40 research outputs found

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model

    Cooperative Relaying In Power Line Environment: A Survey and Tutorial

    Get PDF
    Exchange of information is essential in any society and the demand for faster, cheaper, and secure communications is increasing every day. With other hi-tech initiatives like IPv6 and Internet-of-Things (IOT) already in the horizon, demand for broadband is set to escalate beyond its current level. Inherently laden in the challenges posed by this technology are fresh opportunities in terms of penetration of data services into rural communities and development of innovative strategies for more efficient use of the grid. Though still in its developmental phase/stage, Power Line Communication (PLC) has grown beyond theoretical fantasy to become a reality. The proofs are the readily available PLC systems that can be purchased off the shelfto achieve in-house networking and the much talked about, smart metering technology; generally regarded as the “new bride” in utilities industry. One of the biggest gains of PLC is its use of existing electrical cables, thereby eliminating cost of installation and maintenance of data cables. However, given that the power infrastructure was traditionally built to deliver electricity, data signals do suffer various forms of distortions and impairments as they transit it. This paper presents a tutorial on the deployed wireless system technique which is to be adapted to PLC scenario for the purpose of managing the available source energy for achieving reliable communication system. One of these techniques is the cooperative diversity. Its application and deployment in power line environment is explored. The improvement achieved through cooperative diversity in some PLC systems were presented along with the associated limitations. Finally, future areas of research which will further improve the reliability of PLC systems and reduce its power consumption during transmission is shown

    Alliances with optimal relay selection

    Get PDF
    Paper presented at the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI.Alliances is a recently proposed cooperative random access protocol for wireless networks. In this paper we modify the original model to include user location information. We also derive pair-wise error probability (PEP) under Rayleigh flat fading channel and a power-law attenuation environment. Based on the PEP analysis we propose an optimal relay selection scheme, which achieves significant throughput gains as compared to the random relay selection scheme in the original alliances

    Mean Mutual Information Based Adaptive Modulation and Coding Mechanism for Cooperative Relaying in Wireless Systems

    Get PDF
    Abstract. We propose a link adaptation algorithm for cooperative transmissions in an OFDMAbased wireless system. The link adaptation method selects the transmission type (cooperative or noncooperative), the modulation orders and amount and type of redundancy required to ensure a target block error rate at each phase of the cooperative transmission. The above parameter-values are chosen so as to minimize the number of occupied time-frequency radio resources required to transmit the Kbit log data block. The algorithm employs a BLER performance prediction method based on mutual information. The proposed link adaptation algorithm has linear complexity, but still provides a very good performance, as shown by simulation results

    Organization and Control of Communications Satellites

    Get PDF

    Communication coopérative, codage distribué, réseaux sans fil de relais

    Get PDF
    With the rapid growth of wireless technologies, devices and mobile applications, the quest of high throughput and omnipresent connectivity in wireless networks increases rapidly as well. It is well known that cooperation increases significantly the spectral efficiency (coding gain) and the reliability (diversity gain) of the transmission between the nodes. The concept of cooperation in wireless relays network is still one of the most active research topics in wireless communication, scientists are still searching for the optimal cooperation strategies that make the possible gains at the maximum. Cooperation results when nodes in a network share their power and/or bandwidth resources to mutually enhance their transmissions and receptions. In wireless relay networks, the relays are special nodes that are used to improve the quality of communication between the source nodes and the destination nodes. In particular, the use of relays guarantees more efficient and reliable networks. In this work, we focus on a special wireless relay network where a set of sources (mobiles) want to communicate their messages to a common destination (base station) with the help of a set of relaysAt the beginning of this work, we focused on the cooperative scheme where the relay, after a fixed portion of time, tries to understand (decode) the source’s messages and forwards helpful signals for the correctly decoded ones. One of the limitations of the previous cooperative scheme is the fixe listening time of the relays, which cannot be adapted to the quality of the instantaneous sources-relays links. To solve this problem we propose a more advanced cooperative scheme where the listening time of each relay can be dynamic and not fixed in advanced. So the relay that has strong links with the sources can start cooperating earlier than the other relays with weak links. Currently, we are investigating other directions of possible improvements, for example, how can we use feedback signals to improve the efficiency of the network.Avec la croissance rapide des appareils et des applications mobiles, les besoins en débit et en connectivité dans les réseaux sans fil augmentent rapidement. Il est prouvé que les communications coopératives peuvent augmenter significativement l’efficacité spectrale et la fiabilité des transmissions entre les nœuds extrémaux. Le concept de coopération dans un réseau sans fil compte parmi les sujets de recherche les plus actifs en télécommunications, le but étant d'identifier les stratégies de coopération qui maximiseraient les gains en efficacité spectrale et en puissance d'émission. Pour coopérer, les nœuds du réseau partagent leurs ressources (énergie, bande de fréquence, etc. ...) pour améliorer mutuellement leurs transmissions et leurs réceptions. Dans les réseaux sans fil avec relais, les relais sont des nœuds dédiés à améliorer la qualité de la communication entre les nœuds sources et destination.Dans la première partie de la thèse, nous nous concentrons sur un réseau sans fil avec relais spécifique où l'ensemble de sources (mobiles) veulent communiquer leurs messages à une destination commune (station de base) avec l'aide d'un ensemble de relais (contexte cellulaire, sens montant). Nous étudions, sur les plans théorique et pratique, un schéma coopératif dans lequel les relais, après une durée d'écoute fixée a priori, essayent de décoder les messages des sources et commencent à transmettre des signaux utiles pour ceux qui sont décodés correctement. Ces signaux utiles sont le résultat d'un codage canal-réseau conjoint.Une des limitations du système coopératif précédent est précisément que le temps d'écoute des relais est figé et ne peut pas être adapté à la qualité fluctuante (aléatoire) des liens instantanés sources-relais. Pour pallier cette difficulté, nous proposons et analysons, dans une seconde partie de la thèse, un schéma de coopération plus avancé où le temps d'écoute de chaque relais peut être dynamique. Dans ces conditions, un relais bénéficiant d'une meilleure qualité de réception des sources peut commencer à coopérer plus tôt que d'autres relais ayant une qualité de réception moindre.Enfin, dans la troisième et dernière partie de la thèse, nous considérons la présence d'une information de retour limitée (limited feedback) entre la destination et les sources et les relais, et tentons de caractériser l'efficacité spectrale d'un tel système

    Conceção e desempenho de retransmissões sem fios cooperativas

    Get PDF
    Doutoramento em Engenharia Eletrotécnica/TelecomunicaçõesIn recent years, a new paradigm for communication called cooperative communications has been proposed for which initial information theoretic studies have shown the potential for improvements in capacity over traditional multi-hop wireless networks. Extensive research has been done to mitigate the impact of fading in wireless networks, being mostly focused on Multiple-Input Multiple-Output (MIMO) systems. Recently, cooperative relaying techniques have been investigated to increase the performance of wireless systems by using diversity created by different single antenna devices, aiming to reach the same level of performance of MIMO systems with low cost devices. Cooperative communication is a promising method to achieve high spectrum efficiency and improve transmission capacity for wireless networks. Cooperative communications is the general idea of pooling the resources of distributed nodes to improve the overall performance of a wireless network. In cooperative networks the nodes cooperate to help each other. A cooperative node offering help is acting like a middle man or proxy and can convey messages from source to destination. Cooperative communication involves exploiting the broadcast nature of the wireless medium to form virtual antenna arrays out of independent singleantenna network nodes for transmission. This research aims at contributing to the field of cooperative wireless networks. The focus of this research is on the relay-based Medium Access Control (MAC) protocol. Specifically, I provide a framework for cooperative relaying called RelaySpot which comprises on opportunistic relay selection, cooperative relay scheduling and relay switching. RelaySpot-based solutions are expected to minimize signaling exchange, remove estimation of channel conditions, and improve the utilization of spatial diversity, minimizing outage and increasing reliability.Nos últimos anos foi proposto um novo paradigma de comunicação, chamado de comunicação cooperativa, para o qual estudos iniciais de teoria da informação demonstraram ter potencial para melhorias na capacidade em redes sem fios tradicionais multi-hop. Uma extensa pesquisa tem sido realizada para mitigar o impacto da atenuação em redes sem fios, tendo-se debruçado principalmente em sistemas Multiple-Input Multiple-Output (MIMO). Recentemente têm sido investigadas técnicas de retransmissão cooperativas para aumentar o desempenho de sistemas sem fios, usando a diversidade criada por diferentes antenas individuais com o objetivo de atingir o mesmo nível de desempenho dos sistemas MIMO com dispositivos de baixo custo. A comunicação cooperativa é um método promissor para atingir uma elevada eficiência na ocupação espectral e melhorar a capacidade de transmissão em redes sem fios. A comunicação cooperativa tem por ideia base a junção de recursos de nós distribuídos para melhorar o desempenho global de uma rede sem fios. Em redes cooperativas os nós cooperam para ajudarem-se mutuamente. Um nó cooperativo que ofereça ajuda estará agindo como um intermediário ou mediador, podendo transmitir mensagens da origem para o destino. A comunicação cooperativa explora a natureza da transmissão em difusão das comunicações sem fios para formar antenas múltiplas virtuais com vários nós de rede independentes e com antenas únicas. Esta investigação visou contribuir para a área científica das redes sem fios cooperativas. O foco da pesquisa foi nos protocolos de controlo de acesso ao meio (MAC) com retransmissão cooperativa. Especificamente, proponho uma arquitetura para enquadrar a retransmissão cooperativa, chamada RelaySpot (ponto de retransmissão), que explora a seleção oportunista de retransmissores, o escalonamento de retransmissores cooperativos e a comutação entre retransmissores. As comunicações baseadas na RelaySpot deverão ter uma troca de sinalização reduzida, não usam estimativas das condições do canal e melhoram o aproveitamento da diversidade espacial, minimizando a interrupção e aumentando a fiabilidade

    Toteutus datasynkronisaatiosta haasteellisen verkon ylitse

    Get PDF
    This thesis is related to the trend of the industrial internet of things. There exists a fair number of product and service examples where a manufacturer has a need for usage data harvesting. The gathered usage data can be used, e.g., in product development. In this thesis the product is mining equipment and its maintenance. Sending the data straight from the mining equipment to the manufacturer is problematic, since mines often lack Internet connection. In some cases mines have local area networks, but in other cases those are not available. The only method of gathering the data can be transportating via USB flash drives or similar. The way the data is moved with the flash drive from the mining equipment to a location with Internet connection is called aided mine network. This location can be, e.g., an office building near the mining area. The core problem of the thesis is the gathering, moving, and synchronization of the usage data using the aided mine network. In this thesis, a plan to implement the gathering of the data is developed. The solution is called DATAMiNe, i.e., Data Aggregation Through Aided Mine Network. The network consists of three parts. The parts are a Manager, an Edge Relay, and a Data Aggregator. DATAMiNe's architecture is designed so that it supports an easy replacement of the aided mine network. Replacement can be a local area network, or an integrated Internet connection in the mining equipment. A communication protocol between the Manager and the Edge Relay is designed so that it supports the special needs of the aided mine network. The development of DATAMiNe starts with an initial plan, which bases on the mining equipment manufacturer's vision, and use cases about unified data gathering into a single Data Aggregator. DATAMiNe is developed by ordinary software design methods, by programming a proof of concept test software, and finally by verifying a protocol with the Spin tools. With Spin, it is possible to formally check the interaction between connected state automata. All development steps play a part towards the next implementation phase. That is, the production implementation. The verification model forces attention to the details that otherwise would be ignored in the design phase. The test program implementation helps to choose the cost effective ways in the design

    Capacity Results for Wireless Cooperative Communications with Relay Conferencing

    Get PDF
    In this dissertation we consider cooperative communication systems with relay conferencing, where the relays own the capabilities to talk to their counterparts via either wired or wireless out-of-band links. In particular, we focus on the design of conferencing protocols incorporating the half-duplex relaying operations, and study the corresponding capacity upper and lower bounds for some typical channels and networks models, including the diamond relay channels (one source-destination pairs and two relays), large relay networks (one source-destination pairs and N relays), and interference relay channels (two source-destination pairs and two relays). First, for the diamond relay channels, we consider two different relaying schemes, i.e., simultaneous relaying (for which the two relays transmit and receive in the same time slot) and alternative relaying (for which the two relays exchange their transmit and receive modes alternatively over time), for which we obtain the respective achievable rates by using the decode-and-forward (DF), compress-and-forward (CF), and amplify-and-forward (AF) relaying schemes with DF and AF adopted the conferencing schemes. Moreover, we prove some capacity results under some special conditions. Second, we consider the large relay networks, and propose a "p-portion" conferencing scheme, where each relay can talk to the other "p-portion" of the relays. We obtain the DF and AF achievable rates by using the AF conferencing scheme. It is proved that relay conferencing increases the throughput scaling order of the DF relaying scheme from O(log(log(N ))) for the case without conferencing to O(log(N )); for the AF relaying scheme, it achieves the capacity upper bound under some conditions. Finally, we consider the two-hop interference relay channels, and obtain the AF achievable rates by adopting the AF conferencing scheme and two different decoding schemes at the destination, i.e., single-user decoding and joint decoding. For the derived joint source power allocation and relay combining problem, we develop some efficient iterative algorithms to compute the AF achievable rate regions. Moreover, we compare the achievable degree-of-freedom (DoF) performance of these two decoding schemes, and show that single-user decoding with interference cancellation at the relays is optimal
    corecore