2,142 research outputs found

    A Method for the Combination of Stochastic Time Varying Load Effects

    Get PDF
    The problem of evaluating the probability that a structure becomes unsafe under a combination of loads, over a given time period, is addressed. The loads and load effects are modeled as either pulse (static problem) processes with random occurrence time, intensity and a specified shape or intermittent continuous (dynamic problem) processes which are zero mean Gaussian processes superimposed 'on a pulse process. The load coincidence method is extended to problems with both nonlinear limit states and dynamic responses, including the case of correlated dynamic responses. The technique of linearization of a nonlinear limit state commonly used in a time-invariant problem is investigated for timevarying combination problems, with emphasis on selecting the linearization point. Results are compared with other methods, namely the method based on upcrossing rate, simpler combination rules such as Square Root of Sum of Squares and Turkstra's rule. Correlated effects among dynamic loads are examined to see how results differ from correlated static loads and to demonstrate which types of load dependencies are most important, i.e., affect' the exceedance probabilities the most. Application of the load coincidence method to code development is briefly discussed.National Science Foundation Grants CME 79-18053 and CEE 82-0759

    Performance Evaluation in Single or Multi-Cluster C-RAN Supporting Quasi-Random Traffic

    Get PDF
    In this paper, a cloud radio access network (C-RAN) is considered where the remote radio heads (RRHs) are separated from the baseband units (BBUs). The RRHs in the C-RAN are grouped in different clusters according to their capacity while the BBUs form a centralized pool of computational resource units. Each RRH services a finite number of mobile users, i.e., the call arrival process is the quasi-random process. A new call of a single service-class requires a radio and a computational resource unit in order to be accepted in the C-RAN for a generally distributed service time. If these resource units are unavailable, then the call is blocked and lost. To analyze the multi-cluster C-RAN, we model it as a single-rate loss system, show that a product form solution exists for the steady state probabilities and propose a convolution algorithm for the accurate determination of congestion probabilities. The accuracy of this algorithm is verified via simulation. The proposed model generalizes our recent model where the RRHs in the C-RAN are grouped in a single cluster and each RRH accommodates quasi-random traffic

    Probabilistic partial volume modelling of biomedical tomographic image data

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Discrete Time Analysis of Consolidated Transport Processes

    Get PDF
    Diese Arbeit beschĂ€ftigt sich mit der Entwicklung zeitdiskreter Modelle zur Analyse von TransportbĂŒndelungen. Mit den entwickelten Modellen fĂŒr Bestands- und FahrzeugbĂŒndelungen, insbesondere Milkrun-Systeme, kann eine detaillierte Leistungsbewertung in kurzer Zeit durchgefĂŒhrt werden. DarĂŒber hinaus erlauben die Modelle die Analyse der UmschlagslagerbĂŒndelungen, beispielweise Hub-und-Spoke-Netzwerke, indem sie im Rahmen einer Netzwerkanalyse mit einander verknĂŒpft werden

    Markov and Semi-markov Chains, Processes, Systems and Emerging Related Fields

    Get PDF
    This book covers a broad range of research results in the field of Markov and Semi-Markov chains, processes, systems and related emerging fields. The authors of the included research papers are well-known researchers in their field. The book presents the state-of-the-art and ideas for further research for theorists in the fields. Nonetheless, it also provides straightforwardly applicable results for diverse areas of practitioners

    Response times in healthcare systems

    No full text
    It is a goal universally acknowledged that a healthcare system should treat its patients – and especially those in need of critical care – in a timely manner. However, this is often not achieved in practice, particularly in state-run public healthcare systems that suffer from high patient demand and limited resources. In particular, Accident and Emergency (A&E) departments in England have been placed under increasing pressure, with attendances rising year on year, and a national government target whereby 98% of patients should spend 4 hours or less in an A&E department from arrival to admission, transfer or discharge. This thesis presents techniques and tools to characterise and forecast patient arrivals, to model patient flow and to assess the response-time impact of different resource allocations, patient treatment schemes and workload scenarios. Having obtained ethical approval to access five years of pseudonymised patient timing data from a large case study A&E department, we present a number of time series models that characterise and forecast daily A&E patient arrivals. Patient arrivals are classified as one of two arrival streams (walk-in and ambulance) by mode of arrival. Using power spectrum analysis, we find the two arrival streams exhibit different statistical properties and hence require separate time series models. We find that structural time series models best characterise and forecast walk-in arrivals, but that time series analysis may not be appropriate for ambulance arrivals; this prompts us to investigate characterisation by a non-homogeneous Poisson process. Next we present a hierarchical multiclass queueing network model of patient flow in our case study A&E department. We investigate via a discrete-event simulation the impact of class and time-based priority treatment of patients, and compare the resulting service-time densities and moments with actual data. Then, by performing bottleneck analysis and investigating various workload and resource scenarios, we pinpoint the resources that have the greatest impact on mean service times. Finally we describe an approximate generating function analysis technique which efficiently approximates the first two moments of customer response time in class-dependent priority queueing networks with population constraints. This technique is applied to the model of A&E and the results compared with those from simulation. We find good agreement for mean service times especially when minors patients are given priority

    Unreliable Retrial Queues in a Random Environment

    Get PDF
    This dissertation investigates stability conditions and approximate steady-state performance measures for unreliable, single-server retrial queues operating in a randomly evolving environment. In such systems, arriving customers that find the server busy or failed join a retrial queue from which they attempt to regain access to the server at random intervals. Such models are useful for the performance evaluation of communications and computer networks which are characterized by time-varying arrival, service and failure rates. To model this time-varying behavior, we study systems whose parameters are modulated by a finite Markov process. Two distinct cases are analyzed. The first considers systems with Markov-modulated arrival, service, retrial, failure and repair rates assuming all interevent and service times are exponentially distributed. The joint process of the orbit size, environment state, and server status is shown to be a tri-layered, level-dependent quasi-birth-and-death (LDQBD) process, and we provide a necessary and sufficient condition for the positive recurrence of LDQBDs using classical techniques. Moreover, we apply efficient numerical algorithms, designed to exploit the matrix-geometric structure of the model, to compute the approximate steady-state orbit size distribution and mean congestion and delay measures. The second case assumes that customers bring generally distributed service requirements while all other processes are identical to the first case. We show that the joint process of orbit size, environment state and server status is a level-dependent, M/G/1-type stochastic process. By employing regenerative theory, and exploiting the M/G/1-type structure, we derive a necessary and sufficient condition for stability of the system. Finally, for the exponential model, we illustrate how the main results may be used to simultaneously select mean time customers spend in orbit, subject to bound and stability constraints

    Preclinical risk of bias assessment and PICO extraction using natural language processing

    Get PDF
    Drug development starts with preclinical studies which test the efficacy and toxicology of potential candidates in living animals, before proceeding to clinical trials examined on human subjects. Many drugs shown to be effective in preclinical animal studies fail in clinical trials, indicating the potential reproducibility issues and translation failure. To obtain less biased research findings, systematic reviews are performed to collate all relevant evidence from publications. However, systematic reviews are time-consuming and researchers have advocated the use of automation techniques to speed the process and reduce human efforts. Good progress has been made in implementing automation tools into reviews for clinical trials while the tools developed for preclinical systematic reviews are scarce. Tools for preclinical systematic reviews should be designed specifically because preclinical experiments differ from clinical trials. In this thesis, I explore natural language processing models for facilitating two stages in preclinical systematic reviews: risk of bias assessment and PICO extraction. There are a range of measures used to reduce bias in animal experiments and many checklist criteria require the reporting of those measures in publications. In the first part of the thesis, I implement several binary classification models to indicate the reporting of random allocation to groups, blinded assessment of outcome, conflict of interests, compliance of animal welfare regulations, and statement of animal exclusions in preclinical publications. I compare traditional machine learning classifiers with several text representation methods, convolutional/recurrent/hierarchical neural networks, and propose two strategies to adapt BERT models to long documents. My findings indicate that neural networks and BERT-based models achieve better performance than traditional classifiers and rule-based approaches. The attention mechanism and hierarchical architecture in neural networks do not improve performance but are useful for extracting relevant words or sentences from publications to inform users’ judgement. The advantages of the transformer structure are hindered when documents are long and computing resources are limited. In literature retrieval and citation screening of published evidence, the key elements of interest are Population, Intervention, Comparator and Outcome, which compose the framework of PICO. In the second part of the thesis, I first apply several question answering models based on attention flows and transformers to extract phrases describing intervention or method of induction of disease models from clinical abstracts and preclinical full texts. For preclinical datasets describing multiple interventions or induction methods in the full texts, I apply additional unsupervised information retrieval methods to extract relevant sentences. The question answering models achieve good performance when the text is at abstract-level and contains only one intervention or induction method, while for truncated documents with multiple PICO mentions, the performance is less satisfactory. Considering this limitation, I then collect preclinical abstracts with finer-grained PICO annotations and develop named entity recognition models for extraction of preclinical PICO elements including Species, Strain, Induction, Intervention, Comparator and Outcome. I decompose PICO extraction into two independent tasks: 1) PICO sentences classification, and 2) PICO elements detection. For PICO extraction, BERT-based models pre-trained from biomedical corpus outperform recurrent networks and the conditional probabilistic module only shows advantages in recurrent networks. Self-training strategy applied to enlarge training set from unlabelled abstracts yields better performance for PICO elements which lack enough amount of instances. Experimental results demonstrate the possibilities of facilitating preclinical risk of bias assessment and PICO extraction by natural language processing
    • 

    corecore