
Deng et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:59
http://jwcn.eurasipjournals.com/content/2014/1/59

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref
RESEARCH Open Access
The capacity of a class of state-dependent relay
channel with orthogonal components and side
information at the source and the relay
Zhixiang Deng1,4, Baoyun Wang1,2,3* and Fei Lang1
Abstract

In this paper, a class of state-dependent relay channel with orthogonal channels from the source to the relay and
from the source and the relay to the destination is studied. The two orthogonal channels are corrupted by two
independent channel states SR and SD, respectively, which are known to both the source and the relay. The lower
bounds on the capacity are established for the channel either with non-causal channel state information or with
causal channel state information. Further, we show that the lower bound with non-causal channel state information
is tight if the receiver output Y is a deterministic function of the relay input Xr, the channel state SD, and one of the
source inputs XD, i.e., Y = f(XD, Xr, SD), and the relay output Yr is restricted to be controlled by only the source input
XR and the channel state SR, i.e., the channel from the source to the relay is governed by the conditional probability
distribution PY r XR;SRj . The capacity for this class of semi-deterministic orthogonal relay channel is characterized
exactly. The results are then extended to the Gaussian cases, modeling the channel states as additive Gaussian
interferences. The capacity is characterized for the channel when the channel state information is known non-
causally. However, when the channel state information is known causally, the capacity cannot be characterized in
general. In this case, the lower bound on the capacity is established, and the capacity is characterized when the
power of the relay is sufficiently large. Some numerical examples of the causal state information case are provided
to illustrate the impact of the channel state and the role of the relay in information transmission and in cleaning
the channel state.

Keywords: State-dependent relay channel with orthogonal components; Non-causal channel state information;
Causal channel state information; Dirty paper coding
1 Introduction
We consider a state-dependent relay channel with or-
thogonal components as shown in Figure 1. The channel
from the source to the relay and the channel from the
source and the relay to the destination are assumed or-
thogonal. The source wants to send a message W to the
destination with the help of the relay in n channel uses.
Through a given memoryless probability law PY rjXR;Xr;SR

PY XD;Xr;SDj , the channel outputs Yn
r for the relay is con-

trolled by the source inputs Xn
R, the relay inputs Xn

r , and
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the channel state SnR, while the channel outputs Y
n for the

destination is controlled by the source input Xn
D, the relay

inputs Xn
r , and the channel state SnD. The state sequences

SnR ¼ SR;1; SR;2;…; SR;n
� �

and SnD ¼ SD;1; SD;2;…; SD;n
� �

are independent and identically distributed (i.i.d.) with
SR;i eQSR sR;i

� �
and SD;i eQSD sD;i

� �
, respectively. We as-

sume SR and SD are independent. The channel state in-
formation about SR and SD is known to the source and
the relay causally (that is, only SiR and SiD are known be-
fore transmission i takes place) or non-causally (that is,
entire SnR and SnD are known before communication com-
mences). The destination estimates the message sent by
the source from its received channel output Yn. In this
paper, we study the capacity of this model.
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Figure 1 Orthogonal relay channel with state information available at both the source and the relay.
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1.1 Background
In many communication models, the communicating
parties typically have some knowledge on the communi-
cating channel or attempt to learn about the channel.
State-dependent channels have brought wide attention
in recent years [1]. Shannon first considered a single-
user channel, wherein the channel state information was
causally known to the transmitter [2]; the capacity of
this channel was characterized. Gel'fand and Pinsker [3]
derived a method to determine the capacity of a channel
when the channel state information was non-causally
known to the transmitter; this method was later called
the Gel'fand-Pinsker (GP) coding scheme. In [4], Costa
studied a Gaussian channel with additive white Gaussian
noise (AWGN) and additive Gaussian interference known
non-causally to the transmitter; it was demonstrated that
with dirty paper coding (DPC), capacity can be achieved
as if no interference existed in the channel.
Extensions to multiple user channels were performed

by Gel'fand and Pinsker in [5], where it was shown that
interference cancellation was possible in the Gaussian
broadcast channel (BC) and Gaussian multiple-access
channel (MAC). In multiple-user state-dependent chan-
nels, the channel state information may be known to all
the users or only some of them. In [6], Sigurjonsson and
Kim characterized the capacity of a degraded broadcast
channel and the capacity of a physically degraded relay
channel where the channel state information was caus-
ally known to the transmitters. Inner bounds for the
two-user BC with non-causal side information at the
transmitter were derived by extending Marto's achiev-
able scheme to the state-dependent channels in [7]. In
[8], Steinberg derived the inner and outer bounds for a
degraded BC with non-causal side information and char-
acterized the capacity region when the side information
was provided to the transmitter in a causal manner. In
[9], information theoretic performance limits for three
classes of two-user state-dependent discrete memoryless
BCs with non-causal side information at the encoder
were derived.
The state-dependent two-user MAC with state infor-
mation non-causally known to one of the encoders was
considered in [10] and [11]. For the MAC with asym-
metric channel state information at the transmitters and
full channel state information at the decoder, a single-
letter capacity region was characterized when the chan-
nel state available at one of the encoders was a subset of
the channel state available at the other encoder [12].
However, for the general case, only the inner and outer
bonds were derived. It is not easy to characterize the ex-
plicit capacity region for general state-dependent MACs
even when the channel state information is known to all
transmitters. Capacity regions are only characterized in
some special cases, e.g., Gaussian MAC with additive
interference known to both encoders [13]. In some cases
where the cooperation between the transmitters is
allowed, capacity regions are also characterized, e.g., in
[14], explicit capacity region was characterized for the
MAC with one informed encoder which transmitted a
common message and a private message, while the unin-
formed encoder only transmitted a common message; in
[15], the capacity region was derived for a two-user dirty
paper Gaussian MAC with conferencing encoders.
The relay channels capture both the MAC and BC

characteristics. The state-dependent relay channels were
studied in [16-21]. Zaidi et al. [16] studied the relay
channel with non-causal channel state information
known to only the relay. The lower and upper bounds
were derived by a coding scheme at the relay that used a
combination of codeword splitting, Gel'f and-Pinsker
binning, and decode-and-forward (DF) relaying. When
the channel state information was known only at the
source node, the lower and upper bounds were obtained
in [17-20]. In [17], the coding scheme for the lower
bound used techniques of rate splitting at the source,
partial decode-and-forward (PDF) relaying, and a GP-
like binning scheme. In order to derive the lower bound
of the capacity, [18] proposed two achievable schemes:
(i) state description by which the source described the
channel state to the relay and the destination and (ii)
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analog input description by which the source firstly
computed the appropriate input that the relay would
send had the relay known the channel state and then
transmitted this appropriate input to the relay. With the
same achievable schemes proposed in [18], the authors
[19] obtained two corresponding lower bounds for the
state-dependent relay channel with orthogonal compo-
nents and channel state information known non-causally
to the source. A similar orthogonal relay channel that
was corrupted by an interference which was known non-
causally to the source was considered in [20], in which
several transmission strategies were proposed, assuming
the interference had structure. Akhbari et al. [21] con-
sidered a state-dependent relay channel in three different
cases: only the relay or only the source or both the
source and the relay knew the channel state information
non-causally. Lower bounds of the capacity were estab-
lished based on using GP coding and compress-and-
forward (CF) relaying for the three cases.

1.2 Motivation
State-dependent channels with state information avail-
able at the encoders can be used to model many sys-
tems, such as information embedding [22-24] which
enables encoding a message into a host signal, computer
memories with defective cells [25], communication sys-
tems with cognitive radios, etc. For the above examples,
we are more interested in the communication systems
with cognitive radios. In order to improve the frequency
spectrum efficiency in wireless systems, some secondary
users which are capable of acquiring some knowledge
about the primary communication are introduced into
an existing primary communication system [26]. Obtain-
ing the knowledge of the primary communication, the
secondary users can adapt their coding schemes to miti-
gate the interference caused by the primary communica-
tion. In such models, the channel state can be viewed as
the signals of the primary communication and the in-
formed encoders can be viewed as cognitive users [11].
For the state-dependent relay channel with orthogonal

components considered in this paper, the channel states
SR and SD are viewed as the signals of corresponding pri-
mary communication; the source and the relay are
viewed as the secondary users which are capable of ac-
quiring the channel state information. Thus, the model
studied in this paper can be viewed as a secondary relay
communication with cognitive source and cognitive
relay. We are interested in studying the capacity of this
model.
However, it is tedious to characterize the explicit cap-

acity of the relay channels even if the channel is state-
independent. The capacity for the state-independent
relay channel is only characterized in some special chan-
nels, e.g., physically degraded/reversely degraded relay
channel [27], a class of deterministic relay channels [28]
and a class of relay channels with orthogonal compo-
nents [29]. To the best of our knowledge, explicit cap-
acity results for the state-dependent relay channels with
channel state information known to a part of the trans-
mitters or all the transmitters were derived mainly in
two cases: (i) physically degraded relay channels with
state information causally known to both the source and
the relay and (ii) Gaussian physically degraded relay
channels with the channel state information non-caus-
ally known to the source and the relay. However, when
the relay channel is corrupted by the channel state, ex-
plicit capacity has not been characterized yet, even if the
channel state has structure and the structure is known
to the source. In this paper, we try to find some capacity
results of the state-dependent relay channel with orthog-
onal components.

1.3 Main contributions and organization of the paper
We investigate a state-dependent relay channel with or-
thogonal components, where the source communicates
with the relay through a channel (say channel 1) orthog-
onal to another channel (say channel 2) through which
the source and the relay communicate with the destin-
ation. We assume that channel 1 and channel 2 are af-
fected by two independent channel states SR and SD,
respectively. The channel state information about SR and
SD is known to both the source and the relay non-
causally or causally. In this setup, the main results of this
paper are summarized as follows:

(1) A lower bound on the capacity of the channel is
established when the channel state information is
known to the source and the relay non-causally. The
achievability is based on superposition coding at the
source, PDF relaying at the relay, and cooperative
GP coding at the source and the relay.

(2) When the channel state information is known to
the source and the relay causally, an achievable rate
of this channel is derived in a similar way as in the
non-causal channel state information case, except
that the auxiliary random variables U and Ur are
independent of the channel state SR and SD.

(3) We show that the exact capacity for the channel
with non-causal channel state information at the
source and the relay can be characterized if the
receiver output Y is a deterministic function of
the relay input Xr, the channel state SD, and one
of the source inputs XD, i.e., Y = f(XD, Xr, S), and
the relay output Yr is restricted to be controlled
by only the source input XR and the channel state
SR, i.e., the channel from the source to the relay
is governed by the conditional probability
distribution PY r XR;SRj .
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(4) Explicit capacity is also characterized for the
Gaussian orthogonal relay channel with additive
Gaussian interferences known to the source and the
relay non-causally.

(5) For the Gaussian orthogonal relay channel with
additive interferences known to the source and the
relay causally, the capacity is derived when the
power of the relay is sufficiently large.

The rest of the paper is organized as follows. In
Section 2, we present the system model and some defini-
tions as well as notations that will be used throughout
the paper. Section 3 is devoted to establishing single-
letter expressions for the lower bounds on the capacity
of the discrete memoryless state-dependent orthogonal
relay channel with channel state information known to
the source and the relay either non-causally or causally.
In Section 4, we show that when the channel state infor-
mation is known non-causally, Y = f(XD, Xr, SD) and the
channel from the source to the relay is governed by the
conditional probability distribution PY r XR;SRj , the lower
bound derived in Section 3 is tight; thus, the capacity is
characterized exactly. In Section 5, the results are ex-
tended to the Gaussian cases. In Section 6, some numer-
ical results are provided to illustrate the impact of the
additive interferences and the role of the relay in infor-
mation transmission and in cleaning the interference. In
Section 7, we conclude this paper.
2 Notations and problem setup
Throughout this paper, random variables will be denoted
by capital letters, while deterministic realizations thereof
will be denoted by lower case letters. Vectors will be de-
noted by the boldface letters. The shorthand notation xi

j

is used to abbreviate (xi, xi + 1, …, xj), x
i is used to abbre-

viate (x1, x2, …, xi), and xi is used to denote the ith elem-
ent of xn, where 1 ≤ i ≤ j ≤ n. The probability law of a
random variable X will be denoted by PX, and the condi-
tional probability distribution of Y given X will be de-
noted by PY|X. The alphabet of a scalar random variable
X will be designated by the corresponding calligraphic
letter X . The cardinality of a set J will be denoted by
Jj j. T n

ε Xð Þ denotes a set of strongly ε-typical sequences
xn ∈ Xn , while An

ε Xð Þ denotes a set of weakly ɛ-typical
sequences xn∈Xn , where ε > 0. E(•) denotes expectation; I
(•;•) denotes the mutual information between two random
variables. N 0; σ2ð Þ denotes a Gaussian distribution with
zero mean and variance σ2.
As shown in Figure 1, we consider the state-dependent

relay channel with orthogonal components denoted by
PY ;Y r XR;XD;Xr;SD;SRj , where Y ∈Y and Yr ∈Yr are the chan-
nel outputs from the destination and the relay, respect-
ively. XR ∈XR and XD ∈XD are the orthogonal channel
inputs from the source, while Xr ∈X r is the channel input
from the relay. SR ∈SR and SD ∈SD denote the random
channel states that corrupt channel 1 and channel 2, re-
spectively. The channel states SR,i and SD,i at time instant i
are independently drawn from the distribution QSR and
QSD, respectively. The channel state information SR and SD
is known to both the source and the relay non-causally or
causally.
The message W is uniformly distributed over the set

W ¼ 1; 2;…;Mf g. The source transmits a message W to
the destination with the help of a relay in n channel uses.
Let Xn

R ¼ XR;1;…;XR;n
� �

, Xn
D ¼ XD;1;…;XD;n

� �
, and Xn

r ¼
Xr;1;…;Xr;n
� �

be the channel inputs of the source and the
relay, respectively. The relay channel is said to be memory-
less and to have orthogonal components if

Pðynr; ynjxnR; xnD; xnr ; snD; snRÞ

¼
Yn
i¼1

Pðyr;ij xr;i; xR;i; sR;iÞPðyij xr;i; xD;i; sD;iÞ

ð1Þ

A (M, n) code for the state-dependent relay channel
with channel state information non-causally known to
the source and the relay consists of an encoding func-
tion at the source

φn : 1; 2;…;Mf g � Sn
D � Sn

R →Xn
D � Xn

R ð2Þ

a sequence of encoding functions at the relay

φr;i : Yi−1
r � Sn

D � Sn
R →X r ð3Þ

for i = 1, 2, …, n, and a decoding function at the destination

ϕn : Yn → 1; 2;…;Mf g:

The information rate R is defined as
R ¼ 1

n log2M bits per transmission
An (εn, n, R) code for the state-dependent relay chan-

nel with orthogonal components and non-causal state
information is a code having average probability of error
smaller than εn, i.e.,

Pr
�
W≠ϕn ynð Þ

�
≤εn

The rate R is said to be achievable if there exists a se-
quence of (εn, n, R) codes with limn → ∞εn = 0. The cap-
acity of the channel is defined as the supremum of the
set of achievable rates.
The definition of an (εn, n, R) code for the state-

dependent relay channel with orthogonal components
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and causal channel state information at the source and
the relay is similar to that of the state-dependent relay
channel with non-causal state information, except that
the encoder consists of a sequence of maps {φi}i=1

n , and
φr;i

� �n
i¼1 , where i means the time index. Thus, the en-

coder mappings in (2) to (3) are replaced by

φi : 1; 2;…;Mf g � Si
D � Si

R →XD � XR ð4Þ

φr;i : Yi−1
r � Si

D � Si
R →X r; ð5Þ

respectively, where, i = 1, 2, …, n. The definitions of
achievable rate and capacity remain the same as in the
non-causal state information case.

3 Discrete memoryless case
In this section, it is assumed that the alphabets XD, XR,
X r , Yr , Y , SD, and SR are finite. Lower bounds on the
capacity of the channel with non-causal channel state in-
formation or causal channel state information are estab-
lished, respectively. In the proofs of the lower bounds in
the discrete memoryless case, strong typicality is used.

3.1 Non-causal channel state information
The following theorem provides a lower bound on the
capacity of the state-dependent orthogonal relay channel
with channel state information non-causally known to
the source and the relay.
Theorem 1 For the orthogonal relay channel with

channel state information non-causally known to both
the source and the relay, the following rate is achievable

R≤max minfIðXR;Y rjU r;Xr; SRÞ þ IðU ;Y jU rÞ

−I U ; SD U rÞ; I U ;U r;Yð Þ−I U ;U r; SDð Þg;jð
ð6Þ

where the maximization is over all measures on SD�
SR � X r � Ur � XR;�XD � Yr � Y of the form

PSR;SD;Xr;Ur;U ;XR;XD;Y r;Y ¼ QSRQSDPUrjSDPXrjU r;SR;SD

�PXRjUr;SRPU;XDjUr;SD

�PY rjXR;Xr;SRPY jXD;Xr;SD

ð7Þ

U r ∈Ur and U ∈U are auxiliary random variables with

Urj j≤ SDj j SRj j XDj j X rj j þ 1 ð8Þ

Uj j≤ SDj j SRj j X rj j XDj j SDj j SRj j X rj j XDj j þ 1ð Þ þ 1 ð9Þ
Remark 1 Since the source and the relay know the
channel state information non-causally, with PDF relay-
ing, they can transmit the messages to the destination co-
operatively with GP coding, namely, cooperative GP
coding. The source communicates with the relay treating
snR as a time-sharing sequence for the same reason that
the channel state information is known to both the source
and the relay non-causally.

3.1.1 Outline of the proof of Theorem 1
We now give a description of the coding scheme to derive
the lower bound in Theorem 1. Detailed error analysis of
Theorem 1 is given in Appendix 1. The achievable scheme
is based on the combination of superposition coding at
the source, PDF relaying at the relay, and cooperative GP
coding at the source and the relay.
The message W is divided into two parts WD ∈ 1; 2nRD

� 	
and WD ∈ 1; 2nRD

� 	
. Consider B + 1 blocks, each of n sym-

bols. Let snD kð Þ and snR kð Þ be the state sequences in block
k, k = 1, 2, …, B + 1. A sequence of B messages w(k) ∈ [1,
2nR], with w(k) = (wD(k), wR(k)), wD kð Þ ∈ 1; 2nRD

� 	
, wR kð Þ∈

1; 2nRR
� 	

, and R = RD + RR, are sent over the channel in n
(B + 1) transmissions. During each of the first B blocks,
the source encodes wD kð Þ ∈ 1; 2nRD

� 	
and sends it over the

channel. Since both the source and the relay know the
channel state sequence snR kð Þ, the source encodes wR kð Þ ∈
1; 2nRR
� 	

by treating snR kð Þ as a time-sharing sequence [30].
The message wR(k) is expressed as a unique set
msR kð Þ: sR ∈SRf g with SRj j sub-messages. For each sR ∈SR,

every sub-message msR kð Þ in the set is associated with a
codeword xnR msR kð Þð Þ from a corresponding sub-codebook
CsR . The set of codewords xnR msR kð Þð Þ: sR ∈SR

� �
are sent

over the channel multiplexed according to the state se-
quence snR kð Þ. The relay demultiplexes the received se-
quence ynr kð Þ into sub-sequences according to the state
sequence snR kð Þ and decode each sub-message msR kð Þ .
Consequently, wR(k) is decoded at the relay. The coding
scheme is illustrated in Figure 2. With PDF relaying, the
relay re-encodes wR(k) and sends it to the destination co-
operatively with the source. In the last block B + 1, no new
message is sent and let w(B + 1) = (wD(B + 1), wR(B + 1)) =
(1, 1). The average information rate R(B/(B + 1)) of the
message over B + 1 blocks approaches R as B→∞.
3.1.2 Codebook generation
Fix a measure PSR;SD;Xr;Ur;U ;XR;XD of the form (7).

(i) Generate 2n RRþRr;sð Þ i.i.d. codewords unr ~wR; jrð Þ
� �

indexed by ~wR ¼ 1; 2;…; 2nRR , jr ¼ 1; 2;…; 2nRr;s ,
each with i.i.d. components drawn according to PU r .

(ii) For each unr ~wR; jrð Þ, generate 2n RDþRd;sð Þ i.i.d.
codewords un wD; jd ~wR; jrÞg



��
indexed by



Figure 2 Multiplexed coding and decoding at the source and the relay [30].
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wD ¼ 1; 2;…; 2nRD , jd ¼ 1; 2;…; 2nRd;s , each with i.i.d.
components drawn according to PU U rj .

(iii) For each unr ~wR; jrð Þ and for each sR ∈SR, randomly
and independently generate 2nRsR sequences
xnR msR sR; ~wR; jrÞg



��
indexed by msR ∈ 1; 2nRsR

� 	
,

each with i.i.d. components according to PXR U r;SRj .
These sequences constitute the sub-codebook
CsR sR ∈SRð Þ. There are SRj j such sub-codebooks
for each unr ~wR; jrð Þ. Set RR ¼

X
sR∈SR

RsR .

3.1.3 Encoding
We pick up the story in block k. Let w(k) = (wD(k), wR

(k)) ∈ {1, 2, …, 2nR}, where wD kð Þ ∈ 1; 2;…; 2nRD
� �

, wR kð Þ
∈ 1; 2;…; 2nRR
� �

, be the new message to be sent from
the source node at the beginning of block k. The encoding
at the beginning of block k is as follows.

(i) The relay knows wR(k − 1) (this will be justified
below) and searches the smallest jr kð Þ ∈
1; 2;…; 2nRr;s
� �

, such that unr wR k−1ð Þ; jr kð Þð Þ is
jointly typical with snD kð Þ. If no such jr(k) exists,
an error is declared and jr(k) is set to 1. By the
covering lemma [31], this error probability
tends to 0 as n approaches infinity, if Rr,s

satisfies

Rr;s ≥ I U r; SDð Þ ð10Þ

Given unr wR k−1ð Þ; jr kð Þð Þ, snR kð Þ, and snD kð Þ,

the relay sends a vector xnr kð Þ with i.i.d.
components drawn according to the marginal
PXr Ur;SD;SRj .

(ii) The source also knows wR(k − 1) and snD kð Þ,
thereby knows unr wR k−1ð Þ; jr kð Þð Þ. Then, the
source searches jd kð Þ ∈ 1; 2;…; 2nRd;s

� �
, such that

un(wD(k), jd(k)|wR(k − 1), jr(k)) is jointly typical
with snD kð Þ given unr wR k−1ð Þ; jr kð Þð Þ. If no such jd
(k) exists, an error is declared and jd(k) is set
to 1. By the covering lemma [31], this error
probability tends to 0 as n approaches infinity, if
Rd,s satisfies

Rd;s ≥ I U; SD U rÞjð ð11Þ

Given un(wD(k), jd(k)|wR(k − 1), jr(k)), un
r
wR k−1ð Þ; jr kð Þð Þ, and snD kð Þ, the source then sends a
vector xnD kð Þ with i.i.d. components drawn according
to the marginal PXD U r;U;SDj .

(iii) Meanwhile, to send a message wR(k) ∈ [1, 2nR],
express it as a unique set of messages
msR kð Þ : sR∈SRf g. The source, knowing the

codeword unr wR k−1ð Þ; jr kð Þð Þ, considers the set of
codewords xnR msR kð Þ sR;wR k−1ð Þ; jr kð ÞÞ : sR∈SRg



��
.

Store each codeword in a first-in-first-out (FIFO)
buffer of length n. A multiplexer is used to choose
a symbol at each transmission time i ∈
[1, n] from one of the FIFO buffers according to
the state sR,i(k). Then, the chosen symbol is
transmitted.

3.1.4 Decoding

At the end of block k, the relay and the destination ob-
serve ynr kð Þ and yn(k), respectively.

(i) Having successfully decoded wR(k − 1) in block k − 1
and knowing unr wR k−1ð Þ; jr kð Þð Þ, xnr kð Þ and snR kð Þ,
the relay node estimates ŵR kð Þ from ynr kð Þ.
According to the state sequence snR kð Þ, the relay
demultiplexes ynr kð Þ, unr wR k−1ð Þ; jr kð Þð Þ and xnr kð Þ
into subsequences fynsR kð Þ

r;sR kð Þ; sR∈SRg, fu
nsR kð Þ
r;sR

wR k−1ð Þ; jr kð Þð Þ; sR∈ SRg and fxnsR kð Þ
r;sR kð Þ; sR∈ SRg,

respectively, where
X

sR∈ SR
nsR kð Þ ¼ n. Assuming snR

kð Þ∈T n
ε SRð Þ, and thus nsR kð Þ≥n 1−εð Þp sRð Þ for all sR∈

SR, it finds for each sR∈ SR a unique m̂sR kð Þ such
that the codeword sub-sequence xn 1−εð Þp sRð Þ

R
m̂sR kð Þ sR;wR k−1ð Þ; jr kð ÞÞ



�
is jointly typical with

yn 1−εð Þp sRð Þ
r;sR kð Þ, given un 1−εð Þp sRð Þ

r;sR wR k−1ð Þ; jr kð Þð Þ and
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xn 1−εð Þp sRð Þ
r;sR kð Þ. By the law of large numbers (LLN)

and the packing lemma [31], the probability error of
each decoding step approaches 0 as n→∞ if RsR≤p
sRð ÞI XR;Y r U r;Xr; SR ¼ sRÞjð . Therefore, the total
probability error in decoding ŵR kð Þ approaches 0 for
sufficiently large n if the following condition is
satisfied:

RR ¼
X
sR∈SR

RsR

≤ I XR;Y r U r;Xr; SRÞjð
ð12Þ

(ii) Observing yn(k), the destination finds a pair
ŵR k−1ð Þ; ŵD kð Þð Þ such that

ðunðŵD kð Þ; ĵd kð ÞjŵR k−1ð Þ; ĵr kð ÞÞ; unr ŵR k−1ð Þ; ĵr kð Þ
� �

;
yn kð ÞÞ ∈ T n

ε U;U r;Yð Þ

for some ĵd kð Þ∈ 1; 2;…; 2nRd;s
� �

and ĵr kð Þ∈ 1; 2;…; 2nRr;s
� �

.
If there is no such pair or it is not unique, an error is
declared. By the packing lemma [31], it can be shown
that for sufficiently large n, decoding is correct with high
probability if

RD þ Rd;s ≤ IðU;Y jU rÞ
RD þ Rd;s þ RR þ Rr;s ≤ I U ;U r;Yð Þ ð13Þ

Combining (11) to (13), w(k − 1) = (wD(k− 1), wR(k − 1))
C

is decoded correctly with high probability at the end
of block k, if
R ≤ IðXR;Y rjU r;Xr; SRÞ þ IðU;Y jU rÞ−IðU; SDjU rÞ
R ≤ I U;U r;Yð Þ−I U ;U r; SDð Þ

ð14Þ

The detailed analysis of error probability is shown in

Appendix 1.
3.2 Causal channel state information
In many practical communication systems, the state se-
quences are not known to the encoders in advance. For
the case that the channel state information is provided
to the source and the relay causally, the capacity is lower
bounded as the following theorem.
Theorem 2 The capacity of the orthogonal relay chan-

nel with channel state information causally known to
both the source and relay is lower bounded by
CS ≥ max
p sDð Þp sRð Þp urð Þ pðxRjur; sRÞ pðujur; sDÞ

xr ¼ f r ur; sD; sRð Þ; xD ¼ f D u; sDð Þ

min I Xðf
where U r ∈Ur and U ∈U are auxiliary random vari-
ables with

Urj j≤ SDj j SRj j XDj j X rj j þ 1 ð16Þ

Uj j≤ SDj j SRj j X rj j XDj j SDj j SRj j X rj j XDj j þ 1ð Þ þ 1

ð17Þ

Remark 2 The achievable rate region in Theorem 2 is
obtained by specializing the expression for the region in
Theorem 1 to the case where the auxiliary random vari-
ables U and Ur are independent of SD and SR. This is
similar to the relation between the expression for the cap-
acity of the state-dependent channel with causal channel
state information introduced by Shannon [2] and its
non-causal counterpart, the Gel'fand-Pinsker channel [3].
Proof The achievability poof is derived in a similar way

as in the non-causal channel state information case ex-
cept that the auxiliary random variables U and Ur are in-
dependent of the channel states SD and SR, and the
channel inputs of the source and the relay are restricted
to the mappings xD = fD(u, sD) and xr = fr(ur, sD, sR), re-
spectively, where fD(⋅) and fr(⋅) are deterministic func-
tions. The details are omitted for brevity.

4 Semi-deterministic orthogonal relay channel
with non-causal channel state information
In this section, we show that the lower bound derived in
Theorem 1 is tight for a class of semi-deterministic or-
thogonal relay channel, where, the output Y of the des-
tination is a deterministic function of XD, Xr and SD, i.e.,
Y = f(XD, Xr, SD), and the output Yr of the relay node is
controlled only by XR and SR, i.e., the channel from the
source to the relay is governed by the conditional distri-
bution PY r XR;SRj . This assumption is reasonable in many
cases, e.g., when the two orthogonal channels use two
different frequency bands, the received signal Yr at the
relay node will not be affected by its input signal Xr. The
channel can be expressed as

P yr; y xR; xD; xr; sD; sRÞ ¼ P yr xR; sRÞ1 y ¼ f xD; xr; sDð Þf gjðjð
ð18Þ

where, f(·) is a deterministic function and 1{·} denotes
the indicator function. The channel state information on
SR and SD is known to both the source and the relay non-
causally. The capacity of this class of semi-deterministic
orthogonal relay channel is characterized as shown in the
following theorem.
R;Y r U r;Xr; SRÞ þ I U ;Y U rÞ; I U ;U r;Yð Þg;jðj ð15Þ



Deng et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:59 Page 8 of 19
http://jwcn.eurasipjournals.com/content/2014/1/59
Theorem 3 The capacity of the channel (18) with the
channel state information known non-causally to the
source and the relay is characterized as

C ¼ maxmin I XR;Y r SRÞ þ H Y U r; SDÞ;H Yð Þ−I U r;Y ; SDð Þg;jðjðf

ð19Þ

where the maximization is over all measures on SD�
SR � X r � Ur � XR � XD � Yr � Y of the form

P sD; sR; xr; ur; xR; xD; yr; yð Þ
¼ Q sDð ÞQ sRð ÞPðxRjsRÞP ur; xr; xDjsDð Þ
�P yrjxR; sRð Þ1 y ¼ f xD; xr; sDð Þf g

ð20Þ

U r ∈ Ur is an auxiliary random variables with

Urj j≤ SDj j SRj j XDj j X rj j þ 1 ð21Þ

and 1{·} denotes the indicator function.
Proof The achievability follows from Theorem 1. First

note that the joint distribution of (20) can also be writ-
ten as

P sD; sR; xr; ur; xR; xD; yr; yð Þ
¼ Q sDð ÞQ sRð ÞP xRjsRð ÞP ur; yjsDð Þ

�P xr; xDjsD; ur; yð ÞP yrð jxR; sRÞ
ð22Þ

with additional requirement that

y ¼ f xD; xr; sDð Þ: ð23Þ

Note that, when PUr;Y ;SD ur; y; sDð Þ is fixed, all the items
on the right-hand side (RHS) of (19) are fixed except for I
(XR; Yr|SR), which is independent of PXr;XD SD;U r;Y xr;xD sD;ur;yÞjðj .
Therefore, the maximization over all joint distributions of
the form (20) can be replaced by the maximization only
over those distributions, where xr and xD are two determin-
istic functions of (sD, ur, y), i.e., of the form

P sD; sR; xr; ur; xR; xD; yr; yð Þ
¼ Q sDð ÞQ sRð ÞP xRjsRð ÞP ur; yjsDð Þ1 xr ¼ gr ur; sDð Þ

� �
�1 xD ¼ gd y; ur; sDð Þ
� �

P yrjxR; sRÞð
ð24Þ

for some mappings gr: (ur, sD)→ xr, gd: (y, ur, sD)→ xD
and subject to (23). Thus, we only have to prove the
achievability of the rate that satisfies (19) for some distri-
bution of the form (24).
The achievability follows directly from Theorem 1 by

taking U = Y since Y = f(XD, Xr, SD), letting XR be
independent of Ur and Xr considering the fact that Yr is
only determined by XR and SR, and by setting xr = gr(ur,
sD), xD = gd(y, ur, sD). Note that with these choices of the
random variables, if we chose stochastic kernels PXR SRj
and PUr;Y SDj , two deterministic mappings gr:(ur, sD)→ xr
and gd:(y, ur, sD)→ xD, combined with QSDQSR and the
channel law, the joint distribution (24) for which (23) is
satisfied will be determined.
The proof of the converse is as follows.
Consider an (εn, n, R) code with an average error prob-

ability Pe
(n) ≤ ɛn. By Fano's inequality, we have

HðW jYnÞ ≤ nRP nð Þ
e þ 1 ¼ nδn ð25Þ

where δn→ 0 as n→ + ∞. Thus,

nR ¼ H Wð Þ ≤ I W ;Ynð Þ þ nδn ð26Þ

Defining the auxiliary random variable �U r;i ¼ ðYi−1;

SnD;iþ1Þ, we have

I W ;Ynð Þ ≤ I W ;Yn;Yn
r

� �
≤ IðW ;Yn;Yn

r j SnD; SnRÞ
¼
X
i

IðW ;Y i;Y r;ij Yi−1;Yi−1
r ; SnD; S

n
RÞ

¼
X
i

IðW ; Y r;ij Yi−1;Yi−1
r ; SnD; S

n
RÞ

þ
X
i

I W ; Y i Yi−1;Yi−1
r ;Y r;i; S

n
D; S

n
RÞ;



�
ð27Þ

where the second inequality follows from the fact that
SnD and SnR are independent of W.
Calculate the two terms in (27) separately as follows:

X
i

IðW ; Y r;ij Yi−1;Yi−1
r ; SnD; S

n
RÞ

¼
X
i

HðY r;ij Yi−1;Yi−1
r ; SnD; S

n
RÞ

−HðY r;ij Yi−1;Yi−1
r ; SnD; S

n
R;W Þ

¼
að ÞX

i

HðY r;ij Yi−1;Yi−1
r ; SnD; S

n
RÞ

−HðY r;ij Yi−1;Yi−1
r ; SnD; S

n
R;W ;XR;iÞ

≤
bð ÞX

i

HðY r;ij SR;iÞ−HðY r;ij SR;i;XR;iÞ

¼
X
i

I XR;i;Y r;i SR;iÞ;


�

ð28Þ

where (a) holds since XR,i is a function of W ; SnD; S
n
R

� �
;

(b) follows from the fact that conditioning reduces
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entropy and the Markov chain ðYi−1;Yi−1
r ; SnD; S

i−1
R ; SnR;iþ1;

W Þ↔ XR;i; SR;i
� �

↔Y r;i.

X
i

IðW ; Y ij Yi−1;Yi−1
r ;Y r;i; SnD; S

n
RÞ

¼
X
i

HðY ij Yi−1;Yi−1
r ;Y r;i; SnD; S

n
RÞ

−HðY ij Yi−1;Yi−1
r ;Y r;i; SnD; S

n
R;W Þ

¼
X
i

HðY ij Yi−1;Yi−1
r ;Y r;i; S

n
D; S

n
RÞ

−HðY ij Yi−1;Yi−1
r ;Y r;i; SnD; S

n
R;W ;XD;i;Xr;iÞ

¼
að ÞX

i

HðY ij Yi−1;Yi−1
r ;Y r;i; SnD; S

n
RÞ

≤
bð ÞX

i

HðY ij Yi−1; SnD;iþ1; SD;iÞ

¼
X
i

HðY ij �U r;i; SD;iÞ;

ð29Þ

where (a) holds since Xr,i is a function of Yi−1
r ; SnD; S

n
R

� �
; (b)

follows from the fact that conditioning reduces entropy.
From (26) to (29), we have

R≤
1
n

�X
i

IðXR;i;Y r;ij SR;iÞ þ HðY ij U r;i; SR;iÞ
�
þ δn

ð30Þ

The proof of the bound I(W; Yn) given in the second
term in (19) is as follows:

I W ;Ynð Þ ¼
X
i

IðW ;Y ij Yi−1Þ

≤
X
i

I W ;Yi−1;Y i
� �

¼
X
i

I W ;Yi−1; SnD;iþ1;Y i

� �
−IðSnD;iþ1;Y i jW ;Yi−1Þ

¼
að ÞX

i

I W ;Yi−1; SnD;iþ1;Y i

� �
−IðYi−1; SD;i jW ; SnD;iþ1Þ

¼
bð ÞX

i

H Y ið Þ−HðY ijW ;Yi−1; SnD;iþ1Þ

−I W ;Yi−1; SnD;iþ1; SD;i
� �

¼
X
i

H Y ið Þ−HðY ijW ;Yi−1; SnD;iþ1Þ

−
X
i

�
I W ;Yi−1; SnD;iþ1;Y i; SD;i
� �

−IðY i; SD;ijW ;Yi−1; SnD;iþ1ÞÞ

≤
cð ÞX

i

H Y ið Þ−I W ;Yi−1; SnD;iþ1;Y i; SD;i
� �

≤
X
i

H Y ið Þ−I Yi−1; SnD;iþ1;Y i; SD;i
� �

¼
X
i

H Y ið Þ−I �U r;i;Y i; SD;i
� �

;

ð31Þ

where (a) holds due to Csiszar and Korner's sum iden-
tity; (b) follows since SD,i is independent of ðW ; SnD;iþ1Þ ,
and (c) follows from the fact that HðY ijW ;Yi−1; SnD;iþ1Þ≥
IðY i; SD;ijW ;Yi−1; SnD;iþ1Þ.
By (26) and (31),

R≤
1
n

X
i

H Y ið Þ −I �U r;i;Y i; SD;i
� �� �

þ δn ð32Þ

From the above, we have

R≤
1
n

�X
i

IðXR;i;Y r;ijSR;iÞ þ
X
i

HðY ij �U r;i; SD;iÞ
�
þδn

R≤
1
n

X
i

H Y ið Þ −I �U r;i;Y i; SD;i
� �� �

þ δn

ð33Þ

Introduce a time-sharing random variable T, which is
uniformly distributed over {1, 2, …, n} and denote the
collection of random variables

XR;Xr;Y r;Y ; �U r; SD; SRð Þ ¼ XR;T ;Xr;T ;Y r;T ;YT ; �U r;T ; SD;T ; SR;T
� �

:

Considering the first bound in (33), we have

1
n

�X
i

IðXR;i;Y r;ijSR;iÞ þ
X
i

HðY ij �U r;i; SD;iÞ
�

¼ I XR;Y rjSR;Tð Þ þ H Y j �U r; SD;Tð Þ
¼ H Y rjSR;Tð Þ−H Y rjXR; SR;Tð Þ þ H Y j �U r; SD;Tð Þ
≤ I XR;Y rjXr; SRð Þ þ H Y j �U r; SD;Tð Þ;

ð34Þ

where the last step follows from the fact that T is inde-
pendent of all the other variables and the Markov chain
T ↔ (XR, SR) ↔ Yr.
Similarly, considering the second bound in (33), we

have

1
n

X
i

H Y ið Þ −I �U r;i;Y i; SD;i
� �� �

¼ H Y jTð Þ−I �U r;Y ; SDjTð Þ
≤ H Yð Þ−I �U r;T ;Y ; SDð Þ þ I T ; SDð Þ
¼ H Yð Þ−I �U r;T ;Y ; SDð Þ

ð35Þ

Defining Ur ¼ �U r;Tð Þ, we get

R ≤ I XR;Y rjSRð Þ þ H Y j U r; SDð Þ þ δn
R ≤ H Yð Þ−I U r;Y ; SDð Þ þ δn

ð36Þ

Therefore, for a given sequence of (εn, n, R) code with εn
going to zero as n goes to infinity, there exists a measure
of the form PSDSR;Xr;XR;XD ¼ QSDQSRPXrjSDSRPXR;XD Xr;SD;SRj ,
such that the rate R essentially satisfies (19).
Considering the facts that I(XR; Yr|SR) is determined

by the joint distribution PXR;SR;Y r and the other three
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items on the RHS of (19) is independent of PXR;SR;Y r , the
maximum in (19) taken over all joint probability mass
functions PSD;SR;Xr;U r;XR;XD;Y r;Y is equivalent to that taken
over all joint probability mass functions of the form

P sD; sR; xr; ur; xR; xD; yr; yð Þ
¼ Q sDð ÞQ sRð ÞP xRjsRð ÞP ur; xr; xDjsDð Þ
�P yrjxR; sRð Þ1 y ¼ f xD; xr; sDð Þf g

The bound of the cardinality of Ur can be proven in a
similar way as that proven in Theorem 1. It is omitted
here for brevity.
This concludes the proof.

5 Memoryless Gaussian case
In this section, we study a state-dependent Gaussian
relay channel with orthogonal components in which the
channel states and the noise are additive and Gaussian.
As shown in Figure 3, we consider the state-dependent
Gaussian orthogonal relay channel, where channel 1
(dashed line) uses a different frequency band as com-
pared to that used by channel 2 (solid line). The two
orthogonal channels, channel 1 and channel 2, are cor-
rupted by two independent additive Gaussian interfer-
ences SR and SD, respectively, which are known to the
source and the relay. The channel can be described as

Y r ¼ XR þ SR þ Zr ð37Þ

Y ¼ XD þ Xr þ SD þ Zd ð38Þ

where Yr and Y are the channel outputs of the relay and
the destination, respectively; the Gaussian i.i.d. random
variables (XR, XD) and Xr are channel inputs from the
source and the relay with the average power constraints
E X2

R

� �
þ E X2

D

� �
≤P and E X2

r

� �
≤γP. The additive interfer-

ences SR, SD and the noises Zr, Zd are assumed to be
zero-mean Gaussian i.i.d. with E S2R

� �
¼ QR, E S2D

� �
¼ QD
Figure 3 Gaussian orthogonal relay channel with channel state know
and E Z2
r

� �
¼ E Z2

d

� �
¼ N . Further, we assume that SR,

SD, Zr, and Zd are independent mutually. As in the
discrete memoryless case, we will discuss the capacity of
the channel when the additive interference sequences
are known to the source and the relay non-causally and
causally, respectively.

5.1 Channel state information non-causally known to the
source and the relay
For the channel shown in Figure 3, when the channel
state information is known non-causally to the source
and the relay, using cooperative DPC, the capacity is
characterized as in the following theorem.
Theorem 4 The capacity of the Gaussian orthogonal

relay channel with the channel state information non-
causally known to both the source and the relay is given
by

C P; γPð Þ ¼ max
0≤β; ρ≤1

min

� C
�βP
N

� �
þ C β 1−ρ2ð ÞP

N

� �
; C

βþ γ þ 2ρ
ffiffiffiffiffiffi
βγ

p� �
P

N

 !( )
;

ð39Þ

where C xð Þ ¼ 1
2 log2 1þ xð Þ and �β ¼ 1−β.

Remark 3 As in many other dirty paper channels with
channel state information known non-causally at the
encoders, with dirty paper coding, the capacity of the
channel considered here is as same as that of the state-
independent relay channel with orthogonal components.
In fact, (39) also characterizes the capacity of the state-
independent Gaussian orthogonal relay channel. There-
fore, no matter the channel state information is either
causally or non-causally known to the source and the
relay, (39) serves as an upper bound on the capacity of
the channel shown in Figure 3.
Proof We only need to prove the achievability of (39)

since the expression in (39) characterizes the capacity of
the state-independent orthogonal relay channel [29]
which obviously serves as an upper bound of the chan-
nel in this paper.
n at the source and the relay.
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For the channel given by (37) and (38), we evaluate
the achievable rate in (6) with the choice of the jointly
Gaussian random variables U, Ur, SR, SD, XR, XD, and XR

given by

U0 ¼ XD;0 þ α 1−αrð ÞSD ð40Þ

U r ¼ 1þ ρ
ffiffiffiffiffiffiffiffi
β=γ

p� �
Xr þ αrSD ð41Þ

U ¼ U0 þ
ρ
ffiffiffiffiffiffiffiffi
β=γ

p
1þ ρ

ffiffiffiffiffiffiffiffi
β=γ

p� �U r ð42Þ

XD ¼ XD0 þ ρ
ffiffiffiffiffiffiffiffi
β=γ

p
Xr; ð43Þ

where E X2
D

� �
¼ βP, E X2

R

� �
¼ �βP, E X2

r

� �
¼ γP, E XrXDð Þ ¼

ρ
ffiffiffiffiffi
βγ

p
P and XD;0 eN 0; 1−ρ2ð ÞβPð Þ is independent of Xr.

The parameter β is the ratio of the source power allocated
to XD, while �β ¼ 1−β is the ratio of the source power allo-
cated to XR. The parameter ρ is the correlation coefficient
between Xr and XD. With the above definitions of the ran-
dom variables, it is straightforward to show the achievable
rate in (39). The calculation is straightforward, thus omitted
for brevity.
However, the calculation above is somewhat algebraic.

Proceeding similarly to Costa's dirty paper coding, we
extend the result in Theorem 1 for the discrete memory-
less (DM) case to memoryless channels with discrete
time and continuous alphabets by standard arguments
[32]. An alternative proof is outlined in Appendix 2.

5.2 Channel state information known at the source and
the relay causally
When the channel state information is known to the
source and the relay causally, the capacity is not charac-
terized in general. The following theorem gives a lower
bound on the capacity.
Theorem 5 For the Gaussian orthogonal relay channel

with the channel state information causally known to the
source and the relay, the following rate is achievable:
RðP; γPÞ ≤ max
0≤β≤1

−1≤ρd;s; ρr;s; ρd;r≤1

min

(
C

�βP
N

� �
þ C

C
 1−ρ2d;s
� �
where C xð Þ ¼ 1
2 log2 1þ xð Þ and �β ¼ 1−β.

Remark 4 Since the interference SR is additive and
known to both the source and the relay, the relay can re-
move SR completely before decoding the message from the
source. Actually, the interference SR does not affect the
achievable rate.
Remark 5 The source and the relay expend parts ρ2d;s

βP and ρ2r;sγP of their power respectively to clean SD from
the channel and use the remaining power for cooperative
information transmission. It is different from many other
dirty paper channels with non-causal channel state infor-
mation at the transmitters where the channel states can
be completely cleaned by choosing appropriate auxiliary
random variables, e.g., by dirty paper coding. If QD = 0,
the entire power of the source and the relay will be used
for information transmission, i.e., ρr,s = ρd,s = 0. This re-
duces to the capacity of the state-independent relay
channel with orthogonal components as shown in [29]
since SR does not affect the achievable rate.
Proof The result in Theorem 2 for the discrete mem-

oryless case can be extended to memoryless channels
with discrete time and continuous alphabets using
standard techniques [32]. The proof follows through
evaluation of the lower bound of Theorem 2 using the
following jointly Gaussian input distribution. Fix 0 ≤ β ≤
1, − 1 ≤ ρd,s, ρr,s, ρd,r ≤ 1 and �β ¼ 1−β. Let XReNð0; �βPÞ,
U reNð0; ð1−ρ2r;sÞγPÞ, U ′ eNð0; ð1−ρ2d;sÞð1−ρ2d;rÞβPÞ, where

Ur and U′ are independent. Let U ¼ ρd;r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2d;s

� �
βP

1−ρ2r;sð ÞγP

s
U r þ U ′ . We define Xr ¼ U r þ ρr;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γP=QD

p
SD and

XD ¼ U þ ρd;s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βP=QD

p
SD. With these definitions, it can

be easily verified that UeNð0; ð1−ρ2d;sÞβPÞ , XreN 0; γPð Þ,
and XDeN 0; βPð Þ. Note that U, Ur, and U′ are independ-
ent of SD. Obviously, from these definitions, it is evident
that E X2

R

� �
þ E X2

D

� �
≤P and E X2

r

� �
≤γP. Through straight-

forward algebra, it can be shown that the evaluation of the
lower bound in Theorem 2 using the above choices gives
the lower bound in Theorem 5. The computation details
are omitted here for brevity.
We next characterize the capacity of the state-

dependent Gaussian orthogonal relay channel with causal
 
1−ρ2d;s
� �

1−ρ2d;r
� �

βPffiffiffiffiffiffiffi
QD

p
þ ρd;s

ffiffiffiffiffiffi
βP

p
þ ρr;s

ffiffiffiffiffiffi
γP

p� �2
þ N

!
;

βP þ 1−ρ2r;s
� �

γP þ 2ρd;r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2d;s
� �

1−ρ2r;s
� �

βγ

r
Pffiffiffiffiffiffiffi

QD
p

þ ρd;s
ffiffiffiffiffiffi
βP

p
þ ρr;s

ffiffiffiffiffiffi
γP

p� �2
þ N

!)

ð44Þ
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channel state information when the power of the relay is
sufficiently large. As shown in Theorem 5, a part of the
relay's power is used to clean the interference SD. When
the power of the relay is sufficiently large, the interference
SD can be cleaned completely and the capacity of the
channel can be determined as shown in the following
theorem.
Theorem 6 For the Gaussian orthogonal relay channel

with the additive interference sequences known at the
source and the relay causally, when the power of the
relay satisfies

γP≥
P
4N

þ N
4P

þ QD

P
þ 1
2

� �
P ð45Þ

the capacity can be characterized as

C P; γPð Þ ¼ max
0≤β≤1

C
�βP
N

� �
þ C βP

N

� �
ð46Þ

Remark 6 When the power of the relay is sufficiently
large such that the interference SD is completely cleaned
by the relay using part of its power and its remaining
power is sufficiently large such that the relay-destination
link does not constrain the achievable rate, the message
sent from the source is split into two parts: one part is
sent directly to the destination through a point-to-point
source-destination channel and the other is sent to the
destination through a two-hop source-relay-destination
channel with DF relaying. The two parts are sent inde-
pendently, and the rate can be expressed as the sum of
the rates of the source-destination channel and the two-
hop source-relay-destination channel (the rate of the
later is constrained by the source-relay link).
Proof Define ρ = (ρd,s, ρd,r, ρr,s). We denote the two

terms on the RHS in (44) as

R1 β; ρð Þ ¼ C
�βP
N

� �
þ C

1−ρ2d;s
� �

1−ρ2d;r
� �

βPffiffiffiffiffiffiffi
QD

p
þ ρd;s

ffiffiffiffiffiffi
βP

p
þ ρr;s

ffiffiffiffiffiffi
γP

p� �2
þ N

0B@
1CA

ð47Þ

R2 β; ρð Þ ¼ C
1−ρ2d;s
� �

βP þ 1−ρ2r;s
� �

γP þ 2ρd;r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2d;s
� �

1−ρ2r;s
� �

βγ

r
Pffiffiffiffiffiffiffi

QD
p

þ ρd;s
ffiffiffiffiffiffi
βP

p
þ ρr;s

ffiffiffiffiffiffi
γP

p� �2
þ N

0BB@
1CCA

ð48Þ

Let R(β, ρ) = min{R1(β, ρ), R2(β, ρ)}. Then, R P; γPð Þ≤

max 0≤β≤1
−1≤ρd;s; ρr;s; ρd;r≤1

R β; ρð Þ is achievable.

It is easy to verify that if γP ≥QD, for any fixed β, R1(β,

ρ) is the maximal when ρ ¼ ρ�1 ¼ 0; 0;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QD= γPð Þ

p� �
.

Denote the maximum of R1(β, ρ) as R1
* (β). Therefore, we

have

R�
1 βð Þ ¼ R1 β; ρ�1

� �
¼ C

�βP
N

� �
þ C βP

N

� �
ð49Þ

R2 β;ρ�1
� �

¼ C βP þ γP−QD

N

� �
ð50Þ

Next, we will show the condition under which R2

β;ρ�1
� �

is always larger than R1
* (β) for any β. Let

1þ βP þ γP−QD

N
≥ 1þ

�βP
N

� �
1þ βP

N

� �
ð51Þ

The inequality in (51) is equivalent to

P2β2− P2−PN
� �

βþ γPN−QDN−PN≥0 ð52Þ

It is easy to show that if

γ≥
P
4N

þ N
4P

þ QD

P
þ 1
2

ð53Þ

the inequality in (52) holds for any β. Thus, if γ≥ P
4N þ N

4Pþ
QD
P þ 1

2, the following inequality is always satisfied for any β

R2 β;ρ�1
� �

≥R�
1 βð Þ ð54Þ

For any β, we have

R β; ρ�1
� �

¼ min R1 β; ρ�1
� �

;R2 β; ρ�1
� �� �

¼ R�
1 βð Þ ð55Þ

Therefore,

R P; γPð Þ≤ max
0≤β≤1

R�
1 βð Þ ¼ max

0≤β≤1
C

�βP
N

� �
þ C βP

N

� �
ð56Þ

is achievable.
As mentioned in Remark 3, (39) serves as an upper

bound on the capacity of the channel considered here.
The converse proof follows by proving that (46) matches
the upper bound in (39) if the condition in (45) is satis-
fied. We denote the two terms on the RHS in (39) as

C1 β; ρð Þ ¼ C
�βP
N

� �
þ C β 1−ρ2ð ÞP

N

� �
ð57Þ

C2 β; ρð Þ ¼ C
βþ γ þ 2ρ

ffiffiffiffiffiffi
βγ

p� �
P

N

 !
ð58Þ
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Let C(β, ρ) = min {C1(β, ρ), C2(β, ρ)}. Similar to steps
from (47) to (55), it is easy to prove that for any β if
γ≥ P

4N þ N
4P þ 1

2

C β; 0ð Þ ¼ min C1 β; 0ð Þ;C2 β; 0ð Þf g ¼ C1 β; 0ð Þ

¼ C
�βP
N

� �
þ C βP

N

� �
ð59Þ

Next, we have to prove that for any β, under the con-
dition γ≥ P

4N þ N
4P þ 1

2 , C(β, ρ) is maximized when ρ = 0.
Denote the maximal of C(β, ρ) as C*(β), i.e., C� βð Þ ¼
max−1≤ρ≤1 C β; ρð Þ. This can be proven by contradiction.
Assume that C(β, ρ) is maximized when ρ = ρ′ (ρ′ ≠ 0).

By (59), we get

C β; ρ′
� �

≥C β; 0ð Þ ¼ C1 β; 0ð Þ ð60Þ

However, we have

C β; ρ′
� �

¼ min C1 β; ρ′
� �

;C2 β; ρ′
� �� �

≤C1 β; ρ′
� �

ð61Þ

From (57), it is easy to verify that for any β, C1(β, ρ) is
maximized when ρ = 0. Thus, (60) and (61) are contra-

dictory. This proves that for any β, C� βð Þ ¼ C1 β; 0ð Þ ¼ C
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Figure 4 Achievable rates vs. SNR under different power values of th
�βP
N

� �
þ C βP

N

� �
. Thus, the maximization problem in (39)

is equivalent to the following maximization problem

C P; γPð Þ≤ max
0≤β≤1

C
�βP
N

� �
þ C βP

N

� �
ð62Þ

This completes the proof.

6 Numerical examples
In this section, we provide some numerical examples for
the achievable rate in Theorem 5. With these examples,
we will show the impact of the channel state and the
role of the relay in information transmission and in
cleaning the channel state.
For γ = 1, Figure 4 shows a comparison of the capacity

of the state-independent (QR =QD = 0) relay channel
with orthogonal components and the achievable rate de-
rived in Theorem 5. Obviously, the larger the power of
the additive interference, more power of the source and
the relay will be used to clean the interference; this re-
sults in a lower achievable rate. As the power values (P)
of the source and relay increase, a larger amount of
interference can be cleaned, leaving more power for in-
formation transmission. Consequently, the achievable
rate will approach the capacity of the state-independent
relay channel with orthogonal components as P in-
creases. This can also be verified from (44) such that if
30 40 50 60
/N

Q
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Q
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Q
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P≫QD, the impact of the additive interference SD will
be negligible with respect to P. The maximization
problem of (44) is approximate to that of (39) by tak-
ing ρr,s→ 0 and ρd,s→ 0.
For P/N = 30, Figure 5 shows the role of the relay in

cleaning the channel state. As the power of the relay in-
creases, the achievable rate increases. In particular, when
the power of the relay is sufficiently large such that the
channel state can be cleaned completely and the relay-
destination link does not become the bottleneck for the
achievable rate, the achievable rate matches the upper
bound. This has been proven in Theorem 6. Figure 5
vividly illustrates this result.

7 Conclusions
In this paper, we consider a state-dependent relay chan-
nel with orthogonal channels from the source to the
relay and from the source and the relay to the destin-
ation. The orthogonal channels are affected by two inde-
pendent channel states, respectively, and the channel
state information is known to both the source and the
relay either non-causally or causally. In the non-causal
state information case, the lower bound on the capacity
of the channel is established with superposition coding
at the source, PDF relaying at the relay and cooperative
GP coding at the source and the relay. We further show
that if the output of the destination Y is a deterministic
function of the relay input Xr, the channel state SD and
one of the source inputs XD, i.e., Y = f(XD, Xr, SD) and the
relay output Yr is restricted to be controlled by only the
source input XR and the channel state SR, the lower
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Figure 5 Achievable rates vs. γ under different power values of the in
bound is tight, and the capacity can be characterized
exactly. As for the causal channel state information case,
the lower bound on the capacity is also derived. The ex-
pression for the achievable rate in the causal state infor-
mation case can be interpreted as a special case of that
for the achievable rate in the non-causal state informa-
tion case, where the auxiliary random variables U and Ur

are independent of SR and SD. This is similar to the rela-
tion between the expression for the capacity of the state-
dependent channel with causal channel state information
introduced by Shannon [2] and its non-causal counter-
part, the Gel'fand-Pinsker channel [3].
Further, we investigate the Gaussian state-dependent

relay channel with orthogonal components, modeling
the channel states as additive Gaussian interferences.
Capacity is characterized when the additive interference
sequences are known non-causally. The expression for
the capacity is the same as that for the capacity of the
state-independent relay channel with orthogonal compo-
nents. This observation is similar to the results for the
multiple user state-dependent channels shown in [6].
When the state information is known causally, however,
the capacity is not characterized in general. In this case,
with carefully chosen auxiliary random variables, achiev-
able rate is derived. It is shown that when the power of
the relay is sufficiently large, the capacity can be charac-
terized exactly. Finally, two numerical examples are
given to illustrate the impact of the channel state and
the role of the relay in information transmission and in
cleaning the state. The simulation results show that the
larger the power of the additive interference, the more
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power of the source and the relay will be spent to clean
the interference; this results in a lower achievable rate.
However, as the power P increases, the impact of the
interference will be negligible if P≫QD and the achiev-
able rate will approach the capacity of the state-
independent relay channel with orthogonal components.
The simulation results also illustrate that when the

power of the relay satisfies γP≥ P
4N þ N

4P þ
QD
P þ 1

2

� �
P , the

capacity of the channel can be characterized.

Appendices
Appendix 1
Proof of Theorem 1: Analysis of probability of error
The average probability of error is given by

Pe≤
X

snD∉T
n
ε SDð Þ

snR∉T n
ε SRð Þ

Pr snD
� �

Pr snR
� �

þ
X

snD∈T n
ε SDð Þ

snR∈T
n
ε SRð Þ

Pr snD
� �

Pr snR
� �

Pr error snD; s
n
RÞ



�
ð63Þ

By the AEP, the first term Pr snD∉T
n
ε SDð Þ

� �
Pr snR∉T

n
ε SRð Þ

� �
on the RHS of (63) goes to 0 as n→∞. It is sufficient to
upper bound the second term of the RHS of (63). We now
examine the probabilities of the error events associated
with the encoding and decoding steps. The error event is
contained in the union of the following error events, where
E1k and E2k correspond to the encoding steps in block k,
E3sRk and E4sRk correspond to decoding the message m̂sR

kð Þ at the relay in block k given SR = sR, the events E5k and
E6k correspond to decoding wD(k) at the destination in
block k. The probability of error Pr error snD; s

n
RÞ



�
is upper

bounded as

Prðerror j Dns ; snRÞ ≤ Pr E1kð Þ þ Pr E2kð Þ

þ
X
sR∈SR

P SR ¼ sRð ÞPrðE3sRk jEc
1kE

c
2kÞ

þ
X
sR∈SR

P SR ¼ sRð ÞPrðE4sRk jEc
1kE

c
2kE

c
3sRkÞ

þPr E5k Ec
1kE

c
2kÞ þ Pr E6kð jEc

1kE
c
2kE

c
5k



 �
;

�
where Emk

c (m = 1, 2, 3sR, 5) denotes the corresponding
event complement of Emk.
Let E1k be the event that there is no sequence un

r

wR k−1ð Þ; jr kð Þð Þ jointly typical with snD kð Þ, i.e.,

E1k ¼ f∄jr kð Þ∈ 1; 2;…; 2nRr;s
� �

s:t:ðun
r ðwR k−1ð Þ;

jr kð ÞÞ; snD kð ÞÞ ∈ T n
ε U r; SDð Þg

For un
r wR k−1ð Þ; jr kð Þð Þ and snD kð Þ generated independ-

ently with i.i.d. components according to PUr and QSD , re-
spectively, the probability that there exits at least one
jr kð Þ∈ 1; 2;…; 2nRr;s

� �
such that un

r wR k−1ð Þ; jr kð Þð Þ is
jointly typical with snD kð Þ is greater than ð1−εÞ
2−n I U r;SDð Þþδ εð Þð Þ for n sufficiently large. There are 2nRr;s

such un
r s in each bin. Therefore, the probability of event

E1k is bounded by

Pr E1kð Þ≤ 1− 1−εð Þ2−n I U r;SDð Þþδ εð Þð Þ
h i2nRr;s

ð64Þ

Taking the logarithm on both sides of (64) and follow-

ing from the inequality ln(x) ≤ x − 1, we have ln Pr E1kð Þð Þ
≤− 1−εð Þ2n Rr;s−I U r;SDð Þ−δ εð Þð Þ . Thus, if Rr,s > I(Ur; SD) + δ(ε),
Pr(E1k)→ 0 as n→∞, where δ(ε)→ 0 as ε→ 0.
Let E2k be the event that there is no sequence un(wD

(k), jd(k)|wR(k − 1), jr(k)) jointly typical with snD kð Þ , given
un
r wR k−1ð Þ; jr kð Þð Þ, i.e.,

E2k ¼ f∄jd kð Þ∈ 1; 2;…; 2nRd;s
� �

s:t:g
ðunðwD kð Þ; jd kð ÞjwR k−1ð Þ; jr kð ÞÞ;

un
r wR k−1ð Þ; jr kð Þð Þ; snD kð ÞÞ∈T n

ε U ;U r; SDð Þg

Similar to the analysis on the probability of the event
E1k, if Rd,s > I(U; SD|Ur) + δ(ε), Pr(E2k)→ 0 as n→∞.

For each sR∈SR , let E3sRk be the event that xn 1−εð Þp sRð Þ
R

msR kð Þ sR;wR k−1ð Þ; jr kð ÞÞ


�

is not jointly typical with

yn 1−εð Þp sRð Þ
r;sR kð Þ, given un 1−εð Þp sRð Þ

r;sR wR k−1ð Þ; jr kð Þð Þ, xn 1−εð Þp sRð Þ
r;sR

kð Þ and SR = sR, i.e.,

E3sRk ¼ fðxn 1−εð Þp sRð Þ
R ðmsR kð ÞjsR;wR k−1ð Þ; jr kð ÞÞ;

un 1−εð Þp sRð Þ
r;sR wR k−1ð Þ; jr kð Þð Þ; xn 1−εð Þp sRð Þ

r;sR kð Þ;

yn 1−εð Þp sRð Þ
r;sR kð ÞÞ

∉T n
ε XR;U r;Xr; SR;Y rð Þ given SR ¼ sRg

By the LLN, for all sR∈SR , Pr E3sRk Ec
1kE

c
2kÞ→0



�
as

n→∞. Consequently,
X
sR∈SR

P SR ¼ sRð ÞPr E3sRk Ec
1kE

c
2kÞ→0



�
as n→∞.

For each sR∈SR , let E4sRk be the event that xn 1−εð Þp sRð Þ
R

m̂sR kð Þ sR;wR k−1ð Þ; jr kð ÞÞ


�

is jointly typical with

yn 1−εð Þp sRð Þ
r;sR kð Þ , given u

nsR kð Þ
r;sR wR k−1ð Þ; jr kð Þð Þ , xn 1−εð Þp sRð Þ

r;sR kð Þ
and SR = sR for some m̂sR kð Þ≠msR kð Þ, i.e.,

E4sRk ¼ f∃m̂sR kð Þ∈ 1; 2;…; 2nRsR

� �
s:t:m̂sR kð Þ≠msR kð Þ;

ðxn 1−εð Þp sRð Þ
R ðm̂sR kð ÞjsR;wR k−1ð Þ; jr kð ÞÞ;

un 1−εð Þp sRð Þ
r;sR wR k−1ð Þ; jr kð Þð Þ; xn 1−εð Þp sRð Þ

r;sR kð Þ;

yn 1−εð Þp sRð Þ
r;sR kð ÞÞ

∈T n
ε XR;U r;Xr; SR;Y rð Þ given SR ¼ sRg

Conditioned on the events E1k
c , E2k

c and Ec
3sRk , for all

sR∈SR, by the joint typicality lemma [31], the probabil-

ity that ðxn 1−εð Þp sRð Þ
R m̂sR kð ÞjsR;wR k−1ð Þ; jr kð Þð Þ;un 1−εð Þp sRð Þ

r;sR
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wR k−1ð Þ; jr kð Þð Þ; xn 1−εð Þp sRð Þ
r;sR kð Þ; yn 1−εð Þp sRð Þ

r;sR kð ÞÞ ∈ T n 1−εð Þp sRð Þ
ε

XR;U r;Xr; SR;Y rð Þ given un 1−εð Þp sRð Þ
r;sR wR k−1ð Þ; jr kð Þð Þ;

xn 1−εð Þp sRð Þ
r;sR kð Þ and SR = sR for m̂sR kð Þ≠msR kð Þ is less than

2−n 1−εð Þp sRð Þ I XR;Y r Ur;Xr;SR¼sRÞ−δ εð ÞÞjðð for sufficiently large n.

There are 2nRsR (exactly 2nRsR−1) such xn 1−εð Þp sRð Þ
R s. Thus,

the conditional probability of event E4sRk given E1k
c , E2k

c and
Ec
3sRk is upper bounded by

PrðE4sRk jEc
1kE

c
2kE

c
3sRkÞ

≤2−n 1−εð Þp sRð ÞI XR;Y r Ur;Xr;SR¼sRÞ− 1−εð Þp sRð Þδ εð Þ−RsRÞjðð

ð65Þ

From (65), PrðE4sRk jEc
1kE

c
2kE

c
3sRkÞ→0 as n→∞ if

RsR < 1−εð Þp sRð Þ I XR;Y r U r;Xr; SR ¼ sRÞ−δ εð ÞÞjðð

Since RR ¼
X
sR∈SR

RsR ,
X
sR∈SR

P SR ¼ sRð ÞPrðE4sRk jEc
1kE

c
2kE

c
3sRkÞ→0

as n→∞ if

RR < 1−εð Þ I XR;Y r U r;Xr; SRÞ−δ εð ÞÞ;jðð

where δ(ε)→ 0 as ε→ 0.
Let E5k be the event that un(wD(k), jd(k)|wR(k − 1), jr

(k)), un
r wR k−1ð Þ; jr kð Þð Þ and yn(k) are not jointly typical,

i.e.,

E5k ¼ fðunðwD kð Þ; jd kð ÞjwR k−1ð Þ; jr kð ÞÞ;un
r ðwR k−1ð Þ;

jr kð ÞÞ; yn kð ÞÞ∉T n
ε U ;U r;Yð Þg

Conditioned on the events E1k
c and E2k

c , we have Pr
(E5k|E1k

c E2k
c )→ 0 as n→∞ by the Markov Lemma.

Let E6k be the event that unðŵD kð Þ; ĵd kð ÞjŵR k−1ð Þ; ĵr
kð ÞÞ and un

r ŵR k−1ð Þ; ĵr kð Þ
� �

are jointly typical with yn(k)

for some ŵD kð Þ; ŵR k−1ð Þð Þ∈ 1; 2;…; 2nRD
� �

� f1; 2;…;

2nRRg , ĵd kð Þ∈ 1; 2;…; 2nRd;s
� �

and ĵr kð Þ∈ 1; 2;…; 2nRr;s
� �

,
with ŵD kð Þ; ŵR k−1ð Þð Þ≠ wD kð Þ;wR k−1ð Þð Þ, i.e.,

E6k ¼ f∃ ŵD kð Þ; ŵR k−1ð Þð Þ∈ 1; 2;…; 2nRD
� �

� 1; 2;…; 2nRR
� �

; ĵd kð Þ∈ 1; 2;…; 2nRd;s
� �

;

ĵr kð Þ∈ 1; 2;…; 2nRr;s
� �

s:t: ŵD kð Þ; ŵR k−1ð Þð Þ≠ wD kð Þ;wR k−1ð Þð Þ;

ðunðŵD kð Þ; ĵd kð ÞjŵR k−1ð Þ; ĵr kð ÞÞ;

un
r ŵR k−1ð Þ; ĵr kð Þ
� �

; yn kð ÞÞ∈T n
ε U;U r;Yð Þg

We split the potential event E6k into three disjoint
parts: first, ŵD kð Þ ¼ wD kð Þ and ŵR k−1ð Þ≠wR k−1ð Þ ;
second, ŵD kð Þ≠wD kð Þ and ŵR k−1ð Þ ¼ wR k−1ð Þ ; third,
ŵD kð Þ≠wD kð Þ and ŵR k−1ð Þ≠wR k−1ð Þ, i.e.,

E6k1 ¼ f∃ŵR k−1ð Þ∈ 1; 2;…; 2nRR
� �

; ĵr kð Þ∈ 1; 2;…; 2nRr;s
� �

s:t:ŵR k−1ð Þ≠wR k−1ð Þ;
ðunðwD kð Þ; jd kð ÞjŵR k−1ð Þ; ĵr kð ÞÞ;
un
r ŵR k−1ð Þ; ĵr kð Þ
� �

; yn kð ÞÞ∈T n
ε U ;U r;Yð Þg

E6k2 ¼ f∃ŵD kð Þ∈ 1; 2;…; 2nRD
� �

; ĵd kð Þ∈ 1; 2;…; 2nRd;s
� �

;
s:t:ŵD kð Þ≠wD kð Þ;

ðunðŵD kð Þ; ĵd kð ÞjwR k−1ð Þ; jr kð ÞÞ;
un
r wR k−1ð Þ; jr kð Þð Þ; yn kð ÞÞ∈T n

ε U ;U r;Yð Þg

E6k3 ¼ f∃ ŵD kð Þ; ŵR k−1ð Þð Þ∈ 1; 2;…; 2nRD
� �

� 1; 2;…; 2nRD
� �

; ĵd kð Þ∈ 1; 2;…; 2nRd;s
� �

;

ĵr kð Þ∈ 1; 2;…; 2nRr;s
� �

s:t:ŵD kð Þ≠wD kð Þ;
ŵR k−1ð Þ≠wR k−1ð Þ;
ðunðŵD kð Þ; ĵd kð ÞjŵR k−1ð Þ; ĵr kð ÞÞ;
un
r ŵR k−1ð Þ; ĵr kð Þ
� �

; yn kð ÞÞ∈T n
ε U;Ur;Yð Þg

Conditioned on the events E1k
c , E2k

c and E5k
c , by the

joint typicality lemma, the probability of the above three
events are bounded by

PrðE6k1 jEc
1kE

c
2kE

c
5kÞ≤2−n I U ;Ur;Yð Þ−δ εð Þ−RRð Þ ð66Þ

PrðE6k2 jEc
1kE

c
2kE

c
5kÞ≤2−n I U ;Y UrÞ−δ εð Þ−RDÞjðð ð67Þ

PrðE6k3 jEc
1kE

c
2kE

c
5kÞ≤2−n I U ; U r;Yð Þ−δ εð Þ− RDþRRð Þð Þ ð68Þ

From (66) to (68), Pr (E6k_1|E1k
c E2k

c E5k
c )→ 0, Pr (E6k_2|

E1k
c E2k

c E5k
c )→ 0 and Pr (E6k_3|E1k

c E2k
c E5k

c )→ 0 as n→∞,
if

RD þ Rd;s < I U ;Y U rÞ−δ εð Þjð

RD þ Rd;s þ RR þ Rr;s < I U ;U r;Yð Þ−δ εð Þ;

where δ(ε)→ 0 as ε→ 0. Note that (68) makes (66)
unnecessary. Therefore, Pr (E6k|E1k

c E2k
c E5k

c ) ≤ Pr (E6k_1|
E1k
c E2k

c E5k
c ) + Pr (E6k_2|E1k

c E2k
c E5k

c ) + Pr (E6k_3|E1k
c E2k

c E5k
c ) ap-

proaches 0 as n→∞.
It remains to show that the alphabet sizes of the ran-

dom variables Ur and U can be limited without loss of
generality as stated in (8) and (9), respectively. This is
done by the support lemma [33]. Fix a distribution μ of
(SD, SR, Ur, U, Xr, XR, XD, Yr, YD) on the Borel σ-algebra
of P SD;SR;Ur;U;X r;XR;XD;Yr;YDð Þ that has the
form (7).
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To bound (8) on Urj j, note that we have

Iμ XR;Y r U r;Xr; SRÞ þ Iμ U ;Yð jU r



 �
−Iμ U ; SDð jU r

� �
¼ HμðXR;Xr; SR U r Þ þ Hμ Xr; SR;Y rð jU r



 �
−HμðXr; SR U rÞ−Hμ XR;Xr; SR;Y rð jU r



 �
þHμðY U rÞ−Hμ U ;Yð jU r



 �
þ Hμ U ; SDð jU r

−Hμ SDð jU r

Þ

ð69Þ

Iμ U ;U r;Yð Þ−Iμ U ;U r; SDð Þ
¼ Hμ Yð Þ−Hμ SDð Þ−Hμ U ;Y U rÞ þ Hμ U ; SD U rÞjð



�
ð70Þ

Hence, it suffices to show that the following func-
tionals of μ(SD, SR, Ur, U, Xr, XR, XD, Yr, YD):

f SD;SR;Xr;XD
¼ μ sD; sR; xr; xDð Þ ∀ sD; sR; xr; xDð Þ∈SD

� SR � X r � XD

ð71Þ

f 0 μð Þ ¼
Z
μ
dμ urð Þ HμðXR;Xr; SRjU r

� �
þHμðXr; SR;Y rjU r Þ

−Hμ Xr; SRjU rð Þ−Hμ XR;Xr; SR;Y rjU rð Þ
þ HμðY jurÞ−HμðU ;Y jurÞ
þHμ U ; SD urÞ−Hμ SD urÞÞjð



�
ð72Þ

f 1 μð Þ ¼
Z
μ
dμ urð Þ Hμ U ; SD urÞ−Hμ U ;Y urÞÞjð



��
ð73Þ

can be preserved with another measure μ′ that has the
form (7). This condition can be satisfied by the support
lemma. Observing that there are SDj j SRj j X rj j XDj j þ 1
functionals (in (71), there are SDj j SRj j X rj j XDj j−1 de-
grees of freedom) in (71) to (73), according to the sup-
port lemma, the cardinality of the alphabet of the
auxiliary random variable Ur can be taken to SDj j SRj j
X rj j XDj j þ 1 without altering I(XR; Yr|Ur, Xr, SR) + I(U;
Y|Ur) − I(U; SD|Ur) and I(U, Ur; Y) − I(U, Ur; SD).
Once the alphabet of Ur is fixed, the alphabet of U

is bounded in a similar way. SDj j SRj j X rj j XDj j �
SDj j SRj j X rj j XDj j þ 1ð Þ þ 1 functionals must be satis-

fied to preserve the joint distribution of Ur, SD, SR,
Xr, XD and two more functionals to preserve

IμðU ;Y jU rÞ−IμðU ; SDjUrÞ
¼ HμðY jU rÞ−HμðSDjUrÞ−Hμ U r;Y UÞ þ Hμ SD;U r UÞjð



�
ð74Þ

Iμ U ;Ur;Yð Þ−Iμ U ;Ur; SDð Þ
¼ Hμ Yð Þ−Hμ SDð Þ−Hμ Ur;Y UÞ þ Hμ Ur; SD UÞjð



�
ð75Þ

yielding the bound indicated in (9).
This completes the proof.

Appendix 2
Outline of the proof of Theorem 4
With the random variables defined in (40) to (43), we re-
write (37) and (38) as follows:

Y r ¼ XR þ SR þ Zr ð76Þ

Y ¼ XD þ Xr þ SD þ Zd

¼ XD0 þ 1þ ρ
ffiffiffiffiffiffiffiffi
β=γ

p� �
Xr þ SD þ Zd

ð77Þ

With these definitions, it is easy to verify that U ¼ XDþ

α 1þ αrð Þ þ αrρ
ffiffiffiffiffiffi
β=γ

p

1þρ
ffiffiffiffiffiffi
β=γ

p� �� �
SD , U0 and Ur are conditionally

independent, given SD, and α and αr will be clear in the
sequel.
Use the two random variables Ur and U to generate

the auxiliary codewords un
r and un. Under these choices

of the random variables, codebook generation, encoding
and decoding are the same as that in the DM case ex-
cept that successive decoding is used to decode the
quadruple ŵR k−1ð Þ; ĵr kð Þ; ŵD kð Þ; ĵd kð Þ

� �
instead of joint

decoding in the DM case.
Observing yn(k), the destination firstly find a pair
ŵR k−1ð Þ; ĵr kð Þ
� �

such that

un
r ŵR k−1ð Þ; ĵr kð Þ
� �

; yn kð Þ
� �

∈An
ε U r;Yð Þ

If there is no such pair or it is not unique, an error is
declared. By the packing lemma [31], it can be shown
that for sufficiently large n, decoding is correct with high
probability if

RR þ Rr;s≤I U r;Yð Þ ð78Þ

From (10) and (78), RR ≤ I(Ur; Y) − I(Ur; SD).
Treating XD0 in (77) as noise, we define the auxiliary

random variable Ur as

U r ¼ 1þ ρ
ffiffiffiffiffiffiffiffi
β=γ

p� �
Xr þ αrSD ð79Þ

By Costa's dirty paper coding, let

αr ¼
ffiffiffi
γ

p þ ρ
ffiffiffi
β

p� �2
P

γ þ βþ 2ρ
ffiffiffiffiffiffi
βγ

p� �
P þ N

ð80Þ

then

RR≤I U r;Yð Þ−I U r; SDð Þ

¼ C
ffiffiffi
γ

p þ ρ
ffiffiffi
β

p� �2
P

1−ρ2ð ÞβP þ N

 !
ð81Þ

is achievable.
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Since the destination has successfully decoded un
r

ŵR k−1ð Þ; ĵr kð Þ
� �

, the destination can peel off Ur to make
the channel to the destination equivalent to

Y ′ ¼ Y−U r

¼ XD0 þ 1þ ρ

ffiffiffi
β

γ

s !
Xr þ SD þ Zd− 1þ ρ

ffiffiffi
β

γ

s !
Xr þ αrSD

" #
¼ XD0 þ 1þ αrð ÞSD þ Zd

ð82Þ

The destination finds a unique pair ŵD kð Þ; ĵd kð Þ
� �

such that

ðunðŵD kð Þ; ĵd kð ÞjŵR k−1ð Þ; ĵr kð ÞÞ;un
r ŵR k−1ð Þ; ĵr kð Þ
� �

; y′
n
kð ÞÞ

�∈An
ε U ;U r;Y

′
� �

If there is no such pair or it is not unique, an error is
declared. By the packing lemma [31], it can be shown
that for sufficiently large n, decoding is correct with high
probability if

RD þ Rd;s≤I U ;Y ′jU r
� �

ð83Þ

From (11) and (83), RD ≤ I(U; Y′|Ur) − I(U; SD|Ur) is
achievable. The proof will continue after the following
lemma.
Lemma 1 For the considered channel here, if RD ≤ I(U;

Y′|Ur) − I(U; SD|Ur) is achievable, RD ≤ I(U0; Y′) − I(U0;
SD) is achievable.
Proof We only have to verify I(U; Y′|Ur) − I(U; SD|

Ur) ≥ I(U0; Y′) − I(U0; SD).

I U ;Y ′jU r
� �

−I U ; SDjU rð Þ
¼ HðUjU rÞ−H UjU r;Y ′

� �
−H U jU rð Þ þ H U jU r; SDð Þ

¼ HðUjU r; SDÞ−H U jU r;Y ′
� �

¼ H

 
U0 þ

ρ
ffiffiffiffiffiffiffiffi
β=γ

p
1þ ρ

ffiffiffiffiffiffiffiffi
β=γ

p� �U rjU r; SD

!

−H

 
U0 þ

ρ
ffiffiffiffiffiffiffiffi
β=γ

p
1þ ρ

ffiffiffiffiffiffiffiffi
β=γ

p� �U rjU r;Y
′

!
¼ HðU0jU r; SDÞ−HðU0jU r;Y

′Þ
≥HðU0jSDÞ−HðU0jY ′Þ
¼ IðU0;Y

′Þ−I U0; SDð Þ;
ð84Þ

where the inequality holds due to the facts that U0 and
Ur are conditionally independent given SD and condi-
tioning reduces entropy.
Thus, if RD ≤ I(U; Y′|Ur) − I(U; SD|Ur) is achievable, we

have

RD≤I U0;Y
′

� �
−I U0; SDð Þ ð85Þ

is achievable.
This completes the proof of Lemma 1.
By (82), we define

U0 ¼ XD;0 þ α 1−αrð ÞSD ð86Þ

With Costa's dirty paper coding, let

α ¼ 1−ρ2ð ÞβP
1−ρ2ð ÞβP þ N

ð87Þ

Then by Lemma 1, we have

RD≤I U0;Y ′
� �

−I U0; SDð Þ

¼ C 1−ρ2ð ÞβP
N

� �
ð88Þ

is achievable.
The decoding at the relay is the same as that in the

DM case except that the interference sequence snR kð Þ
can be subtracted before decoding wR(k) since snR kð Þ is
additive and known to the relay. This makes the channel
from the source to the relay equivalent to

Y ′
r ¼ XR þ Zr ð89Þ

Therefore,

RR≤C
�βP
N

� �
ð90Þ

is achievable.
Combining (81), (88) and (90), we show that R = RR +

RD is achievable when the following condition is satisfied

C P; γPð Þ ¼ max
0≤β; ρ≤1

min

� C
βþ γ þ 2ρ

ffiffiffiffiffiffi
βγ

p� �
P

N2

 !
; C

�βP
N1

� �
þ C β 1−ρ2ð ÞP

N2

� �( )
ð91Þ

This completes the proof.
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