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ABSTRACT  

In order to obtain a good representation of Computer Systems 

for performance evaluation, conventional analytic models require 

improvement from two points of view. 

First there has been a tendency to concentrate on known analy-

tic results and their extensions, obtaining representation of a 

specific system by choice of model parameter. values. It is argued 

here that a tnuty nepne.aentatLve model is best achieved by studying 
the properties of the real system first, and then determining the 

appropriate model type and structure from them. 

Secondly, the most crucial performance measures for both manage-

ment and users, are the time delays that relate to the rate at which 

individual tasks are being processed. Conventional models predict 

only overall resource utilisations and queue lengths. 

Much of this thesis is concerned with distributions of time 

delays in queueing networks. An approximate method for their deter-

mination is presented which is applicable to a very general class of 

networks and gives an efficient implementation. Exact results are 

then derived for cycle time distribution, first in cyclic and then 

in more general tree-like networks. Validation of both methods is 

by comparison with simulated results, sufficiently detailed data 

from real systems being unavailable. 

Subject to adequate precision, approximate methods are, in gen-

eral, more feasible as tools because of their greater generality and 

superior efficiency. We view and apply the exact method as a stand-

ard by which to assess the accuracy of various approximations whilst 

also recognising its potential as a practical tool for simple cases. 

Finally, the thesis addresses the almost universal assumption 

of "equilibrium", that is the assumption that the state space prob-

ability distribution is time independent. The time periods over 

Which this assumption can or should not be made are quantified via 

time-dependent analysis that is applicable to a very general class 

of networks and relevant in many transient situations. 
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§1. 	Introduction 

Modelling of computer systems as an aid to performance eval-

uation has been undertaken in various forms for many years. Such model: 

provide the ability to predict system behaviour in a variety of envi-

ronments. Prediction is important since the performance of a computer 

installation, quantified according to some objective measure such as 

response time (interactive system) or throughput, is frequently highly 

sensitive to small alterations in system characteristics or the behav-

iour of the user community. Thus optimum tuning of the system paramet-

ers determining (as far as possible) these characteristics is highly 

desirable and, indeed, essential in heavily utilised installations. 

The value of model based predictions is that a model should 

be far more flexible than the real system to work with. It can rep-

resent real system behaviour in a small fraction of the correspond-

ing time required by the system itself and allows a wide range of 

experiments to be performed which may not even be practicable at all 

on the real system. For example, the effect of introducing new hard-

ware such as an extra channel or more storage may be studied simply 

by altering appropriate model parameters. Furthermore, even to run 

possible experiments on the real system may well require that system 

to be dedicated throughout. This may be very costly, particularly if 

several experiments are to be performed. However, any model is worth-

less if it is not nepneaentative of the actual system for which it 

makes predictions; i.e. models must be adequately validated so that 

the accuracy of their predictions might be expected to be good. 

The processing capabilities of computer systems consisting 

of hardware and operating systems (referred to henceforth as just 

"computer systems") have been represented by various types of model. 

These can be classified broadly as statistical, simulation or analy-

tic, together with hybrids. For the past decade, considerable interest 

has been shown in models based on results of queueing network analysis 
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EJACK63, GORD67]; particularly since the publication by J.P. Buzen 

of an efficient algorithm for computing the associated marginal 

state space probabilities, [BUZE73].This computation was previously 

impracticable for even quite simple networks due to the sheer size 

of the state space. Such a modelling approach is in the analytic 

category and many fine papers, reporting both theoretical and 

practical research have appeared, for example EKELL75, DENN77, 

FAYO79]. In particular, the recent Queueing Networks edition of 

ACM Computing Surveys, CACM78], gives an excellent review of the 

current state of the art. 

However, the now traditional modelling approach using 

queueing network analysis (abbreviated to QNA henceforth) has 

perhaps not achieved as much as might have been hoped for from 

the point of view of providing a good representation. This is 

because there has been a tendency to apply existing analytic 

results to represent the system under investigation by suitable 

assignment of values to the model parameters. In contrast to 

this, to achieve a good representative model, it is argued here 

that the properties of the real system should be studied first, 

[LEHM79b], the most appropriate model type and structure subse-

quently being developed from or fitted to these properties. 

Nevertheless, despite this criticism, it is not felt 

that QNA is a poor basis for computer system modelling; on the 

contrary, queueing network models are considered by the author to 

be excellent for this purpose, for the following reasons: 

(i) Their structure matches very closely that of the 

operating systems of multiprogramming computer systems 

which allocate resources to tasks according to some 

queueing discipline. Thus one would expect such models 

to be representative, (relatively) easy to understand, 
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interpret and maintain; 

(ii) Predicted performance measures, such as resource utilis-

ations and queue length probability distributions, can be der-

ived directly from the analytic solution for the state space 

(marginal) probabilities; see, for example, CBUZE73, 

(iii) Their parameterisation is simple: a queueing network 

model, under its necessary set of assumptions, is totally 

defined by the mean service times and queueing disciplines 

of its centres, the routing probabilities and the total 

number of customers in a closed network or the arrival rate 

in an open one; 

(iv) They are fast in execution as a result of their analytic 

nature. 

Simulation models also possess many of the advantages 

given above and can represent explicitly events at any level of 

detail. However, in view of their algorithmic mode of operation, 

they can be very slow (and expensive) in execution. 

Typically, QNA has been used to predict the utilisations 

of and queue length probability distributions at the resources in 

the modelled system. Calibration and validation has been accomp-

lished by matching such predictions with the corresponding values 

obtained by monitoring the real system. Valuable though these 

performance measures may be, the most crucial quantities to users 

and management alike are time detay4 which directly relate to the 

rate at which individual tasks are being processed by the system. 

More detailed discussion of the importance of such time delays 

and applications of time delay analysis is given in chapters 2 

and 8. Suffice it to say here that such analysis can lead to 

prediction of response time distribution in an interactive 

DENN78]. 
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environment, of great value to the user in planning his work 

schedule as well as to management in organising installation 

protocol, and to prediction of cycle time distribution, of prime 

importance in any polling environment such as real time process 

control, multiplexor handling etc. 

In this thesis, the approach advocated is to validate 

queueing network models in terms of the distributions of time 

delays as well as via resource utilisations and queue lengths, so 

inspiring confidence in the prediction of such time delays in 

different environments. Very little work has been published on 

the dtiatnibut.%on4 of time delays although, of course, the ubiquitous 

Little's Law has been applied to obtain mean values via model 

throughput, e.g. [REIS79]. The reasons for this are in part a 

result of the approach of using off-the-shelf results and applying 

these to the system requiring to be modelled, so that the real need 

for such an analysis has been obscured somewhat. The derivation of 

the distributions of time delays is a difficult theoretical prob-

lem. Even when soluble it requires considerable computing power 

to obtain numerical results in even simple cases. The author's 

approach has been first to develop a relatively efficient, but 

approximate method to compute the distributions of time delays in 

a very general class of networks. Then an exact method, applicable 

to a rather more restricted class of networks, is defined as a 

standard for validation purposes as well as a practical method in 

simple cases; the exact algorithm is somewhat inefficient in 

execution. 

A tacit assumption invariably made by the QNA modeller 

is that the system under investigation has reached a state of 

stochastic equilibrium - in other words, the joint probability 

distribution of its queue lengths, represented by state space 

probabilities in the queueing network model, is time independent. 
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Intuitively one would expect such an assumption to be valid 

for the majority of time periods modelled, 

excepting of course running up and running down times of the 

systems when the variations caused by edge effects are signifi-

cant. However, little quantitative work has been carried out 

in this area. One chapter of this thesis is devoted to an 

analysis of the transient characteristics of the state space 

probabilities for Jackson type queueing networks, CJACK63], so 

that time intervals over which the equilibrium assumption should 

and should not be made may be identified. In fact the method 

generalises well to the more general BCMP, EBASK75], network. 

The relevance of such an analysis to a study of time delays is 

clear, and in fact an improvement to the accuracy of the 

approximate method referred to above was derived for a simple 

cyclic network by precisely this means, CHARR78a]. Furthermore, 

it is also apparent, for precisely the reasons given above, that 

transient analysis may be applied with great benefit in a wide 

variety of situations in QNA. 

Following this overview of the subject matter of this 

thesis, some more detailed background information is given in 

the next chapter wherein the importance of time delays is 

emphasised, particularly cycle times. 	Following that chapter 

the fundamental theoretical results of the research into the 

distribution of time delays in queueing networks are presented. 

First, in chapter 3, by making the so-called permanent stationarity 

assumption, an approximate result of very general application is 

derived. Exact results for the cycle times in cyclic networks 

and the more general "tree-like"t  networks under more restrictive 

* Cycle time is formally defined in chapter 3. 

t Tree-like networks are formally defined in chapter 5. 
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assumptions, are then derived in chapters 4 and 5 respectively. 

In chapter 6, validation with respect to results of 

simulation experiments is discussed for the approximate method 

and the (assumptions underlying the) exact method. Obviously, 

one would have liked to have performed validation with respect 

to observations monitored on one or more actual computer systems, 

but the system event level of detail required for such data 

collection makes data of this kind extremely difficult and 

expensive to obtain. Thus this validation has to remain an 

area for future effort. 

A convergent, iterative technique is presented in the 

following chapter for solving the Kolmogorov differential-difference 

equations for Jackson type queueing networks in an analysis of the 

transients discussed above. 

In chapter 8, possible applications for the results of 

the research presented in this thesis are discussed - indeed in 

many cases it was interest in the application which initiated the 

research - and future research directions are identified. 

Throughout the thesis, all of the results and ideas 

presented are the original work of the author unless otherwise 

stated. In particular, the theoretical results for cycle time 

distribution, both approximate (chapter 3) and exact (chapters 

4 and 5), and the transient analysis of chapter 7 constitute 

the author's main achievements over the past two years. 
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§ 2. 	Queueing Network Modelling of Computer Systems and the  

Importance of Time Delays  

2.1 Shortcomings of contemporary methods  

In the Introduction, the use of QNA as a method of 

modelling computer systems was strongly supported. Advantageous 

though this approach is, however, it does also possess certain 

disadvantages, with respect to the underlying theoretical analysis 

as well as the manner in which it has been applied. 

The first disadvantage, common to some degree to all 

analytic modelling methods, is that in order to obtain an analytic 

solution certain assumptions,which may not be valid in practice, 

must be made about the characteristics of the components of the 

model. Assumptions typically made in QNA and which frequently 

do not hold in the actual system modelled are: 

(i) The queueing discipline of the servers must be FCFS.1  

This assumption was relaxed to include servers of PS,2  

LCFS3  and IS4  disciplines in [BASK75] by the celebrated 

'BCMP' result, but pAiok ty disciplines can still not be 

represented. 

(ii) The service time distribution of each centre must be 

negative exponential. Again this restriction was relaxed 

by the BCMP result to allow any distribution with rational 

Laplace transform, and so for all practical purposes, 

a general distribution, [COX55]. However, the relaxation 

1. First Come First Served. 

2. Processor Sharing. 

3. Last Come First Served. 

4. Infinite Server. 
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applies only in the cases of PS, LCFS and IS disciplines. 

For FCFS discipline the server must still provide negative 

exponentially distributed service times. 

(iii) The service time distribution of each centre must be 

independent of the queue lengths existing at all other 

centres - i.e. only local state dependence is allowed. 

In particular a solution cannot be found for blocking 

situations in which the service rate of one centre is 

reduced to zero when the queue length at a different centre 

reaches some value (e.g. finite waiting room example). 

(iv) The routing probabilities between centres must be 

constant. This is another limitation on state dependence. 

(v) The state space probabilities of the network are 

time independent - i.e. the network is assumed to be in a 

state of (stochastic) equilibrium. As discussed in the 

Introduction, this assumption is not unduly restrictive; 

it is acceptable both intuitively and in practice. However, 

very little work has appeared to indicate quantitatively 

over what time intervals it is valid. 

As a result of these restrictions, the set of soluble 

networks is rather limited and many practical situations exist 

for which the corresponding networks are at present insoluble. 

A second disadvantage, in the use of QNA,has already 

been discussed in the Introduction. It concerns the modelling 

approach in which there has been a tendency to apply QNA models 

without first making a phenomenological study of the actual 

system first. Care is also necessary in the vaLdation of queueing 

network models. They are relatively easy to validate with respect 
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to readily available analytic predictions (concerning resource 

characteristics), but other measures, for example time delays, 

are of more interest, and validation should always be performed 

with respect to the measures of interest as specified besone 

commencement of the modelling process. Now, from a study of 

the real system information would emerge, not only about its 

structure but also about the measures requiring prediction, which 

would almost invariably include time delays experienced by indi-

vidual tasks. 

One of the most serious disadvantages inherent in 

contemporary QNA modelling is, in the author's opinion, the 

inability to model the progress of an individual task through 

a network. Conventional analysis is oriented towards resources 

or servers as opposed to tasks or customers in that it is overall 

service centre utilisations and queue length probability distrib-

utions which can be predicted from the state space (marginal) 

probability distribution. This disadvantage was referred to 

implicitly in the discussion of the first in that priority queue-

ing disciplines cannot, at the present time, be represented. 

In the following section, efforts which have been made 

in attempts to overcome some of the disadvantages listed above 

are described. There follow two sections in which is discussed 

the evolution of the fundamental research reported in this thesis. 

This addresses the largely unstudied problems of the analysis of 

the time delays incurred by individual customers and of the trans-

ient properties in queueing networks. 

2.2 Research addressing these problems  

Most of the research undertaken up to the present time 

has been concerned with the problem of the limitation to local 

state dependence as described in the previous section. New or 
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extended methods in QNA, both approximate and exact, have been 

developed in order to find solutions for the state space probab-

ilities in previously insoluble networks. 

An approach frequently taken to solve networks for 

which the BCMP assumptions (the most significant of which were 

listed in the previous section) do not hold is to use approximate 

methods requiring fewer assumptions. Such methods that have been 

developed include the representation of sub-networks by equivalent 

single, locally state dependent servers, [CHAN75b], the use of 

network decomposition techniques, [COUR75, COUR77], and the 

diffusion approximation for the "heavy traffic" case of many 

customers, [KOBA74a, KOBA74b, GELE75]. The approach can be applied 

quite generally with various degrees of approximation and results 

in simpler, approximately equivalent networks to analyse. Thus 

computation becomes more efficient (important typically in commu-

nication network modelling where there may be very many service 

centres, see CREIS79] for example) and ava1d4 the problems of 

violating assumptions rather than finding new solutions. An 

approximation frequently made is blatantly to violate certain 

assumptions, which although somewhat crude, usually gives predict-

ions in good agreement with real world measurements. This is a 

manifestation of the so-called "robustness" (empirical) property 

of queueing networks which effectively states that a QNA model's 

predictions are stable in that they do not vary significantly 

when perturbations are made to its defining characteristics. The 

robustness property has been widely exploited of late [BARD79, 

BOUH79, PUJO79] in an attitude of "if it works do it" - i.e. val-

idation is purely on the basis of experiment. The closeness bet-

ween the structures of computer systems and queueing network models 

gives an intuitive explanation for robustness, but a formal analy-

sis is really required. 



The exact methods have in the main been derivations of 

solutions for specific cases with less restrictive assumptions. 

Of course, in theory any problem which can be represented by a 

Markov process can be solved exactly under the equilibrium assump-

tion. The solution is quite simply the solution to the linear 

equations P'Q = 0 where Q is the instantaneous transition rate 

matrix for the process and P the equilibrium state space probabil-

ities of the embedded Markov chain. However, this method is of 

no use in practice since for any non-trivial problem the number of 

states is excessively large, increasing combinatorially with the 

number of customers and number of centres in the network. Thus 

closed form solutions, e.g. the product form solution of CBASK75], 

have been sought and it is shown in CCHAN77] that the existence of 

a pnaduct form solution is equivalent to a network possessing the 

property of local balance. 

A detailed study of state dependencies in queueing 

networks with particular reference to blocking is given by 

Mecklenburg, CMECK78]. Here solutions are derived for networks 

with non-locally state dependent service rates and routing probab-

ilities, subject to certain constraints on the dependencies; in 

particular solutions are valid for reversible networks, defined 

in [KING69]. A fully general solution based on complex variable 

theory is given in CFAY079] for the case of two-centre networks. 

Valuable though research of this kind has been, little 

work has been reported addressing the other disadvantages dis-

cussed in section 2.1. Restrictions still exist on the type of 

queueing discipline, for example any priority discipline other 

than FCFS being barred, and on the form of service time distribu-

tions. In the latter case, of course, the only problem in practice 

arises with FCFS discipline which requires exponential service 

times for any solution to be possible in a Markovian framework. 
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With regard to the modelling methods used in currently 

reported research, the phenomenological approach advocated here 

has, typically, not been used CKRZE77a, SHUM77, SAUE75]. It was, 

however, adopted by the author in CHARR78b1 and is supported by 

the modelling methodology described in CKIEN79]. The recent 

upsurge of interest in the operational analysis of queueing net-

works, EDENN78, BUZE78, BARD79], is also consistent with the app-

roach in that the resulting models are actually defined in terms 

of measurements made on real systems. 

2.3 Representation of time delays incurred by individual tasks  

2.3.1 	Their importance  

As already discussed, conventional methods of QNA are 

essentially server oriented and little research has been carried 

out into the behaviour of individual customers in queueing networks. 

In section 2.1 an example of this was seen in the inability of 

current techniques to represent priority queueing disciplines. But 

the implications are far more extensive than this. 

The importance of analysis of time delays incurred by 

tasks passing through the various components constituting a com-

puter system is clear. Optimisation of response time (interactive 

system) and turnaround time at a computer installation is a major 

requirement of the user community. Indeed, predictability is 

essential if a user is to successfully integrate his computer usage 

into his work schedule. For example, even if the response time has 

a rather large expected value, it may still be tolerable if it is 

fairly consistent; that is if the standard deviation is small and 

there is little chance of response times considerably greater than 

the expected value. In fact predictability is often more important 

than magnitude. Thus, such considerations become an important 
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objective to the management for whom cost effectiveness (exemp-

lified by throughput typically) is the main concern, subject to 

provision of a certain predefined minimum service quality for the 

user community. 

Delays are in general composed of a sum of sub-delays 

incurred by passing through a sequence of components, e.g. CPU, 

various I-0 activities and back to CPU; the number of terms in 

the sum depends on the size characteristics of the individual 

tasks in question, and in the case mentioned would be the number 

of I-0 transfers required. Thus the analysis required may be 

divided into two areas: 

(i) The time delay incurred from a single linear sequence 

of components; 

(ii) Aggregation of successive such time delays (loops). 

The prediction of response time comes in the second 

category. An application for time delay prediction in the first 

category occurs in communication network modelling where the prob-

ability of a message transmission taking longer than some specified 

time may be required. 

A second, and very significant, application in the first 

category arises in the modelling of any system involving polling 

to permit the prediction of the probability of system failure. For 

example, 

(i) In a multiplexor system it would be possible to predict 

the probability of data loss through failure of the polling 

routine to sample a data line frequently enough; 

(ii) In a process control or machine tool control system one 

could predict the probability of a system fault caused by 
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the failure of a scheduler to test sensor inputs at some 

minimum specified rate. This sort of prediction is obviously 

of great value in view of the possibly catastrophic conse-

quences caused by failure - say in nuclear reactor control. 

More details as to the actual construction of models such as these 

are given in chapter 8. 

The two problem areas mentioned above have been considered 

with respect to mean vaLue4 of the time delays, when Little's Law 

(see for example CKLEI75]) may be used under suitable independence 

assumptions. Thus, for example, if successive cycles of a task 

in an interactive system (e.g. sequences of service requests bet-

ween successive requests for the CPU) are assumed independent, the 

mean response time is simply the mean cycle time (derivable through 

Little's Law) multiplied by the mean number of cycles. Recent 

research into mean value analysis of time delays, applicable as 

an approximation to complex networks, is presented in CREIS79] 

and CBARD79]. 

However, the mean value of a time delay alone is frequ-

ently insufficient. In the examples given above, for example, 

higher moments are required to give the standard deviation for 

response time and in polling systems percentiles are also required. 

2.3.2 	The author's approach 

The author's work on the distribution of time delays 

began with an approximate study of cycle times in cyclic queueing 

networks and a generalisation of these, common server networks , 

CHARR78a]. The method presented was based on the assumption of 

* The term cycle is defined in chapter 3. 

t Common server networks are similar to central server networks 

and defined formally in CHARR78a]. 
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permanent stationarity which is defined formally in the following 

chapter and basically assumes that a queueing network is such that 

the equilibrium, time independent, state space probability distri-

bution is valid at all times. For each of the possible sequences 

of successive queue lengths faced by some specific customer, the 

cycle time distribution is evaluated (approximately) as the con-

volution of the distributions of the sojourn times spent in each 

individual queue, taken in isolation. These results are then 

weighted according to the joint probability distribution of the 

queue lengths faced, as given by the permanent stationarity ass-

umption. An improvement in this approximation is also developed 

via an exact algorithm for calculating this joint probability 

distribution. 

This work has been extended to apply to networks of 

very general characteristics, with the time delay in question no 

longer restricted to cycle time, as described in chapter 3. 

This leads naturally to the exact methods of chapters 

4 and 5. These are based on a study of the discrete state trans-

itions in networks as opposed to an analysis in continuous time. 

The class of networks analysed is chosen so that at all stages 

in the computations involved, whatever the state of a network, 

the position of some test customer is known. Expansion of the 

state space is consequently unnecessary in contrast to the method 

of [YU77] discussed below. Thus the results give relatively 

efficient implementations and may be used to provide standards 

against which to compare approximate methods (see chapter 6). 

2.3.3 	Other work  

An approximate study of ne4pon4e time in queueing network 

models has been made by Lazowska and Sevcik ELAZ077a, LAZ077b, LAZO 
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787 in which response time is defined as the sum of successive 

cycle times for a particular task. The approximation arises in 

that it is assumed that successive cycles are independent and the 

distribution of the number of cycles required by a task is geomet-

ric. The resulting response time distribution is shown to be 

asymptotically exponential and, despite the approximations, gives 

results which compare quite favourably with actual observations. 

Exact results have been derived for certain cases: 

(a) Chow derives the cyct e time distribution in cyclic networks 

of two centres with FCFS queueing discipline and exponential 

service times, [CHOW77a], which is extended to the central server 

case in CCHOW77b7. The approach taken (in the former case) is to 

observe that the behaviour of the second centre in the cycle, 

given the queue length there on arrival of the customer in question, 

is that of the centre taken in isolation. The probability distrib-

ution is derived for the queue length faced on arrival at the 

second centre conditional on that existing initially at the first, 

as a function of the sojourn time of the customer at the first 

centre. From this analysis in continuous time, the cycle time 

distribution follows as a complex result requiring numerical 

integration. 

(b) Wong derives the Laplace transform of the time delay dis-

tribution for messages in open networks encountered in communi-

cation system modelling, CWONG787, by the use of probability gener-

ating functions and the properties of the Poisson arrival process. 

(c) An exact solution for the passage time distribution of a 

network with a special "tagged" customer between predefined states, 

subject to routing constraints, is given for RCMP networks in the 

form of recursion equations for the Laplace transform in CYU77]. 
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His approach is to apply results from the general theory of 

stochastic processes to queueing networks. Naturally, his 

results may be shown to be equivalent, for the appropriate class 

of networks, to those derived in chapters 4 and 5. However, the 

method is of limited pnactica.P use in that the recursion equations 

span the whole state space which is extended very considerably to 

include the information for tagging (so that the position of the 

tagged customer in the network is known in any state) and routing 

constraints. In fact the method has a close analogy with that of 

deriving the state space probabilities by solving the complete set 

of balance equations for a network explicitly (c.f. section 2.2) -  

a simple solution on paper but not in practice: 

Although not an analytic method, another approach to 

the analysis of time delays is given in [SHED79] where simulation 

methods are applied in the Markovian framework used in (c). In 

this way, numerical results can be obtained for a much larger 

class of networks than in the case of numerical computation based 

on the corresponding analytic method. 

2.4 The equilibrium assumption and transient analysis  

The final line of research pursued and described here 

concerns a quantitative assessment of the equilibrium assumption 

made almost universally in QNA. The approach taken is to solve 

by an iterative method the Kolmogorov differential-difference 

equations for networks, so yielding the time dependent state space 

probabilities. In fact, this method was originally developed by 

the author for the simple case of a cyclic network with two servers, 

CHARR78a], as a refinement of the approximate analysis (assuming 

permanent stationarity) of cycle time distribution. A transient 

analysis in continuous time was performed to derive the probability 



-18- 

distribution of the second queue length faced conditional on the 

first, the arrival at the first centre effectively setting a time 

origin. In this way the joint probability distribution of the 

two queue lengths faced could be computed more accurately. It 

will be noticed that this application of the transient analysis 

is not dissimilar to the (independent) approach of CCHOW77a] dis-

cussed above. 

Very little published work exists in the area of 

transient analysis in queueing networks, although in CGRAS77a,b] 

is presented a method adopting the approach of numerical solution 

of the Kolmogorov equations by means of the Runge-Kutta technique. 

This method is also used as a means for deriving time delay dis-

tributions. 

The transient analysis developed in chapter 7 can be 

applied to networks of the Jackson type and the possibility of 

extension to the more general BCMP case is immediately apparent, 

although this is not done here. The method results in a simple 

iterative scheme, which is shown to be convergent, and is suitable 

for implementation by computer. Other applications of this 

research, in addition to the equilibrium assumption assessment, 

are concerned with the study of the immediate effects of datutcb- 

anceo in queueing networks. These are discussed in some detail 

in chapter 8. 
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§3. 	Time Delay Distributions under the Permanent Stationarity 

Assumption. 

3.1 Model Specification  

The queueing network time delays considered in this 

chapter are defined to be the times elapsed between a customer 

arriving at some pre-defined service centre, a say, and his 

departure from some pre-defined service centre, S say. Under the 

usual assumption made in QNA that transitions between servers by 

customers are instantaneous, in a closed network the time of 

departure of the customer from centre S will be that of arrival 

at the successor centre in the customer's (infinite) path. This 

thesis is primarily concerned with cycle time distributions in 

closed queueing networks. In these, cycle time may be defined to 

be the time elapsed between successive occurrences of a particular 

customer's arrival at some specific service centre, subject to 

certain constraints on the centres entered in the path taken. In 

this case the successor centre of 13 will be a and the constraints 

restrict valid cycles to certain paths. For example, in the network 

shown in fig. 3.1 

fig. 3.1 Network with constraints on valid cycles  

a customer could re-enter centre 1 after leaving centre 1 without 

first entering centre 2 and such a path may well be considered 
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illegal as a cycle. However, for the networks considered in the 

exact analysis presented in chapters 4 and 5, by choosing 

centre a as the head of a tree-like network in the latter, 

the constraints become null in view of the order invariance or 

non-overtaking property required and fully defined therein. 

In this chapter, first the moments of the time delay and 

then its distribution are derived for the case of a single path or 

sequence of centres entered between a and S under the assumption of 

permanent stationarity of the network. The distribution is first 

obtained in the form of its Laplace transform and then formulated 

as a recurrence relation derived by inversion thereof. A discrete 

form of the distribution is also derived and is easily seen to be 

convergent as the discrete time step decreases towards zero by 

precisely the same argument as is applied formally in the following 

chapters in the derivation of exact results. 

The permanent stationarity assumption, abbreviated to 

PSA, states that a queueing network is in its stationary (equilibrium) 

state at any time, unconditionally on its state at all other times, 

and that its servers operate independently so that they can be con-

sidered in .iso!at-Lon. Thus, if the network has M servers with state 

space S; 1si,jsM; k,k'c S and the random variable K e S, the probab-

ility 

P(K = k i t = ti) 

where a special customer (henceforth referred to as the "test" 

customer) arrives at centre i at time ti, and the probability 

P(K = k'l t = t j ) 
are independent of k' and k respectively. Furthermore each has the 

equilibrium distribution, e.g. that of EJACK63] under appropriate 

additional assumptions. 

This assumption is intuitively reasonable when an overall, 

averaged view of the network is acceptable after each service com-

pletion of the test customer, for example in the following cases:- 
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(i) In an open network - the length of the queue at 

centre j arrived at after a transition from centre i is 

unlikely to be strongly dependent on the queue length at 

centre i. This is in contrast to the case of a closed 

network in which the total number of customers is fixed. 

For example, for a closed cyclic network with 2 service 

centres, 1 and 2, and N customers, if there are k customers 

at centre 1 there are N-k at centre 2 with probability 1, 

(O<k<_N). Thus if on arrival of the test customer at centre 1, 

all the other N-1 customers are at centre 2 (k=1), then in the 

case of comparable service rates of the two centres, one would 

expect considerably more customers at centre 2 on arrival of 

the test customer than would be predicted by the steady state 

solution of the network. 

(ii) To a lesser extent, in closed networks in which there 

are several service centres, in particular when centres have 

multiple arrival streams from other centres. The reasoning 

for this is similar to that given in (i). 

(iii) When the queue length at each centre in the sequence of 

centres considered for the test customer's path is large;e.g.the 

heavy traffic situation. This is the case for open, closed and 

cyclic networks (to decreasing degrees) and follows since after 

a longer waiting time at any centre, the network will have under-

gone more transitions and more nearly approached its steady state. 

When several paths are valid in the passage from centre a 

to centre s, as will be the case in general for cycle times in 

non-cyclic networks for example, the final result, whether for 

moments, distribution or Laplace transform of the distribution is 

easily obtained by weighting the results for each valid path 
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according to the probability that that path is followed. 

I.e. 

Time Delay Distribution = 	P(plp is valid)(Time delay 

paths p distribution for path p} 

Section 3.4 describes how the path probabilities may be obtained 

from the specifications of a queueing network. 

Having derived the theoretical results for this 

approximate method, the chapter closes with a discussion of the 

(very general) applicability of the method in practice and 

validation methods. 

3.2 Moments of time delays  

The moments of the time delay distribution for some path 

of length M servers numbered 1,2,....,M for a given set of queue 

lengths, {nir1<isM}, at times of arrival of the test customer, may 

be derived in terms of the moments of the service time distributions 

of the individual service centres in the path. These moments may 

then be weighted according to the corresponding queue lengths joint 

probability distribution to give the moments of the time delay. 

In this section, as in section 3.3 also, the results 

pertain only to a single path, the general result being simply 

derived as a weighted average over all possible paths as described 

in section 3.4. 

The time delay distribution for any customer is the 

convolution of the waiting time distributions at each of the 

M service centres if independence of these distributions is assumed 

as in the PSA case. The waiting time distribution at a FCFS type of 

centre, i say, again assuming independence of centres, is the con-

volution of ni  service time distributions, where ni  is the number 
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of customers at centre i on arrival of the test customer. Thus 

it is necessary to derive an equation for the p'th moment, Mp, 

of a convolution of n random variables, Y1....,Yn say. 

Now, M
P 

= E(Y 1 +...+Yn)p 

r1 . 

i 
Y 

n  
P! n r.' n 	i=1 i 

E ri=p 
i=1 

where ri>_0, 1si<_n 

= E, 

• 

M(1) n r. 
M
P 

= p! 	/ 	n r 1• 

Eri=p i=1 
i~ 

 

(E3.1) 

  

where M(r1) is the r.'th moment of the random variable Y i. 
1 

Thus the p'th moment, M
P 
(n), for the time delay distrib-

ution, given the set of queue lengths n at the said arrival times, 

is given by equation(E3.1)with n=M in which, for a FCFS centre, 

i say 

M (i) = 	
n. Sky) (qi) 

t 	t' n. 	
j~1 

k~' 
E1 k~=t 
-1k.O 

J 

	 (E3.2) 

where Sk1)(q) is the k~'th moment of the service time distri-
7 

bution of centre i for a queue length q. At this stage a further 

approximation is introduced for paths containing servers with 

non-constant service rates. In this approximate analysis, the 
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queue length existing at any centre holding the test customer is 

only considered on arrival of this. customer. Thus, the queue 

length at centre i (1si5M) is unknown throughout the sojourn time 

of the test customer at centre i, except initially. Therefore any 

choice of qi  in equation (E3.2) is bound to lead to further approx-

imation. To avoid this would involve a much more complicated 

analysis of the probability distribution of the queue length exist-

ing on any service completion at centre i conditional on the initial 

queue length. Such additional work is not considered worthwhile 

for the following reasons:- 

(i) The PSA method was designed to be simple to apply as 

a practical tool. The introduction of this new complication 

would severely limit the domain of network structures for 

which the PSA method is practicable in view of the vastly 

increased computing resources required; 

(ii) By suitable choice of qi, the decrease in accuracy 

introduced ought to be negligible compared with that arising 

from PSA. The actual quantitive difference is not analysed 

here, the important validation being between the results 

of the adopted PSA method and real data, simulated data and 

exact results, as described in chapter 6. 

The choice of qi  (1sisM) would typically be the mean 

queue length at centre i or that giving a throughput (conditional 

on non zero queue length) equal to that achieved in the equilibrium 

situation, a simple measure to compute [BUZE73]. In section 3.5 

it is shown how this choice results in an exact computation of the 

mean time delay. In the rest of this chapter it will be assumed 

that centre service rates are state independent so that the problem 

does not arise; for the PS and IS type of servers considered below, 
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values for qi  may be chosen in exactly the same way. 

For the case of a PS server i, 

M (1) 	= S 	
(1 . (t ) J P 	 P qi 1  q. 1 

where: qi  is some form of average for the queue length at centre i, 

chosen for example as described above for servers with state depend-

ent service rates, and so introducing further approximation; 

0i(t) is the service time p.d.f.t  of centre i for a queue 

length of 1 and 

S(0) is the p'th moment of the p.d.f. 0. 

This is so since for a PS service centre with queue 

length n>0 and service time p.d.f. f(t), the (cumulative) distrib- 

ution function of the waiting time, T, for each customer is given by 

Pr(Tst I queue length n) = Pr(Tst/n 1 queue length 1) 

_ f /n  f(u)du  
0 

= It 1 

0 n f (v/n) dv 

using the change of variable u=v/n. 

For an IS server i, M (1)  = Sp(0i) for all queue lengths 

greater than zero trivially. For LCFS queueing discipline the method 

is not really applicable for the reason given in the discussion of 

FCFS centres; the queue length at any centre holding the test 

customer is unknown after the instant of arrival. Some estimate, 

as a function of the queue length faced on arrival, for the expected 

t probability density function. 
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number of service completions at centre i required before 

departure of the test customer could be made to yield a value 

for the number of convolutions necessary. However, the overall 

effect could be a considerable decrease in accuracy, particularly 

if there are several centres with LCFS queueing discipline. The 

reason is that in this case it is in the fundamental principle 

of the method rather than in the assignment of parameter values 

that the approximation would be made. 

If centre i has exponential service time distribution 

with mean ui(ni) for a queue length of ni, then the n'th moment 

is well known to be 

n! 
1il (ni)  }n 

The expression for the p'th moment of the time delay 

distribution, Mp(n) given by (E3.1) is dependent on the queue 

lengths encountered on arrival at each service centre via the 

direct dependence on Mt(1)  (15i5M) which is dependent on ni. 

Now suppose the time delay p.d.f. is(r,t) where ri  (1sisM) 

is the number of customers at service centre i at the time of 

arrival of the test customer. Then, assuming permanent 

stationarity and a closed queueing network of M' centres and 

population N, the overall time delay distribution, 'V(t) is given 

by 

N N 	N 
`Y(t) = 	E 	E ... E 	P(ni=ri1ni>O;1sisM)1p(r,t) 

r1=1 r2=.1 	rM 1 

N 	N 	M P(n.=r.) 
E ... E 	II 	P(n

a.  
 . >O) j(,t) r1=1 	rM 1 1=1 	1 

assuming without loss of generality that the centres in the chosen 

path are enumerated  
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N 	N 	M 

Thus, 	T(t) = 	1 ... 1 	n P"(ni=ri),y(r,t) 	 (E3.3) 

r1=1 rM 1 i=1 

where P"(ni=ri) = 
P (ni=ri  ) 

(15i5M) P (ni>O) 

is the re-normalised queue length probability for the case ni O. 

This may be evaluated using the expression for the normalising 

constant G(N) given in CBUZE73] as: 

P"(ni=ri) = 

r. 
X. 
G(N-1) {G(N-r.)-XG(N-r-1)}t  

This result is in fact a special case (because of the 

PSA) of that of Mitrani and Sevcik CMITR79]: 

At the instant of arrival at a centre in a closed 

queueing network in a state of equilibrium, a customer sees the 

equilibrium state space probability distribution for that network 

with himself removed. 

Multiplying equation (E3.3) by tp and integrating w.r.t. 

t over the interval CO,o) the p'th moment of the overall cycle 

time distribution is 

N 	N ( M 	l 
= E ... 	j II P 	

1 1 
(n.=r•) t Mp  (r) 	 (E3.4) 

i=1  

where P" is defined as above. 

In the APL package of Appendix .7 the first two moments 

of cycle time distribution are computed by the method described in 

this section by the function PSM. 

Xi  = ei/ui where ei  is the visitation rate and ui the service 

rate of centre i (1 5 i 5  M"). 

r1=1 rM=1 
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3.3 Time Delay Distribution  

3.3.1 	Its Laplace Transform 

The time delay distribution for a path consisting of 

M centres in a closed queueing network of N customers, 'Y(t), is 

given, under the assumption of permanent stationarity, by equation 

(E3.3) in terms of the ip(r,t) where 1<_risN,1M. 

In this section, it therefore remains to derive an 

expression for ip(r,t), the p.d.f. of the time delay for a 

queueing network path in which the number of customers present at its 

centre i is ri at the arrival time of the test customer. The 

weighting of the results for all valid paths is discussed in 

section 3.4. 

Now assuming independence, ip(r,t) is the convolution 

of the waiting time distributions for each centre i in the path 

taken 	at which there are ri customers. Let F(r,p) = L(p(r,t)), 

the Laplace transform of ip(r,t). Then 

M 
F(r,p) = 	E L(0i(r.,t)) 

i=1 

where (Di(ri,t) is the waiting time distribution at centre i when 

the queue length there is ri>O at the time of arrival of the test 

customer. That is, for a FCFS queueing discipline 

r. 

= 	* 	(1)i (t) 
j=1 

and for a PS discipline 

0i (ri,t) = 
qi 

~i (t/qi) 

r. 1 
where * denotes ri convolutions, ci(t) is the service time 

j=1 
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distribution of centre i, assumed state independent,and qi  is some 

averaged queue length for centre i, as discussed in the previous 

section. For an IS centre, qi  is simply set to 1 in the PS case. 

For computation of the Laplace transform further use 

may be made of the independence property of the PSA. The 

Laplace transform of 'Y(t), 

N 	M 
L(T(t)) = 	E 	II 	P"(nj=rj) L(41j(rj,t)) 

ri=1 j=1 

1-<isM 

M N 
= 	II 	E 	P' (ni=ri) L (yri,t) ) 

i=1 x=1. 

by the dependence of the factors on only a single value of the 

subscript i which follows from the assumed independent behaviour 

of the service centres. The second form of the result obviously 

provides a far more efficient computation and is performed by the 

function PSA in the APL package of Appendix 7 for the case of 

cycle times in tree-like queueing networks. 

In section 3.3.2 the case of exponential servers with 

(the more complex) FCFS queueing discipline is considered, and 

p(r,t)is obtained by inverting the Laplace transform F(r,p) given 

in equation (E3.5). In section 3.3.3, a discrete approximation for 

j(r,t) is derived by direct convolution of the discrete form 

approximations of its constituent centre service time distributions. 

The result is convergent as the discrete time step approaches zero, 

the proof being the same as that for the analogous formulae 

presented as part of the exact analysis of cycle time distribution 

in chapters 4 and 5, and not given here. 



 j 

kiu

l   
F(r,p) = II 

i=1 	+ i P u 
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3.3.2 	Inversion of the Laplace Transform 

In the case of exponential service time distributions, 

for example as would be required for the stationary state space 

probability distribution used in section 3.2, 

M 
Pi  ri 

F(r,p) = 
P1-11  

i=1 

 

(E3.5) 

 

for FCFS queueing discipline 

	

M 	uiz 
 qi  and 	F(r,p) = II 
ui + i=1 

 p 	/qi 

 

(E3.6) 

 

for PS queueing discipline 

where pi  is the service rate of service centre i (when the queue 

length is 1 for the case of a PS server). 

For FCFS servers, the expression for F(r,p) may be 

written 

(E3. 7) 

where 	{ uk  i 1sk<_L } _ { ul  11m 1, 

L is the number of unique elements in this set and 

M 

ki  = 	r. 

j=1 

r.=k. 

For example, in the case of a network of M centres with 

non-degenerate (i.e. unique) service rates independent of 



M 	
l 
ri 

P. 
F(r,p) 	= 	II 	

P+ui i=1 
, equation (E3.5). 
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queue lengths, L=M and ki=ri (15i5M) so that 

The expression on the right hand side of equation (E3.7) 

may be inverted to give tp(r,t) which is rewritten as ip(k,t) by 

evaluation of the Bromwich (contour) integral CSPA17O]. 

This is carried out in Appendix 1, yielding the result 

Ip (k, t) 	= 
L k 

n ui 1 L ~j 	(k,t) 
i=1 	j=1 

 

(E3.8) 

 

k. 	k.-1-lZ. 
e
-ujt (k,-1)!t J (_) J 	J 

where ij( k,t) = L 	I 	L 	 

II (k.-1) ! L 	II 	k. 
i=1 1 	E k =k -1 	i=1 1 i 3 1-_ 1k.  -O 

1 

(k.+2,.-1)! 

(Pi-ui) 1 1 
k.+k. 

1si#jsL  

(E3.9) 

A recurrence relation is also derived in Appendix 1 

for this result as 

*.(k,t) 	L 	 
Q . (k, t) 	 (E3.10) 

  

i=1 
(ki-1)! 

whereQ . (k, t) 	= tQ . (k3 , t) - 	Q . (kJ ' k+, t ) 	. , ... (E3.11) — 	
kj 

(kj>_2 and k..1 , 1si~j5L) 
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with boundary condition 

Q. (k,t) 
(k.-1): 	-p.t 

II 	1 	e 
( . -P  .)k1 

1_< i#j_<L 

 

(E3.12) 

 

(k=1 and k. 1 ,  

in which 	ki 
	

= 	(k1,...,kj-1,...,kL) 

and kj-,R+ = 	(k1,...kj-1,...,kk+1,...kL) 

The equivalence of the two forms of this result is 

also shown. 

As an example, consider the case of a single server with 

L=1 so that, from equation (E3.8), 

k 
V(k,t) = t(k1,t) = u1 1ip1 (k1,t) 

	

Using (E3.11). 	Q1  (k1,t) = tQ1(k1-1,t) 

	

where 	Q1  (k1,t) = (k1-1) :Ip1  (k1,t) 

	

Using (E3.12) , 	Q1  (1,t) = e 

k1-1 	k-1 -p 1t Q1  (k1,t) = t 1  Q1  (1,t) = t 1  e 1  

k1-1 	-u1t 

(k1-1); e 

which is the familiar Erlang - k1  distribution. This result 

could have been obtained immediately from (E3.9), there being 

only one term in the summation for L=1. 

Although the solution for yk,t) is given by equation 

• 

• 
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(E3.9), the number of terms involved in the summation increases 

combinatorially with kj. For numerical computation, the 

recurrence relation (E3.11) and boundary conditions (E3.12) may 

well provide a better approach although the obvious recursive 

solution involves many function calls with consequent large 

storage and execution time requirements. This difficulty can 

be alleviated by saving certain intermediate values of the 

recursive function to avoid later unnecessary recomputation, 

for example as in [MICH67, HARR74]. 

An alternative approach to this method of inverting 

the Laplace transform is to perform the operation numerically 

using the values of L('F(t)) derived in section 3.3.1 correspond-

ing to a suitable set of values for the parameter p. However, 

in view of the averaging nature of the Laplace transform operation, 

such inversion is rather difficult though not impossible. This 

topic is discussed further in chapters 4 and 5. 

3.3.3 Discrete approximation for time delay distribution  

An alternative approach to deriving the distribution 

of the time delay by inversion of its Laplace transform is to 

perform the necessary convolutionsdirectly; this may be achieved 

numerically by first computing discrete forms of the constituent 

service time distributions and then performing simple summations. 

The presentation given here is not fully rigorous, this being 

left to the parallel development of chapters 4 and 5. 

Now, 

N M 
`Y (t) 	_ 	* 	P"(nj=rj)(1)j  (r j ,t) 

r.=1 j=1 
15i5M 

is the notation of 3.3.1 where 
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(1) j  (rj  ,t) 	= 
r. 
*3  (P  . (t) 
i=1 3  

and cpj(t) is the service time distribution of the j'th server, 

assumed here FCFS. 

Thus, 
M 	N 

T (t) 	= 	* 	1 P' (ni=r.) ci  (r. ,t) 
i=1 ri=1 

by the independence assumption, where a closed network of N 

customers is under analysis. 

Now let ci)i(t) be represented in discrete form by the 

probability distribution Hi(j),j=0,1,2,..., then 

Hi  (j) 
	

Pr{(j-1)A<tsj0} 

jA 

_ 	(j-1)A 

0 

for some time step A E R+. * 

(1) i(t) dt 	(j.1) 

(j=0) 

For example, if centre i has negative exponential service 

time distribution then, as shown in chapter 4, Hi  is geometric 

and the convolutions may be performed via a simple recurrence 

relation given in Appendix 2. 

Let the corresponding discrete forms for the sojourn 

time distribution of the test customer at centre i,  

be Ji(ri,j) and for the time delay, lF(t) be K(j); j=0,1,2,...,1sisM. 
Then 

r. i 
J. (r1., ) 	- 	* 	H. ( 	) 

n=1 

* R+  denotes the set of all positive real numbers. 
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and 
M N 

K( ) 	- 	* 	E P"(n1=ri)J. ri,) 
i=1 r=1 i 

Thus K(j) may be computed numerically via the 

following relationships : 

K(j) 

where 	Ki(j) 

K0  (j) 

KM(j) (j=0,1,....) 

j 	N 
_ 	E Ki_1  (k) / 	P" (ni=r1) Ji  (r. , j-k) 

k=0 	r1=1 

(j=0) 

(otherwise) 

= 	1 

O 

j 

J1(ri,j) 	= 	Ji(ri-1,k) Hi(j-k) 
k=0 

J1(0,j) 1 	 (j=0) 

0 	(otherwise) 

Such a computation requires no assumption about the 

specific form of the service time distribution and is performed 

by the function PSD in the APL package of Appendix 7 for the 

case of tree-like networks. 

An approximation has been introduced at an early stage 

in the analysis and manipulations (viz. convolutions) made on the 

resulting inexact values. Thus care should be taken to ensure 

that the error does not grow unacceptably, and it is clear on 

comparison with the parallel, rigorous analysis in chapters 

4 and 5 that the method converges to the exact result as A-0. 

The proof need not be repeated here. 
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3.4 Computation of path selection probabilities  

In order to derive the distribution, its 

Laplace transform or its moments, of a time delay in a queueing 

network, unconditional on the path chosen, the results for each 

possible individual path must be weighted according to the 

probability of choosing the path. 

Let Pn  be the probability of choosing the valid path n, 

Tn(t) the time delay distribution conditional on path choice n, 

Ln(s) its Laplace transform and ynp  its p'th moment. Expressions 

for ̀ Yn(t) , Ln(s) and Ynp  have been derived in previous sections 

of this chapter. 

Thus the unconditional time delay distribution, Laplace 

transform and moments are, with a slight change of notation 

T(t) 

L(s) 

Y 
P 

_ 

valid paths 
n 

E 
valid paths 

n 

= 

valid paths 
n 

Pn Tn(t) 

PnLn  (s ) 

Pnynp  

by simple laws of conditional probability. 

It thus remains to determine {PnIn a valid path}. 

This is a trivial problem for networks in which no path includes 

the same centre more than once, i.e. no path contains a loop such 

as would be possible in passing from centre a to centre S in the 

network shown in fig. 3.2 below. 

For such cases, Pn  is simply derived from the routing 

probability matrix for the network. Suppose path n consists of 

centres c ,c 9. ,....c 	where c =a and ck  =S. Then 
1 	2 	 1 



2-1 

n 	pcici+1 
where P 

i=1 
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Pn 	= 	Pr(Choice of path n I n is valid) 

Pr(Choice of path n & n is valid) 

Pr (n is valid) 

P n 

P•  n 
valid n 

In particular, the tree-like networks discussed in 

chapter 5 possess this property so that the APL functions referred 

to previously, PSM, PSA and PSD, compute the path probabilities 

quite simply. In fact it is a property of tree-like networks 

that any path from the "root" centre to a "leaf" centre, i.e. a 

cycle in a closed tree-like network, is uniquely determined by 

the identity of the leaf centre. Thus the path choice probabil-

ities are proportional to the visitation rates of the correspond-

ing leaf centres. Values for these are readily available in view of 

their necessity in the evaluation of state space marginal 

probabilities, and this is the method used in the package. 

In the event that a network contains valid paths which 

include loops, a problem arises in that the number of valid paths 

is no longer finite and various approaches to the computation of 

{PnIn a valid path} may be adopted. 

The most general and practicable from the programming 

point of view is iterative. Consider paths from centre a to 

centre (3 which may include a loop starting and ending at centre y 

as shown in fig. 3.2. 
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fig. 3.2 A sub-network showing paths which may include a loop. 

In the figure the probability of entering the loop on 

departure from centre y is u. Clearly more complex cases with 

nested loops are possible but the method described could be 

extended to cope with these. It is assumed for the sake of 

clarity'that all paths from a to S must include centre y, the 

modification of the method being obvious if this is not the case. 

Denote the distribution of the time delay between 

arrivals at centres A and p by bau  (t) and the path from a to 8 

which includes i circuits round the loop by n(i), i?O. 

Now, the probability of i circuits round the loop is 
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geometric, viz. (1-u)ui, so that 

i Pn (i) 	Pn  (0)  u  

and so 
CO 

Tas + 	- 	Pn(0) 	E ui 	 * TTYY * TYs+ 
i=0 

where s+ denotes the successor centre to a (possibly exit from 

the network), Ti  denotes i convolutions of 1P. . The summation 

is clearly convergent since 0<u<1 and the probability distribution 

Ti  is bounded. Thus the computation may proceed iteratively and 
YY 

will terminate when the specified precision is achieved. 

Expressions for the Laplace transform and moments of 

Tas+ follow trivially. 

An alternative approach in simple cases is to proceed 

via the Laplace transform from which the moments follow and which 

may be inverted to give the distribution itself. 

Suppose the loop in fig. 3.2 consists of the single 

centre y, i.e. the routing probability 
p1Y=u. 

 Then if Liu  is the 

Laplace transform of the TALI  defined above, 

La$  + = 	Pn  (0) 	ui 
LaY 

(LYY)i  LYS  + 

i=0 

1 
= Pn (0) Lay 1-uL LYO 

YY 

The convergence of the series is again clear and the 

resulting expression for LaB+(s) may be inverted in simple cases 

by the method described in section 3.3.2 or numerically as 

discussed later. 
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3.5 Summary  

3.5.1 	General remarks  

The most significant property of the so-called PSA 

method for deriving approximate time delay distributions in 

queueing networks is that it can be applied in a wide range of 

practical situations to give useful numeric results. This is 

due to the generality of the network classes which conform to the 

assumptions underlying the method as well as to the efficiency, 

with respect to computing resources, arising from the relative 

simplicity of the calculations. 

The only fundamental assumptions of the PSA method are 

that service centres behave completely independently and that for 

each centre successive service times are also independent; 

none of the results presented in this chapter require any assump-

tions about the form of the service time distributions for each 

centre as is the case in the traditional derivation of the state 

space probabilities, [JACK63, GORD67, BASK75]. Hence it would 

be possible to apply the method to networks in which the service 

time distributions and/or the queue length probability distribu-

tions (marginal state space probabilities) of the servers were 

empirical. I.e. network specification could be based purely on 

observations made on the actual system being modelled. This is 

of great appeal as regards achievement of a representative model 

in that several intermediate steps are absent compared with the 

analytic approach. The philosophy is the same as that in the 

operational approach to queueing network analysis, [BUZE78a, 

DENN78]. 

Thus, the PSA method frequently applies to networks 

of even greater generality than those in the BCMP derivation of 

state space probabilities [BASK75], although certain network 

properties cannot be represented easily. In particular we have 
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already discussed the LCFS queueing discipline and also networks 

containing loops in a path for which the time delay distribution 

is required. 

In order to achieve such generality and computational 

efficiency, some fairly strong approximations have been made, 

recall, for example, the handling of state dependent service rates. 

However, the method is intuitively sound, reflecting well the 

flow of customers through a network. Furthermore, some of the 

results presented are exact in some or all cases: 

(i) The mean of the time delay distribution derived by 

the PSA method is always exact by the following argument. 

For any path in a queueing network, the associated 

time delay is the sum of the sojourn times of the test 

customer at each centre in the path. It is assumed that 

these sojourn times are independent as is usual in all 

queueing network analysis, for example via the Markov 

property in the Jackson case, [JACK63]. Thus the mean 

time delay is equal to the sum of the mean sojourn times 

for each centre in the path. 

Now, by Little's Law applied to centre i say, 

M. 1 Qi 
T. 

where M. 

Qi 

T. 1  

is the mean sojourn time, 

is the mean queue length, 

is the throughput, 

for centre i. 

But Qi  and Ti  depend only on the centre i queue length 

probability distribution (marginal state space probability 

distribution) and its service rate, for which no approximation 

is made under PSA, by suitable choice of qi  in equation (E3.2) 



-42- 

(section 3.2) if the service rate is not constant. 

The actual choice is that giving the equilibrium 

throughput, conditional on non zero queue length. Then, 

in equation (E3.2), 

Skj 	i (i)(q ) 
P (ni>O) 

T. 1 

where ni is the queue length random variable for centre i. 

Then equation (E3.2) gives, for t=1, 

M (i) 	= 	ni P(n.>O) 1 

and equation (E3.1) yields 

M 	riP (ri>O ) 
M1 (r) _ 

i=1 	Ti 

 

 

Thus, equation (E3.4) may be written 

M NM 

Y1 

	N 	M 
y1 = 	c 	i 	 i i T 	i 	c 	II P - (nk=rk ) 

i[=,1 ri=1 	1 	r[~, =1 k=1 
ici. 

15j i<_M 

M Q M N 

T. 	n 	y 	P.. (nk=rk) 

i=1 1 k=1 rk=1 
k ~i 

T. 1 

as required. 

(ii) For networks consisting of only one centre, all the 

results are exact since the independence assumption of PSA 

is satisfied trivially. 
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(iii) For networks containing only one customer, the 

independence assumption is again satisfied in that only one 

centre can be busy at any time - that serving the test cust-

omer. In this case the next Ota-te transition is uniquely 

determined to be that considered in the PSA method, viz. 

that of departure of the test customer from the centre. 

Thus the analysis satisfies precisely the same assumptions 

as those applying to the exact analysis of chapters 4 and 5. 

	

3.5.2 	Validation  

The accuracy of the approximation is discussed in Aonendix 

8 where comparisons are made with the exact results for specific 

cases of cycle times in tree-like networks and validation is per-

formed with respect to simulated results. Of course the ultimate 

test is validation based on observations made on at least one actual 

computer system, but as pointed out in the Introduction and chapter 

6 such data is exceedingly difficult to obtain and absolute valid-

ation remains an area for future investigation. 

Furthermore, rather than attempting a limited validation 

by comparison with results, real or simulated, corresponding to a 

few specific network structures, ideally a formal error analysis 

should be made. This could provide simply computable bounds on the 

error of the approximate PSA method as a function of the parameters 

of the network under analysis. Such an analysis is proposed in 

chapter 8, but is expected to pose many problems. Consequently for 

the time being we adopt the approach taken by many others, e.g. 

EBARD79, PUJO79], of making intuitively good approximations and 

validating as discussed in the previous paragraph via numerical 

comparisons. 

	

3.5.3 	Cycle and Response times  

Perhaps the most typical time delay requiring analysis 

is the cycle time in a closed network, or the sum of (successive) 
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such cycle times which can represent response time. The former 

is easily computed directly since it is a time delay of the type 

discussed in this chapter. The distribution of the sum of cycle 

times may have its moments computed via equation (E3.1), success-

ive cycles being independent under PSA. Furthermore, because of 

the same independence assumption, the Central Limit Theorem may be 

applied giving an asymptotic Normal distribution for the convolu-

tion representing response time, as the number of cycles involved 

becomes sufficiently large. The use of the Central Limit Theorem 

for this purpose is discussed in more detail in chapters 4 and 8. 

3.5.4 	Conclusion  

In summary, in contrast to chapters 4 and 5, this chapter 

is not intended to provide a formal (approximate) solution to a 

precise class of problems. Rather a methodology has been described 

for giving approximate results, in a wide range of modelling situ-

ations, to be validated by comparison with empirical data based on 

observations taken from the actual computer system being studied. 

The approach taken has been to make approximations, sometimes 

rather coarse, in order to provide a feasible method for producing 

quantitive estimates of time delay distributions in queueing net-

works. Thus the main value of the work is its ease of implement-

ation on a computer so providing a practical and efficient tool 

for the performance analyst - contrasting with the exact methods 

described in the following chapters, see Appendix 8. Applications 

for such a tool have been given in chapter 2 and further details 

are discussed in chapter 8. 
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§4. 	Exact cycle time distribution for cyclic queueing networks  

4.1 Introduction  

In chapter 2 the importance of studying cycle time 

as a particular case of a time delay in queueing networks was 

emphasised; both in its own right and as the constituent of the 

response time of a network, i.e. the time delay which results 

from several (successive) cycles of the test customer. In 

this chapter a method is described for deriving the cycle time 

distribution for customers in cyclic networks of servers with 

constant service rates and FCFS queueing disciplines. 

In section 4.2 the approach taken is described and the 

resulting solution is derived as an analytic expression for the 

Laplace transform in section 4.3. In section 4.4 it is shown 

how to compute the moments of the distribution via numerical 

differentiation of its Laplace transform and in the following 

section an expression for the moments is derived via analytic 

differentiation. In section 4.6 a discrete form of the 

distribution itself is derived and is shown to be convergent 

as the discrete time step approaches zero. 

In section 4.7 some computational techniques for 

performing the operations required on the large data structures 

resulting from the preceding analysis are described. In the 

following two sections discussion is presented on the desirability 

of and difficulties in inversion of the Laplace transform of the 

distribution, and on the use of decomposition techniques to link 

together sub-cycles as an aid to efficiency of computation. 

In section 4.10 application of the theory to response time 

prediction is discussed and the chapter closes with a short 

summary of the chief relevance of the analysis. 
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4.2 Approach taken  

The cyclic networks analysed in this chapter are of 

the Jackson type, CJACK63], following a Markov process, con-

sisting of M servers, with FCFS queueing discipline and negative 

exponential service time distributions, and containing a popula-

tion of N customers. 

The first step in the analysis is to consider the 

corresponding tandem network consisting of the service centres 

in the same sequence, but with the last centre no longer connected 

to the first. There are no external arrivals and departures from 

the network occur at the last centre. 

Formally, for a cyclic network of M centres numbered 

1,2,...,M, let the routing probability matrix, p, be given by 

otherwise 

15i5M-1 

Then in the corresponding tandem network, the new 

routing probability matrix, p', is given by 

P i,i+1 1 

 

1<_isM-1 

t-  ii 0 otherwise 

 

Of course the corresponding tandem network is not unique 

since the first centre could be any of the M centres. 

The method consists of the following steps: 

(i) On arrival of a test customer at centre 1 in the closed 

network, the steady state probability distribution for the 

state space of the network is assumed. Thus the result 
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presented by Mitrani & Sevcik [MITR797 can be applied. 

This states that the state space probability distribution seen 

by the arriving customer is the same as the equilibrium dist-

ribution for the same network with itself removed. The same 

result is obtained, for the classes of network considered here, 

by renormalising the state space probabilities and excluding 

states in which there are no customers at centre 1. This is 

the method used in chapter 3. 

(ii) The corresponding open network is now considered. The 

cycle time in the closed network is the same as the time 

taken for the test customer to depart from the open network 

if the assumption is made that returning customers joining 

queues behind the test customer can have no effect on the 

rate of progress of the test customer through the network, 

i.e. that departed customers can be disregarded. Hence it 

must not be possible for customers to be overtaken by other 

customers, i.e. the cyclic ordering of customers must be 

invariant, and the service rates of the servers must be 

unaffected by the addition of new customers to their queues 

which is equivalent to demanding constant service rates. 

Order invariance is ensured by the requirement of a FCFS 

queueing discipline at all centres together with the 

existence of only one path in the network. Note that PS 

discipline is precluded by both the order invariance and 

service rates requirements. 

The invariance of order in both the closed and open 

networks implicitly tags the test customer in the open one in 

that it is always the leftmost (or furthest from departure) and 

its position is therefore always known uniquely. Such implicit 
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tagging, although not possible for networks of the most general 

type, results in a much smaller state space than would be 

required in the analysis of the Markov process with an additional 

state space dimension included for the "tagging" information, 

as in CYU77] for example. Thus it improves computational 

efficiency. 

With the assumptions listed above, the cycle time for 

the test customer is identical to the time taken for the open 

network to empty, i.e. the time taken for the open network to 

enter the state with zero customers at all centres. Now, the 

network can empty by passing through any of a (finite) number of 

(finite) sequences of state transitions. Thus for any particular 

sequence, the conditional cycle time distribution is the convol-

ution of the distributions of the sojourn times for each state 

in the sequence, by the Markov property. The unconditional cycle 

time distribution is therefore a weighted sum of convolutions of 

state sojourn time distributions, the weights being the probabil-

ities of occurrence of the corresponding sequences of states. 

The following formal analysis proceeds on this basis. 

4.3 Analytic solution for the Laplace Transform 

First, we define some notation: 

Consider a cyclic network of M centres and N customers 

and corresponding open, tandem network with state space 

M 
SNM  = {nIni?O, isiSM,' 	ni<N} 

i=1 

and state transition matrix T defined by 

Tab = Pr(Next state is 8Ipresent state in a) 

(arS c SNM) 
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The state transitions constitute the embedded Markov 

chain in the continuous time Markov process assumed for the 

network. 

DefineRst 	 2,...,in}~n e 	
j 

e SNM, 1sjsn; 

i =s; i =t; T. 	0, 1sk<n} * 
1 	n 	ikk+1 

i.e. the set of all sequences of states entered, or nouteb, 

from state s to state t. 

If 	i = 	(i,1.2,...,in) e Rst 

then let 1iJ = n, the number of steps in the route i. 

Lemma L4.1  

For all s,t e Slim,  if r ,r c Rst then Ir I = Jr -1 -2 	-1 	—2 

and the number of departures from each centre is identical for 

r and r . -1 	-2 

In other words, all routes from state s to state t have the 

same length and contain the same transitions between centres 

(as opposed to states). 

Proof 

If R st = (1),- the result is trivial. 

For R st #4), consider the leftmost centre with at least 

one customer in state s, Q say. Since there are no external 

arrivals to the network, 

* Z+ is the set of positive integers. 
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(a) ti  = 0 for i<L 

(b) For all r e Rst,total no. of arrivals to centre Q = 0 

(c) Thus the no. of departures from centre Q, = sQ-tz  

for all r c Rst  

(d) Thus the total no. of arrivals to centre k+1 = sQ-tt  

for all r e Rst  

Now consider centre k, QsksM and assume that for all 

r e Rst  the number of arrivals to centre k is identical; ak  say. 

Thenak+1 = no. of departures from centre k 

ak  + sk  - tk  for all r e Rst  

• 
ak+1 is identical for all r e Rst  

The result was shown to be true for k=k, R+1 and is 

trivially so for k<2. 

Therefore by induction, for all r e Rst,the number of 

arrivals to each centre is identical, which proves the lemma. 

Corollary CL4.1 

{TnIn = 1,2,....} 	are disjoint 

Proof 

(Tn)ij  is the probability that n transitions after 

being in state i, the network is in state j. But n is uniquely 

determined by i,j so that 

(Tn)ij  # 0 for at most one n. 

Corollary CCL4.1  

ri 	r j  for 1 <_ ij s I r i, r e Rst 
Proof 

If not, let ri  = r j  = u for i < j. Then 
•,rj)}cRuu contradicting the Lemma. 
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For a,$ a SNM  , Ras # (I), let the state transitions for 

route r e Ras  occur at times Ti  (r)  (1sisiri-1) and let the state 

of the network at time t be X(r)(t). Define TO(r) = O and 

a . (r) = T . (r)  - T. 	(r) 
1-1 	(r a Ras  , 1 5 i s ir1-1) 

Now let Rās= {rireRas;ri#s,lsi<IrI}=Ras  here by Corollary CCL4.1. 

Ras is used for increased generality, see below. 

The cumulative distribution function of the time delay, 

C, for the network to pass from state a to state $, (a,$ c SNM),is 

Gast) = 	y 	Pr(rIa,$) Pr(Cstir) 

re R' 

since the end states a,$ are implied by the route r, and where 

Pr(rla,$) = Pr{rir1= a,rIrI = $}. Now, 

Iri -1 
Pr(C_-<tir) = G(tlr) = Pr 	di(r)  s t 

i=1 

For simplicity, the superscript r will be omitted from 

the variables X, Ti  and di,  its presence being implicit. Thus, 

t 
G(tIr) 	= 

	I
Pr(ō lri-1 s t-u I  TIrI-2 = u) dPr(TIrI-2  ` u) 

O 

= 
 It 

PrO 'r l _1  s t-u) dPr(T
Ir1-2 

s u) 
O 

since d lrl _1  is determined solely via X(t) for t >_ T IrI-2 , 

T
IrI-2 being a Markov time. 

Let dv(t) be the distribution function for the time 

spent in state v, so that 

dX(T 	+
)
(t) = Pr(S1  s t) 

i-1 

where Ti_1+denotes a time T such that T. 	< T < Ti  

Thus, by induction and since convolution is commutative 

(Appendix 3), 
Irl-1 

G(tlr) 	= 	 * 	
dX(T+) 

 (t) 

i=1 	i-1 



IrI-1 
Gas  = 	Pr(rla,1) * d 

reR' 	i=1 ri 
as 

IrI-1 

Las  (s) 	= 	II 	Tr.r. 	Dr.  (s)  1 1+1 	i reRas  i=1 

or 	
TaY D

c(s) LY1(s) 

	 (E4.2) 
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which is in fact a well-known property of Markov processes. 

Now, X(Ti_1+) E ri, the i'th element of route r, so that 

IrI-1 
G (t I r) = 	* dr  (t) and so 

i=1 	i 

IrI-1 

But Pr(rla,$) = II T 

i=1 r1 1+1 

. 	for a 	S, Gas = 	X TaY da * GYs 
YeSNM  

 

(E4.1) 

 

where Gyy(t) =-1 for all t >_ 0, y e SNM. This is so since if 

r e Ras  with r2  = y then either Tay  = 0 or RY1 = 0 so that 

GYs = 0. 

the Laplace transform of G(t) and let Dv(s) be the Laplace trans- 

form of dv(t) , v e SNM. Then, in similar notation, for a 	a , 

r°  
Let L(s) = 	e-st  dG (t) , 

0 

YeSNM  

where Lyy(s) = 1, for all s ? 0, Y e SNM. 

This result applies to networks in general - in fact to any such 

Markov processes. Here it may be written, for all a,$ a SNM, 

daYLYs D
aTaYLYs 

+ das  (with summation convention on Y  e SNM) 

since for Tay  0, Rya = 0 by Corollary CCL4.1 and LYa= 0. 

Under the FCFS and Markovian assumptions, the service 

time distribution for each server must be exponential, for example 

see [FELL62]. Let the service rate of centre j be uj  (1M) and 

the total service rate in state u e SNM  be Au  , so that 



T 	= 	

I

e (u,v) 
uv 	A u  

0 

if a one-step transition u-v 

is valid 

otherwise 
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/ uj  
u.>O 

1sj5M 

Define the function 0 by 

e(u,v) = number of the centre from which a departure causes 

a state transition u}v (u,v c SNM) which is undef-

ined if a one-step transition u-}v is not possible. 

Then, by inspection of the balance equations for the network or 

the instantaneous transition rate matrix for the underlying Markov 

process, 

By the exponential assumption, the time spent in state u is 

exponentially distributed with mean Xu-1  (see Appendix 4) and 

so 

Du(s)  =  
s + u  

* 
The modified transition matrix, T , is defined by 

* 	__ 	ue (u,v)  
Tuv 	s + 	if a one-step transition u÷v 

u  is valid 

O 	otherwise 

Thus, from equation (E4.2), dropping the prime from Ras, 

Irl-1 * 
Las(s) = 	II 	Tr.r. 	(a,a e  SNM) i=1 	1 1+1 reRas  

where for a = s, Ras  = {a} and the empty product gives Laa(s) = 1 

A 

as required. 
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k=1 reRas  i=1 
Irl=k 

For cyclic networks, by Lemma L4.1, only one term in the first 

summation is non-zero, but the result still holds in general 

networks and is used in section 5.4. Now, for k >_ 3, 

k-1 * 
lI T 

k-1 
Ir'I=k-1 

for if 0 r e Ras  with rk-1 Yk-1 then either no one-step transi- . 	 * 

tionYk-1 -' 	exists so that T 	= 0, or R 	= (1).
Yk-1's 	 aYk-1 

By a simple inductive argument, equation (E4.2) yields the result 

... 	T*  T* 	..T* 	T* 	_ {T*  }k
-1 

ay  1213. 	
Yk-21k-1 Yk-1's  Y2eSNM Yk-2eSNM Yk-1eSNM 	 aQ 

c *  k-1 
and so Las  (s) = 	IT }

as  
k=1 

Note that for cyclic networks the single term on the r.h.s. is tri- 

vially obtained from the second form of equation (E4.2). Thus, 

Las(s) = (I - T*  )as  	 (E4.3)t  

since T is a stochastic matrix and for s>0, Du(s)<1 for all uESNM , 

so the series converges. In fact here 3 keZ+  s.t. (T ) = 0 since 

ultimately the network has no customers and can have no transitions. 

Define SI  = { n I neSNM  , Eni= N , n1>0 }, the set of 

initial states with the test customer at centre 1. In what follows, 

the state labelled "o" is that in which the open network contains no 

customers and state a e SI. 	Let the cycle time distribution con- 

ditional on start state a be denoted by G(tla) with Laplace trans- 

form L(sla) so that 	G(tla) = Gao(t) and L(sla) = Lao  (s). 

t This clearly satisfies equations (E4.2) which may be written 
* 

(I-T )L = I in matrix form by Corollary CCL4.1. 

co 	k-1 

E 	CC Thus, Las  (s) = 	G 	G 	II T  r. r. 1 1+1 

k-2 * 
I 	1 	II T . . 

i=1 riri+l 	 i=1 riri+l reRas 	Yk-1eSNM 11 ERay 
TYk_1's  

I rl=k 
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The unconditional cycle time distribution, 

G(t) = 	I 	Z(a) G(tla) 
aeSI 

where Z(a) is the equilibrium probability for state a in the 

closed network. This has Laplace transform 

L(s) 
-1 

Z(a) (I - T*)ao 
aeS1 

 

(E4.4) 

 

Now, using the result in EMITR79], for n e SI 

M -ni 

Z (n) 
G (N-1) 

where G(N-1) is the normalising constant for the closed network 

with one customer removed. The visitation rates are all taken 

to be 1 since the network is cyclic. 

Computational techniques for efficient evaluation of 

the Laplace transform, L(s), are discussed in section 4.7.3. 

4.4 Numerical evaluation of the moments of cycle time 

distribution  

The pith moment of the cycle time distribution is 

well known to be p:M where 

Mp = 	( ~)p [dP 
p L(s) 

P! 	ds s=O 

so that any moment may be evaluated by numerical evaluation of 

the derivatives of L(s) at the origin. This is of course the 

most difficult area in which to perform the calculation, but the 

simple linear method has been found to converge perfectly 

adequately for calculation of the first two moments. Thus 

u1 n ui i=1 
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M1 	= 	- lim 	I' (A) - 1 

M2  1 lim 

A 4  0 

L(2L) - 2L(A) + 1 

A 2 

The method used in the APL function NM (Appendix 7) 

evaluates M1  and M2  with successively smaller values for A until 

the user defined precision is achieved, whereupon the mean and 

standard deviation are produced. 

Clearly more efficient and reliable numerical techniques 

exist for computation of the moments, and may be implemented, 

especially for the higher derivatives. However, discussion of 

such techniques is not appropriate here. 

4.5 Analytic result for cycle time distribution moments  

From the expression for the Laplace transform of 

the cycle time distribution (E4.4), a formula for the p'th moment 

of the distribution may be derived in terms of the derivatives 

of T with respect to s. The result is given by propositions 

P4.1 and P4.2 below, using Lemma L4.2 which precedes them. 

Lemma L4.2 

 Let A(s) be an (n x n) matrix with elements dependent 

on the variable s. Assuming A is differentiable w.r.t. s, 

d 
(A-1) -A-1 A A-1 

 

ds 

where 	A dA 

ds 



F ( -10) (s) 	= 	dp F(s) 	
ImI 

(I-A) 
dsp 

G 	 -1  

1ml 	i=1 	mi  
E mi=P 

1=1 
m.>O 

15j5ImI 

p: 	 A
(mi) 

(I-A)-1 
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Proof 

Let B = A -1 

n 	 n 
Then 	E Bij Ajk 	E 	Aij B jk 	8 ik 	(15i,k5n) 

j=1 	 j=1 

where  ōik  is the Kronecker delta. 

• 
	

Aij B" jk 
	-A".. 3k 

where the summation convention is applied for doubly occurring 

suffices. 

• BQi  Aij  B" jk  = - Bti  A"ij  Bjk  

B" Qk 	ō 2,j  B jk  = -(BA"B)Lk  as required. 

Proposition P4.1  

Let F(s) = 	(I - A(s)) -1  

Then 

• 

m 
where A(m)  = d m and Iml is the number of components in  m 

ds 

so that ImlSp. 

Proof  

The proof is by induction on p. 

For the case p=1, the formula gives 

1 
F (1)  (s) 	_ 1! 	II (I-A) -1  A (1)  (I-A) -1  

1 
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_ (I-A)-1 A(1)  (I-A)-1 

which is true by Lemma L4.2 

Now assume the result is true for derivatives up to the p'th. 

F(p+1)  ( s ) 	= 	d  F(P) (s) 
ds 

X + .Y say 

where 

Iml 	j-1 	_1  (mi) 	_1  (mj+1) 	
111(I-A)-1A 

 (mi) 
X= 	p; 	II (I-A) A 	(I-A) A    	(I-A)-1 mi: 	mi: 

	

Emi=p j=1 i=1 	 i=j+1 

m.>0 

and 

lml+1 

Y = 	P: 	E 
Em. =p 	j=1 

m.>O 

i-1 	
-1 (mi) -1A(1) 

  Iml 	-1 (mi) 	-1 (I-A) A 	(I-A) 	(I-A) A 	(I-A)-1  
mi: 	1: 	mi: 

1=1  

with slightly abbreviated notation. 

First consider X and for each m,j define n by 

n. 1  = mi  (1sijs lml) 

n. =+ mj   1 

Then, 

In 

X =  

Eni=p+1 	j=1 

ni>O 	n.>1 

In' 	(n) 
(I-A)-1A 1 	

(I-A)-1 n.'1. 
i=1 

 

Now define k for each m,j by 
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k (J) 	= 	m1  (1si<j) i 

k.  (j) 	= 	1 
3 

ki(J) 	= 	
mi-1 	(j<i`Iml+1) 

Then, 

	

I k I 	Ikl 	_1  (ki) 
p! 	k] II 

(I-A) 
k.:A 	

(I-A)-1 

Eki=p+1 	j=1 	i=1 	1  

k.>O 	
kj=1 

Thus, re-labelling ki  by ni  

Inl 

in the expression for 

InI 	_1 	(ni) 

Y, 

X+Y 	= P! 

En.=p+1 	j=1 

II 	
(I-A

n.:A 
(I-A)-1 nj  

i=1 	1 
1 

n.>O 1 

but 
InI 

n. = p+1, so 

j=1 

Inl 	(n.) 

F (P+1) (s) 	= 	X + Y = 	(p+1); 	II 
(I-A) A 1 	

(I-A) -1 

i=1  

which proves the proposition. 

Proposition P4.2  

The pith moment (pal) of cycle time distribution, 

p:Mp, is given by 



Z(n) I F(P)  (0) 	as required. 
neS1 	n o 

(-)P 
P! 

and M 
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Mp  = 	Z (n) 
neS1  

Iml 
H (I-T)-1 T, (m.) 

Iml 	i=1 
E m=-.p 

i=1 
m.1  >0 

  

,n o 

in the notation of section 4.3 wherein Z(n) is given and where 

Proof 

T'uv (mi) 
T uv 

m. 
u 

Setting A = T and s=0 in P4.1, 

A(0) = T and 

(m.) 	m. 
A 1  (0) 	= ( - ) 	mi 	Tuv 

m. 
A  1 

m. 
so 	F (0) = 	p: 	

{ 
II 	(I-T) -1(-) 1  T (raj)). (I-T) -1 

Em=p i 
mi
i
>0  

= (-)P p: 	{ II (I-T)-1 T-(mi)} (I-T)-1 

Emi=p 

m.>0 

Computational techniques for the evaluation of the 

moments of cycle time distribution are discussed in section 4.7.4, 

with particular attention paid to the first two moments. 

Frequently these moments will be the only ones required, in 

particular if independence of successive cycles is assumed and 

the Central Limit Theorem applied to give predictions about 

response time distribution. 
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4.6 Discrete form of cycle time distribution 

4.6.1 Introduction  

So far the cycle time distribution for cyclic queueing 

networks, under certain assumptions, has been derived exactly 

in the form of its Laplace transform, section 4.3, and its set of 

moments, sections 4.4 and 4.5. In this section a technique is 

described by which the distribution itself can be derived 

approximately in discrete form. The approach taken is to express 

the constituent, negative exponential, distributions involved in 

the weighted convolutions of section 4.3 in discrete form so that 

the convolutions can be computed directly, without resorting to 

the method of multiplication of Laplace transforms and subsequent 

inversion by some means. Of course this introduces an approxim-

ation in the method at the very first step, but by choosing a 

sufficiently fine mesh on the time axis, a good representation 

of the exponential distributions can be achieved. The numerical 

results obtained for cycle time distribution show good agreement 

with corresponding simulated results as well as for the mean and 

standard deviation computed exactly as described in the preceding 

sections (chapter 6). Furthermore, it is shown in this section that 

the result of the method converges to the exact distribution as the 

mesh size approaches zero. 

In any case, it must be remembered that any queueing 

network analysis representation of computer systems is inevitably 

approximate anyway. There is no reason to presume that the dis-

crete form of the negative exponential distribution (step function 

in continuous time) is any worse an approximation than the more comm-

only used continuous form, even though the latter form is a necessary 

assumption for Markovian analysis. Thus, even without the con-

vergence property referred to above, the discrete analysis would be 

worthwhile in its own right. 
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4.6.2 	Deviation of the approximate result  

Recall from section 4.3 that the cycle time distribution 

for a cyclic network is denoted by G(t) and that of time spent 

in state v by dv(t), veSNM, where dv(t) is negative exponential 

with mean Av-1. 

Now, the discrete form of a continuous (cumulative) 

probability distribution F(t), t_>O, with mesh tj=ja of size d, 

j=1,2,.... defined on the t-axis, may be defined approximately 

for a random variable JeZ+  by 

Pr(J <_ j) 
	

P(j) 	= F(tj) 

so that the (non-cumulative) discrete distribution 

Pr(J = j) = p(j) = F(ti) - F(tj-1) 	(t?2) 

and 	p(1) = F(t1) = F(a) 

Thus, in the case of a negative exponential distribution 

with mean A-1  for F, 

-AA(j-1) 	-ALij 
P(j) 	= 	e 	- e  

-AA 
i.e. 	p(1) 	= 	1 - e 

-AA 
P(j) = e p(j-1)  

which is geometric, where an integer random variable J corresponds 

to continuous time T = JA. 

-A
v 
A 

Let xv  = e 	and pv  be the discrete approximation 

for dv, the distribution of the sojourn time in state v of the 

network. 

Then, 	Pv(j) = (1 - xv) xvj-1 
	

(jz1) 

and 	pv(0) is defined to be O. 
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Denote the approximate discrete time delay distribution 

from state s to state tis by 	list 	s,t a SNM. 

Now, in the discrete domain the Z-transform or 

probability generating function is analogous to the Laplace 

transform in the continuous domain in that the Z-transform of 

the convolution of (discrete) probability distributions is equal 

to the product of the Z-transforms of the individual constituents. 

Let the Z-transform of IIst  be denoted by Hst(z) 

defined as 

CO 

Hst(z) 	= 	IIst  (i) zi 	(s,t e SNM) 
i=O 

where 11st(0)  = Sst 

so that the probability of passing from state t to itself in 

time zero is unity. 

Then, by a derivation identical to that given in 

section 4.3 for the Laplace transform in the continuous time 

domain, the result analogous to equation (E4.3) is 

Hst(z) 	_ 	{I-Tt  (z) }-1st  

 

(E4.5) 

 

CO 

where 	Tfiuv (z)  = Tuv 	G z
i xui-1 (1 - xu) 	(u,v e SNM) 

i=1 

the summation being the Z-transform of pu. 

t 	Tuv(1 	xu) z 
Thus, 	T uv  ( z ) _ 1 - x z u  

The fact that state t is not, in general, o does not affect 

the analysis. 
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Now, from equation (E4.5), 

H - Tt  H  = I 

in matrix notation, pre-multiplying by the right-hand side. 

• • 
	

Hst 	Gst + 	E 	T 
 su Hut 

ueS
NM  

so that 

(1 - xsz) Hst  = (1 - xsz) Gst + (1 - xs) z  L 	Tsu Hut  
ueS

NM  

Then, by comparing coefficients of the powers of z, 

0 
Z . rest  (o) = G

st 
as defined 

z1 	lst(1) = (1-xs) 	Tsu Gut (0) 

ueS
NM  

zi,]?2 : 	nst(7) = xs  Ilst  0-1) 

+ (1-xs) 1 	Tsu  Eut (7-1) 
ueSNM  

Now define xt= 0 so that the transition eine from state t 

is zero. 

A derivation of the same result from first principles, 

using the geometric property of {poly a SNM} given in Appendix 

2, is given in the author's paper, CHARR79a]. 

Thus, 

nst(7) = 	xs 
 nst (j-1) + (1-xs) L Tsu  nut (J-1) 	(J?1) 

UCS M  

sst  (7=0) 
	 (E4.6) 
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which enables IIst(j) to be computed by a simple iterative 

procedure. The same recurrence relation and initial condition 

still hold whether or not IIst  is cumulative, the cumulative 

result being given by choosing 

Ttt  = 1 

and the non-cumulative result by choosing 

Ttt  = O 

That this is so may be seen as follows: 

Rtt(j) = 	Ttt  ntt (7-1) 

by setting s=t, so that 

{ntt(J)Ii = 1, 	 tt  

Now, for 

(j?1) 

nst (j) = xs  nst ( j-1) + (1-xs) 	Tsu Rut (j-1) 
u#t 

+ (1-xs) Tst ntt (j-1)  

so unique solutions for IIst(j) are given by the initial condition 

together with IIst(0) = ast  

{IItt (k)Ik>O}<=>Ttt  

Finally, if Ttt  = 0, j = 0, 1, 2,.... 

ntt  (j  ) 
	

s JO 

giving a non-cumulative discrete distribution, and if Ttt= 1 

ntt(j) = 1 

giving the cumulative version. 
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The computational techniques for the evaluation of 

the discrete form of the cycle time distribution are fairly 

straightforward, the most significant points being discussed 

in section 4.7.5. 

Although exponential service time distributions have 

been assumed in the derivation of equations (E4.6), the argument 

of section 4.3 gives the following equation analogous to equation 

(E4.1) : 

For s,t a SNM  ; s# t 

IIst 	E 	Tsu p   * Hut  
ueSNM  

and IIss(X) E 
 1 for all Q, z 0. 

This is, of course, satisfied by the equations (E4.6) but it is 

also clear that the convolutions could be performed numerically and 

directly, although somewhat less efficiently, regardless of the 

form of the distributions, ps. Nevertheless, it must be remembered 

that the exponential assumption is required in other parts of the 

theory. 

4.6.3 Error bounds and convergence properties  

The accuracy of the results will obviously vary 

according to the choice of A and may be assessed by comparing 

them with corresponding simulated results or the associated 

moments with their exact counterparts, derivable as described 

in previous sections. The results for the networks analysed may 

be found in Appendix 8 and show good agreement. 

Bounds on the exact discrete form of G(t) are given 

by the following Lemma and Proposition, from which it is then 

shown, in proposition P4.4, that the method converges to the 
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exact result as A approaches zero. 

Lemma L4.3  

Given continuous (cumulative) probability distributions 

F(t) and F(t) (t>_O, teR)t  represented in discrete form by P(i) 

and Q(i) (i>_O, ieZ)t,n e Z+, A e R+  s.t. 

P (i) 	= 	FP  (t.), P(0) = FP  (0) = 0, 

Q(i) <_ FQ(ti) 5 Q (i + n) 

ti  = IA; 

FR  = FP  * FQ 	and R = P * Q 

i 	i-1 

R(i) = 	p(i-j)Q(j) = 	y 	Q(i-j-1) P(j+1) 
j=0 	j=0 

p(j) 	= P(j) - P(j-1)  

p(0) = P(0) = 0 

then 

i+n 
R(i) 5 FR  (t.)<_ R(i+n+1) - E Q(i+n-j) p(j+1) 	(i>_0) 

j=i 

Proof 
t 

FR(t) 	= 	FQ  (t-u) dFP  (u) 
u=0 

and so 

i-1 (j+1)a i-1 (j+1)A 

X FQ(ti-tj+1)dFP(u)5FR(ti)5 E FQ(ti-tj)dFP (u) 
j=0 u=jA j=0 jA 

since FQ  is an increasing function. 

i-1 	i-1 

. . 	I Q(i-j-1)p(j+1)sFR(ti)5 	Q(i+n-j)p(j+1) 
j=0 	j=0 

t R is the set of all reals, Z is the set of all integers. 

where 

let 

so that 

in which 
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using the given inequality, which proves the Lemma. 

Corollary CL4.3  

R(i) s FR(ti) s R(i+n+1) 	(i>_O) 

Proposition P4.3  

Let the probability distribution of the time to pass 

from state a to state S (a,s c SNM), denoted by Gas(t), have 

exact discrete form 

das(j) 	= 	Gas (t.) 
	

(j?O) 

wheretj = jA. 

Then 	a$ (j) s das (j) s Ras (j+£ 
as) 

where 2.
a$ 

= url for r e Ras which is well defined by 

Lemma L4.1. 

Proof 

For Q
as 

= O,. a = $ and Gast) = 1 for all t~O 

as 
(j) = 1 for all j>_0 

But Has(j) = 1 for all j>_O by definition. 

Suppose inductively that the result is true for all a,$ a SNM 
s.t. 

Las 
s n and consider a',$' a SNM s.t. ka.s. = n+1. 

Now, by equation (E4.1) section 4.3, 
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Ga  's ' = 	G 	da' * Gys' Tee 	(a"As" ) 

ysSNM  

1 	 (e=6") 

By Corollary CL4.3, for j > 0, 

(pa,  * TYs- Ta-y] 	(j) s 	da' * Gya. Ta' y1 (ti) 

s I pa * Tya, T.  l (j+1) 

since py  is the exact discrete probability distribution for the 

time spent in state y, with cumulative distribution P1(j) = d.(tj). 

Thus, by summing over y  e SNM, 

Pa- * 1 ya- Ta'Y J (j)s 	 - -(t j) s 	p
a, * 'Yy6" Ta,y (j+1) 

YESNM 	 ysSNM  

For all y E SNM  s.t. Ta•1 	0, tya- = n by Lemma L4.1, so that, 

by the inductive hypothesis, 

II 	- (j) 	` 	'Y YR.. (j) 	< 	n- (j+n) 
and so the result follows by linearity on substitution into (*). 

This proposition supplies fairly coarse bounds for the 

exact discrete distribution, Tas, particularly for routes 

r E Ras  with large path length tas. Tighter bounds could quite 

simply be applied in practice by successively applying the more 

precise result of Lemma L4.3, but this is considered unnecessary 

in view of the following proposition and its corollary. 

(* ) 
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Proposition P4.4 

As A -> 0, Has (j) for all a,s s 
SNM, 

j>_O e Z 

Proof 

Since the network considered is open with no arrivals, 

or alternatively because the transition matrix T is lower 

triangular, 	3 n s Z+ s.t. Tn = 0. 

	

. 

• . 

	For all a,s s SNM, Qas < n 

. ' . 	Tas (j) s das (j+n) s 1Yas (j+n) 	(j~0) 

by Proposition P4.3. 

Now, Gas is continuous since it is a weighted sum of convolutions 

of exponential distributions (or alternatively since it has 

rational Laplace transform as derived in section 4.3) so that 

for all s > 0, 3 
Sao 

s R s.t. 

I Gao(tj + nd) - Gas(tj) I < e for all 6 < 8
0 

	

i.e. 	I 'Yas (j + n) 	- 'Yas (j) I < s 

if A is chosen to be less than Sao. 

Thus the proposition is proved for liao(j) if j >_ n. 

For j < n a similar argument is applied using a lower bound 

of 0 rather than `Yas(j) in the double inequality and replacing 

Gas(tj) by 0. 

Corollary CP4.4 

Let the exact discrete form of cycle time distribution, 
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G(t), for times t = t0, t1, t2,..., (t0  = 0), be denoted by 

'Y(j) 	(j>_O), so that T(j) = G(tj). 

Then as 0 ; 0, the unconditional discrete distribution approximation, 

n(j) = 	/ 	Z(a) nao(j) -} TO) 
aeS2  

Proof 

Trivial by the simple linear relationship of n 

in terms of Rao 	(a,o a SNM) 

4.7 Computational techniques 

4.7.1 Outline of the section  

This section presents the methods used to compute 

efficiently the various quantities related to the cycle time 

distribution. One of the first problems encountered is the 

representation of the transition matrix T and its modified 

version T (s), which requires a mapping from the state space, 

SNM  to the positive integers, Z.  This problem is addressed in 

section 4.7.2. The following sections 4.7.3, 4.7.4 and 4.7.5 

describe the non-straightforward techniques used in the numerical 

evaluations of the Laplace transform, L(s), the moments (computed 

via the analytic method) and the discrete form of the cycle time 

distribution respectively. 

4.7.2 	Representation of the transition matrix 

Given any state n e SNM  it is a simple matter to list 

the possible states accessible from n via one-step transitions, 

A(n), and derive the transition probabilities: 



where n
'M 

n.  j  
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For n-  e A (n) 

(a)  n'i+1 = ni+1 + 1 

(b)  n'i  = ni  - On. 	> O 
15i5M 

(c)  n'j  = nj  (j#i, 1+1) 

where (a) is null for the case i = M. 

In the notation of section 4.3, 

'O (n,n' ) 
Tn n` 	_ 	A 	 
— — 	n  

a result which is immediate from the instantaneous transition 

rate matrix. 

In order to construct T for computer representation, 

some ordering on the state space, SNM, is required, i.e. a 

mapping : SNM  + Z+  and its inverse. 

Definition D4.1 

The mapping fNM : Z+  -} SNM  is defined as follows: 

(i) fNM (1)  = 0 where n = 0 if ni= 0, 15isM 

(ii) Given fNM  (i) 	= n 

fNM  (i+1 ) = n- 

= 

= 

nM  + 1 

n j 	( j < M) J 

} 	if 
M 

/ 
j=1 

n.<N 
J 

Otherwise, let k be the maximum integer such that 

k+1 	O, 1 5 k 5 M - 1. Then 

n ek  = 	nk  +1 

n.. 	= 	0 	(j>k) 

n ^j = 	nj 	(j<k) 
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This mapping means that the states are numbered consecutively 

according to a counting system modulo N with M digits subject 

to the constraint that the sum of the digits cannot exceed N; 

i.e. the infeasible states are omitted. 

Proposition P4.5  

The mapping fNM  is a 1-1 correspondence. 

Proof  

The proof is by induction on the number of centres 

in the network. 

(i) For a network of one centre the result is trivial: 

fN1  (i) = (i - 1) 
	

(1 <_ i 5 N+1) 

(ii) Suppose the result is true for networks of less than 

m centres and N customers, for all N e Z+, and consider state 

n e SNm. 	If n1  = 0 the result is true by the inductive hypo- 

thesis applied to centres 2,3,....,m since by Definition D4.1 

fNm(i) = 0,fN,m-1(i) 	for 1 s i s k0  

where a = x,b is such that 

a1  = x 

aj  = bj-1 (2 s j s IbF + 1) 

and 	fN,m-1(k0) = (N,0,0,...,0) 

By Definition D4.1, 

fNm(k0+ 1) 	= 	(1,0,0,...,0) 
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and for k1  ? i > k0+1 

fNm(i) = 1'fN-1,m-1 (i-k0) 

where fN-1,m-1(k1)  = (N-1,0,0,...,0) 

Thus the result is true for n1= 1 by the same argument. 

By applying a simple induction argument to n1  the proposition 

is proved. 

Proposition P4.6  

The representation of the transition matrix with 

states numbered according to the function f is lower triangular. 

Proof 

The proof is by induction on the number of centres 

in the network. 

(i) Trivial for networks of one centre. 

(ii) Suppose the proposition is true for networks of 

less than m centres and N customers, for all N e Z+, 

and consider state n s SNm' 

If n1  = 0, the proposition is true by the inductive 

hypothesis. 

Otherwise, consider a transition from state n to 

state n 	(n,n's SNm). 

Suppose this transition is caused by departure of a 

customer from a centre other than centre 1. Then by definition 

D4.1 the inductive hypothesis may be applied to centres 

2, 3,....,m with N - n1  customers, i.e. to SN-n,m-1'  and the 
1 

proposition is true. 

Otherwise, the transition is caused by a departure 

from centre 1 which results in a state with lower valued numbering 



m 
N- E k. 1 1_2 - 	1M +n_m]  

m+1 
n=1+N- E k. 

i=2 1 
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(by Definition D4.1) which is unique by Proposition P4.5. 

Now let gNM = f-1NM for the network SNM. 

Proposition P4.7  

m-1 
N- E k. 

M 	i=1 1  

gNM(k) = 1 + 	G m  
m=1 	n=1+N-E k. 

i=1 1  

M + n - m 

n 

where 
fāl 

r! 
(r,s E Z+) 

s: (r-s): 

and k s SNM. 

Proof 

As usual, this is by induction on M. For M = 1, 

the result gives 

n 
gN1  ()I) 	= 	1 + 	E 

1+N-k1  

1 + k1  as required. 

Suppose the proposition is true for SNM. If 

k E SN,M+1 and k1  = 0, then 

gN,M+1(k) 	gNM (k2,k3,. .. ,kM+1)  by definition D4.1 



n 	+ gN-k1'M+1 (0,k2,...,kM+1) 
[M+ n] 
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m-1 
N- E k. 

M+1 	i=1 1 [M+1+n_m) 

by renumbering and since k1= 0 with the term for m=1 being zero. 

If k1 	0, by Definition D4.1 and Proposition P4.5, 

IM + N 
gN,M+1(10 	N 	+ gN-1,M+1 (k1-1,  k2,...,kM+1) 

n=1+N-k1  

by induction on k1  or direct substitution 

m-1 
N- E k. 

M+1 	i=1  1 
M + 1 + n - m 

1 + 	 m  
m=1 n=1+N- E ki  

i=1 

using the above result, so completing the proof. 

The function fNM, the inverse of gNM, may be 

evaluated using the following relationships which follow directly 

from definition D4.1. 

gNM (i, 0, 0,..., 0) 	<- gNM(k) < gNM (j, 0,..., 0) 

for all i,j e Z+  s.t. i s k1,  j >_ k1  + 1 

and gNM(k) = gNM(k1, 0,...,0) - 1 + gN-k1,M-1 (k2,k3,...,kM) 

(k e SNM) 

= 1 + E 	m  
m=1 	n=1+N- E k. 

i=1 1  
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The inequality may be used to determine the number 

of customers at the leftmost centre in a network, and the 

equation enables it to be applied to a network with that centre 

removed, so allowing successive components of k to be determined. 

The functions fNM and gNM are implemented in the 

APL package (Appendix 7) as NTS and STN respectively. 

Now, let the transition matrix, T, be represented 

under the mapping g by T'. Then, 

for 	i,j e Z+ , f(i), f(j) e SNM 

T'ij is assigned the value Tf(i),f(j) which is 

defined in section 4.3. This determines the values for every 

element of T' since, by definition D4.1 and proposition P4.5, 

{g(n) I n e SNM} is a consecutive set of integers in the range 

[ 1,~SNMI ]. Henceforth, the prime on T' will be dropped, no 

ambiguity being present since a mapping g can only cause a 

permutation of rows and columns. 

Clearly the size of the transition matrix T, and so 

of its modified form T and (I-T*)-1, will grow rapidly with 

the size of network considered; for the case of M servers and 

N customers, the number of components will be the square of 

M + N 
However, the matrix is very sparse, with at most 

N 

M non-zero elements in any row (corresponding to transitions 

from each occupied centre), and sparse matrix techniques may be 

used to advantage with respect to both storage and computation 

time used. 

A one dimensional representation is used in the APL 

package of Appendix 7 in which the non-zero matrix elements only 

are stored in a vector in column order for successive rows. 
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Two control vectors are associated with this vector; one to 

indicate the column positions and one to indicate the indices 

at which successive rows begin. 

The storage requirement will be bounded above by 

M + N 
M x (vector of values of non-zero matrix elements) 

N 

M + N 
+ M x (vector of their column positions) 

N 

+ fM + NI 

N 	} 

(vector of pointers to delimit row boundaries 

in the above) 

M + N 
(2M + 1) 	storage elements. 

N 

Of course the second and third contributions to this 

aggregate will require smaller storage elements than the first 

since they are integer valued as opposed to floating point. 

However, the huge saving in storage is evident. In the APL 

package of Appendix 7, the transition matrix is constructed in 

this form by the function TRM. 

The actual implementation of the sparse matrix 

operations required for the computation of the Laplace transform, 

moments and approximate discrete form of the cycle time distri-

bution is discussed in the following three sections. 

4.7.3 	Computation of the Laplace transform, L(s)  

The formula for the Laplace transform of the cycle 

time distribution was derived in section 4.3 as 

L(s) 
	

X 	Z(a) (I - T
* 
)
-1 

 ao 
asSI  

where Z(a) is a product form expression for the initial state 
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space probabilities on arrival of the test customer at centre 1. 

Thus Z(a) is easily obtained, and in the APL package (Appendix 

7) it is computed during computation of the transition matrix T 

for the relevant states a e SI 
 c SNM' 

The more significant problem is computation of 

(I - T )-1. 	Under the mapping fNM : SNM - Z+, let a map into 

a, SNM  and SI  to S'NM  and S'I  respectively. For brevity 

denote (I - T ) by X, the components of which are ordered 

according to the function fNM. 

By proposition P4.6 the matrix X is lower triangular 

so that the inversion requires only a back substitution process, 

giving greater accuracy as well as efficiency compared with a 

general inversion. Furthermore, for cyclic networks (but not 

for the more general "tree-like" networks considered in chapter 

5) only the first column of the inverse is required (correspond-

ing to state o e SNM). 

Thus 	(X -1)a1 	is given by : 

(X  -1) 11 
	= 1 

(X -1)a1 

a-1 
_ 	T*aj (X  1)j1  

j=1 

(2 s a s W) 

where W is the total number of states, the order of SNM' 

The simplicity of this calculation, because X is lower 

triangular, is due to the fact that the open network's states 

are all transient and the network will always end up in state o. 

The equivalent expression derived before (I - T*)-1  

in section 4.3 was the (finite) sum 

CO 

(T
* 
)n  = R say. 

n=0 
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* 
Then 	R 	= 	I + T R 

so 
	 1 	 (1 s i s W ) 

w 
rr 	* 

and 	R.. 	= 	L T . Rk.  
k=1 

(1 s ij  s W) 

Thus usage of either the inversion or power series 

methods are also seen to be equivalent computationally, although 

compared with direct summation of the powers of a matrix, the 

back substitution method would clearly be superior. 

* -1 The back substitution process for computing (I-T ) 

is performed by the function ESB in the APL package of 

Appendix 7. 

4.7.4 Computation of cycle time moments  

Using proposition P4.2, any number of moments of the 

cycle time distribution may be computed. In particular, if 

Mp  is written as 

Mp 	= 	Z(n) Q(P)no 
neSI  

and it is required to find M1  and M2, then Q(1)no and 0 (2 ).no  

must be evaluated for n e S .  From proposition P4.2 

S2 (1) 	_ 	(I-T)-1  T-.(1) (I-T)-1  

and 	S2 (2) 	= 	w(2,1) + w(2,2) 

where 	w(2,1) 	(I-T)-1  T-(1) (I-T)-1  T'(1) (I-T)-1  

and 	w(2'2) 	= 	(I-T)-1  T-(2) (I-T)-1 
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Now, by the state numbering definition, D4.1, the 

state o is allocated number 1. Let n = f-1(n) (n e S
I 
), — —  

then in the Z+ - space corresponding to S
NM, S"NM, it is required 

to evaluate 	 (1) 	and S2(2) 	where St, (4, T and T' take their 
n 1 	n 1 

representations in Z+-space. 

In the sparse matrix one dimensional representation of 

T and so, by simple division, of T", as described in section 4.7.2, 

it is a simple matter to perform the operation of port-

multiplication by a vector or a matrix in either uncompressed 

form or else represented linearly with respect to columns as 

opposed to rows, the method used here. 

Now returning to the general case, SI(p) (p>_1) is a 
n 1 

sum of terms of the form 

h 	
I 

II (I-T)k 1 7 T 	"(mi) k 	(I-T)kri1 	(with summation 
i-1i 

i=1 	Jl 
1 	convention) 

where kip = n, for some mi, h E 

Now, it was shown in section 4.7.3 how (I-T)-1
k 1 

can be 

evaluated by simple iteration for k E S NM. Working from right 

to left in the expression, 

T (mh) k 	 k 1 
is also easily evaluated in 

~h h 	h 

the representation of T" described above, to give, say, E. , 

another vector. Now, 

k 	
E. 	, denoted by E" 	, say, is the solution 

h-1~h C1 	kh-1'1 

to the equations 

E"j1 = Ei1 	(i,j E S"NM) 
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which can be solved by direct back substitution as in the case of 

computation of (I-T)-111 in view of the fact that the matrix T is 

lower triangular. 

Appendix 7 . 

By continuing 

then be computed for 

E
.
k 	~1 	= 

Q-1 

and 

E j 1 Q 

This is accomplished by the 

	

the process, 	E. 1 	and 

k = h-1,h-2,...,1 where 

II 	(I-T)-1k 	T-(m.) 

i=t 	1.-1 

T' (mQ) j k 	E'  R 	k 1 R 	Q 

function 

E'k 

k 

HSB in 

,1 	may 
R-1 

(I-T)-1k h1  h 

are partial products. 

Thus, in principle, it is not a difficult programming 

problem to compute any number of moments, Mp. 	In the 

package implemented (Appendix 7), M1 and M2 are computed to 

provide mean cycle time and its standard deviation, by the 

functions THM and MOM. The post-multiplication of the matrix T 

in compressed form is accomplished by the function SML. A major 

reason for limiting the calculation to two moments only, apart 

from time consideration, is concerned with the future application 

of the Central Limit Theorem in the prediction of response time 

distribution, in which case higher moments are not necessary. 

This is discussed further in section 4.10. 

4.7.5 Computation of the discrete form approximation 

The discrete form approximation for cycle time 

distribution may be computed using a simple iterative method 

based on the recurrence relation, (E4.6) in section 4.6, for 
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nst' the (discrete form) time delay distribution corresponding to 

transition from state s to state t in any number of steps. 

For cyclic networks (but not so for the more general 

tree-like networks considered in chapter 5) the state t is 

always state o, that representing an empty network, and so nso 

is a vector. Thus, no new techniques are required to compute 

• nso  

(i) The total service rates are pre-computed during 

construction of the state transition matrix, so 

xs  is readily available for each s c SNM ' 

(ii) The initialisation of the ]Iso  (j) for j=O is trivial; 

(iii) The post-multiplication of the transition matrix T, 

in sparse form, by the vector n(j-1) is accomplished 

simply as described in the previous section, owing to 

the availability of the column oriented form of the 

vector second operand. 

(iv) The unconditional, approximate discrete form of the 

cycle time distribution is then easily computed via 

the expression 

n(j) = 	Z(s) 1150(j) 

scSI  

The functions which perform the computation of the discrete cycle 

time distribution approximation are DIS and DST, to be found in 

Appendix 7 . 
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4.8 Laplace transform inversion 

Although an approximate, theoretically convergent method 

was developed to give a discrete form of cycle time distribution 

in the previous section, the only exact result derived is that 

of its Laplace transform and hence its (infinite) set of moments. 

Of course this is theoretically equivalent to the distribution 

itself, but it is impossible to interpret intuitively, although 

the lower moments are obviously useful. Moreover percentiles 

cannot be computed directly for the distribution. Thus, at first 

sight, it may appear that inversion of the Laplace transform is 

desirable. 

However, as will be discussed at greater length in 

section 4.10, the most important distribution is that of a sum 

of successive cycle times; representing response time in an 

interactive computer system for example. In order to characterise 

such a distribution, usage of the Central Limit Theorem is 

proposed under appropriate assumptions of independence. As a result 

the distribution is assumed asymptotic Normal with only the first 

two moments therefore being required from the constituent cycle 

time distribution. In this way, the appearance of an individual 

cycle time probability distribution, whilst still undeniably 

useful, particularly with respect to identification of system 

imbalances revealed through unexpected peaks, becomes less 

important to the analyst. 

In papers by Lazowska, CLAZO79, LAZO77a7, methods are 

developed for fitting parameters to phase type servers in queueing 

network models of computer systems, by matching the Laplace 

transforms of their service time distributions at certain points. 

The chief advantage of this approach is that performance measures 

of the server in question may be determined via such a Laplace 
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transform, evaluated for certain (Laplace) parameter values, 

so that the calibration process is performed directly with 

respect to the main measurements of interest. This is not 

always the case when the classical method of matching the first 

two or possibly three [SAUE757 moments is used. This, then, 

provides justification for the computation of Laplace transforms 

of distributions of time delays in queueing networks, even when 

the distributions themselves may be available. 

There are in fact two possible approaches to inversion 

of the Laplace transform of cycle time distribution: 

(a) 	Numerical, in which from a set of values for L(sj) 

corresponding to values sj  (j a Z+) of the Laplace transform 

parameter s, some distribution, GE(ti) say, is estimated for 

timestis R+  (i c Z+) to give a fit to the L(s, which is 

optimal in some sense. However, this gives a discrete 

approximation which can be no better than the convergent result 

described in section 4.6. Unfortunately such numerical inversion 

is exceedingly difficult in view of the smoothing process implicit 

in the taking of a Laplace transform; in fact the definition of 

L(s),  the transform of G(t),  may be written 

L(s) 
	= 	E (e-sC)  

where C is a random variable s.t. 

Pr (C s t) = G(t). 

Thus L(s) is the average w.r.t. the distribution G(t) 

of a smooth analytic function and any irregularities in 

G(t) will be smoothed out to a very great extent in the 

transformation. This heuristic argument indicates the 

difficulties that are encountered in numerical inversion of 

Laplace transforms. Nevertheless, programming packages which 
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perform such inversions have been constructed, e.g. CCAVE78]. 

(b) 	In Appendix 1, a recurrence relation is derived to give 

the distribution of multiple convolutions of negative exponential 

distributions with different means by inversion of the product 

of Laplace transforms. The method evaluates the residues at the 

poles of the Laplace transform in the complex plane to perform 

the Bromwich integral. The expression for L(s) derived here 

is a weighted average of just such convolutions, so that in 

principle the same method could be used. However, the method 

was developed for the much simpler applications described in 

chapter 3 and the extension required is certainly not easy. 

In any case the recurrence relation of Appendix 1 is exceedingly 

complex, even for quite simple cases, so that the computational 

problems alone would probably be prohibitive, in spite of the 

fact that identification of the poles is straightforward. 

To sum up, it was not considered worthwhile to pursue 

the inversion of the Laplace transform, L(s), for the following 

reasons: 

(a) An approximate discrete form for the distribution 

has been derived (section 4.6) and is convergent; 

(b) The distribution of prime interest is that of 

response time, a summation of several consecutive 

cycle times; 

(c) Inversion of Laplace transforms poses many problems. 
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4.9 Decomposition Methods  

Cyclic, and their associated tandem, networks may be 

analysed in sections and the results for each such sub-network 

combined to provide a solution for the whole network. This 

approach is very similar to that adopted in [HARR78a], but here 

it is exact. The reason for considering such decomposition 

methods is one of computational efficiency, with respect to both 

storage and execution time, achieved by consideration of smaller 

state spaces. 

In this section, a tandem network of M centres with 

a maximum of N customers, CNN, having state space SNM  is 

considered. Such a network may be successively decomposed into 

sub-networks CNm, 1<_msM, with state spaces SNm  where CNm  consists 

of centres (M - m + 1),(M - m + 2),...,M. 

Let SNm(I)  c SNm  denote the sub-space of valid start 

states which may exist on entry of the test customer to the first 

centre of the sub-network CNm, so that 

S (I)  NN 	= SI 	in the notation of section 4.3. 

N+M 
Now, the order of SNM' ISNM1 = N 

so that I SNmI 	__ 	M (M-1) 	(m+1) 	M M-m  
SNM 	(N+M) (N+M-1) ... (N+m+1) 	(N+M) 

Thus the sub-networks considered can possess considerably 

smaller state spaces than that of the whole network. Furthermore, 

as will be seen below, it is not necessary even to represent the 

whole of the state space SNM. 
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Let G(m)as(t) be the probability distribution function 

for the time taken for the network CNm to undergo transitions 

from state a e SNm to S e SNm and let T(m) be the state 

transition matrix for the network. 

Then, in the notation of section 4.3, 

G(t) 
	_ 	Z (a) G(Mao (t) 

aCSIcSNM 

or 	G(t1a) = 	G(Mao (t) 	(a E SI c SNM) 

Now for y e SNm, (1 <_ m'5 M-1), define the state space 

vector Y (m) 
c SNm for m'< m 5 M by 

(m) 	= Y 	i 	- 	Yi 

	(m-m"41 5 i 5 m) 

	

0 	(1 5 i 5 m-m') . 

Heuristically, 	Y(m) represents the inclusion of state y 

into SNm 	(m > m')by allocating zero customers to all the 

additional centres attached on the left of CNm,to form CNm. 

With this notation, for all m', m > m' >_ 1 and for all SESNm 

s. t. 	3 R" E SNm, with a = S" (m) , 

(mm") (m) 

G(m) (t) 
	= 	P 

(m) 
G 

(m) 
(t) * G(m Y~ "(t) 

	

YES (I) 	ay 	ay 
Nm 

where 

p (mm ' ) 	= 	X (m) 	- 	 x(m) 	T 
101 	101 	6eS (I) 	

4)e 
en 

Nm" 

and 	X (m) 	_ 	(I-T (m)) -1. 

(ram') (m) is the "first entry probability", derived in 
ay  
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Appendix 5, which ensures that once a state 1(m)  (y a SNm') 

has been entered, the subsequent state transitions are convoluted 

w.r.t. the network CNm.. Thus the domain of summation implicitly 

involved in the weighting of the convolutions is disjoint w.r.t. 

routes Ras, defined in the state space Slim. 

This result follows because 

(a) The time of entry into any state y e SNm.(I)  is a 

Markov time; and 

(b) For all r c Ras ,  3 i s.t. 	ri  a S 	(I)  

and so the domain of summation spans the whole of 

Ras  and is disjoint by the above argument. 

In particular, 

(Mm-) (M) 
G(t1a) = G(M)  (t) = 	P 	G 	(t) * G(m)  (t)  

ao 	YeS(I)  ay(M)  ay(M) 
	Yo. 

for I s m s M-1 

The corresponding (general) result for Laplace transforms is 

( mm') 	(m) 
L (m)  (s) 	_ 	P 	L 	(s) L(m  ) (s) 
a$ 	 (I) 	ay (m) 	ay (m) 	ys' 

YeSNm 

where L(m)(s) is the Laplace transform of G(m)(t). 
a$ 	 a$ 

By making this decomposition, two advantages are gained 

with respect to efficiency: 

(a) Storage is saved by reduced state space requirement; 

(b) Execution time may be saved as networks are extended 

to include additional centres. 
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First, consider claim (a). When considering the 

sub-network CNm. as above (1 s m" < m), the whole state space 

for this network must be considered since the term G(111-) (t) 
yo" 

appears in the summation (y e SNm,(I)  ) and 

for all 8 e SNm  3 Y e SNm. (I) 	s.t. 8 e R(m')  
yo" 

where R(111-)  is the set of routes defined on SNm.  with start 
(14 

state 	and end state II) and where 

8 c R (111-) <=> 3i e Z+, r e R(m-) s.t.ri= 8. 

However, this state space is much smaller than SNm  

particularly if N is large compared with m; recall 

{ ISNm' I 	s 	
m-m' 

ISNm I 	IN + m 

The other state space to be considered in the 

(convolution) summation is a sub-set, UNmm"  say, of SNm  defined 

by 	8 e UNmm. <=> $ c .  with 4) (m)  = 8 

Thus 	I UNmm' I  = I SNm I 	I  SNm" I 

__ 	m(m-1) .... (m"+1)  
ISNm I I i (N+m) (N+m-1) ... (N+m.+1) 

s IS I [1- { 	n(+—  1  
Nm 	N + + m + 1 

• 

Of course, since IUNmm-I  + ISNm I  = ISNm I  

there is no overall saving in the size of the domain of summation 

if the computation is performed directly. However, if 
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G  (m')  (t) or L  (m')  (s) is first computed and the results saved 
Yo 	Yo 

for each y  e SNm.(I), all the other data structures associated 

with SNm- may be discarded. 

The summation may now be performed over the domain 

UNmm- so that the effective state space storage requirement is 

only max ( IUNmm-I , ISNm- 1  ) which, for significantly large 

problems, will be IUNmm-1. 

Claim (b) follows naturally. Exactly the same method 

is employed as that described in the previous paragraph except 

that the results for G(m')(t), or its Laplace transform,_ will 
yo' 

already be known from some previous computation, so reducing 

execution time. Such a situation will arise if a network has 

been solved and is to be extended by adding (m-m') new centres 

to precede centre 1 in CNm• , but no new customers. 

4.10 Response time distribution 

Cycle time distribution in queueing networks is 

undoubtedly of value to the computer system analyst, for example 

see CLAZ078, HARR78a]. Given a representative queueing network 

model, accurate stochastic predictions may be made concerning the 

times taken for tasks in a computer system to complete cycles 

of service from a set of resources. For example percentiles may 

be computed so that the percentage of occurrences of some event 

(completion of a cycle) in each of a set of categories (time 

intervals) can be predicted. Applications of this type of 

analysis have been discussed in chapter 2 and further model 

details are suggested in chapter 8. 
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However, usually one is more interested in the 

distribution of response time, the time taken to accomplish a 

complete task which requires a number of cycles in a computer 

system. Thus the time delay constituted by the summation of 

several consecutive cycle times is of paramount importance since 

it represents response time distribution condit.ionci on the 

number of cycles involved. 

Obviously the method considered here cannot find the 

distribution of the time taken for multiple cycles in a queueing 

network, since in the open network there are no customers left 

after one cycle. In theory it should be possible to include a 

cycle number and to tag explicitly the test customer in each 

state, so adding two new dimensions to the state space, and then 

allow customers to return to the first centre after departure 

from the last in an analysis of the closed network. In this 

way, multiple cycle time distribution could be derived, but the 

enormous computational problems involved make the approach 

impracticable; they are severe enough for a single cycle: 

If, on the other hand, rather than considering 

consecutive cycles one considers a random sample of cycles and 

uses the sum of their times to represent the response time 

random variable, the Central Limit Theorem may be applied to the 

aggregate distribution. This is a valid step since for a random 

sample of cycles, the resulting cycle time distributions must be 

independent in view of the equilibrium state space probabilities 

assumed at the start of each cycle of the test customer. In the 

case of consecutive cycles, such an equilibrium state will only 

exist at the start of the S.i' t cycle, the states existing at 

the starts of subsequent cycles being correlated, i.e. dependent 

on the initial (equilibrium) state. 
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When the assumptions of the Central Limit Theorem are 

satisfied, the response time distribution is asymptotically Normal 

and so only the first two moments of cycle time distribution need 

be computed, as in section 4.3.4 or 4.4.5. In other words, as 

the number of cycles sampled tends to infinity, the normalised 

sum of their cycle times will approach a Standard Normal distri-

bution. Thus it is not necessary to compute cycle time moments 

higher than the second for this application. 

The crucial requirement is that the cycles considered 

be uncorrelated which is implied if the network is in steady 

state equilibrium at the start of each cycle observed for the 

test customer, usually consecutive. Now, it has been stated 

that this in general will not be the case, but intuitively one 

would expect two cycles to be effectively independent (uncorrel-

ated) if the number of transitions occurring between their start 

states is large compared with some (unknown) transient value, 

c.f. a time constant. Thus for networks with many customers, 

one might expect consecutive cycle start states to be independent 

and the Central Limit Theorem to be applicable. This postulate 

may be tested by means of simulation experiments and statistical 

tests such as the autocorrelation function. The results of such 

tests are reported in Appendix 8. 

It would certainly be desirable to investigate the 

validity of this assumption for consecutive cycles via a 

theoretical approach. But for the moment this must remain an open 

question. It is tacitly assumed that the correlation between cycles 

is small and the Central Limit Theorem can be applied -whenever some 

form of response time distribution is required. A different 

approach to response time distribution is taken by Sevcik and 

Lazowska CLAZ078], but there also many independence assumptions 
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are required, including that for successive cycles, as discussed 

in more detail in chapter 2. 

4.11 Concluding remarks  

Chapter 4 has been concerned with the exact derivation 

of cycle time distribution for cyclic networks. Clearly the 

method has limitations with respect to both efficiency and the 

restrictions on network structure, but its chief merit is the 

fact that it is exact. It is therefore possible to assess the 

accuracy of approximate methods such as the PSA method presented 

in chapter 3. 

A considerable amount of detailed theory has been 

presented in this chapter which relates only to a fairly simple 

class of networks (cyclic with exponential servers). However, 

many of the results will be required for use in the much more 

general class of "tree-like" networks discussed in the next 

chapter, and the theory provides a sound foundation for the 

analysis of this superset. 
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§5. 	Exact Cycle Time Distribution for "Tree-like" Queueing 

Networks  

5.1 The extension of the cyclic result 

The method presented in chapter 4 for deriving the 

cycle time distribution in cyclic networks relied primarily on 

the order invariance property of customers in the network, so 

allowing the position of the test customer to be known in any 

state and an equivalent open network with no arrivals to be 

analysed. Clearly such an approach can be applied to a much 

greater class of networks than merely cyclic ones, although not 

to networks of arbitrarily interconnected centres. In this 

section, cycle time distribution and its related quantities 

derived for cyclic networks in chapter 4, Laplace transform 

and moments, are derived for what turns out to be the most general 

class of network able to be handled by the method, so called 

closed "tree-like" networks. 

Informally, a tree-like network consists of a root 

segment of tandem service centres, the last of which is connected 

to zero or more tree-like networks or sub-trees in the sense that 

on departure from the last root segment centre, a customer 

proceeds directly to the first root segment centre of one of the 

connected sub-trees, according to the network routing probabil-

ities. The "leaves" of the tree (short for tree-like network) 

are the last centres of sub-trees with no further sub-trees 

connected to them. A closed tree-like network is one in which 

the leaves are all connected back to the top of the tree, i.e. 

on departure from a leaf centre, a customer proceeds directly 

to the first centre of the root segment. Thus, cyclic networks 

are a special case of tree-like networks (no sub-trees). An 
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example of a closed tree-like network is shown below: 

fig. 5.1 	A closed tree-like network  

The cycle time in a closed tree-like network is the time elapsed 

between successive arrivals of a customer at the first service 

centre in the root segment. This is equivalent, assuming instantan-

eons passage between centres, to the time elapsed between arrival at 

the first root segment centre and departure from a leaf centre. 

In section 5.2 it is shown that tree-like networks 

are the most general class of network for which cycle time 

distribution can be computed using the method presented in this 

chapter, and in section 5.3 a 1-1 mapping between the state space 

and positive integers is defined, c.f. section 4.7.2, which is 

shown to result in a lower triangular state transition matrix. 

In sections 5.4, 5.5 and 5.6, recursive techniques are used to 

derive expressions for the Laplace transform, the moments and 

(approximate but convergent) discrete form of the cycle time 

distribution of tree-like networks. In section 5.7 significant 

problems encountered during the development of the programming 

package of Appendix 7, for numerical evaluation of the results 
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of sections 5.4 to 5.6 are discussed. The section closes with 

a summary of and some general remarks on this research. 

Many of the important results of this chapter rely 

heavily on propositions from the previous one; part of the 

justification for the detailed and sometimes lengthy analysis 

given there. Being far more general in nature, however, the 

primary results of this chapter are presented as theorems rather 

than propositions. The inherent structure of the tree-like 

network suggests the use of recursive techniques which are duly 

applied where appropriate. 

5.2 Most general extension of the method 

In this section it is shown that the most general opened 

class of networks to which the methods of this and the previous 

chapter may be applied to derive cycle time distribution, called 

C-networks, are precisely the class of tree-like networks. As 

a by-product, a formal definition of tree-like networks is 

obtained. 

Consider an open network, A, with no arrivals; 

M centres numbered 1,2,...,M; N customers initially; state 

space SA; and routing probabilities CpijI1<_ i, j 

Definition D5.1  

A segment, B c A, is a non-empty sequence of 

centres {B1,B2,....,BN  'Bic Z+; 1 <_ Bi  5 M, 1 <_ i 5 NB5 M} 
B 

s.t. 	pB B 	= 	1 	1 s i <_ NB  - 1 
1 1+1 

and pa B 	= 	0 	aie A, air Bi i i+1 
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Informally, then, B is a tandem sub-network of A. 

Definition D5.2  

A segment B c A is maxi mat if 1 a segment B'c A, 

B-# B, and n 	0 E Z s.t. 

Bi+n - 	B. 	(1 s i <_ Nn ) 

Thus if B is maximal, on departure from its last centre 

a customer must be able to transit to any of more than one centre 

or else leave the network; and customers must be able to arrive 

at the first centre from more than one centre unless the first 

centre is a starting point of the network with no arrivals from 

anywhere. 

Definition D5.3  

A path, c, in an open C-network, A, with no arrivals 

is defined by 

s.t. 

C = {C1,C2,...,CN 

PCiC1+1 

PCN C3 C 

= 
PjC1 

~CiE 

0 

0 

0 

Z+: 

(1 

(1 

(1 

1 s Cis M, 

s i s NC- 

<_ j s M) 

s j s M) 

1 

1) 

<_ i <_ NCs M} 

i.e. C1 is a starting centre for the test customer and customers can 

leave the network on departure from the centre numbered CN 
C 

In the corresponding closed C-network the definition is 

the same except that 

0 	for all paths C"' 
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i.e. the last centres are connected back to the start centres, 

and a path is the same as a cycle. 

Definition D5.4 

A segment B is a atanting 4 egmen.t if 3 path C 

s.t. C1  = B1  . 

Definition D5.5  

The relation - is defined on centres a,b e A by 

a- b 	iff 3 segment B c A s.t. a e B and b e B. 

Proposition P5.1  

- is an equivalence relation. 

Proof  

(i) a - a (a e A) since a e segment {a}. 

(ii) a - b =3 b - a 	(a,b e A) trivially. 

(iii) Suppose a- b and b 	c 	(a,b,c e A) 

Then 	3 i1,i2,...,i e A (n e Z+, 1 s n s M) 

s.t. 
p. 	= 1 
1kik+1 

pl 	 0
k'k+1 

and without loss of generality 

i1  = a 

i = b n  

1 5 k s n-1 

i'k  e A, i'k# ik  

the case i1  = b, in  = a having a similar proof. 

Then either 

(a) 	3 J1.J2•....' m 6 A 	(m e Z+, 1 s m s M) 
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S. t. 
pjkjk+1 

kjk+1 

i1 

im 

= 

= 

= 

1 

0 

b 

c 

1 	s 

j -k 

k 

e 

s 

A' 

m-1 

j'.k 3k 

such 

• 

that 

3 

tk 

t 	
,~' 2, 

= 

k 

p~. 
k 

£m+n 

p~ Q  

...'Rm+n 

ik 

Jk-n+1 

k+1 

Q 	 = 
k+1 

1 	= 

-1 

(1 	s 

(n+1 

1 

0 

a 

C 

defined by 

k s n) 

<_ k <_ m+n-1) 

1 s k s 

R,'k 	e A, 

m+n-1 

!C'k~ k 

. . 	a c 

or 

(b) 

s.t. 

3 	j1.j2.....,jm 

= 	1 
p-kak+1 

p' 	0 
k-dk+1 

i1 	= 	c 

jm 	= 	b 

e A 	(m 

1 <_ k 

j-k e 

e 	Z+, 	1 

s m-1 

A, 	j'k 

<_ m s 

jk 

Now, if e, f e segment B c A s.t. pef = 1, 

for all g c A, g 	e, pgf = 0 by definition D5.1 

M) 
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either 	a = b 	(n = 1) so that a - c 

or 	b = c 	(m = 1) so that a - c 

or 	Jm-1 	In-1 

Applying the same argument inductively to the last case, 

and assuming without loss of generality that nsm 

jm-n+1 	i1 = a  

but 
	

j1  = c 	and using the range 1 s k <_ m-n 

in the definition of c b above, 

c a 

and a - c 	by (ii) . 

Proposition P5.2  

The equivalence class of b e B, [b] , is a segment. 

Proof 

It is sufficient to prove that if B,B' are segments 

with a,b e B 

and b,c a B' 

then 	B u B', appropriately ordered, is a segment, 

since 	a, b, c e B u B'. Since the result must be true for 

all such a, b, c, it is required to prove that given 

B n B 	0, B u B' is a segment. 

Now, 3 j,k a Z+, b e B n B' s.t. 

b = Bj  = B'k  

Without loss of generality it is assumed that j >_ k. 

Then 

B'n 	B. 	(1 s n <_ k) 

by the argument of the previous proof. Similarly, by definition 
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D5.1 and the requirement that the routing probabilities from any 

centre sum to one, 

B-n

• 

Bj-k+n 	(k+1 <_ n s NB + k-j) 

where it is assumed NB + k - j s NB. 

for otherwise Br c B and the result would be trivial. 

Thus, 

 

B u B~ 

 

,B2,....,Bj-k' 	 N 	} B 

and 

 

Bj-kB 1 
= 1 

paB' 1 
= 0 	for all a e A, a # Bj_k 

sinceB~ 

• 

Bj 1 	-k+1 and by definition D5.1. 

Hence, by the additional application of D5.1 to B 

and B separately, 	B u B~ is a segment. 

Corollary CP5.2  

For a e A, [ a ] is a maximal segment. 

Proof 

Suppose [ a ] c B where B is a maximal segment 

and let b c B 

Then 	a, b e B 

▪ • 	a - b 

• 

▪ . 

	b e [ a ] 

[ a ] = B 

Corollary CCP5.2  

Maximal segments are disjoint. 
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Proof 

This follows since equivalence classes are disjoint 

in general. 

Lemma L5.1  

Let C,C" be distinct paths in a network A. Then A 

is a C-network if and only if 

3 i E Z+  , 0 s i s min (NC  , NC.) , s.t. 

(a) for all j c Z , 1 5 j s if  

Cj  = C"j  ; 

(b) for all j, k E Z+  , 1 s j s NC. , i< k s NC  ,

• C.j Ck , 

*(c) for all j, k E Z , i < j s NC. , 1 <_ k s NC  , 

C"j 	Ck  

Proof  

Choose the maximum i E Z s.t. for all 1 s j s i 

Cj  = C"j  so that 0 5 i 5 min (NC  , NC.). 

Without loss of generality, NC  >_ NC" and so i < NC  for C # C. 

Suppose 3k > i s.t. Ck  = C'j  for some j, 1 s j s NC. . 

Suppose further that the test customer has just departed from 

centre Ci  and consider some other customer, r. 

Case (i) 	k > i + 1. Suppose the test customer proceeds to 

centre C1+1  and r follows path C. Then r can arrive 

at centre Ck  before the test customer. 

Case (ii) k = i + 1 and without loss of generality j < i + 1, 

(Ci+1 	C"i+1 by definition of i). Suppose r is at centre i 

immediately behind the test customer which proceeds to 

centre C"j. Then r can overtake the test customer in path 

C" by subsequently entering centre C"i+1 '  

* Condition (c) is in fact superfluous in that it may be derived 

from condition (b) by interchanging C,C" and j,k. 
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Hence, returning customers cannot be disregarded and A cannot 

then be a C-network. 

Conversely, by virtue of the FCFS queueing discipline 

assumed for all networks, paths such as C and C" above must 

exist in order to allow a customer returning to a start centre 

subsequently to be situated in front of the test customer in the 

latter's path. 

Corollary CL5.1  

Paths with different start centres in a C-network 

are disjoint. 

Proof 

By definition such paths have disjoint start centres 

and so by Lemma L5.1 are disjoint. 

Thus it may be assumed that C-networks have only one 

start centre since otherwise the disjoint sub-networks may be 

considered independently. 

Corollary CCL5.I  

Paths may not include any centre more than once 

in a C-network, A. 

Proof 

A 	has 

some  

such 

Ck 

{Ck+j_i  

i. 

1 s i < j 	s N. 

(1 	s k s 	i) 

(i+1 s k s NC" = NC  + i-j) 

Suppose path 	C c 

Ci  =Cj 	for 

Choose the maximum 

Define C" by 

C"k 	= 

Then C" is a path since 
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pCiCi+1 
	PC]CJ+1 	O 

so that p 
CkCk+1  

# 	0, 	1 s k s NC. - 1 

by virtue of the fact that C is a path 

and C1 = C1  

CNC'C 

Now, 	Ck = Ck 	(1 s k s i) and either 

(i) j < NC andC1+1 	Cj+1 # Ci+1 since i was chosen 

to be maximum, or 

(ii) j = NC  so that i = N. andC1+1 does not exist. 

Therefore, in either case, A is not a C-network by Lemma L5.1, 

a contradiction. 

Informally this means that there can be no looping back 

in a C-network; C-networks possess the "feed-forward" property. 

Theorem T5.1 

A C-network, A, is defined to be either 

(a) A single segment; or 

(b) A (maximal start) segment from the last centre of which 

a customer may enter one of at least two (sub) C-networks; 

or 

(c) A (maximal start) segment from the last centre of which 

a customer may either depart from the network or enter 

one of at least one C-networks. 

In other words, a C-network is tree-like. 
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Proof 

Case (a) is trivial since it is the tandem network 

solved in chapter 4. 

Otherwise, we may assume by Corollary CL5.1 that 

there is only one start centre and so only one maximal starting 

segment (by Corollary CP5.2), B say. 

On departure from the last centre of B, a customer 

must choose one of at least two paths, for otherwise B would 

not be maximal. 

Let the set of possible successor centres be X # 

(X = 	gives case (a)) and let the set of paths possible in 

A corresponding to a transition to centre x E X be denoted 

by Yx. 

Then the set of all possible paths in A is 

Iu 
	Yx  1 	u 	{B} 

xEX 

where {B} corresponds to a network from which it is possible 

to depart from the last. centre of the maximal start segment, 

case (c) . 

Now denote Yx  = Yx\ B. 

Then by Lemma L5.1 

n YX = 

xEX 

Therefore there exist disjoint sub-networks Ax  for each xEX 

with centres given by Ax  = u 	C 

CEY' x 

Furthermore, for each xEX, by application of Lemma 

L5.1 to the paths 	in in A, the same Lemma applies to the paths 

YX in Ax  since all such paths have B for their first NB  centres. 

Ax  is a C-network for all xEX 

and the theorem is proved. 
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Definition D5.6  

The maximal start segment of a C-network is the 

noot segment. 

Definition D5.7  

The C-networks connected to the last centre of a 

maximal segment are called sub--meed. 

A C-network is also defined to be a sub-tree of itself. 

The C-networks connected to the last centre of the 

root segment are called pt imany 4 ub-tnee4 . 

These are the networks labelled Ax  in the proof of 

Theorem T5.1. 

5.3 The mapping between the state space and the positive 

integers  

The state numbering mapping used here is identical with 

that of section 4.7.2 given an enumeration of the service centres 

in the tree-like network. In this section, such an enumeration 

is defined on tree-like networks and it is shown that the 

resulting state transition matrices are lower triangular. These 

matrices will again be sparse; from any state a maximum of only 

M, the number of centres in the network, transitions are 

possible; and the same representation, in one dimensional form, 

as was described in section 4.7.2 may be used here (see section 

5.7) . 

Definition D5.8  

The centres in a tree-like network, A, with s primary 

sub-trees labelled (arbitrarily) A1,A2,....,A5, are numbered 

as follows: 
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Let centre c e A be numbered mA(c). Then 

i 

r-1 

if 	c = Bi  where B is the 

root segment of A, 	1 s i s NB. 

mA(c) 	_ NB+ 

J=1  
NA  

J 
+ mA  

r  
(c) if c'e Ar 	(1<_rss) 

where NA  is the no. of centres 
J 

in sub-tree Ai, 1 	s 	j 	s 	s. 

Definition D5.9  

The depth of a tree-like network, A, denoted by d(A), 

is the maximum number of maximal segments in any path of A. 

Since by Theorem T5.1, every maximal segment is the 

root segment of a tree-like network, d(A) is one greater than 

the maximum number of (non trivial) branches in any path of A. 

Lemma L5.2  

(a) For all c, c"e A, 	1 s mA(c) s NA  

and mA(c) # mA(c") 	for c # c' 

i.e. 3 an ordering of {mA(c)I ceA} which is consecutive. 

(b) The centres in any sub-tree, DcA, are numbered 

consecutively in the order that they are enumerated by 

the mapping mr)  on D. 

Proof  

(a) The result is true for d(A) = 1 by definition D5.8. 

Suppose true for all tree-like networks A" s.t. 

1 s d(A') s n. a Z+  and let A be as defined in definition 

D5.8 with d(A) = n + 1. 
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For c c A, by Definition D5.8, 

1 5 mA(c) 5 NB  <_ NA  

mA(c) # mA(c") for c # c" 

 

 

c,c' E B 
and 

NB  < mA  (c) <_ NB  + NA  
1 

and so 	mA(c) # mA(c') for c 	c' 
} 

c c Al  , c "e B u Al  

by D5.8 and the inductive hypothesis. 

Thus, 

and 

Thus 

and 

by induction on r, for r = 1, 2,....,s 

r
-
-1 	

C
r 

NB 	+ 	L 	NA. < mA  (c) 	5 NB + 	L 	NA.  
j=1 	3 	j=1 	3  

mA(c) 	# 	mA(c") 	for 	c 	c' 

1 <_ mA(c) 5 NA  c, 	c' e A 

mA(c) 	# 	mA(c") 	c # c' 

c e Ar  

c"e B u 
r 
u 

j=1 
A. 

and (a) is proved by induction on d(A). 

(b) For d(A) = 1, the only sub-tree D c A is D = A 

and the result is trivial. 

Suppose true for all tree-like networks A' s.t. 

1 <_ d(A') 5 n e Z+  and let A be as defined in D5.8 

with d(A) = n + 1. 

Then either 

(i) D = A and the result is trivial; or 

(ii) D is a sub-tree of Ar  for some r, 1 5 r s s. 

▪ 	

. by hypothesis{mA  (c) 1 c e D} is consecutive. 
r  

▪ 	

. by definition D5.8 {mA(c)1 c e D} is consecutive. 

Thus (b) is proved by induction on d(A). 
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Corollary CL5.2  

The mapping m : A -► Z+  is 1 - 1. 

Proof 

The corollary is a restatement of (a). 

Proposition P5.3  

For a tree-like network A, with state space SA  

defined according to the centre enumeration, mA, given by 

definition D5.8, and the mapping fA  : Z+  -> SA  defined by 

D4.1, the state transition matrix, T, is lower triangular. 

Proof 

Consider a state transition in the state space SA, 

n" 	(n, n" c SA) 

Case (i)  

The transition is due to a customer's exit from a 

centre, c say, which is the last in a maximal segment, X say 

(X c A). The customer therefore either enters centre c', say, 

in a primary sub-tree of the sub-tree with root segment X,AX  

say, or else leaves the network. Thus, either 

mAX  (c) < mA  (c")(c") 	by Definition D5.8 

so that 	mA(c) < mA(c") 	by Lemma L5.2 (b), 

or a customer leaves the network. 

Case (ii ) 

The transition is due to a customer's exit from a 

centre, c say, which is not the last in X, using the notation 

of case (i). 

m 	(c) < mA  (c") by Definition D5.8 AX 	X  

and so mA(c) 	< mA(c") by Lemma L5.2 (b) . 



Thus it is sufficient to show that: 

Given an open network of centres numbered 1,2,...,M 

(where here M = NA), with no arrivals and initially N customers, 

having state space SNM' 

if a transition n -> n' (n, n'E SNM) 

implies that a customer has either progressed between 

centres numbered c and c" where M z c' > c >_ 1 or has 

left the network from some centre, then the state 

transition matrix for the network is lower triangular. 

The proof of this is simple in that since customers 

cannot move to lower numbered centres, the proof by induction 

on M, the number of centres, given for Proposition P4.6 may 

be used. 

5.4 Laplace Transform of cycle time distribution in tree-like 

networks  

An expression for the Laplace transform of the cycle 

time distribution in a tree-like network is derived in this 

section by a recursive extension of the method described in 

section 4.3. The cycle time distribution, both conditional 

on starting state and unconditional, is again a weighted sum 

of convolutions of state sojourn time distributions (because 

of the Markov property), but more complex than for cyclic 

networks in view of the existence of more than one path through 

the network admissible as a cycle. 

The notation is based on that of chapter 4 and is 

now given: 

Let a tree-like network, A, have N customers initially, 

MA  centres and primary sub-trees A1, A2,....,Ar  (r ? O). 
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If r = 0 there are no primary sub-trees and the network is 

tandem. 

Let the centres in A be numbered according to 

definition D5.8 and denote any centre by its number, m say, 

1 s m s MA. Let the state space of A under this numbering 

be denoted by SNA  and given by 

MA  

SNA  = 	n J 	G 	ni  5N ;  ni  z 0, I s i s MA  
i=1 

where if n e SNA  , ni  is the number of customers at the 

i'th numbered centre, 	1 s i s M .  

Let the set of valid initial states be denoted by 

SNA  (I)  and defined by 

MA  

= 	n I n e SNA  ; Y 	ni  = N ; n1  > 0 

i=1 

which represents a state with N customers and the test customer 

at (the back of the queue of) the first centre in the root segment 

of A. 

Let the set of routes between states a,8 a SNA  be 

denoted by 

Ras(NA) 

Ra8(NA) 

_ 

and defined as in section 4.3 by 

{ 	
(i1, 	i2,....,in)In 	a 	Z+; 	lie 	SNA, 

	

i 	= a; 	i 	= a; T. 	0, 1 	n 	lklk+l 
1 

1 s 

s k 

j 

< 

<_ 

n 

n; 

JJJ 

where T is the state transition matrix for SNA  defined below. 

Let the service rate of centre i be pi  (1 s i s MA), 

a constant for the reasons explained in section 4.2, and define 

8A, (I) A' A  A  by  
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AA  (u,v) 	= no. of centre from which a departure causes 

a transition u + v 	(u, v s SNA) 

'A  (u.v) 	= no. of centre at which a customer arrives on 

a transition u + v (u, v c SNA) 

where eA(u,v) and (1)A  (u,v) are undefined if a one step 

transition u + v is invalid. 

AA(u) 	_ 	 Pi 
1<jsMA  

u.>0 

, the total service rate in 

state u E SNA. 

The state transition matrix for the embedded Markov 

chain, T, may be derived from the instantaneous transition rate 

matrix or the balance equations for A as 

ueA(u,v)peA(u,v)(PA(u,v) if a one-step trans- 
AA(u) ition u+v  is valid 

0 	 otherwise 

where p is the routing probability matrix of A so that for 

a transition, u + v, caused by a customer moving within a 

segment, the factor would be absent in the expression for Tuv' 

Let the cumulative probability distribution of the 

time spent in state u be du(t), which is negative exponential 

by Appendix 4, having Laplace transform 

aA  (u) 
Du(s) 

 

Define the modified transition matrix T , as in 

section 4.3, by 

T uv 
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* 
uv 	Du (s) Tuv 

	(u,v E SNA).  

Let the probability distribution function for the time 

to pass through A on some stochastically chosen path, conditional 

on initial state a E SNA (I)  be GNA(tIa) with the 

unconditional distribution function for an initial equilibrium 

state distribution being GNA(t). 

Let these distributions have Laplace transforms 

LNA  (s l (1) and LNA (s) respectively. 

In order to derive a recurrence relation for LNA (s) 

it is necessary to define one more set of states, viz. those 

which can introduce the test customer into a primary sub-tree 

after a state transition. 

Let A have root segment B and define ENA  c SNA  by 

ENA = { n I n E SNA  ; ni  = O, 1 s i < NB  ; nN  = 1}  . - - 	 B 1 

Hence by definition D5.8, ENA  consists of states with 

only one customer left in the root segment of A, at its last 

centre. Because of the FCFS queueing discipline this must be 

the test customer. 
-1 

Under the mapping 

P5.3, by definition D4.1, n E ENA  if and only if 

-1 	-1 	-1 
F (1) 	= 	fNA (n(1))  s fNA  (n) < fNA  (n(2)) = F(2)  

where n(1)  is defined by 

(i) 

	

nj  = 0 
	(j NB) 

	

i 	(j = NB) 

fNA SNA -' Z of Proposition 
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Thus the states in ENA are numbered consecutively 

between F(1) and F(2)- 1 inclusive, a fact of great use in 

implementation on a computer (see section 5.7 and Appendix 7 ). 

Let the random variable for the time taken for 

the network A to reach state s from state a (a,s c SNA) 

be denoted by Tao. 

Theorem T5.2  

The cycle time distribution, GNA(tJa), in a tree-like 

queueing network, A, with root segment B, r primary sub-trees, 

N customers initially and start state a e SNA(I) , in which the 

test customer is at the first numbered centre of A, is given by 

GNA(la) 

where Has 

$EENA 

au ) 
(t) 

r 

j=1 

= 

P JUNB 

(NA) 

Hao 

~1vA. 
J 

t) 

( 1 S' (j) ) * 

(a 

(r = 0) 

ds * HāSA) 

otherwise 

a) 

AA(s) 

Pr (Tas 5 

(NA) 
Haa (t) = 1 ; 

state o is that numbered 1, representing a network 

containing zero customers; 

Pi = PN 
B K j

, the routing probability, in which 

j-1 

K. = 1 + NB + 	NA 	(1 < j 5 r 	0); 
i=1 	1 

s' (J) = 
	

s (J) 	(1 5 i 5 NA.) in which 
i 	i+K.-1  



time, c.f. section 4.3. 

Thus, 

GNA  (t W a) = 	f 
J

E

lo 	

Pr(TS  s t-u A test customer 

SeENA 	
3-1 

 enters primary sub-tree j after 

r 
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$(j)e SNA is the state succeeding  $ e SNA entered 

by transit of a customer from centre NB  to the 

first centre in sub-tree Ai  (1 s j s r). 

Proof 

Let the random variable for the time taken for the 

test customer to leave the network from state a e SNA  be 

denoted by TB. Also, let 60  denote the random variable 

for the time spent in state a. 

(I) 
Then, for a e SNA 	and a ji ENA  , r # 0, 

t 
GNA(tla) = 	1 Pr(TS  s t-u A transition from state a 

$eENA o caused by test customer service 

completion) dPr(Tas  s u1(3) 

since for any path in A taken by the test customer, some state 

a c ENA must be entered just before passage of the test customer 

to a primary sub-tree, and using  the fact that TaB is a Markov 

state a)} dPr(Ta$ s ul$) 

The expression in { } may be written as 



i-1 

Kj  = 1 + NB  + E NA 
i i=1 

(1 s j s r) 
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c
r 	u 

 P. 	
NB 

	
-NA (t-u-v1 $ (J)) dPr (a < v) 

j=1 	AA(S)  

state transition 	distribution of distribution of 

probability 	time from state time spent in 

S 	(J) 	a (j)4-end  of path state $ 

where R (j)  is, as defined in the theorem, the state succeeding 

$ caused by transit of a customer from centre NB  (last in the 

root segment) to the first centre in the j'th primary sub-tree 

root segment, numbered Kj  say, and 

P.= PNBKj  , the associated routing probability. By 

definition D5.8, 

jt-u 

Thus the expression { } is 

r 	UN  
I 	P 
	

[ A.ci-
1V

( I R' (j) )  * d 
S j 1 (t-u) 

j=1 	AA($) 
  

omitting the arguments in the convoluted distributions, where, 

as given, 

(J) 	(J) 
S,i 	ai+K -1 	(1 s i s NA 

 J
) 

J 

are the components of the state space vector for Aj  taken in 

isolation corresponding to state $(j)  in A. The sub-trees 

AI  may be considered separately in this way since all transitions 

in other sub-trees Ak  (1 s k j s r) are independent by the 

argument of Appendix 4 and the disjointness property of C-networks 

(Lemma L5.1) . 
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Thus, 

GNA(tla) = 	G 	P3 NB c- 	( IR -(j) ) * d * 	

(NA) 

SeENA 
j=1 AA(13) 	J 

for r # O and a ji ENA 

(NA) 
where H 

a$ (t) 
	

Pr(Tas 5 t) as given. 

The reason for partitioning routes through the network 

A in this way, via states $ e ENA , is so that the position 

of the test customer can be identified at all stages in the 

(recursive) computation. 

For a e ENA, the same reasoning and resulting 

equation may be applied using the result that 

(NA) 
Haa (t) = 1 	(t 	O, a 

c SNA) 

For r = 0, A is a tandem network, for which the 

problem was solved in section 4.3, and 

(NA) 

GNA(tla) = 
	H ao (t). 

This completes the proof. 

Corollary CT5.2  

~ 	
* -1 

LNA (s l 
a) = 	(I - T ) ao (r = 0) 

r 	P .0 
NB B 	

(I-T*)aa LNA (sIR-(j)) 

ScENA j=1 s + XA (R) 	3 

otherwise 
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Proof 

Recall, by the argument of section 4.3, that the 

(NA) 	 * -1 
Laplace transform of H as  (t) is (I - T ) 0  , (a, f3 E SNA)  , 

where T is as defined in this section. This is so because 

Corollary CCL4.1 applies to Rao(NA)  in a tree-like network, A, 

since T is lower triangular by Proposition P5.3. This property 

(NA) 
also ensures that the condition Haa  (t) = 1 is satisfied. 

since 	Da  (s) 	_ 	AA  (S)  

s + AA(R) 

the corollary is proved. 

Corollary CCT5.2  

Finally, an expression for the Laplace transform, 

LNA(s), of the unconditional cycle time distribution, assuming 

an initial equilibrium state space probability distribution 

Z (a) , a E SNA(I)  , is: 

LNA (s) 
acSNA  

Z (a) L (s la) 
(I) 

MA 	
l 
a i  

where 	Z (a) 	= 	
1 
	 II l ūl 1 	(a E SNA (I)  ) g(N,A) i=1 	i .J 

in which 	{ei I 1 s i s MA} is such that 

MA  

ei 	= 	1 	ej  pji 	(1 <_ i <_ MA) 

j=1 

and g(N,A) is the normalising constant for the state sub-space 
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SNA(I). This expression for Z(a) is the well known one for 

separable queueing networks, [GORD67]. 

This theorem, together with its corollaries, is the 

fundamental result of this chapter, and in particular the 

numerical method of section 4.4 for deriving the moments of 

GNA(t) may be applied without modification. 

In the next two sections, extensions of the methods 

of sections 4.5 and 4.6 are applied to derive analytic 

expressions for the moments of cycle time distribution and an 

approximate discrete version of this distribution which is 

convergent in the sense of section 4.6. 

5.5 Recursive solution for the moments  

A recursive expression for the moments of cycle time 

distribution in tree-like networks is easily obtained via 

differentiation of the result of Corollary CT5.2, using 

Proposition P4.1 and an extension of the Leibnitz theorem for 

repeated differentiation of a product, which is given in 

Appendix 6. 

Let the p'th moment of cycle time distribution for the 

tree-like network, A, of N customers and r primary sub-trees, 

conditional on start state a s S'NA  be denoted by M(NAIa)p! 

In the notation of the previous section, we have: 

Theorem T5.3  

Iml 
Let X (P) = F 	II (I-T)-1 T- (mi) 	(I-T)-1  

Iml 
Ē mi=p 
i=1 mi>0 

N 	(I) 

n 1 * S'NA 	u SnA  

i=1 



(w) 
LNA(01B-(j)) 
	  

(_) v 
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where 

 

Tas  

 

T "as  (mi  ) 

Then, for a E S"NA 

(a,I E SNA). 

(r = 0) 

(XA(a))mi 

(p ) 

Xao 

   

    

M(NAIa)_ 	P juN 	Xas )  (XA(S))-V-1  MwINA. Is"(j) f 
a eBNA j =1 	B u+v+w=p 	 1  

	

u,v,w>_O 	(r > 0) 

Proof 

As stated in section 4.4, 

LNA (sIa)I 	(a c S"NA) 
s=0 

If r = 0, then the result is that of a tandem network 

and given by Propositions P4.1, P4.2. 

For r > 0, by Corollary CT5.2, 

(-)P r  dp *  -1 1 1  
M 	(NAIa) = G / P.uN  -IVA. (sIR.(j) ) r {(I -T ) aa p 

p' 3EE NA j=1 
J 	B dsp s+A.A($) J 	1  

s=0 

r 

(-)p  dp 

P! 	ds 
M(NAIa) _ 

	—10 

(-) P 	r 	Fas  (u)  (0) 
E  

P  p' BEENA j=1 
JUNB 

 p•  u+v+w=p 	u. 	(lA(3))v+1 

u,v,w?O 

w: 

where the n'th derivative of a function of s, H(s) say, is 

denoted by H(n)(s) and the extension to Leibnitz's theorem 

has been used. 
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* 
Here, F = (I-T )

-1 
so that, by Proposition P4.1, 

F (u ) (0) _ (-) u u 	X (u) 
* 

since T (0) = T 

and 	(T*m(0)l 	= Tas Da (m)(0) ))J a R 

recalling the definition from section 5.4 where 

Da (m) (0) 	= 	(-)m m 	(AA(a))-m 

so that 	T* (m) (0) = (-)m m 	T' (m) 

Furthermore, 

(m >_ 0), 

N(NAjls '(J) ) 
(- )w (w)  

LNA~ 
(0 1 S•(J)) 

w: 

which completes the proof. 

Corollary CT5.3  

The unconditional p'th moment of cycle time distribution, 

assuming the initial equilibrium state space probability 

distribution Z(a), a e SNA(I), given explicitly in Corollary 

CCT5.2 is p Mp(NA) where 

M (NA) 	_ 	Z(a) M (NA I a) P 	(I)  

In theory, then, any number of moments of the cycle 

time distribution may be computed, but in practice the recursion 

involved may be excessively inefficient since the moments for 

the sub-trees of the network A may be recomputed many times. 

Clearly the magnitude of this problem will grow with the depth 

of the tree being analysed and with the number of the moment, p, 

required. These problems are considered in more detail in 

aeSNA 
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section 5.7; and in section 5.8, as in 4.10, it is pointed out 

that it will normally only be necessary to perform the 

calculation for p = 1 and 2, relatively simple cases. 

5.6 Recursive solution for discrete cycle time distribution 

The primary result of this section, a recursive scheme 

for the computation of a discrete approximation to cycle time 

distribution in tree-like networks which is convergent, is 

presented below as Theorem T5.4. It follows quite simply from 

Theorem T5.2, the basic result, using the same approach as 

that adopted in section 4.6. 

First, it is necessary to define some more notation: 

(i) Let the discrete approximation for the cumulative 

distribution of the time spent by the network A in state v, 

dv  (t) , be denoted by 

Qv  (i ) dv  (t2,) (i = 1,2,....) 

where 

and let 

t = 9A for some A e R+  

qv  (k) = Qv  (k) - 4v (2,-1) 	(k z 2) 

qv  (1) = Qv  (1) 

(ii) Let xv 
 = e-aA(v)A 

so that 	qv  (1) = 1 - xv  

qv  (Q) = xv  qv (Q  - 1) 

(iii) LetGNA(tla) have discrete form 

(NA) 
Ta 	(Z) = GNA(ti la) (Q >_ 1, a c SNA(I)  ) 
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(NA) 
(iv) Let Has 	(t), the distribution function of the time 

delay between states a and s e SNA  have discrete form 

(NA) 	 (NA) 
Tas 	(Q) = 	Has 	(t9) 	(Q ? 0; a,s e SNA ) 

recalling that Haa (NA) (t) = 1 for all t e R, t >_ o 

(v) Let the approximations for Ta (NA)  and  das
(NA) , 

obtained by convolving the discrete approximations, Qv, 

rather than the exact dv, be denoted by Ra (NA)  and 

nas (NA)  respectively. 

(E+) (N 
{viveSNA; 	

A)
(vi) Define SNA = 	3 $eENA  s. t. Rvs  

D ENA  clearly. 

Theorem T5.4  

Given a mesh {2, A I R = 1,2,...} of size A e R+  

on the time axis, the approximate, discrete form of cycle time 

distribution, IIa (NA) , a e SNA  (I) 
	

is given by 

(i) 	For r = 0, a e SNA ' 

n (NA)  (R) = 	x ll 
(NA) (IC-1) + (1-xa ) 	1 TaY  H (NA)  (k-1) 

YeSNA 

ō ao 
(9, = 0) 

  

(ii) For r 	1, a e SNA (I)  
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Ha(NA) (2) 	= 

where for 	S e ENA and 

]Ia (NA) (2 	8) 	 (2. 	? 	1) 
8ENA 

0 	(2 = 0) 

(E+) v e SNA 

II
v
(NA) ma) = x v 

(NA) H 	(2,-1I8) 	+ 	(1-x) 	y v 	v 
yeSNA 

(E+) 
T 	H(NA) (2.-110) 

v i  

(v 	8,2 	>- 	1) 

0 (v 	13, 	Q 	= 0) 

PjuNB 	(NA) 

j _1 xA (s) 	S7 	
(2) 	(v = 8) 

and for 	B e ENA , 1 s j s r 

(NA) (2.) 
Sj 

) (NA j 

xs ~Sj (NA) (Q-1) + (1-x8) 11 
~(j) (Q-1) (~ ? 1) 

0 	(Q = 0) 

where 	 -.(j) is as defined in Theorem T5.2 (1 s j s r). 

Proof 

Proceeding as in section 4.6, the approximations, 

11 (NA) and Has(NA) are derived by convolving the discrete 

representations of the corresponding continuous distributions 

for the times spent in successive states. 

For the case of r = 0 (no primary sub-trees), the 

problem reduces to that of section 4.6 exactly, with the same 

result. 
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For r > 0, from Theorem T5.2, 

r 
(NA) = 	c 	c 	P~ uNB 	(NA) * Q * 	(NAj 

a 	L 	G aR 	R 	-(j) 
ReENA j=1 AA(8) 

(a e SNA(I) ) 

Let 
(NAj 

11sj 	
Q * II

s (j) 	
($ a ENA) 

so that, by Appendix 2, since Qs is geometric, 

(NAj ) 
(2.-1) (N xs 08] (NA) (Q-1) A. 

(1-xps. (j) 2.
(NA)I=  s) 

(2. >_ 1) 

0 	 (2. = 0) 

which is as used in the theorem. 

Thus, 

r P.p 
(NA) = 	C 	 (NA) * C 	NB 	(NA) 

a 	G 	as • G 	A ($) 	Sj 
seENA 
	j=1 A 

Suppose 

r 
(NA) 

(1$) 	= 	II B * 	1 	PjuNB S2 	(NA) 
v 	v$ $j 

j=1 1A(R) 

(v a SNA (E+) , s e ENA) 

As in section 4.6, lies (NA) (0) is defined to be 
Svs 

and so II (NA) (L) =1 • for all 2. >_ 0 
vv 	

v ► $ e SNA • This agrees 

with the requirement HA) (t)= 1; t ~ 0, v e SNA. 
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Thus, for v = S , 

r P.p 

IIV (NA) (~ I f3) 	_ 	
NB 	

0Rj 
(NA) (CO 

J=1 XA(R) 
(2 ? 0) 

For v # a, v e SNA (E+) and 13 a ENA, RV S A) 	
, 

Ir1-1 

vs 
(NA) 

reRv$ k=1 Trkrk+l 4rk 
	fi 

r2eD r'eR
r (3 2 

Ir'I-1 

* * 	Q. 
Tv r2 Qv 	i=1 	T r~kr'k+1 r k 

where 	D 	= 	{Y I Y e SNA, 3 r e RvR s. t. r2 = Yl 

_ 	{IY csNA 	TVY # 0, RYS # Al 
  

(E+) 
{YIY 	SNA , 	TvY # 0 , RYR 	~} 

But for TVr =0 or Rr B=4) , there is zero contribution to the sum, 
2 	2 

II (NA) (I s) 	= 	 T 	Q 	* R (NA) (1 a) 
(E+) 

vY v 
YeSNA 

and so, by Appendix 2, 

nv (NA) (Zia) = 	xVIIV (NA) a-1113) + (1-xV ) 	TV IfY(Np') (Q-1 I R) 
(E+) Y 

YeSNA 

(2, = 0) 

The proof is thus complete. 

t omitting the superscript (NA) from Rva for brevity. 



the summation being finite. 

Finally, for a = a 

r 	Pip 

Ha (18) = 	Z 
	B 	

~~7 
(NA) 

j=1 	AA(a) 
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Corollary CT5.4  

As 	A + 

a~ 

and 	II a 

Proof 

0, 

(NA) 	} 	(NA) 
as 

(NA) 	; 	T a 
(NA) 

(a,8 	E SNA) 

(a E SNA 
(I) ) 

For r = 0, the result is precisely that of Proposition 

P4.4. 

For r > 0, the result for Ha0(NA) is again that of 

Proposition P4.4 and thus it is sufficient to show that 

ĪHa 
(NA) (2. I S) I a s SNA (I) ; S E ENA} 

are convergent as 0 - 0, since SNA and so ENA is finite 

and 

Ha 
(NA) 	_ 	11 (NA) (Is) 

SEENA 

The proof is by induction on the depth of the tree-like 

network. For 

a E SNA (E+) s 0 c ENA t a # 

	

Ha 	_ 	T 	Q * IIY(RA) (IS) 

	

a 	(E+) 
 ay a 

so that the proof again follows via Propositions P4.3 and P4.4, 

YESNA 
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But 	QSj  (NA) = 4 * II 	
(NA.) 

s 	a-(J)  

(NA.) 
and by hypothesis, II ,(. 	3 is convergent as A -} 0 

s 

and so, via Corollary CL4.3 and Proposition P4.4 

(NA) is convergent. gSJ   

The complexity of the computation of the result of 

Theorem T5.4 is rather awesome at first sight, with repeated 

recursive calls to functions representing 11a(NA)(la)  and 

Si
(NA) (in the notation of the Theorem). 

However, the situation is not as 

particularly for trees of small depth, and 

in the computation of Q. (NA) is possible 
(33 

next section. 

bad as it looks, 

a simplification 

as shown in the 

5.7 Significant computational problems  

5.7.1 How can they be reduced? 

As can be seen from the recurrence relations derived 

for the various results of the previous sections, the numerical 

computations involved are based on the linear composition, via 

recursive techniques, of the parallel quantities derived for 

tandem networks in chapter 4. However, such quantities must be 

computed for start and end states which are in certain sub-sets 

of the state space, the state immediately following departure 

of the test customer from a segment no longer being restricted 

to that of the empty network. This is discussed in more detail 

in section 5.7.2, but it will be noticed that no new fundamental 

techniques have been introduced, only the composition of a 
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tree-like network from its sub-trees. 

As with most recursive schemes, a major problem in 

numerical evaluation of results is that of efficiency, with 

respect to both storage and computation time requirements. In 

order to allow any solution at all to be generated for networks 

of fairly modest complexity, a purely recursive program in any 

existing programming language is precluded and some additional 

techniques have been supplied to augment such recursion in the 

APL package of Appendix 7. Such aids to efficiency are discussed 

in general in section 5.7.3, and in the next section a 

computationally simpler expression for S (NA), defined in 

Theorem T5.4 of section 5.6, is provided, so improving the 

efficiency of the calculation of the approximate discrete form 

of the cycle time distribution. 

5.7.2 Transitions between predefined start and end states  

In sections 5.4, 5.5 and 5.6, the results derived for 

the Laplace transform of cycle time distribution, its moments 

and its approximate discrete form involved terms (I-T )as  , 

Xa6 and Ha(NA) 	respectively, where a is a "start state", 

a e SNA(I), and S  is a "target state" or "end state", 6 e ENA. 

X is determined solely in terms of the transition matrix, T and 

II is given by an iterative relationship also involving T. Thus, 

the computation of such quantities requires the following: 

(i) Computation of the transition matrix, T and its 

modified form, T . This is accomplished as described in section 

5.4 and in order to save storage space, the representation is as 

a vector with 2 control vectors to delimit the rows (by means of 

pointers) and show the column numbers of the non zero elements. 

In other words, the representation is precisely that described 
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in section 4.7.2 for the case of cyclic networks. 

(ii) Computation of the quantities for multiple target 

states, $. The methods used for this are parallel with those 

of sections 4.7.3, 4.7.4 and 4.7.5 for each of the three above 

listed expressions respectively, with modifications to account 

for the fact that S will not, in general, be represented by a 

state numbered 1. 

* -1 
The computation of (I-T )as  requires only very simple 

modification to the method. As in section 4.7.3, let a and S 

map into states numbered a and b respectively under the mapping 

fA-1  of Proposition P5.3. 

Then, given b e fA 1 (SNA)' 

* -1 
f(I-T  )ab  I fA(a) a SNA} is the solution, {xa(b)}  say, to the 

equations 

cefA-1 (SNA)  

(I-T*) 	(b)  ac  xc 	=  ōab  

which is given by 

xa  (b)  = O 	(1 5 a < b) 

xb (b)  = 1 

a-1 

x (b) = 	: 	
T* 	x (b) 

a 	aj j 
j =b 

* 
since T is lower triangular, and then 

(a > b) 

-1 
(I-T*) 	= xa  (b) 	(a,b e f A  1  (SNA) ) 
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Thus, for any such b, the iterative procedure of 

section 4.7.3 may be used here, with different starting 

conditions. The function ESB in the APL package of Appendix 7 

is just this generalisation of the function of the same name 

referenced for cyclic networks. Of course, results will be 

needed for several values of b, corresponding tos a ENA, and 

these are produced by repeated calls to ESB, admittedly not the 

most efficient method in terms of execution time, although 

saving on storage if the results for the complete range of b 

are not all saved. 

In the second case, X(p) a similar problem arises. 

Referring to Theorem T5.3, X(p)is represented under the mapping 

fA used above by a sum of terms of the form 

h -1 -1 
H (I-T)

k. 1-1ii T~(mi)' 	k. 
~1 

(I-T)k b 
i=1 

1 h 

(with summation convention) 

for somemi, h e Z+; 1 s i _s h and where k0 = a. 

Proceeding as in section 4.7.4, relabelling E,E' 

defined therein by F,F" respectively to avoid a clash of notation, 

define 

Fk 	b R.-1 

Fk b 
h 

and 	Fjb 

= 

= 

= 

h 	
-1 

U 	(I-T)k. 
i=Q 	1-13 i 

-1 
(I-T)k b h 

T-(m)j
2,
k

2, 
Fkkb 

T'(m. ) 	k 3 1 1 

-1 
(I-T)k b h 

(1 	s 	R. 

(1 	s 	Q 

s h) 

s h) 

so that X(p)is given by F which can be computed iteratively. as 	ab 
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Now, values of Fab  are required for all a,b with fA(a) a SNA (I) 

and fA(b) e ENA  so that {Fab} is not a vector as was the 

case for cyclic networks in section 4.7.4. 

Now, Fk b  may be computed (by the function ESB) as 
h  

above, with the result represented in column oriented form, one 

column vector for each b e fA
-1 
 (ENA)' Next, F. b may be h 

computed, also in column form, by successively taking the inner 

product of T'(mh) with the columns of Fk b, a simple process 
h 

since T'(mh) is stored by rows, recall (i). This inner product 

is performed by the function MSM in Appendix 7. Then, Fk b 
h-1 

is the solution to the equations 

(I-T)ij 
Fjb 	Fib (i.7 e  SNA ) 

which can be solved by direct back substitution, since T is 

lower triangular, giving Fjb in column form for each b. This 

is performed by the function HSB in Appendix 7. Proceeding in 

this way to calculate Ff.( b  for 2. = h,h-1,....0, one can see 
R 

by a straightforward inductive argument that a value for Fk b 
O 

representing X(p)results. 
(10 

For the case of 11 (NA) ( S) , (a a SNA  (E+) 	e  ENA)  , 

the only significant problem is that of the computation of 

YeSNA
(E+)  Tal 

HY(NA) (la) 

for each $ e ENA. This problem is again resolved, as for the 

case of X(p)above, by representing j Ha(NA)(1 )1 in column 

oriented form, the pre-multiplication by T then being simple, 
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giving a column form result. The function used in Appendix 7 

to accomplish this, MSE, is a version of MSM modified to sum 

over the domain SNA(E+)  rather than the whole of SNA'  

It will be appreciated that the property of the 

integers-states mapping fA  that the states in the sub-spaces 

SNA  (E+)  and ENA  are numbered consecutively (see section 5.4) 

is of great value in the implementation of functions to compute 

the results presented in this chapter; the relevance being, 

of course, to the resulting simple indexing of the part-rows 

or part-columns required corresponding to the various domains 

of summation. 

5.7.3 	Space and time constraints  

From the results presented in sections 5.4, 5.5, 5.6 

for the Laplace transform, moments and discrete form of the 

cycle time distribution in tree-like queueing networks respect-

ively, it can be seen that in a direct implementation, many 

recursive function calls corresponding to each of the network's 

sub-trees would be necessary. In fact one could envisage, in 

each of the three cases, one call for each of the states of ENA 

in the network for which a sub-tree is primary. Furthermore, 

in the cases of the Laplace transform and the discrete form 

calculations, a call could be necessary for each parameter value 

and time interval sequence number respectively. Such a large 

number of recursive function calls would clearly result in 

considerable inefficiency with respect to both storage and 

computation time. 

The principle dilemma concerns the computation of the 

transition matrices for sub-trees; once the transition matrix for 

the whole network's state space is available, that for any 
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sub-space may be obtained by selecting appropriate rows and 

columns therefrom and re-normalising. The problem is in 

selection of such rows and columns. A further, if minor, 

complication is that under any state-integer mapping, in general 

the sub-space of states involved in the centre service 

completions in any sub-tree cannot be numbered consecutively. 

This presents no problem when storage space is unlimited and 

matrices are uncompressed, but in the linear representation 

described for the sparse transition matrices considered here 

the state-integer mapping functionsmust be invoked frequently. 

A row in a sub-tree state transition matrix may be 

computed as follows: 

(i) find the state vector corresponding to the row number 

by applying the integer-state mapping for the sub-tree; 

(ii) find the row number in the state transition matrix 

for the whole state space corresponding to this state vector, 

expanded to represent zero customers at all centres not in the 

sub-tree in question. This involves application of the state-

integer mapping function for the whole network; 

(iii) map each column number associated with this row for 

the whole network into a column number for the sub-tree by 

applying (ii) and (i) in reverse. 

Of course, corresponding to any sub-tree state there-  

will be, in general, several states in the whole network with the 

numbers of customers at each centre of the sub-tree determined by 

the sub-tree state; the expansion of (ii) guarantees that any 

transition in the whole network is due to a service completion in 

the sub-tree, and so that every associated column in the whole 

network matrix is required for the sub-tree matrix. 
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Thus, the choices available concerning the transition 

matrices for sub-trees are as follows: 

(a) Only store the transition matrix for the whole network, 

and whenever a row is required for a sub-tree, compute it 

as described in (i) - (iii) above; 

(b) Since very many such (repeated) row computations 

will be required, (a) is very inefficient in terms of 

execution time and can be improved, at the expense of 

storage, by pre-computing as in (a) the whole of the 

sub-tree state transition matrix, in sparse form, and 

storing it; 

(c) The state transition matrix may be computed from 

first principles for each sub-tree and stored. 

It was found that option (c) turned out to be the most 

convenient to program and the fastest to execute in the cases 

tried. However, for any of the sub-tree recursive functions' 

evaluations a large proportion of the total execution time 

required is used in the computation of the state transition 

matrix for that sub-tree; in addition, the storage requirement 

of this matrix is also considerable, even when represented in 

the linear form described in section 5.7.2. 

Thus it is desirable only to enter the function 

corresponding to each sub-tree once in any calculation, to com-

pute all the results corresponding to every initial state 

(associated with the target states in ENA  for the tree of which 

the sub-tree is primary), and every Laplace transform parameter 

or time interval sequence number as appropriate. In this way 

it is possible not only to reduce the number of function calls 
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required, but also to save space by using a global variable 

for the state transition matrices of all sub-trees. Such use 

of impure  recursive techniques is, of course, undesirable 

where resources are unlimited, but necessary here. However, 

the introduction of global variables demands a great deal of 

care in the writing of the recursive programs, viz. with respect 

to the order of evaluation within each function which must not 

call a similar function for a sub-tree if reference to its 

transition matrix is required subsequently. Such use of global 

variables may be found explicitly in Appendix 7 in the functions 

LT, MOM and DST for the calculations of the Laplace transform, 

moments and discrete form of cycle time distribution respectively. 

The reduction of the number of function calls by means 

of storing intermediate results in this way is in effect an 

explicit implementation of a "Memo Rule" type of system for 

efficient evaluation of recursive functions, see CMICH67,HARR74]. 

Thus it has the same limitation; viz. that if very many such 

intermediate results are required, insufficient storage may be 

available. Thus another trade-off situation arises. Nevertheless, 

this storage problem is only linear here since the number of sets 

of intermediate results existing on the run time stack at any one 

time cannot exceed the total number of sub-trees in the network. 

Clearly, for increasingly large networks, as the size of the 

sub-space ENA  becomes excessive, a storage overflow would 

ultimately occur, but for quite significant cases, such as those 

presented in Appendix 8, this problem did not arise. 
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5.7.4 Enhancement of the discrete distribution recursion  

In this section, an enhancement to the efficiency of 

the computation of the approximate discrete cycle time distribution 

is described. As explained in the previous section, for this 

computation it is preferable to compute in parallel the results 

for every time interval number, Q,(in the notation of Theorem 

T5.4, section 5.6) in a single function call associated with a 

sub-tree. 

This presents no problem, certainly in APL, the 

programming language of the software package of Appendix 7, for 

all except computation of the term 08 
j 
 (NA)  (Q) where 

2, is the time interval number (1 	Q s L for some LeZ+), 

A is the tree-like network under analysis, 

N is the population of the network (initially), 

S E ENA, 

j is the number of a primary sub-tree of A. 

Evaluation of 00j(NA)  by direct recursive methods 

would include a function call for each of the L values of Q 

specified. These would each call functions corresponding to the 

primary sub-trees of A, so overwriting the state transition 

matrix of A which is required for subsequent values of Q. 

However, the expression for S2sj (NA)  (k) in the form 

of the explicit summation for the convolution involved, permits 

its values corresponding to multiple values of 2, to be produced 

in parallel. This expression is given by the following 

Proposition. 
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Proposition P5.4 

In the notation of Theorem T5.4, 

(NA) 	i 	 (NA . ) 
~RJ 	(k) _ 	(x0) (1-xs) n 	 ., (Q-i-i) 8-(3)  

Proof 

By induction on Q or direct substitution using the 

definition of Theorem T5.4, 

OCA.) 
0 	

(NA) 
( t) = 	( xs 00i (NA) (2,-1) + (1-x s) ns _ ( J) J (2-1) 

O 	(Q = 0) 

For Q = 0 the sum is, of course, empty. 

By substitution of this expression directly into the 

definition of Hv(NA)(QIs) (v E SNAE+)) given in Theorem T5.4, 

the reference to Oaj(NA) is eliminated and it is clear that 

the results for any sub-tree may now be computed in parallel 

for all values of Q, 1 s Q <- L, as required and as accomplished 

in the APL function DST of Appendix 7. 

Z-1 

1=0 
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5.8 Concluding remarks  

5.8.1 The topics discussed 

The comments relating to the analysis of tree-like 

networks presented here are, in the main, the same as those made 

for the analysis of cyclic networks in chapter 4. 

Thus, this discussion will be limited to a summary of 

that given for cyclic networks, but related to tree-like networks, 

the details being available in the relevant sections of chapter 

4. The following topics are considered: Laplace transform 

inversion, decomposition methods, response time distribution 

and finally some general remarks are made leading in to the 

following chapters. 

5.8.2 Laplace transform inversion 

Although at first sight a method of inverting the 

Laplace transform of the cycle time distribution, derived exactly 

for tree-like networks here, might seem attractive, it is not 

considered worthwhile, for the reasons given in section 4.8, 

in brief: 

(a) An approximate discrete form for this distribution 

has been derived (section 5.6), and is convergent; 

(b) The more important distribution is that of 

response time, a sum of several consecutive cycle times; 

(c) Inversion of Laplace transforms roses many problems. 

In fact, the Laplace transform is itself of great use 

for predicting performance measures directly, see section 4.8. 
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5.8.3 Decomposition methods  

Such methods were discussed at some length for cyclic 

networks in section 4.9, but for tree-like networks their ease 

of application is at once apparent in view of the recursive 

nature of such networks. Indeed, the "memo rule" method of 

storing intermediate results, referred to in section 5.7.3, 

uses precisely decomposition methods, whether implemented by 

the system or explicitly by limiting the number of function 

calls. In order to achieve full decomposition techniques 

in the sense of section 4.9, it would only be necessary that 

all the results for every possible start state in the relevant 

sub-trees be saved permanently and so be available from run to 

run of the implementation. This could result in a large storage 

requirement in that the (initial) population of any sub-tree 

may take any value between one and the initial population of the 

whole network, so that there are many possible start states. 

Furthermore, in the case of calculation of the Laplace transform 

or the discrete cycle time distribution approximation, the number 

of results involved is proportional to the number of parameters 

specified. 

Such techniques are not implemented in the package 

of Appendix 7. 

5.8.4 Response time distribution 

Of great importance to the analyst is the distribution 

of response time in an interactive or real time computer system. 

Whilst clearly closely related to cycle time distribution, it 

is obvious that the latter distribution is not adequate in 

itself, rather multiple convolutions for successive cycles being 

the chief objective. However, as indicated in section 4.10, to 
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derive such a convolution for successive cycles poses excessive, 

indeed prohibitive, computational problems. Thus the approach 

taken with regard to response time is to assume that the cycles 

considered in any constitution of a time delay,(in particular 

response time), are statistically independent so that the Central 

Limit Theorem may be applied. In this case it is only necessary 

to calculate the first two moments of cycle time distribution, 

which are given exactly by Theorem T5.3 in section 5.5. The 

accuracy of this independence assumption has not been tested 

analytically, but empirical tests on the independence of cycle 

times are reported in Appendix 8. 

5.8.5 	Summary 

The exact derivation of cycle time distribution for 

tree-like queueing networks presented here is a considerable 

generalisation of the method developed for cyclic networks in 

chapter 4. As such it has the same limitation with respect to 

efficiency (in execution time and storage requirement) and 

similar types of application. Its own use as a practical tool 

for the performance analyst must be limited to simple cases only, 

and a major application is in the validation of approximate 

techniques, notably the PSA method of chapter 3, applied to 

tree-like networks. As emphasised in earlier chapters, it is 

the approximate PSA method which is intended as the major 

practical tool in view of its far superior efficiency (see 

section 6.5). Ideally a formal analysis to provide bounds on 

the error of the PSA method should be undertaken, at least 

for the now solved tree-like networks. This is discussed further 

in chapter 8 as a future research direction. In the following 

chapter an empirical validation of the PSA method is described 
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for the case of tree-like networks by comparing results with 

those of the corresponding exact methods and also with 

corresponding simulation runs. 

Although the tree-like network is not fully general, 

computation of the exact cycle time distribution in non tree-

like networks involves explicit tagging of a customer and an 

approach along the lines of [YU77]. The solution obtained in 

this way, as discussed in section 2.3, is a special case of 

results in the general theory of stochastic processes. This is 

impractical for non trivial cases in that it is necessary to 

solve a system of linear equations,the number of which is several 

times that of the order of the original state space of the 

network. 

Validation of the assumptions and implementation of 

the exact method described in this chapter is discussed in the 

following chapter, and a comparison with simulated results may 

be found in Appendix 8. 
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§6. 	Validation of the Theoretical Models  

6.1 Introduction  

The purpose of validation is to support ones conviction 

about the accuracy of a model. Now, inaccuracies may be intro-

duced into a model at two levels: 

(a) In the process of abstraction from the physical 

system represented. For example, approximations must be 

made in order to allow development of a mathematically 

solvable analytic model or programmable simulation model. 

(b) In approximations which may be necessary in the 

computation of model predictions. For example in an anal-

ytic model an infinite series may be truncated or a continu-

ous function approximated by a discrete representation as 

here, see sections 3.3.3, 4.6 and 5.6. 

Ideally one would like to perform a formal error 

analysis to assess inaccuracies of type (b)- and also of type 

(a) if a system with formal definition is modelled (e.g. a model 

itself). However, such an analysis is frequently not possible, 

for example in the case of our PSA results at the present time. 

Thus validation is often performed in either case by making 

statistical assessments of the error existing for a (represent-

ative) selection of environments, as represented by a choice of 

model parameter values. 

The suite of APL functions, developed by the author 

and listed in Appendix 7, constitute analytic models providing 

numerical predictions for properties of cycle time distribution 

in tree-like queueing networks. These functions are based on 

the results derived in previous chapters and may produce exact 

or approximate (according to PSA) predictions. The parameter 
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specification permitted for the tree-like networks, in terms of 

network topology and customer population, is fully general, 

limited only by the computing resources available. Clearly 

for sufficiently complex networks or large populations, the 

size of the state spaces involved would result in excessive 

storage and/or CPU requirements, especially in the case of the 

exact analysis. This is discussed on a quantitative basis in 

Appendix 8. 

Now, the objective of the theoretical analysis is the 

provision of models capable of representing a variety of computer 

system configurations in various environments. Thus validation 

of type (a) must be based on a comparison with data measured on 

actual systems. However,as stated in previous chapters, this 

type of data is of a fine level of detail, for example requiring 

measurements to be recorded whenever a CPU is switched or an 

I-O transfer is initiated. As a result, such data is costly, 

and therefore in practice administratively difficult, to obtain. 

Because no measured data is available at present, 

ultimate validation of both the PSA and the (assumptions of the) 

exact models is not possible. 	However, some validation is 

possible: 

(i) Of the PSA model with respect to the exact one by 

comparison of the results of the two models for networks 

conforming to the assumptions of the latter. 

(ii) By constructing a network simulation model of a real 

system to generate test data on which to base validation 

of both analytic models. The independence of such valid-

ation is limited in that the simulation model 

(a) itself requires validation, 

(b) necessarily has built into it assumptions 
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similar to those made for the theoretical analysis, 

and (c) 	by design will be statistically well-behaved. 

The next section outlines how a systematic mutuak 

vatidacon methodology, based on the above, can increase confi-

dence in the analytic models. 

6.2 A mutual-validation methodology 

This is based on the following observations: 

(i) Given its assumptions, we may assume that the math-

ematical analysis of the previous chapters has yielded 

correct results. However, no attempt has been made to prove 

their programmed implementation correct. Thus an independent 

check should be made to substantiate any numerical results. 

(ii) The same applies to the approximate results of the 

PSA analysis for its less restrictive set of assumptions. 

In addition, we would also wish to validate the assumptions 

on which the approximation is based. 

(iii) The assumptions of the simulation model can be 

adjusted to match either exact or PSA models. Since the 

computational procedure is quite different, its numerical 

results can provide independent confirmation of the accuracy 

of the implementation of each theoretical model. 	However, 

the simulation model itself may contain errors, but agree-

ment between two models supports ones conviction in the 

accuracy of each. 

This leads to the following systematic scheme for 

validation of the three models - exact analytic, PSA analytic 

and simulation: 
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(a) Compare the numerical predictions of each model for 

a "base set" of networks conforming to the assumptions of 

each model type; i.e. to those of the exact model. Their 

agreement will mutually validate the computational 

procedures of each in this restricted domain. 

(b) At this point it is assumed, any proof or validation 

being impossible for the present, that the simulation model 

may be extnapotaued, by relaxing the assumptions of (a), to 

represent adequately non base set network specifications. 

(c) We may now assess models with respect to a simulation 

model, assumed validated itself. Such a process will 

indicate the adequacy of the PSA model for networks which 

conform to its own assumptions and also of both analytic 

models for networks in which their respective assumptions 

do not hold; a test on the "robustness property" (section 

2.2) applied here to time delay prediction in queueing 

networks. The extrapolation of the simulation model may 

duppoit but cannot validate ultimately the PSA model (in 

particular) in its more general domain of applicability. 

6.3 Concluding remarks  

The implementation of the methodology described in 

the previous section is a necessary and important step in the 

development of representative models for prediction of time 

delays in computer systems. This is particularly so when no 

measured data is available. The detailed procedure constituted 
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a significant part of the research reported in this thesis, but 

its philosophical value is rather less than that of other 

chapters, no fundamental advance in validation methodology being 

proposed. Thus the details are presented in Appendix 8. 

The conclusions drawn there may be summarised as: 

(i) As required, the exact and simulation models were in 

agreement for base set networks conforming to the 

assumptions of the exact model. 

(ii) The PSA approximation appeared very good for networks 

conforming to its much less restrictive assumptions, 

according to comparisons with the simulated results. 

(iii) The robustness property of queueing networks was 

emphatically not demonstrated in this study of time delays, 

neither for the exact nor the PSA models. 

(iv) The simulated successive cycle times of a particular 

customer in the tree-like queueing networks considered 

were independently distributed. Thus it is valid, at Zea4t 

in these cases, to apply the Central Limit Theorem in 

order to obtain an approximation to response time distri-

bution, see sections 4.10, 5.8.4. 

The most important practical conclusion was the 

accuracy of the PSA model. Since its assumptions hold for a 

wide range of applications, it has emerged as a tool of great 

potential for the computer performance analyst. 

Finally, the procedure detailed in Appendix 8 not only 

achieves mutual validation as described in the previous section 

but also demonstrates the methodology for the ultimate valid-

ation with respect to measured data. 
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§7. 	Analysis of Transients in Queueing Networks  

7.1 The need for transient analysis  

It is almost universally assumed in queueing network 

modelling that the network under analysis is in a state of 

stochastic equilibrium, i.e. that the state space probabilities 

are time independent. It is not disputed that this assumption 

will be valid for the overwhelmingly larger proportion of time 

periods considered. However, no analysis has been undertaken, 

so far as is known to the author, to determine precisely when 

this assumption can and can not be made; i.e. to estimate the 

time constant of the transient component of the time dependent 

state space probability distribution. Moreover, it should be 

recognised that there are also time intervals of great signifi-

cance to the modeller during which the assumption is not valid. 

For example, the immediate effects of any disturbance to the 

modelled system, such as the adjustment of a scheduling parameter, 

may be predicted. This type of application is considered further 

in chapter 8. 

In the following section, an iterative approximate 

solution is derived of the time dependent Kolmogorov differential-

difference equations for the state space probabilities of Jackson 

or Gordon-Newell [JACK63,GORD67] type queueing networks. The 

result demonstrates clearly, to first order, the way in which 

the transient component decays and is shown to converge to the 

exact time dependent solution. Originally the approach was 

developed by the author for cyclic networks of just two centres 

as an improvement to the PSA approximation for cycle time dis-

tribution, by way of an analysis in continuous time, CHARR78a]. 

The results of this research are summarised in section 7.3 and 
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the intuitive assessment of the accuracy of the PSA method 

for various classes of network (section 3.1) is given some 

formal support. 

7.2 Solution of the Kolmogorov equations  

7.2.1 	The convergent iterative solution  

Let a Markovian queueing network of M exponential 

servers with FCFS queueing discipline have state space S and 

let 

P(k,t) = Prob(queue length at server i=ki at time t, 1~i<-M) 

(k c S). 

For notational conciseness and clarity a closed 

network is considered, the modifications necessary for open 

networks being simple. 

The time dependent balance equations for the 

underlying Markov process are, [KLEI75J, 

M 

P(k,t+Ot) = 	jl - At 1 ui(ki)} P(k,t) 
`` 
	i=1 

M M 

+ At 1 	y c(ki)pjiuj(kj+1)P(kl',t) 
i=1 j=1 

+ o(At)   (E7.1) 

where, for 15i,j<_M, 

p.
1(n) is the service rate of server i when its 

queue length is n c Z+ 

pi(0) = 0 

	

c(ki) =10 	(ki= 0) 

	

1 	otherwise 
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ij k 	= 	j(ki,...,ki-1,...,kj+1,...,kM) 	(i j) 

pji is the routing probability from centre j to 

centre i, j 	i. 

The factor e(ki) is included to suppress invalid 

transitions from states with negative valued queue lengths. 

It is assumed, without loss of generality, that 

pii = 0, the modification of the method being simple if this 

is not so, [GORD67]. 

Rearranging the equations (E7.1) and dividing by At, 

the resulting Kolmogorov forward equations for the network 

are, in the limit At -> 0, for k e S, 

aP(k, t ) M M 

A(k)P(k,t) + 	e (ki)p..p.(k.+1)P(kli,t) 
i=1 j=1 at 

	 (E7.2) 

where 	A(k) = 	y ui(ki) is the total service rate 

i=1 	in state k e S. 

The iteration applied for solution of equations 

(E7.2) is defined as follows: 

Given the set of first order differential equations 

DP. 

at 

1 = Fi(P1,P2,...,Pm) 	(i5.i~m) 

for some (suitably smooth) functions Fi, let Pi(n) be the n'th 

order approximation for the solution, Pi. Then P.(n+1) is 

defined to be the solution of 

DP.l 
= Fi(P1(n)'P2(n)'" 'Pi-1(n)'Pi'Pi+1(n),...,Pm(n)) at 

M 



e (ki)pjiuj(kj+1)0(k~3) 
1siM 	(E7.4) 
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In the case of equations (E7.2), m = M, Pi = P(k,t) and 

Pi(n) will be denoted by Pn(k,t). This mapping is valid since 

the state space S is countable (M is finite); in fact finite 

for the closed network considered here. 

Thus the (n+1)'th order approximation for the non-normalised 

time dependent state space probabilities is the solution to the 

equations 

aP(k,t) 
-X(k)P(k,t) + 	e (ki)pjiuj(kj+1)Pn(k ,t) 

1si jsM 

a 	{e)tP(k,t)} = ea(k)t 	I 	
e(ki)P3iuj(k3+1)Pn(ki3,t) 

at 	 1si#j5M 

so that 

P (k,t) = e-A(k)tP(k,O) 
n+1 — 

+ e-A(
h')-

+ jteA()u{ le(ki)piiui(kj+1)Pn(kli,u du 

	(E7.3) 1 

where (P(k,O)IkeS} is the initial state space probability 

distribution. The normalised form is obtained by dividing by 

y Pn+1(k't). 
keS 

The zero order approximation is chosen to be the equilibrium 

distribution so that 

PO(k,t) = 0(k) where 

0(k) X(k) = 

0(k) is the well known product form solution for the 

equilibrium state space probabilities, CGORD67,JACK63]. 

at 
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This iterative scheme gives, in particular, a first 

order approximation 

P1(k,t) = 	e_a(k)t P(k,O) + {1 - e-a(k)t}0(k)...(E7.5) 

by substituting (E7.4) in (E7.3) and performing the simple 

integral. 

This result is intuitively pleasing in that it is 

an exponentially weighted average of the initial and equilibrium 

state space probability distributions. The initial distribution 

contribution dies away exponentially with time constant 

a(k)-1, k e S, the mean time to the next service completion 

(at any server) in state k. The equilibrium distribution is 

accordingly approached exponentially also. Also pleasing is 

that every iteration (except the zero'th) gives exact results 

at time t=O and as t+o , as shown in the following proposi-

tion. 

Proposition P7.1  

In the notation above, for all n e Z+, k e S, 

Pn(k,O) = P(k,O) 

and 	Pn(k,t) -> 0(k) as t -> 	. 

Proof  

The first part of the proposition is trivial. 

For the second part, suppose 

Pm(k,t) } 0(k) 	for all k e S 	m< n E
+ 

 

as 	t } CO 

Then for all E > 0, k e S 3Tk  a R+  s.t. 
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1  Pn-1(k,t) - e(k)1 < s/3akM2  

for all t > Tk ,  

where 	ak  = max {uj(kj)/a(kji)}. 
— 1<i,j<M 

Let Tk = max Tn  

n = ki] 

1<_i,jsM 

Then, by the balance equations for 0(k) and the triangle 

inequality, 

I {X(k)1-1 	e (ki)Pjiuj (kj+1)Pn-1 (kij,t) - 0(k) 
1si#j-<M 

for all t > Tk . 

< e/3 

Also, 	3 Uk  s R+  s.t. 	le-A(— I < e/3 for all t > Uk. 

Hence, by definition of the iteration and since 

IP (k,0) 1 , 10 (k ) I s 1 , 

I Pn  (k.t) - 0(k) I < c/3 + (1 - et) e/3 + e/3 

< e for all t > max(Uk,Tk) 

by basic inequalities of mathematical analysis. 

Pn  (k,t) + 0(k) as t + 00 

and the proposition is proved by induction. 

It is now shown that the iteration defined in this 

section converges to the exact time dependent solution. 

The proof of the convergence property requires the 

following Lemma. 
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Lemma L7.1  

For a,s a S, let 

8(a,$) be the number of the centre from which a departure 

causes a state transition a -> $ which is undefined if a 

one-step 

be the 

5.4. 

Proof 

immediately 

transition 	a 

number of the centre 

after the 

Let 

`sa 	= 

Then for all 	n e 

(E)n 

Oa 

} s 	is invalid. 	Similarly let 4,(a,$) 

at which 	a 	customer arrives 

one-step transition 	a } s, c.f. section 

p8(a,R)4)(a,R)118(a,R)(a8(a,R))  

X(s) 

if a one-step transition a ; s is valid 

otherwise 

Z+ 	, 

A(a) 

a(s) 

For n = 1, the result is true by definition. 

Suppose inductively that it is true for all n < m c Z+. 

Then, 

	

(y)m
aa 
 = 	(E)m-1SY 

Pe(a,Y)4(a,Y)118(a,Y)  
YES 	A (Y) 

a 

where the argument of p has been omitted and 

Sa  = {ylone-step transition a-y is valid} 

	

. (E)m  s 	a(Y) 48(a,Y) 
$a 

YESa  A(s) 	A(Y) 

using the inductive hypothesis and that p8(a,Y)(1)(a,Y) <_ 1 

for all a,y E S. 
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1 
a(R) L  ue(a,Y) 

YeSa 

X(a) 

which proves the Lemma. 

A(6) 

In the notation of the Lemma, for a e S, the iteration 

may be given by 

PO(a,t) = 0(a) 

Pn+1(a,t) = e-a(a)t P(a,0) 

+ 
A(a)e

-a(a)t 	Ea lt eX(a)upn(s,u)du 

$eS 	° 

	(E7.6) 

Theorem T7.1  

The iterative scheme defined above for Pn(a,t), 

n e Z+, a e S, 0 s t e R , converges to the exact transient 

solution as n + o. 

Proof 

For t = 0, the result is true by Proposition P7.1. 

For t > 0, let 

Dn(a,t) 	Pn(a't)  Pn-1(a't) 	(n 1) 

so that 
t 

Dn(a't)  = a(a)e-a(a)t -co eX(a)uDn-1(S,u)du 

SeS 	° 

Now let Sn(a,t) 	= 	sup 	1 Dn(a,u) 1 so that 

0<ust 

IDn(a,t)] s (1 - e-x(a)t) y 	"aa Sn-1't)  
f3eS 
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But for all T s.t. O < T <_ t 

Dn(a,T) I s (1 - e-a(a)t) 
	
ESn-1(S,t) 

Ses 

since 1 - e
-a(a)t 	

1 - 
e-a(a)T 

 and sup IDn-1(a,u)IsSn-1(a,t) 
O<usT 

. Sn(a,t) s (1 - e-a(a)t) GEas Sn-1(R,t)  

SeS 

Now let x = sup {1 - e-A (a) t} 
aeS 

so that 0 < x < 1 for t > 0, all service rates being finite. 

Then, by Lemma L7.1 

Sn(a,t) 
s  xn-1 1 

	
{2(a)) S

1(B,t) 

SeS 

= Axn-1  

where 	A 	= 	/. 	1 ((- } S1  (13'  
ses ` 

A(ILL) 	is finite since for all SeS 

a(S) < . and S1(S,t) s P(s,0) + 0(8) by equation (E7.5). 

For m > n e Z+  , a e S, by the triangle inequality, 

m 

IPm(a,t) - Pn(a,t)I 	s 	E 	I Dj(a,t) I 
j=n+1 

m 

S.(a,t) 

j=n+1 

< 	A 	xj-1 

j=n+1 

Axn  

1 - x 
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Now, for all e > 0, 	3 N e Z+  s.t. for all n > N 

xn  < e(1-x)/A 	and so 

IPm(a,t) - Pn(a,t)I < e 	for all m>n>N a Z. 

Thus, for all t o R+, a e S 

{Pn(a,t)} 	is convergent as n -> 

by Cauchy's theorem, with limit Po(a,t) say. 

It is clear that on substitution of Poe  for Pn  and Pn+1 in 

equations (E7.6) Pm  is indeed the solution to the Kolmogorov 

equations (E7.2), satisfying the initial condition 

Po(a,0) = P(a,0) by proposition P7.1. 

An alternative formulation of the iterative scheme, 

avoiding the need for explicit integration, is by means of 

power series expansions. This is discussed in the following 

section. 

7.2.2 Expansion in power series  

Proposition P7.2  

For all 0 s n e Z, k e S, Pn(k,t) has a power series 

expansion with infinite radius of convergence. 

Proof  

The result is trivial for n = 0. 

Suppose true for Pn-1(k,t), n e Z}. 

Then the right hand side of equation (E7.3) has 

infinite radius of convergence since for any functions f1  and 

f2  of t with infinite radii of convergence, 
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(i) Their weighted sum and product also have power 

series with infinite radii of convergence. 

(ii) The indefinite integral of f1  with respect to t 

also has a power series with infinite radius of convergence. 

Thus the proposition is proved by induction on n. 

In the iteration defined in the previous section,let 

CO 

Pn(k,t) = 	E anm(k)tm 
	

(k e S) 
m=0 

A recurrence relation for the power series coefficients 

anm(k) may be derived by substitution into equation (E7.3) as 

follows. 
co 	 co 

I 	an+1,m(k)tm  = e-A(k)tP(k'0) + 	E Anm(k)Bm 
m=0 	 m=0 

where 

and 

Anm(k) = 	2 e(ki)pjiuj(kj+1)anm(k1J)  
i_<ixjsM 

B 	= 	
e-X(k)t 

rumeA(1-Oudu m  

( - )m-1
m: 
	 {-A(k)t}R' 

01(k)1171+.' 	 t. 

(after some reduction). 

Thus, by comparing coefficients of tm, m s 0, for k e S 

{-A(k)lm 	m-1 
an+im(k)  _ 	{P(k0) -{A

.(k)).}

j=0 	A(k)  

(m z 1) 

(k) = P(k,O) an+i3O   

and 

a0 m(k) 	= 0(k) dm0  is the initial condition. 
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Therefore, using these fairly simple recurrence relations, 

the power series for the time dependent state space probability 

distribution may be computed as an alternative to the direct 

method of performing the integration in equation (E7.3) 

numerically. 

7.3 Relevance to the PSA method 

As remarked upon earlier, the transient analysis 

presented here was originally pursued as an enhancement to the 

PSA method for approximate computation of cycle time distribution 

in two-centre cyclic queueing networks, EHARR78a]. The approach 

taken was to derive a better approximation for the joint prob-

ability distribution of the pair of queue lengths faced by the 

test customer (c.f. section 8.3.3) as follows: 

(i) Assume an equilibrium state space probability dis-

tribution at the time of arrival of the test customer at 

the first centre; 

(ii) Set a time origin, t = 0, at this arrival time; 

(iii) Evaluate the probability distribution of the queue 

length existing at the second centre on arrival of the 

test customer conditional on the queue length at the first 

centre at time zero. This distribution was derived 

approximately using time dependent state space probabilities 

evaluated to first order by the iterative method described 

in section 7.2.1. 

The details may be found in Appendix 11 and yield the result, 

in the heavy traffic case, 
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1 	

ill 
P(g2Ig1) °C  0(q2) + {P(g2,O) - 0(q2)} 	-1 

1+a(g2)ui  

in the following notation 

(g1'g2) is the pair of queue lengths faced by the 

test customer in his cycle; 

111,p2  are the service rates of the servers (assumed 

constant) ; 

0(k) is the equilibrium state space probability for 

state (N-k,k); 

A(k) is the total service rate in state (N-k,k). 

Now, X(q2) = 	u2 

u1+  u2 

(q2 = N) 

(1 s q2  s  N-1) 

1 	q1 
and the factor 

	

	-1 	represents the degree of 
1 + X(g2)111 

the difference between the equilibrium queue length probability 

0(q2) (as assumed under PSA) and this improved approximation. 

Thus the difference decreases as q1  increases - i.e. 

as the queue length faced on arrival at the first centre increa-

ses. For large q1, therefore, the interpretation of section 3.1 

is justified; on arrival of the test customer at the second 

centre, the system will have had sufficient time to have come 

close to its steady state. 

In fact this intuition is supported in general by 

the first order transient approximation. Suppose the test 

customer arrives at some centre, c say, at time zero, facing 

queue length n. To first order, the time constant 
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T 
{total service rate of network) 

1 

service rate of centre c 

1 
— E (sojourn time at centre c) 
n 

Thus the expected time of departure from centre c 

becomes very much greater (linearly) than T as the queue 

length n increases. Consequently, for large n the system may 

be assumed to be in equilibrium to a good (first order) approx-

imation on arrival of the test customer at the next centre in 

his path. 

7.4 Summary 

In this section a convergent iterative method has 

been developed for the solution of the Kolmogorov forward 

equations for queueing networks of the Gordon-Newell type. 

As a result, quantitative assessment of the equilibrium 

assumption used in queueing network analysis may be made, 

in particular by consideration of time constants, and analysis 

of transient situations undertaken. Extension of the method 

to the general BCMP class of networks appears straightforward. 

The iterative schemes given in section 7.2 are 

eminently suitable for implementation by computer, whether by 

the direct method of numerical integration or using power 

series. The most efficient method is probably the former since 

the power series involved will not converge rapidly, being based 

on the exponential series, and considerable effort has been 

1 
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expended in the past on techniques for efficient numerical 

integration. 

The method normally used for (exact) solution of 

a linear system of differential equations, 

dyi = 	E M.. y. 	(1 s i s n) 13 j 

or 	y 	= 	My in matrix form 

involves diagonalisation of the matrix M. Specifically, if 

M has eigenvalues {A111 s i s n} with eigenvectors (vi11sisn} 

Then v = Dv 

dt 	j=1 

where =  
1 13 (1 <_ i,j s n) 

so that 
Ait 

vi  a  e 

and yi  may be obtained by inverse transformation. However, 

this method is totally impractical for numerical computation 

in view of the size of the matrix M; n is the order of the 

state space of the network. In fact the method is analogous 

to that of attempting to solve the balance equations explicitly 

to obtain the equilibrium state space probability distribution 

for a network with any non local state dependence (section 2.2). 

Applications of the transient analysis presented in 

this chapter have been suggested (section 7.1) and are discussed 

in more detail in section 8.2. 
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§8. 	Applications of the Research and Areas for Future  

Investigation  

8.1 Applications of the time delay analysis  

8.1.1 	Model types  

Practical situations in which the ability to predict 

time delays is desirable were identified in chapter 2. The 

types of time delay may be classified into two categories: 

(i) Those incurred by progressing from one centre to 

another along any one of a set of possible paths. 

(ii) Those incurred by multiple passages of type (i). 

Typically type (i) time delays arise in polling 

systems and type (ii) represent the response time in a computer 

system of a task requiring several cycles through the system's 

network of resources. Models for each of these types of situ-

ation are described briefly in the following two sections. 

Of course, such models by no means form an exhaustive set for 

the two categories above. For example, the time delays for 

messages sent in communication networks - the "end-to-end" 

delay, CWONG78a7- is another example of type (i). 

The type of analytical model used in each case will 

usually be the PSA approximate model in view of its generality 

of application (see chapter 3), computational efficiency and 

expected accuracy (see Appendix 8). However, in cases repre-

sented by very simple tree-like networks satisfying the 

assumptions required by the exact analysis of chapter 5, the 

exact model may well be preferred in view of its superior 

accuracy and despite its inefficiency. 
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8.1.2 	Polling Systems  

In a polling type of system, the time delay of 

greatest interest is that incurred by sampling a set of status 

indicators and performing tasks associated with the status 

noted in each case. The set will normally form a loop and be 

polled continuously in a cyclic manner. Of course, any indi-

cator's successor will not, in general, be unique so that the 

polling system's queueing network representation must allow 

branches. 

This type of sampling situation is not quite that of 

the conventional queueing network. The tasks associated with 

any status indicator do not transit to another on their comp-

letion by the processor: rather the processor completes every 

such task before sampling the next status indicator. Neverthe-

less, the PSA model can easily be applied in that it requires 

as input only the probability distribution (or empirical relative 

frequencies) of the number of tasks associated with each status 

indicator and the distribution of their service times. The 

tasks may even have different service time distributions provided 

the probability distribution for the numbers of each type at each 

centre is available in some form. 

The status indicator could be a "data ready" line 

in a multiplexor system or a sensor in a process control system 

and it is immediately apparent that application of the PSA 

method will allow prediction of the probability of a system 

fault through failure to complete a sampling cycle within some 

predefined time limit. 
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8.1.3 	Computer systems  

The prediction of time delays in computer systems is 

probably the most important application of the analysis pre-

sented in this thesis. The distribution of cycle time is itself 

of great use - for example in detecting imbalances in a com-

puter system configuration, revealed through unexpected peaks 

at times greater than the mean. However, the crucial measures 

are those of response time (interactive systems) and turnaround 

time, sums of successive cycle times, as discussed in section 

2.3. 

In fact response time can be represented quite simply 

in a type (i) model. An interactive system may be represented 

by the configuration in fig. 8.1. 

fig. 8.1 Network representing an interactive computer  

system 

In this network, the cycle time consists of the sum 

of 

(i) User think time, U say, 

(ii) The response time of the system, R say. 

A very simple model may be constructed for this 
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configuration in which the active terminals, or rather their 

users, are considered to have identical characteristics, in 

particular independent, identically distributed service times, 

U, and equal routing probabilities, pli, 2 s i s M. Then the 

complete set of terminals in use (centres 2-M in fig. 8.1) may 

be represented as a single IS server, the number of tasks in 

the network being equal to the number of active terminals, M-1. 

The resulting network is therefore cyclic with just two centres. 

The tasks may have different processing time requirements, 

resulting in a multi-class model of the BCMP type, [BASK75], 

given suitable queueing discipline for the computer system 

server. 

The probability distribution for the queue length at 

the computer system may be computed either using the BCMP result 

or empirically. The service time distribution for the computer 

system for each class of task may also be obtained empirically 

by means of controlled experiments in each one of which only one 

user is logged on to the actual system. By application of the 

PSA method to the one-centre path consisting of the computer 

system only, the probability distribution of response time may 

be predicted. An important practical advantage of this simple 

model is that measurements for the random variables U and R are 

usually available from real computer installations, so that 

validation problems are reduced. 

This high level description of a computer system by 

a single server may be refined by use of a model of the system 

at a greater level of detail in which the individual computing 

resources are represented explicitly. Many such models have 

been constructed which find the service centre queue length 

probabilities, e.g. [KRZE77b,BUZE78b], and usually consist of a 



-168- 

server representing the processor(s) together with servers to 

represent the various I-0 sub-systems at various levels of 

detail. A task created by a terminal server will require a 

certain number of cycles in the computer system, with some 

probability distribution; and the response time is the sum of 

these cycle times. This is the situation described in sections 

4.10 and 5.8.4, and assuming independence of successive cycles, 

results in an asymptotically Normal distribution for the 

response time as the number of cycles increases, for any given 

task. In a model such as this, a task typically will have a 

fixed probability of departure from the network at one or more 

service centres, c.f. the probability of leaving the loop from 

centre y  in fig. 3.2, section 3.4. In this case the probability 

distribution of the number of cycles is geometric and as repre-

sented in ELAZO78], but it could equally well•be..obtained empiri-

cally. Either way, the asymptotic Normal distributions must be 

weighted according to the probabilities of their associated 

numbersof cycles, to give an analytic expression or (numerical) 

histogram respectively for the overall response time distribution. 

8.2 The use of transient analysis  

The principal application of the time dependent 

analysis of queueing networks presented in chapter 7 lies in 

the determination of the decay characteristics of the transient 

component of the state space probability distribution. In this 

way the length of time required before a queueing network can be 

considered to have attained stochastic equilibrium may be com-

puted. 

For Jackson type networks it was shown that, to first 

order in an iterative process, the decay was exponential with 
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time constant for each state's probability equal to the 

reciprocal of the total service rate in that state. This 

result will also clearly generalise to the BCMP case. 

However, apart from this very general result, relevant 

in all modelling situations where the equilibrium assumption is 

made, there are several more applications of the transient 

analysis. The time dependent state space probabilities, com-

putable numerically to any degree of precision specified by the 

modeller, may be used to describe the characteristics of the 

network (and so predict those of the modelled system) immediately 

following the setting of a time origin, representing some type 

of initialisation. This initialisation may take many forms in 

an actual computer system, typically: 

(i) The literal initialisation or "starting up" of the 

system with some configuration of resources and tasks 

specified. 

(ii) More generally any disturbance to a system, whether 

or not assumed in equilibrium, constitutes initialisation. 

This is because the system's characteristics at all future 

times depend on the nature and time of occurrence of the 

disturbance - clearly the system cannot be in equilibrium 

immediately following such an event. Disturbances may be 

many and varied. For example, in a dual processor system, 

the failure of one of the processors is quite clearly a 

disturbance, and the ability to predict the effect on 

system behaviour immediately after any such event is of 

great value. 

A more subtle disturbance is the entry/departure of a 

task into/from the dispatchable set in a multiprogramming 
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computer system. This is, of course, represented by the 

arrival/departure of a customer at/from some server in 

an open queueing network model of the system, and the 

initiai state space probability distribution is the 

equilibrium one, CMITR79]. However, at times immediately 

following the known time of this consequent disturbance, 

the state space probabilities are time dependent since a 

time origin has been set. In this way an analysis of the 

edge effects associated with such events becomes possible. 

This is, of course, the basis for the analysis in contin-

uous time of time delay distributions in queueing networks 

discussed in chapters 2 and 7. 

8.3 Future research areas  

8.3.1 Outline  

In the main text of this thesis, most of the remaining 

open questions have been identified so that a detailed dis-

cussion is not required here. Instead these research areas are 

summarised and some new ones identified, with elaboration where 

necessary in a few cases. 

8.3.2 Acquisition of measured data 

One of the immediate priorities, as mentioned quite 

frequently, is to obtain suitable data from at least one real 

computer system so that the validation by means of a three way 

comparison between analytic, simulation and empirical results 

may be achieved. The actual methods used to perform this 

validation will be precisely those described in Appendix 8; 
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there being more applications of each, of course, in view of 

the increased number of sets of data. 

The actual collection of the data could be by an event 

driven software monitor or possibly by a hardware monitor if 

the system under study provided some means of identification 

at the hardware level of the job in use of the CPU. The latter 

possibility, if available, is the most attractive - to the 

analyst in that system performance would not be distorted by 

the considerable resource demands of the event driven monitor 

and to the installation management in that the running costs 

would be less for the same reason. In practice we shall be glad 

to accept either alternative if offered: 

8.3.3 The PSA method 

Perhaps the most important practical contribution of 

the research presented here is the PSA method of chapter 3 for 

the approximate prediction of time delay distributions and their 

moments. Consequently a considerable amount of research is 

planned in this area. In the immediate future, the most 

pressing need is the extension of the present implementation 

of the PSA model (Appendix 7) to cope with non exponential 

service time distributions, IS queueing discipline (a trivial 

task, see sections 3.2, 3.3.1) and state dependent service 

rates. In addition, it is a simple matter to incorporate into 

the model networks with service centre (class) queue length 

probability distributions based on the BCMP result, EBASK75], 

or operational measurement (the empirical case). In the former 

case, LCFS queueing discipline could either be excluded or the 

approximation given in section 3.2 could be used. 

These enhancements would result in a PSA model able 
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to be applied in its full generality, but only to cycle times 

in tree-like queueing networks. Thus the next stage in the 

development will be to extend the model for application to 

time delays in general, in networks of general structure. 

This stage will be based on the methods discussed in chapter 3 

and will involve a considerable design and programming effort - 

recall, for example, the problem of loops, section 3.4. 

Validation of this fully generalised model will be by precisely 

the methods described in this thesis (involving generalisation 

of the simulator, therefore), hopefully with the availability 

of measured data also, as discussed above. 

The more fundamental research required in the area 

of the PSA method concerns the acceptability of its approxima-

tions. In terms of the method's predictions, empirical tests 

have indicated that such approximations are indeed acceptable. 

However, a direct empirical test may be made on the fundamental 

assumption of the method: independence of the queue length dis-

tributions for each centre in every valid path through the 

network. The test in question is the ACF test, [CHAT75], 

applied to cycle times in Appendix 8. 	In this case it would 

be applied to a sample from the sequence of successive queue 

lengths faced by a test customer in a simulated network or by 

a particular task in an actual computer system. An alternative 

test for independence of a data sample uses spectral analysis, 

[JENK68], by computing the sample's cumulative periodogram which 

should approximate to a straight line. This test could be applied 

both to the cycle times and queue lengths samples. 

Useful and convenient though these statistical tests 

are, they may only be applied in 4pecittic ins-tanced and what is 

really required to assess the degree of approximation in the 

PSA method is a Sonmai ennah anaty4L4. Such an error analysis 
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would not be expected to provide exact results for the error 

in every network specification. Otherwise the exact solution 

would be known so rendering the research worthless since either: 

(i) The form of exact solution could be sufficiently 

efficient in execution for practical purposes that 

the approximate method would become superseded, 

or 	(ii) The computation of the error would be too inefficient 

for use as a practicable tool. 

As an example, an error analysis in the second cate-

gory has been accomplished in this thesis for tree-like networks, 

viz. the difference between the exact and PSA solutions. 

Thus it is proposed to attempt to derive upper and 

lower bounda on the error as relatively simple expressions in 

terms of the network specifications. As a first step it would 

appear simplest to consider the case of tree-like networks for 

which an exact method of solution is known, bearing some resemb-

lance to the PSA analysis. The approach taken could be based 

on that taken by the author in an analysis of another approxi-

mate method for cyclic networks, CHARR79a]. This method is an 

enhancement of the PSA method in that the joint probability 

distribution of the queue lengths faced by the test customer 

in any path is computed by an exact algorithm, not based on 

the assumption of independence of the servers. As in the PSA 

method, however, the customer's sojourn time distribution for 

each centre is assumed independent of the queue lengths faced 

at other centres in the path. This is valid for centres already 

departed from (by the Markov property) but not for those still 

to be entered. Hence the name of the method: "future path 
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independence" or FPI. It was shown in CHARR79a] that the 

FPI method gives an upper bound for the Laplace transform of 

the cycle time distribution in cyclic queueing networks. In 

view of this result and the closeness of the PSA and FPI 

methods it may be worthwhile, in an attempt to obtain an upper 

bound on the PSA method, to make an analytic comparison between 

them - at least to pursue an analogous development for the PSA 

method. However, this approach would only provide one bound, 

and that on the Laplace transform of the cycle time distribution. 

Thus, the problems involved in a formal analysis 

providing efficiently computable bounds on the error of the PSA 

method appear considerable even for tree-like networks. They 

will presumably be even greater for more general networks for 

which no simple exact analytic solution is known. 

A compromise between the empirical and theoretical 

approaches could be as follows: 

(i) Network specifications for which the approximation 

of the PSA method is expected to be poor should be 

identified. In particular identification of the wot4t 

cases in any class of networks is most important. 

Heuristically such networks would be cyclic by the 

argument of section 3.1, a view which is supported by the 

validation process described in Appendix 8. However, 

analytic definition of such worst case networks is required. 

(ii) Empirical tests could be made to estimate the error 

in these cases and in this way the maximum error for any 

class of network under analysis could be predicted. 
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8.3.4 Other research areas  

In the previous section the most significant research 

areas have been discussed, but others have been identified in 

the main text and are listed here together with three new ones: 

(i) The importance of response time has been emphasised 

in various places, and validation of the underlying independence 

assumption via the autocorrelation function or cumulative 

periodogram suggested. Another simple check would be to examine 

samples of measured response times and to test the hypothesis 

that they are drawn from a linear combination of Normal distri-

butions, weighted according to the probability distribution for 

the number of cycles required, see section 8.1.3. 

(ii) Inversion of the Laplace transforms of time delay 

distributions could be investigated. Two possible methods for 

this were identified in chapter 4: numerical and analytical. 

Both methods have their problems and the latter has been given 

for the PSA method with exponential server networks in Appendix 

1. It has also been pointed out in section 4.8 that there is 

little practical value from such an exercise which is primarily 

of academic interest therefore. 

(iii) In order to provide a truly practical tool for the 

computer performance analyst, the implementation of the results 

of the PSA and exact methods for time delay analysis must be 

made as efficient as possible. This will involve established 

techniques such as the efficient handling of sparse matrix 

operations, recursion and storage management. It may also 

require the use of specialised techniques such as decomposition 

methods, sections 4.9 and 5.8.3. 
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(iv) The exact analytical method may be extended to 

apply to networks in which each server may have any service 

time distribution possessing rational Laplace transform. 

The queueing discipline will still be restricted to FCFS. 

The extension is based on the method of stages, EBASK75, COX557 

and because of the FCFS queueing discipline will, in general, 

introduce blocking (section 2.1 and EBASK75]) at the first 

stage of each service centre. However, the state space trans-

ition matrix for the generalised tree-like network is easily 

constructed for any state dependencies in the service rates. 

The non overtaking property of the generalised tree-like network 

is preserved by the FCFS queueing discipline of the stages and 

the blocking property which therefore permits parallel stages 

to be used - the most general case. Blocking presents no 

additional problem in this analysis in that the state transition 

matrix must be analysed explicitly in the exact analysis. 

There are two additional difficulties resulting from this 

generalisation. The first is an increase in computational 

inefficiency arising from expansion of the state space by the 

addition of the stages. The second is that no equilibrium state 

space probability distribution is known in closed form for FCFS 

queueing discipline and non exponential servers. Thus the 

cycle time distribution and its related results may only be 

derived analytically conditional on the initial state of the 

network. Of course in practice it may be that empirical equi-

librium state space probabilities are available. 

(v) As regards the transient analysis, it was observed 

in chapter 7 that the method derived for Jackson type networks 

should be easy to generalise to the BCMP class. This extension 

is proposed. In addition actual implementation of the analysis 
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as a software package has yet to be undertaken. The predictions 

of such an implementation should be validated with respect to 

data obtained for transient situations; by simulation experiments 

and, ultimately, by monitoring actual computer systems. 

(vi) A controller can be designed to optimise system 

performance measures continuously by automatic tuning of the 

system's parameters, resulting for example in dynamic scheduling 

algorithms. The (operational) parameter adjustments may be 

based on the performance predictions of a model corresponding 

to optimal setting of the (model) parameter values, [KRIT78], 

the input to the model being based on current workload charact-

eristics. However, a computer .in4tatZa-t-ion model has been 
proposed, CLEHM79a], by which workload characteristics them-

selves may be predicted. Given a validated model such as this, 

the control system described above could make (operational) 

parameter adjustments based on anticipated rather than current 
workload characteristics. 

Note that this type of parameter adjustment constitutes 

a form of initialisation in the sense of section 8.2. Thus the 

immediate effects of such a disturbance to the system, for 

example some form of instability, may be predicted by application 

of the transient analysis as discussed in section 8.2. 
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§9. 	Conclusion  

The fundamental philosophy of this thesis is con-

cerned with the adequacy of the representation of models of 

computer systems. Thus it was first argued that to achieve 

a good representative model a phenomenological approach to 

modelling is required. This will result in the identification 

of the performance measures genuinely requiring prediction (as 

opposed to those easily produced by some established class of 

model) as well as the determination of the type and structure 

of the model ideally suited for such prediction. Of great 

interest to the modeller at present are the techniques of 

queueing network analysis, in view of the closeness of structure 

between (abstract) queueing networks and (real) computer systems, 

and such techniques are strongly supported here as a means for 

representative computer system modelling. The specific type 

of analysis undertaken would depend on the phenomenological 

study. The measures of most interest, to both users and 

installation management, are the time delays incurred by indi-

vidual tasks (e.g. programs) in computer systems - not only 

their mean values but also their relative frequency histograms, 

or at least estimates for some higher moments. 

The principal results of the research discussed here 

are, then, the theoretical solutions for the distribution of 

time delays in queueing networks. The solutions of greatest 

importance are the exact ones which provide, in addition to 

significant academic interest and achievement, standards against 

which to assess the adequacy of approximate methods, e.g. theor- 

etical or simulation. Such exact methods were developed first 

for cyclic and then for tree-like queueing networks (chapters 4 
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and 5) with a view to their actual implementation so that 

computational efficiency was always considered an important 

requirement. This resulted, in particular, in the choice of 

the class of networks analysed, viz. those possessing the 

non-overtaking property (tree-like networks, chapter 5) for 

which expansion of the state space is not required. Neverthe-

less, the exact method does have severe practical limitations, 

both with its domain of application and its computational 

inefficiency. As a practical tool for the performance analyst 

the theoretical method assuming permanent stationarity (chapter 

3) is of far more use since it is applicable in a very wide range 

of situations, is efficient in execution and appears to provide 

accurate approximations ( Appendix 8). 

Indeed, the emergence of the PSA method as such a 

potentially valuable tool is the most important practicae 

achievement of the research reported. Though we are convinced 

of the justification for the approximations and the correctness 

of the derivation, it must nevertheless be accepted that the 

method has not been validated against measured data. Ultimately 

only such validation can give total confidence in the validity 

of the results. 

Perhaps of less practical, but of significant academic 

interest is the transient analysis of chapter 7 which provides 

a very simple, convergent, iterative solution to the time 

dependent Kolmogorov equations for queueing networks, showing 

the nature of the decay of the transient component. This novel 

approach to the problem (to the author's best knowledge) is 

very much more efficient in execution than the conventional 

method involving eigenvalue analysis. In fact such transient 

solutions have several applications in practice, as discussed 

in chapter 8, for example to quantify time periods in which the 
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equilibrium assumption is valid in a queueing network model 

or to predict the immediate effects of disturbances to a 

system. 

Finally, it is anticipated that this research into 

modelling methodology in general and analysis of time delays 

in particular will provide a sound foundation for a longer term 

research objective. This is to integrate an efficient software 

package, able to predict accurately the probability distribution 

of time delays in a variety of computer system configurations 

(e.g. cycle time, response time, turnaround time), into a larger 

scale model of computer installations, [LEHM79a]. The install-

ation model would represent dynamic workload characteristics 

making use of feedback from the time delay prediction component 

which would itself be part of the sub-model of the computer 

system, the processor of the applied workload. An application 

of such a model was given in the context of scheduling in 

section 8.3.4. 

Such a dynamic model would result in a better under-

standing of the interrelationships existing between the various 

components of an installation (applications of the user 

community, user workload, computer system), their short term 

variation and long term evolution. Thus more effective manage-

ment and control of the installation would be made possible. 
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APPENDIX 1  

The Laplace transform, F(r,p), of cycle time 

distribution as given in equation(E3.10)in section 3.2.1 may be 

inverted by evaluation of the Bromwich contour integral defined 

in general by 

1 	
Y+iO3 

f (t) - 2~ri 	ept F (p) dP 

Y-i°° 

in which F(p) = L {f (t) } and 

Y>yo = Re(p1) where p1 is the singularity of F(p) 

with the largest real part, [SPAI7O]. 

Assuming all singularities are isolated poles (as 

in our case) the contour could be as shown in fig. Al and 

1 
f(t) = 	2-ri . 2iri' {residues of {eptF (p) } at poles} 

where the residue of G(p) at po is the coefficient of 	1  

P Po 

FIG. Al: THE BROMWICH CONTOUR 
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L 
. 	ip (k,t) 	= 

j=1 
 }

kiept
residue of 11 	uu

+p 	at p =-u. 

i=1 
J 

L k L 1 	k.-1 

II u 1   lim 	d J  

i=1 	j=1 (kj-1): p}-uj dpkj
-1 

ept 

II (p+ u)k1 
ij 	

i 

L k L 
then Ip(k,t) 	= 	II 	Pi 1 	y 11) . (k,t) 

J 
i=1 	j=1 

Now, *.(k,t) = 

k.-1 
1 

X 

(kj-1): 2,.=0 

(k.-1) tQ3 
e -p.t 

(k3-1-P. 

 

(EA. 1) 

lim 	dkj- 1-Qj 	1
1 

p-.)- uj 	dpkj-1-2,j 	
II (p+ui)ki 
i#j I 
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using Leibnitz's rule and where the arbitrary summation index 

has been chosen to be Z.. 

e-ujt 	kj-1 
.• . ~ . (k,t) _  	I 

7 	(kj-1): 
Qj=O 

(k-1)! t 	(k•-1-k): 
-1-2,) :Q3 * 	

E Z 
=k .

-1-L j (iJL L) 1• 

Q.>-O 1 

. 

£. 
(-1) 1(ki+Qi-1)' 

II 

(ki-1) : (ui-uj ) ki
+
4
i 

using the generalisation of Leibnitz's rule given in Appendix 6 

and indexing suitably. 

°. 
-ujt 

e 

L 
E 
i=1 

k.=kj-1 

Z10 

L.  
(k -1) :t 	J(-) 	7 	J 

i j (k,t) 	= 
L 
II 
i=1 

(k.-1): 
1 

L 
II 

1=1 
L. 

II 	
k.+k 

1sij5L (U.-P.3) 1 i 

.......(EA.2) 

A recurrence relation for yk,t) is easily derived from (EA.1) 

as follows: 

(ki+Qi-1): 
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11,j (k,t) 

where 

= 

_ 

kJ 

kJ 

t 
lim 1 	dkJ

-2 
ept  

kj-1 

/ 
t#j 

t 

p+-p. 

kt 
_ lim 

(kj -2) 	dpkj-2 

k4-2 
1 	d J 

II 	(p+ui)ki 
}, 

ept 

kj-1 	p}-uj 

_ 

J 

(kl,...,kj- 

= 	(k1,...1kj- 

(k-2): 	dpkj-2 

L 1 

I 	(p+uz) 	fl 	(p+ui)ki 
Il 	i~j 

' 	,t) 

	 (EA. 3) 

kj-1 

= 

k~~.(kJ 
k.-1 	t=l 	J- 

R#j 

1,...,kL) 

1 1...,kz+1,...,kL) 

and for kj?2 and ki>_1, lsi#jsL 

For k. = 1 

(k,t) = lim 

p} uj 

 

ept 

 

11(p+ui)ki 
i#j 

 

   

e ujt 
	 (EA.4) 

n 	(p.1-p.) 15i#jsL 
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L 
Now let Q.(k,t) = p.(k,t) 	II (ki-1): . Then, by substitution 

1=1 

in (EA.3) and (EA.4) or by direct derivation from (EA.1) 

Q.(k,t) 	= tQ. (kj-,t) - 	I Q. (k j-,
2'

+,t) 	 (EA.5) — 	
2,#j 

(kj12 and k.1 , lei#j5L) 

with boundary condition 

(k-1): 	-u.t 
Q.(k,t)  = 	II 	 e 

1si jsL  (p.-uj)k1 

 

(EA. 6 ) 

 

(k3=1 and ki 	1si#j5L) 

A product form solution does exist for equation (EA.5), viz: 

L 	k. 
Q.(k,t) = N. II x.1 

i=1 

L 

where 	I xi = t and N. is independent of k, but this 
i=1 

expression cannot satisfy the boundary condition, (EA.6). 

By inspection of the case for L=2 and the coefficients 

in the expansion 

k4 
(t- 	xi) 

i=1 

i~j 
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which would arise in a product form solution if this existed, 

it can be seen that the solution of equations (EA.5) and (EA.6) 

should be: 

Q . (k,t) = L 
E ri=k.-1 

i=1 

(k.-1): 	r. 	k -1-r 
t 3 (-) > 	> Q. (r',t) 

L 
II r) 
i=1 

(1sisL) 

(EA.7) 

ki+ri 	lsi#j<_L 

where r"i = 

1 	i=j 

That this is the correct solution may be shown as follows - 

Using (EA.7) with kj~2 

tQ. (ki ,t) - I Q. (0 'L+,t) — 
	

— 

r.+1 	k.-2-r.  
t 	3 	(-) 	3 	> 	Q.(r-,t) 

Eri=k.-2 	L 
II 	ri: 
i=1 

(k.-2):  r. k.-2-r. 
C 
L 

t ] (-) 	] Q J (r "lL+,t) 
L 1s2,#jsL Eri=k.-2 L r.. 

i=1 	1 
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_ 
Er.=k.-1 

1 3 
rj>O 

r.(k.-2): 	r. 	k.-1-r. 
L  J 	 t J (-) J 	J  Q.(r",t) 
I[ ri; 
i=1 

r(k -2): 
j 

r. 	k.-2-r. 
t 	j (_) 	j 	J 	Q• (r",t) L  

jsL Eri=kj-1 

r
2,>O  

fi 	r.: 

i=1 1  

J 

The restrictions that rj>O and r>O may be removed because of 

the multiplicative factors rj  and rt  so that the R.H.S. becomes: 

L 	c  
E r.=k -1 

i=1 1  j 

r. 	k.-1-r. 
(k.-2):t J(-) J 	Q.(r",t) 

r.+ r 
3  QīEj / 

L 
= Q.(k,t) since 	1 rR, = k.-1 in the summation. 

J — 	k=1 	J 

Indeed by substituting the boundary condition, (EA.6) for Qj(r",t) 

in (EA.7) and using the definition of Qj  in terms of 4,j, the 

result (EA.2) is arrived at. 
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APPENDIX 2  

In this appendix it is shown that 

R(j) = 	x R(j-1) + (1-x) Q(j-1) 	(jz2) 

(1-x) Q (0) 	(j=1) 

0 	 (j=0) 

where R is the cumulative discrete probability distribution of 

r which is the convolution of probability distributions p and q, 

where q has cumulative distribution Q and p is geometric, defined 

by 

P(i) = (1-x) x
i-1 	(i~l) 

10 	(i=0) 

Let X and Xq be random variables with probability 

distributions p and q respectively. Then 

R(j) 	= 	Prob (X + Xq s j) 

j 
Prob (X = j-i) Prob (Xq s i) 

i=0 

j-1 
p(j-i) Q(i) 

i=0 

and j-1 

r(j) 	_ 	P(j-i) q(i) 
i=0 

similarly, or by differencing w.r.t. j. 

 

j-2 

x P(j-1-i) Q(i) + P(1) Q(j-1) 	(j?2) 
i=0 

. R(j) 

  

p(1) Q(0) 	(j=1) 

' 0 	(j=0) 

with a similar result for r(j) which proves the result. 
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APPENDIX 3  

It is shown here that the convolution operation, 

applied to two distributions of positive random variables, is 

commutative. Consider the convolution, H(t), of distributions 

F(t) and G(t), t s R +. 

H(t) = [F * G] (t) 

t 
= 	F(t-u) dG(u) 

0 

t 	rt 

O 	'O 

t 

0 + 	G(t-v) dvF(v) 
0 

since F(0) = G(0) = 0 and by the change of variable 

v = t-u. 

.. 	H = F*G = G* F 

as required. 
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APPENDIX 4  

The minimum of n independent negative exponentially 

distributed random variables is itself negative exponential with 

inverse mean equal to the sum of the inverse means of its 

constituent components. 

Proof 

Let T = 	min T. 1 
lsisn 

where Ti  is an exponentially distributed random variable 

with mean ui-1. 

Pr(T > t) 	= Pr(Ti  > t ; lsisn) 

n 

= H Pr(Ti>t) by independence 

i=1 

-uit 
= II e 

i=1 

= exp{ -t y uit 
i=1 



-191- 

APPENDIX 5  

Computation of first entry probabilities to target states  

In this appendix an expression is derived for the 

probability, Pst, of a network entering state t e ST  c S (the 

state space) at some future time, conditional on the network 

starting in state s and so that no other state in ST  is entered 

before t. ST  is the set of "target states" with the property 

that having transited to a state not in ST from a state in ST,  

the network can never return to any state in ST. 

The result is required in the decomposition analysis 

presented in section 4.8 for cyclic networks. 

Let Xst  be the probability of passage from state s to t 

in any number of steps, including zero if s = t, 

co 
i.e. X = 

	

	y Tn  where T is the state transition matrix 
n=0 

of the network, by Corollary CCL4.l, 

so 	X = (I-T)-1.  

Now 

Xst 	E su Tut 	for s 	t   (EA.8) 
usS 

u1S Xsu Tut + 	Xsu Tut uS T 	 T  

But ST  was defined to be such that for all t c ST,  if 

u 0  ST  s.t. Ttu 	O , 

then for all v e S s.t. Xuv # 0, v 0  ST. 
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Thus 

Xsv Tvt 	Pst T  

by considering equation (EA.8) with t = v, so that any route 

implicit in Xsv  entering ST  gives zero contribution, and so 

Pst 	Xst 	 1S Xsu Tut u T  
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APPENDIX 6  

In this appendix, the rule of Leibnitz for repeated 

differentiation of a product of two functions is extended to 

products of any number of terms. 

Let 	F(x) 
n 

= 	II ui  (x) 
i=1 

(n e Z+, n ? 1) 

( 
n 	uk

jk) 
 (x)  

Then F(x) = p: 	II 	t 	 
n 	k=1 	Jk' 
E jk=P 

k=1 
jk>-0 

where the index (p) denotes differentiation w.r.t. x p times. 

Proof  

The proof is by induction on p. 

(i) For p = 1, the result yields 

(jk  ) F(1)  (x) 	_ 	II uk 	(x)  
D k=1 

where D = {(jl,32'" .,jn)Ijk=1, ji=0, lsi ksn; lsksn} 

which is known to be true. 

(ii) Suppose the result is true for F(p)(x). 

Then 
F(p+l) (x) = 	

d 
F(P ) (x) 

dx 

(jk+dik)  n n u 	(x) p:  E 	n k  
Ejk=p i=1 k=1 	jk: 

jk>_0 
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(jk) 
n 	n uk 	(x)  

= p! 	j 	II 	 
1=1 Ej'k=p+1 	1  k=1  

j"k?O 

j'i>O 

where k jk  Sik 

(jk)  n 	n u (x) 
= p: 	j II k  

1=1 Ejk=p+1 	1  k=1 	jk; 

dropping the primes, since the terms for ji= 0 give zero 

contribution, giving the result for F --(p+1)  (x) since 

n 
ji  = p+1. 

i=1 
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APPENDIX 7  

The following APL functions produce numerical predict-

ions of quantities related to the cycle time distribution in 

tree-like queueing networks. They implement the analytic results 

presented in chapters 3 (under PSA) and 5 (exact). The package 

may be used interactively by typing "CYCLE" when the workspace 

has been loaded. 
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C 	07 
C 	1] 
C 	2] 
C 	3] 
C 	4] 

CYCLE 
'CYCLE TIME DISTRIBUTION PACKAGE FOR CYCLIC QUEUEING NET'dORKS 
'P,G.HARRISON, 	NOVEMBER 	1978',CR,CR.'INPUT NO. 	OF CENTRES' 
SPECPLAP«NET4-,MEM«(2 	0)PCEN+PpōHPh«(M.M)aCSR4-(Mt41)00 
+(M=C2N-1)/C1 

VERSION 3',2PCRs-1AVC157] 

C 	57 +0x00.-' 	ABORT...TOTAL HO. 	OF CENTRES COMES TO 	'.TCEN-1 
C 	6] L1:'INPUT NO. 	OF CUSTOMERS' 
C 	71 T_aM!M+N4.0 
C 	8] TŌTĀL NO. 	OF STATES = 	'.rTzEr,l 
C 	9] L2:+(M0pE*E,E+.x(PE)t.RPMC 	1+PE])/L2 
C 	10] X+E+CSR - - - 	- 	--- 	- 
C 	11] C8 	'Ū0 YOU WISH TO USE DECOMPOSITION OR DIRECT METHODS?' 
C 	12] +('YN'mlt0)/L12,L4 
C 	13] +L3xPP04''TRY AGAIN' 
C 	141 L12:'INPUT SIZE OF KNOWN NETWORK' 
C 	157 MK 4-11 
C 	16] ĪNPUT VECTOR OF LAPLACE TRANSFORMS FOR EACH STATE WITH ',(3 0 TN),'CUSTOMERS' 
C 171 RST+f] 
C 	18] !1«5SN.0,0.(x\<N40N+M)+i'3+I-3+M) 
C 	197 
C 	20] 

-- 	- 	- - TRM
4END 

C 21]  L4:'INPUT ROOT HEAD CENTRES THE SUBTREES FOR WHICH ARE TO HAVE THEIR TRANSITION MATRICES DISPLAYED' 
C 22]  SBD4-41 _ 
C 231 INPUT ONE OF THE FOLLOWING 	:- 
C 247 ......FOR LAPLACE TRANSFORM OF CYCLE TIME DISTRIBUTION' 
C 25]  "'D" 	FOR DISCRETE APPROXIMATION OF CYCLE TIME DISTRIBUTION' 
C 26]  "*M"  FOR MEAN AND STANDARD ERROR OF CYCLE TIME DISTRIBUTION ' 
C 277 "'N" 	FOR MEAN AND STANDARD ERROR OF CYCLE TIME DISTRIBUTION EVALUATEDNUMERICALLY' 
C 2287 
C 29] 

+(-14A4-'LDNM'.1tD)/L4 
t.Ai '+ 3 	o'LTRDISNM 	THM' 

C 	30] END:ERROR 

C 0] DIS;N 
C 17 'INPUT TIME STEP SIZE FOR CYCLE TIME PROBABILITY DISTRIBUTION' 
C 2] Dl-f! 
C 3] INPUT NO. OF TIME STEPS REQUIRED' 
C 4] NH1 
C 5] Li:'DO YOU REQUIRE EXACT OR APPROX. RESULTS ASSUMING PERMANENT STATIONARITY? INPUT "E" OR " A " ' 
C 67 '('EA'.1tD)/L3,L2 
C 7] 4L1xPpfl+'TRY AGAIN' 
C 8] L2:+L4x*APD+PSD N 
C 97 L3:TRM 1 
C 10] PD+SSP+.x(1 0 0 .N) DST SSI/tT 
C 117 C4:CR 'DISCRETE CYCLE TIMI DISTRIBUTION:' 
C 12] CR. 	TIME 	PROD.',CR.30P'-' 
C 137 (9 3 T(N,1)0DxtN). 15 3 7(N,1)7,PD 
C 147 CR 	- 
C 157 PB PLOT 120 15 .0.0 
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C 0] Z4-A DST I;L:J;TRE;NSB;NRT;OM;TRG;SJ;X;HD;O;P;PP;TI;A;TST;TL 
C 13 +AC1]:TREE PTR,AC2]:OLD M,AC31;OLD HD.AC4]:MAX. TIME,I;INITIAL STATES 
C 2] +(1=L4-AC4]+Z40)/0 
C 3] +(1=TRE4-AC1])/L7 
C 43 X4-(AC2],0)0Jr0 
C 5] L6:+((pI)f14oX4-X,AC2] NTS ICJ-J+1])/L6 
C 6] L7:T4-N!N+OM4-M4-MEMC2;MEMC1;]tHD]+1-HDrNETCTRE] 
C 7] NRT+NĒTCTRE+1] 
C 8] +(TRĒ=7,9TST4-Mt((NRT-1)pJ4-0),1)/L0 
C 9] TRM HD 
C 10] I4-xJ00 
C 11] L8:4((pX)C230pI'-I,STN Mt(HD-AC3])44(C:J4-J+1])/L8 
C 12] L0:94-0,*-(1UTSV)xD 
C 13] 4((0=NSB4-NETCTRE+2]),N>1)/L1,L2 
C 14] +ONLY 1 CTAT 
C 15] +L3xPoTRG4-,I-NRT-1 
C 16] L2:TRG+"14(STN TST)40.'STN 2xTST 
C 17] L3:SJ+TRANCCX4-TRANICTRG]+.+tNSB] 
C 183 +tNSB BY LABELING DEFN. 
C 19] A4CSRCTL]x((RPMCTL;]t0)/RPMCTL-HD+NRT-1;])+.+TSVCTRG] 
C 20] PP7-+/C1](3 1 2 xl(L,pA)PA)XGTJ L 	--- 
C 21] Trp0 
C 22] R+OM 
C 23] TRM HD 
C 24] Z4-((pI),0)p0+0(414OP)O(-(pP4-((T-TRGC1]-1),pTRG)p0)C1])18 
C 251 T14-I-TRGC1]-1 
C 26] X4'  (OpP)p(-(pP)C1])tTSV 
C 27] LS:P4-(Pxp)+(1-0)x('TRAN' MSE P)=X 
C 28] P4-(0.t -1+(0)C1])SP---- 
C 29] PCtpTRG;114-PPC;1+(pZ)C2]] 
C 30] Pr(-0.t'1+(pP)C1]),P 
C 31] +(L='1tpZ4-Z,+/PCT1;])/0 
C 32] 4L5 
C 33] Ll:Z4-(T.0)pp4-1,(T-1)p0 
C 34] L4:+(51'1tpZ<-Z,P*(P14G)+(1-8)x('TRAN' SML P)+1,1UTSV)/L4 
C 35] Z4-ZCI;] 	 ---- 	--- 

C 0] Z4-I ESB T;J 
C 1] Zr((I-1>p0),1 
C 21 L:J4-TRANICI]+kTRANICI+1]-TRANICI4-I+13 
C 3] +(T42Ē7 (TRANCJ]=TCI])+.z2CTRANCCJ]])/L 

C 0] Z4-GTJ L;N;C:B;A;GO:TRAN;TRANI;TRANC;TSV 
C 1] 4(L=oOQZ4-(NSB,(pTRG),0)tC4-(NSB,(āTRG) C)p0)/0 
C 2] A4(NSB,aA)pA+W1,C1]x\C1]((L-N+1).pTRG)p(aA4-QCTRG] 
C 3] B4-1-0(L,pTRG)008 
C 4] L1:4(NSB?NrN+83poCCN;;]+Bx(NETCTRE+2+N3.0M,HD,L) DST,SJC;N])/L1 
C 5] Nr  1 1 0 xpC 
C 6] L2:+(L0-1toZ+Z,+/(NtC)x414(N4-N+ 0 0 1)tA)/L2 
C 7] ZGTJ+Z 

C 0] Z-A HSB T;J;I;R 
C 1] Z4-,(R4-l.T)?A)CI4-1] 
C 2] L:J4-TRANICI]+tTRANICI+1]-TRANICD-I+1] 
C 3] +(TOpZ+Z,RCI]+(TRANCJ]=TE1]7+.xZETRf!NCEJ3]>/L 

C 0] Z4-PTH LPA P;NSB;EOR;I 
C 1] APC1]:SUB TREE POINTER,PC2]:LENGTH OF PATH VECTOR SO FAR 
C 2] EORE-PTH,NETCPCI]1+0, ∎ '1+NETCPCI]+13 - 
C 3] +((I4-+Z4-7I3)1NSB4-NETCPC1]72])/L1 
C 4] +0xQPIXfPIX,PC2]+PZ4-EOR 
C 5] L1:+T(Ī=N90>,ppZ+Z.EOR LPA NETCPCI]+2+I4-I+1],PC2]+pZ)/0.L1 
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C 0] Z4-A LT I;J:TRE;NSB:NRT:OM:TRO:RATES:SJ;T:X.T1.T2:T3:TR:HD;PAR:K.TL:TST 
C 1] aAC17:TREE PTR,AC2]:OLD M,AC37:OLD HD,AC4+] LAP TRANS PARAMS,I:INITIAL STATES 
C 2] +(1=TRE4AC1])/L7 
C 3] X4-(AC23,0)pJ4-0 
C 4] L6:+<(pI)44 11pX4-X,AC2] NTS ICJ4-J+1])/L6 
C 57 L7:74-N!N+0M+MiMEM[2;MENC1;],HD]+1-HD4-NETCTRE] 
C 6] NRT4-NĒTCTRE+K 4-15' 
C 7] +(TRE=ppTST+Mt((MRT-1)pT4-Z4-J4-0),1)/L0 
C 8] TRM HD 
C 97 Ii-10 
C 10] L8:+((pX)C27$pI+I,STN Mt(HD-AC3])1XE;JiJ+1])/L8 
C 11] LO:+((0=NSB4-NETCTRE+27),SN>1)/L1,L2 
C 12] ONLY 1 CUST 
C 13] +L3xppTRG4-,I-NRT-1 
C 14] L2:TRG4-"14(STN TST)40.tSTN 2xTST 
C 15] L3:SJ4-TRANCCX4-TRANICTRG]+.+,NSB] 
C 16] AtNSB BY LABELING DEFN. 
C 17] RATES4-(RPMCTL;]$0)/RPMCTLIHD+NRT-1;] 
C 18] T34-CSRCTC7+TSVCTR07: +31A 
C 19] T24-7lPARE-3+pA),(pI),.TRG)oKi1+T4-T1iJ4-0 
C 201 L5:+(T$(QTRG)XpoT2CX;;T]i(TRGCTiT+17 ESB TSV_+AC3+K])CI])/L5 
C 21] +(PAR1KiK+1+Ti0)/L5 
C 22] L4:+(NSBOJxpooT1iT1+RATESCJ]x(NETCTRE+2+J],OM,HD,34A) LT SJC;J+J+1])/L4 
C 231 +OXQQZi 2 1 2 4T2+.xT1xT3 
C 24] L1:Zi((oI),0)A0 
C 25] L10Z4-Z.(1 ESB TSV+AC2+K4-K+)])CI] 
C 26] +((oA)02+K)/L10 
C 27] 4N0 SUBS 

C 0] LTR 
C 1] 'INPUT VALUES FOR LAPLACE TRANSFORM PARAMETERS, 9' 
C 2] DEN$,O 
C 3] CC 'DO YOU REQUIRE EXACT OR APPROX. RESULTS ASSUMING PERMANENT STATIONARITY? INPUT .....OR "A"'  
C 4] +('EA'=lt0)/L1,L2 
C 5] +LLxQPOi'TRY AGAIN' 
C 6] L1:TRM 1 
C 7] +L3XppLAP4-SSP+,x(1 0 0 ,DEN) LT SSI/tT 
C 8] L2:LAP+PSA 
C 9] L3: CĀPLACE TRANSFORM OF CYCLE TIME DISTRIBUTION' 
C 10] CR,' 	S 	L.T.CS]- .CR,30p'-' 
C 113 T9 3 T((0DEN),1>pOEN). 20 3 i((pLAP) 1)PLAP 
C 12] CR 	--- 	--- 	--- 	--- 
C 13] CAP PLOT 120 15 ,(DEN[2]-DENC1]).DEN[1] 

C 0] ZIMEAN N 
C 1] G*(1,aX)o1 
C 2] L1:+(Nr-1+1taG4-G,C1]+\Xx,( -1,oX)tG)/L1 
C 3] G4-,GC;pX] 
C 4] Z4-(NXGCA+1]>+X[1]xG[N] 

C 0] Z4-A MOM I;J;TRE;NSB;NRT;OM:TRG;RATES:SJ;T;X;T1;T2;T3;TR;HD;PAR;X;TL:TST 
C 1] aA[I]:TREE PTR.A[2]:OLD M,A[37:OLD HU.I:INITIAL STATES 
C 2] +(1=TREiAC1])/L7 
C 3] Xi(AC2],0)pJ4-0 
C 4] L6:+((PL),llpX4-X.A[2] NTS ICJiJ+1])/L6 
C 5] L7TiN!N+OM4-M4-MEM[2;MEMC1;3tHD]+1-HD4-NETCTRE] 
C 63 NRTiNETCTRE+Q4-17- 	- 
C 7] +(TRĒ=7bpTSTi-Mt((NRT-1)0T4-Z4-Ji0).1)/L0 
C 8] TRM HD 
C 9] IitJ4-0 
C 103 L8:+((pX)C27ipI4-I,STN Mt(HD-AC3])4XC;JiJ+1])/L8 
C 11] LO:+((0=NSB4-NETCTRE+2]),Ns1)/L1,L2 
C 12] +ONLY 1 GUST 
[ 13] +L3XpPTRGi,I-NRT-1 
C 14] L2,TRG4--14(STN TST)40,,STN 2xTST 
C .15] L3:SJ+TRANCCTRANICTRG]•.+,NSB] 
C 161 n,NSB $Y CĀBĒLĪRG DEFN, 
C 17] RATES4-(RPMCTL:7A0)/RPMCTLiHD+NRT-1;] 
C 18] T3i4C1712XX+TSVCTRG7> C1](X4-X+TS_VCTRG]),C0.5](,0),X4-CSRCTL7+TSVCTRG] 
C 19] TR4-(T,0)00 
C 20] L9:+11.0TRG)A1a7R+TR,TRG[TiT+1] ESB TSV)/L9 
C 21] T2i(3,(oI).07RG)pK4-1+T4-T1i0 
C 22] T211::]iTRCI:I 
C 23] X.('TRAN' MSM TR)+KxK4-0(40TR)o1.14TSV,,TiJi0 
C 24] L52:+1Tk(pTRG)xpoT2C2;;T]4-(TRC;T]4-XC;T4-T+1] HSB _TSV)CII)/L52 
C 253 TRi-(('TRAN'.1T'-0) MSM TR)+KxK 
C 26] XiX+K 
C 27] L53 +(T44(pTRG)xppT2C3;;T]4-2x((TRC;T] HSB TSV)+XC;TiT+1] HSB TSV)CI])/L53 
C 28] L4:4(NSBOJxpppT1iT1+RATESCJ]x(NETCTRE+2+J3.5M,HD) MOM SJC;J+J+1D/L4 
C 29] Xi(TlC1;]xT3[1;]),C1]((T1C1;]xT3E2;])+T1C2;]xT3C1;]),C0.5] 1 2 1 +,xTlx0C1] T3 
C 30] n1 2 1 ARE BINOMIAL COEFFS IN LIEBNITZ EXPANSION 
C 31] Z4-T2+,x4X 
C 32] +0xppZiZC1;;1],[1](+/[1] 1 2 1 44 -1 0 -1 4Z).10.5] 1 2 1 +.x 1 2 1 00Z 
C 33] L1:Zi(X4-('TRAN' SML 1 ESB TSV)+K4-1,11TSV*2) HSB TSV 
C 34] Z,Z,C0.5] 27((('TRAN' SML Z)-K) HSB TSV7+<X+1.11TSV> HSB TSV 
C 35] Z+1,[1] ZC;I] ---- 	--- 	--- 	--- 

C 36] 4N0 SUDS 
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C 0] Z*A MSE M;I;X:J;K;D 
C 1] Z*(0 1 xQM)oI*-J*-(pTSV)-(0t)C1] 
C 2] L:X*aA,'ICI3+1',A,'IffĪ+1]-',A,'ICI*I+13' 
C 3] t'+((pTSV)0IxpopZ*2 C1]0',A,' CDTX]+, xMC(D*+/0.:,>K)IK*J+',A.'CCX];])/L' 

C 0] Z*A NSN M;I:X 
C 13 Z*(0 1 KAM)pI*0 
C 2] L:a '- ((oTSV)O1toZ*Z,C)]>A '.A.'CX]+.xMC',A , 'CCX*'.A.'ICI]+i'.A,'ICI+1]-'.A,'ICI*I+1]];])/L' 

C 0] NM;EPS;DR1;A;DR2;B;C;SS;T1;T2 
C 1] 'INPUT DEGREE OF PRECISION' 
C 2] EPS*O 
C 3] T1*T-T2*M 
C 4] DEN; 1 2 +A* 0 0 
C 5] CI 'DO YOU REGUIRE EXACT OR APPROX. RESULTS ASSUMING PERMANENT STATIONARITY? INPUT 	OR 
C 6] +('EA'=itO)/L3,L2 
C 7] +L1xpp0*'TRY AGAIN' 
C 8] L2:0*DR1*( -1+B*(T3*PSA)C1])+C*1tDEN*DEN+10 
C 9] 0*DR2*(-DR1-(T3C2]-B> +C)+C 	--- --- 
C 10] +((00r /A*(DR1,DR2)xEPS<(IDR2-AC2])IIDR1-AC1]),1)/L2 L4 
C 11] L3:TRM 00T*T1+M*T2 
C 12] SS*SSI/a 
C 13] O*DAT;( -ī+B*(T3*SSP+,x(1 0 0 .DEN) LT SS)C1])+C*1tDEN*DEN+10 
C 14] fl*DR2*(-DR1-(T3C25=B)+C)+C 	--- 	--- --- 
C 15] +(00f/A*(DR1,DR2)x£PS<.(1DR2-AC2])rIDR1-AC1]>/L3 
C 16] L4:'MEAN OF CYCLE TIME DISTRIBUTION =',(A*-((pA)IAC.')-pA*TEPS)TM1*-DR1 
C 17] 'STANDARD ERROR = '.ATSE*((M2*DR2)-M1xM1)*0.5 

C 0] K*MM NTS NK;I;T;N 
C 1] T*N+pK*1.I*0 
C 2] L:T*+\01,x\((MM-I)4 N+MM-I*I+1)+iN*T 
C 3] NK*NK-14T*. 2 1 t(T?NK-0.1)/(00,iN).00.5] 0. -14T 
C 4] +(MM*pK*K.N-T*TC1])/L 

C 0] Z*NWS K;K1;K2;T1;T2;J 
C 1] +(0=+/Z*((1,T2*pK)PKl*K20).0)/J*0 
C 2] K2*K1/0.2 
C 3] L:Tl*T1+0=T1*+/CNO*(P*((T2, T2)t(2p-1+101RPM)CK2CJ*J+1];])00 
C 4] K1*(T1xT2)p0 
C 5] K1C(0,T2xi -1+T1)+CNO/0.2]*1 
C 6] K1*(T1,T2)AKl 
C 7] Z*Z ,C13(K1+( T1 , T2)pK-K2CJ]=IT2) ,CSRC -1+H+K2CJ]]x00=+/P) , CNO/P 
C 8] 4(JOAK2)/L 	--- 
C 93 Z*10Ci1 Z 

C 0] PRTTRM;f1PW ;A ;B:ROW;I.J 
C 1] f1PW*120+I*0 
C 2] A*((1+(prM)).0),STS 
C 3] ((2pB)p' '),(((B*=1tpA).4)0.  I 	'),((-B-TxC)0((C-B+1)00).).(B*f0.5x"1+C*1+p1TfiCSR)o0)\0A 
C 4] (((CxT)+D+3)P'- ') 

 

C 5] L +(T I*I+(pp1*((B+ppROW*Tp0)p' ').'I')C1]>/0 
C 6] ROWCTRANCCJ]]*TRANCJ*TRANICI]+).TRANICI+1]-TRANICI]]  
C 7] +Lxppfj*ACI;].' I ',(C,1)vROW 
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C 0] Z*PSA;PTH;PIX;PPR;G;R;A;B;J 
C 1] PTH*(tPĪX*Ō) LPA 1 0 
C 2] PPR*PAR++/PPR*EC(0=+/RPM)/1M] 
C 3] G*(L,M)p1+RfZ*6 	--- 
C 4] L1:+(N7-1+1tpG*G,C1]+\Xx,( -1,M)iG)/L1 
C 5] GrGC;tī] 
C 6] L2:J+PTHCPIXCR]+1B*PIXCR+1]-PIXCR+R+1]] 
C 7] A*x\ 1-3 ? A(((pDENT.N,B)7,XIJ]YCSP,CJ])+DEN•,+(N,B)oCSRCJ3 
C 83 Zr2+(PPRCR]xx/+/Āz1pATp((P N)oGC9N])-XCJ]•.xGC9tN-1.7.0)±x/XCJ7x8EN] 
C 9] 4(R$oPPR)/L2 	- 	- 	 - 	- 

C 	0] Z*P98 L;PTH:PIX;PPPR;G;R;A:8;J;C;D;P:E;MQL;I;K;CSR 
C 1] PTH*(iPIXi-Ō)- LPA 1-0 
C 2] PPR*PPR++/PPR*EC(0=+/RPM)/%M] 
C 3] N(i,M)pi+Rī--Z- 
C 4] L1:4(N0-1+1fpG*G,C1]+\Xx,(-1,M)tG)/L1 
C 5] G*GC;M3 
C 6] L2:E*1,Lp0 
C 7] J*PTHCPIXCR]+t19*PIXCR+1]-PIXCR*R+1]] 
C 8] I*1-08f3]$'F')/J 
C 9] MOLT7;/(((pI),N)pGCN+1-%N])xx\1.4((N-1),pI),XCI])=GCN] 
C 10] CSR*CSR 
C 11] CSRCI3;CSRCI]=MAL 
C 12] 04+*-DxCSRCJ] 
C 13] Ir0 - 
C 14] L3:D*1,L0P*Ar0 
C 15] C*0,(1-QCI])xl,x\(L-1)oACI*I+1] 
C 16] +(QDSCJCI]]='F')/L6 
C 17] ArL 

C 18] +L7 
C 19] L6:10-L+2 
C 20] L4:DCK]*(KtD)+,x0(K*K-1)tC 
C 213 +(0.1)/L4 
C 22] A+A+Dx(XCJCI]]*P-1)xGCN+1-P]-X[J[I]]x(0+6)C1+N-P*P+1] 
C 233 402 1.1)/E6 	_ 
C 24] A€A=GCN] 
C 25] L7:K*L+2 
C 26] L5:ECK]*(KtE)+,x9(K*K-1)tA 
C 27] 4((1011),IP8)/L5.L3 
C 28] Z+Z+PPRCR]x14E 
C 291 +(R00PPR)/L2 

C 0] Z*PSM;PTH;PIX;PPR;G;R;A;B;J;C;D;I;MQL 
C 13 PTH*(kPU*ŌT LPA -1 0 
C 2] PPPrPPA=+/PPR*EC(0=+/RPM)/tM] 

--- --- 	--- - 	--- C 3] G+(1,M)pl+R*Z*0 
C 4] L1:=(N0'1+1tpG+G,C1]+\X_x,( -1,M)?G)/L1 
C 5] G*GC;M] 
C 6] L2:A* 1 3 2 e)(Dx(A+1)•.+C),C0.53 D*(01*0N)•,+C+CSRCJ*PTHCPIXCR3+tB4-PIXCR+1]-PIXCR4-R+137] 
C 73 I*(QDSCJIO'F')/J 
C 8] MQL;1+/(((oI),N)pGCN+1-tN])xx\1,9((N-1),6I)aXfl])-8CN] 
C 9] AC2;JtI;]+9(N,7,I)oMil.-CSRCI] 	- 	- 	- 
C 10] AC1;JtI;]*6(74.oI)p2xMGC7AQL+(CSRCI]xCSRCI]) 
C 11] C+1,x\0((N-15,B).XCJ] 	-- 	--- 
C 12] A*(+/Ax(pĀ)pCx((B,N)p8C9047)-XCJ]*.xGC94N-i],0)+GCN] 
C 13] 04-+/+/AC2;]•,xAC2;] 	- 	- 
C 141 Z*Z+PPRCR]x(6+/A)+0,D-AC2;]+,xAC21] 
C 15] +(RfpPPR)/L2 

C 0] ZrA SML V;I;X 
C 1] Z*tI4-0 
C 2] L;L'+((pTSV)SpZ+Z,'.A,'CX3+,xVC'.A,'CCXr',A,'ICI]+t',A,'ICI+1]-',A,'ICIrI+1]]1)/L' 
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C 0] SPEC NWK;SUB:A;I;J:OFF 
C 1] SU8rvMEEM+MEM,C_E_N_,0 
C 23 +((0#1tNWK).1)/L1,L0 
C 3] L1:'CENTRE ',(TCEN),' 	HEAD OF SUB-NETWORK ',(TNWKC2]),' CONNECTED TO CENTRE ',TNWKC1] 
C 4] 'INPUT ROUTING PRSBABILITY TO THIS CENTRE FROM CENTRE ',THWKCI] 
C 5] NETCNWKC31]*1+pNET 
C 6] RPRCNWKC11;CEN];0- 
C 7] LŌ 'INPUT N(57-OF CENTRES IN ROOT SEGMENT' 
C 8] NET*NFT,CEN,A*1l 
C 91 RPMCGEN+-1+tA-1:1*((A-1),N)p(GFN00),1,(M-CEN)p0 
C 10] I*GEN+A 
C 111 'INPUT SERVICE RATES' 
C 12] L2:J*00*'CENTRE NO, ',(TCEN),' 
C 13] CSRECEN]*sD 
C 143 +TĪKCĒN*GEN_ 	'2 +1)/L 
C 15] 'INPUT NŌE OF ATTACHED SUB-NETWORKS' 
C 16] OFF+-A-oHETrNET,A,(A*11+J*0)00 
C 17] L3:+(A=J)7L4 
C 18] SPEC(I-1),J,OFF+J*J+1 
C 19] +L3 
C 20] L4:MEMCSUBCI];SUHC2]]*CEN-1 

C 0] 2+-STN K:M:N:SK 
C 1] SK*N-+/K,M*-3+7.*N=N*N 
C 2] L:+LxtSKfN0-N-KCM1+002*Z++/(-KCM])ix\((M-M)10+N-M*1+M)+tN 

C 0] THM;A 
C 13 L1:'DO YOU REOUIRE EXACT OR APPROX. RESULTS ASSUMING PERMANENT STATIONARITY? INPUT .....OR " A '' ' 
C 21 +('EA'=1t0)/L3.L2 
C 3] +L1xQofl*'TRY AGAIN' 
C 4] L2:+L4xaoA*1.PSM 
C 53 L3:TRM 1 
C 6] A*SSP+.xPNE*41 1 0 0 MOM SSI/tT 
C 73 L4 MEAN CYCLE TIME _ ',UtCT*AC2] 
C 83 'STANDARD ERROR = '.TSE*(74C3]-AC2]xAC2])*0.5 

C 0] TRM H;I;A;D;C;J;MAT;STS 
C 1] STS*(0,M)ppTRAN*TRAN6TSV*tTRANI-,I(-0 
C 2] +7H1)/L1 ---- ----- --- 
C 3] SSP*SSI*t0 
C 4] L7 47TTI*1+I+pA*tJ(-0)/L2 
C 5] +(0=84:-1+1taMAT-NWS Gr,( -1,M)tS7S4-STS,C1] M NTS I)/L3 
C 61 L:+(B00A*A,STN -14MATCJ*J+17])2C

S 
 

C 7] L3:TRANC'TRANC,A 
C 8] TSV*TSV,+/(B*-I4MAT[J+1:])/Mi('1+H)1CSR 
C 9] NĪĒ7RANI.oTRAN*TRAN „ (J,-1)tMAT 
C 10] 4(HN1)/L1 	---- --- 
C 11] +Li - 1tSBI+SSI,H[l],N=+/C 
C 121 +L3xvoSSP4-B5P,x/X*C 
C 13] L2:SSPASSP.+7SSP 
C 14] 9(.4410577o ___  
C 15] CR.'TRĀNSITION MATRIX FOR SUB NETWORK WITH ROOT CENTRE '.TH 
C 16) PRTTRM 
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APPENDIX 8  

A8 	The Mutual Validation Process  

A8.1 Introduction and outline  

This appendix describes in detail the mutual validation 

process discussed in chapter 6. Three model types were compared: 

(i) Exact analytic. 

(ii) Approximate (PSA) analytic. 

(iii) Simulation. 

The networks represented by the models all had tree-like topologies. 

Analytic predictions were produced by the APL package 

listed in Appendix 7 and simulated results by the author's network 

simulator, see section 6.1. The numerical results, presented as 

tables and graphs in Appendices 9 and 10 respectively, are also 

discussed in some detail in this Appendix. 

The validation process consisted of the following 

steps: 

(i) Various network specifications were defined to conform 

with the assumptions of the theoretical analysis of chapter 5. 
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In all,nine networks were considered (the bade set), their 

specifications being given in the following section. 

(ii) Predictions were made, both for the exact analytical 

method and that using' PSA, for each network defined in (i) using 

the implementation of Appendix 7. 

(iii) Simulated results were generated, first for each of 

the cases in the base set defined in (i), and then for various 

modifications of these cases where the underlying assumptions 

of the exact theoretical model are violated. 	In particular, 

different queueing disciplines and service time distributions 

(with the same mean) were used. In all, twenty-one simulation 

runs were made in this way. 

(iv) The exact and approximate theoretical predictions were 

compared, by methods to be described in section A8.3, for each 

base set case. 

(v) The simulated results for each of the cases defined 

in (iii) were re-organised to represent cycle times for a single 

customer as well as for all customers. 	This resulted in two 

sets of simulated data. 

(vi) For each simulation run and for each set of results 

given by (v) independence tests were performed by applying the 

autocorrelation function to the samples of cycle times. This can 

be used to assess the justification for application of the 

Central Limit Theorem for response time prediction. Independence 

is also required if the formulae for the estimates of the mean 

and variance of the cycle time distribution as simple averages 

are to be applied,and if a simple histogram is to be used to 
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represent the distribution itself. 

(vii) For each simulation run, the moments derived from 

each set of results were compared with the theoretical exact 

and approximate counterparts, under their own assumptions if 

those of the simulation run were incompatible. There were 

thus four comparisons for each network. 

(viii) Finally the one-sample Kolmogorov-Smirnov statistical 

test, CSIEG56]. was applied to find the confidence level for each 

set of simulated results from each simulation run being drawn 

from a distribution given by the corresponding theoretical dis-

crete form(defined in section 5.6). The tests were applied for 

both the exact and PSA theoretical discrete form distribution app-

roximations, giving four in all for each network specification. 

The theoretical results were based on their own assumptions if 

those of the corresponding simulation could not be accommodated. 

In the next section the networks used in the validation 

process steps (i) and (iii) are defined. This is followed by 

two sections in which the actual statistical analyses and 

interpretations are given for the comparisons of exact with 

approximate theoretical results and simulated with theoretical 

results respectively. 
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A8.2 S•ecifications' 'of the networks used in the validation •rocess 

A8.2.1 Networks for the theoretical models  

The nine tree-like networks (base set) specified for 

analysis by the exact theoretical model were based on the three 

topologies shown below. 

(i) Cyclic  

(ii) Simplest non cyclic tree-like network  

(iii) More complex 

fig. A8.1 

fig. A8.1 Network topologies  
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The particular network specifications were chosen so 

as to constitute a sample covering the most significant character-

istics of tree-like networks; i.e. cyclic case (the most simple), 

branching in its simplest form with a selection of routing 

probabilities, and more complex configurations involving tandem 

segments (definition D5.1, section 5.2) of more than one centre 

and several (multiple) branches. 

In cases (ii) and (iii), {pii li,j e Z+} are the routing 

probabilities of the network. The networks were parameterised 

in various ways as shown in table A8.1, by choices of network 

population (topologies one and two) and of routing probabilities 

or service rates (topology two). The labelling of the nine net-

work specifications is not consecutive since the number of net-

works considered is increased, for the simulation runs, to 21, 

including the original nine interspersed throughout. 

A8.2.2 Networks for the simulation models  

The network specifications used for the simulation runs 

consisted of the base set discussed in the previous section, for 

which theoretical predictions were made, together with twelve 

other specifications derived by violating some of the underlying 

assumptions of the base set. The violations were made by choice 

of queueing disciplines other than FCFS and/or by choice of 

service time distributions other than negative exponential for 

one or more service centres in a base set specification. The 

details of each of the 21 specifications considered are presented 

in table A8.1 below. 



Specifi- 
cation 
label 

Network 
topology 

Number of 
customers 

Queueing 
disciplines 

Routing 
probabilities 

Service 
rates 

Service time 
distributions 

Associated 
base 
network 

Network 
used for 
PSA 
predictions 

* 
S1 (i) 2 FCFS for all 

servers 
All one Server 1:1 

Server 2:2 
Server 3:3 

All negative 
exponential 

S1 S1 

* 
S2 (1) 4 as S1 as Si as Si as S1 S2 S2 

* 
S3 (i) 6 as S1 as S1 as S1 as S1 S3 S3 

S4. (1) 4 as S1 as S1 as S1 All Erlang(2) S2 S2 

sS  t (1) 4 PS for all 
servers 

as•S1 as S1 as S1 : 	S2 S5 

* 
S6 (ii) 2 FCFS for all 

servers 
p12  = 0.5 
p13  = 0.5 

Server 1:1 
Server 2:2 
Server 3:2 

All negative 
exponential 

S6 S6 

* 
S7 (ii) 4 as S6 as S6 as S6 as S6 S7 S7 
* 

S8 (ii) 6 as S6 as S6 as S6 as S6 S8 S8 
* 

S9 (ii) 4 as S6 P12 = 0.4 

p13 	= 0.6 
as S6 as S6 S9 S9 

* 
S10 (ii) 4 as S6 p12 = 0.4 

p13 = 0.6 
Server 1:1 
Server 2:2 
Server 3:0.5 

as S6 S10 S10 

S11 (ii) 4 as S6 as S6 as S6 All Erlang(2) S7 S7 

S12 (ii) 4 LCFS for all 
servers 

as S6 as S6 as S6 S7 S13 

Table A8.1 Network Specifications 



Specifi- 
cation 
label 

Network 
topology 

Number of 
customers 

Queueing 
disciplines 

Routing 
probabilities 

Service 
rates 

Service time 
distributions 

Associated 
base 
network 

Network 
used for 
PSA 
predictions 

S13  (ii) 4 PS for all 
servers 

as S6 as S6 as S6 S7 S13 

S14 (ii) 4 Centre 1:LCFS 
Centre 2:FCFS 
Centre 3:FCFS 

as S6 as S6 as S6 S7 S16 

Sl5t (ii) 2 Centre l:PS 
Centre 2:FCFS 
Centre 3:FCFS 

as S6 as S6 as S6 S6 S15 

s16t (ii) 4 as S15 as S6 as S6 as S6 S7 S16 

5171  (ii) 6 as S15 as S6 as S6 as S6 S8 S17 

S18 (ii)• 4 as S15 as S6 as S6 All Erlang(2) S7 S16 
* 

S19 (iii) 4 FCFS for all 
servers 

P12 = 1.0 
p23  = 0.2 
P24 =  0.5 
P27 = 0.3 
pas = 0.4 
p46= 0.6 

Server 1:1 
Server 2:2 
Server 3:3 
Server 4:4 
Server 5:5 
Server 6:3 
Server 7:2 

All negative 
exponential 

S19 519 

S20t (iii) 4 Centre 1:PS 
all others: 
FCFS 

as S19 as S19 as S19 S19 S20 

S21 (iii) 4 as S20 as S19 as S19 Centre 1: 
Erlang(2) 
all others 
negative 
exponential 

S19 S20 

Table Ā8.1(cont.) 
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In this table, the network specification labels are 

marked as follows: 

(i) With an asterisk if the assumptions of both 

theoretical models are satisfied (base networks). 

(ii) With a dagger if the assumptions of the PSA 

theoretical model only are satisfied. 

Theoretical predictions were made for the base set 

specifications and corresponding simulated results produced for 

the complete set. The assumptions required by the PSA approxim-

ate theoretical method were satisfied for the comp.ee-te set of 

specifications excluding those involving LCFS queueing discipline 

(see section 3.2). In fact the implementation of service time 

distributions other than negative exponential has not been com-

pleted so that these cases also are excluded from theoretical 

analysis under PSA. However, six networksin addition to the 

base set could be analysed by this method, the remaining six each 

being represented by the one of these with closest specifications, 

as shown in table A8.1. 

Comparisons were made between the exact and approximate 

theoretical results and between the theoretical and simulated 

results in a mutual validation procedure. 	Of course, 

in the case of the base set specifications, it is necessary that 

the second comparison shows good agreement, certainly for the 

exact theoretical results, since the two model types are based 

on the same set of assumptions about the network characteristics. 

Thus the validation methodology is effectively to: 

(a) Validate the simulation and PSA models with respect 

to the exact theoretical model for the base set networks; 

(b) Validate the theoeti cae models in non base set cases 

with respect to the extrapolated simulation model. The extra-

polation is a44umed valid, no formal justification being 
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possible for the present. 

The results of these comparisons follow in the next two sections. 

A8.3 Comparison of exact and approximate theoretical results  

A8.3.1 	The approach to validation of the approximate  

method  

For both the exact and approximate (PSA) theoretical 

methods, numerical predictions were made, for each network 

specification of the base set, of the following quantities: 

(a) The mean and the variance 	of the cycle time 

distribution, given by the formulae for the first and 

second moments in Theorem T5.3, section 5.5 and equation 

E3.4, section 3.2 respectively; 

(b) The approximate discrete form of the cycle time 

distribution, given by the formulae in Theorem T5.4, 

section 5.6 and section 3.3.3 respectively. The adequacy 

of the approximation may be assessed by comparing the mean 

and the variance estimated from the discrete form 

distribution with the analytic counterparts of (a). The 

results of this test are discussed in section A8.3.3. 

In addition, the Laplace transform was computed for the 

specifications S2 and S7 (see table A8.1). 

The validity of the approximate method was assessed 

by comparing its predictions and those of the exact method with 

respect to the following quantities: 

(i) The predicted values for cycle time standard error. 

Recall from section 3.5 that the mean value given under 

PSA is exact; 
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(ii) The discrete forms for the distribution evaluated 

according to (b). 

The results of these comparisons are presented in 

sections A8.3.2andA8.3.4 respectively. A rough guide as to 

the closeness of the approximation is obtained by inspection 

of the Laplace transforms of the two methods. Graphs for the 

network specifications S2 and S7 of these Laplace transforms 

may be found in Appendix 10 and suggest a satisfactory fit. 

Of course, another way of judging the adequacy of 

the approximate method is by comparison of its predictions 

with simulated results (and real data when available). This 

test is described as part of the comparison between simulated 

and theoretical results in general in section A8.4. Here, in 

fact, it provides the only validation in the cases of the six 

specifications which can be represented under PSA but not by 

the exact analytical method. 

A8.3.2 Comparison of standard errors  

In table A9.1, Appendix 9,the standard deviations for 

each of the base networks,computed by the exact and approximate 

(PSA) theoretical methods are displayed together with their 

percentage difference. The mean values (the same for both 

methods) are also shown in the first column in order to provide 

an idea of scale. On inspection of the table it can be seen that 

the methods give results in good agreement. The least good 

results occur in the cases of networks S2, S3, S10 and S19. 

The first two of these are cyclic networks for which PSA was not 

expected to provide a very good representation (section 3.1). 

Of course the network S1 is also cyclic, but the number of 

customers is only 2 in this case so that the situation is closer 
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to that of a network with just one customer, for which PSA 

gives exact results (section 3.5). The network S1O was 

designed to be imbalanced, so giving a high standard deviation 

of cycle time distribution and perhaps requiring a rather more 

detailed analysis of the passage of the test customer than the 

overall, equilibrium representation provided under PSA. In the 

case of S19, the network is more complex, but not in the sense 

of (ii) in section 3.1 since there is only one arrival stream 

to each centre. Thus the states existing on arrival of the 

test customer at each centre in its path are highly conditional 

on the initial state space distribution by the argument of 

(i) in section 3.1. 

Nevertheless, the results of table A9.1 are very prom-

ising and provide support for further investigation into the PSA 

model. 

A8.3.3 Validity of the discrete form approximations  

For each of the nine base networks, discrete form 

approximations were computed for the cycle time distribution 

by the exact and approximate methods. For the latter method 

this was also performed for the other networks in which the 

only change in the specifications was the use of PS queueing 

discipline, see section A8.2.2. In each case, the range con-

sidered on the time axis was between the origin and four times 

the mean value of the cycle time, as given in table A9.1. The 

number of time steps used was 50, resulting in a mesh size, Di, 

of eight per cent of the mean. (1 <_ i s 21). 

Denote the resulting discrete form cumulative 

distributions by 

 
1 HEi(j) I i E SE 

} 

for the exact analysis and 
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HAi(j) I i e SA } 

for the approximate analysis 

where SE = {1 r 2,3,6,7,8,9,10,19} 

SA = {1,2,3,5,6,7,8,9,10,13,15,16,17,19,20} 

represent the networks analysed theoretically and 

j = 1,2,....,50 

is the time interval number corresponding to time jai. 

The adequacy of these discrete approximations may be 

assessed by comparing the means and standard deviations computed 

analytically, given in table A9.1, with the corresponding 

quantities computed from the discrete form distributions as 

follows. 	Define 

50 

	{HE1(i
ll

=(j-k) A 	 ) - HE (j-1)}
=1

11II)1 

where FIE. (0) = 0, 	i c SE 

50 
c 	

ma 
VHE. 	= 	L 	(j-k)Ai - 	1}2 {HE(i)  - HEi(j-1)}~ 

J j=1  

SHE. _ 	✓VHE. . 1 	1 

Then MHEi and SHE) are estimates of the mean and 

standard deviation of the cycle time distribution according to 

the (exact method) discrete approximation. Similarly estimates 

for the PSA analysis, MHAi and SHAT, may be made, i s SA. 

These values were computed for each network in the sets SE, SA 

and are displayed in tables A9.2 and A9.3 alongside their 

analytic counterparts. The values for MHEfi and MHAi are dh.ibt 

compensated in the following way. 
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Recall from Proposition P4.3 that 

a$ 
 (j) 	s Y'a0  (j) 	s  Ras  (j+4a$) 

where a,s c S , the state space of a cyclic network, 

j E 
Z+. 

'Yas  is the discrete form probability distribution 

for the time delay between states a and a and 

na$ the approximation to 'Yas  derived by the 

exact analysis, 

a$ is the number of transitions involved in 

the routes from a to 8. 

This result applies to cyclic networks, but the result 

is clearly true, by the argument of proposition P4.3, for tree-

like networks if 2,a$ is chosen to be the maximum length of the 

routes between states a and s, mas  say. A similar result 

obviously applies to the PSA analysis also. 

Thus the approximated discrete form distributions 

may be shifted to the right of the true discrete forms by up to 

ma8A time units for mesh size A. For small a this is of no 

consequence since mas  is always finite and here the effective 

shift is never larger than around 6a. The shift, which will 

not in general be uniform over the whole time axis, will result 

in an estimate for the mean which is too large. For the mesh 

sizes chosen as described above, A - 0.2 - 0.4, the shift is 

significant and so is removed by shift compensation in which 

the first few points (corresponding to small values of j) of 

the discrete approximation are omitted. Thus, the matching of 

means in tables A9.2, A9.3 is unimportant, but note that the 



-215- 

shift compensation has little effect on standard deviation which 

becomes the main criterion for the validation. For the smaller 

mesh size used in section A8.4.5,shift compensation was 

unnecessary and not applied. Note further that for non cyclic 

tree-like networks, the number of convolutions involved in the 

PSA method is smaller than for the exact method since, under 

PSA, transitions in paths other than the one taken by the test 

customer are not considered. Thus, in general, shift compen-

sation is less for the PSA method. 

On inspection of tables A9.2 and A9.3 it is immediately 

apparent that the standard deviations estimated by the approxi-

mate discrete forms for the cycle time distributions are in close 

agreement with their analytically derived counterparts. It can 

also be seen that the accuracy decreases as the number of trans-

itions involved in the test customer's passage through a 

network increases. This is exactly what one would expect since 

further approximation is introduced whenever a convolution is 

performed, and application of the convolution operation is in 

1-1 correspondence with these transitions. 

Further validation tests are performed in sections 

A8.4.4and A8.4.5by comparing with simulated results. 

A8.3.4 Comparison of the discrete form distributions  

Having compared the approximated discrete form 

distributions, derived by the exact and PSA methods, with respect 

to their standard deviation estimates, in this section the 

validity of the latter is assessed by comparison with the former. 

Two comparisons are made as shown in fig.A8.2 for two continuous 

curves: 
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(i) Vertical: The maximum vertical distance between 

the two discrete form distributions for base networks 

i e SE  is 

D  . 	= 	max 	{HE1()  - HA(i) I 

1<j<50 	J  

The physical interpretation of this measure is that it 

represents the maximum error in the value of a percentile, 

based on PSA, placed at any point on the time axis; 

(ii) Horizontal: In order to compute the maximum 

horizontal distance between the two discrete form 

distributions for base networks i e SE  it is first 

necessary to define their inverse functions. These 

were defined on a mesh of 100 points on the cumulative 

probability distribution axis (the P-axis), viz. 

0.01 i (05i599), the probability values, of course, 

lying in the range [0,1). 	The method used was as 

follows: 

Given mesh Pi  = 0.01i (05i599) on the P-axis, 

meshtj  = ja (15j550) on the time axis and monotonic 

increasing function f : {tjI15j550} + {P i10<i<99}: 

then an inverse function of f,f-1  is given, using linear 

interpolation, by 

f-1  (Pi) = 	t. + ( t j+1 - tj  ) { Pi  - f (ti) } 

f(t1)_f(t ) 

where j is such that f(tj)f(tj+1) 	(1 s j s 50), 

the ratio is unity if f (tj) = f (t j+1) and f (t51) = 1. 

Since the discrete form distribution approximations 

are monotonic increasing, the inverse function of HEi, HIEi  say, 



Horizontal difference, D (H)  

HA (t) 

HE (t) 

Vertical difference, D(V)  

P A 

t 
0 
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is given by f-1  in the above where f = HEi  and 0 = A . 

The inverse, HIAi, of HAi  is defined similarly. 

Thus the maximum horizontal distance between the two 

discrete form distributions for base networks i s SE  is 

Di  (H)  = 	max 	{IHIE1 i ) - HIA(j)
15j<100 

The physical interpretation of this measure is that 

it is the maximum error (in time units) in the positioning of a 

given percentile on the time axis. 

fig. A8.2 Vertical and horizontal comparisons  

In tables A9.4 and A9.5 the maximum vertical and 

horizontal differences between the exact and PSA discrete form 

distribution approximations are shown. The corresponding 

abscissa and ordinate values are also given, together with the 

(exact) mean of the distribution. From these tables it can be 

seen that the PSA method provides results in close agreement with 
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the exact one. The worst cases are for networks S2,S3,S10 and S19, 

which is as found in section A8.3.2. The discrete form 

distributions may be seen in graphical form, along with the 

corresponding histograms derived from simulated results, for 

various networks in Appendix 10. 

A8.3.5. General assessment of the PSA method 

The results discussed in the previous sections and 

presented in tables A9.1-A9.5 lead to the conclusion that the 

PSA method of analysing cycle times in tree-like networks 

provides good approximations to the exact results, the poorest 

accuracy being obtained in the types of cases predicted in 

section 3.1. Furthermore, the method is computationally efficient 

and so provides the basis for a practical tool in computer 

performance evaluation. 

The ultimate test remains validation with respect to 

actual data, or simulated data in its absence, which is discussed 

in the following section. In this way the adequacy of the 

approximation with respect to network specifications more general 

than the tree-like case can be judged. 

A8.4 Comparison of theoretical and simulated results  

A8.4.1 The approach to validation  

As discussed in section A8.l,sequences of cycle times, 

together with identification of the customer completing its 

cycle, were obtained using a simulation program for tree-

like networks. The pair (cycle time, customer identification) 

is defined to be an etement in what follows. A sequence of 

around 1000 such elements was generated for each of the 21 
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network specifications given in table A8.1. Now, each network 

was initialised with its customers at certain service centres 

at the start of its simulation. Thus an equilibrium situation 

could not be assumed initially and so only the last 600 elements 

were considered for statistical analysis. That is, it is 

assumed that steady state equilibrium would have been attained 

after 400 arrivals to the first (root) centre in the closed 

tree-like network modelled. Such an assumption is quite com-

monplace in contemporary queueing network modelling and its 

validity is not in doubt. However, this validity could be 

assessed quantitatively via the transient analysis presented 

in chapter 7. 

Two sets of data were produced from each of the 

sequences of 600 cycle time/customer identifier elements: 

(i) The 600 cycle times in their order of occurrence; 

(ii) The sequence of cycle times pertaining to the identifier 

of one particular customer. This sequence, then, contains a 

much smaller number of elements, of expected value 600 n 

where n is the number of customers in the network specific-

ation. 

In order that statistics based on data such as this 

be unbiased, it is necessary that the data in the sample be 

independent. Thus the first test made is to assess the inde-

pendence of each of the two sets of data for each of the network 

'specifications by use of the autocorrelation function. The 

results of the test are reported in the next section, and suggest 

very strongly that the independence condition is not violated for 

sequence (ii). For sequence (i) this was less conclusive. 
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Thus, unbiased estimates for the mean and standard devi-

ation can be obtained by the usual formulae and then compared 

with similar quantities obtained for both of the corresponding 

theoretical models. These results are discussed in section 

A8.4.3. In this way a check can be made that the results are 

sufficiently close for the nine base network specifications; 

the simulation and analytic models are, in these cases, based 

on the same assumptions. In addition, the theoretical predict-

ions for the base networks can be tested for cases in which 

their underlying assumptions are violated in various ways - 

a check on the "robustness" property applied to time delay 

distributions. Of course, the PSA theoretical method can model 

most of the non-base networks (all except those given in 

section A8.2.2)and so tests on its generality can be made 

empirically. 

The final statistical test used in the validation 

process is the Kolmogorov-Smirnov (KS) test. This was used to 

compare, for each network specification, the theoretical discrete 

form distribution approximations with the cumulative relative 

frequency histograms derived from each of the corresponding two 

sets of simulated data. This is discussed in section A8.4.4- and 

gives rather disappointing results because the size of mesh used 

is too great in the theoretical analysis. 

Thus there follows a section in which some of the 

theoretical predictions are refined by use of a smaller mesh 

size. The section closes with a short summary and general 

assessment of the analytic methods. 
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A8.4.2 Independence tests  

Given a time series { zt  I t s Z} 

the autocorrelation function (ACF) at lag k, pk, is defined 

by, [CHAT75] 

E(ztzt-k)  
Pk  

 

E(zt2) 

where E denotes expectation. 

pk  has an unbiased estimate, rk  given by 

N-k 

ztzt+k 
t=1 

rk  

 

for a sample of data 	{zt  I t = 1,2,...,N} . 

For the series to be independently distributed, 

pk  = 0 	for 	k Z 1. 

Now, the so-called large lag standard error, ak, of 

rk  for the k'th lag, where rt  is deemed to have become zero for 

lags 2, z k, is given by, [BART46] 

ak 
	1 

Thus the independence requirement becomes 

rk  - 0 	for 	k >_ 1 

with confidence band i  2/1/N outside of which less than 5% 

of the estimates computed for rk  should lie if this condition 

is to be satisfied. Estimates for the first 50 lags of the ACF 
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were made for each network specification and each sample of 

simulated cycle times. 

In tables A9.6 and A9.7, for each network specific-

ation the large lag standard error, the ACF estimates for the 

first 12 lags and the number of estimates in the first 50 lags 

lying outside the ±1//N and ±2//N confidence bands are dis-

played. In table A9.6 the results are based on the complete 

sets of simulated cycle times, regardless of customer identifi-

cation, and in table A9.7 on the simulated cycle times for a sin-

gle customer. Intuitively it is to be expected that the first 

table will reveal the lesser degree of independence, especially 

for the cases of cyclic networks with FCFS queueing discipline. 

This is because one would expect a customer's cycle time to be 

highly correlated with that of the customer completing the 

previous cycle; this customer always being the same under the 

assumptions specified. On inspection of the tables, it is at 

once apparent that the samples associated with the cycle times 

of a single customer satisfy the independence test given above 

for all the network specifications. This is not so for most of 

the samples based on the complete set of cycle times, many of 

which show a first lag ACF significantly different from zero.Thus 

independence is in doubt and the above intuition is well founded. 

It is therefore concluded that the statistical 

analysis may proceed, certainly for the "single customer" 

samples, with estimation of the mean, standard deviation and 

cumulative histogram for each network specification. This is 

discussed in the following section. 

There is, however, a further important consequence, 

perhaps even more important from the modelling viewpoint, of 

the independence property of the single customer samples. This 
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concerns response time distribution (see sections 4.10, 5.8.4). 

Since it is strongly suggested that it is valid to assume that 

successive cycle times of any particular customer are independ-

ently distributed, the Central Limit Theorem may be applied to 

their sum. In this way a good approximation to response time 

distribution should be possible by use of just the mean and 

standard deviation of the cycle time distribution. 

A8.4.3 Comparison of moments  

For each network specification and each sample of 

simulated cycle times the mean and the variance were estimated 
* 

by the usual formulae ; certainly a valid step for the single 

customer sample type in view of the independence properties 

established in the previous section. Four comparisons were 

then made on the mean and standard deviation values: 

(i) Between the estimates based on the complete sample 

of simulated cycle times and the corresponding theoretical 

(a) exact predictions 

(b) PSA predictions; 

(ii) Between the estimates based on the single customer 

sample of simulated cycle times and the corresponding 

theoretical 

(a) exact predictions 

(b) PSA predictions. 

* For the sample {Ztli s t s N} these estimates are 

_ 	N 
Z = 1 	Z 	for the mean and N t=1 t  

N F (Zt - i)2 	for the variance. 
t=1 
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The results of these comparisons are presented in 

tables A9.8 to A9.11. For cases in which the network specific-

ation violated the assumptions for tree-like networks, the 

exact theoretical results for the associated base networks were 

used in (i)(a) and (ii)(a). For networks S4, Sll, S12, S14, 

S18 and S21, other specifications (as given in table A8.1) had 

to be used in the PSA models of (i) (b) and (ii) (b) since the 

PSA analysis cannot handle LCFS queueing discipline or, for 

the present, non exponential service times. In such cases, 

LCFS was represented by PS queueing discipline and the Erlang 

(2) service time distribution by negative exponential. 

Any conclusions based on (i) (tables A9.8, A9.9) 

must carry less weight than those based on (ii) (tables A9.1O, 

A9.11) since significant correlation was observed in the 

sampled data used, section A8.4.2. However, it turned out that 

the comparisons (i) were not in disagreement with (ii) to any 

great extent. 

For the case of mean value comparisons, the results 

based on either of the simulated data samples were in close 

agreement with both theoretical counterparts for every network 

specification. This is as expected since the mean cycle time 

for any path is the sum of the mean sojourn times for each 

centre in the path, see section 3.5. The mean sojourn time for 

a centre is unaffected by choice of queueing discipline or, of 

course, service time distribution with same mean. Thus the 

means are always those of the associated base networks. 

Furthermore, for the base networks, good agreement was obtained 

with respect to the standard deviations; p articularly so in the 

comparisons with the results of the exact theoretical method. 

This is as was hoped, for otherwise an error must have been 
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present in the simulation program or abnormal simulation runs 

must have occurred since the underlying assumptions of both 

models are identical. 

However, for non-base networks, the exact theoretical 

model's predictions of the standard deviation for the associated 

base networks differed considerably from the simulated results, 

table A9.lO. The worst cases were specifications S12, S14, 

S16, S17, S18 which all involve a change of queueing discipline 

to PS or LCFS at the root centre in network topology (ii), 

fig. A8.1, and also at the other centres in case S12. It can 

be seen that the use of these queueing disciplines causes an 

increase in the cycle time standard deviation, especially for 

LCFS. It is perhaps a little surprising that the error involved 

in case S13 where all centres have PS queueing discipline is 

about half that for case S16 which differs from S13 in that 

only the root centre has PS discipline, the others FCFS. It 

is possible that this result is due to an exceptional simu-

lation run. One would also expect poor results for network 

S15, but here an operational error in the running of the 

simulation is suspected in that the results are identical with 

those of network S6; indeed this is also true of the histogram 

representationsof the cycle time distribution. Thus it is 

concluded that the robustness property does not hold in the 

context of time delay distributions and that the exact method 

must be restricted to modelling networks which conform to its 

own assumptions.. 

It can be seen from table A9.11 that the PSA method 

gave far better standard deviation predictions than the exact 

method for the non-base network comparisons, especially in cases 

conforming to the assumptions of the PSA model. The predictions 
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are particularly impressive for cases involving PS discipline 

(except for network S15 for which the data is suspect) and 

less so for LCFS which had to be represented by PS anyway. 

As stated above, the results were also perfectly adequate for 

the base networks. 

Thus confidence in the PSA model in its full generality 

is increased. The final statistical test performed on the method 

relates to the predicted forms of the cycle time distributions 

themselves and is included in the following section. 

A8.4.4 Comparison of distributions: the KS test 

For each network specification, each sample of 

simulated cycle times was used to form a cumulative relative 

frequency histogram with time-axis mesh"defined as for the 

corresponding base network in section A8.3.3. Four comparisons, 

defined in (i) and (ii) of the previous section, are therefore 

possible, those involving the complete samples, (i), being of 

much less significance in view of their inability to satisfy 

the independence condition. Graphs showing various combinations 

of cumulative histograms, based on the approximate and exact 

theoretical analyses and on sampled data may be found in 

Appendix 10. 

The comparisons were made by application of the KS 

statistical test to the maximum absolute (vertical) difference, 

D, over the time axis mesh, between the relative frequencies 

according to the appropriate theoretical predictions and the 

simulation samples. The results of these tests are presented 

in tables A9.12 and A9.13 in Appendix 9 for comparisons (i) and . 

(ii) respectively. Thus the table of greatest significance is 

A9.13, see above. 

Again, as discussed in the previous section, it is 
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to be hoped that, for the base networks, the KS test will 

indicate a good fit between the discrete form distribution 

predicted by the exact method and the corresponding histogram 

constructed from the simulated data. However, this was not 

found to be the case, as can be seen in table A9.13 in which 

the significancelevels are very low. Not surprisingly therefore, 

the results are very poor in non-base network comparisons for 

the exact theoretical method; some of the maximum differences, 

D, approaching 0.5. The results for the PSA method are not 

especially good either, particularly for the cases it could 

not model explicitly. 

The cause of this lack of fit by the theoretical 

methods was assumed to be that their mesh sizes were too large; 

this problem had already been suggested by the need for shift 

compensation of the resulting discrete form distributions. 

A smaller mesh size was not chosen originally for the sole 

reason of computational efficiency. Evaluation by the exact 

method requires a great deal of computing power which increases 

considerably with the number of points in the time-axis mesh. 

Thus any significant decrease in mesh size for the whoI.e base 

set of networks was ruled out, and it was preferred to define 

the mesh size for all networks and modelling methods in the same 

way. For the PSA method the computational problems involved in 

decreasing the mesh size are insignificant, see section A8.4.6. 

Consequently it was decided to decrease the mesh size in evehy 

case for the networks modelled by the PSA method, and in just 

two of the base set cases for the exact method. The results 

are reported in the next section. 

Finally, it may have been noticed that the predictions 

of the PSA method are better than those of the exact method in 

some of the bade bet cases. 	This is simply explained by 
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the following two reasons: 

(i) The effects of shift compensation; the size of the 

shift is restricted to an integral number of time steps. 

(ii) The PSA method requires fewer convolutions in 

general (see section A8.3.3),so that the resulting 

(additional) approximation is less than for the exact 

method - recall each convolution operation introduces 

some error. Thus it may well be that this single 

inaccuracy 	incurred by the exact method outweighs 

the double one incurred by the PSA, approximate method, 

particularly in view of the accuracy of the latter method 

seen in previous sections. 

A8.4.5 Use of a finer mesh 

In order to obtain better approximations for various 

discrete form distributions by the theoretical methods, use of 

a smaller mesh size is necessary (and sufficient,by the con-

vergence property of Corollary CT5.4). However, since the 

'Lange considered on the time axis should not be decreased, this 

being defined independently of the required precision, the 

number of time steps required must increase in inverse propor-

tion to the mesh size. In each of the cases considered in this 

section, the mesh size was reduced to one quarter of its 

original value given in section A8.3..3 resulting in the number 

of points in the mesh being increased to 200. In order to 

compare each resulting discrete form distribution with the 

histogram constructed from the corresponding simulation run, 

by means of the KS test discussed in the previous section, the 

mesh must be the same for both cases. For reasons concerning 
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computer storage availability, the raw simulation data was not 

kept locally and the histograms were not easy to re-construct. 

Thus the theoretical distributions were re-cast into a mesh of 

50 points by taking every fourth point. 

The network specifications analysed in this way were 

S2 and S7 for the exact method, and the same subset as in the 

previous sections for the PSA method. Only two cases were 

considered for exact analysis for reasons of computer resource 

usage. The increased precision had the result that shift 

compensation was no longer necessary in any of the cases con-

sidered - a promising start to the analysis. The improvement 

obtained may be seen graphically in Appendix 10 for some cases. 

The results were analysed in precisely the same way 

as were their predecessors in previous sections and tables A9.14 

to A9.19 are analogous to tables A9.2 to A9.5 and A9.12, A9.13. 

The conclusions to be drawn from these tables are self evident 

and briefly discussed as follows: 

(i) From tables A9.14, A9.15 it can be seen that in 

every case the discrete form approximation gave standard devi-

ation estimates much closer to their true values than were 

obtained for the original mesh, and similar means. This 

is the more impressive in view of the absence of shift 

compensation, and demonstrates examples of convergence 

of the method. 

(ii) From tables A9.16, A9.17 it can be seen that the 

approximate discrete forms for the exact and PSA methods 

became closer to each other for network S7. However, for 

network S2, the results show a marginally greater differ-

ence. This is assumed to be due to the effects of the shift 

compensation which was applied for the larger mesh size only, 

but rounding errors may also have played a part. 
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(iii) Finally, from tables A9.18, A9.19 (the former 

being of less importance because of the correlation 

in the sample of simulation data) it can be seen that 

the goodness of fit according to the KS test increased 

considerably. Indeed, for every test involving a network 

with no specification violating the assumptions of the 

corresponding theoretical model, the hypothesis that the 

sampled data was drawn from the theoretical discrete form 

distribution could not be rejected, even at quite low 

confidence levels (given by higher numerical values in 

the tables). As in (ii), the exact results for network S2 

were slightly poorer. 

The tests for networks with associated base network 

S2 or S7 (excluding S2 and S7 themselves) were again poor 

for the exact analysis, as expected in view of the dis-

cussion of section A8.4.3. For the cases not modelled 

directly by the PSA method, the KS test gives improved, 

although not really adequate results. 

The conclusion (iii) is particularly pleasing from 

the point of view of the PSA method - in the cases of the exact 

method applied to specifications S2 and S7, it was only to be 

expected for reasons already given. Indeed, the main practical 

achievement of the validation discussed here has been the emer-

gence of the PSA method as a potentially valuable tool for the 

computer performance analyst. 
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A8.5 	Conclusions 

A8.5.1 Assessment of the exact theoretical method 

The validation process discussed in this appendix has 

confirmed that the predictions for properties of cycle times 

made by the exact theoretical model are in close agreement with 

those of the network simulator for specifications which conform 

to the assumptions of tree-like networks. However, if these 

assumptions are violated, for example by use of queueing discip-

lines other than FCFS, the accuracy of the predictions becomes 

very poor. Thus, it may be concluded that the robustness property 

of queueing network analysis discussed in section 2.2 does not 

apply to the modelling of cycle time distribution by this method. 

Consequently the domain of situations in which the exact theoret-

ical analysis may be applied is somewhat limited, viz. to tree-

like queueing networks. 

Furthermore, the exact model, in the form of a computer 

program (Appendix 7) which produces numerical predictions based on 

the analytic results of chapter 5, has a tremendous appetite for 

computing resources, even for the solution to quite simple net-

works. The resources required include primarily both main storage 

and CPU time. In fact, in order to obtain the solutions for net-

work specification S19 (table A8.1) several APL functions had to 

be modified to use temporary auxiliary storage (APL files) for 

intermediate results so as to free main storage for use in 

expression evaluation. This avoided a storage overflow but 

increased processing time; in fact other such trade-offs between 

execution time and storage requirements were also necessary to 

prevent such an overflow. Finally, the package took more than 

one hour, on a very powerful APL implementation, to compute the 

50 point discrete form approximation of the cycle time distribution 



-232- 

- hence the reluctance to re-run with a mesh of 200 points: 

Thus it is apparent that this case of a tree-like 

network with 7 service centres and 4 customers is close to the 

limit of complexity permitting practicable solution by the 

exact method. Certainly the method must fairly soon become 

impracticable as networks become more complex, in terms of more 

servers or more customers, because of the sheer size of the 

state space and the operations involved. 

For a network of M servers and N customers, the size 

M + N 
of the state space is 	and the storage requirement of 

N 	 M + Ni  
the state transition matrix alone is of the order of M 	, 

N 

see section 4.7.2. The number of operations involved in the 

computation of the defining expression of any result in chapter 

5 will be of at least this order since every such expression 

includes at least one reference to the transition matrix. In 

fact the order will generally be a lot higher. The expression 

for the second moment for example is a matrix product with five 

(indirect) references and the computation for the discrete form 

distribution involves many operations on intermediate data 

objects of size comparable with the transition matrix. Further-

more, in the latter case, the execution time requirement is 

directly proportional to the number of time-axis mesh points. 

Thus it can be seen that the computing requirements with respect 

to both storage and execution time, of the exact theoretical 

model increase at teat combinatorially with the number of 

centres and population of the tree-like network. 

As a result, the exact method is not only rather 

limited by its domain of applicability but also by its computing 

resource requirements. Nevertheless, it is an excellent practi-

cal tool for the 4.impte cases in which it is applicable, as well 
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as a basis for validation of approximate methods. 

A8.5.2 Assessment of the PSA method 

For the network specifications considered in the 

validation process which conform to the assumptions of the 

PSA methodt, it has been established in this appendix that the 

PSA model provides good predictions concerning the distribution 

of cycle time. These assumptions are very general in nature, 

only LCFS queueing discipline not being admissible in the 

specifications of table A8.1 (in addition to non exponential 

service time distributions). Thus the PSA method can be applied 

with confidence, in a domain of situations which is far more 

general than for the exact method. 

Furthermore, it is also far more efficient than the 

exact method. The quantities relating to cycle time distribu-

tion, conditional on the choice of some given path, can be 

computed as some composition of the same quantities evaluated 

for the individual service centres in the path, see chapter 3. 

This is because of the assumption that the service centres in 

any path of the test customer through the network modelled 

operate independently. For example, the composition referred 

to may be convolution (for the distributions themselves), a 

product (for their Laplace transforms) or more complex (for the 

moments). Thus the storage requirement of this method reduces 

to that of storing the intermediate results in the sequence of 

composition operations together with that of the computation of 

the results for a single centre and performing the composition. 

Thus, for a network of M centres and N customers and 

finite number of paths for the test customer, the execution time 

f The PSA method as implemented at present cannot represent 

non exponential service time distributions. 
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requirement is of the order of 

(Number of possible paths) x  M x N 

since M is an upper bound for path lengths and the number of 

operations required for a single centre is of order N. 

The storage requirement is of a smaller order in that 

the results need not be retained for every individual server 

computation; only the intermediate results need be kept in the 

sequences of compositions (referred to above) and paths' weight-

ings. Thus it can be seen that the PSA method is very much 

more efficient than the exact method, with respect to both 

storage and execution time. This was quite evident in practice: 

the computation of the discrete form distribution approximation 

for network Sl9 took less than a minute to compute for the PSA 

method compared with more than one hour for the exact method. 

Thus the PSA method provides a far more practical 

tool for the computer performance analyst than the exact method 

in view of its superior efficiency and greater generality of 

application. It is tentatively assumed that the PSA method can 

be applied as a representative model to any network specification 

which conforms to its underlying assumptions. This assumption 

was shown to be acceptable for the selection of tree-like 

networks considered in this appendix. However, intuitively, 

one would expect the method to provide a better representation 

in networks not possessing the non-overtaking property of tree-

like networks since in such cases the network can reach equi-

librium more quickly (see section 3.1). Thus the assumption 

is intuitively valid. 

For various tree-like networks violating the assump-

tions of the PSA method, notably involving LCFS discipline, it 

was seen in this appendix that the method's predictions were 
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barely adequate. Thus the robustness property (c.f. section 

2.2) is again not valid, although it is not contradicted so 

drastically as in the case of the exact method, on the basis of 

the numerical results presented here. This is as expected, 

given adequate representation of the networks which can be 

modelled explicitly by the PSA method, in view of the greater 

generality of application which permits more choices for a 

network structure dobe to the one to be modelled. For example, 

in the cases considered in this appendix, the PSA method could 

use PS queueing discipline in place of LCFS whereas the exact 

method was restricted to use of FCFS, with poorer predictions. 

Finally, the need for a formal error analysis of the 

PSA method should again be stressed. This poses many problems and 

is discussed in more detail in chapter 8. Intuitively the method 

appears to provide representative models for a wide variety of 

network specifications. However, validation has been performed 

for only 15 cases (see table A8.1), and while offering 

support forthe method, does not prove its adequacy. However, 

and in the absence of such an error analysis, one may follow 

the contemporary modelling approach, "if it works, do it", as 

discussed in section 2.2, given, of course, stringent empirical 

tests as justification. 

A8.5.3 	Ultimate validation 

As discussed in chapter 6, the process described in 

this appendix is only a systematic mutual validation of three 

models with respect to each other. Thus, although the results 

give support to ones conviction in the accuracy of each model 

type, ultimately validation mu t be performed with respect to 

data measured on at least one actual computer system. 
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APPENDIX 9  

Tables showing the results of the validation process 

described in chapter 6 and Appendix 8. 



Network Mean Cycle Standard devn. Standard devn. Percentage 
Specification Time (exact) (PSA) difference 

S1 2.576 1.441 1.520 5.4 
52 4.245 1.962 2.107 11.5 
63 6.091 2.421 2.738 13.1 
56 2.250 1.451 1.400 2.6 
57 4.045 2.035 2.115 3.9 
50 6.006 2.491 2.574 3.4 
59 4.048 2.033 2.119 4.2 
510 5.607 3.916 4.241 8.3 
519 4.246 1.995 2.171 0.6 

Table A9.1 Cycle time standard deviations predicted by exact and PSA theoretical methods  

Network 
	

Mean Cycle Mean estimated 	Percentage 	Standard Std. devn. est. 	Percentage 
Specification 	Time 	by disc. distn. 	error 	devn. 	by disc. distn. 	error 

51 2.576 2.560 .6 1.441 1.460 1.3 
62 4.245 4.324 1.9 1.962 2.069 5.5 
53 6.091 6.224 2.2 2.421 2.619 8.2 
56 2.250 2.221 1.3 1.451 1.459 .6 57 4.045 4.03E .2 2.035 2.102 3.3 $13 6.006 6.270 4.4 2.491 2.573 3.3 59 4.04E 4.043 .1 2.033 2.1.00 3.3 
510 5.607 5.624 .3 3.916 4.039 3.2 
519 4.246 4.266 .5 1.995 2.193 9.9 

Table A9.2 Discrete form distribution for exact theoretical method 



Network 
Specification 

Mean Cycle 
Time 

Mean estd. by 
disc. distn. 

Percentage 
error 

Standard 
devn. 

Std. devn. 	estd. 
by disc. distn. 

Percentage 
error 

81 2.576  2.602 1.0 1.520 1.539 1.3 
82 4.245 4.344 2.3 2.187 2.317 5.9 
83 6.091 6.341 4.1 2.738 3.010 9.9 
55 4.245 4.333 2.1 3.101 2.872 7.4 
86 2.250 2.314 2.9 1.488 1,466 1.5 
67 4.045 4.209 4.1 2.115 2.179 3.0 
88 6.006 6.320 5.2 2.574 2.673 3.8 
69 4.048 4.215 4.1 2.119 2.185 3.1 
810 5.607 5.719 2,0 4.241 4.426 4.3 
613 4.045 3.846 4.9 3.455 3.053 11.6 
61.5 2.250 2.195 2.5 1.762 1.617 8.2 
616 4.045 3.900 3.6 3.453 3.058 11.4 
817 6.006 5.741 4.4 5.382 4.671 13.2 
619 4.246 4.036 4.9 2.171 2.329 7.3 
620 4.246 4.442 4.6 3.025 3.039 .5 

Table A9.3 	Discrete form distribution for the PSA theoretical method  

Network 
Specification 

Max. Vert. 
difference 

Time Percentile Mean 
value 

81 .01720 3.50  .77 2.576 
62 .04098 2.38 .14 4.245 
63 .0421.6 8.77 .82 6.091 
66 .03020 2.16 .54 2,250 
87 .03332 4.53 .62 4.045 
88 .01338 8.17 .77 6.006 
69 .03402 4.53 .62 4.048 
610 .04121 3.59 .33 5.607 
619 .06594 2.98 .26 4.246 

Table A9.4 	Vertical comparison of exact and PSA theoretical methods  



Network 
Specification 

Max. hor. 
difference 

Time Percentile Mean 
value 

91 .25181 7.32 .99 2.576 
S2 .65570 10.52 .99 4.245 
S3 1.08396 13.54 .99 6.091 
96 .21225 7.00 .99 2.250 
S7 .36968 10.31 .99 4.045 
SB .34344 12.58 .98 6.006 
99 .39341 10.31 .99 4.048 
910 1.66766 18.04 .99 5.607 
819 .41237 2.21 .13 4.246 

Table 	A9.5 	Horizontal comparison of exact and PSA theoretical methods No. in first 50 
outside 

LLSE 	LLSE x 2 Network 
Spec. lag SE 

Large 	 I 	Autocorrelation function for first 12 lags 	 

91 .041 .371 -.049 .089 `.0213 -.020 .005 -.025 ̀ .017 .005 .015 -.003 -.005 12 4 
92 .041 .671 .412 .167 -.128 V.067 -.033 ".005 .033 .044 .050 .024 -.020 14 9 
83 .041 .792 .617 .437 .249 .093 -.078 `.037 -.006 .003 .007 ".015 ".049 16 12 
94 .041 .650 .370 .142 -.168 -.142 -.115 -.123 -.073 ".012 .022 .016 ".023 12 6 
95 .041 .199 .225 .163 .026 -.001. -.083 .016 -.023 .006 -.001 .026 .020 11 5 
S6 .041 .370 .062 .041 -.015 ".030 .016 -.022 "'.014 .011 .031 .031 -.023 10 2 
97 .041 .613 .466 .252 .066 .020 -.003 -.017 ".023 .007 .013 ".016 ".036 14 10 
SO .041 .750 .639 .481 .330 .179 .065 .011 .006 -.008 -.009 -.034 -.058 17 14 
99 .041 .650 .486 .251 .078 .002 ".018 .003 .010 .033 .011 ".017 -.045 13 9 
910 .041 .407 .275 .185 .044 -.051 -.037 -.071 -.091 .002 ̀ .033 .015 .038 14 5 
911 .041 .658 .429 .181 -.060 -.114 ".119 ".1.09 -.057 ".027 .008 .033 "'.017 10 7 
S12 .041 `.042 -.046 .024 .019 `.041 -.048 -.011 -.013 -.035 015 .015 `.027 6 3 
913 .041 .050 .106 .066 .014 -.024 .003 -.027 .011 .068 .000 .000 .041 11 3 
S14 .041 -.009 -.056 -.020 .030 -.041 `.028 `.040 .010 -.054 .013 -.031 .001 4 2 
915 .041 .370 .062 .041 -.015 -.030 .016 `.022 -.014 .011 .031 .031 -.023 10 2 
916 .041 .090 .126 .045 .030 -.033 -.019 ',031 -.014 .033 .044 .005 .021 10 4 
91.7 .04. 1 .035 .021 .002 "'.061 .002 .051 .004 .080 -.013 -.038 -.002 ".020 9 1 
S18 .041 -.060 -.005 ".065 .015 -.033 `.065 -.018 -.050 -.025 -.020 ".001 .003 4 1 
919 .041 .596 .422 .204 .022 -.048 -.040 `.022 .003 .037 .061 .031 .023 14 10 
920 .041 .123 .095 .088 -.004 .0713 .017 -.054 -.013 `.008 `.020 `.077 `.021 12 7 
821 .041 ".011 -.014 .023 .022 `.050 -.069 ".044 `.059 .020 .014 .043 .020 5 1 

Table A9.6 Autocorrelation of the complete sets of simulated data 

tO 



Network 
Spec. 

Large 	 
lag SE 

Autocorrelation function for first 12 lags 	 

No. in first 50 
outside 

I LLSE 	LLSE x 2 

S1 .058 ",063 `.070 .063 -.043 .027 .022 `.128 '".041 `.027 -.007 .048 .086 4 1 
82 .082 `.164 .041 -.005 -.135 .048 .135 ... .0713 .186 -.122 .043 -.004 -.066 9 2 
83 .100 -.088 .020 -.107 .140 -.015 .083 .043 -.090 -.028 .011 ".018 • .i.75 7 i. 
84 .082 .̀ .194 ',079 .058 ".109 ,064 `,208 .013 .151 -.188 .049 -.037 .033 6 '2 
S5 .002 -.137 .059 ".044 -.034 .025 .023 .089 -.112 .128 .049 -.011 ".019 6 1 
86 .058 .030 .006 .030 070 025 049 -.141 061 -.064 110 .123 -.051 7 2 
87 .002 008 -.036 -,029 -.106 .116 .145 U30 ,000 -.057 .010 .013 .046 5 1 
88 .100 034 ".102 -.108 .251 .097 `.068 .004 

.
_.042 -.035 -.012 .".040 `.109 4 2 

89 .082 .039 .024 -.010 -.036 .020 .078 .057 -.058 .042 .030 .017 
_.
.098 3 1 

810 .081 .042 .020 -.114 .039 -.072 .047 `.106 `.024 .074 .113 .065 °,114 7 1 
811 .081 -.067 -.178 -.025 -.010 .007 -.122 .003 .044 -.071 ".084 .000 .125 9 1 
612 .083 '",038 .096 -.003 -.028 .059 -.123 -.0644 -.042 -.045 -.039 -.016 .022 6 3 
613 .081 .176 .056 `.076 .011 .140 .011 .036 -.094 -.090 .060 .028 -.090 7 3 
S14 .084 -.016 .065 -.045 .128 `.071 -.101 -.019 -.056 -.065 -.049 -.049 -.030 5 4 
615 .038 .050 .006 ,030 070 -.025 049 141 `.061 -.064 110 .123 051 7 2 
816 .080 .047 -.144 -.044 .055 .042 `.039 -.125 .012 .007 .021 .080 ',071 5 1 
617 .095 018 .207 .131 -.016 .102 -.068 -.024 `.031 155 -.028 -.036 -.181 12 2 
818 .082 004 .052 .111 .192 .067 033 

-
.003 104 `.102 `.029 -.075 135 11 2 

819 .082 -.002 .008 .036 -.108 .097 .199 -.010 `.017 .052 -.020 `.021 -.113 5 2 
820 .082 -.093 `.015 .004 .065 .086 035 .053 .107 .021 `.094 .141 .008 7 1 
621 .080 112 .010 -.114 019 ".100 -.056 .015 .017 -.032 -.003 051 .117 9 1 

Table A9.7 Autocorrelation function of the single customer sets of simulated data  



Network 
Specification 

Theoretical 
mean 

Estimated 
mean 

Percentage 
difference 

Theoretical 
S.D.(exact) 

Estimated 
S.D. 

Percentage 
difference 

91. 2.576  2.482 3,6  1 .441 1.519 5.4 
62 4,245 4,051 4.6 1.962 2.045 4.3 
93 6.091  5 .8613 3.7  2,421 2.442 .9 
94 4,245 3.918 7.7 1.962 1.519 22.6 
95 4.245 4.051  4 .6 1.962 '),529  28.9 
96 2.250 2.152  4 .4 1.451 1.265 12.8 
97 4.045 3.912 3.3 2.035 1.826  10 .3 
68 6.006  5 .816 3.2 2.491 2,246  9. 11 
99 4.048 3.9513 2.2 2.033 1.823 10.3 
910 5.607 5.518 1.6 3.916 3.434 12.3 iv 
611 4.045  3 .896 3.7  2. 035 1.393 31.5 
912 4.045 3.888 3.9 2.035 5,311 161.0 1  
913 4.045 3.91.2 3.3 2.b35 2.979 46.4 
914 
S15 

4.045 
2.250 

3.808 
., • .1..,2 

3,9 
4,4 

2.035 
1.451 

5.315 
1.265 

161.2 
12.8 

916 4.045 3.912 3.3 2.035 2.956 45.3 617 6.006 5.800 3.4 2.491 5.706 129.1 
918 4.045 3.910 3.3 2.035 3.386 66.4 619 4.246 4.023 5.2 1.995 1,844 7.6 920 4.246 4.023 5,3 1.995 2.713 36.0 ;. i21 4.246 3.955 6.8 1.995 2.625 31.6 

Table A9.8 Comparison of exact theoretical and complete sample simulated results  

via mean and standard deviation.  



:3.6 
4.6 
3.7 
7.7 
4.6 
4.4 
3.3 
3.2 
2.2 
1.6 
.3.7 
3.9 
3.3 
:3.9 

3.3 
3.4 
3.:3 
5.2  
5.3 
6.8 

Network 
Specification 

Theoretical Estimated Percentage Theoretical Estimated 
mean 	mean 	difference 	S.D.(PSA) 	S.D. 

Percentage 
difference 

91 	2.576 	2,482  
82 	4.24-5 4.051 
93 	6.091 	5.868 
94 	4.245 	:3.918 
95 	4.245 4.051 
86 	2.250 	2. 15') 
6? 	4..045 	3.912 
98 	6.006 	5.816 
99 	4.048 	;3.958 
910 	5.607 	5.518 
911 	4.045 	3.896 
912 	4.045 	3.888 
913 	4.045 	3.912 
914 	4.0445 	3.888 
915 	2.250 	2.152 
916 	4.045 	3.912 
617 	6.006 	5.800 
918 	4,045 	3.910 
919 	4,246 	4. 023 
920 	4.246 	4.023 
921 	4.246 	3.955 

1..520 
2.187 
2.738 
2.187 
3.101 
1.488 
2.115 
2.574 
2.119 
4.241 
2.115 
2.115 
3.455 
2.115 
1.762 
3.453 
5.382 
2.115 
2.171 
3.025 
2.171 

	

1.519 	.0 

	

2.045 	6.5 

	

2.442 	10.8 

	

1.519 	:30.5 

	

2.529 	18.5 

	

 
1.265 	15,0 

	

1.826 	13.7 

	

2.246 	12.7 

	

1.823 	13.9  

	

3.434 	19.0 	,A 

	

1.393 	34.1  

	

5.311 	151.1 

	

2.979 	13.8 

	

5.315 	151.3 

	

1.265 	28.2 

	

2.956 	14.14 

	

5.706 	6.0 

	

3.386 	60.1 

	

1.844 	15.1 

	

2.713 	10.3 

	

2.625 	20.9 

Table A9.9 Comparison of PSA theoretical and complete sample simulated results  

via mean and standard deviation.  



Network Theoretical Estimated Percentage Theoretical Estimated Percentage 
Specification 	mean 	mean 	difference 	S.D.(Exact) 	S.D. 	difference 

81 	2.576 	2.482 	3.6 
S2 	4.245 	4.045 	4.7 
S3 	6.091 	5.872 	3.6 
S4 	4.245 	3.918 	7^7 
S5 	4.245 	4.104 	3.3 
S6 	2.258 	2.136 	5.1 
S7 	4.045 	3.923 	3.0 
S8 	6.006 	5.804 	3.4 
89 	4.048 	3.966 	2.0 
810 	5.607 	5.452 	2.8 
511 	4.045 	3.878 	4.1 
812 	4.045 	3.995 	1.2 
S13 	4.045 	3.796 	6.1 
S14 	4.045 	4.880 	.9 
S15 	2.250 	2.136 	5.1 
816 	4.045 	3,738 	7.6 
S17 	6.006 	5.150 	14.2 
818 	4.045 	3.900 	3.6 
S19 	4.246 	4.016 	5.4 
S20 	4.246 	4.031 	5.1 
S21 	4.246 	3.812 	10.2 

	

1.441 
	

1.539 
	

6.8 

	

1.962 
	

2.100 
	

7.0 

	

2.421 
	

2.307 
	

4.7 

	

1.962 
	

1.558 
	

20.6 

	

1.962 
	

2.528 
	

28.9 

	

1.451 
	

1.290 
	

11.1 

	

2.035 
	

1.864 
	

8.4 

	

2.491 
	

2.344 
	

5,9 

	

2.033 
	

1.883 
	

11.3 

	

3.916 
	

3.312 
	

15.4 

	

2.035 
	

1.377 
	

32.3 

	

2.035 
	

5.758 
	

182.9 

	

2.035 
	

2.601 
	

27.8 

	

2.035 
	

5.581 
	

174.2 

	

1.451 
	

1.290 
	

11.1 

	

2.035 
	

3.210 
	

57.7 

	

2.491 
	

5.795 
	

132.7 

	

2,035 
	

3.168 
	

55.7 

	

1.995 
	

1.752 
	

12.2 

	

&,995 
	

2.571 
	

28.9 

	

1.995 
	

2.267 
	

13.6 

Table &9.IO Comparison of exact theoretical and single customer sample simulated results  

via mean and standard deviation. 



Network 
Specification 

Theoretical 
mean 

Estimated 
mean 

Percentage 
difference 

Theoretical 
S.D.(PSA) 

Estimated 
S.D. 

Percentage 
difference 

Si. 
52 
93 

554 ~ 
55 
56 
57 
SO 
59 
510 
511  
512 
913 
814 
51.5 
516 
917 
518 
519 
920 
:.~i:'1. 

2.576 
4.245 
6,091 
►F .:?4,':; 
4,245  
2250 
4.045  
6.006  
4.048 
5.607 
4-.045 
4.045 
4.045  
4.045 
2.250 
4.045 
6.006 
4.045 
4.246 
4.246 
4~ .246 

2.482 
4.045 
5.872 
3.918 

 

4.i.04 
2.136 
3.9 _'3 
5. 804 
3.966 
5.452 
3.878 
3.995 
3. 796 
4.080 
2,136 
3.738 
5.150 
3.900 
4.016 
4.031 
3.812 

3.6 
4.7 
3.6 
7 .7 
3.3 
5.1 
3.0  
3.4 
2.0 
2.B 
4,1  
1.2 
6.1 
.9 

 5, 1 
7.6 
14.2 
3.6 
5.4 

•~ • ~ 10 . 

1.520 
2.187 
2.738   
2. 187 
:3,101 
1.488 
2.115 
2.574 
2.119 
4.241 
2. 115 
2.115 
3.455 
2.115 
1.762 
3.453 
5.382 
2.115 
2.171 

3• Q:.•r 3.025  

2.171 

1.539 
2.100 
2 , 30'7 
1 .358 
2,528 
1.290 
1.864 
2.344 
1.803 
3.312 
1.377 
5.758 
2.601 
5.581 
1.290 
3.210 
5.795 
3.168 
1.752 
2.571 
2.267 

1.3 
4.0 
15.7    
28. 7 
18.::; 
13,3 
11.9 
8.9 
14.9 
: ► 1,9 
34.9 
172.2 
24.7 
163.8 

 26.8 
7.0 
7.7 

49.8 
19.3 
1:=~.p 
4.4 

Table A9.11 Comparison of PSA theoretical and single customer sample simulated results  

via mean and standard deviation.  



Network 
Specification 

D value 
(exact method) 

D value 
(PSA method) 

Conf. level 
(exact method) 

Conf. level 
(PSA method) 

S1 .08036 .08581 .00 .00 
S2 ,09998 .08581 .U0 .00 
S3 .11845 .15212 .00 .00 
S4 .11855 .13559 .00 .00 
S5 .16197 .07527 .00 .00 
S6 .05281 .08137 .05 .00 
87 .06709 .09987 .00 .00 
S8 .12057 .13233 .00 .00 
89 .06777 .09836 .00 .00 
610 .10087 .11085 .00 .00 
S11 .10658 .13598 .00 .00 
S12 .29728 .15163 .00 .00 
S13 .17562 .06885 .00 .01 
S14 .29895 .16091 .00 .00 
S15 .05281 .05842 .05 .01 
616 .17395 .06948 .90 .00 
S17 .36875 .10873 .00 .00 
918 .23823 .12482 .00 .00 
819 .10447 .084 6 .00 .80 
S20 .17058 .11642 .00 .00 
S21 .22118 .16304 .00 .80 

Table A9.12 KS test for the complete sample of simulated data with 

the theoretical methods. 



Network 
Specification 

D value 
(exact method) 

D value 
(PSA method) 

Conf. level 
(exact method) 

Conf. level 
(PSA method) 

91 .08743 .09260 .01 .01 
92 .12498 . 10656 .01 .05 
93 .13431 .14670 .05 .01 
64 .14187  . 14225 .00  .00 
9 5 .18373 . 07326 .00 .20 
96 .07812 .10660 .05 .00 
37 .07555 . 10469 .20 .05 
98 .14531 . 140449 .01 .01 
99 .07529 . 1.0O91. .20 .05 
910 .10732 . 11489 .05 .01 1  
911 .12088 . 15 237 .01 .00 N 
912 .29962 .16406 .00 .00 rn 
913 .18086 .07820 .00 .20 1  
S14 .29174 .15889 .00 .00 
915 .07812 .05968 .05 .20 
916 .22276 .12655 .00 .01 . 
917 .46308 .20306 .00 .00 
918 .24684 .11757 .00 .01 
919 .12114 .10082 .01 .05 
920 .17558 .11122 .00 .01 
921 *.22770 .17714  .00 .00  

Table A9.13 KS test for the single customer sample of simulated data with  

the theoretical methods. 



1.9 
.13 

Network 	Mean 	Estimated 	Percentage 	Std. devn. 	Estimated 	Percentage 
Specification 	mean 	error 	 S.D. 	difference 

62 	4.245 	4.331 	2.0 	1.962 	1 .996 
67 	4.045 	4.055 	.3 	2.035 	2.052 

Table A9.14 	Changes to table A9.2 resulting from finer mesh (exact method). 

Network 
Specification 

Mean Estimated 
mean 

Percentage 
error 

Std. devn. Estimated 
S.D. 

Percentage 
difference 

61 2.576 2.542 1.3 1.520  1 .508 .8 
62 4.245 4.292 1.1 2.187 2.216 1.3 
83 6.091 6.2E19 3.3 2.730 2.1302 2.3 
65 4.245 4.055 4.5  3. 101 2.089 6.13 
86 2.250 2.183 3.0 1.488 1,457 2.1 
S7 4.045 4.034 .3 2.115 2.129 .6 
68 6.006 6.116 1.13 2.574 2.602 1.1 
69 4.048 4.037 .3 2.119 2.133 .7 
610 5.607 5.490 2.1 4.241 4.168 1.7 
613 4.045 3.718 0.1 3.455 3.064 11.3 
615 2.250 2.112 6.1 1.762 1.620 8.1 
616 4.045 3.730 7.8 3,453 3.064 11.3 
617 6.006 5.472 8.9 5.382 4.684 13.0 
619 4.246 4.320 1.7 2.171 2.211 1.8 
620 4.246 4.190 1.3 3.025 2.963 2.1 

Table A9.15 	Discrete form distribution for the PSA theoretical method (finer mesh)  

Network 	Max. vert. 	Time 	Percentile 	Mean value 
Specification difference 

S2 .05044 2.38 .12 4.245 
67 .01914 1.94 .11 4.045 

Table A9.16 Changes to. table A9,4 resulting from finer mesh (vertical) 
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Network 	Max. hor. 	Time 	Percentile 	Mean value 
Specification difference 

S2 .4E1727 1.82 .04 4.245 
87 .22438 1.13 .02 4.045 

Table A9.17 Changes to table A9.5 resulting from finer mesh (horizontal).  

Network 	D value 	D value 	Conf. level 	Conf. level 
Specification (exact method) (PSA method) 	(exact method) (PSA method) 

81 .0E1036 .07110 .00 .00 
82 .10687 .07603 .00 .00 
83 .11845 .13273 .00  .0 0 
84+ .11064 .11928 .00  .00 
85 .17925 .06177 .00 .01 
S6 .05281 .045113 .05 .15 
87 .06442 .06813 .01 .00  
6(1 .12057 .09994 .00 .00 
89 .06777 .07007 .00 .00 
610 .10087 .10457 .00 .00 
611 .10394 .10969 .00 .00 
812 .30462 .13725  . 00 .00 
813 .18296 .07087 .00 .00 
S14 .30629 .14040 .00 .00 
815 .05281 .07616 .05 .00 
616 .18129 .07392 .00 .00 
817 .36875 .07957 .00 .00 
818 .24081 .101341 .00 .00 
619 .10447 .10903 .00 .00 
620 .17058 .08815 .00 .00 
621 .22118 .12757 .00 .00 

Table A9.18 IS test for the complete sample of simulated data with  

the theoretical methods (finer mesh)  



Network 
Specification 

D value 
(exact method) 

D value 
(PSA method) 

Conf. level 
(exact method) 

Conf. level 
(PSA method) 

S1 .08743 .07782 .01 .05 
S2 .13258 .09770 .01 .10 
93 .13431 .12702 ,05 .05 
64 .13726 .12657 .00 .01 
S5 .19691 .05332 .80 .20 
66 .07812 .06470 .05 .15 
S7 .07627 .06868 .20 .20 
88 .14531 .11160 .01 .15 
S9 .07529 .07619 .20 .20 
918 .10732 .10861 .05 .05 / 
S11 .11807 .12253 .01 .01 m

~^ 
912 .30573 .14828 .00 .00 m 

| 
S13 .18705 .07691 .00 .20 

S14 .29908 .13838 .00 .08 
S15 .07812 .07521 .05 .05 
S16 .22758 .10782 .00 .05 
S17 .46308 .17464 .00 .00 
S18 .25166 .12076 .00 .01 
S19 .12114 .12569 .01 .01 
820 .17558 .08638 .00 .20 
S21 .22770 .14167 .00 .00 

Table A9.19 KS test for the single customer sample of simulated data with  

the theoretical methods (finer mesh)  
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APPENDIX 10  

The following plots were produced to demonstrate the 

characteristics of predicted cycle time distribution for a selection 

of the network specifications given in Table A8.1. The predictions 

were made by various combinations of the simulation, exact and PSA 

theoretical models as follows: 

Plots (i) - (ii) 

Networks S2 and S7: Laplace transform of cycle time 

probability distribution computed by the exact and PSA theoretical 

methods. 

Plots (iii) - (vii) 

Networks S2, S7, S10, S17, S19: Cumulative discrete form 

cycle time probability distribution computed by the exact and PSA 

theoretical methods and the simulator. 

Plot (viii) 

Discrete cycle time probability distribution for networks 

S6, S7 and S8 computed by the exact theoretical method. This shows 

the change in the form of the distribution in network configuration 

(ii) as the number of customers increases from 2 to 4 and 6. 

Plot (ix) 

Cumulative discrete form cycle time probability distrib-

ution computed by the PSA method for networks S8 and S17. This 

shows the change in the form of the distribution for network con-

figuration (ii) with 6 customers when the queueing discipline at 

the root centre is changed from FCFS to PS. 
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Plot (x)  

Cumulative discrete form cycle time probability distrib-

ution computed by the exact method for network S7 showing the 

effect of decreasing the mesh size. 

Plot (xi)  

Cumulative discrete form cycle time probability distrib-

ution computed by the PSA method for network S17 showing the 

effect of decreasing the mesh size. 

(i) 	NETWORK S2 : EEXACT/A oPROX . LAPLACE TRANSFORM 

1.00 

A 	1 
P I 

T 
R 	0.75 + 	o : Exact 
A 

0 
F 	 I 

0.50 + 
P I 
R 	 I 
O I 
A 	 I 
D 0.25 + 
I 	 i 
s 	1 
T 	 I 
N 1 

0.00 + ___ t____+____+____+____ t_471ag419A  

	

0.0 	0.5 	1.0 	1.5 
'it PAPA;f LT P 

2.0 
	

2.5 
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(ii) 	rl?TWGR.K S7:EXACT/APPRCX. LAPLA.CC' TRA'ISFOPm 

T 
R 	0.76 
A 
nl 

D 0.26 + 
I 	 I 
S I 
T 	 { 
N I 

o : Exact 

* : PSA 

1.00 + 
P 1 
n 1 

G 
R { 
A I 
R 0.75 + 
I { 
L { 
I 1 
T I 
Y 1 

0.50 + 

0.25 + 

0.00 + 

  

w* 

o : Exact 

* : PSA 

x : Simulated 

r 	 + 	r 	+ 	r 	+ 	► 	+ 

I 	 0®:.: 	_r 
0.01 +- _'_---+----r--__+_---r----~Awww 

0.0 	0.5 	1.0 	1.5 
TS,  D,4 PA''ETf P, 

(iii) 	't'?'.'TWCRK S2 : EXACT/APPRCX . /SD►ULAT :) CU'•' . ?ISTC(.RAu 

2.0 	2.5 

0.0 	5.0 	10.0 
TI,JF 

15.0 	20.0 



15.0 10.0 
T I" 

20.0 	25.0 
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VETWGRK 57: EX aCT/APPPCX . /SI`AULATED CUM. HISTO R<4"4 (iv) 

: Exact 

* : PSA 

x : Simulated 

+ 	r 	+ 

10.0 
T IME 

1.00 + 

T 
5.0 

0.50 + 

0.25 + 

0.00 + 
0.0 

+ 
15.0 	20.0 

(v) 	r1ETWCCRY 510: EXACT/.4PPROX . /SIS"ULAT D CUM. eISTOGR.4'+ 

1.00 + 
P 
R 
C 
R 
A ( 
R 0.75 + 
I ( 
L ( 
I 
T I 
Y I 

0.50 + 

0.25 + 

o : Exact 

* : PSA 

x : Simulated 



1.00 + 
P 
R 
0 

A 
0.75 + 

I 
r 
I 
T 
I 

0.50 + 

0.25 + 

o : Exact 

* : PSA 

x : Simulated 

20.0 15.0 25.0 10.0 
TIvE  

(vii ) NETWORK 519 : EXACT/APPRCX . /S.r''ULAT_ 0 CTP1. E STC( A" 

5.0 
0.00 + 

0.0 

0.25 + 

10.0 
TIJF 

15.0 	20.0 	25.0 
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NETWORK 517 : x°XACT/APPRCX . /SI tcUE..A.TīZ 	dISTCG,PA'' (vi) 

1.00 + 

I 

I o : Exact 
I 
+ * : PSA 

x : Simulated 

0.50 



0.08 + 

0.04 + 

0.02 + 

0.00  
0.0 	3'.0 	6.0 

T IyR 

o : 2 customers 

* : 4 customers 

x : 6 customers 

9.0 15.0 12.0 

1.00 + 
P I 
R 
C 	 I 
B i 
A 	 I 

0.75 + 
I 	 I 
L 	 I 
I 	 1 
T 	 I 
Y 	 I 

0.50 + 

{ 

0.25 + 

** 

r o : FCFS at all centres 

* : PS at root centre only 

0 

5.0 	10.0 	15.0 	20.0 	25.0 
TTME 
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PIKT4/CRKS 6/7/8:=XACT DISCRETE PRCR. DI.ST?"S. 

RVETWORKS 8/17:APPRCX. DISCRF'Tr' PROP. DIST17 S 



1.00 + 
* 	xxxx 

XXX ~_+- O X XX 

o : 50 point mesh 

* : 200 point mesh 

x : simulated 

5.0 	10.0 	15.0 	20.0 	25.0 
TIME 

0.50 + 

0.25 + 

0.00 + 
0.0 
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(x) 	P1ETWGRK 7:PXACT (50+200 PT. A'!'SP)/SIM. CU m. FIST. 

1.00 + 
P i 
P I 
C 	I 
P i 
A 	I 
R 	0.75 + 
I 	I 
L 	 i 
I 	 I 
T 	 i 
Y 	 I 

0.50 + 

0.25 + 

 

xx 

 

o : 50 point mesh 

* : 200 point mesh 

x : Simulated 

0.00 +- w 	T 	+ 	T 	+-_---..T_...___+______T  ...... + 
0.0 

7ETWC RK 17 : APPRO X (50+200 PT. mESr) /SI"M . CUR'. FIST 

5.0 	10.0 	15.0 	20.0 
TIME 
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APPENDIX 11  

In a two-centre cyclic network with population N, the 

probability distribution of the queue length faced at the second 

centre conditional on that faced at the first by the test custo-

mer is derived, to a first order approximation, by an analysis 

in continuous time. 

Let the pair of queue lengths faced be given by the 

random variables g1,g2  and suppose the test customer arrives at 

the first centre at time t = 0. Then it is required to find 

P(q2lq1). Denote the state space of the network by S and let 

state k = (k1,k2) e S have time dependent probability P(k2,t) and 

equilibrium (time independent) probability 0(k2)=1im P(k2,t),It is 
t+= 

not necessary to specify k1  in the arguments since k1+k2  N. Now 

co 
P(g2 1(11) = 

J
P{g2,tIgi'th centre 1 departure occurs in time 

0 	 interval (t,t+dt)} 

x Pr{g1'th centre 1 departure occurs in time 

interval (t,t+dt)} 

The approximation is now made that the random variables, 

qi  and q2, for the queue lengths faced by the test customer are 

assumed independent. The Markov property is also assumed so that 

-II t 	q1-1 
P(g2 1g1) = 

J 
P(q2,t i i s q2  s N) e 	(11 1t) 

0 	 (q1- 1): 

1.11dt 

Prob. distn. of 
queue lengths 
at time t. 

Prob.of q1-1 dep- 

artures from cen-
tre 1 in (O,t) 
(Poisson distn.) 

Prob.of depart-
ure from centre 
1 in (t,t+dt) of 
test customer. 

Erlang (q1) distn. 

where p1,u2 are the centre service rates, assumed constant, and 

g1,g2 > 0. Using the first order, non-normalised approximation 
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to the solution of the Kolmogorov equations, 

P(q,t) = e-A (q) t{p (q,0) - ®(q)} + 0(q) 

where X(q) is the total service rate when there are q customers 

at the second centre (N-q at the first). 

P(q,t) 
. . P(q,t 1  15q<_N) = 

N 

y P(k,t) 
k=1 

so that 

P(g2 1g1)= 

-p
i
t 	-{1-11+a(q2)}t 	q1-1 

jw {{eiqe 	+{P(g2,0)-0(q2)}e (u1t) 	u1dt 

N 	 (q 1): 0 	E {0(k)+[P(k,0)-0(k)]e-a(k)t} 	1 
k=1 

Thus P(g21g1) may be computed numerically and the PSA 

approximation (chapter 3) for the cycle time distribution 

improved using P(g) = P(q21q1)0'(N-q1) for the joint probability 

distribution of the queue lengths faced by the test customer. 

0'(k) is the equilibrium probability of state (N-k,k) seen by the 

test customer on arrival at the first centre, CMITR79], c.f. 

section 4.3. 

The improvement arises because it is no longer necessary to 

assume independence of the queue lengths faced by the test 

customer, c.f. section 8.3.3. 

For large N, 

1-{Pi+A(q2)}t (u1 	t)p(g21g1) a
("c12'°)-e(c12)/e}e p1dt + 0(q2) 
0 	 (q1-1)! 

1 q1 

113(q2'°)    - e(q2)1  X(c12) 	+ e(c12)  
1 +  

00 q1-1  

111 
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