598 research outputs found

    Modelling, Analysis and Design of Optimised Electronic Circuits for Visible Light Communication Systems

    Get PDF
    This thesis explores new circuit design techniques and topologies to extend the bandwidth of visible light communication (VLC) transmitters and receivers, by ameliorating the bandwidth-limiting effects of commonly used optoelectronic devices. The thesis contains detailed literature review of transmitter and receiver designs, which inspired two directions of work. The first proposes new designs of optically lossless light emitting diode (LED) bandwidth extension technique that utilises a negative capacitance circuit to offset the diode’s bandwidth-limiting capacitance. The negative capacitance circuit was studied and verified through newly developed mathematical analysis, modelling and experimental demonstration. The bandwidth advantage of the proposed technique was demonstrated through measurements in conjunction with several colour LEDs, demonstrating up to 500% bandwidth extension with no loss of optical power. The second direction of work enhances the bandwidth of VLC receivers through new designs of ultra-low input impedance transimpedance amplifiers (TIAs), designed to be insensitive to the high photodiode capacitances (Cpd) of large area detectors. Moreover, the thesis proposes a new circuit, which modifies the traditional regulated cascode (RGC) circuit to enhance its bandwidth and gain. The modified RGC amplifier efficiently treats significant RGC inherent bandwidth limitations and is shown, through mathematical analysis, modelling and experimental measurements to extend the bandwidth further by up to 200%. The bandwidth advantage of such receivers was demonstrated in measurements, using several large area photodiodes of area up to 600 mm^2, resulting in a substantial bandwidth improvement of up to 1000%, relative to a standard 50 Ω termination. An inherent limitation of large area photodiodes, associated with internal resistive elements, was identified and ameliorated, through the design of negative resistance circuits. Altogether, this research resulted in a set of design methods and practical circuits, which will hopefully contribute to wider adoption of VLC systems and may be applied in areas beyond VLC

    SIMPLIS efficiency model for a synchronous multiphase buck converter

    Get PDF
    In this master’s thesis, an efficiency model was developed for the synchronous multiphase buck converters of the TPS6594x-Q1 integrated circuit using SIMPLIS simulator. The model includes internal losses occurring in power stage transistors, power stage drivers and bondwires. Modeled external losses include printed circuit board resistance and inductance, inductor direct and alternating current characteristics as well as capacitor nonidealities. Internal loss modeling was mostly based on Cadence simulations. Power stage transistors especially were thoroughly modeled. The capacitances of the power stage transistors were extracted by integrating gate and drain currents during the transistor on and off transitions. Charging of the parasitic capacitances followed the theory in turn-off and turn-on transitions and therefore the capacitance extraction was fairly simple. Nonlinearities of the parasitic capacitors were modeled in SIMPLIS with multiple linear approximations. Transistor gate drivers were very rough approximations of the real drivers but good enough for the simulation model. Drivers were modeled to match the gate currents simulated in Cadence, which were then combined the accurate switching transistor models in order to accurately model the switching characteristics. External loss models were based on measurements and simulations. Printed circuit board losses were based on Ansys simulations in which the printed circuit board inductances and resistances were solved from the geometry of the printed circuit board. Inductors were modeled to match the datasheet impedance and resistance graphs and the model was verified against the measurements done in the laboratory. An automated measurement testbench was done for the inductor measurements using LabVIEW and the results were parsed using Matlab. A ladder topology with resistances and inductances was used in the final inductor model to model the frequency characteristics of the inductor. The effect of direct current on inductance was also investigated but the inductance reduction did not have any significant impact on efficiency. Other external components such as capacitors also cause some external losses and they were modeled based on the capacitor datasheets. The simulation model was compared against single- and two-phase efficiency measurements with multiple different input and output voltages which were chosen to match the most common use cases. Efficiency curves were drawn for each configuration using the implemented simulation model and over 300 different comparison points were compared in total. A post processing script that was launched after a simulation completes had to be written with the programming language SIMPLIS supports to draw the efficiency graph from the simulated data. Using the script allowed to run the efficiency simulation without any additional licenses other than the SIMPLIS license. The final model achieved an average error of under 1 % between all the measured and simulated efficiency curves. The most accurate results were obtained with lower switching frequency and larger inductance. Apart from accuracy, the simulator had to be practical and therefore the simulation time had to be considered. Simulation time was attempted to be kept at minimum by simplifying the schematic in as many ways as possible without losing accuracy. For example, reducing the point of the linear approximations in the power stage transistors from 79 points to 17 points saved nearly 50 seconds in single-phase simulations without significant changes in simulation accuracy

    Broadband Continuous-time MASH Sigma-Delta ADCs

    Get PDF

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Advanced High Efficiency Architectures for Next Generation Wireless Communications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Custom Integrated Circuit Design for Portable Ultrasound Scanners

    Get PDF

    Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model

    Get PDF
    A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial position of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations
    • …
    corecore