115 research outputs found

    Magnetic resonance imaging and histology correlation in the neocortex in temporal lobe epilepsy.

    Get PDF
    OBJECTIVE: To investigate the histopathological correlates of quantitative relaxometry and diffusion tensor imaging (DTI) and to determine their efficacy in epileptogenic lesion detection for preoperative evaluation of focal epilepsy. METHODS: We correlated quantitative relaxometry and DTI with histological features of neuronal density and morphology in 55 regions of the temporal lobe neocortex, selected from 13 patients who underwent epilepsy surgery. We made use of a validated nonrigid image registration protocol to obtain accurate correspondences between in vivo magnetic resonance imaging and histology images. RESULTS: We found T1 to be a predictor of neuronal density in the neocortical gray matter (GM) using linear mixed effects models with random effects for subjects. Fractional anisotropy (FA) was a predictor of neuronal density of large-caliber neurons only (pyramidal cells, layers 3 and 5). Comparing multivariate to univariate mixed effects models with nested variables demonstrated that employing T1 and FA together provided a significantly better fit than T1 or FA alone in predicting density of large-caliber neurons. Correlations with clinical variables revealed significant positive correlations between neuronal density and age (rs  = 0.726, pfwe  = 0.021). This study is the first to relate in vivo T1 and FA values to the proportion of neurons in GM. INTERPRETATION: Our results suggest that quantitative T1 mapping and DTI may have a role in preoperative evaluation of focal epilepsy and can be extended to identify GM pathology in a variety of neurological disorders

    In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy.

    Get PDF
    OBJECTIVES: Our aim is to assess the subfield-specific histopathological correlates of hippocampal volume and intensity changes (T1, T2) as well as diff!usion MRI markers in TLE, and investigate the efficacy of quantitative MRI measures in predicting histopathology in vivo. EXPERIMENTAL DESIGN: We correlated in vivo volumetry, T2 signal, quantitative T1 mapping, as well as diffusion MRI parameters with histological features of hippocampal sclerosis in a subfield-specific manner. We made use of on an advanced co-registration pipeline that provided a seamless integration of preoperative 3 T MRI with postoperative histopathological data, on which metrics of cell loss and gliosis were quantitatively assessed in CA1, CA2/3, and CA4/DG. PRINCIPAL OBSERVATIONS: MRI volumes across all subfields were positively correlated with neuronal density and size. Higher T2 intensity related to increased GFAP fraction in CA1, while quantitative T1 and diffusion MRI parameters showed negative correlations with neuronal density in CA4 and DG. Multiple linear regression analysis revealed that in vivo multiparametric MRI can predict neuronal loss in all the analyzed subfields with up to 90% accuracy. CONCLUSION: Our results, based on an accurate co-registration pipeline and a subfield-specific analysis of MRI and histology, demonstrate the potential of MRI volumetry, diffusion, and quantitative T1 as accurate in vivo biomarkers of hippocampal pathology

    Quantitative MRI correlates of hippocampal and neocortical pathology in intractable temporal lobe epilepsy

    Get PDF
    Intractable or drug-resistant epilepsy occurs in over 30% of epilepsy patients, with many of these patients undergoing surgical excision of the affected brain region to achieve seizure control. Advances in MRI have the potential to improve surgical treatment of epilepsy through improved identification and delineation of lesions. However, validation is currently needed to investigate histopathological correlates of these new imaging techniques. The purpose of this work is to investigate histopathological correlates of quantitative relaxometry and DTI from hippocampal and neocortical specimens of intractable TLE patients. To achieve this goal I developed and evaluated a pipeline for histology to in-vivo MRI image registration, which finds dense spatial correspondence between both modalities. This protocol was divided in two steps whereby sparsely sectioned histology from temporal lobe specimens was first registered to the intermediate ex-vivo MRI which is then registered to the in-vivo MRI, completing a pipeline for histology to in-vivo MRI registration. When correlating relaxometry and DTI with neuronal density and morphology in the temporal lobe neocortex, I found T1 to be a predictor of neuronal density in the neocortical GM and demonstrated that employing multi-parametric MRI (combining T1 and FA together) provided a significantly better fit than each parameter alone in predicting density of neurons. This work was the first to relate in-vivo T1 and FA values to the proportion of neurons in GM. When investigating these quantitative multimodal parameters with histological features within the hippocampal subfields, I demonstrated that MD correlates with neuronal density and size, and can act as a marker for neuron integrity within the hippocampus. More importantly, this work was the first to highlight the potential of subfield relaxometry and diffusion parameters (mainly T2 and MD) as well as volumetry in predicting the extent of cell loss per subfield pre-operatively, with a precision so far unachievable. These results suggest that high-resolution quantitative MRI sequences could impact clinical practice for pre-operative evaluation and prediction of surgical outcomes of intractable epilepsy

    Registration of in-vivo to ex-vivo MRI of surgically resected specimens: A pipeline for histology to in-vivo registration.

    Get PDF
    BACKGROUND: Advances in MRI have the potential to improve surgical treatment of epilepsy through improved identification and delineation of lesions. However, validation is currently needed to investigate histopathological correlates of these new imaging techniques. The purpose of this work is to develop and evaluate a protocol for deformable image registration of in-vivo to ex-vivo resected brain specimen MRI. This protocol, in conjunction with our previous work on ex-vivo to histology registration, completes a registration pipeline for histology to in-vivo MRI, enabling voxel-based validation of novel and existing MRI techniques with histopathology. NEW METHOD: A combination of image-based and landmark-based 3D registration was used to register in-vivo MRI and the ex-vivo MRI from patients (N=10) undergoing epilepsy surgery. Target registration error (TRE) was used to assess accuracy and the added benefit of deformable registration. RESULTS: A mean TRE of 1.35±0.11 and 1.41±0.33mm was found for neocortical and hippocampal specimens respectively. Statistical analysis confirmed that the deformable registration significantly improved the registration accuracy for both specimens. COMPARISON WITH EXISTING METHODS: Image registration of surgically resected brain specimens is a unique application which presents numerous technical challenges and that have not been fully addressed in previous literature. Our computed TRE are comparable to previous attempts tackling similar applications, as registering in-vivo MRI to whole brain or serial histology. CONCLUSION: The presented registration pipeline finds dense and accurate spatial correspondence between in-vivo MRI and histology and allows for the spatially local and quantitative assessment of pathological correlates in MRI

    Image registration of ex-vivo MRI to sparsely sectioned histology of hippocampal and neocortical temporal lobe specimens.

    Get PDF
    Intractable or drug-resistant epilepsy occurs in up to 30% of epilepsy patients, with many of these patients undergoing surgical excision of the affected brain region to achieve seizure control. Recent magnetic resonance imaging (MRI) sequences and analysis techniques have the potential to detect abnormalities not identified with diagnostic MRI protocols. Prospective studies involving pre-operative imaging and collection of surgically-resected tissue provide a unique opportunity for verification and tuning of these image analysis techniques, since direct comparison can be made against histopathology, and can lead to better prediction of surgical outcomes and potentially less invasive procedures. To carry out MRI and histology comparison, spatial correspondence between the MR images and the histology images must be found. Towards this goal, a novel pipeline is presented here for bringing ex-vivo MRI of surgically-resected temporal lobe specimens and digital histology into spatial correspondence. The sparsely-sectioned histology images represent a challenge for 3D reconstruction which we address with a combined 3D and 2D registration algorithm that alternates between slice-based and volume-based registration with the ex-vivo MRI. We evaluated our registration method on specimens resected from patients undergoing anterior temporal lobectomy (N=7) and found our method to have a mean target registration error of 0.76±0.66 and 0.98±0.60 mm for hippocampal and neocortical specimens respectively. This work allows for the spatially-local comparison of histology with post-operative MRI and paves the way for eventual correlation with pre-operative MRI image analysis techniques

    Hippocampal subfield segmentation in temporal lobe epilepsy: Relation to outcomes.

    Get PDF
    OBJECTIVE: To investigate the clinical and surgical outcome correlates of preoperative hippocampal subfield volumes in patients with refractory temporal lobe epilepsy (TLE) using a new magnetic resonance imaging (MRI) multisequence segmentation technique. METHODS: We recruited 106 patients with TLE and hippocampal sclerosis (HS) who underwent conventional T1-weighted and T2 short TI inversion recovery MRI. An automated hippocampal segmentation algorithm was used to identify twelve subfields in each hippocampus. A total of 76 patients underwent amygdalohippocampectomy and postoperative seizure outcome assessment using the standardized ILAE classification. Semiquantitative hippocampal internal architecture (HIA) ratings were correlated with hippocampal subfield volumes. RESULTS: Patients with left TLE had smaller volumes of the contralateral presubiculum and hippocampus-amygdala transition area compared to those with right TLE. Patients with right TLE had reduced contralateral hippocampal tail volumes and improved outcomes. In all patients, there were no significant relationships between hippocampal subfield volumes and clinical variables such as duration and age at onset of epilepsy. There were no significant differences in any hippocampal subfield volumes between patients who were rendered seizure free and those with persistent postoperative seizure symptoms. Ipsilateral but not contralateral HIA ratings were significantly correlated with gross hippocampal and subfield volumes. CONCLUSIONS: Our results suggest that ipsilateral hippocampal subfield volumes are not related to the chronicity/severity of TLE. We did not find any hippocampal subfield volume or HIA rating differences in patients with optimal and unfavorable outcomes. In patients with TLE and HS, sophisticated analysis of hippocampal architecture on MRI may have limited value for prediction of postoperative outcome

    Focal cortical dysplasia: a practical guide for neurologists

    Get PDF
    Focal cortical dysplasia (FCD) is a malformation of cortical development characterised by disruption of cortical cytoarchitecture. Classification of FCDs subtypes has initially been based on correlation of the histopathology with relevant clinical, electroencephalographic and neuroimaging features. A recently proposed classification update recommends a multilayered, genotype-phenotype approach, integrating findings from histopathology, genetic analysis of resected tissue and presurgical MRI. FCDs are caused either by single somatic activating mutations in MTOR pathway genes or by double-hit inactivating mutations with a constitutional and a somatic loss-of-function mutation in repressors of the signalling pathway. Mild malformation with oligodendroglial hyperplasia in epilepsy is caused by somatic pathogenic SLC35A2 mutations. FCDs most often present with drug-resistant focal epilepsy or epileptic encephalopathy. Most patients respond to surgical treatment. The use of mechanistic target of rapamycin inhibitors may complement the surgical approach. Treatment approaches and outcomes have improved with advances in neuroimaging, neurophysiology and genetics, although predictors of treatment response have only been determined in part

    Central benzodiazepine receptors in hippocampal sclerosis and idiopathic generalised epilepsies and opiod receptors in reading epilepsy

    Get PDF
    Background: Epilepsy is the most common serious disease of the brain. In order to better understand the processes and neuronal circuits involved in the pathophysiology of the epilepsies and to provide structural / functional correlations, positron emission tomography (PET) needs to be evaluated in the light of high quality MRI. Aims: To determine the extent and amount of central benzodiazepine/GABAA receptor (cBZR) abnormalities in mesial temporal lobe epilepsy (mTLE) due to hippocampal sclerosis (HS); to quantify cBZR in idiopathic generalised epilepsy (IGE) and the effect of treatment with sodium valproate (VPA); to investigate dynamic changes of opioid receptors in reading epilepsy (RE) at the time of reading-induced seizures. Methods: 11C-flumazenil (FMZ)-PET scans of 37 controls, 25 candidates for temporal lobe resections with HS, and 10 patients with IGE before and after taking VPA, were analysed with statistical parametric mapping (SPM) and a partial-volume-effect (PVE) corrected regions-of-interest approach to quantify FMZ binding to cBZR. Paired 11C-diprenorphine (DPN)-PET scans of 6 control subjects and 5 patients with RE were analysed with SPM to detect significant localised reductions of DPN binding during reading-induced seizures implying a focal release of endogenous opioids. Results: Using SPM, reductions of cBZR were restricted to the sclerotic hippocampus in unilateral mTLE. Using PVE correction loss of cBZR in HS was shown to be over and above that due to neurone loss and hippocampal atrophy. In-vivo 1IC-FMZ-PET correlated well with ex-vivo 3H-FMZ autoradiography in HS. Subtle reductions of cBZR are seen contralaterally in unilateral mTLE in 30%. cBZR in IGE are increased in the cortex and thalamus, and FMZ binding is not affected by VPA. Endogenous opioids are released locally in the left temporo-parietal cortex at the time of reading-induced seizures. Conclusions: The identification of functional abnormalities of major inhibitory neurotransmitter systems, over and above structural abnormalities, has profound implications for the presurgical investigation of patients, in whom MRI does not reveal a relevant underlying lesion. Elucidation of the neurochemical and functional abnormalities underlying seizures assists the design of new anti-epileptic drugs and helps to identify neurochemical abnormalities underlying specific epilepsy syndromes
    • …
    corecore