relocation step. The order analysis step computes 

a locality-favorable order according to the reference clue, and the relocation step 

repositions items in the reference target (and reference clue) based on the pro­

duced order. When a data transformation is decomposed into these two com­

ponents, the two dependence edges from the application to the transformation 

become pointing to the two components respectively, as Figure 14 (b) shows.

The second is that not all dependences between data transformations and 

the application are critical. Among the four dependences shown in Figure 14 (b), 

the dependence from the application to the analysis component is not critical for 

the correctness of the execution. In another word, if we violate the dependence, 

the produced locality-favorable order may not lead to a desirable layout for the



(a) Before decomposition (b) After decomposition

Figure 14: Dependences between data transformation and the application. Eacb edge is a data dependence edge labeled 
with the related data. Broken edges show dependences that are relaxed in asynchronous data transformation.

reference target, but the execution of the application will be correct still. Similarly, 

if we violate the dependence from the relocation component to the application, 

the application may have to use an old layout of the reference target rather than 

the enhanced one; it may hence run slower than it could, but will still produce the 

correct result. The same is true for the dependence from the analysis component 

to the relocation component. On the other hand, the dependence from the appli­

cation to the relocation component is critical. A violation of this dependence may 

cause the transformed reference target (e.g., the Location and Force arrays) to 

contain obsolete values and impair the correctness of the execution.

Based on the two properties, we develop asynchronous data transformation 

by relaxing the three non-critical dependences in Figure 14 (b). The key of the 

implementation is to decompose data transformation into two components, leave 

the relocation component on the critical path but make the analysis component 

run by a helper thread asynchronously, and allow the use of obsolete reference 

clues for the computation of new data orders.

Figure 15 outlines the basic control flow for the Moldyn example. The master 

thread executes the application and the relocation component, while the helper 

thread runs the analysis component in parallel. At an update to the interaction 

list, the master thread sends the new IList (or some other reference clue, e.g., 

coordinates of nodes) to the helper thread, and then continues its execution while 

the helper thread computes for a new locality-favorable data order. If the new
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Figure 15: Control flow of asynchronous data transformation for Moldyn.

order is not ready yet when the master thread reaches the “new order ready?" 

check, it continues executing the following part of the application using current 

data layouts. When the helper thread finishes computing the order (several time 

steps may have passed since the order computation starts), it sets a flag so that 

when the master thread reaches the “new order ready?” check again, it can use 

the new order to reposition the reference target and reference clue to improve the 

locality of some following iterations.

This design makes the analysis component of data transformation proceed 

asynchronously with the application, but leaves the reposition component on the 

critical path. In many data transformations, the most costly part is in the order 

analysis rather than the data repositioning-as Figure 19 will show, the time ra­

tios between them are between 6:4 and 8:2 for RCB. This design hence hides 

the majority of the data transformation overhead. Meanwhile, because the place­

ment of reposition component maintains the critical dependence (the solid line in 

Figure 14 (b)), the application still runs correctly.

We now examine how the asynchronous data transformation relaxes the 

three non-critical data dependences (the broken lines in Figure 14 (b)), and the 

consequences. For the dependence from an application to the analysis com­

ponent, in the asynchronous transformation, the reference clue passed to the 

analysis component may be obsolete. It happens when the order analysis takes 

longer time than an update period of the reference clue. As a result, the new order
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Figure 16: State transitions for thread coordination in asynchronous data transformation.

passed from the analysis component to the repositioning component may be not 

as good as the computed data order if the current reference clue was used. The 

ultimate consequence is that the layouts of the reordered reference target and 

reference clue fit the obsolete rather than the current reference clue well. This 

analysis reveals a potential loss of the data transformation benefits incurred by 

the asynchronous scheme. Section 3.6 will show how this loss can be largely 

prevented.

3.3.4 Thread Coordination

In this part, we present some implementation details on supporting the coordina­

tion between a master thread and a helper thread in asynchronous data trans­

formation. The implementation is based on a 6-state transition graph to ensure 

in-time data transfers and meanwhile avoid unnecessary data copies.

We use a shared variable, protected by a lock, to coordinate the master thread 

and the helper thread. Figure 16 shows the states recorded by the variable and 

the state transitions.

When an execution starts and a helper thread is created, the master thread 

sends the current reference clue to the helper thread, and sets the state to “busy". 

From the “busy" state, there are two circular paths.

•  Bottom circular path. When the master thread finishes an update to the ref­

erence clue and the state is still “busy", it changes the state to “dirty", indicat-
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ing that a new order needs to be computed because the reference clue has 

changed. When the helper thread finishes its current job and passes its com­

puted order to the master thread, it changes the state from “dirty” to “dready”. At 

the next state check by the master thread, it will see that the helper thread has 

just prepared a new data order and also it needs to get the current reference 

clue to compute another data order. The master thread then sends the current 

reference clue to the helper thread, conducts a reposition transformation using 

the new order, and then changes the state to “busy”.

•  Right circular path. If the helper thread finishes its job within one update period 

of the reference clue, it changes the state to "ready”. At the next state check 

by the master thread, it will see that the helper thread has just prepared a new 

data order. It conducts the reposition transformation and then changes the 

state to “done”. Note that it does not send the current reference clue to the 

helper thread because the clue is identical to what the helper thread already 

has, which is the key difference between the “read” and “dready” states. At 

the next update of the reference clue, the master thread sends the clue to the 

helper thread and changes the state to “busy”.

The design of the state transitions ensures that both threads receive neces­

sary data in time, and meanwhile avoids unnecessary data transportation. For 

instance, consider a case where during the computation of one new data order, 

the master thread updates the reference clue three times. The state will remain 

“dirty” after the first update until the helper thread finishes its job. As the master 

thread sends no data in the "dirty” state, only the most recent reference clue (i.e. 

the one after the third updates) is sent to the helper thread.

Asynchronous data transformation hides most transformation overhead, but 

is subject to the use of obsolete reference clue. The longer a transformation takes, 

the more obsolete the used reference clue is. Even though in many cases, the
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gain exceeds the loss as Section 3.7 will show, reduction of the transformation 

time will make its benefit more pronounced—the goal of the technique presented 

next.

3.4 TLayout: A Transformation Algorithm for 

Throughput-Oriented Processors

The second technique we develop is TLayout, a data transformation algorithm for 

reducing transformation overhead by exploiting the special features of throughput- 

oriented processors.

The motivation comes from the trend in modern architecture development. 

Due to the high throughput and power efficiency, throughput-oriented proces­

sors (e.g., GPU) are being increasingly adopted to co-run with general-purpose 

CPUs. This trend is underscored by the recent Intel Sandy Bridge and upcoming 

AMD Fusion processors, which have CPU and GPU on a single chip. Exploiting 

throughput-oriented co-processors for irregular applications is a challenge, given 

that these massively parallel co-processors are typically weak in handling com­

putations with complex memory references, dependences, and control flows.

Our idea is to use such co-processors to accelerate data transformations for 

CPU executions. This use of the co-processors is especially appealing for legacy 

CPU code, because it needs virtually no code changes. Programmers only need 

to insert three function calls (see Section 3.5) to invoke a data transformation 

function we have developed for the co-processors. In contrast, many efforts are 

needed for porting and tuning an irregular application to co-processors [99,100], 

The paradigm of using co-processors for program optimizations offers an easy, 

quick way for legacy programs to benefit from the co-processors (even though 

the performance from manual code porting may be higher).
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Unfortunately, none of previous data transformation algorithms is designed for 

massively parallel architectures. Their complex control flows and dependences 

make them unsuitable for throughput-oriented processors.

TLayout Algorithm TLayout is our solution to the problem. It is designed to be 

massively data parallel. It produces locality of the similar quality as sophisticated 

classic transformation algorithms do, but with one third of the overhead (on GPU).

As with many previous data transformation algorithms [37], TLayout is based 

on the underlying graph structure of data references in the application. Simply 

speaking, data elements that are referenced closely (e.g., in one iteration of an 

inner loop) are regarded as neighbor nodes in a reference graph, having an edge 

in between. Data locality optimizations are then mapped to a graph partitioning 

problem. Partitioning the graph and putting nodes in a partition close in memory 

usually improves spatial and temporal locality. In dynamic simulation programs, 

the reference graphs are often already embedded in the reference clue— such 

as the interaction list in Moldyn, and the mesh structure in a mesh refinement 

application. As the reference graphs of these applications usually come from the 

spatial or topological relations among objects (e.g., particles in a physical space), 

it is typical that one reference graph covers all interesting data objects.

The strategy of TLayout is incremental clustering through iterative membership- 

propagation based on the topology of the reference graph. The input to TLayout is 

a reference graph, encoded as a number of node pairs, with each pair consisting 

of two nodes that are connected by an edge in the reference graph. The output 

is a number of clusters that partition the nodes of the graph completely in a way 

that the nodes close in topology belong to the same cluster. The algorithm starts 

by setting the membership of each node (i.e., which cluster it belongs to) to null.

It then proceeds in the following steps:
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1. SEED PLANTING: TLayout randomly selects K  nodes as the seeds for K  clus­

ters.

2. PROPAGATION: Every node whose membership is null checks the member­

ship of its neighbors one after one. As soon as it encounters a neighbor whose 

membership is not null, this node changes its own membership from null to the 

membership of that neighbor.

3. LOOP: Repeat STEP 2 until the fraction of nodes having null membership is 

below a preset threshold 6, or the number of times the propagation step has 

been invoked reaches a preset upperbound U.

4. (optional) HIERARCHY CONSTRUCTION: Recursively merging the clusters 

based on their closeness on the reference graph into a hierarchy.

5. LAYOUT: Finally, arrange nodes according to the resulting clusters. Nodes 

in the same cluster are laid out nearby in memory. If a cluster hierarchy is 

created, the leaf clusters are processed following their appearance order in 

the hierarchy.

The propagation step dominates the time cost of the algorithm. But it is a 

completely data-parallel process, meeting the strength of throughput-oriented pro­

cessors.

Parameters and Adaptive Control There are two parameters in the TLayout 

algorithm. The use of a small positive value of the parameter delta allows the 

algorithm to stop with a small portion of nodes carrying null membership. These 

nodes will be attached to the end of the final data layout. As the number is small, 

they have little influence on the quality of the resulting data layout. But using 

such a value may save one or multiple invocations of the propagation step. Like 

many parameters used in practical systems, users set this value based on their 

experiences and preferences. We use 1% as its value for all our experiments.
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The second parameter is the number of clusters K. A large value of K  leads 

to quick membership propagation, hence few invocations of the propagation step. 

However, it may hurt the quality of the resulting data layout: Many nodes that 

have good reference affinity may fall into different clusters. The optimal value of 

K  depends on the graph properties and the application. As the reference graph 

periodically changes throughout the execution of a dynamic simulation program, 

its value is difficulty for users to set.

We design an adaptive control to automatically adjust the value of K. Af­

ter each data transformation, TLayout compares the transformation time and the 

length of the update period of the reference clue. If the transformation time is too 

long, TLayout doubles the value of K  to accelerate the next data transformation. 

Typically, K  starts with a small value (100 in all our experiments).

Implementation on GPU TLayout is designed for general massively parallel 

architecture. We implement it using CUDA [3] in machines equipped with GPU. 

CUDA is a C-like interface for GPU programming. A CUDA program consists of 

a CPU code and a GPU code. The code executed on GPU is wrapped in func­

tions called GPU kernels. A GPU typically contains hundreds of cores. There is 

a certain amount of on-chip memory (called shared memory) and a large chunk 

of off-chip memory (called global memory). When a GPU kernel is invoked, hun­

dreds of GPU threads are launched to run the same GPU kernel with the same 

parameters. Each thread has one unique ID number; the kernel may use thread 

ID to trigger different behaviors of different threads.

In our implementation, each GPU thread manages one node in the graph. 

Algorithms 2 and 3 outline the CPU code and GPU kernel respectively.

Discussions TLayout has some appealing characteristics worth mentioning. 

First, it well exploits the massive parallelism of GPU. Assigning a thread to every 

node makes the algorithm simple to implement and proceed efficiently. Second,
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Algorithm 2 TLayout(num_nodes, numjedges, neighborjist)________________
1: // build a single array to store neighborhood info to prepare for GPU kernel 

execution
2: for i  =  0 to num_edges — 1 do 
3: le f t  =  neighbor _ list[i\[0 ]]
4: r ig h t =  neighbor J ,is t[i\[ 1];
5: if neighbor_size[left\ < M A X _N B _P er_N ode  then
6: neighbor s[neighbor_size[left\ +  +] =  r ig h t ;
7: if neighbor_size[right] <  M A X _N B _P er_N ode  then
8: neighbor s[neighbor_size[right\ +  ■+•] =  le ft ]
9: //randomly select K nodes as the seeds for K clusters 

10: for i =  OtO K  — 1 do 
11: member ship[rand()%(num_nodes)} =  i\
12: while too many nodes have null membership do
13: //invoke GPU kernel for neighborhood-based clustering
14: TLayoutKemel«< ... »>(neighbors, membership);
15: //merge clustering results to generate a new data order
16: for / =  0 to num_nodes — 1 do 
17: id jc lu s te r =  member ship[i\]
18: cluster_lists[id_cluster\.append(i)]
19: ind =  m erge_ lis ts(c luste rjlis ts );
20: return ind__________________________________________________________

a node having a high degree tends to grab more nodes into its cluster than other 

nodes do, which is a desirable property for spatial locality. Third, the algorithm 

adaptively selects the appropriate number of clusters. This adaptivity fits the dy­

namic properties of irregular simulation well. We note that TLayout specifically 

exploits the massive parallelism in throughput-oriented devices (e.g., GPU). It is 

not intended to be used on CPU. (Experiments show it is tens of times slower than 

RCB on a CPU.)

3.5 Asynchronous Data Transformation Library (ATrans)

We integrate the techniques, along with previous transformation techniques, into 

a Asynchronous Data Layout Transformation library (ATrans) to simplify their use.

ATrans consists of all the support for asynchronous transformation, the adaptive 

TLayout algorithm, and a set of previously implemented data transformation func-
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Algorithm 3 TLayoutKemel(neighbors, membership)_______________________
1: // load neighbors into shared memory
2 : . . .

3: // membership propagation
4: i  =  global_thread_number]
5: for j  =  0 to M A X _N B _P er_N ode  -  1 do 
6: neighbor — get_neighbor{);
7: if membership[neighbor\ & \membership\i) then
8: //propagate membership
9: member ship[i] =  member ship[neighbor};

10: break;

tions from University of Maryland [37]. It supports the asynchronous data trans­

formation on both CPU and GPU.

Its usage is simple. To enable asynchronous data transformation for an appli­

cation, it typically requires just an insertion of three function calls in the application 

program, one in the initialization stage, one after the update of the reference clue, 

and one at the beginning of the central loop (e.g., the time-step loop in Moldyn). 

Figure 17 illustrates the use of the library for Moldyn. The ATransJnit_pipeline 

function indicates whether CPU or GPU is to be used for analysis component, 

creates a helper thread, initializes the state of the pipeline and necessary data 

structures, and prepares the GPU execution if GPU is used. When the interaction 

list is updated, the ATrans_analysis function checks the pipeline state and wakes 

helper thread up to do transformation analysis if necessary. At the beginning of 

each iteration of the time-step loop, the ATrans_reposition function checks the 

state and reposition the data if it is time to do so.

3.6 Adapting On The Fly

The benefits of asynchronous transformation do not come for free. Recall that to 

circumvent the data dependence, it uses obsolete reference clues as heuristics for 

data transformations. Although in many cases the benefits outweigh the catch, it 

is not always so. Whether an asynchronous transformation excels a synchronous
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int main (int argc, char **argv)
{

/* * ̂ initialization of the simulation*  * * /

ATrans_init_pipeline( ATRANS_CPU, interaction_list,
MAX_EDGE, coordinates, MAX_N0DE, forces); 

for(iter = 0; iter < NUM ITER; iter++)
{
if(update_interaction_list() == true)
ATrans_analysis();
ATrans_reposition();
/***simulation kernel code***/

>
/***deal with result***/

}

Figure 17: Use of the ATrans library in Moldyn. Inserted codes are function calls with prefix “ATrans_".

transformation is subject to the ratio between transformation overhead and per 

iteration computation time, the frequency of the update to reference clues, the 

speedup, and so on.

We devise an online adaptive scheme to select the suitable transformation 

strategy on the fly. The basic idea is to estimate the benefits of different strategies 

during the initial time steps, and then apply that strategy to the remaining time 

steps.

To figure out the overall benefits of synchronous transformation, it is neces­

sary to determine the best frequency to apply it. Because of its transformation 

overhead, applying it at every update of reference clues is often sub-optimal. We 

employ a prior method [61] to solve the problem. By applying the synchronous 

transformation only once, it can determine the best frequency and estimate the 

overall benefits by observing the computation speed in a number of iterations fol­

lowing the transformation. The process introduces no extra overhead.

Figuring out the overall benefits of asynchronous transformation is less straight­

forward. As asynchronous transformation is off the critical path, it can be applied 

often. In our design, it is applied at the reference clue update following the fin­

ish of the previous asynchronous transformation. Because the per iteration time
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varies across update periods, it is difficult to get a closed form to compute all the 

ending/starting time points of asynchronous transformations, causing difficulty for 

benefit estimation.

Our solution is to emulate the timeline of the kernel computation and the ap­

plications of asynchronous transformations. For space constraint, we describe it 

briefly. It requires the following parameters: the analysis and reposition times of 

a data transformation, the frequency of reference clue update, the total time steps 

of the kernel computation, and computation speed in a number of iterations fol­

lowing the transformation. Attainment of these numbers needs one application of 

the transformation only. An emulation of the timeline involves the computation of 

a number of linear expressions for calculating when each asynchronous transfor­

mation will apply and how many time steps of computation can benefit from it. The 

emulation takes less than 0.01% of overall running times in all our experiments.

After estimation of the overall benefits of synchronous and asynchronous 

transformations, the winner will serve for the rest of the execution. Although the 

program may not be using the optimal transformation scheme during the initial 

time steps, the next section will show that the influence is small as these steps 

take only a small portion of the entire simulation.

The adaptive scheme may suffer if some key factors (e.g., frequency of ref­

erence clue update) change dramatically across time steps. Fortunately, most 

dynamic simulations do not see such drastic changes.

3.7 Evaluation

We conduct a series of comparisons to evaluate the values of the techniques. We 

give an overview of the results first.

•  Asynchronous Transformation: As Section 3.3 mentions, asynchronous trans­

formation hides most overhead, but its use of obsolete reference clues may
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have certain side effects on the resulting locality. We conduct a head-to-head 

comparison between asynchronous and synchronous transformations (both 

using RCB on CPU) in terms of the overall performance and resulting local­

ity of the transformed applications. The result shows both the strength and 

weakness of the asynchronous transformations. On three benchmarks, asyn­

chronous transformations lead to 18% more speedup than synchronous trans­

formations do. In addition, for these benchmarks, using an extra CPU core 

for transformation brings 15% more speedup than using that core for compu­

tation, justifying the resource usage of the asynchronous transformations. On 

the other hand, the negative effects of obsolete reference clues outweigh the 

benefits of asynchronous transformations on two other benchmarks, leading to 

slightly less speedup than the synchronous transformations do.

•  Runtime Adaptation: The runtime adaption scheme is able to identify the best 

transformation strategy for all benchmarks. With low overhead, it helps exert 

the strength of both asynchronous and synchronous transformations.

•  TLayout: By comparing with a prior sophisticated algorithm (RCB), we observe 

that in most cases, the TLayout algorithm produces data layout of similar quality 

as the prior algorithm does, but takes around one third time to run.

•  Overall: When the techniques are applied together, they generate 1.3-3.1X 

speedup over the original performance of five benchmarks, outperforming the 

state-of-the-art data transformation techniques significantly.

The conclusions obtained are based on measured wall-clock times and con­

firmed by hardware performance counters results.

3.7.1 Methodology

Platform All experiments happen on a dual-socket dual-core AMD Opteron 2216

machine in the National Center for Supercomputing Applications. The machine
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is equipped with an NVIDIA Tesla S1070 GPU with 16GB DDR3 memory. It con­

sists of four Tesla T10 C1060 GPUs, with each containing 240 cores, organized in 

30 streaming multiprocessors. We use only one of the GPUs in our experiment. 

The machine runs Linux 2.6.33. We use GCC 4.3.2 (with ,,-03 ’’ flag) as the com­

piler and CUDA 3.0 as the GPU programming model. We employ Iibpfm4 [1] for 

collecting cache performance data.

Benchmarks We concentrate our experiments on a dynamic simulation bench­

mark suite from Han and Tseng [37], and two other programs, Mesh and CFD, re­

spectively from the Chaos group [25,103] and the Fluid Dynamics community [21]. 

The suite from Han and Tseng consists of three representative programs, Nbf, Ir- 

reg, and Moldyn. They are all derived from real applications. Nbf is abstracted 

from GROMOS, a force field of molecular dynamics simulation; Irreg is the ker­

nel of an iterative partial differential equation solver; Moldyn is from a molecular 

dynamics simulation named CHARMM. These three benchmarks have been com­

monly perceived to be representative, and have served as the only benchmarks in 

some influential data locality studies in dynamic simulations [37,52,85], We add 

two more benchmarks to increase the coverage. Mesh is an unstructured mesh 

simulation. CFD is an unstructured grid finite volume solver for three-dimensional 

Euler equations for compressible flow. Similar to the extensions Han and Tseng 

made to Irreg [37], both Mesh and CFD are modified to accommodate dynamic 

changes in the underlying mesh or grid structures.

Table 3 lists the properties of the inputs used with these benchmarks. FOIL 

and AUTO are 3D meshes of a parafoil and GM Saturn automobile, respectively. 

MOL1 and MOL2 are small and large 3D molecule models originally obtained 

from MOLDYN application. The results on all inputs show similar performance 

trends. Due to space constraints, our discussion concentrates on the results on 

large inputs (AUTO and MOL2) for the severity of their locality issues.
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The frequency of the update to reference clues affects the problem setting 

and the potential of runtime data transformations. We experiment three typical 

frequencies: one update in every 10, 20, or 30 iterations of the main computation 

loop of the applications.

Transformation Frequency Data transformation can be applied as often as 

once per update of the reference clue, or once every several updates. The more 

frequent it is applied, the better the locality of the application is, but meanwhile, 

the more overhead it incurs.

For the asynchronous paradigm, the transformation frequency is automati­

cally determined by the 6-state master-helper coordination scheme as described 

in Section 3.3.4. The problem is tricky for synchronous transformations. For a fair 

comparison, one seemingly straightforward option is to use the same transfor­

mation frequency as the asynchronous transformation uses. But this option is in 

fact unfair to the synchronous scheme. That frequency often causes much worse 

performance than some other frequencies for synchronous transformations. A 

previous study [61] introduces a method to analytically determine the optimal fre­

quency for synchronous transformations. We have verified the optimality of the 

method through a sequence of empirical measurements. In all our experiments, 

we use optimal frequencies found in that way for synchronous transformations.

Algorithm and Others We select previously proposed RCB algorithm (imple­

mented by Han and Tseng [37]) as the analysis algorithm in all CPU experiments, 

synchronous or asynchronous. RCB has been shown to be one of the most 

sophisticated algorithms that produce the largest locality enhancement for most 

benchmarks [37], Our experiments echo that despite it is more expensive than 

some other methods (e.g., CPACK), its overall performance is often among the 

best when it is applied synchronously at the best frequency.
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Table 3: Inputs*

Name # Nodes # Edges Description
FOIL

AUTO
MOL1
MOL2

144649
448695
131072
442368

1074393
3314611
1179648
3981312

3D mesh of a parafoil 
3D mesh of GM’s Saturn 

3D molecule distribution (sm) 
3D molecule distribution (Ig)

*: come from Han and Tseng [37],

As the asynchronous transformation is mainly on data reordering, we apply 

the same computation reordering (lexicographical sort) to all experiments. The 

computation reordering overhead is small (less than one seventh of RCB) and is 

counted in data repositioning overhead in all experiments.

3.7.2 Experimental Results

We experiment both single-thread and parallel executions of the benchmarks. 

They show similar conclusions. We first give a detailed analysis using the single­

thread results, and then report the parallel results at the end, along with the justi­

fication of the resource usage by asynchronous transformations.

Sequential Executions

Figure 18 shows the comparison of overall running times. Each time consists of 

the application running time and all transformation overhead that is not hidden 

(including data transfer between CPU and GPU).

^^■ syn c fccpu  
H H s s y n c h c p u  
HHjssynchgpu
I I adaptive selection

III
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

IRHEG NBF MOUJYN CFO MESH

Iterations Per Update

Figure 18: Speedup of the overall executions for single-threaded benchmarks. The speedups are over single-threaded 
benchmarks without any data transformation applied.
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IRREG, NBF, MOLDYN On the first three benchmarks, the synchronous trans­

formations show 77% average speedup. The asynchronous transformations on 

CPU show 18% more average speedup. The benefits come from two aspects. 

First, the asynchronous scheme hides significant transformation overhead, as 

Figure 19 reports. The second benefit relates with the first. Because the transfor­

mation incurs smaller overhead on the critical path than the synchronous scheme 

does, it is automatically applied more frequently by the master-helper coordina­

tion scheme than the synchronous one. The more frequent transformation yields 

better locality, confirmed by the L2 cache miss rates shown in Figure 21. The fig­

ure shows a few exceptional cases (e.g., the configuration "Moldyn 30"), in which, 

the two transformations are applied at the similar frequencies; the use of obsolete 

reference clues causes the relatively less locality enhancement. However, thanks 

to the overhead hiding by the asynchronous transformation, it leads to the better 

or similar overall performance still, as Figure 18 shows.

We stress that the synchronous results are what we get when 

the optimal transformation frequency is used. Increasing invocation frequency of 

the synchronous transformations yields only worse overall performance due to 

the large overhead incurred, while decreasing the frequency worsens the perfor­

mance as well due to the less locality enhancement to the application, as Figure 20 

illustrated.
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Figure 19: Optimization cost on critical path. The results are normalized over those of synchronous transformation.
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Figure 20: Speedup of ERREG with different transformation frequencies. Neighbor list is updated every 20 iterations.
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Figure 21: L2 cache performance comparison between synchronous and asynchronous data transformation. Results are 
normalized over those without any transformation.

The asynchronous TLayout produces even larger benefits than the asyn­

chronous CPU approach. The extra speedup ranges from 28% to 112% with an 

average of 65% over those of the synchronous scheme, and 25-58% better than 

those of the asynchronous CPU results. The extra benefits come from two ap­

pealing features of the TLayout algorithm. First, it runs 2.8 to 3.3 times faster 

than the RCB algorithm, thanks to its effective exploitation of the throughput- 

oriented processors. Second, it produces data layout of comparable quality as 

the sophisticated RCB algorithm does as Figure 22 reports. These two features 

together explain why asynchronous TLayout produces better data locality than 

the asynchronous CPU does. The second feature ensures that each invocation 

of the data transformation in the two schemes are similarly powerful, while the
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first feature entails much more affordable invocations of data transformations in 

the asynchronous TLayout than in the asynchronous CPU.
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Figure 22: The time per iteration of the computation loop after a transformation is applied. It is the average of 100 iterations 
following the transformation. The results are normalized over those of single-threaded benchmarks with no transformations 
applied.

CFD and MESH The results on these two programs show a trend different from 

the other three programs. On both of them, changes to the reference clue dur­

ing the simulations are less significant than on the other programs. The overall 

speedups from the transformations are still large because the initial data layout 

is inferior. However, because the changes are small during the simulation, there 

is no need to apply transformations often. There is limited overhead for asyn­

chronous transformations to hide. Consequently, the negative effects of the use 

of obsolete reference clues become noticeable. So on both programs, regardless 

the reference clue update frequencies, the asynchronous transformations per­

form slightly worse than the synchronous transformation. The L2 cache results of 

Mesh in Figure 21 seem counter-intuitive: Asynchronous ones are lower than the 

synchronous one. A plausible reason is that the locality of the program is mainly 

embodied by other metrics. For instance, the synchronous scheme has L1 cache 

miss rate half of that of the asynchronous GPU scheme.

Adaptive Selection The adaptive selection scheme successfully selects the 

best strategy to use for all cases. Because some transformations in the initial 

time steps do not use the optimal strategy, there are slight differences between
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the speedups from the adaptive scheme and those of the best strategy. How­

ever, overall, it achieves the near best performance on all benchmarks, show­

ing the promise for exerting the strength of both asynchronous and synchronous 

transformations.

Parallel Executions

Figure 23 reports the similar comparison but on parallel executions of the bench­

marks. For the baseline (i.e. no transformations applied) and “synchronous CPU", 

we use 4 threads for each benchmark as the machine contains 4 cores. In “asyn­

chronous CPU" and "asynchronous GPU" case, we use 3 threads for each bench­

mark so that the transformation can happen on the remaining core.

■ ■  synch cpu 
M B Myochcpu 
H H ju y n c h g p u  
I  I a d u tty  selection

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 

IRREG NBF MOLDYN CFO MESH

Iterations Per Update

Figure 23: Speedup of the overall executions for parallelized benchmarks. The speedups are over parallelized benchmarks 
without any transformation.

The results show similar conclusions as the single-thread experiments do. 

One particular point we want to mention is that even though the “asynchronous 

CPU” uses one fewer worker threads than “synchronous CPU", with the help from 

the asynchronous transformation, it still excels in resulting performance. Part of 

the reason is that the irregular applications have many communications among 

threads due to the inherent properties of the applications. As a result, the par­

allel program shows sub-linear performance scalability in the number of threads. 

Adding the fourth worker thread improves the performance of the programs by 6%, 

exceeded by the benefits from the asynchronous transformations. The results
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justify the resource usage of the asynchronous transformations. In addition, the 

parallelization imposes different influence on the locality of different benchmarks. 

The locality issue of CFD becomes especially serious after the parallelization, 

hence the large benefits from data transformations.

More Results on TLayout Algorithm

The speed of membership propagation in the algorithm determines the number 

of iterations the propagation has to happen (to reach the predefined threshold <S). 

In all the experiments reported in previous sub-sections, the average numbers of 

needed propagation iterations are no larger than four. This result indicates the 

high speed of membership propagation. Analytically, it may be attempting to think 

that if the closest center is K  hops away from a node, it would take K  iterations 

of propagation for that node to be clustered. However, because global memory is 

used for membership labels, during an iteration of propagation, the membership 

of a node becomes visible to all threads (e.g., all nodes) immediately after the 

node gains its membership. For instance, in Figure 24, node N3 can be clustered 

in one propagation if either of the following two conditions is met: (1) N3 is visited 

after N2 and N2 is visited after Ni, (2) N3 is visited after N5 and N5 is visited after 

Na. In TLayout, the visiting order of nodes is random; in the GPU implementation, 

the order is determined by the scheduling of GPU threads, which exhibits large 

randomness.

To examine the scalability of the algorithm, we create a spectrum of problems 

of different sizes. At each size, we run the algorithm 7 times to get the average 

number of propagations required to duster 99% nodes. As the focus is on as­

sessing the propagation speed, we fix the number of clusters to be 100 in all runs. 

Results in Figure 25 demonstrates the good scalability of the algorithm.

Overall, the results demonstrate that both the asynchronous data transforma­

tion and the TLayout algorithm are able to produce certain degrees of benefits for
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N s
Figure 24: An example showing the membership propagation in TLayout. The filled node is already clustered; the others 
are not.
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Figure 25: Scalability of TLayout

the enhancement of data locality of irregular dynamic simulations. Together with 

the online adaption scheme, they resolve the quality-dilemma faced by existing 

data transformation techniques, and yield significant performance improvement.

3.8 Related Work

In Section 3.2, we reviewed some prior data reordering and computation reorder­

ing techniques for the enhancement of data locality of dynamic simulation pro­

grams. In addition, Strout and others have proposed a compile-time framework 

that allows the explicit composition of run-time data and iteration reordering trans­

formations [85], Kulkarni and others [53] have studied locality issues of irregular 

applications in the context of optimistic parallelism. They concentrate on the par­

tition of data among threads rather than data layout reorganizations for locality 

improvement.

Recent years have seen a rapid increase of the use of GPU for data-parallel 

computing. Previous work on CPU-GPU cooperative computing concentrates on
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offloading some computation-intensive and easily parallelizable parts of an appli­

cation to GPU. In this scenario, the key issue is how to partition the jobs among 

GPU and CPU [76], and how to optimize GPU code to maximize the comput­

ing efficiency on GPU through compiler techniques [9,56,97], runtime optimiza­

tions [99,100], or empirical search-based optimizations [59]. Some recent studies 

attemp to enable seamless translation between GPU and CPU code [33,34,84], 

We are not aware of prior proposals in using GPU to do runtime optimizations for 

CPU computing.

There are many clustering algorithms developed in the machine learning 

area [39], But most of them are distance-based (e.g. K-Means) rather than 

topology-based. Our search yields no satisfied topology-based clustering algo­

rithm that is simple and fits GPU well, hence our development of TLayout.

3.9 Summary

This chapter presents three techniques for resolving the quality-overhead dilemma 

of data transformations for irregular references. The first, asynchronous data 

transformation, moves data reordering off the critical path through dependence 

circumvention and layout approximation. The second, TLayout, is a novel data 

transformation algorithm designed to take advantage of modern throughput-oriented 

processors. The third technique, adaptive control, allows transparent selection 

of suitable transformation schemes for an execution. Together, they improve 

the performance of some irregular dynamic simulations significantly. In addition, 

this study initiates a new way of collaborations between CPU and co-processors, 

which may lead to some unconventional directions for program optimizations in a 

heterogeneous computing environment.



Chapter

Enabling Program-Level Control of 

Scheduling on GPU

4.1 Introduction

With hundreds of cores integrated, GPU often creates tens of thousands of threads 

for an application. The massive parallelism produces large potential throughput, 

but also imposes grand challenges for thread management, or scheduling.

Scheduling determines when and where a task is processed. It is essential 

for matching communication and memory access patterns with underlying archi­

tecture, in order to fully tap into the power of a parallel system. Scheduling is 

usually controlled by thread schedulers. On CPU, the thread scheduling is imple­

mented through system APIs. But on GPU, there is no such software API; the 

scheduling on GPU has been controlled by hardware and runtime. Such a de­

sign is demanded by the scale of parallelism: Hundreds of thousands of threads 

need to be scheduled in no time. However, the lack of software-level control 

of scheduling forms a major barrier for software to leverage scheduling to opti­

mize program executions. What increases the barrier is that the scheduling al­

gorithms employed by GPU hardware and runtime have remained non-disclosed;

4
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the schedulers vary substantially across generations and have exhibited some 

obscure and non-deterministic behaviors (detailed in the next section).

The restrictions have drawn some recent attentions from researchers in var­

ious domains. A number of studies independently invented the method of per­

sistent threads to go around the hardware scheduling problem [6,19,35,89,95]. 

The idea is to create only a small number of threads that can simultaneously run 

actively on a GPU. Unlike in traditional kernels where a thread terminates as it 

finishes a task, these threads stay alive throughout the execution of a kernel func­

tion. They continuously fetch and execute tasks from one or more task queues. 

By controlling the order of the tasks in the queues, one can match the executions 

with some communication patterns among tasks—-for example, putting a producer 

and its consumer into the same queue, thread.

Although persistent threads offers some support to task scheduling on GPU, 

the support is restrictive. It only decides which tasks map to which persistent 

thread and their execution order; it gives no support for deciding where or on which 

processor a task should run. Such location control is still up to the hardware and 

proprietary runtime, which decide the placement of persistent threads, and hence 

the placement of tasks associated with those threads.

Lack of such scheduling control at the spatial dimension hinders persistent 

threads in supporting optimizations that are related with non-uniformity in proces­

sors. For instance, a modern GPU consists of multiple streaming multiprocessors 

(SM), with each containing tens of cores. Cores on one SM usually share some 

on-chip storage on that SM (e.g., L1 cache and texture cache). As a result, one 

task may be able to read the data in a cache brought by another task that con­

currently runs on the same SM. With location control, one could make two tasks 

that share lots of data run concurrently on the same SM1. Such optimizations are 

especially beneficial for tasks with non-uniform data sharing, which include tasks

1 Mapping two tasks to the same persistent thread can also make them map to the same SM, 
but the tasks have to run serially by that thread, throttling the benefits of synergistic data fetching.
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of many irregular applications (e.g., N-body simulations), as well as tasks coming 

from different kernels (or applications) that are deployed concurrently on a GPU. 

Besides for data sharing, the spatial control is critical when there are architectural 

variations among SMs. Unintentional variations among SMs in a GPU already 

widely exist today [40]; with frequency scaling [54] possibly implemented in future 

GPU, even more substantial (intentional) variations (e.g., different SMs could be 

reconfigured to different clock frequencies to balance energy and performance) 

are possible. In these scenarios, spatial control of scheduling is important for 

matching tasks with the suitable SMs.

in this work, we show that spatial scheduling control actually can be enabled 

through a simple program transformation, called SM-centric transformation.

SM-centric transformation includes two essential techniques. The first is SM- 

based task selection. In a traditional GPU kernel execution, with or without per­

sistent threads, what tasks a thread executes are usually based on the ID of the 

thread (or determined randomly in a dynamic task management). While with SM- 

based task selection, what tasks a thread executes is based on the ID of the SM 

that the thread runs on. By replacing the binding between tasks and threads with 

the binding between tasks and SMs, the scheme enables a direct, precise control 

of task placement on SM.

The second technique is filling-retreating scheme, which offers a flexible con­

trol of the amount of active threads on an SM. Importantly, the control is re­

silient to the randomness and obscuration in GPU hardware thread scheduling. It 

helps SM-centric transformation in two aspects. First, it ensures an even distri­

bution of active threads on SMs, which is vital for guaranteeing the correctness 

of SM-centric transformations. Second, it facilitates online determination of the 

parallelism level suitable for a kernel, which is especially important for the per­

formance of multiple-kernel co-runs, a scenario benefiting significantly from SM- 

centric transformation.
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SM-centric transformation, by enabling flexible program-level control of task 

scheduling, opens up many new opportunities for optimizations. In our experi­

ments on 72 co-runs of kernels, it helps produce on average 33% improvement in 

system throughput and turnaround time. When applied to locality enhancement, 

the enabled spatial scheduling shortens the execution times of four irregular appli­

cations by 20% on average. In both cases, it significantly outperforms the support 

that persistent threads provide. These results indicate that SM-centric transfor­

mation, by complementing prior methods, provides a critical missing piece of the 

puzzle for enabling a flexible control of task scheduling on GPU.

4.2 Background

We base our discussions on terms in NVIDIA CUDA [2J; but the technique could 

be applied to other GPU programming models.

Organization of Cores and Threads As a massively parallel architecture, a 

GPU consists of a number of streaming multiprocessors (SM), with each contain­

ing tens of cores. A GPU usually creates a large number of threads at the launch 

of a kernel (i.e., a CPU-invoked function that runs on GPU). These threads are 

typically organized in a hierarchy: 32 compose a warp, many warps compose a 

thread block or called a cooperative thread array (CTA) and many CTAs compose 

a grid.

Spatial Scheduling A CTA is the unit for spatial scheduling: At a kernel launch, 

the GPU hardware scheduler named GigaThread [70] assigns each CTA to one 

of its SMs. The assignment algorithm has not been disclosed to the public. It 

differs from one generation of GPU to another, and exhibits lots of irregularity. 

For example, our experiments on Tesla M2075, a type of widely used workstation 

GPU, show different CTA-to-SM assignments in two repeated invocations of the
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same kernel on the same input, and neither is in a round-robin or other regular 

predictable pattern.

Temporal Scheduling A warp is the unit for temporal scheduling: All threads 

in a warp proceed in lockstep. Many CTAs may be assigned to an SM, but at 

one time point, only a limited number of them can be active— meaning that they 

attain enough registers and other hardware resources and are ready to run. All 

other CTAs have to wait until some active CTA finishes executing the entire kernel 

function and releases some hardware resources.

Non-Uniformity on GPU Spatial scheduling is potentially beneficial to GPU, as 

non-uniformity exists on both GPU resource sharing and its workload.

On the resource sharing aspect, modern GPU features non-uniform cache 

sharing. In Tesla M2075, for instance, there are 14 SMs, with each containing 

some cache—such as, instruction cache, L1 data cache, constant cache, and 

texture cache—that is shared by all cores on that SM but is not accessible by 

other SMs.

On the workload aspect, non-uniformity shows in two levels. For a single 

GPU kernel, a CTA may share different amounts of data with different CTAs. 

Molecular Dynamics (MD) simulation is such an example. It simulates interac­

tions among neighbor atoms. The atoms simulated by two CTAs may have many 

or few neighbors, depending on the distances among them in the simulated space. 

That naturally leads to non-uniform data sharing among CTAs. Meanwhile, recent 

generations of GPU start to support concurrent executions of multiple kernels on 

a single GPU. Although currently the kernels have to be launched from a single 

CUDA context, a more general support for concurrent executions of multiple GPU 

applications is expected to come in the near future. In these co-run scenario’s, 

non-uniformity becomes even more common: CTAs from the same kernel often 

share more instructions and data than CTAs from different kernels do.
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createJobQ4sms(); II on CPU

createJobQ4workers(); / /  on CPU 
kernel_org() kernel_smc()

jobID  = f  (w orkerlD ); kernel_persist() smID = getSMID();
processjob (jobID); while (jobID  = JobQ [workerlD ].next() != null) jobID  = ]obQ [sm lD ].next();

processjob (jobID); if (jobID  != null)
processjob (jobID);

(a) original kernel (b) w ith persistent thread (c) w ith SM-centric task selection

Figure 26: Conceptual relations among jobs, workers, and SMs.

The non-uniformity suggests the potential of spatial scheduling. As Sec­

tion 4.6 quantitatively confirms, a good spatial scheduling may bring an over 30% 

speedup on average.

4.3 SM-Centric Transformation

At the center of SM-centric transformation are two techniques: SM-centric task 

selection, and a filling-retreating scheme. In this section, we first explain the ba­

sic ideas of the two techniques and how they complement each other to form 

a single solution to circumvent the limitation from the hardware scheduler. As 

the techniques are generally applicable to various GPU programming models, we 

use high-level pseudo-code for description and skip detailed complexities in im­

plementation so that the ideas can be easily grasped by general readers. We 

then use CUDA as an example programming model to explain the detailed imple­

mentation of the techniques, including some subtle considerations that are critical 

for the techniques to work efficiently. We show that the entire SM-centric trans­

formation can be conducted through a simple pass by compilers. At the end, we 

give some discussions on the soundness of the transformation and its applicable 

conditions.

4.3.1 SM-Centric Task Selection

Basic Idea SM-centric task selection associates tasks with SMs. We explain it 

based on the following abstract model of GPU kernel executions.
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Commonly, an invocation of a GPU kernel causes many GPU threads to cre­

ate, which are often organized in a hierarchical structure. At an abstract level, the 

execution of a GPU kernel can be regarded as consisting of many jobs2 conducted 

in parallel by a number of workers on some SMs. Here, a worker corresponds to 

a group of GPU threads (e.g., a CTA), and a job corresponds to the operations 

conducted by such a thread group, including all their data accesses. There is a 

unique ID number associated with each job, worker, and SM.

In traditional GPU programs, which job a worker does has been determined 

by the worker’s ID, as the pseudo code in Figure 26 (a) shows. The technique of 

Persistent threads maps multiple jobs to a single worker, but the set of jobs for 

a worker is still determined by the worker’s ID, as shown in Figure 26 (b). Since 

the placement of workers on SMs is controlled by the hardware schedulers, the 

job-worker binding makes the placement of jobs on SMs solely depend on the 

hardware schedulers.

The idea behind SM-centric task selection is to replace the job-worker binding 

with a binding established between jobs and SMs. As Figure 26 (c) shows, a job 

queue is built for every SM before the invocation of a kernel function. Inside the 

kernel function, each worker first figures out on what SM it resides, and then uses 

the SM ID to fetch the next job in the corresponding job queue to execute. In this 

way, controlling the placement of a job on a specific SM becomes simple: Just 

putting that job’s ID into the job queue of that SM.

The idea is straightforward. But some complexities must be addressed to 

implement the idea soundly and efficiently.

Correctness Issues by Hardware Schedulers Through a close look at the 

pseudocode in Figure 26 (c), one will see that for it to work correctly on a GPU 

program, the number of workers assigned to an SM must be no fewer than the

2ln this work, “job" and “task” are interchangable terms, although we tend to use “job" more 
often when referring to entities in this abstract kernel execution model.
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number of jobs assigned to the SM. It is because in that code, one worker on an 

SM processes only one job assigned to that SM. Some jobs on that SM would be 

left unprocessed if the number of workers is less than the number of jobs.

However, how many workers are assigned to an SM is determined by the 

GPU hardware scheduler. Our experiments indicate that the assignment by hard­

ware schedulers is often unpredictable. On a Tesla M2075 with 14 SMs, for in­

stance, when running a kernel with 1400 workers (i.e., CTAs), we observe an 

uneven distribution of workers: the number of workers per SM varies from 92 to 

110. And when running the kernel with 14 workers, some SMs get multiple work­

ers while others get none. Moreover, the worker distribution varies from run to 

run, displaying lots of randomness.

Such non-determinism jeopardizes the soundness of the basic SM-centric 

task selection. An option is to allow dynamic job stealing such that workers on 

one SM can steal jobs left on another SM. It requires more complicated code to 

be inserted into the GPU kernel to implement the job stealing logic, and hence in­

creases register pressure and reduces parallelism. More importantly, the stealing 

changes the intended job-to-SM mapping.

4.3.2 Filling-Retreating Scheme

We address the complexity through a filling-retreating scheme. This scheme of­

fers a simple way to precisely control the number of active workers on each SM.

The scheme works hand-in-hand with the concept of persistent threads. Sim­

ilar to persistent threads, with this scheme, a small number of workers are kept 

alive for each SM throughout the kernel execution. These workers continuously 

fetch and process the jobs assigned to the SM until the queue gets empty. The 

tricky part is on how to precisely control the number of active persistent threads 

(or in our term, active workers) for each SM.
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Filling-retreating offers a simple solution. It leverages a common property 

of GPU schedulers. On GPU, each SM can only support a limited number of 

active workers at the same time due to hardware limitation. On all GPUs we 

tested, despite the differences in their schedulers, one common property is that 

they always try to assign a worker to an SM that can still accommodate some 

active workers if there is any (rather than putting the worker into a waiting queue 

of an SM).

Suppose that one SM can support at most m  active workers at the same time. 

In the filling-retreating scheme, a total of m * M  workers are created at a kernel 

launch, where M  is the number of SMs in the GPU. Due to the aforementioned 

common property, each SM gets m  workers assigned. This step is the “filling” part 

of the scheme.

Although the “filling” step ensures every SM gets m workers, as multiple stud­

ies have shown [50,59], having the largest number of workers on an SM is not 

always the best for maximizing the computing efficiency due to cache and bus 

contention. This phenomenon is also confirmed in Section 4.6. The “retreating" 

part of our scheme facilitates flexible adjustment of the number of active workers 

on an SM. Suppose one wants to have ntarget active workers per SM. A counter is 

created for each SM to record the number of workers that have started process­

ing jobs on that SM. Each worker, before starting working on a job, first atomically 

increases the corresponding counter and then checks whether the counter value 

already exceeds ntarget. If so, the worker exits immediately. Figure 27 shows the 

pseudo code.

The correctness of the filling-retreating scheme relies on the fast distribution 

of thread blocks by the hardware scheduler. That is, the filling phase should fin­

ish before any thread block retreats (i.e., exiting its execution). Otherwise, the 

hardware scheduler could assign totally more than m workers onto an SM be­

cause of the vacancy on that SM formed by the early retreat of some workers on



81
createJobQ4sms(); II on CPU

kernel smcO 
smID = getSMIDO:
workers = workerCounters[smlD]++; //atomic 
if (workers > wantedNumPerSM) 

return;
while (jobID = JobQ[smlD].next() != null) 

processjob (jobID);

Figure 27: Psuedo code of a GPU kernel in a filling-retreating scheme.

it. Correspondingly, some other SMs would get less than m workers assigned. 

Fortunately, our experiments show that such cases have never happened, plau­

sibly due to the extreme speed of the hardware-based assignment of workers. A 

check put into the runtime driver could further ensure the condition to hold, the 

necessity of which is not shown in our experiments.

The benefits of the precise control of the number of active workers on an 

SM goes beyond helping with the correctness of SM-centric task selection. It also 

enables a precise control of parallelism on GPU, which facilitates flexible partitions 

of SMs among co-running kernels shown in Section 4.5.

4.3.3 Implementation

The SM-centric transformation can be easily applied either manually or through 

a compiler. For proof of concept, we build a prototype source-to-source compiler 

based on Cetus [55], in which the transformation is implemented as a pass over 

the input code. The experience taught us the importance of several subtle con­

siderations in the design, which we highlight next before showing the full details 

of the implementation.

First, the dequeue operation in the while loop in Figure 27 is good for illus­

trating the basic idea but poor for performance. An atomic operation could cause 

substantial overhead especially when the work in the loop body is small. When 

implementing the transformation, it is important to avoid such atomic operations 

in the while loop. In our design, we circumvent the needs for atomic job fetching
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by leveraging a property offered by the filling-retreating scheme: There are pre­

cisely Ntarget active workers on an SM. With that property, each active worker only 

needs to process W / N target jobs, where W  is the total number of jobs assigned to 

the SM. So if we put the job IDs of an SM into an array, the set of jobs for a worker 

just corresponds to a segment of the array. The starting and ending indices of 

the segment can be easily attained before the worker enters the job fetching and 

processing loop. With this improvement, the while loop in Figure 27 can be con­

verted into a simple for loop, iterating the elements in the segment assigned to 

the worker, and the atomic operation can be hence removed from the loop. In our 

implementation, we actually use a single array to store the IDs of all jobs. The set 

of jobs of an SM corresponds to just one section of the array. The position of a 

job ID in the array hence determines on which SM it will be processed. (Lines 9 

to 16 in Listing 4.1 implement this design; explained later.)

Second, the ID of an SM can be obtained efficiently. CUDA, like the C pro­

gramming language, allows programmers to insert assembly code, which is de­

signed by NVIDIA as an intermediate representation named Parallel Thread Exe­

cution (PTX) [75]. It has a special register, %smid, which stores the SM identifier. 

One “mov” instruction can copy the value in %smid to an integer variable. Line 27 

in Listing 4.1 shows the code.

Details In this part, we describe some low-level complexities that our description 

has skipped. The discussion is based on CUDA, but the implementation can be 

done for other GPU programming models, such as OpenCL.

On GPU, the spatial scheduling unit is not a thread but a CTA, an array of 

threads. Correspondingly, the job assignments to processors in our design is in 

the unit of job chunks—the set of jobs executed by a CTA in the original GPU 

program. In a typical GPU program, the thread ID is used to distinguish jobs, and
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one CTA handles one job chunk; the ID of a CTA in the original program is hence 

treated as the ID of the job chunk that CTA processes.

To minimize changes needed to the original GPU program, we encapsulate 

most parts of the code for SM-centric transformation into four macros. With them, 

applying SM-centric transformation involves only several minor changes to the 

original GPU program. As Listing 4.2 shows, on the CPU-side code, it inserts one

macro, SMCJnit, before the invocation of a GPU kernel, and appends three

arguments to the kernel call. On the GPU-side code, it inserts the calls to two

other macros, SMC_Begin and SMC_End, and replaces the appearances of

the ID of CTA in the kernel with SMC_chunklD. These can be done easily by

the compiler in one pass over the original GPU program.

The above four macros are defined in Listing 4.1. The first, SMCJnit, ini­

tiates the three variables with the number of workers needed, the array of the 

desired sequence of IDs of job chunks, and an all-zero counter array to count ac­

tive workers. The functions used to initiate the first two variables can be provided 

by the programmer or the optimizing compiler; their definitions depend on the pur­

pose of the specific application of the SM-centric transformation, as Section 4.5

will illustrate. The second macro, SMC_Begin, first calls the fourth macro to get

the ID of the SM by reading the particular register, then checks whether the SM 

already has enough active CTAs. If not, it computes the starting and ending po­

sitions of the sets of jobs it should work on, gets into the for loop to process them

one by one. The third macro, SMC_End, is trivial, just putting in the ending

bracket of the “for" loop in the second macro.

4.3.4 Soundness

At a high level, SM-centric transformation manipulates the association between 

jobs and processors, and hence alters the mapping between jobs and threads 

and possibly the execution order of the jobs. As a kind of remapping transforma-
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ttdefine  SM CJnit \
unsigned Int *  SMC_workersNeeded =  SMC_numNeeded(); \
unsigned Int *  SMC_newChunkSeq =  SMC_buildChunkSeq(); \
unsigned Int *  SMC_workerCount= SMCJnitiateArray();

#define  SMC_Begin \
 shared in t  SMC workingCTAs; \
 SMC _getSMid;\
H(offsetlnCTA == 0 ) \

 SMC workingCTAs = atomiclnc (& SMC_workerCount[ SMC_smid],\
INT_MAX); \  

synchthreads(); \
lf( SMCS_workingCTAs > =  SMC_workersNeeded) return; \
In t  SMC_chunksPerCTA =  SMC_chunksPerSM /  SMC_workersNeeded; \
In t  SMC_startChunklDidx =  SMC_smid *  SMC_chunksPerSM + \

 SMC_workingCTAs *  SMC_chunksPerCTA;\
fo r ( In t  SMC_chunklDidx =  SMC_startChunklDidx; \

 SMC_chunklDidx< SMC_startChunklDidx+ SMC chunksPerCTA ; \
 SMC_chunklDidx++) { \
 SMC_chunklD =  SMC_newChunkSeq[ SMC_chunklDidx);

#define _S M C _E n d  )

/ /g e t  the ID of the current SM
#defme  SMCjgetSMid \
uint SMC_smid;\
asmfm ov.u32 %0, %smid;"; "=r”( SMC_sm id))

Listing 4.1: Macros that materialize SM-centric transformation (N jobs; M SMs).

tion as persistent threads is, for SM-centric transformation to work soundly, the 

GPU program needs to meet the same conditions as in the case of persistent 

threads [19,35]:

(1) The operations by different threads are discriminated only by the thread 

ID; (2) The execution order of the CTAs does not disturb the correctness of the 

kernel.

The first condition ensures that SM-centric transformation does not change 

integrity of a job even though all appearances of the CTA ID in a kernel are re­

placed with the SMC_chunkld. We note that even though current GPU does

not migrate CTAs across SMs, the job integrity holds even if CTA migrates—given

that the attainment of SMC_chunkld is atomic. The second condition ensures

that the new order of execution maintains the meaning of the program.

The two conditions hold for well-formed GPU programs, due to the nature of 

GPU execution models. At a high level, they are Single-Program-Multiple-Data 

(SPMD) models; all GPU threads at a kernel launch execute the same function, 

while their specific operations are determined only by the thread ID. Meanwhile,
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/ * * "  C P U -s id e  code *•**/ 
main (X

 SMCJnit;
invoke original kernel with three extra arguments:

 SMC_chunkCount, SMC_newChunkSeq, K/M

}

/»*** G P U -s id e  code '*** /
 global kernel (...,
unsigned Int * SMC_chunkCount, unsigned Int * SMC_newChunkSeq,
unsigned in t SMC_chunksPerSM)
{

 SMC_Begin
/ /  the original kernel with the ID o f CTA replaced with SMC chunkID

 SMCJEnd
J ______________________________________________________________________

Listing 4.2: GPU program after SM-centric transformation (N vector elements; K job chunks; M SMs).

for a GPU program to work properly, it should not rely on the execution order of 

CTAs, because due to the non-determinism in CTA scheduling on GPU, it is hard 

to know what order would be taken in a run. Free from data race helps ensure 

the conditions hold. Recent years have seen a number of studies on data race 

detection for GPU [13,101], which could serve as part of the automatic check of 

the applicability of SM-centric transformation.

4.4 Uses and Complexities

By enabling program-level spatial scheduling, SM-centric transformation opens 

up some new opportunities for GPU optimizations. This section discusses some 

of them, and examines the main complexities associated with these new oppor­

tunities.

4.4.1 Example Uses

SM Partition for Multi-kernel Co-runs It has been observed that many GPU 

kernels exhibit sublinear speedups when the number of SMs used for the kernel 

increases [4,72]. As a result, simulations have shown that if the set of SMs in 

a GPU can be partitioned such that different subsets of SMs work for different
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kernels concurrently, the system often gives higher throughput and the kernels 

manifest better overall responsiveness [4], However, such partitions have not 

been feasible in practice for lack of scheduler controllability. On NVIDIA GPUs, 

for instance, when two kernels are launched concurrently (each usually has many 

CTAs), their CTAs are assigned to all SMs. And if the threads by one kernel al­

ready use too much register or shared memory on an SM, before its completion, 

the other kernel cannot start, hence resulting in a serial execution of the two ker­

nels.

With minor extension to the SM-centric transformation, partitions of SMs among 

concurrent kernels becomes possible. For instance, if we want the first 6 SMs to 

work for kernel / Xl and the remaining 8 SMs for kernel / 2, we can set the mapping 

array used in SM-centric transformation such that all jobs of f i  map to the first 6 

SMs and those of / 2 to the other 8 SMs. When the two kernels get launched, the 

GPU scheduler still assigns CTAs of both kernels to every SM. However, a state­

ment is inserted in each kernel after obtaining the SM ID, which checks whether 

the ID of this SM is one of the SMs supposed to work for this kernel. If not, the 

CTA returns immediately so that the SM can work for the other kernel.

Affinity-Based Scheduling Many GPU applications have inherent non-uniform 

data interactions, such as the MD example mentioned in Section 4.2. It causes 

non-uniform data sharing among job chunks. Following the concepts on traditional 

CPU [103], we state that two job chunks have good reference affinity if they share 

lots of data. As Section 4.2 mentions, each SM has an on-chip cache. So, if we 

can manage to assign onto the same SM the job chunks with good affinity, we 

may enhance the performance of the cache. SM-centric transformation makes 

this affinity-based scheduling possible.
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4.4.2 Complexities

There are some complexities for applying SM-centric transformation to the use 

cases mentioned earlier.

For SM partition for co-runs, the key is to decide the best partition. For affinity- 

based scheduling, the key is to compute the affinity among job chunks and then 

group job chunks accordingly.

Additionally, there is a common complexity existed in both use cases: deter­

mining the suitable number of active CTAs for a kernel. As some studies have 

shown [50], creating the maximum number of CTAs that an SM can hold of­

ten gives suboptimal performance, because of cache and bus contention among 

them. The CTA aggregation employed in SM-centric transformation allows flexible 

control of the number of active CTAs for a kernel.

However, determining the suitable numbers of active CTAs is challenging. It 

depends on many factors, including the interaction between SM partitioning and 

data locality, program inputs, kernels’ resource requirement and so on. Moreover, 

when coupling with the various methods to partition SMs (for co-runs), they could 

result in a large search space. For 2 kernels on a 14-SM GPU, if an SM can 

support at most 6 active CTAs, the search space contains 6 x 6 x 14 = 504 cases.

4.5 Designs for Validation

In this section, we describe our design to address the complexities listed in the 

previous section. Our goal is to validate the practical value of the spatial schedul­

ing enabled by SM-centric transformation, rather than to find the best solution to 

those complexities. Simplicity and practicality are the principles in our design. The 

rationale is that if the enabled spatial scheduling could bring substantial benefits 

with minimum support, the promise of the technique is validated.



88

4.5.1 Optimal Configuration Search

We first discuss the challenges for determining the best number of active CTAs 

(i.e., the ntarget mentioned in Section 4.3.2, which is also called parallelism con­

trol) for a kernel and for finding the best partition of SMs between co-running 

kernels. We call these parameters together as a configuration in our discussion. 

The difficulty is that the space of the configuration values is large and the best 

configuration depends on many factors. It is often too costly to try every possible 

configuration at runtime. We employ the standard sampling method to efficiently 

approximate the best configuration. When a kernel is inside a loop, the sampling 

may happen during the first several iterations; otherwise, the sampling may hap­

pen offline or across runs.

Because SM partition mainly affects interactions across SMs, while the par­

allelism control is mainly related with resource usage inside an SM, we observe 

that the optimal level of parallelism for a kernel is only loosely connected with 

how we partition SMs. Hence our search scheme first evenly partitions the SMs 

among kernels, and tries to find the appropriate numbers of active CTAs for each 

kernel. It starts with the maximum CTAs supported by an SM for the kernel (no 

larger than 8), and decreases the number by 1 in each iteration until it observes 

decreased performance or the number reaches 1. This is a typical process of hill 

climbing. After that, our search scheme fixes the CTA numbers but adjusts SM 

partition by setting the number of SMs assigned to a co-run kernel from 1 to the 

maximum-1 (in a step size of three) while the rest SMs are used for the other 

co-running kernel. As a prior study [72] does, this work considers only co-runs 

of two kernels. Based on the sampled data, the optimal partition is approximated 

through interpolation.

Like other online sampling-based approaches, our search scheme cannot 

work well when different iterations behave dramatically differently. Combining the
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sampling approach with domain knowledge about the behavior patterns of the 

program may help, which is out of the scope of this work. In our experiment, we 

encountered only one such program, reduction. We did not give special treatment 

to it. The results in Section 4.6 show that even though the sampling method finds 

only suboptimal configurations for some programs, the overall benefits are still 

substantial, confirming the value of the SM-centric transformation.

4.5.2 Affinity-Based Scheduling

To implement the affinity-based scheduling, we model the scheduling problem as 

a graph partitioning problem. The modeling consists of two steps: graph con­

struction and graph partitioning.

Graph Construction This step establishes a set of graphs named affinity graphs, 

in which, each vertex represents a job chunk and each edge weight represents 

the affinity score between two job chunks. Affinity score is defined as follows. Let 

Si and S2 be the set of data blocks assessed by two job chunks Jv and J2 respec­

tively. Their affinity score is There is no edge between two vertices when 

their affinity score is less than a threshold (0.05 in our experiment). If the affinity 

score is too small, there is only a small amount of data sharing and its effects 

on performance is negligible; ignoring them often breaks one affinity graph into 

multiple smaller graphs, allowing efficient graph partitioning in the next step.

Compiler techniques exist for analyzing working sets [81] for regular appli­

cations. On irregular applications, it is challenging as data access patterns may 

be unknown until run time. Runtime inspection techniques have been proposed 

to analyze data access patterns [65], For GPU programs, prior work has shown 

the feasibility to employ CPU to implement the inspection asynchronously when 

GPU is executing the kernel [99], In this work, we used simple synchronous par-
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allel inspection for irregular programs. But the asynchronous method may further 

reduce the overhead.

Graph Partitioning Given M  SMs, this step partitions the set of vertices into M  

equal-size dusters. The job chunks corresponding to a cluster are scheduled to 

one single SM. This problem is known to be NP-hard. There are some existing 

heuristic algorithms, but we find them costly. Instead, we design a random and 

lightweight algorithm. Its basic idea is to select a seed vertex for each cluster and 

greedily enlarge each cluster to include the vertices that have high affinity scores 

with the selected vertices. The algorithm has three steps. (1) Seeds selection. 

Selecting the seed vertices is important for the partitioning quality; we try to mini­

mize the affinity among them. The initial seed set is formed by randomly selecting 

a vertex from each of the affinity graphs. If the number of affinity graphs is no less 

than M , only M  of them are randomly selected. If there are less than M  seeds 

in the set, we iterate over the remaining vertices until we find one, whose affinity 

scores with all current seeds are smaller than a threshold (initialized to 0) and 

add it to the seed set. This step stops once we get M  seeds. After iterating all 

vertices if we still need more seeds, we increase the threshold by 0.1 and start 

the next round of search. Ten rounds are needed at most as the threshold would 

grow to 1, the largest possible affinity score. In practice, we have not seen the 

need for more than 1 round. After the seeds selection, we have M  clusters, each 

containing 1 vertex. (2) Sorted lists construction. For each seed vertex Tt, we 

create a descending list of all the vertices that fall into the same affinity graph as 

Ti. (3) Cluster enlargement. This step repetitively iterates through all clusters until 

all vertices are partitioned. In each iteration, it randomly selects a vertex from the 

current cluster, and includes the vertex that, among all remaining vertices, has the 

largest affinity score with this vertex, which can be determined in constant time 

with the sorted lists produced in step 2.



In our implementation, this graph partitioning happens in parallel on CPU. 

Its time complexity, in the worst case when all vertices fall into one graph, is 

0 (N 2logN) (N  for number of job chunks). But in practice, as graphs are never 

very large, the algorithm terminates quickly shown in the next section.

4.6 Evaluations

We focus our experiments on answering the following main questions:

• How much potential does spatial scheduling enabled by SM-centric transfor­

mation have?

• How much overhead does SM-centric transformation have?

• How much benefit can it bring in practice with the simple support outlined in 

the previous section?

To that end, we implement the two use cases of STM-centric transformation 

as described in Section 4.4: One is SM partition for multi-kernel co-runs, and the 

other is affinity-based scheduling for single-kernel runs. The implementation inte­

grates the solutions described in Section 4.5. For comparison, we also implement 

the persistent threads with the best efforts to support these two use cases.

4.6.1 Methodology

Benchmarks Given that the focus of our use cases are on enhancing mem­

ory performance, we need a set of memory intensive programs for the valida­

tion. Meanwhile, for a comprehensive assessment of the applicability of our tech­

niques, the benchmark set should consist of programs of a broad range of do­

mains, and have a good coverage of both regular and irregular programs. For 

these reasons, we select nine benchmarks to form our test set. As Table 4 shows,
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Table 4: Benchmarks

Benchmark Source Description Irregular

irreg Maryland [38] partial diff. solver Y
nbf Maryland [38] force field Y
md SHOC [23] molecular dynamics Y
spmv SHOC [23] sparse matrix vector multi. Y
cfd Rodinia [17] finite volume solver Y
nn Rodinia [17] nearest neighbor N
Pi Rodinia [17] dynamic programming N
mm CUDA SDK [69] dense matrix multiplication N
reduce CUDASDK [69] reduction N

■ SMC Predicted ■ SMC O ptim a l Persistent Thread

Figure 28: Speedup of average normalized turnaround time.

these programs come from four benchmark suites, cover a broad set of domains, 

and include a similar number of regular and irregular programs. Those irregular 

benchmarks impose special challenges for GPGPU optimization, and have drawn 

a lot of attention from the community recently [14,57,67,68,93,99].

We give a brief description for these benchmarks. IRREG (a partial differential 

solver kernel) and NBF (a molecular dynamics kernel) were rewritten to CUDA 

from C benchmarks [38]. These two benchmarks were studied heavily by previous 

work [27,36,85,92]. MD and SPMV are both from the SHOC benchmark suite 

developed by Oak Ridge National Laboratory [23]. CFD from Rodinia benchmark 

suite [17] simulates fluid dynamics. MM and REDUCE taken from the CUDA SDK 

samples represent two compute-intensive applications used widely in real-world. 

We also take NN and PF from the popular Rodinia benchmark suite for a broader 

coverage.



93

Co-runs of Kernels As current GPUs cannot support the co-existence of two 

different contexts yet, following prior work [72], we combine two programs into one 

and use two separate CUDA streams to execute the kernels of the two original 

programs. Since which kernels run together depends on the practical context, we 

co-run each pair of the benchmarks for a comprehensive coverage. We use two 

metrics, System Throughput (STP) and Average Normalized Turnaround Time 

(ANTT), proposed in [29] and used in [72], STP shows overall throughput of the 

whole system, and ANTT shows programs’ responsiveness. We measure the 

execution time of kernel executions and the extra overhead introduced by the 

transformation (if any) for the calculation of STP and ANTT. Since we are only 

interested in the overlapped execution, we modify the approach proposed by Tuck 

and Tullsen [88] and immediately invoke a kernel after it finishes until both kernels 

are invoked at least 7 times. The last instance of the kernel invocation that finishes 

later than the other co-run kernel is discarded, because the execution of the last 

instance of the kernel invocation is not fully overlapped.

Versions based on Persistent Threads We compare SM-centric transforma­

tion with persistent threads using both SM partition and affinity-based scheduling. 

As aforementioned, persistent threads by itself cannot directly dictate mappings 

between jobs and SMs. But with careful designs, it could still support SM partition 

and affinity-based scheduling, although the support is very limited and requires 

an awkward implementation. Our specific implementations are as follows.

For SM partition between two co-running kernels, we generate N i(l < N x < 

M ) persistent CTAs for kernel 1, and (M - N t) persistent CTAs for kernel 2 (where 

M  is the number of SMs in the GPU). In this way, if the hardware scheduler hap­

pens to assign one CTA onto each SM, the two kernels would run on different sets 

of SMs, and the SM partition is materialized. Given that an even distribution is not 

guaranteed by hardware schedulers, in our experiments, we repeat the experi-
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ments many times and use only the results when the distribution happens to be 

even (performance under uneven distributions is much worse as some SMs are 

left idle). In order to maintain a good amount of parallelism, each CTA is set to the 

largest allowable size for the particular kernel, as prior usage of persistent threads 

often does [19,95]. Our experiments enumerate all possible partitions (i.e., all val­

ues of Ni), and the best performance in these settings is used to compare with 

the performance of SM-centric transformation results.

We employ a similar idea to let persistent threads support affinity-based schedul­

ing of single-kernel runs. The launch of a kernel creates M  (i.e., number of SMs) 

persistent CTAs. We again use the performance measured only in the runs where 

the CTAs are evenly distributed on the SMs. When creating the job queue for a 

persistent CTA, we try to put into the queue the jobs from the same affinity group 

as identified with the method in Section 4.5.2. We again make each persistent 

CTA as large as allowed such that the maximum number of jobs from the CTA 

queue could get concurrently executed by the CTA. This method, in effect, makes 

the jobs run concurrently on the same SM, just as what affinity-based scheduling 

aims to achieve— but only to a limited degree, subject to the number of jobs a CTA 

can concurrently execute.

Machine Environment We run all workloads on an NVIDIA M2075 GPU with 

CUDA runtime 4.2, compiled by NVCC with the highest optimization level. The 

host machine has an Intel 8-core Xeon X5672 CPU and 48 GB main memory and 

runs 64-bit Redhat enterprise 6.2. Without notice, each reported timing result is 

an average of 10 repeated measurements, and includes all overhead incurred by 

the transformed code.
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4.6.2 Results in Co-Runs

Figure 28 shows the speedup in terms of ANTT brought by the optimized co-runs 

respectively supported with SM-centric transformation and persistent threads. The 

baseline is the traditional and default way to concurrently execute the original ker­

nels. The speedup is defined as the ratio of the optimized ANTT to the original 

ANTT. “SMC Predicted” and “SMC Optimal” represent the speedups from the SM- 

centric transformation with, respectively, the parameters predicted by the online 

model and the best parameters found through offline exhaustive search. We ob­

serve the potential speedup because of SM-centric transformation 1.36X. Our 

prediction model successfully exploits most of the potential by providing 1.33X 

speedup on average. Three co-runs benefit from the SM-centric transformation 

substantially with a potential of more than 1.8X speedup. The results validate 

that SM-centric transformation with the prediction model better exploits the SM 

and cache resources than the default co-runs. We also observe that the improve­

ment of ANTTs varies across benchmarks. In some cases (e.g., the co-run of 

mm and reduce), the optimized co-runs have around 2% slowdown. There are 

two plausible reasons. First, the kernels already have good scalability and hence 

reducing the number of SMs allocated to them significantly degrades their perfor­

mance. Second, since those kernels efficiently use shared memory, they do not 

heavily rely on L1 cache’s performance. For example, when MM's thread blocks 

size is 256, one matrix element is reused 16 times after being loaded into shared 

memory.

Persistent threads perform much worse than SM-centric transformation. Its 

best partition leads to more than 50% ANTT degradation for 3 co-run programs. 

On average, we observe 17% slowdown. The main reason comes from the rigid 

control of parallelism in persistent threads. As the previous subsection describes, 

without the capability for a direct control of the job-to-SM mapping, the design of
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Figure 29: Improvement on system throughput.

persistent threads support is subject to some restrictions on the number of a CTAs 

and their size, which cause suboptimal performance on the kernels.

Figure 29 provides the results on system throughput. The baseline is of the 

same case in Figure 28. SM-centric transformation offers up to 71% (an average 

of 37%) improvement on STP. The predicted configurations exploit the poten­

tial well by providing an average improvement of 33%. We did not observe any 

throughput degradation for the optimized co-runs, but some co-runs (e.g., cfd and 

mm) have trivial throughput improvement due to the same reasons as explained 

for the worsened ANTTs. As known [29], ANTT and STP measure different as­

pects of a co-run execution; a better ANTT does not always mean a better STP. 

For instance, the co-run of reduce and pf has the largest ANTT speedup of 2.3X, 

but its STP improvement is below the average.

Different from the results on ANTT, persistent threads produce an average 

of 11% STP improvement. The influence of persistent threads on ANTT varies 

greatly across co-run programs, yielding results between 63% slowdown and 

64% improvement. As explained for the increased ANTT, We observe non-trivial 

throughput loss for some programs because of the suboptimal level of parallelism. 

Overall, the results showed that SM-centric transformation is a much better choice 

for SM partitioning than persistent threads.

The SM-centric results also indicate that the simple method for predicting 

configurations outlined in Section 4.5.1 is sufficient for SM-centric transforma­

tion to effectively support SM partition. To get a direct measure of the method’s
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Figure 30: Prediction accuracy

effectiveness, we report in Figure 30 its accuracy in predicting the suitable con­

figurations. The percentage on the X axis shows the accuracy requirement of 

the predicted configuration. To be more specific, P%  means that the predicted 

configuration outperforms at least N  x (1 -  P%) configurations, where N (N  =  

36 in this evaluation) is the total number of configurations. The bar height shows 

the percentage of co-runs whose predicted configuration satisfies the accuracy 

requirement. So the bars on the right should be higher than the bars on the left, 

because a larger percentage on the X axis indicates a more relaxed requirement. 

For ANTT, when the accuracy requirement is 1%, 63% of co-runs satisfy it. Note 

that 1% is a harsh requirement, as only the optimal configuration can satisfy it in 

a limited configuration space. If we relax the requirement to 2%, 83% of co-runs 

satisfy it, showing a high prediction accuracy. When the requirement is 16%, we 

notice that the predicted configuration of every co-run satisfies the requirement. 

For STP, the prediction accuracy is a bit lower, but over 90% of co-runs satisfy 

the accuracy requirement of 4%. The results echo our improvement on ANTT 

and STP and show that a simple online model suffices to yield reasonably good 

configurations.

4.6.3 Results in Single-Kernel Runs

We also evaluate persistent threads and SM-centric transformations on single­

kernel runs. We consider 4 programs (md, irreg, cfd and nbf), as they show a
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Figure 32: Normalized L1 miss ratios.

significant level of non-uniform data sharing and rely heavily on the data cache’s 

performance due to their irregular memory access pattern.

Figure 31 provides the speedup results for single-kernel runs of four bench­

marks over the original code. Without affinity-based scheduling, persistent threads 

suffer from insufficient parallelism and produce 22% performance degradation. 

Affinity-based scheduling improves its performance and reduces the average degra­

dation to 15%. The results indicate that persistent threads, unlike SM-centric 

transformation, fails to achieve a good balance between parallelism and locality: 

Keeping one active thread block on each SM enables scheduling jobs with lots of 

data sharing to one SM, but due to the limitation of the block size, does not have 

enough concurrent active threads to fully explore the computing power. On the 

contrary, SM-centric transformation’s precise control enables us to find a better 

trade-off between parallelism and locality, leading to an average of 21% speedup.

Figure 32 shows the L1 cache performance improvement obtained through 

CUDA hardware performance monitors. The reduction of the cache miss ratios



99

shows the trends largely aligning with the speedup trends. It confirms that L1 

cache performance is critical to irregular applications, and the parallelism con­

trol and affinity-based scheduling enabled by SM-centric transformation exploit 

L1 data cache more effectively than the default scheduling does. CFD is an ex­

ception, on which, the SM-centric approach performs less well than the persistent 

threads with affinity-based scheduling. A plausible reason is the effects of warp 

scheduling, which is out of the control of SM-centric scheduling but could some­

times affect the cache performance substantially.

4.6.4 Overhead from the SM-centric Transformation

SM-centric transformation adds extra code to the kernels. To quantify the over­

head, for each benchmark we run the transformed kernel (with the same num­

ber of active threads as the default runs of the original kernels have) but without 

affinity-based scheduling, whose execution time is denoted as Ttrans. The over­

head is defined as (Ttrans -  Torg)/Torg, where Torg is the execution time of the 

original kernel. Figure 33 provides the overhead results. We notice that the over­

head can be non-trivial for some benchmarks (e.g., 6.5% for pf) due to two rea­

sons. First, the transformation introduces atomic operations and extra memory 

accesses to obtain the mapping decision data. Second, the aggregation (i.e., the 

enhanced version of the transformation) introduces a loop, which does not exist in 

the original kernels. On average, the overhead from the transformation is 2.8%, 

but as the previous results show, the overhead is substantially outweighed by the 

overall benefits.

4.7 Discussion

Currently, the SM-centric optimization works only on CUDA programs. The reason 

is that other GPU programming models, such as OpenCL, do not support run-
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Figure 33: The percentage of overhead from SM-centric transformation.

time retrieval of compute unit identifier yet. We hope that this research provides 

enough evidence for the need of such a functionality. Once OpenCL provides a 

similar interface, the proposed optimization techniques can be easily extended to 

cover OpenCL programs.

OpenCL, starting from specification 1.2, introduced the concept of sub-device, 

which wraps a subset of the computing unites. While the idea behind it is also to 

enable resource partition among different applications, it is not yet supported by 

main-stream GPU vendors. Our SM-centric optimization, as an alternative ap­

proach for the partitioning, not only works for current NVIDIA GPU cards, but also 

enables programmers to control which SMs should be in the same sub-device.

The job selection component determines the job-to-SM mapping before the 

kernel is invoked. This fixed mapping could incur load-unbalance due to the non­

uniformity in SM processing capability and jobs. It is possible to detect the load- 

unbalance during the sampling phase. The framework can then invoke the original 

kernel if load-unbalance happens. Some kernels may change dramatically across 

invocations in terms of execution time and memory access intensity, rendering 

great challenges to any sampling based approach. Combination with program 

phase detection and prediction [82,83] could help address such complexities.
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4.8 Related Work

Prior software methods on circumventing the hardware restrictions for task schedul­

ing on GPU mainly concentrate on persistent threads with either static or dynamic 

(e.g., job stealing) partition of task sets [6,19,35,89,95], which has been covered 

in our previous sections.

There are some studies on changing hardware schedulers for performance, 

such as the large warp architecture by Narasiman and others [66], the two-level 

warp scheduler (and interactions with prefetching) by Jog and his colleagues [46, 

47], and the thread block scheduler by Kayiran and others [50]. The SM-centric 

scheduling is a software solution to the restrictions of hardware schedulers, or­

thogonal to these hardware approaches. There are some software scheduling 

works published before, the focus of which have been dealing with the load bal­

ance between CPUs and GPUs through task scheduling [11,60],

Recent years have seen an increasing interest in supporting concurrent ex­

ecutions of GPU kernels. Pai et al. [72] observed significant resource under­

utilization during concurrent kernel executions. They proposed elastic kernels 

that have fine-grained controls over their resource usage to balance resource us­

age among concurrent kernels. According to the authors of elastic kernels, the 

technique does not control SM partitions, and cannot be applied to kernels that 

use shared memory [72], The spatial scheduling enabled in this work is com­

plementary to elastic kernels, in the sense that it is not subject to the shared- 

memory limitation, and it improves co-run performance from a different angle, 

spatial scheduling. These two techniques can be used together. Adriaens and 

others [4] proposed hardware extensions to partition SMs to different applications 

for more efficient resource utilization, and evaluated it on a simulator. Zhong and 

He [102] proposed a runtime system, named Kernelet, which slices kernels into 

sub-kernels and schedule them for better resource control. It does not enable
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spatial scheduling of GPU. CTA aggregation itself is not new. Earlier work has 

used a similar idea to control resources a kernel uses [72], It is for the first time 

used for supporting spatial scheduling.

4.9 Summary

This chapter presents SM-centric transformation, a simple method that for the 

first time offers a systematic solution to enable program-level spatial scheduling 

on GPU. It reveals the potential of the enabled scheduling control for executions of 

both single-kernel runs and multi-kernel co-runs. It lists some main challenges for 

leveraging spatial scheduling on GPU, and develops a set of practical solutions. It 

opens up opportunities for leveraging scheduling for optimizing GPU executions.
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Limitations and Future Work

We briefly discuss some limitations and possible future work to address them.

5.1 Application Coverage

All the applications considered in this work are iterative: The kernel functions are 

invoked many times until some condition is met. As such, although the overhead 

from the data layout usually outweighs the benefit for one kernel invocation, it can 

be amortized by the many invocations, as shown by the speedup results. How­

ever, some applications (e.g.,breadth-first search) may have few iterations, de­

pending on the inputs, and hence may not benefit from the proposed approaches. 

One promising direction is to quantify the benefit and overhead from the optimiza­

tions. Given an application, we can estimate the tradeoff between the benefit and 

overhead of an optimization and decide whether or not to apply it.

There are two challenges if we pursue in this direction. First, we need to build 

a reasonably accurate performance model to estimate the overhead of data layout 

change and the application’s performance given a specific layout. Performance 

modeling, however, is shown to be a hard problem for complicated heterogeneous 

systems. Some state-of-the-art performance models yield estimation errors up 

to 50%, which are comparable to the benefit from some memory optimizations.
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Such accuracies make them hard to use in our context. Furthermore, current per­

formance models typically ignore data caches and treat non-coalesced memory 

accesses naively for simplification, thereby not suitable for irregular applications.

Second, we need to make the performance estimation fast. Current perfor­

mance models only consider simple input features, such as data size, array di­

mension and so on. For our purpose, the performance model should take into 

account the delicate memory behavior changes due to the layout differences. 

Modeling such behaviors is non-trivial and may itself take too much time to apply 

online.

5.2 Automatic Optimization

Most of our proposed optimizations are implemented in libraries. To optimize the 

programs, the programmers need to pinpoint the statements that cause irregular 

memory accesses and insert corresponding library calls. Despite our efforts to 

make the library easy to use, the process unavoidably increases the burden of 

programmers.

It is possible to automate the optimizations through two steps. The first step 

locates the points in the program that need to be optimized. Since we focus on 

indirect memory accesses, the compiler can find out all the occurrences of the pat­

tern A[P[id\}. But the appearance of such a pattern does not necessarily mean 

the need for optimization, as the values in P  may indicate regular (or slightly ir­

regular) accesses. To refine the selection, we may use offline profiling to find the 

statements that cause great irregularity.

The second step automatically transforms the target statements to activate 

layout reorganization and use the optimized layout. We see no challenges in this 

part; a simple pass during compilation can do the job.
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5.3 Energy Concerns

Some of the proposed optimizations work on a pipelined engine, which uses one 

processor to reorganize the data to help another processor. This scheme raises 

concerns on energy cost, due to the introduction of an additional processor as the 

helper. Since the goal of the dissertation is to minimize overall execution time, we 

did not measure energy consumption. But we contend that the pipelined engine 

may not necessarily increase energy consumption, because the optimized layout 

reduces the total execution time and off-chip memory accesses, thereby lowering 

the energy consumption on the execution processor.

In the future, we can change the optimization goal to the minimization of en­

ergy cost. We will study the potential by measuring the ratio of energy consump­

tion from irregular memory accesses to that of the whole application. We will 

quantify the energy consumption characteristics of different optimizations, design 

an online method to select the appropriate optimization and tune relevant param­

eters, such as the set of arrays to optimize and their corresponding optimization 

ratios.



Chapter

Conclusion

Heterogeneous systems, in which the CPU runs sequential workloads and the 

GPU runs parallel workloads, already become mainstream. While such systems 

show tremendous throughput improvement over homogeneous systems for regu­

lar applications, efficiently handling irregular applications is still an open problem. 

One serious problem is the irregular memory accesses commonly seen in many 

applications, whose pattern can only be determined during runtime. Since the 

hardware fail to coalesce the memory accesses or reuse data in caches, ineffec­

tive off-chip memory bandwidth drags down the overall system performance.

This work systematically explores matching the non-uniformity of software 

with that of hardware to tap into the full potential of heterogeneous systems. To 

address non-coalesced memory accesses on GPU, in Chapter 2, we analyzed the 

complexity of minimizing non-coalesced memory accesses without extra space 

overhead. We proposed several optimization algorithms to make a good trade­

off among time, space cost and complexity. We designed an online algorithm 

selector to adapt to inputs and hardware settings. In chapter 3, we proposed 

asynchronous data transformation to address the dilemma between transforma­

tion overhead and benefit. By decomposing the transformation into analysis and 

repositioning, we circumvent the critical data dependences and offload the heavy 

analysis component from the critical path. In Chapter 4, we provide scheduling
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support to enable complete control of the mapping between jobs and processors. 

We leveraged the software scheduling to optimize non-uniform co-run workloads 

and non-uniform data sharing within one application.

This dissertation has introduced new perspectives for memory optimization 

on many-core heterogeneous systems. It is the first of its kind to systematically 

consider space overhead for data reorganization. The proposed asynchronous 

transformation framework and the software-level scheduling support open up many 

opportunities to new optimizations.
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