4,130 research outputs found

    Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T

    Get PDF
    Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in ‘arterial’ and ‘venous’ blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between ‘arterial’ and ‘venous’ contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms

    Cortical lamina-dependent blood volume changes in human brain at 7T

    Get PDF
    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8–1.6 mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans

    Quantitative MRI of Cerebral Arterial Blood Volume

    Get PDF
    Baseline cerebral arterial blood volume (CBVa) and its change are important for potential diagnosis of vascular dysfunctions, the determination of functional reactivity, and the interpretation of BOLD fMRI. To quantitative measure baseline CBVa non-invasively, we developed arterial spin labeling methods with magnetization transfer (MT) or bipolar gradients by utilizing differential MT or diffusion properties of tissue vs. arteries. Cortical CBVa of isoflurane-anesthetized rats was 0.6 – 1.4 ml/100 g. During 15-s forepaw stimulation, CBVa change was dominant, while venous blood volume change was minimal. This indicates that the venous CBV increase may be ignored for BOLD quantification for a stimulation duration of less than 15 s. By incorporating BOLD fMRI with varied MT effects in a cat visual cortical layer model, the highest ΔCBVa was observed at layer 4, while the highest BOLD signal was detected at the surface of the cortex, indicating that CBVa change is highly specific to neural activity. The CBVa MRI techniques provide quantified maps, thus, may be valuable tools for routine determination of vessel viability and function, as well as the identification of vascular dysfunction

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease

    Get PDF
    Because regional blood flow increases in association with the increased metabolic demand generated by localised increases in neural activity, functional imaging researchers often assume that changes in blood flow are an accurate read-out of changes in underlying neural activity. An understanding of the mechanisms that link changes in neural activity to changes in blood flow is crucial for assessing the validity of this assumption, and for understanding the processes that can go wrong during disease states such as ischaemic stroke. Many studies have investigated the mechanisms of neurovascular regulation in arterioles but other evidence suggests that blood flow regulation can also occur in capillaries, because of the presence of contractile cells, pericytes, on the capillary wall. Here we review the evidence that pericytes can modulate capillary diameter in response to neuronal activity and assess the likely importance of neurovascular regulation at the capillary level for functional imaging experiments. We also discuss evidence suggesting that pericytes are particularly sensitive to damage during pathological insults such as ischaemia, Alzheimer’s disease and diabetic retinopathy, and consider the potential impact that pericyte dysfunction might have on the development of therapeutic interventions and on the interpretation of functional imaging data in these disorders

    Depth-Dependent Physiological Modulators of the BOLD Response in the Human Motor Cortex

    Get PDF
    This dissertation proposes a set of methods for improving spatial localization of cerebral metabolic changes using functional magnetic resonance imaging (fMRI). Blood oxygen level dependent (BOLD) fMRI estabilished itself as the most frequently used technique for mapping brain activity in humans. It is non-invasive and allows to obtain information about brain oxygenation changes in a few minutes. It was discovered in 1990 and, since then, it contributed enormously to the developments in neuroscientific research. Nevertheless, the BOLD contrast suffers from inherent limitations. This comes from the fact that the observed response is the result of a complex interplay between cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen consumption (CMRO2) and has a strong dependency on baseline blood volume and oxygenation. Therefore, the observed response is mislocalized from the site where the metabolic activity takes place and it is subject to high variability across experiments due to normal brain physiology. Since the peak of BOLD changes can be as much as 4 mm apart from the site of metabolic changes, the problem of spatial mislocalization is particularly constraining at submillimeter resolution. Three methods are proposed in this work in order to overcome this limitation and make data more comparable. The first method involves a modification of an estabilished model for calibration of BOLD responses (the dilution model), in order to render it applicable at higher resolutions. The second method proposes a model-free scaling of the BOLD response, based on spatial normalization by a purely vascular response pattern. The third method takes into account the hypothesis that the cortical vasculature could act as a low-pass filter for BOLD fluctuations as the blood is carried downstream, and investigates differences in frequency composition of cortical laminae. All methods are described and tested on a depth-dependent scale in the human motor cortex

    Cortical Layer-Dependent Hemodynamic Regulation Investigated by Functional Magnetic Resonance Imaging

    Get PDF
    Functional magnetic resonance imaging (fMRI) is currently one of the most widely used non-invasive neuroimaging modalities for mapping brain activation. Techniques such as blood oxygenation level dependent (BOLD) fMRI or cerebral blood volume (CBV)-weighted fMRI are based on the assumption that hemodynamic responses are tightly regulated by neural activity. However, the relationship between fMRI responses and neural activity is still unclear. To investigate this relationship, the unique properties of temporal frequency tuning of primary visual cortex neurons was used as a model since it can be used to separate the neural input and output activities of this area. During moving grating stimuli of 1, 2, 10 and 20 Hz temporal frequencies, two fMRI studies, areal and laminar studies, were conducted with different spatial resolution in a 9.4-T Varian spectrometer. In areal studies, BOLD fMRI was able to detect the difference in tuning properties between area 17 (A17), area 18 (A18) and lateral geniculate nucleus. In A17, the BOLD tuning curve seemed to reflect the local field potential (LFP) low frequency band (<12 Hz) rather than spiking activity and LFP gamma band (25-90 Hz). In laminar studies, a high spatial resolution protocol was adopted to resolve the different cortical layers in A17. In addition to BOLD fMRI, CBV-weighted fMRI was performed to eliminate the contamination from the superficial draining veins. These results showed that BOLD and CBV tuning curves do not reflect the underlying spiking activity or the LFP activity at infragranular layers (the bottom layer of three cortical layers). This implies that the hemodynamic response may not be regulated on a laminar level. Therefore, caution should be taken when interpreting BOLD responses as the sole indicator of different aspects of neural activity in areal and laminar scales

    Vascular Origins of BOLD and CBV fMRI Signals: Statistical Mapping and Histological Sections Compared

    Get PDF
    Comparison of 3T blood oxygenation level dependent (BOLD) and cerebral blood volume (CBV) activation maps to histological sections enables the spatial discrimination of functional magnetic resonance imaging (fMRI) signal changes into different vascular compartments. We use a standard gradient echo–echo planar imaging technique to measure BOLD signal changes in the somatosensory cortex in response to whisker stimulation. Corresponding changes in CBV were estimated following the infusion of a super-paramagnetic contrast agent. We imaged in a tangential imaging plane that covered the cortical surface. Images were associated with post mortem histological sections showing both the surface vasculature and cytochrome oxidase stained whisker barrel cortex. We found a significant BOLD signal change in the large draining veins which occurred in the absence of a corresponding CBV change. Results suggest that in the venous drainage system, ~3mm distant from the area of activity, there is a robust change in blood oxygen saturation with little or no volume change. CBV changes are localised over the somatosensory barrel cortex and overlying arterial supply, supporting the theory that CBV changes are greater in the arterial than in the venous vasculature. This work investigating BOLD signal and underlying hemodynamics provides more information on the vascular origins of these important neuroimaging signals
    corecore