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ABSTRACT

In order to obtain a good representation of Computer Systems
for performance evaluation, conventional analytic models require
improvement from two points of view.

First there has been a tendency to concentrate on known analy-
tic results and their extensions, obtaining representation of a
specific system by choice of model parameter values. It is argued
here that a truly representative model is beSt'achiévedAby studying
the properties of the real system first, and then determining the
appropriate model type and structure from them.

Secondly, the most crucial performance measures for both manage-
ment and users, are the time delays that relate to the rate at which
individual tasks are being processed. Conventional models predict

only overall resource utilisations and queue lengths.

Much of this thesis is concerned with distributions of time
delays in queueing networks. An approximate method for their deter-
mination is presented which is applicable to a very general class of
networks and gives an efficient implementation. Exact results are
then derived for cycle time distribution, first in cyclic and then
in more general tree-like networks. Validation of both methods is
by comparison with simulated results, sufficiently detailed data
from real systems being unavailable.

Subject to adequate precision, approximate methods are, in gen-
eral, more feasible as tools because of their greater generality and
superior efficiency. We view and apply the exact method as a stand-
ard by which to assess the accuracy of various approximations whilst

also recognising its potential as a practical tool for simple cases.

Finally, the thesis addresses the almost universal assumption
of "equilibrium", that is the assumption that the state space prob-
ability distribution is time independent. The time periods over
which this assumption can or should not be made are quantified via
time~dependent analysis that is applicable to a very general class

of networks and relevant in many transient situations.



LIST OF ABBREVIATIONS

ACF Autocorrelation function

APL A Programming Language

BCMP Reference to the principal result of [BASK75]
C-network Defined on p.97

CPU Central processing unit

FCFS First come first served

FPI Future path independence

I-0 Input-output

IS Infinite server

KS Kolmogorov Smirnov

LCFs Last come first served

L.H.S. Left hand side

p.d.f. Probability density function

PS Processor sharing

PSA Permanent stationarity assumption
QONA Queuveing network analysis

R The set of all real numbers

R* The set of all positive real numbers
R.H.S. Right hand side

s.t. Such that

wW.r.t. With respect to

Z The set of all integers .

z* The set of all positive integers

3 There exists

i There does not exist
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§1. Introduction

Modelling of computer systems as an aid to performance eval-
uation has been undertaken in various forms for many years. Such model:
provide the ability to predict system behaviour in a variety of envi-
ronments. Prediction is important since the performance of a computer
installation, quantified according to some objective measure such as
response time (interactive system) or throughput, is frequently highly
sensitive to small alterations in system characteristics or the behav-
iour of the user community. Thus optimum tuning of the system paramet-
ers determining (as far as possible) these characteristics is highly
desirable and, indeed, essential in heavily utilised installations.

The value of model based predictions is that a model should
be far more flexible than the real system to work with. It can rep-
resent real system behaviour in a small fraction of the correspond-
ing time required by the system itself and allows a wide range of
experiments to be performed which may not even be practicable at all
on the real system. For example, the effect of introducing new hard-
ware such as an extra channel or more storage may be studied simply
by altering appropriate model parameters. Furthermore, even to run
possible experiments on the real system may well require that system
to be dedicated throughout. This may be very costly, particularly if
several experiments are to be performed. However, any model is worth-
less if it is not xrepresentative of the actual system for which it
makes predictions; i.e. models must be adequately vaflidated so that
the accuracy of their predictions might be expected to be good.

The processing capabilities of computer systems consisting
of hardware and operating systems (referred to henceforth as just
"computer systems") have been represented by various types of model.
These can be classified broadly as statistical, simulation or analy-
tic, together with hybrids. For the past decade, considerable interest

has been shown in models based on results of queueing network analysis



[JACK63, GORD67]; particularly since the publication by J.P. Buzen
of an efficient algorithm for computing the associated marginal
state space probabilities, [BUZE73].This computation was previously
impracticable for even quite simple networks due to the sheer size
of the state space. Such a modelling approach is in the analytic
category and many fine papers, reporting both theoretical and
practical research have appeared, for example [KELL75, DENN77,
FAYO791. 1In particular, the recent Queueing Networks edition of
ACM Computing Surveys, [ACM78], gives an excellent review of the
current state of the art.

However, the now traditional modelling approach using
gueueing network analysis (abbreviated to QNA henceforth) has
perhaps not achieved as much as might have been hoped for from
the point of view of providing a good representation. This is
because there has been a tendency to apply existing analytic
results to represent the system under investigation by suitable
assignment of values to the model parameters. In contrast to
this, to achieve a good representative model, it is argued here
that the properties of the real system should be studied first,
[LEHM79b], the most appropriate model type and structure subse-
quently being developed from or fitted to these properties,

Nevertheless, despite this criticism, it is not felt
that QNA is a poor basis for computer system modelling; on the
contrary, queueing network models are considered by the author to

be excellent for this purpose, for the following reasons:

(i) Their structure matches very closely that of the
operating systems of multiprogramming computer systems
which allocate resources to tasks according to some
gueueing discipline. Thus one would expect such models

to be representative, (relatively) easy to understand,



interpret and maintain;

{(ii) Predicted performance measures, such as resource utilis-
ations and queue length probability distributions, can be der-
ived directly from the analytic solution for the state space

(marginal) probabilities; see, for example, [BUZE73, DENN78].

(iii) Their parameterisation is simple: a queueing network
model, under its necessary set of assumptions, is totally
defined by the mean service times and queueing disciplines
of its centres, the routing probabilities and the total
number of customers in a closed network or the arrival rate

in an open one;

(iv) They are fast in execution as a result of their analytic

nature.

Simulation models also possess many of the advantages
given above and can represent explicitly events at any level of
detail. However, in view of their algorithmic mode of operation,
they can be very slow (and expensive) in execution.

Typically, QNA has been used to predict the utilisations
of and queuve length probability distributions at the resources in
the modelled system. Calibration and validation has been accomp-
lished by matching such predictions with the corresponding values
obtained by monitoring the real system. Valuable though these
performance measures may be, the most crucial guantities to users
and management alike are fime delays which directly relate to the
rate at which individual tasks are being processed by the system.
More detailed discussion of the importance of such time delays
and applications of time delay analysis is given in chapters 2
and 8. Suffice it to say here that such analysis can lead to

prediction of response time distribution in an interactive



environment, of great value to the user in planning his work
schedule as well as to management in organising installation
protocol, and to prediction of cycle time distribution, of prime
importance in any polling environment such as real time process
control, multiplexor handling etc.

In this thesis, the approach advocated is to wvalidate
queueing network models in terms of the distributions of time
delays as well as via resource utilisations and queue lengths, so
inspiring confidence in the prediction of such time delays in
different environments. Very little work has been published on
the distributions of time delays although, of course, the ubiquitous
Little's Law has been applied to obtain mean values via model
throughput, e.g. [REIS79]. The reasons for this are in part a
result of the approach of using off-the-shelf results and applying
these to the system requiring to be modelled, so that the real need
for such an analysis has been obscured somewhat. The derivation of
the distributions of time delays is a difficult theoretical prob-
lem. Even when soluble it requires considerable computing power
to obtain numerical results in even simple cases. The author's
approach has been first to develop a relatively efficient, but
approximate method to compute the distributions of time delays in
a very general class of networks. Then an exact method, applicable
to a rather more restricted class of networks, is defined as a
standard for validation purposes as well as a practical method in
simple cases; the exact algorithm is somewhat inefficient in
execution.

A tacit assumption invariably made by the QNA modeller
is that the system under investigation has reached a state of
stochastic equilibrium - in other words, the joint probability
distribution of its queue lengths, represented by state space

probabilities in the queueing network model, is time independent.
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Intuitiyely one would expect such an assumption to be valid

for the majority of time periods modelled,

excepting of course running up and running down times of the
systems when the variations caused by edge effects are signifi-
cant. However, little quantitative work has been carried out

in this area. One chapter of this thesis is devoted to an
analysis of the transient characteristics of the state space
probabilities for Jackson type gqueueing networks, [JACK63], so
that time intervals over which the equilibrium assumption should
and should not be made may be identified. In fact the method
generalises well to the more general BCMP, [BASK75], network.
The relevance of such an analysis to a study of time delays is
clear, and in fact an improvement to the accuracy of the
approximate method referred to above was derived for a simple
cyclic network by precisely this means, [HARR78a]. Furthermore,
it is also apparent, for precisely the reasons given above, that
transient analysis may be applied with great benefit in a wide
variety of situations in QNA.

Following this overview of the subject matter of this
thesis, some more detailed background information is given in
the next chapter wherein the importance of time delays is
emphasised, particularly cycle times.* Following that chapter
the fundamental theoretical results of the research into the
distribution of time delays in queueing networks are presented.
First, in chapter 3, by making the so-called permanent stationarity

assumption, an approximate result of very general application is

derived. Exact results for the cycle times in cyclic. networks

.i-

and the more general "tree-like" networks under more restrictive

* Cycle time is formally defined in chapter 3.

+ Tree-like networks are formally defined in chapter 5.



assumptions, are then derived in chapters 4 and 5 respectively.

In chapter 6, validation with respect to results of
simulation experiments is discussed for the approximate method
and the (assumptions underlying the) exact method. Obviously,
one would have liked to have performed validation with respect
to observations monitored on one or more actual computer systems,
but the system event level of detail required for such data
collection makes data of this kind extremely difficult and
expensive to obtain. Thus this validation has to remain an
area for future effort.

A convergent, iterative technique is presented in the
following chapter for solving the Kolmogorov differential-difference
equations for Jackson type queueing networks in an analysis of the
transients discussed above.

In chapter 8, possible applications for the results of
the research presented in this thesis are discussed - indeed in
many cases it was interest in the application which initiated the
research - and future research directions are identified.

Throughout the thesis, all of the results and ideas
presented are the original work of the author unless otherwise
stated. 1In particular, the theoretical results for cycle time
distribution, both approximate (chapter 3) and exact (chapters
4 and 5), and the transient analysis of chapter 7 constitute

the author's main achievements over the past two years.



§ 2. Queueing Network Modelling of Computer Systems and the

Importance of Time Delays

2.1 Shortcomings of contemporary methods

In the Introduction, the use of QNA as a method of
modelling computer systems was strongly supported. Advantageous
though this approach is, however, it does also possess certain
disadvantages, with respect to the underlying theoretical analysis
as well as the manner in which it has been applied.

The first disadvantage, common to some degree to all
analytic modelling methods, is that in order to obtain an analytic
solution certain assumptions,which may not be valid in practice,
must be made about the characteristics of the components of the
model. Assumptions typically made in QNA and which frequently

do not hold in the actual system modelled are:

(i) The queueing discipline of the servers must be FCFS.l

This assumption was relaxed to include servers of PS,2

Lcrs3

and Is® disciplines in [BASK75] by the celebrated
'"BCMP' result, but priorify disciplines can still not be

represented.

(ii) The service time distribution of each centre must be

negative exponential. Again this restriction was relaxed

by the BCMP result to allow any distribution with rational
Laplace transform, and so for all practical purposes,

a general distribution, [COX55]. However, the relaxation

1. First Come First Served.
2. Processor Sharing.
3. Last Come First Served.

4, Infinite Server.



applies only in the cases of PS, LCFS and IS disciplines.
For FCFS discipline the server must still provide negative

exponentially distributed service times.

(iii) The service time distribution of each centre must be
independent of the queue lengths existing at all other
centres - i.e. only local state dependence is allowed.

In particular a solﬁtion cannot be found for blocking
situations in which the service rate of one centre is
reduced to zero when the queue length at a different centre

reaches some value (e.g. finite waiting room example).

(iv) The routing probabilities between centres must be

constant. This is another limitation on state dependence.

(v) The state space probabilities of the network are

time independent - i.e. the network is assumed to be in a
state of (stochastic) equilibrium. As discussed in the
Introduction, this assumption is not unduly restrictive;

it is acceptable both intuitively and in practice. However,
very little work has appeared to indicate quantitatively

over what time intervals it is wvalid.

As a result of these restrictions, the set of soluble
networks is rather limited and many practical situations exist
for which the corresponding networks are at present insoluble.

A second disadvantage, in the use of QNA, has already
been discussed in the Introduction. It concerns the modelling
approach in which there has been a tendency to apply ONA models
without first making a phenomenological study of the actual

system first. Care is also necessary in the vafidation of queueing

network models. They are relatively easy to validate with respect



to readily available analytic predictions (concerning resource
characteristics), but other measures, for example time delays,
are of more interest, and validation should always be performed
with respect to the measures of interest as specified befoxre
commencement of the modelling process. Now, from a study of

the real system information would emerge, not only about its
structure but also about the measures requiring prediction, which
would almost invariably include time delays experienced by indi-
vidual tasks.

One of the most serious disadvantages inherent in
contemporary ONA modelling is, in the author's opinion, the
inability to model the progress of an individual task through
a network. Conventional analysis is oriented towards resources
or servers as opposed to tasks or customers in that it is overall
service centre utilisations and queue length probability distrib-
utions which can be predicted from the state space (marginal)
probability distribution. This disadvantage was referred to
implicitly in the discussion of the first in that priority gqueue-
ing disciplines cannot, at the present time, be represented.

In the following section, efforts which have been made
in attempts to overcome some of the disadvantages listed above
are described. There follow two sections in which is discussed
the evolution of the fundamental research reported in this thesis.
This addresses the largely unstudied problems of the analysis of
the time delays incurred by individual customers and of the trans-

ient properties in queueing networks.

2,2 Research addressing these problems

Most of the research undertaken up to the present time
has been concerned with the problem of the limitation to local

state dependence as described in the previous section. New or
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extended methods in QNA, both approximate and exact, have been
developed in order to find solutions for the state space probab-
ilities in previously insoluble networks.

An approach frequently taken to solve networks for
which the BCMP assumptions (the most significant of which were
listed in the previous section) do not hold is to use approximate
methods requiring fewer assumptions. Such methods that have been
developed include the representation of sub-networks by equivalent
single, locally state dependent servers, [CHAN75b], the use of
network decomposition techniques, [COUR75, COUR77], and the
diffusion approximation for the "heavy traffic" case of many
customers, [KOBA74a, KOBA74b, GELE75]. The approach can be applied
quite generally with various degrees of approximation and results
in simpler, approximately equivalent networks to analyse. Thus
computation becomes more efficient (important typically in commu-
nication network modelling where there may be very many service
centres, see [REIS79] for example) and avoids the problems of
violating assumptions rather than finding new solutions. An
approximation frequently made is blatantly to violate certain
assumptions, which although somewhat crude, usually gives predict-
ions in good agreement with real world measurements. This is a
manifestation of the so-called "robustness" (empirical) property
of queueing networks which effectively states that a QNA model's
predictions are stable in that they do not vary significantly
when perturbations are made to its defining characteristics. The
robustness property has been widely exploited of late [BARD79,
BOUH79, PUJO79] in an attitude of "if it works do it" - i.e. val-
idation is purely on the basis of experiment. The closeness bet-
ween the structures of computer systems and gqueueing network models
gives an intuitive explanation for robustness, but a formal analy-

sis is really required.
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The exact methods have in the main been derivations of
solutions for specific cases with less restrictive assumptions.
Of course, in theory any problem which can be represented by a
Markov process can be solved exactly under the equilibrium assump-
tion. The solution is quite simply the solution to the linear

equations P°Q = O where Q is the instantaneous transition rate

matrix for the process and P the equilibrium state space probabil-
ities of the embedded Markov chain. However, this method is of

no use in practice since for any non-trivial problem the number of
states is excessively large, increasing combinatorially with the
number of customers and number of centres in the network. Thus
closed form solutions, e.g. the product form solution of [BASK751,
have been sought and it is shown in [CHAN77] that the existence of
a product form solution is equivalent to a network possessing the
property of local balance.

A detailed study of state dependencies in queueing
networks with particular reference to blocking is given by
Mecklenburg, [MECK78]. Here solutions are derived for networks
with non-locally state dependent service rates and routing probab-
ilities, subject to certain constraints on the dependencies; in
particular solutions are valid for reversible networks, defined
in [KING69]. A fully general solution based on complex variable
theory is given in [FAYO79]1 for the case of two-centre networks.

Valuable though research of this kind has been, little
work has been reported addressing the other disadvantages dis-
cussed in section 2.1l. Restrictions still exist on the type of
queueing discipline, for example any priority discipline other
than FCFS being barred, and on the form of service time distribu-
tions. In the latter case, of course, the only problem in practice
arises with FCFS discipline which requires exponential service

times for any solution to be possible in a Markovian framework.
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With regard to the modelling methods used in currently
reported research, the phenomenoclogical approach advocated here
has, typically, not been used [KRZE77a, SHUM77, SAUE75]. It was,
however, adopted by the author in [HARR78b] and is supported by
the modelling methodology described in [KIEN79]. The recent
upsurge of interest in the operational analysis of queueing net-
works, [DENN78, BUZE78, BARD73], is also consistent with the app-
roach in that the resulting models are actually defined in terms

of measurements made on real systems.

2.3 Representation of time delays incurred by individual tasks

2.3.1 Their importance

As already discussed, conventional methods of QNA are
essentially server oriented and little research has been carried
out into the behaviour of individual customers in queueing networks.
In section 2.1 an example of this was seen in the inability of
current techniques to represent priority queueing disciplines. But
the implications are far more extensive than this.

The importance of analysis of time delays incurred by
tasks passing through the wvarious components constituting a com-
puter system is clear. Optimisation of response time (interactive
system) and turnaround time at a computer installation is a major
requirement of the user community. Indeed, predictability is
essential if a user is to successfully integrate his computer usage
into his work schedule. For example, even if the response time has
a rather large expected value, it may still be tolerable if it is
fairly consistent; that is if the standard deviation is small and
there is little chance of response times considerably greater than
the expected value. In fact predictability is often more important

than magnitude. Thus, such considerations become an important



-13-

objective to the management for whom cost effectiveness (exemp-
lified by throughput typically) is the main concern, subject to
provision of a certain predefihed minimum service quality for the
user community.

Delays are in general composed of a sum of sub-delays
incurred by passing through a sequence of components, e.g. CPU,
various I-O activities and back to CPU; the number of terms in
the sum depends on the size characteristics of the individual
tasks in question, and in the case menticned would be the number
of I-0 transfers required. Thus the analysis required may be

divided into two areas:

(i) The time delay incurred from a single linear sequence

of components;

(ii) Aggregation of successive such time delays (loops).

The prediction of response time comes in the second
éategory. An application for time delay prediction in the first
category occurs in communication network modelling where the prob-
ability of a message transmission taking longer than some specified
time may be required.

A second, and very significant, application in the first
category arises in the modelling of any system involving polling
to permit the prediction of the probability of system failure. For

example,

(1) In a multiplexor system it would be possible to predict
the probability of data loss through failure of the polling

routine to sample a data line frequently enough;

(ii) In a process control or machine tool controcl system one

could predict the probability of a system fault caused by
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the failure of a scheduler to test sensor inputs at some
minimum specified rate. This sort of prediction is obviously
of great value in view of the possibly catastrophic conse-

quences caused by failure - say in nuclear reactor control.

More details as to the actual construction of models such as these
are given in chapter 8.

The two problem areas mentioned above have been considered
with respect to mean values of the time delays, when Little's Law
(see for example [KLEI75]) may be used under suitable independence
assumptions. Thus, for example, if successive cycles* of a task
in an interactive system (e.g. sequences of service reguests bet-
ween successive requests for the CPU) are assumed independent, the
mean response time is simply the mean cycle time (derivable through
Little's Law) multiplied by the mean number of cycles. Recent
research into mean value analysis of time delays, applicable as
an approximation to complex networks, is presented in [REIS79]
and [BARD79].

However, the mean value of a time delay alone is frequ-
ently insufficient. 1In the examples given above, for example,
higher moments are required to give the standard deviation for

response time and in polling systems percentiles are also required.

2.3.2 The author's approach

The author's work on the distribution of time delays
began with an approximate study of cycle times in cyclic queueing
networks and a generalisation of these, common server networksf,

[HARR78al. The method presented was based on the assumption of

* The term cycle is defined in chapter 3.
¥ Common server networks are similar to central server networks

and defined formally in [HARR78al].
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permanent stationarity which is defined formally in the following
chapter and basically assumes that a queueing network is such that
the equilibrium, time independent, state space probability distri-
bution is valid at all times. For each of the possible sequences
of successive queue lengths faced by some specific customer, the
cycle time distribution is evaluated (approximately) as the con-
volution of the distributions of the sojourn times spent in each
individual queue, taken in isolation. These results are then
weighted according to the Jjoint probability distribution of the
queue lengths faced, as given by the permanent stationarity ass-
umption. An improvement in this approximation is also developed
via an exact algorithm for calculating this joint probability
distribution.

This work has been extended to apply to networks of
very general characteristics, with the time delay in question no
longer restricted to cycle time, as described in chapter 3.

This leads naturally to the éxact methods of chapters
4 and 5. These are based on a study of the discrete state trans-
itions in networks as opposed to an analysis in continuous time.
The class of networks analysed is chosen so that at all stages
in the computations involved, whatever the state of a network,
the position of some test customer is known. Expansion of the
state space is consequently unnecessary in contrast to the method
of [YU77] discussed below. Thus the results give relatively
efficient implementations and may be used to provide standards

against which to compare approximate methods (see chapter 6).

2.3.3 Other work

An approximate study of xzesponse time in queueing network

models has been made by Lazowska and Sevcik [LAZO77a, LAZO77b, LAZO
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78] in which response time is defined as the sum of successive
cycle times for a particular task. The approximation arises in
that it is assumed that successive cycles are independent and the
distribution of the number of cycles required by a task is geomet-
ric. The resulting response time distribution is shown to be
asymptotically exponential and, despite the approximations, gives
results which compare quite favourably with actual observations.

Exact results have been derived for certain cases:

(a) Chow derives the cycle fZime distribution in cyclic networks

of two centres with FCFS queueing discipline and exponential
service times, [CHOW77al, which is extended to the central server
case in [CHOW77b]. The approach taken (in the former case) is to
observe that the behaviour of the second centre in the cycle,

given the queue length there on arrival of the customer in question,
is that of the centre takén in isolation. The probability distrib-
ution is derived for the queue length faced on arrival at the
second centre conditional on that existing initially at the first,
as a function of the sojourn time of the customer at the first
centre. From this analysis in continuous time, the cycle time
distribution follows as a complex result requiring numerical

integration.

(b} Wong derives the Laplace transform of the time delay dis-
tribution for messages in open networks encountered in communi-
cation system modelling, [WONG78], by the use of probability gener-

ating functions and the properties of the Poisson arrival process.,

{c} An exact solution for the passage time distribution of a
network with a special "tagged" customer between predefined states,
subject to routing constraints, is given for BCMP networks in the

form of recursion equations for the Laplace transform in [YU77].
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His approach is to apply results from the general theory of
stochastic processes to queueing networks. Naturally, his

results may be shown to be equivalent, for the appropriate class
of networks, to those derived in chapters 4 and 5. However, the
method is of limited practical use in that the recursion equations
span the whole state space which is extended very considerably to
include the information for tagging (so that the position of the
tagged customer in the network is known in any state) and routing
constraints. In fact the method has a close analogy with that of
deriving the state space probabilities by solving the complete set
of balance equations for a network explicitly (c.f. section 2.2) -

a simple solution on paper but not in practice!

Although not an analytic method, anothe; approach to
the analysis of time delays is given in [SHED79] where simulation
methods are applied in the Markovian framework used in (¢). In
this way, numerical results can be obtained for a much larger
class of networks than in the case of numerical computation based

i

on the corresponding analytic method.

2.4 The equilibrium assumption and transient analysis

The final line of research pursued and described here
concerns a quantitative assessment of the equilibrium assumption
made almost universally in QNA. The approach taken is to solve
by an iterative method the Kolmogorov differential-difference
equations for networks, so yvielding the time dependent state space
probabilities. 1In fact, this method was originally developed by
the author for the simple case of a cyclic network with two servers,
[HARR78al, as a refinement of the approximate analysis (assuming
permanent stationarity) of cycle time distribution. A transient

analysis in continuous time was performed to derive the probability
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distribution of the second gueue length faced conditional on the
first, the arrival at the first centre effectively setting a time
origin. 1In this way the joint probability distribution of the
two queue lengths faced could be computed more accurately. It
will be noticed that this application of the transient analysis
is not dissimilar to the (independent) approach of [CHOW77al] dis-
cussed above.

Very little published work exists in the area of
transient analysis in queueing networks, although in [GRAS77a,bl
is presented a method adopting the approach of numerical solution
of the Kolmogorov equations by means of the Runge-Kutta technique.
This method is also used as a means for deriving tiﬁe delay dis-
tributions.

The transient analysis developed in chapter 7 can be
applied to networks of the Jackson type and the possibility of
extension to the more general BCMP case is immediately apparent,
although this is not done here. The method results in a simple
iterative scheme, which is shown to be convergent, and is suitable
for implementation by computer. Other applications of this
research, in addition to the equilibrium assumption assessment,
are concerned with the study of the immediate effects of d{isturb-
ances in gueueing networks. These are discussed in some detail

in chapter 8.
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§3. Time Delay Distributions under the Permanent Stationarity

Assumption.

3.1 Model Specification

The queueing network time delays considered in this
chapter are defined to be the timeselapsed between a customer
arriving at some pre-defined service centre, o say, and his
departure from some pre-defined service centre, f say. Under the
usual assumption made in QNA that transitions between servers by
customers are instantaneous, in a closed network the time of
departure of the customer from centre B will be that of arrival
at the successor centre in the customer's (infinite) path. This
thesis is primarily concerned with cycle time distributions in
closed queueing networks. In these, cycle time may be defined to
be the time elapsed between successive occurrences of a particular
customer's arrival at some specific service centre, subject to
certain constraints on the centres entered in the path taken. In
this case the successor centre of B8 will be o and the constraints
restrict valid cycles to certain paths. For example, in the network

shown in fig, 3.1

o3 0—

fig. 3.1 Network with constraints on valid cycles

a customer could re-enter centre 1 after leaving centre 1 without

first entering centre 2 and such a path may well be considered
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illegal as a cycle. However, for the networks considered in the
exact analysis presented in chapters 4 and 5, by choosing
centre o as the head of a tree-like network in the latter,
the constraints become null in view of the order invariance or
non-overtaking property required and fully defined therein.

In this chapter, first the moments of the time delay and
then its distribution are derived for the case of a single path or
sequence of centres entered between o and B under the assumption of
permanent stationarity of the network. The distribution is first
obtained in the form of its Laplace transform and then formulated
as a recurrence relation derived by inversion thereof. A discrete
form of the distribution is also derived and is easily seen to be
convergent as the discrete time step decreases towards zero by
precisely the same argument as is applied formally in the following
chapters in the derivation of exact results.

The permanent stationarity assumption, abbreviated to
PSA, states that a queueing network is in its stationary (equilibrium)
state at any time, unconditionally on its state at all other times,
and that its servers operate independently so that they can be con-
sidered in Asolation. Thus, if the network has M servers with state
space S; 1si,jsM; k,k“e S and the random variable K € S, the probab-
ility

PR=k | t=t)
where a special customer (henceforth referred to as the "test"
customer) arrives at centre i at time ti’ and the probability

PR =k"l t =ty
are independent of k” and k respectively. Furthermore each has the
equilibrium distribution, e.g. that of [JACK63] under appropriate
additional assumptions.

This assumption is intuitively reasonable when an overall,
a&eraged view of the network is acceptable after each service com-

pletion of the test customer, for example in the following cases:-
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(i) In an open network - the length of the queue at

centre j arrived at after a transition from centre i is

unlikely to be strongly dependent on the gueue length at

centre i. This is in contrast to the case of a closed

network in which the total number of customers is fixed.

For example, for a closed cyclic network with 2 service

centres, 1 and 2, and N customers, if there are k customers

at centre 1 there are N-k at

(O<k<N). Thus if on arrival

centre 2 with probability 1,

of the test customer at centre 1,

all the other N-1 customers are at centre 2 (k=1), then in the

case of comparable service rates of the two centres, one would

expect considerably more customers at centre 2 on arrival of

the test customer than would be predicted by the steady state

solution of the network.

(ii) To a lesser extent, in

are several service centres,

closed networks in which there

in particular when centres have

multiple arrival streams from other centres. The reasoning

for this is similar to that given in (i).

(iii) When the queue length at each centre in the segquence of

centres considered for the test customer's path is large;e.g.the
heavy traffic situation. This is the case for open, closed and
cyclic networks (to decreasing degrees) and follows since after

a longer waiting time at any centre, the network will have under-

gone more transitions and more nearly approached its steady state.

When several paths are
to centre B, as will be the case
non-cyclic networks for example,
moments, distribution or Laplace

easily obtained by weighting the

valid in the passage from centre o
in general for cycle times in

the final result, whether for
transform of the distribution is

results for each valid path
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according to the probability that that path is followed.

I.e.

Time Delay Distribution = P(plp is valid){Time delay

Paths P 4istribution for path p}

Section 3.4 describes how the path probabilities may be obtained
from the specifications of a queueing network.

Having derived the theoretical results for this
approximate method, the chapter closes with a discussion of the
(very general) applicability of the method in practice and

validation methods.

-

3.2 Moments of time delavys

The moments of the time delay distribution for some path
of length M servers numbered 1,2,....,M for a given set of queue
lengths, {nilisisM}, at times of arrival of the test customer, may
be derived in terms of the moments of the service time distributions
of the individual service centres in the path. These moments may
then be weighted according to the corresponding queue lengths joint
probability distribution to give the moments of the time delay.

In this section, as in section 3.3 also, the results
pertain only to a single path, the general result being simply
derived as a weighted average over all possible paths as described
in section 3.4.

The time delay distribution for any customer is the
convolution of the waiting time distributions at each of the
M service centres if independence of these distributions is assumed
as in the PSA case. The waiting time distribution at a FCFS type of
centre, i say, again assuming independence of centres, is the con-

volution of n, service time distributions, where n, is the number
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of customers at centre i on arrival of the test customer. Thus

it is necessary to derive an equation for the p'th moment, M_,

of a convolution of n random variables, Y ....,Yn say
1

Now, M, = E(Y +...4Y )P
¥ 1
n .
= E Z P: I r.!
n i=1 i*
.Z L:=P
i=1

where rizo, 1<i<n

(1)
r.
i

M

=3

- * . M = :
P P Z r
Er;=p i=1 i

teesassee. (E3.1)

(i)
where Mr.

is the ri'th moment of the random Variable'Yi.
i

Thus the p'th moment, Mp(g), for the time delay distrib-
ution, given the set of queue lengths n at the said arrival times,

is given by equation (E3.l1)with n=M in which, for a FCFS centre,

i say
n, Séf)(qi)
M, =g ) o . (E3.2)
ptk.=t 1 J
j=1 7
k.20
J _ (1<i<M)
where Séi)(q) is the kj'th moment of the service time distri-
J

bution of centre i for a queue length g. At this stage a further
approximation is introduced for paths containing servers with

non—-constant service rates. In this approximate analysis, the
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queue length existing at any centre holding the test customer is
only considered on arrival of this customer. Thus, the queue

length at centre i (1<isM) is unknown throughout the sojourn time

of the test customer at centre i, except initially. Therefore any
choice of q; in equation (E3.2) is bound to lead to further approx-
imation. To avoid this would involve a much more complicated
analysis of the probability distribution of the queue length exist-
ing on any service completion at centre i conditional on the initial
queue length. Such additional work is not considered worthwhile

for the following reasons:-

(1) The PSA method was designed to be simple to apply as
a practical tool. The introduction of this new complication
would severely limit the domain of network structures for
which the PSA method is practicable in view of the vastly

increased computing resources required;

(ii) By suitable choice of q4 the decrease in accuracy
introduced ought to be negligible compared with that arising
from PSA. The actual guantitive difference is not analysed
here, the important validation being between the results
of the adopted PSA method and real data, simulated data and

exact results, as described in chapter 6.

The choice of q; (1<i<M) would typically be the mean
queue length at centre i or that giving a throughput (conditional
on non zero queue length) egual to that achieved in the eguilibrium
situation, a simple measure to compute [BUZE73]. in section 3.5
it is shown how this choice results in an exact computation of the
mean time delay. In the rest of this chapter it will be assumed
that centre service rates are state independent so that the problem

does not arise; for the PS and IS type of servers considered below,
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values for q; may be chosen in exactly the same way.

For the case of a PS server i,

(1) [_1_ t )
Mp Sp qi ¢i(qi)

where: q; is some form of average for the queue length at centre i,
chosen for example as described above for servers with state depend-

ent service rates, and so introducing further approximation;

¢i(t) is the service time p.d.f.+ of centre i for a queue

length of 1 and

Sp(¢) is the p'th moment of the p.d.f. ¢.

This is so since for a PS service centre with gqueue
length n>0 and service time p.d.f. £(t), the (cumulative) distrib-

ution function of the waiting time, T, for each customer is given by

Pr(Tst/n | queue length 1)

Pr(T<st | gqueue length n)

t
J /M £ (4)du
0

t 1
JO o f(v/n)av

using the change of variable u=v/n.

For an IS server i, Mp(l)

= Sp(¢i) for all queue lengths
greater than zero trivially. For LCFS queueing discipline the method
is not really applicable for the reason given in the discussion of
FCFS centres; the queue length at any centre holding the test

customer is unknown after the instant of arrival. Some estimate,

as a function of the queue length faced on arrival, for the expected

+ probability density function.
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number of service completions at centre i required before
departure of the test customer could be made to yield a value
for the number of convolutions necessary. However, the overall
effect could be a considerable decrease in accuracy, particularly
if there are several centres with LCFS queueing discipline. The
reason is that in this case it is in the fundamental principle
of the method rather than in the assignment of parameter values
that the approximation would be made.

If centre i has exponential service time distribution
with mean ui(ni) for a queue length of n., then the n'th moment
is well known to be

n!
{ui(ni)}n

The expression for the p'th moment of the time delay
distribution, MP(E) given by (E3.1) is dependent on the queue
lengths encountered on arrival at each service centre via the
direct dependence on Mt(i) (1<isM) which is dependent on ny.
Now suppose the time delay p.d.f. is y(x,t) where r, {1<isM)
is the number of customers at service centre i at the time of
arrival of the test customer. Then, assuming permanent

stationarity and a closed queueing network of M~ centres and

population N, the overall time delay distribution, ¥(t) is given

by
N N N
Y(t) = z I .. L P(ni=rilni>o;1sisM)w(£,t)

r.=1 r_ =1 r =1
1 2 M
N N M P(ni=r.)

= I ... I I =7 ¢(xr,t)
r=t et i=p F04%0)

assuming without loss of generality that the centres in the chosen

path are enumerated {1,2,....,M}.
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N N M
Thus, ¥(t) = } ... 1} I P (n;=r;)¥(r,t) -..... (E3.3)
r1=1 rM=1 i=1
P(n.=r,)
where P”(n.=r.) T2 (1<isM)

i i = P(ni>0)

is the re-normalised queue length probability for the case ni#o.
This may be evaluated using the expression for the normalising

constant G(N) given in [BUZE73] as:

r.-1
1
Xi +
(ni=ri) = Tm=1y {G(N-ri)_XiG(N"ri-l) }

p”

This result is in fact a special case (because of the
PSA) of that of Mitrani and Sevcik [MITR791]:

At the instant of arrival at a centre in a closed
gqueueing network in a state of equilibrium, a customer sees the
equilibrium state space probability distribution for that network
with himself removed.

Multiplying equation (E3.3) by tP anga integrating w.r.t.
t over the interval [0,») the p'th moment of the overall cycle

time distribution is

N N M
Y, = ) { I P (n.=ri)} Mo(Z) ..-.. .. (E3.4)
r,=1t =1

where P” is defined as above.

In the APL package of Appendix. 7 the first two moments
of cycle time distribution are computed by the method described in

this section by the function PSM.

+ X; = ei/ui where e; is the visitation rate and By the service

rate of centre i (1 < i < M7).
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3.3 Time Delay Distribution

3.3.1 Its Laplace Transform

The time delay distribution for a path consisting of
M centres in a closed queueing network of N customers, ¥(t), is
given, under the assumption of permanent stationarity, by equation
(E3.3) in terms of the Y(r,t) where 1<r. <N,1<isM.

In this section, it therefore remains to derive an
expression for Y(r,t), the p.d.f. of the time delay for a
gueueing network path in which the number of customers present at its
centre i is r, at the arrival time of the test customer. The
weighting of the results for all valid paths is discussed in
section 3.4.

Now assuming independence, y(r,t) is the convolution
of the waiting time distributions for each cenﬁre 1 in the path
taken at which there are ry customers. Let F(r,p) = L(Y(x,t)),

the Laplace transform of y(r,t). Then

F(EIP) =

=14

L(¢,(r,,t))
1 1 1

i
where ¢i(ri,t) is the waiting time distribution at centre i when

the queue length there is ri>0 at the time of arrival of the test

customer, That is, for a FCFS queueing discipline

Ty
@-(r-,t) = * ¢'(t)
i‘tvi j=1 i
and for a PS discipline
. (r,,t) == ¢ (t/q,)
i*Ti’ q; i i
Ty
where * denotes r, convolutions, ¢i(t) is the service time
j=1
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distribution of centre i, assumed state independent,band q; is some

averaged queue length for centre i, as discussed in the previous

section. For an IS centre, q; is simply set to 1 in the PS case.
For computation of the Laplace transform further use

may be made of the independence property of the PSA. The

Laplace transform of ¥ (t),

N M
L(Y(t)) = } I P (n.,=r.) L(d,(r.,t))
r.=1 j=1 3 13
1
1<isM
M N .
= i£1 r2=1 P* (n;=r;) L (& (r;,t))

by the dependence of the factors on only a single value of the
subscript i which follows from the assumed independent behaviour
of the service centres. The second form of the result obviously
provides a far more efficient computation and is performed by the
function PSA in the APL package of Appendix 7 for the case of
cycle times in tree-like queueing networks.

In section 3.3.2 the case of exponential servers with
(the more complex) FCFS queueing discipline is considered, and
y(r,t)is obtained by inverting the Laplace transform F(r,p) given
in equation (E3.5). In section 3.3.3, a discrete approximation for
Y(xr,t) is derived by direct convolution of the discrete form
approximations of its constituent centre service time distributions.
The result is convergent as the discrete time step approaches zero,
the proof being the same as that for the analogous formulae
presented as part of the exact analysis of cycle time distribution

in chapters 4 and 5, and not given here.



3.3.2 Inversion of the Laplace Transform

In the case of exponential service time distributions,
for example as would be required for the stationary state space

probability distribution used in section 3.2,

M r
Hi 1
F(r = 1 —_— eerseecerana .
(x,p) | { BT } (E3.5)
i=1
for FCFS queueing discipline
M
M i
/4,
and F(x,p) = I o cresssscrsnsss (E3.6)
i=1 | P71/

for PS queueing discipline

where My is the service rate of service centre i (when the queue
length is 1 for the case of a PS server).

For FCFS servers, the expression for F(r,p) may be

written
L . ky
i
F = I e s eas s enanesacs E3.7
i=1
where { u|1sksn } = { u;l1si<m 3,

L is the number of unique elements in this set and

M
ky = ) r
j=1
rj=ki

For example, in the case of a network of M centres with

non-dedgenerate (i.e. unigque) service rates independent of
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gueve lengths, L=M and ki=ri (1<i<M) so that
M My
II

P+ui

i
] , equation (E3.5).

F(EIP) =
i=1

The expression on the right hand side of equation (E3.7)
may be inverted to give yY(x,t) which is rewritten as y(k,t) by

evaluation of the Bromwich (contour) integral [SPAI70].

This is carried out in Appendix 1, yielding the result

L k. L
pl,e) = T ow ] biket) .. cire...(E3.8)
i=1 Jj=1
2. —1-.
~-u.t - ' J_kjl J
e I (kifl)'t (=)
where  ¥y(k,t) = ) T
I (k,-1)! L I 2!
i=1p * I Lj=kym1 i=1 *
1=1
8,20
- '
(ki+2i 1)!
i
K +L

1<i#j<L (“i-“j) *

ceseseasesess (E3.9)

A recurrence relation is also derived in Appendix 1

for this result as

Q. (k,t)
- = ceee...(E3.10)
w:] (Ert) = L
I (k;-1)!
i=1 %
where Qy(k,t) = tQj(Ej-,t) -1 Qj(hj_'2+,t) cenea. (E3.11)

L7#]

(kaz and kiz1 , 1<i#j<L)
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with boundary condition

(k.=-1)! -t |
Q.(k,t) = I — 1l e 3 .......(E3.12)
i X.
(ul-Uj) 1
1<i#j<L

(kj=1 and kizi s 1<i#3i<L)

in which k3~ (kyreworky=loeae kp)

3

and k37 = (kj_""kj—l'”"k +1,...k

2 L)

The equivalence of the two forms of this result is
also shown.
As an example, consider the case of a single server with

L=1 so that, from equation (E3.8),

k
- _ 1
Using (E3.11), Q1(k1’t) = tQi(ki—i,t)
where Qi(k1’t) = (k1—1)!w1(k1,t)
Using (E3.12), Q1(1,t) = e
k,-1 ) k,-1 -u,t
. - 1 _ 1 1
. tki—i THyt
b balkyr®) == @

which is the familiar Erlang - k1 distribution. This result
could have been obtained immediately from (E3.9), there being
only one term in the summation for L=1.

Although the solution for wj(g,t) is given by equation
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(E3.9), the number of terms involved in the summation increases
combinatorially with'kj. For numerical computation, the
recurrence relation (E3.11) and boundary conditions (E3.12) may
well provide a better approach although the obvious recursive
solution involves many function calls with consequent large
storage and execution time requirements. This difficulty can
be alleviated by saving certain intermediate values of the
recursive function to avoid later unnecessary recomputation,
for example as in [MICH67, HARR74].

An alternative approach to this method of inverting
the Laplace transform is to perform the operation numerically
using the values of L(¥(t)) derived in section 3.3.1 correspond-
ing to a suitable set of values for the parameter p. However,
in view of the averaging nature of the Laplace transform operation,
such inversion is rather difficult though not impossible. This

topic is discussed further in chapters 4 and 5.

3.3.3 Discrete approximation for time delay distribution

An alternative approach to deriving the distribution
of the time delay by inversion of its Laplace transform is to
perform the necessary convolutionsdirectly; this may be achieved
numerically by first computing discrete forms of the constituent
service time distributions and then performing simple summations.
The presentation given here is not fully rigorous, this being
left to the parallel development of chapters 4 and 5.

Now,

N M .
¥(t) = } *= P (ny=z;) 04 (ry,t)

r,=1 j=1

1<isM

is the notation of 3.3.1 where
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h* K

= J
q)] (rjlt) - ¢](t)

i=g

and ¢j(t) is the service time distribution of the j'th server,

assumed here FCFS.

Thus,

N

1 P7(n,=r.,)%, (r.,t)
1 r=1 oty

¥(t)

*

1

by the independence assumption, where a closed network of N

customers is under analysis.

Now let ¢i(t) be represented in discrete form by the

probability distribution Hi(j),j=o,1,2,..., then

H,(J) = Pr{(j-1)A<tsjA}
(34 _
¢, (t) dt (j21)
= { (3-1a
0 - (3=0)

for some time step A ¢ RT. *

For example, if centre i has negative exponential service
time distribution then, as shown in chapter 4, Hi is geometric
and the convolutions may be performed via a simple recurrence
relation given in Appendix 2.

Let the corresponding discrete forms for the sojourn
time distribution of the test customer at centre i, @i(ri,t),

be Ji(ri,j) and for the time delay, Y(t) be K(Jj); j=0,1,2,...,1<i<M.

Then
Ty
Ji(ri’ ) = * Hi( )
n=1
« RV denotes the set of all positive real numbers.
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M ? .
and K( ) = * P (n,=xr,)J,(r.,)
1=1 ri=1 i Ti’Yitrti

Thus K(j) may be computed numerically via the

following relationships :

K(j) = KM(]) (j=olllo-..)
3 N
where K, (3) = I K, ({1 P (ng=x,)J,(r;,3-k)
k=0 ri=1
Ko(j) = 1 (3=0)
0 v (otherwise)
3
Ji(ri'j) = Z Ji(ri_irk) Hi(j_k)
k=0
Ji(O:j) = 1 (3=0)
0 (othexrwise)

Such a computation requires no assumption about the
specific form of the service time distribution and is performed
by the function PSD in the APL package of Appendix 7 for the
case of tree-like networks,

An approximation has been introduced at an early stage
in the analysis and manipulations (viz. convolutions) made on the
resulting inexact values. Thus care should be taken to ensure
that the error does not grow unacceptably, and it is clear on
comparison with the parallel, rigorous analysis in chapters
4 and 5 that the method converges to the exact result as A-O.

The proof need not be repeated here.
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3.4 Computation of path selection probabilities

In order to derive the distribution, its
Laplace transform or its moments, of a time delay in a queueing
network, unconditional on the path chosen, the results for each
possible individual path must be weighted according to the

probability of choosing the path.

Let Pn be the probability of choosing the valid path n,
Wn(t) the time delay distribution conditional on path choice n,

Ln(s) its Laplace transform and vy its p'th moment. Expressions

np
for Wn(t), Ln(s) and an have been derived in previous sections
of this chapter.

Thus the unconditional time delay distribution, Laplace

transform and moments are, with a slight change of notation

¥(t) = ] P, ¥ (t)
valid paths
n

L(s) =} P L, (s)

valid paths
n

Y = Z Pnan

valid paths
n

by simple laws of conditional probability.

It thus remains to determine '{Pnln a valid path}.
This is a trivial problem for networks in which no path includes
the same centre more than once, i.e. no path contains a loop such
as would be possible in passing from centre o to centre B in the
network shown in fig. 3.2 below.

For such cases, Pn is simply derived from the routing
probability matrix for the network. Suppose path n consists of

centres cl,c reeseCy where c1=a and c2=B. Then
2
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Pr(Choice of path n | n is valid)

P =
n
Pr(Choice of path n & n is valid)
Pr(n is wvalid)
P‘
n
1 P
n
valid n
-1
where P’ = I p
n c.,c,
=1 17i+1

In particular, the tree-like networks discussed in
chapter 5 possess this property so that the APL functions referred
to previously, PSM, PSA and PSD, compute the path probabilities
guite simply. 1In fact it is a property of tree-like networks
that any path from the "root" centre to a "leaf" centre, i.e. a
cycle in a closed tree-like network, is uniquely determined by
the identity of the leaf centre. Thus the path choice probabil-
ities are proportional to the visitation rates of the correspond-
ing leaf centres. Values for these are readily available in view of
their necessity in the evaluation of state space marginal
probabilities, and this is the method used in the package.

In the event that a network contains valid paths which
include loops, a problem arises in that the number of valid paths
is no longer finite and various approaches to the computation of
{P,In a valid path} may be adopted.

The most general and practicable from the programming
point of view is iterative. Consider paths from centre o to
centre B which may include a loop starting and ending at centre Yy

as shown in fig. 3.2.
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A

D

1-u

° T

fig. 3.2 A sub-network showing paths which may include a loop.

In the figure the probability of entering the loop on
departure from centre y is u. Clgarly more complex cases with
nested loops are possible but the method described could be
extended to cope with these. It is assumed for the sake of
clarity’ that all paths from o to B must include centre y, the
modification of the method being obvious if this ié not the case.

Denote the distribution of the time delay between
arrivals at centres A and u by wku (t) and the path from o to B
which includes i circuits round the loop by n(i), 1i=0.

Now, the probability of i circuits round the loop is
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geometric, viz. (1-u)u’, so that

i
Potiy = Fnoy U

and so

ul ¥ * ¥

o~ 8

b4

ag t Ph(o)

i=0

where B+ denotes the successor centre to B (possibly exit from

the network), W#Y denotes i convolutions of ?YY. The summation

is clearly convergent since O<u<1 and the probability distribution
yi
YY
will terminate when the specified precision is achieved.

is bounded. Thus the computation may proceed iteratively and

Expressions for the iaplace transform and moments of
WuB+ follow trivially.

An alternative approach in simple cases is to proceed
via the Laplace transform from which the moments follow and which

may be inverted to give the distribution itself.

Suppose the loop in fig. 3.2 consists of the single
centre Yy, i.e. the routing probability pYY=u° Then if LAu is the

Laplace transform of the qu defined above,

ca :
1

i
+ = L+
Lag Pa(o) L W Lgy (Byy)TLyg
i=
1
Pn(O) Lay ;:;z—— LYB+
YY

The convergence of the series is again clear and the

resulting expression for La +(s) may be inverted in simple cases

B

by the method described in section 3.3.2 or numerically as

discussed later.
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3.5 Summary

3.5.1 General remarks

The most significant property of the so-called PSA
method for deriving approximate time delay distributions in
gueueing networks is that it can be applied in a wide range of
practical situations to give useful numeric results. This is
due to the generality of the network classes which conform to the
assumptions underlying the method as well as to the efficiency,
with respect to computing resources, arising from the relative
simplicity of the calculations.

The only fundamental assumptions of the PSA method are
that service centres behave completely independently and that for
each centre successive service times are also independent;
none of the results presented in this chapter require any assump-
tions about the form of the service time distributions for each
centre as is the case in the traditional derivation of the state
space probabilities, [JACK63, GORD67, BASK75]. Hence it would
be possible to apply the method to networks in which the service
time distributions and/or the gueue length probability distribu-
tions (marginal state space probabilities) of the servers were
empirical. I.e. network specification could be based purely on
observations made on the actual system being modelled. This is
of great appeal as regards achievement of a representative model
in that several intermediate steps are absent compared with the
analytic approach. The philosophy is the same as that in the
operational approach to queueing network analysis, [BUZE78a,
DENN78].

Thus, the PSA method frequently applies to networks
of even greater generality than those in the BCMP derivation of
state space probabilities [BASK75], although certain network

properties cannot be represented easily . In particular we have
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already discussed the LCFS queueing discipline and also networks
containing loops in a path for which the time delay distribution
is required. |

In order to achieve such generality and computational
efficiency, some fairly strong approximations have been made,
recall, for example, the handling of state dependent service rates.
However, the method is intuitively sound, reflecting well the
flow of customers through a network. Furthermore, some of the

results presented are exact in some or all cases:

(i) The mean of the time delay distribution derived by
the PSA method is always exact by the following argument.

For any path in a queueing network, the associated
time delay is the sum of the sojourn times of the test
customer at each centre in the path. It is assumed that
these sojourn times are independent as is usual in all
queueing network analysis, for example via the Markov
property in the Jackson case, [JACK63]. Thus the mean
time delay is equal to the sum of the mean sojourn times
for each centre in the path.

Now, by Little's Law applied to centre i say,

Mo o= A
T,
1

where M., is the mean sojourn time,
Q is the mean gqueue length, for centre i.
T is the throughput,

But Qi and ‘I‘i depend only on the centre i gqueue length

probability distribution (marginal state space probability

distribution) and its service rate, for which no approximation

is made under PSA, by suitable choice of g; in equation (E3.2)
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(section 3.2) if the service rate is not constant.
The actual choice is that giving the equilibrium
throughput, conditional on non zero gueue length. Then,

in equation (E3.2),
(1) =
S, T lay) = .
J i
where ny is the gqueue length random variable for centre i.

Then equation (E3.2) gives, for t=1,

u (i) _ ni P(ni>O)
" =
T.
i
and equation (E3.1l) yields
M r.P(r,>0)
i i
M, (r) = )
T
i=1 i

Thus, equation (E3,4) may be written

M N ;P (r;>0)P" (n;=r,) N Mo
LRl S T, ) e~ (ny=z)
i=1 r;=1 r.=1 k=1
J k#i
1<j#isM
Mo M N
= i . -
= ] 7 I } P (n,=r,)
i=1 ¢ k=1 r, =1
k#i
M9
= ) Ti as reguired.
i=t *

(ii) For networks consisting of only one centre, all the
results are exact since the independence assumption of PSA

is satisfied trivially.
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(iii) For networks containing only one customer, £he
independence assumption is again satisfied in that only one
centre can be busy at any time - that serving the test cust-
omer. In this case the next 4fate transition is uniquely
determined to be that considered in the PSA method, viz.
that of departure of the test customer from the centre.

Thus the analysis satisfies precisely the same assumptions

as those applying to the exact analysis of chapters 4 and 5.

3.5.2 Validation

The accuracy of the approximation is discussed in Appendix
8 where comparisons are made with the exact results for specific
cases of cycle times in tree-like networks and validation is per-
formed with respect to simulated results. OFf course the ultimate
test is validation based on observations made on at least one actual
computer system, but as pointed out in the Introduction and chapter
6 such data 1is exceedingly difficult to obtain and absoclute valid-
ation remains an area for future investigation.

Furthermore, rather than attempting a limited wvalidation
by comparison with results, real or simulated, corresponding to a
few specific network structures, ideally a formal error analysis
should be made, This could provide simply computable bounds on the
error of the approximate PSA method as a function of the parameters
of the network under analysis. Such an analysis is proposed in
chapter 8, but is expected to pose many problems. Consequently for
the time being we adopt the approach taken by many others, e.q.
[BARD79, PUJO791, of making intuitively good approximations and
validating as discussed in the previous paragraph via numerical

comparisons.

3.5.3 Cycle and Response times

Perhaps the most typical time delay requiring analysis

is the cycle time in a closed network, or the sum of (successive)
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such cycle times which can represent response time. The former

is easily computed directly since it is a time delay of the type
discussed in this chapter. The distribution of the sum of cycle
times may have its moments computed via equation (E3.1), success-
ive cycles being independent under PSA. Furthermore, because of
the same independence assumption, the Central Limit Theorem may be
applied giving an asymptotic Normal distribution for the convolu-
tion representing response time, as the number of cycles involved
becomes sufficiently large. The use of the Central Limit Theorem

for this purpose is discussed in more detail in chapters 4 and 8.

3.5.4 Conclusion

In summary, in contrast to chapters 4 and 5, this chapter
is not intended to provide a formal (approximate) solution to a
precise class of problems. Rather a methodology has been described
for giving approximate results, in a wide range of modelling situ-
ations, to be validated by comparison with empirical data based on
observations taken from the actual computer system being studied.
The approach taken has been to make approximations, sometimes
rather coarse, in order to provide a feasible method for producing
quantitive estimates of time delay distributions in queueing net-
works. Thus the main value of the work is its ease of implement-
ation on a computer so providing a practical and efficient tool
for the performance analyst - contrasting with the exact methods
described in the following chapters, see Arpendix 8. Applications
for such a tool have been given in chapter 2 and further details

are discussed in chapter 8.
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§4., Exact cycle time distribution for cyclic gueueing networks

4.1 Introduction

In chapter 2 the importance of studying cycle time
as a particular case of a time delay in queueing networks was
emphasised; both in its own right and as the constituent of the
response time of a network, i.e. the time delay which results
from several (successive) cycles of the test customer. 1In
this chapter a method is described for deriving the cycle time
distribution for customers in cyclic networks of servers with
constant service rates and FCFS queueing disciplines.

In section 4.2 the approach taken is described and the
resulting solution is derived as an analytic expression for the
Laplace transform in section 4.3. 1In section 4.4 it is shown
how to compute the moments of the distribution via numerical
differentiation of its Laplace transform and in the following
section an expression for the moments is derived via analytic
differentiation. In section 4.6 a discrete form of the
distribution itself is derived and is shown to be convergent
as the discrete time step approaches zero.

In section 4.7 some computational techniques for
performing the operations required on the large data structures
resulting from the preceding analysis are described. In the
following two sections discussion is presented on the desirability
of and difficulties in inversion of the Laplace transform of the
distribution, and on the use of decomposition techniques to link
together sub-cycles as an aid to efficiency of computation.

In section 4.10 application of the theory to response time
prediction is discussed and the chapter closes with a short

summary of the chief relevance of the analysis.
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4.2 Approach taken

The cyclic networks analysed in this chapter are of
the Jackson type, [JACK63], following a Markov process, con-
sisting of M servers, with FCFS queueing discipline and negative
exponential service time distributions, and containing a popula-
tion of N customers.

The first step in the analysis is to consider the
corresponding tandem network consisting of the service centres
in the same sequence, but with the last centre no longer connected
to the first. There are no external arrivals and departures from
the network occur at the last centre.

Formally, for a cyclic network of M centres numbered

1,2,...,M, let the routing probability matrix, p, be giwven by
pi,i+1 = 1 1<isM-1
Pyy - = 1
pij = (o) otherwise

Then in the corresponding tandem network, the new

-

‘routing probability matrix, p”, is given by

Py s4q = 1 1<isM-1

-

P i3 = 0 otherwise

Of course the corresponding tandem network is not unique

since the first centre could be any of the M centres.

The method consists of the following steps:

(1) On arrival of a test customer at centre 1 in the closed
network, the steady state probability distribution for the

state space of the network is assumed. Thus the result
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presented by Mitrani & Sevcik [MITR79] can be applied.
This states that the state space probability distribution seen

by the arriving customer is the same as the equilibrium dist-
ribution for the same network with itself removed. The same
result is obtained, for the classes of network considered here,
by renormalising the state space probabilities and excluding
states in which there are no customers at centre 1. This 1is

the method used in chapter 3.

(ii) The corresponding open network is now considered. The
cycle time in the closed network is the same as the time
taken for the test customer to depart from the open network
if the assumption is made that returning customers joining
queues behind the test customer can have no effect on the
rate of progress of the test customer through the network,
i.e. that departed customers can be disregarded. Hence it
must not be possible for customers to be overtaken by other
customers, i.e. the cyclic ordering of customers must be
invariant, and the service rates of the servers must be
unaffected by the addition of new customers to their queues
which is equivalent to demanding constant service rates.
Order invariance is ensured by the requirement of a FCFS
queueing discipline at all centres together with the
existence of only one path in the network. Note that PS
discipline is precluded by both the order invariance and

service rates requirements.

The invariance of order in both the closed and open
networks implicitly tags the test customer in the open one in
that it is always the leftmost (or furthest from departure) and

its position is therefore always known uniquely. Such implicit
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tagging, although not possible for networks of the most general
type, results in a much smaller state space than would be
required in the analysis of the Markov process with an additional
state space dimension included for the "tagging" information,

as in [YU77] for example, Thus it improves computational
efficiency.

With the assumptions listed above, the cycle time for
the test customer is identical to the time taken for the open
network to empty, i.e. the time taken for the open network to
enter the state with zero customers at all centres. Now, the
network can empty by passing through any of a (finite) number of
(finite) sequences of state transitions. Thus for any particular
sequence, the conditional cycle time distribution is the convol-
ution of the distributions of the sojourn times for each state
in the sequence, by the Markov property. The unconditional cycle
time distribution is therefore a weighted sum of convolutions of
state sojourn time distributions, the weights being the probabil-
ities of occurrence of the corresponding sequences of states.

The following formal analysis proceeds on this basis.

4.3 Analytic solution for the Laplace Transform

First, we define some notation:
Consider a cyclic network of M centres and N customers
and corresponding open, tandem network with state space

nisN}

e =

Syy = {nin;20, 1<isM;

i=1

and state transition matrix T defined by

TaB = Pr(Next state is B|present state in o)

(o,B € SNM)
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The state transitions constitute the embedded Markov
chain in the continuous time Markov process assumed for the

network.

. s . +_ . o
Define Roy —{(11,12,...,1n)|n e 2 iigoe S 1<jsn;

NM’

i=s; i =t; T

1 0 #0, 1sk<n} *

Trtk+r
i.e. the set of all sequences of states entered, or souftes,

from state s to state t.

If i (11'12""'ln) € Rgy

then let [i] n, the number of steps in the route i.

Lemma L4.1

For all s,t € Sy, if I (Le R, then lgll = Igzl
and the number of departures from each centre is identical for

r and r .
-1 -2

In other words, all routes from state s to state t have the
same length and contain the same transitions between centres

(as opposed to states).

Proof

If RSt = ¢, the result is trivial.

For RSt # ¢, consider the leftmost centre with at least
one customer in state s, £ say. Since there are no external

arrivals to the network,

+

* " is the set of positive integers.
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(a) t, =0 for i<2
(b) For all r ¢ Rst,total no. of arrivals to centre L = 0O
(c) Thus the no. of departures from centre 2 = sty

for all r ¢ RSt

(d) Thus the total no. of arrivals to centre 2+i = s,-t

for all r ¢ RSt

Now consider centre k, 2<ks<M and assume that for all

r e RSt the number of arrivals to centre k is identical; a, say.

Then a,, = Dno. of departures from centre k
= 3 + 5. -t for all r e Rst
AN A, 1s identical for all r ¢ Roe

The result was shown to be true for k=2, 2+1 and is
trivially so for k<2%.
Therefore by induction, for all r ¢ Rst,the number of

arrivals to each centre is identical, which proves the lemma.

Corollary CL4.1

™ n =1,2,....} are disjoint

Proof

(Tn)ij is the probability that n transitions after

being in state i, the network is in state j. But n is uniquely
determined by i,j so that

(Tn)ij # O for at most one n.
Corollary CCL4.1l

ry # rj for 1 < i#j < lrl, r e Rst

Proof

If not, let r;, = rj =u for 1 < j. Then
{(u)!(ri'ri+1""’rj)}cRuu contradicting the Lemma.
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For o,8 € SNM ' RaB # ¢, let the state transitions for
(r)

route r € RaB occur at times T; (1<i<|r|-1) and let the state

of the network at time t be X(r)(t). Define To(r) = Q and

= (r)_ (r)
=T Ti-1

5, ) (reRyg,1<is lrl-1)
Now let R&B= {rlrsROLS;ri;éB,:lsj'.<|r|}=R0LB here by Corollary CCL4.1.

R;B is used for increased generality, see below.

The cumulative distribution function of the time delay,

C, for the network to pass from state o to state B, (a,B € SNM),is
Gas(t) = } Pr(rla,B8) Pr(Cstir)
rSRaB

since the end states o,B are implied by the route r, and where

Pr{rla,B) = Pr{rlr1= 4T = B}. Now,

r|

lr]|-1 (1)
Pr(Cst]r) = G(tlr) = Pr ) 8y <t
i=1 -

For simplicity, the superscript r will be omitted from

the variables X, Ty and Gi, its presence being implicit. Thus,

£ :
G(tlr) = IO Pr(GIrl_1 < t-u | Tlpj-2 = u) dPr(TIrI—z < u)
t B
= Io Pr(61r|—1 < t-u) dPr(TIrI-Z < u)
since Glrl-l is determined solely via X(t) for t 2 T|r|-2 ’

Tig]=-2 being a Markov tlmg.

Let dv(t) be the distribution function for the time
spent in state v, so that

dX(Ti_1+)(t) = Pr(di < t)

where T, _

i 1+ denotes a time T such that T, _

1 ST
Thus, by induction and since convolution is commutative
(Appendix 3),

|
G(t|r) = * d +)(t)
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which is in fact a well-known property of Markov processes.

Now, X(ri_1+) = ry, the i'th element of route r, so that
lr|=-1
G(t]lr) = * dr (t) and so
i=1 i
lr|-1
Gyg = ] Pr(rla,B) *oap
reR’ 1=1 1
aB
lrl-1
But Pr(rfa,B) = I Tr.r.
i=1 ivi+1
*. for a # B, G,p = ) Toy 9o * G, g ceeeeen. (E4.1)
YESNM

where GYy(t) =-1 for all £t 2 0, Yy ¢ SNM‘ This is so since if
Are R,g With r, = y then either Toy = O OF Ry g = ¢ so that
G = 0.

vg = ©

Let L(s) = j e St ac(e) ,
0

the Laplace transform of G(t) and let Dv(s) be the Laplace trans-

form of dv(t) r V € Syme Then, in similar notation, for a # B ,

lr|-1 )
Lyg(s) = Z’ 'H Triri+1 Dri(s)
rERaB i=1 r cee..(E4.2)
or ) Tay Do (s) Lyg(s)
YESymM /

where LYY(S) =1, for all s 20, v ¢ SNM‘
This result applies to networks in general - in fact to any such
Markov processes. Here it may be written, for all o,B € SNM’

§ (with summation convention on y € SNM)

av™y8 = PaTaylyg * fap

since for Tay #0, R o = ¢ by Corollary CCL4.1 and L 0.

Y Yoo
Under the FCFS and Markovian assumptions, the service
time distribution for each server must be exponential, for example

see [FELL62]. Let the service rate of centre j be “j (1<j<M) and

the total service rate in state u e Syy be A, , so that
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e

1<3j<M
Define the function 6 by

86(u,v) = number of the centre from which a departure causes
a state transition u*v (u,v ¢ SNM) which is undef-

ined if a one-step transition u*v is not possible.

Then, by inspection of the balance equations for the network or

the instantaneous transition rate matrix for the underlying Markov

process,
u
T, —Q%ELXL if a one-step transition urv
4 is valid
o otherwise

By the exponential assumption, the time spent in state u is
exponentially distributed with mean Au-l (see Appendix 4) and

SO

A
u

D.(s) = ———
u s + Au

*
The modified transition matrix, T , is defined by

u
*
T = Slu,v) if a one-step transition u»v
uv s + A
u . .
is valid
O otherwise

'Thus, from equation (E4.2), dropping the prime from RaB’

lrl=-1
Las(s) = ) 1?1 Triri+1 (0,8 € Sy
reR -
aB
where for a = B, RaB = {a} and the empty product gives Laa(s) =1

as required.
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Thus, L o(s) = ) ¥ I T
k=1 reR i=1

B
lri=k

LiTi+1

For cyclic networks, by Lemma L4.l1, only one term in the first
summation is non-zero, but the result still holds in general

networks and is used in section 5.4. Now, for k = 3,

k-1 k-2
I 1 S = ) ¥ I T .- T, 8
i=1 iti+1 Y es r“eR i=1 iTi+1 k-1’
k=1""NM %Yy _q
|lr”|=k=-1

*

rERaB
lri=k
for if A r € Ras with Treq = Yg—q then either no one-step transi-

*
tion Yk-i + B exists so that TYk g = 0, or Ray = ¢.
-1’ k-1

By a simple inductive argument, equation (E4.2) yields the result

z z z T* T* T* T* {T*}k—i
o5 ) s s M2 Y2Y3 T Vk-2Vk-1 Yk-1-f a8
Y285yM  Yk-2%°nM Yk-1%°nM

0 « k-1
and so Lyg(s) = } T }GB
k=1
Note that for cyclic networks the single term on the r.h.s. is tri-

vially obtained from the second form of equation (E4.2). Thus,

L .(s) = (1-71)"2 (E4.3) 7
- B e .
since T is a stochastic matrix and for s>0, Dﬁ(s)<1 for all ueSNM ’
k
*
so the series converges. In fact here Jkezt s.t. (T ) = O since

ultimately the network has no customers and can have no transitions.

Define S, = {nl neSyy ¢ Iny=N, n >0 }, the set of

initial states with the test customer at centre 1. In what follows,
the state labelled "o" is that in which the open network contains no
customers and state o ¢ SI' Let the cycle time distribution con-
ditional on start state o be denoted by G(tla) with Laplace trans-

form L{(s]a) so that G(t|a) = Gao(t) and L(sla) = L, (s).

+ This clearly satisfies equations (E4.2) which may be written

(I-T )L = I in matrix form by Corollary CCL4.l.
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The unconditional cycle time distribution,

G(t) = ] Z(a) G(tla)
aeSI

where Z(a) is the equilibrium probability for state a in the

closed network. This has Laplace transform

-1
*
) Z(a) (I -T), P - )

aeSI

L(s)

Now, using the result in [MITR79], for n e S
M -n.;
i
EVL
Zz(n) =
G(N-1)

I

where G(N—-1) is the normalising constant for the closed network
with one customer removed. The visitation rates are all taken
to be 1 since the network is cyclic.

Computational techniques for efficient evaluation of

the Laplace transform, L(s), are discussed in section 4.7.3.

4.4 Numerical evaluation of the moments of cycle time

distribution

The p'th moment of the cycle time distribution is

well known to be p!Mp where

_ 3P P
M - (=) [—dp L(s)]
p: ds s=0

so that any moment may be evaluated by numerical evaluation of
the derivatives of L(s) at the origin. This is of course the
most difficult area in which to perform the calculation, but the
simple linear method has been found to converge perfectly

adequately for calculation of the first two moments. Thus
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M, = - lim L(a) -1
A->0 A

u, - % 1im  DL(28) - 2L(8) + 1
A >0 A2

The method used in the APL function NM (Appendix 7)
evaluates Ml and M2 with successively smaller values for A until
the user defined precision is achieved, whereupon the mean and
standard deviation are produced.

Clearly more efficient and reliable numerical techniques
exist for computation of the moments, and may be implemented,
especially for the higher derivatives. However, discussion of

such techniques is not appropriate here.

4.5 Analytic result for cycle time distribution moments

From the expression for the Laplace transform of
the cycle time distribution (E4.4), a formula for the p'th moment
of the distribution may be derived in terms of the derivatives
of T* with respect to s. The result is given by propositions

P4.1 and P4.2 below, using Lemma L4.2 which precedes them.

Lemma L4.2
Let A(s) be an (n x n) matrix with elements dependent

on the variable s. Assuming A is differentiable w.r.t. s,

where A =
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Proof
Let B = at
n n
Then y Byjy Ay = ) Ajy By = O3 (1si,ksn)
where Gik is the Kronecker delta,

where the summation convention is applied for doubly occurring

suffices.

L. B ik = Glj B ik = -(Ba B)zk as required.

Proposition P4.1

Let F(s) = (I - A(s)) *
Then
p |m| - (m; ) -
FPl(s) = ilB F(s) = p! ) 1 a7 a t -
ds Im] - ji=1 m; .
I TP
1=1
m.>0
J>
1<j<(m|
(m) _ d&"a . .
where A = =4 and |m| is the number of components in m
ds
so that |m|=p.
Proof
The proof is by induction on p.
For the case p=1, the formula gives
(1) 1 -1 ,(1) -1
F'''(s) =} 1! 1 (I-A) -~ A'"’ (I-A)
1
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which is true by Lemma L4.2

Now assume the result is true for derivatives up to the p'th.

(p+1) - d L(p)
F (s) = s F (s)
= X+ Y say
where
Im| 13-1 _, (m.) _, (my+1){ Im] - {(m)
) - p {I-3) a L (1-a)"ta 3 1 {I-3) ia %
P mi! m.! mi!
Im,=p j=1 |i=1 J i=j+1
mi>O
and
Im|+1] j-1 (m;) Im| _, (m.)
DY (z-a)"1a * (-a) "1a (V) (z-a)"'a
I P ! T T I o
Im, =p 3=t i=1 * i=j *
mi>O

with slightly abbreviated notation.

First consider X
n‘ =

i
n_ —3

J

Then,
In|
X = ) p! I

Zni=p+1 j=1
n.>0 n.>1

Now define k for

and for each m,j define n by

m, (12i#3<iml)
.+
mJ 1
In| _, (n.)
(1-3)"%a *
n, I 7
J n; .
i=1
each m,j by

(I-2)"
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(3) -
ki = my
kj(J) - 1
(3) -
ky = My
Then,
(ki ki
Y = ) p! ] ky 0
Zki=p+1 j=1 i=1

(1<i<3)

(J<is<|m]+1)

Thus, re-labelling ki by ni in the expression for ¥,

In| In |

X+Y = ) p! 1 ny

Zni=p+1 j=1 i=1

n.>0

In|
but ! n, = p+1, so

Jj=1
r(P*) (5) = x+v¥ = T (pt1)

which proves the proposition.

Proposition P4.2

(k,)
-1 i
(1-a) "ta -
ki: - (I-a)
(n,) ]
(I Al?l .A I (I-A) 1
i
In _, (n.)
1 I-2) %A L
n, !

The p'th moment (p21) of cycle time distribution,

p!Mp, is given by
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mj
M, = 1z ) T (-1 T (my) b (1-m) 7!
nes. |m| i=1 n o
I m =p
i=
mi>O

in the notation of section 4.3 wherein Z(n) is given and where

- _ uv
T uv (mi) - m,

Proof

*
Setting A =T and s=0 in P4,1,

A(O) = T and
(m,) m,
a Yo = (-)tm Tuy
, v
A 1
u
m.,
so P ) = pr 7 {m (1-1) 1 (=) 1T‘(mi)} (z-m) 7
i
Zmi=p
mi>O

= ()P p: ) { I o(1-m)7? T’(mi)} (z-17) "1
i
Zmi=p
mi>O
P
and M = i—%— ) Z(n) [ F(p)(O)] as required.
P p: - n o
nes; =

Computational techniques for the evaluation of the
moments of cycle time distribution are discussed in section 4.7.4,
with particular attention paid to the first two moments.
Frequently these moments will be the only ones required, in
particular if independence of successive cycles is assumed and
the Central Limit Theorem applied to give predictions about

response time distribution.
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4.6 Discrete form of cycle time distribution

4.6.1 Introduction

So far the cycle time distribution for cyclic queueing
networks, under certain assumptions, has been derived exactly
in the form of its Laplace transform, section 4.3, and its set of
moments, sections 4.4 and 4.5. 1In this section a technique is
described by which the distribution itself can be derived
approximately in discrete form. The approach taken is to express
the constituent, negative exponential, distributions involved in
the weighted convolutions of section 4.3 in discrete form so that
the convolutions can be computed directly, without resorting to
the method of multiplication of Laplace transforms and subsegquent
inversion by some means. Of course this introduces an approxim-
ation in the method at the very first step, but by choosing a
sufficiently fine mesh on the time axis, a good representation
of the exponential distributions can be achieved. The numerical
results obtained for cycle time distribution show good agreement
with corresponding simulated results as well as for the mean and
standard deviation computed exactly as described in the preceding
sections (chapter 6). Furthermore, it is shown in this section that
the result of the method converges to the exact distribution as the
mesh size approaches zero.

In any case, it must be remembered that any queueing
network analysis representation of computer systems is inevitably
approximate anyway. There is no reason to presume that the dis-
crete form of the negative exponential distribution (step function
in continuous time) is any worse an approximation than the more comm-
only used continuous form, even though the latter form is a necessary
assumption for Markovian analysis. Thus, even without the con-
vergence property referred to above, the discrete analysis would be

worthwhile in its own right.
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4.6.2 Deviation of the approximate result

Recall from section 4.3 that the cycle time distribution
for a cyclic network is denoted by G(t) and that of time spent
in state v by dv(t),'vESNM, where dv(t) is negative exponential

with mean Av-l.

Now, the discrete form of a continucus (cumulative)
probability distribution F(t), t=0, with mesh tj=jA of size A,
j=1,2,.... defined on the t-axis, may be defined approximately

for a random variable JeZ” by

Pr(J < j) P(j) = F(tj)
so that the (non-cumulative) discrete distribution

Pr(J = 3j) = p(3)

F(tj) - F(t ) (t22)

j-1

and p(1) F(t,) = F(a)

Thus, in the case of a negative exponential distribution

with mean A~ ! for F,

-AA (J-1) -AAJ
p(3) = e - e (j=1)
-AA
i.e. p(1) = 1 - e
~AA
p(3) = e p(j-1) (3=22)

which is geometric, where an integer random variable J corresponds
to continucus time T = JA.

—AvA

Let x, = e - and P, be the discrete approximation

for dv' the distribution of the sojourn time in state v of the
network.

Then, p,(3) = (1 - x,) x,77* (521)

and pv(O) is defined to be O.
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Denote the approximate discrete time delay distribution

from state s to state t¥s by Hst : s,t e SNM‘

Now, in the discrete domain the Z-transform or
probability generating function is analogous to the Laplace
transform in the continuous domain in that the Z-transform of
the convolution of (discrete) probability distributions is equal

to the product of the Z-transforms of the individual constituents.

Let the Z-transform of Hst be denoted by Hst(z)
defined as

@

Ho,(2z) = I T (1) z

(s,t € SNM)

i=

where Hst(o) = o}

st
so that the probability of passing from state t to itself in
time zero is unity.

Then, by a derivation identical to that given in

section 4.3 for the Laplace transform in the continuous time

domain, the result analogous to equation (E4.3) is

-1
(z)} st teesesseaeas (EBL.5)

where T (z) = T ] oz x (1 - x,) (4, v e Sgy)

the summation being the Z-transform of Py-

+ Tuv(i - xu)z

Thus, T uv

(z) =

1 - X 2
u

The fact that state t is not, in general, o does not affect

the analysis.
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Now, from equation (E4.5),

H - T+ H

]
]

in matrix notation, pre-multiplying by the right-hand side.

- — +
vl Hop = Sg¢e ) T su Hup
ueSNM
so that
(1 - x,2z) Hy, = (1 - x.2) 8§, + (1 - %)z ) Toy Hut
ueSNM

Then, by comparing coefficients of the powers of z,

o . _ .
27 Hst(O) = 6st as defined
2t . m_, (1) = (1-x_) ¥ T I (0)
* st s su ut
ueSNM
J o . G = -
z7,J22 I, (3) = =x, O . (3-1)
+ (1-x) 1 Toy Mye (3-1)
ut-:SNM

Now define xt= O so that the transition &ime from state t

is zero.
A derivation of the same result from first principles,
using the geometric property of '{pvlv € SNM} given in Appendix

2, is given in the author's paper, [HARR79%9al.

Thus,

Moo (3) = [ x4 O (3-1) + (1-x) [ T, M. (3-1) (3=1)

UeSm

st
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which enables Hst(j) to be computed by a simple iterative
procedure. The same recurrence relation and initial condition
still hold whether or not Hst is cumulative, the cumulative

result being given by choosing

Ttt=1

and the non-cumulative result by choosing

T =0

tt

That this is so may be seen as follows:

by setting s=t, so that

{Htt(j)lj = 1, 2,...}<=>Ttt

Now, for j=1,

Mo (3) = xg M (3-1) + (1-x_) } T (3-1)

uFt

su IIut
+ (1—xs) Tst Htt (j-1)

so unique solutions for Hst(j) are given by the initial condition

Hst(o) =46 together with

st

{n (k) [ k>0} <=>T

tt tt

Finally, if T, =0, 3 =0, 1, 2,....

t
Tee(3) = 850

giving a non-cumulative discrete distribution, and if Ttt= 1
I..(3) = 1

giving the cumulative version.
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The computational technigques for the evaluation of
the discrete form of the cycle time distribution are fairly
straightforward, the most significant points being discussed
in section 4.7.5.

Although exponential service time distributions have
been assumed in the derivation of equations (E4.6), the argument
of section 4.3 gives the following equation analogous to equation
(E4.1):

For s,t € SNM ; S # t

== *

Hst Z Tsu ps Hut
ueSNM

and Hss(z) = 1 for all & =2 O.

This is, of course, satisfied by the equations (E4.6) but it is
also clear that the convolutions could be performed numerically and
directly, although somewhat less efficiently, regardless of the
form of the distributions, Pg- Nevertheless, it must be remembered
that the exponential assumption is required in other parts of the

theory.

4.6.3 Error bounds and convergence properties

The accuracy of the results will obviously vary
according to the choice of A and may be assessed by comparing
them with corresponding simulated results or the associated
moments with their exact counterparts, derivable as described
in previous sections. The results for the networks analysed may
be found in Appendix 8 and show good agreement.

Bounds on the exact discrete form of G(t) are given
by the following Lemma and Proposition, from which it is then

shown, in proposition P4.4, that the method converges to the
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exact result as A approaches zero.

Lemma IL.4.3

Given continuous (cumulative) probability distributions

FP(t) and FQ(t) (=20, teR)+ represented in discrete form by P (i)

and Q(i) (i20, ieZ),n e 77, A e R s.t.

P(i) = FP(ti)' P(O) = FP(O) = 0,
Qi) < FQ(ti) < Q(i + n)
where ti = iA;
let FR = FP * FQ and R=P *Q
i i-1
so that R(i) = § p(i-3)Q(3) = § Q(i-j-1) p(j+1)
j=0 j=
in which p(3) = P(3j) - P(j-1) (3=1)
p(0) = P(0O) = O
i+n
then R(1) s Fp(ty) < R(i+n+1) - )} Q(i+n-3j) p(j+1) (i20)
j=i
Proof
- t
FR(t) = [ FQ(t—u) dFP(u) and so
u=0
i-1 (j+1)A i-1 (j+1)A
) ( FQ(ti—tj+1)dFP(u)SFR(ti)s y Fo (£5-t4) dFp (u)
j=0 Ju=jA j=0 ‘jA

since FQ is an increasing function.

i-1 i-1
Ste L Q(i-3-1)p(3H+1)sFp(ty)s [ Q(i+n-3)p(j+1)
j=0 j=0

+ R is the set of all reals, Z is the set of all integers.
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using the given inequality, which proves the Lemma.

Corollary CL4.3

R(i) < FR(ti) < R(i+n+1) (1i20)

Proposition P4.3

Let the probability distribution of the time to pass
from state a to state B (a,B € SNM)’ denoted by Gas(t)' have

exact discrete form

Yog(3) = Gyplty) (320)

where tj = jA.

Then Has(j) < Was(j) < Has(j+2a8)

where QGB = |r| for r € I&B which is well defined by

Lemma L4.1.

Proof
For zas =0, a =8 and Gas(t) = 1 for all t=0
Was(j) =1 for all j=0
But Has(j) = 1 for all j=20 by definition.
Suppose inductively that the result is true for all o,B € SNM

s.t. gaB < n and consider a ,B” € SNM s.t. 2a,s, = n+1.

Now, by equation (E4.l1) section 4.3,
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- - - r Pl ”
o B ) Ao * Cyge Tyry (@”7#87)
‘Y€SNM
[ 1 (a”=B")

By Corollary CL4.3, for j =z O,

(pa, Y Y Ta’v] (3) = [ d,- * Gy g Ta’Y] (tj)

- * - -~ j
< ( Py wYB Tu Y] (j+1)

since pY is the exact discrete probability distribution for the

time spent in state y, with cumulative distribution PY(j) = dY(tj)'

Thus, by summing over Y € SNM’

- * - > i aL, o~ . - - ) j
I Pys * ¥ygr Tuoy| (B)s ¥yoga(e) s | T py- Yygs Taoy| (32)

€S

For all vy ¢ SnyM S-t- Tu'Y # 0, RYB— =n by Lemma L4.1, so that,

by the inductive hypothesis,

and so the result follows by linearity on substitution into (*).

This proposition supplies fairly coarse bounds for the
exact discrete distribution, waB’ particularly for routes
r € RdB with large path length zaB‘ Tighter bounds could quite
simply be applied in practice by successively applying the more
precise result of Lemma L4.3, but this is considered unnecessary

in view of the following proposition and its corollary.
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Proposition P4.4

As A »> O, Tyg(3) > ?aB(j) for all a,B € Sy’

j20 € Z
Proof
Since the network considered is open with no arrivals,

or alternatively because the transition matrix T is lower

triangular, 3ne ¥ s.t. T = 0.
o For all a,B ¢ SNM’ zaB < n
. WaB(j) < HaB(j+n) < ?aB(J+n) {j=0)

by Proposition P4.3.

Now, GaB is continuous since it is a weighted sum of convolutions
of exponential distributions (or alternatively since it has

rational Laplace transform as derived in section 4.3) so that

for all € » 0, 3 6aB € R s.t.
| GaB(tj + né) - GaB(tj) ] < e for all § < 6aB
i.e. | ‘yaB(j + n) - ‘PaB(j) | < €

if A is chosen to be less than GaB.

Thus the proposition is proved for Hus(j) if j =2 n.
For j < n a similar argument is applied using a lower bound
of O rather than Was(j) in the double inequality and replacing

GaB(tj) by 0.

Corollary CP4.4

Let the exact discrete form of cycle time distribution,
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G(t), for times t = t t t2,..., (t5 = O0), be denoted by

o’ "1f 0

¥(j) (3=0), so that ¥(j) = G(tj).
Then as A + O, the unconditional discrete distribution approximation,

I3 = [ 2(a) M, (3) + ¥(3)

C!.ESI

Proof
Trivial by the simple linear relationship of I

in terms of Hao (¢,0 € SNM)

4.7 Computational techniques

4.7.1 Outline of the section

This section presents the methods used to compute
efficiently the various quantities related to the cycle time
distribution. One of the first problems encountered is the
representation of the transition matrix T and its modified
version T*(s), which requires a mapping from the state space,

SNM to the positive integers, z*. This problem is addressed in
section 4.7.2. The following sections 4.7.3, 4.7.4 and 4.7.5
describe the non-straightforward techniques used in the numerical
evaluations of the Laplace transform, L(s), the moments (computed

via the analytic method) and the discrete form of the cycle time

distribution respectively.

4.7.2 Representation of the transition matrix

Given any state n € SNM it is a simple matter to list
the possible states accessible from n via one~-step transitionms,

A(n), and derive the transition probabilities:
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(a) n i+ ni+1 + 1

(b) n‘l = n; - 1 n, > o}
1<i<M

(c) n‘j = ny (3#1i, i+1)

where (a) is null for the case i = M.
In the notation of section 4.3,

o (n,n")

T - =
nn An

a result which is immediate from the instantaneous transition

rate matrix.
In order to construct T for computer representation,
some ordering on the state space, SNM’ is required, i.e. a

mapping : Sy * z2*  and its inverse.

Definition D4.1

The mapping fNM HV AR 4 SNM is defined as follows:
(1) fyn(1) = QO where n =0 if n;= 0, 1<isM
(ii) Given fNM(i) = n
fym(itl) = n"
where n M = nM + 1 M
if ) ny<N
n” = . j < M j=1
5 ny (3 ) J

Otherwise, let k be the maximum integer such that

nk+1 # 0, 1 £k s M-1. Then

n k = nk + 1

- = o) j>k
nJ (Jv)
n’. = n. (j<k)

J J
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This mapping means that the states are numbered consecutively
according to a counting system modulo N with M digits subject
to the constraint that the sum of the digits cannot exceed N;

i.e. the infeasible states are omitted.

Proposition P4.5

The mapping fNM is a 1-1 correspondence.

Proof
The proof is by induction on the number of centres

in the network.

(1) For a network of one centre the result is trivial:
le(l) (i - 1) (1 < 1 s N+1)
(ii) Suppose the result is true for networks of less than

m centres and N customers, for all N ¢ Z+, and consider state

n € st‘ If n, = O the result is true by the inductive hypo-
thesis applied to centres 2,3,....,m since by Definition D4.1
me(l) = O’fN,m-i(l) for 1 < i < kg

where a = x,b 1is such that

a, = x

a. = b. 2 < 3j< |bl +1

3 -1 ( J b )

and fN,m—1(kO) = (N,0,0,...,0)

By Definition D4.1,

me(kO+ 1)

(1,0,0,...,0)
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and for k1 2 i 2 k0+1

f

Nm(i‘) = 1,f

N—1,m—1(i'ko)

where £ (k

N-1,m-1'kq) = (N-1,0,0,...,0)

1

Thus the result is true for n,=1 by the same argument.

By applying a simple induction argument to n, the proposition

1

is proved.

Proposition P4.6

The representation of the transition matrix with

states numbered according to the function f is lower triangular.

Proof

The proof is by induction on the number of centres

in the network.

(i) Trivial for networks of one centre.

(ii) Suppose the proposition is true for networks of
less than m centres and N customers, for all N ¢ Z+,
and consider state n e Sy .

If n, = O, the proposition is true by the inductive
hypothesis.
Otherwise, consider a transition from state n to

state n” (n,n% Sy ).

Suppose this transition is caused by departure of a
customer from a centre other than centre 1. Then by definition
D4.1 the inductive hypothesis may be applied to centres
and the

2, 3,¢¢..o,mwith N - n, customers, i.e. to SN

1 -nl,m—i’

proposition is true.

Otherwise, the transition is caused by a departure

from centre 1 which results in a state with lower valued numbering
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(by Definition D4.1) which is unique by Proposition P4.5.

Now let gy, = f-lNM for the network Sy,.
Proposition P4.7
m-1
N- I k.
R 1
M 1=1 M+n-m
guuk) = 1+ I I'm [ }
=1  n=1+N-I k, n
. i
i=1
r r! +
where = —_— (r,s € Z2')
s s! (r-s)! '
and k € Syy.
Proof

As usual, this is by induction on M. For M = 1,

the result gives

Iyq (K)

|
-
+
~ 3
———————
o o}
| S

1+N—k1

= 1+ k1 as required.

Suppose the proposition is true for SNM’ If
k e SN,M+1 and k, = O, then
m
M NI
M+ n-m
=1+ ] ! mas i
m=1 n=1+N- I ki
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m-1
N- X ki
M+l 1=1 M+1+n-m
= 1+ - _
m=1 n=1+N- 1 k,
i=1

by renumbering and since k1= O with the term for m=1 being zero.

If k1 # O, by Definition D4.1 and Proposition P4.5,

M+ N
9N, M+1 k) = N + IN-1,M+1 (k1'1' kz""'kM+1)
N M+ n
= Z n + gN-k1'M+1 (olkZ’ooo,kM+1)
n=1+N—k1

by induction on k1 or direct substitution

m-1
N- I ki
M+l 1=1 M+1 +n-nm
=1+ ] - )
m=1 n=1+N- % ki
i=1

using the above result, so completing the proof.
The function fNM’ the inverse of Iym’ maY be
evaluated using the following relationships which follow -directly

from definition D4.1.

gNM (il Ol of"'l O) < gNM(']i) < gNM (jl ol-'-I O)
for all i,j € 7t s.t. i< k1’ j =z k1 + 1
and gNM(E) gNM(kll Ol-o-"o) - 1 + gN_ki’M_i (k2’k3’-.o'kM)

(k& Syy



_77..

The inequality may be used to determine the number
of customers at the leftmost centre in a network, and the
equation enables it to be applied to a network with that centre

removed, so allowing successive components of k to be determined.

The functions fNM and IyM are implemented in the

APL package (Appendix 7) as NTS and STN respectively.

Now, let the transition matrix, T, be represented

under the mapping g by T”. Then,

for i,j e 2V, £(1), £(3) ¢ Sy

i3]
defined in section 4.3. This determines the values for every

T”,. 1is assigned the value Tf(i) £(5) which is
14

element of T” since, by definition D4.1 and proposition P4.5,
{gm) | n e Sy} is a consecutive set of integers in the range
L 1,18yy! 1. Henceforth, the prime on T” will be dropped, no
ambiguity being present since a mapping g can only cause a
permutation of rows and columns.

Clearly the size of the transition matrix T, and so

* A -
of its modified form T and (I-T ) 1!

r Will grow rapidly with
the size of network considered; for the case of M servers and
N customers, the number of components will be the square of

M+ N _ :
. However, the matrix is very sparse, with at most

N
M non-zero elements in any row (corresponding to transitions
from each occupied centre), and sparse matrix techniques may be
used to advantage with respect to both storage and computation
time used.
A one dimensional representation is used in the APL

package of Appendix 7 in which the non-zero matrix elements only

are stored in a vector in column order for successive rows.
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Two control vectors are associated with this vector; one to
indicate the column positions and one to indicate the indices
at which successive rows begin.

The storage requirement will be bounded above by

M + N)
M x (vector of values of non-zero matrix elements)

\ N ) ‘
(M + N)

+ M x (vector of their column positions)
\ N J

+ (M + N) (vector of pointers to delimit row boundaries
. N ) in the above)

M+ N
= (2M + 1) storage elements.
N

Of course the second and third contributions to this
aggregate will require smaller storage elements than the first
since they are integer valued as opposed to floating point.
However, the huge saving in storage is evident. In the APL
package of Appendix 7, the transition matrix is constructed in
this form by the function TRM.

The actual implementation of the sparse matrix
operations required for the computation of the Laplace transform,
moments and approximate discrete form of the cycle time distri-

bution is discussed in the following three sections.

4.7.3 Computation of the Laplace transform, L(s)

The formula for the Laplace transform of the cycle

time distribution was derived in section 4.3 as

1

L(s) = ¥ Z(@) (I -T)" 0o

aeSI

where Z (a) is a product form expression for the initial state
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space probabilities on arrival of the test customer at centre 1.
Thus Z (o) is easily obtained, and in the APL package (Appendix
7) it is computed during computation of the transition matrix T

for the relevant states a ¢ SI c SNM‘

The more significant problem is computation of

1

* - -
(L -7 ) ~. Under the mapping %Né : 8 - Z+, let o map into

NM
a, 8y, and S; to S’NM and S‘I respectively. For brevity
denote (I - T*) by X, the components of which are ordered
according to the function fNM'
By proposition P4.6 the matrix X is lower triangular
so that the inversion requires only a back substitution process,
giving greater accuracy as well as efficiency compared with a
general inversion. Furthermore, for cyclic networks (but not
for the more general "tree-like" networks considered in chapter

5) only the first column of the inverse is required (correspond-

ing to state o ¢ SNM)'

Thus (X -1)a1 is given by :
-1 _
(X Y14 =1
a-1
-1 _ * -1
(X "7),, = ) T ay (X 7Dy (2 s asW
j=1

where W is the total number of states, the order of SNM'

The simplicity of this calculation, because X is lower
triangular, is due to the fact that the open network's states
are all transient and the network will always end up in state o.

* -
The equivalent expression derived before (I - T ) 1

in section 4.3 was the (finite) sum

) () = R say.
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*
Then R = I+T R
SO Rii = 1 (1 =i 5 W
W
*
and Rij = ! T ik Rkj : (1 < i#j < W)
k=1

Thus usage of either the inversion or power series
methods are also seen to be equivalent computationally, although
compared with direct summation of the powers of a matrix, the
back substitution method would clearly be superior.

The back substitution process for computing (I--T*)-'1
is performed by the function ESB in the APL package of

Appendix 7.

4.7.4 Computation of cycle time moments

Using proposition P4.2, any number of moments of the
cycle time distribution may be computed. In particular, if

Mp is written as

M
P

nes

no

I

. . . . 1 (2).
and it is required to find M1 and M2, then Q( )no and § nho

must be evaluated for n ¢ S;. From proposition P4.2

o (1) = antrw (@-n7?
and q(2) - w(271) w(202)
where ¢ o D IICAE: S CONG 2 Rk S CORNE 2 S
and w(2:2) o (-7l o7 (2) (z-m) 7t
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Now, by the state numbering definition, D4.1, the
state o is allocated number 1. Let n = £ ‘(n) (n e S1)s
. + . - . s .
then in the Z - space corresponding to SNM’ S nm¢ it is required

Q(i) and 9(2) where &, w, T and T” take their
n 1 n 1

to evaluate

: . +
representations in Z -space.

In the sparse matrix one dimensional representation of
T and so, by simple division, of T°, as described in section 4.7.2,
it is a simple matter to perform the operation of post-
multiplication by a vector or a matrix in either uncompressed
form or else represented linearly with respect to columns as

opposed to rows, the method used here.

Now returning to the general case, Q(P) (pz1) is a
n 1
sum of terms of the form

h 1
I (I-T)];il_lji T'(mi)jiki t (I-T)k';1 (with summation
i=1 , convention)
where kO = n, for some m; heilt; 1<i<h.
Now, it was shown in section 4.7.3 how (I-T)-ik 4 can be

e

evaluated by simple iteration for k € S NM®

Working from right

to left in the expression,

- _ -1 . .
T (mh)jhkh (I-T) khi is also easily evaluated in

the representation of T  described above, to give, say, E ’

Jpl
another vector. Now,

1

(I-T7)" . B, , denoted by E° , say, is the solution
to the equations
(I-T)ij E 31 = Ei1 (i,7 € 8 NM)
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which can be solved by direct back substitution as in the case of

computation of (I-T)-li1 in view of the fact that the matrix T is

lower triangular. This is accomplished by the function HSB in
Appendix 7 .

By continuing the process, E. and E~ may
321 kz_lrl

then be computed for £ = h-1,h-2,...,1 where

=
I

and
T (m

t=
[

Ex 1

)
L kz 2

Iy
are partial products.

Thus, in principle, it is not a difficult programming
pProblem to compute any number of moments, MP' In the
package implemented (Appendix 7), M and M

1 2
provide mean cycle time and its standard deviation, by the

are computed to

functions THM and MOM. The post-multiplication of the matrix T
in compressed form is accomplished by the function SML. A major
reason for limiting the calcdlation to two moments only, apart
from time consideration, is concerned with the future application
of the Central Limit Theorem in the prediction of response time
distribution, in which case higher moments are not necessary.

This is discussed further in section 4.10,

4.7.5 Computation of the discrete form approximation

The discrete form approximation for cycle time
distribution may be computed using a simple iterative method

based on the recurrence relation, (E4.6) in section 4.6, for
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I the (discrete form) time delay distribution corresponding to

st’
transition from state s to state t in any number of steps.

For cyclic networks (but not so for the more general
tree-like networks considered in chapter 5) the state t is
always state o, that representing an empty network, and so Hso
is a vector. Thus, no new techniques are required to compute

I :
sO

(i) The total service rates are pre-computed during
construction of the state transition matrix, so

Xg is readily available for each s ¢ SNM ;

(ii) The initialisation of the Hso(j) for j=0 is trivial;

(iii) The post-multiplication of the transition matrix T,
in sparse form, by the vector II(j-1) is accomplished
simply as described in the previous section, owing to
the availability of the column oriented form of the

vector second operand.

(iv) The unconditional, approximate discrete form of the
cycle time distribution is then easily computed via

the expression

3 o= [ 2(s) T (3)

seSI

The functions which perform the computation of the discrete cycle
time distribution approximation are DIS and DST, to be found in

Appendix 7 .
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4.8 Laplace transform inversion

Although an approximate, theoretically convergent method
was developed to give a discrete form of cycle time distribution
in the previous section, the only exact result derived is that
of its Laplace transform and hence its (infinite) set of moments.
Of course this is theoretically equivalent to the distribution
itself, but it is impossible to interpret intuitively, although
the lower moments are obviously useful. Moreover percentiles
cannot be computed directly for the distribution. Thus, at first
sight, it may appear that inversion of the Laplace transform is
desirable.

However, as will be discussed at greater length in
section 4,10, the most important distribution is that of a sum
of successive cycle times; representing response time in an
interactive computer system for example. In order to characterise
such a distribution, usage of the Central Limit Theorem is
proposed under appropriate assumptions of independence. As a result
the distribution is assumed asymptotic Normal with only the first
two moments therefore being required from the constituent cycle
time distribution. In this way, the appearance of an individual
cycle time probability distribution, whilst still undeniably
useful, particularly with respect to identification of system
imbalances revealed through unexpected peaks, becomes less
important to the analyst.

In papers by Lazowska, [LAZO79, LAZO77al], methods are
developed for fitting parameters to phase type servers in queueing
network models of computer systems, by matching the Laplace
transforms of their service time distributions at certain points.
The chief advantage of this approach is that performance measures

of the server in question may be determined via such a Laplace
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transform, evaluated for certain (Laplace) parameter values,
so that the calibration process is performed directly with
respect to the main measurements of interest. This is not
always the case when the classical method of matching the first
two or possibly three [SAUE75] moments is used. This, then,
provides justification for the computation of Laplace transforms
of distributions of time delays in gqueueing networks, even when
the distributions themselves may be available.

There are in fact two possible approaches to inversion

of the Laplace transform of cycle time distribution:

(a) Numerical, in which from a set of values for L(sj)
corresponding to values sj (j e Z+) of the Laplace transform
parameter s, some aistribution, GE(ti) say, is estimated for

times t;e R* (i € Z') to give a fit to the L(s;) which is
optimal in some sense. However, this gives a discrete
approximation which can be no better than the convergent result
described in section 4.6. Unfortunately such numerical inversion
is exceedingly difficult in view of the smoothing process implicit
in the taking of a Laplace transform; in fact the definition of

L(s), the transform of G(t), may be written

L(s) = E(e-sc)
where C is a random variable s.t.
Pr(C s t) = G(t).

Thus L(s) is the average w.r.t. the distribution G(t)
of a smooth analytic function and any irregularities in
G(t) will be smoothed out to a very great extent in the
transformation. This heuristic argument indicates the
difficulties that are encountered in numerical inversion of

Laplace transforms. Nevertheless, programming packages which
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perform such inversions have been constructed, e.g. [CAVE78].

(b) In Appendix 1, a recurrence relation is derived to give
the distribution of multiple convolutions of negative exponential
distributions with different means by inversion of the product
of Laplace transforms. The method evaluates the residues at the
poles of the Laplace transform in the complex plane to perform
the Bromwich integral. The expression for L(s) derived here

is a weighted average of just such convolutions, so that in
principle the same method could be used. However, the method
was developed for the much simpler applications described in
chapter 3 and the extension required is certainly not easy.

In any case the recurrence relation of Appendix 1 is exceedingly
complex, even for quite simple cases, so that the computational
problems alone would probably be prohibitive, in spite of the

fact that identification of the poles is straightforward.

To sum up, it was not considered worthwhile to pursue
the inversion of the Laplace transform, L(s), for the following

reasons:

(a) An approximate discrete form for the distribution

has been derived (section 4.6) and is convergent;

(b) The distribution of prime interest is that of
response time, a summation of several consecutive

cycle times;

(c) Inversion of Laplace transforms poses many problems.
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4.9 Decomposition Methods

Cyclic, and their associated tandem, networks may be
analysed in sections and the results for each such sub-network
combined to provide a solution for the whole network. This
approach is very similar to that adopted in [HARR78al, but here
it is exact. The reason for considering such decomposition
methods is one of computational efficiency, with respect to both
storage and execution time, achieved by consideration of smaller
state spaces.

In this section, a tandem network of M centres with
NM is

considered. Such a network may be successively decomposed into

a maximum of N customers, CNM’ having state space S

sub—networks CNm’ i<msM, with state spaces SNm where CNm consists

of centres M- m + 1), M- m + 2),...,M.

(1) B .
Let SNm c SNm denote the sub-space of valid start

states which may exist on entry of the test customer to the first

centre of the sub-network CNm’ so that

SN (1) = S in the notation of section 4.3.
M I
N+M
Now, the order of SNM’ISNM] = y
so that Sym!  _ oM o M-1) ... (m1) < VR
ISNMI (N+M) (N+M~-1) ... (N+m+1) N+M

Thus the sub-networks considered can possess considerably
smaller state spaces than that of the whole network. Furthermore,
as will be seen below, it is not necessary even to represent the

whole of the state space Sgy.
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Let G(m)as(t) be the probability distribution function

for the time taken for the network CNm to undergo transitions

to B e S and let T™ pe the state

from state a € S Nm

Nm

transition matrix for the network.

Then, in the notation of section 4.3,

= (M)
G(t) ) Z(a) G (t)
asSIcSNM
or Gitla) = My (@ e S_ c S
0.0 I NM
Now for vy € Snm (1 <« m< M-1), define the state space
vector Y(m) e Sy for m < m < M by
m
(m) - —_— .
Y i = Y5 (m-m"+1 < i < m)
0 (1 £ i s m-m”).
Heuristically, Y(m) represents the inclusion of state vy
into SNm (m > m”)by allocating zero customers to all the

additional centres attached on the left of CNm’tO form CNm'

With this notation, for all m”, m > m” 2 1 and for all BESym

s.t. 38" e s, . with g=g"™,
(mm”) (m) -
(m) _ (m”)
G aB(t) (1) Pay(m) Ga (m) () * G YB'(t)
YsS . Y
Nm
where
(mm”) _ (m) _ (m)
PP e T Xy o L% e Ten
6esS
Nm”~
anda x ™ = (r-7®™),)-1,
P(mm') is the "first entry probability", derived in

oy (m)



_89_

Appendix 5, which ensures that once a state Y(m) (y San)
has been entered, the subsequent state transitions are convoluted
w.r.t. the network CNm" Thus the domain of summation implicitly

involved in the weighting of the convolutions is disjoint w.r.t.

routes RaB’ defined in the state space SNm'

This result follows because

(a) The time of entry into any state vy ¢ SNm‘(I) is a
Markov time; and
. (1)
(b) For all r ¢ RaB , 3i s.t. r; € Syp”
and so the domain of summation spans the whole of
RaB and is disjoint by the above argument.
In particular,
(Mm~) (M) .
ctla) = c™My(yy = 7 P g € gp (8 + ™) (¢)
Qo Yeséi) ay ay Yo

for 1 <m < M-1
The corresponding (general) result for Laplace transforms is

(mm*)  (m) .
t™s) = ) P L (s) 1™ (s

(m) (m) -
(o 13] (1) oy ay Y8
YESNHF

where L(m)(s) is the Laplace transform of G(m)(t).
aB aB

By making this decomposition, two advantages are gained

with respect to efficiency:
(a) Storage is saved by reduced state space requirement;

(b) Execution time may be saved as networks are extended

to include additional centres.
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First, consider claim (a). When considering the
sub-network CNm’ as above (1 s m™ < m), the whole state space

for this network must be considered since the term G(m )(t)

(I) ve
appears in the summation (y € Snm~ ) and

(T)

for all 0 e Sy ,3Y € Sy s.t. 8 ¢ (™)
Yo

where R(m ) is the set of routes defined on SNm’ with start

oy

state ¢ and end state ¥ and where

6 erR™ ) o 3ie ", re r(™) s.t. r,= 6.

oy o .

However, this state space is much smaller than SNm ’

particularly if N is large compared with m; recall

-

m-m
lSNm'| < [ m ]

N +m

S |

The other state space to be considered in the

(convolution) summation is a sub-set, U

Nmm~  SaY of SNm defined

by 6 eU <= 3¢ e s, . with ¢/™ =g

Nmm”

Thus |0 -1 = 18 |S

le Nm’|

= s | [1_ m(m=1)....(m" +1) ]
Nm (N+m) (N+m-1) ... (N+m" +1)

< I8 | |1- m+ 1 o=
Nm N +m+ 1

Of course, since O™ !+ 1Sym” ! = ! Sym!

there is no overall saving in the size of the domain of summation

if the computation is performed directly. However, if
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G(m‘)(t) or L(m‘)(s) is first computed and the results saved
YO Yo

for each vy ¢ SNm'(I)’ all the other data structures associated

with SNm’ may be discarded.

The summation may now be performed over the domain

UNmm‘ so that the effective state space storage requirement is
only max ( IUNmm" ’ ISNm‘I ) which, for significantly large

problems, will be |U

Nmm ! -

Claim (b) follows naturally. Exactly the same method
is employed as that described in the previous paragraph except

that the results for G(m‘)(t), or its Laplace transform, will
Yo

already be known from some previous computation, so reducing
execution time. Such a situation will arise if a network has
been solved and is to be extended by adding (m-m”) new centres

to precede centre 1 in Cym~ ¢ Put no new customers.

4.10 Response time distribution

Cycle time distribution in queueing networks is
undoubtedly of value to the computer system analyst, for example
see [LAZO78, HARR78al. Given a representative gqueueing network
model, accurate stochastic éredictions may be made concerning the
times taken for tasks in a computer system to complete cycles
of service from a set of resources. For example percentiles may
be computed so that the percentage of occurrences of some event
(completion of a cycle) in each of a set of categories (time
intervals) can be predicted. Applications of this type of
analysis have been discussed in chapter 2 and further model

details are suggdested in chapter 8.
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However, usually one is more interested in the
distribution of response time,  the time taken to accomplish a.
complete task which requires a number of cycles in a computer
system. Thus the time delay constituted by the summation of
several consecutive cycle times is of paramount importance since
it represents response time distribution conditional on the
number of cycles involved.

Obviously the method considered here cannot f£ind the
distribution of the time taken for multiple cycles in a gqueueing
network, since in the open network there are no customers left
after one cycle. In theory it should be possible to include a
cycle number and to tag explicitly the test customer in each
state, so adding two new dimensions to the state space, and then
allow customers to return to the first centre after departure
from the last in an analysis of the closed network. In this
way, multiple cycle time distribution could be derived, but the
enormous computational problems involved make the approach
impracticable; they are severe enough for a single cycle!

If, on the other hand, rather than considering
consecutive cycles one considers a random sample of cycles and
uses the sum of their times to represent the response time
random variable, the Central Limit Theorem may be applied to the
aggregate distribution. This is a valid step since for a random
sample of cycles, the resulting cycle time distributions must be
independent in view of the equilibrium state space probabilities
assumed at the start of each cycle of the test customer. 1In the
case of consecutive cycles, such an equilibrium state will only
exist at the start of the 4in8t cycle, the states existing at
the starts of subsequent cycles being correlated, i.e. dependent

on the initial (equilibrium) state.
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When the assumptions of the Central Limit Theorem are
satisfied, the response time distribution is asymptotically Normal
and so only the first two moments of cycle time distribution need
be computed, as in section 4.3.4 or 4.4.5. In other words, as
the number of cycles sampled tends to infinity, the normalised
sum of their cycle times will approach a Standard Normal distri-
bution. Thus it is not necessary to compute cycle time moments
higher than the second for this application.

The crucial requirement is that the cvcles considered
be uncorrelated which is implied if the network is in steady
state eguilibrium at the start of each cycle observed for the
test customer, usually consecutive. Now, it has been stated
that this in general will not be the case, but intuitively one
would expect two cycles to be effectively independent (uncorrel-
ated) if the numbér of transitions occurring between their start
states is large compared with some (unknown) transient wvalue,

c.f. a time constant. Thus for networks with many customers,

one might expect consecutive cycle start states to be independent
and the Central Limit Theorem to be applicable. This postulate
may be tested by means of simulation experiments and statistical
tests such as the autocorrelation function. The results of such
tests are reported in Appendix 8.

It would certainly be desirable to investigate the
validity of this assumption for consecutive cycles via a
theoretical approach. But for the moment this must remain an open
question. It is tacitly assumed that the correlation between cycles
is small and the-Central Limit Theorem can be applied whenever some
form of response time distribution is required. A different
approach to response time distribution is taken by Sevcik and

Lazowska [LAZ078], but there also many independence assumptions
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are required, including that for successive cycles, as discussed

in more detail in chapter 2.

4.11 Concluding remarks

Chapter 4 has been concerned with the exact derivation
of cycle time distribution for cyclic networks. Clearly the
method has limitations with respect to both efficiency and the
restrictions on network structure, but its chief merit is the
fact that it is exact. It is therefore possible to assess the-
accuracy of approximate methods such as the PSA method presented
in chapter 3.

A considerable amount of detailed theory has been
presented in this chapter which relates only to a fairly simple
class of networks (cyclic with exponential servers). However,
many of the results will be required for use in the much more
general class of "tree-like" networks discussed in the next
chapter, and the theory provides a sound foundation for the

analysis of this superset.
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§5. Exact Cycle Time Distribution for "Tree-like" Queueing

Networks

5.1 The extension of the cyclic result

The method presented in chapter 4 for deriving the
cycle time distribution in cyclic networks relied primarily on
the order invariance property of customers in the network, so
allowing the position of the test customer to be known in any
state and an equivalent open network with no arrivals to be
analysed. Clearly such an approach can be applied to a much
greater class of networks than merely cyclic ones, although not
to networks of arbitrarily interconnected centres. In this
section, cycle time distribution and its related gquantities
derived for cyclic networks in chapter 4, Laplace transform
and moments, are derived for what turns out to be the most general
class of network able to be handled by the method, so called
closed "tree-like" networks.

.Informally, a tree-like network consists of a root
segment of tandem service centres, the last of which is connected
to zero or more tree-like networks or sub-trees in the sense that
on departure from the last root segment centre, a customer
proceeds directly to the first root segment centre of one of the
connected sub-trees, according to the network routing probabil-
ities. The "leaves" of the tree (short for tree-like network)
are the last centres of sub-trees with no further sub-trees
connected to them. A closed tree-like network is one in which
the leaves are all connected back to the top of the tree, i.e.
on departure from a leaf centre, a customer proceeds directly
to the first centre of the root segment., Thus, cyclic networks

are a special case of tree-like networks (no sub-trees). An
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example of a closed tree-like network is shown below:

%
.
©

fig. 5.1 A closed tree-like network

The cycle time in a closed tree-like network is the time elapsed

between successive arrivals of a customer at the first service

centre in the root segment. This is equivalent, assuming instantan-

eous passage between centres, to the time elapsed between arrival
the first root segment centre and departure from a leaf centre.
In section 5.2 it is shown that tree-like networks
are the most general class of network for which cycle time
distribution can be computed using the method presented in this
chapter, and in section 5.3 a 1-1 mapping between the state space
and positive integers is defined, c.f. section 4.7.2, which is
shown to result in a lower triangular state transition matrix.
In sections 5.4, 5.5 and 5.6, recursive techniques are used to
derive expressions for the Laplace transform, the moments and
(approximate but convergent) discrete form of the cycle time
distribution of tree-like networks. 1In section 5.7 significant
problems encountered during the development of the programming

package of Appendix 7, for numerical evaluation of the results

at
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of sections 5.4 to 5.6 are discussed. The section closes with
a summary of and some general remarks on this research.

Many of the important results of this chapter rely
heavily on propositions from the previous one; part of the
justification for the detailed and sometimes lengthy analysis
given there. Being far more general in nature, however, the
primary results of this chapter are presented as theorems rather
than propositions. The inherent structure of the tree-like
network suggests the use of recursive techniques which are duly

applied where appropriate.

5.2 Most general extension of the method

In this section it is shown that the most general opened
class of networks to which the methods of this and the previous
chapter may bé applied to derive cycle time distribution, called
C-networks, are precisely the class of tree-like networks. As
a by-product, a formal definition of tree-like networks is

ocbtained.

Consider an open network, A, with no arrivals;
M centres numbered 1,2,...,M; N customers initially; state

space Sp; and routing probabilities {pijli < i, j s M}.

Definition D5.1

A segment, B c A, is a non-empty sequence of

+ .
centres {Bl,BZ,....,BNBIBie Z; 1 < By M, 1 <1< Ngs M
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Informally, then, B is a tandem sub-network of A.

Definition D5.2

A segment B c A is maximaf if 7 a segment B”"c A,

B°# B, and n 20¢ Z s.t.

Bi+n = Bi ‘ (1 £ 1 < NB)

Thus if B is maximal, on departure from its last centre
a customer must be able to transit to any of more than one centre
or else leave the network; and customers must be able to arrive
at the first centre from more than one centre unless the first
centre is a starting point of the network with no arrivals from

anywhere.

Definition D5.3

A path, C, in an open C-network, A, with no arrivals

is defined by

— +O
c = {cl,cz,...,ch|cis Z"; 1 s C;< M, 1 <1< NS M}
s.t. P #F O (1 £ 1 € N~ 1)
CiCisr c
-lpc 3 = 0 (1 2 j =M
Ne
~ch1 = 0] (1 2 js M

i.e. C1 is a starting centre for the test customer and customers can

leave the network on departure from the centre numbered C

Ne

In the corresponding closed C-network the definition is

the same except that

Po  ¢* # 0 for all paths C
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i.e. the last centres are connected back to the start centres,

and a path is the same as a cycle.

Definition D5.4

A segment B is a starting segment if 3 path C

Definition D5.5

The relation ~ is defined on centres a,b € A by

a~» iff I segment B <A s.t. aeB and b ¢ B.

Proposition P5.1

~ 1is an equivalence relation.

Proof
(1) a~a (ae€ A) since a e segment {al.
(ii) a~b=x>xb~a (a,b € A) trivially.
(iii) Suppose a ~b and b ~ ¢ (a,b,c & A)

Then 3 11'12""’in e A (n ¢ Z+, 1 < n < M)

s.t.
P: - = 1 1 <k £ n-1
Txtk+1

P.- . = 0 i“. e A, i7" # i
1% i k k k

and without loss of generality

i, = a
i, = b
the case 11 = b, in = a having a similar proof.

Then either

(a) 3 j1’j2"""jm € A (m € Y, 1 s m < M)



s. t. . = j RN 1 £k £ m-1
IkIk+1
P.- - = 0 i%. € A, 37, # 3
RS L k Tk Tk
i, = b
ipm, = ¢ ]
. 3 21'22""’£m+n defined by
Qk = ik (1 < k < n)
jk-n+1 (n+1 < k < m+n-1)
such that
P = 1 1 £ k £ m+n-1
T e
P, . = 0 L € A, L7 # R
L k2k+1 » k ’ k k
21 = a
jz’m+n-1 N ¢ )
O a~zc
or
(b) 3 Jyedgreeeesdg €A me 2%, 1< m
s.t. P - = 1) 1 <k £ m1
IeIk+1
ca = 0 17, € A, 37, # ]
I xIk+1 f k kT Tk
31 = c
g = b
Now, if e, f & segment B c A s.t. Por = 1,
for all g e A, g # e, Pgf = 0 by definition D5.1
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e either a=>» (n = 1) so that a ~ ¢
or b =c¢ (m = 1) so that a ~ c¢
or Im-1 T *p-q

Applying the same argument inductively to the last case,

and assuming without loss of generality that nsm

Jm-n+1 T 1, T 2@

but = c and using the range 1 < k < m-n

Jq
in the definition of ¢ ~ b above,
c ~ a

and a~c¢ by (ii).

Proposition P5.2

The equivalence class of b € B, [b]l , is a segment.

Proof

It is sufficient to prove that if B,B” are segments
with a,b e B
and b,c e B~
then B u B”, appropriately ordered, is a segment,
since a, b, c e B uB”°. Since the result must be true for
all such a, b, ¢, it is required to prove that given

BnB #¢, BuB  1is a segment.
. + -
Now, 3 j,keZ, beBnanB s.t.

b = B, = B

Without loss of generality it is assumed that j = k.
Then

B = B

n j-k+n (1 <n < k)

by the argument of the previous proof. Similarly, by definition
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D5.1 and the requirement that the routing probabilities from any
centre sum to one,

B n = Bj-k+n (k+1 € n < NB + k=-3)

where it is assumed NB +k - 3 < NB’

for otherwise B < B and the result would be trivial.

Thus,
BuB = {Bi,Bz,....,Bj_k, B'i,B'z,....,B’NB’ }
and o) - = 1
Bj—kB 1
paB'i = 0 for all a e 2, a # Bj-k
since B, = Bj-k+1 and by definition D5.1.

Hence, by the additional application of D5.1 to B

and B* separately, B u B® is a segment.

Corollary CP5.2

For ae A, [ a] is a maximal segment.

Proof
Suppose [ a ] < B where B is a maximal segment

and let b e B

Then a, beB

<. a~»

.. bel al
°. Lal=28B

Corollary CCP5.2

Maximal segments are disjoint.



-103-

Proof
This follows since equivalence classes are disjoint

in general.

Lemma LS.l
Let C,C” be distinct paths in a network A. Then A
is a C-network if and only if

31ie2t, 0<ic< min (No » Ngo), s.t.

(a) for all j € z*t y 1 =23 =14,

Cj = C’j ;
(b) for all j, k € zt y 1 =3 =< NC’ , 1 <k = NC ’
CTyF O
*(c) for all j, ke 2%, i<3 s Ne- , 1<k <N, ,
c‘j # Cp -

Proof
Choose the maximum i ¢ Z s.t. for all 1 < j =< i

C. =¢C j so that 0 £ i £ min (NC ’ NC’)'

J
Without loss of generality, N 2 No- and so i < N, for C # C”°,
Suppose 3k > i s.t. C = C’j for some j, 1 < j £ N.-

Suppose further that the test customer has just deparﬁed from

centre Ci and consider some other customer, T.

Case (i) k > i+ 1. Suppose the test customer proceeds to

centre Ci+ and T follows path C°. Then T can arrive

1
at centre Ck before the test customer.

Case (ii) k =i + 1 and without loss of generality j < i + 1,
(Ci+1 # C’i+1 by definition of i). Suppose I is at centre

immediately behind the test customer which proceeds to

centre C’j. Then T can overtake the test customer in path

C” by subsequently entering centre C’i+1

* Condition (c) is in fact superfluous in that it may be derived
from condition (b) by interchanging C,C” and j, k.
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Hence, returning customers cannot be disregarded and A cannot
then be a C-network,

Conversely, by virtue of the FCFS queueing discipline
assumed for all networks, paths such as C and C” above must
exist in order to allow a customer returning to a start centre
subsequently to be situated in front of the test customer in the

latter's path.

Corollary CL5.1

Paths with different start centres in a C-network

are disjoint.

Proof
By definition such paths have disjoint start centres
and so by Lemma L5.1 are disjoint.
Thus it may be assumed that C-networks have only one
start céntre since otherwise the disjoint sub-networks may be

considered independently.

Corollary CCL5.1

Paths may not include any centre more than once

in a C-network, A.

Proof
Suppose path C < A has

. + . .
Ci = Cj for some i, j e Z , 1 5.1 < j = NC'

Choose the maximum such 1i.

Define C” by

c” = C (1 < k < 1)

k k

Ck+j-i (i+1 < k < NC’ = NC + i-3)

Then C” is a path since
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Porc- = p # 0
Cici+1 Cjcj+1

Sothat Pasm~ 7‘ O, 1SkSN‘-1
CxCrs1 c

by virtue of the fact that C is a path

and C1 = C1
C‘ = -
N - CNC
Now, Ci = Ck (1 = k = i) and either
(1) 3 < NC and C£+1 = Cj+1 # Ci+1 since i was chosen

to be maximum, or
(i1) 3§ = NC so that 1 = NC’ and Ci+1 does not exist.

Therefore, in either case, A is not a C-network by Lemma L5.1,

a contradiction.

Informally this means that there can be no looping back

in a C-network; C-networks possess the "feed-forward" property.

Theorem T5.1

A C=-network, A, is defined to be either

(a) A single segment; or

(b) A (maximal start) segment from the last centre of which
a customer may enter one of at least two (sub) C-networks;

or

(c) A (maximal start) segment from the last centre of which
a customer may either depart from the network or enter

one of at least one C-networks.

In other words, a C-network is tree-like.
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Proof

Case (a) is trivial since it is the tandem network
solved in chapter 4.

Otherwise, we may assume by Corollary CL5.1 that
there is only one start centre and so only one maximal starting
segment (by Corollary CP5.2), B say.

On departure from the last centre of B, a customer
must choosé one of at least two paths, for otherwise B would
not be maximal.

Let the set of possible successor centres be X # ¢
(X = ¢ gives case (a)) and let the set of paths possible in
A corresponding to a transition to centre x € X be denoted
by Yx'

Then the set of all possible paths in A is

{ u YX } u {B}
xeX

where {B} corresponds to a network from which it is possible
to depart from the last.centre of the maximal start segment,
case (c).

Now denote Yx = Yx\ B.
Then by Lemma L5.1

n Yx = ¢

xeX
Therefore there exist disjoint sub-networks Ax for each xeX

with centres given by Ax = u C
Cer

Furthermore, for each xeX, by application of Lemma
L5.1 to the paths Yx_in A, the same Lemma applies to the paths

Y; in Ax since all such paths have B for their first NB centres.

P Ax is a C-network for all =xeX

and the theorem is proved.
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Definition D5.6

The maximal start segment of a C-network is the

noot segment.

Definition D5.7

The C-networks connected to the last centre of a
maximal segment are called sub-trees.

A C-network is also defined to be a sub-tree of itself.

The C-networks connected to the last centre of the
root segment are called primary sub-trees.

These are the networks labelled Ax in the proof of

Theorem T5.1.

5.3 The mapping between the state space and the positive

integ ers

The state numbering mapping used here is identical with
that of section 4.7.2 given an enumeration of the service centres
in the tree-like network. In this section, such an enumeration
is defined on tree-like networks and it is shown that the
resulting state transition matrices are lower triangular. These
matrices will again be sparse; from any state a maximum of only
M, the number of centres in the network, transitions are
possible; and the same representation, in one dimensional form,
as was described in section 4.7.2 may be used here (see section

5.7).

Definition D5.8

The centres in a tree-like network, A, with s primary
sub-trees labelled (arbitrarily) Ai’A2’°‘°"As’ are numbered

as follows:
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Let centre ¢ € A be numbered mA(c). Then

i if ¢ = Bi where B is the
root segment of A, 1 < i = NB.
r-1
m, (c) = { N+ ] Ny | + my, (c) if c’'e A, (1srss)
j=1 o

where Np . is the no. of centres
J
in sub-tree Aj, 153 < s.

Definition D5.9

The depth of a tree-like network, A, denoted by d(Aa),
is the maximum number of maximal segments in any path of A.

Since by Theorem T5.1, every maximal segment is the
root segment of a tree-like network, d(A) is one greater than

the maximum number of (non trivial) branches in any path of A.

Lemma L5.2
(a) For all ¢, c’¢ A, 1 < mA(c) < NA

-~

and mA(c) # mA(c’) for ¢ # ¢

i.e. 3 an ordering of {mA(c)l ceA} which is consecutive.

(b) The centres in any sub—-tree, DcA, are numbered
consecutively in the order that they are enumerated by

the mapping my on D.

Proof
(a) The result is true for d(A) = 1 by definition D5.8.
Suppose true for all tree-like networks A~ s.t.
1 < d(A7) < n. g z¥ and let A be as defined in definition

D5.8 with d(a) = n + 1.
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For ¢ € A, by Definition D5.8,

1 =< mA(c) < NB < NA

c,c” € B
and mA(c) # mA(c ) for c # c
NB < mA(c) < NB + NAi
c e Ai’ c’e B u A1
and so mA(c) # mA(c ) for ¢ # ¢
by D5.8 and the inductive hypothesis.
Thus, by induction on r, for r =1, 2,....,8
r-1 r )
Np + ) Ny <my(c) s Ng + ) N c e A,
j=1 3 =t 7} r
c’e Bu u A
=1 7
and mA(c) # mA(c ) for c # c )
Thus ,1 < mA(c) < NA c, c* e A
and mA(c) # mA(c ) c # c

and (a) is proved by induction on 4(a).

(b) For d(A) = 1, the only sub—tree D c A is D = A
and the result is trivial.

Suppose true for all tree-like networks A" s.t.
1 < d(a”) <n e Z¥ and let A be as defined in D5.8
with d(A) = n + 1.
Then either
(i) D = A and the result is trivial; or

(ii) D is a sub-tree of Ar for some r, 1 <= r <€ s.

.". by hypothesis {mA (c) | ¢ € D} is consecutive.
r

. by definition D5.8 {mA(c)l c € D} 1is consecutive.

Thus (b) is proved by induction on d(a).
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Corollary CL5.2

The mapping m : A -+ 2t is 1 - 1.

Proof

The corollary is a restatement of (a).

Proposition P5.3

For a tree-like network A, with state space SA

defined according to the centre enumeration, given by

mA,

z* » s, defined by

definition D5.8, and the mapping fA :

D4.1, the state transition matrix, T, is lower triangular.

Proof

Consider a state transition in the state space SA'

n »> n’” (n, n” e S
Case (i)

The transition is due to a customer's exit from a
centre, ¢ say, which is the last in a maximal segment, X say
(X « A). The customer therefore either enters centre c”, say,
in a primary sub-tree of the sub-tree with root segment X,AX

say, or else leaves the network. Thus, either

mAx (c) < My (c”) by Definition D5.8
X
so that m, (c) < mA(c’) by Lemma L5.2 (b),

Oor a customer leaves the network.

Case (ii)
The transition is due to a customer's exit from a
centre, ¢ say, which is not the last in X, using the notation

of case (i).

.. m (c) < My (c”) by Definition D5.8
X X

and so m, (C) < mA(c’) by Lemma L5.2 (b).
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Thus it is sufficient to show that:

Given an open network of centres numbered 1,2,...,M
(where here M = Na), with noAarrivals and initially N customers,
having state space SNM’
if a transition n + n~ (n, n"e s
implies that a customer has either progressed between
centres numbered ¢ and c¢” where M 2 ¢ > ¢ =2 1 or has

left the network from some centre, then the state

transition matrix for the network is lower triangular.

The proof of this is simple in that since customers
cannot move to lower numbered centres, the proof by induction
on M, the number of centres, given for Proposition P4.6 may

be used.

5.4 Laplace Transform of cycle time distribution in tree-like

networks

‘An expression for the Laplace transform of the cycle
time distribution in a tree-like network is derived in this
section by a recursivé extension of the method described in
section 4.3. The cycle time distribution, both conditional
on starting state and unconditional, is again a weighted sum
of convolutions of state sojourn time distributions (because
of the Markov property), but more complex than for cyclic
networks in view of the existence of more than one path through
the network admissible as a cycle.

The notation is based on that of chapter 4 and is
now given:

Let a tree-like network, A, have N customers initially,

MA centres and primary sub-trees Ai' A2"""Ar (r 2 0).



-112-

If r = 0 there are no primary sub-trees and the network is
tandem.
Let the centres in A be numbered according to

definition D5.8 and denote any centre by its number, m say,

1 £ m< MA' Let the state space of A under this numbering
be denoted by Sna and given by
Mp
Sya = n | 2 n; <N jng 20, 1<1isM,
i=1

where if n € Sya ¢ Dj is the number of customers at the

i'th numbered centre, 1 £ i < MA‘

Let the set of valid initial states be denoted by

s (D

NA and defined by

SNA(I) = n|nes ; 'Z n, =N ; n, >0

which represents a state with N customers and the test customer

at (the back of the gueue of) the first centre in the root segment
of A.

Let the set of routes between states a,B € S

(NA)
g

NA be

denoted by R, and defined as in section 4.3 by

(NA) _ | . . . +, .
RaB = _(11, 12,....,1n)|n e 7 ; lj€ SNA' 1 £ j <

.
r

n
i, = o0; 1i_ =8; T #0, 1 <k <n }

Ttk
where T is the state transition matrix for SNA defined below.

Let the service rate of centre i be uy (1 = i < MA)’

a constant for the reasons explained in section 4.2, and define



-113-

eA (u,v) = no. of centre from which a departure causes
a transition u -»> v (u, v e SNA)
¢A (ua,v) = no. of centre at which a customer arrives dn

a transition u -+ v (u, v e SNA)

where GA(u,v) and d)A(u,v) are undefined if a one step

transition u <+ v is invalid.

Ap (W) = Y H. + the total service rate in

A
state u ¢ Snac

The state transition matrix for the embedded Markov
chain, T, may be derived from the instantaneous transition rate

matrix or the balance equations for A as

[ uGA(u,V)PeA(u,V)dJA(u,V) if a one-step trans-
T =
uv } Ap (1) ition u*v is wvalid
0 - otherwise

where p is the routing probability matrix of A so that for
a transition, u + v, caused by a customer moving within a

segment, the factor would be absent in the expression for Tuv'

Let the cumulative probability distribution of the
time spent in state u be du(t), which is negative exponential

by Appendix 4, having Laplace transform

Ay (W)

Du(S)

s + AA (u)

*
Define the modified transition matrix T , as in

section 4.3, by
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T = Du(s) Tuv {u,v € SNA)'

Let the probability distribution function for the time
to pass through A on some stochastically chosen path, conditional
(T) .
on initial state a € SNA be GNA(tla) with the
unconditional distribution function for an initial equilibrium

state distribution being GNA(t).

Let these distributions have Laplace transforms

LNA(sla) and LNA(s) respectively.

In order to derive a recurrence relation for LNA(s)
it is necessary to define one more set of states, viz. those
which can introduce the test customer into a primary sub-tree

after a state transition.

Let A have root segment B and define Exa © SNA by

i 0, 1 5 1 < NB ; nNB = 1} .

o]
I
—~—t—
f=!
f=!
™
93]
o]
il

Hence by definition D5.8, ENA consists of states with
only one customer left in the root segment of A, at its last
centre. Because of the FCFS queueing discipline this must be

the test customer.

-1
. , + .o
Under the mapping fNA 2 Syp Z' of Proposition
P5.3, by definition D4.1, n € Eg, if and only if
-1 -1 -1
(1) = (1) (2)y _ »(2)
F = fya @77) s fNA (n) < fNA (n ) = F
where g(i) is defined by
(1) _
n = 0 (3 # Np)
i (3 = Np)
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Thus the states in E

NA are numbered consecutively
between F - 1 inclusive, a fact of great use in

implementation on a computer (see section 5.7 and Appendix 7 ).

Let the random variable for the time taken for
the network A to reach state B from state a (a,B € SNA)

be denoted by TaB.

Theorem T5.2

The cycle time distribution, GNA(t]a), in a tree-like
gqueueing network, A, with root segment B, r primary sub-trees,
N customers initially and start state o ¢ SNA(I)’ in which the

test customer is at the first numbered centre of A, is given by

( (NA)

Hao (r = Q)

GNA(la) =

T P. .
) ) J“NB GNAj ( IB'(J)) . ds . HLEA)
i BeEy, J=1 A (B)
otherwise
(NA)
where Hyg (t) = Prit,s s t) (¢ # B)
(NA)
Haa (t)y = 1 ;

state o is that numbered 1, representing a network

containing zero customers;

P. = p , the routing probability, in which
J NBKj
j-1
Ky = 1 +Ng+ ) NAi (1 £ j<r#0);
i=1
B'(j) = B(j) (1 <1is<N,) in which

i+K n—i
i 3 J
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B(J)e SNA is the state succeeding B ¢ SN entered

A

by transit of a customer from centre Ngp to the

first centre in sub-tree Aj (1 <3 < r).

Proof

Let the random variable for the time taken for the
test customer to leave the network from s;ate B € SNA be
denoted by TB' Also, let 63 denote the random variable
for the time spent in state B.

(1)

Then, for a ¢ SNA and o ¢ ENA , £ # 0,
t
GNA(tla) = ) J Pr(TB < t-u A transition from state B
BEENA o caused by test customer service

completion) dPr(TdB < ulB)

since for any path in A taken by the test customer, some state
B € ENA must be entered just before passage of the test customer
to a primary sub-—-tree, and using the fact that ToB is a Markov

time, c.f. section 4.3.

Thus,

t
Gy (tla) = y {
BeE o j

Pr(TB < t-u A test customer

I o~ H

NA enters primary sub-tree j after

state B)} dPr(TdB < ulB)

The expression in { } may be written as
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r U
Ng (3)
) P. - Gyp (t-u-viB ) @Pr (8,5 v)
3 A, (8) A 8
j=1 A' o)
state transition distribution of distribution of
probability time from state time spent in
B + B(J) B(J)+end of path state B
where 8(3) is, as defined in the theorem, the state succeeding

B caused by transit of a customer from centre Ny (last in the
root segment) to the first centre in the j'th primary sub-tree

root segment, numbered Kj say, and

P. =

j Py g. ' the associated routing probability. By

j-1
Ky = 1 + Ng + Y N, (1 <3 < r)
i=1 t
Thus the expression { } is
. Mg (3)
AJ -
) £ R [GNA_(ls )*ds](tu)
j=1 A J

omitting the arguments in the convoluted distributions, where,
as given,
L (3) (3)

i = Bitk.-1 (1 =1 <Ny )

J J
are the components of the state space vector for Aj taken in
isolation corresponding to state B(j) in A. The sub-trees
Aj may be considered separately in this way since all transitions
in other sub-trees AL (1 <k #3 < r) are independent by the

argument of Appendix 4 and the disjointness property of C-networks

({Lemma L5.1).
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Thus,
r P.u
J'N . : (NA)
Gy (tla) = ] I ? Gya, (1879 xa v m
s B J
BeENA j=1 A
for r# 0 and a ¢ ENA
(NA)
where H 8 () = Pr(TaB < t) as given.

The reason for partitioning routes through the network
A in this way, via states B € Eygp , is so that the position
of the test customer can be identified at all stages in the

(recursive) computation.

For a € Eyp: the same reasoning and resulting

equation may be applied using the result that

(NA)

H () = 1 (t 20, o e 8

oo NA)

For r = O} A is a tandem network, for which the

problem was solved in section 4.3, and

(NA)
Gya(tle) = H _ (t).
This completes the proof.
Corollary CT5.2
-1
Lea(sla) = (r-1),, (r = 0)
' r P.u
1 J°N -1 .
) ) B (1-1") g Lyp (s187 1))
BEE j=1 5 * A3 (8) ¢ J
T 7

otherwise
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Proof

Recall, by the argument of section 4.3, that the

(NA) x —1
Laplace transform of H o8 (t) is (T - T )GB , (a,B € Sxa) r

*
where T 1is as defined in this section. This is so because

Corollary CCL4.1 applies to RaB(NA) in a tree-like network, A,

* _
since T is lower triangular by Proposition P5.3. This property

(NA)

also ensures that the condition Haa (t) = 1 is satisfied.

AA(B)
s + AA(B)

o since

DB(S)

the corollary is proved.

Corollary CCTS5.2

Finally, an expression for the Laplace transform,
LNA(s), 0of the unconditional cycle time distribution, assuming

an initial equilibrium state space probability distribution
(1)

Z (o), o e SNA , is:
Lya () = ) Z (a) Lsla)
(T)
asSNA
MA ai
1 ei (1)
where zZ (a) = —_— I I (o € SNA )
g(NIA) i=1 1
in which {ei | 1 2 i < MA} is such that

and g(N,3)

A
._l.
A

(1 M,)

is the normalising constant for the state sub-space
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(1)
NA

separable gqueueing networks, [ GORD67].

S This expression for Z (o) is the well known one for

This theorem, together with its corollaries, is the
fundamental result of this chapter, and in particular the
numerical method of section 4.4 for deriving the moments of

GNA(t) may be applied without modification.

In the next two sections, extensions of the methods
of sections 4.5 and 4.6 are applied to derive analytic
expressions for the moments of cycle time distribution and an
approximate discrete version of this distribution which is

convergent in the sense of section 4.6.

5.5 Recursive solution for the moments

A recursive expression for the moments of cycle time
distribution in tree-1like networks is easily obtained via
differentiation of the result of Corollary CT5.2, using
Proposition P4.1 and an extension of the Leibnitz theorem for
repeated differentiation of a product, which is given in

Appendix 6.

Let the p'th moment of cycle time distribution for the
tree-like network, A, of N customers and r primary sub-trees,

. . *
conditional on start state a € S N be denoted hy Mp(NAla)p!

A

In the notation of the previous section, we have:

Theorem T5.3

|m]|
Let x P} = 3 1 (-m7t 1 (m) (1-1) "1
Im| i=1
L m,=p
1=
i
N
. (1)
* =
5'Na neq Sna



where

T’as(mi)

Then, for a €

. d
MP(NAIG) = z

BeE

Proof
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cB
= E;;?;Tyﬁz (a,B € SNA)'

S‘NA ’

(p)

Xao (r = 0)
r
(u) o .

Do Bgiyy, I % D)™ MwINAj'B'(J)}
j=1 u+v+w=p

u,v,w20 (r > 0)

As stated in section 4.4,

Mp(NAIa)

If r

aP

i:li [ — ( )] ( )
= |a a € 8°
o Iva (8 NA
ds s=0

p!

O, then the result is that of a tandem network

and given by Propositions P4.1, P4.,2.

For r > 0O,

| (-)P t
M (NA|g) = —— ] ¥
P '
pe BsENA j=1
(-)P t
T e g O
BsENA J=1

by Corollary CT5.2,

¢ x 71t (3)
P.u —_— {(I-T ) —_— (s|B” )}
I'Ng| gsP a8 S+X, (B) LNAj
s=0
(w) .
-(3)
p!
u+v+w=p us D‘A(B))v+1 ws
u,v,wz0

where the n'th derivative of a function of s, H(s) say, is

denoted by H(n)(S)

has been used.

and the extension to Leibnitz's theorem
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Here, F = (I-T )~ ! so that, by Proposition P4.1,
M o) = (1% qu x ™
*
since T (0) = T
* (m) _ (m)
and [T (O))aB = T, D,"™ (0) (m = 0),

recalling the definition from section 5.4 where

o, ™M@ = "m: (@)™
so that T ™) = () m ! 77 (m
Furthermore,
-)¥
-(3) _ ~ (w -(3)
T VLI

which completes the proof.

Corollary CT5.3

The unconditional p'th moment of cycle time distribution,
assuming the initial equilibrium state space probability

(1)

distribution Z(a), o £ SNA r given explicitly in Corollary

CCT5.2 is p ! Mp(NA) where

M_(NA) = ) Z(a) M_(NA|a)
P (1) P

aeSNA

In theory, then, any number of moments of the cycle
time distribution may be computed, but in practice the recursion
involved may be excessiVely inefficient since the moments for
the sub-trees of the network A may be recomputed many times.
Clearly the magnitude of this problem will grow with the depth
of the tree being analysed and with the number of the moment, p,

required. These problems are considered in more detail in
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section 5.7; and in section 5.8, as in 4.10, it is pointed out
that it will normally only be necessary to perform the

calculation for p = 1 and 2, relatively simple cases.

5.6 Recursive solution for discrete cycle time distribution

The primary result of this section, a recursive scheme
for the computation of a discrete approximation to cycle time
distribution in tree-like networks which is convergent, is
presented below as Theorem T5.4. It follows quite simply from
Theorem T5.2, the basic result, using the same approach as

that adopted in section 4.6.
First, it is necessary to define some more notation:

(i) Let the discrete approximation for the cumulative
distribution of the time spent by the network A in state v,

dv(t)’ be denoted by

Qv(l) = dv(tz) (L =1,2,¢...)
where tl = QA for some A ¢ R+
and let qv(z) = Qv(l) - Qv(2-1) (L 2 2)
qv(i) = Qv(l)
-XA(v)A
(ii) Let X, = e
so that qv(1) = 1- X,
qv(l) = X, qv(l - 1) (L 2 2)

(iii) Let GNA(tIa) have discrete form

(NA)

Wa (%) = GNA(tlla) (2 21, a € Sya

(I))
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(NA)
(iv) Let HaB (t), the distribution function of the time

delay between states o and B ¢ SNA have discrete form

(NA) (NA)

(1) = Hy o (t (2 2 07 a,8 € Syp)

waB 2)

recalling that HGG(NA)(t) = 1 for all te R, t =20

(v) Let the approximations for WQ(NA) and WGB(NA),

cbtained by convolving the discrete approximations, Qv’

rather than the exact dv’ be denoted by Ha(NA) and
I (NA) respectively.
aB
(E+) (NA)
(vi) Define SNA = {vlveSNA; HBeENA s.t. R\)B # ¢}
> E clearly.

NA

Theorem T5.4

Given a mesh {2 A | & = 1,2,...} of size A ¢ R'
on the time axis, the approximate, discrete form of cycle time

(NA) s (D

NA ; is given by

distribution, Ha o €

(i) For r =0, a € SNA ’

(NA) - ( (NA) - (NA) (o _
I, () = [ x, 0, (2-1) + (1-x) ) Toy Ty (2-1)

YESNA

1 (L 2 1)

\ Gao (2 =0

.. I
(ii) For r =2 1, a € SNA( ) ’
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I (NA)(l)

(NA)
o (I n, 7 e (2 2 1)
BeENA
| © (2 = 0)
(E+)
where for B ¢ ENA and Vv € SNA
™) 1) = { x, 1, ®) (go19p) + (1-x) T v 1) (hoq1p)
v v TV v (E+) vy'y
YeSNA
(v # B, 2 1)
{ 0 (v # B, 2 = 0)
T PNy o)
) QBj (2) (v = B)
| §=1 XA(B)
and for B € ENA , 1 £ j<«r
) r (NA) tRs)
(NA NA) ,,_ _ _
QBj (2) xB QBj (2-1) + (1 xB) HB’(j) (2~-1) (2 2 1)
F
| O (2 = 0)
where B'(j) is as defined in Theorem T5.2 (1 < j < r).
Proof
Proceeding as in section 4.6, the approximations,
Ha(NA) and HaB(NA) are derived by convolving the discrete

representations of the corresponding con

for the times spent in successive states

For the case of r

tinuous distributions

O (no primary sub-trees), the

problem reduces to that of section 4.6 exactly, with the same

result.
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For r > O, from Theorem T5.2,

r P.u
JHN (NA)
n, A ) ) B g MNA) , o g R
A (8 o8 B g3
BeENA Jj=1 A
(@ 5, D)
Let
(NAL)
(NA) J
%83 %7 T (8 € Eya)

so that, by Appendix 2, since QB is geometric,

. (NA.)
(NA) 5y (NA) ., _ - 3 -
QBj 2} xB QBj (2-1) + (1 XB) HB’(j) (2~1)
4 (2 = 1)
0 (2 = 0)

which is as used in the theorem.

Thus,
r P.uN
p (NA) ) p MR .y 278 wm)
BEEN A j=1 “A
Suppose
r P.u
(NA) _ (NA) J'N (NAa)
I, (1) = T,a * .Z B Qgy
J=1 AA(B)
(v € SNA(E+), B e Eyxa)

As in section 4.6, HvB(NA)(O) is defined to be SvB

N
and so HévA)(2)=1; for all £ 20 ; v, B e Sy This agrees

A -
with the requirement H(NA)(t)= 1; t 2 0, v € S
vV ! ’ NA®
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Thus, for v =8 ,

r PjuN
B
1 ") e1g) = . M) (g 2 = 0)
v oA B3
J=1 "A
(E+) (NA)
For v # B, v e Sya and BeENA, RvB ¢ ,
. jr|=-1
m  (NA) = ) * T Q +
Ve k=1 TkTk+1 Tk
rERvB =
lr’ -1
= ) ) Tvr2 Q, * * Tr’kr’k+1 Q-
r,eD r“eR i=1
r28
where D = {YIY € SNA' Ir e R\)B s.t. r, = Y}

)
{YIY € Syar  Tyy #0, Rig # ¢f

(E+)
{YIY € Sya ¢ T\)Y # 0 RyB # ¢}

But for T =0 or R =¢ , there is zero contribution to the sum,
vr, r28

. (NA) _ (NA)
P S ¥ ) e v & F L)

YESNA

and so, by Appendix 2,

. MNB) (o_18)

(NA) - (NA) ., _ -
I, (218) = { =0, (2-118) + (1-x,) ] Tyyly

(E+)
YESNA

{ (L 2 1)

e (2 = 0)

The proof is thus complete.

+ omitting the superscript (NA) from R\)B for brevity.
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Corollary CTS5.4

As A + O,
(Na) (Na)
HaB - waB (e,B € Sya)
and HG(NA) > Wa(NA) (o € SNA(I))
Proof

For r = O, the result is precisely that of Proposition
P4.4.
(Na) . .
For r > O, the result for HaB is again that of

Proposition P4.4 and thus it is sufficient to show that
- (NA) () ., .
{Ha (21B) |a € Sya i B e ENA}

are convergent as A + O, since SNA and so ENA is finite

and

(NA) _ (Na)
I, = ) I, (18)

BEENA
The proof is by induction on the depth of the tree-like

network. For
(E+).

o € Sya P B e Eg, i@ # B
m, (18) = ! ery Tor % n, A (e
E+
YeSy,

so that the proof again follows via Propositions P4.3 and P4.4,

the summation being finite.

Finally, for a = B

T, (18)

i

I~ R
w
0
Z
z
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_(NA) (NAL)

But Qg = @ 7 HB,(J‘)

(NAL)
and by hypothesis, 1 (3) 3 is convergent as A + O
B‘
and so, via Corollary CL4.3 and Proposition P4.4

Qsj(NA) is convergent.

The complexity of the computation of the result of
Theorem T5.4 is rather awesome at first sight, with repeated

recursive calls to functions representing Ha(NA)(lB) and

_(NA)

g5

(in the notation of the Theorem).

However, the situation is not as bad as it looks,
particularly for trees of small depth, and a simplification
in the computation of QBj(NA) is possible as shown in the

next section.

5.7 Significant computational problems

5.7.1 How can they be reduced?

As can be seen from the recurrence relations derived
for the various results of the previous sections, the numerical
computations involved are based on the linear composition, via
recursive techniques, of the parallel quantities derived for
tandem networks in chapter 4. However, such quantities must be
computed for start and end states which are in certain sub-sets
of the state space, the state immediately following departure
of the test customer from a segment no longer being restricted
to that of the empty network. This is discussed in more detail
in section 5.7.2, but it will be noticed that no new fundamental

techniques have been introduced, only the composition of a
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tree-like network from its sub-trees.

As with most recursive schemes, a major problem in
numerical evaluation of results is that of efficiency, with
respect to both storage and computation time requirements. In
order to allow any solution at all to be generated for networks
of fairly modest complexity, a purely recursive program in any
existing programming language is precluded and some additional
techniques have been supplied to augment such recursion in the
APL package of Appendix 7. Such aids to efficiency are discussed

in general in section 5.7.3, and in the next section a

(NA)
] !

Theorem TS5.4 of section 5.6, is provided, so improving the

computationally simpler expression for defined in

efficiency of the calculation of the approximate discrete form

of the cycle time distribution.

5.7.2 Transitions between predefined start and end states

In sections 5.4, 5.5 and 5.6, the results derived for
the Laplace transform of cycle time distribution, its moments

L -
and its approximate discrete form involved terms (I-T )aé P

(p)
oB

o € SN

X and Ha(NA)(IB) respectively, where o is a "start state",

A(I), and B is a "target state" or "end state", B ¢ ENA'
X is determined solely in terms of the transition matrix, T and
I is given by an iterative relationship also involving T. Thus,

the computation of such quantities requires the following:

(i) Computation of the transition matrix, T and its
modified form, T*. This is accomplished as described in section
5.4 and in order to save storage space, the representation is as
a vector with 2 control vectors to delimit the rows (by means of

pointers) and show the column numbers of the non zero elements.

In other words, the representation is precisely that described
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in section 4.7.2 for the case of cyclic networks.

(ii) Computation of the quantities for multiple target
states, B. The methods used for this are parallel with those
of sections 4.7.3, 4.7.4 and 4.7.5 for each of the three above
listed expressions respectively, with modifications to account
for the fact that B will not, in general, be represented by a

state numbered 1.

-1
*
The computation of (I-T )GB requires only very simple

modification to the method. As in section 4.7.3, let a and B
map into states numbered a and b respectively under the mapping

fA-i of Proposition P5.3.

. -1
Then, given b € fA (Sya) -

x —1
{(I-T )ab | fA(a) € SNA} is the solution, {xa(b)} say, to the

equations
_m* . (b)  _
_§ (I=T Jac *c = Sap
cef, (Sya)
which is given by
x,®) = o (1 s a<b)
xb(b) = 1
a-1
(b) _ * (b)
X = ] Tay ¥y (a > b)
j=b

*
since T is lower triangular, and then

-1

(I-T*)ab = x (b)

a

-1
(a,b € fA (SNA))
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Thus, for any such b, the iterative procedure of
section 4.7.3 may be used here, with different starting
conditions. The function ESB in the APL package of Appendix 7
is just this generalisation of the function of the same name
referenced for cyclic networks. Of course, results will be

needed for several values of b, corresponding to B € E and

NA’
these are produced by repeated calls to ESB, admittedly not the
most efficient method in terms of execution time, although
saving on storage if the results for the complete range of b
are not all saved.

In the second case, X(P)

aB’
Referring to Theorem T5.3, x;g)is represented under the mapping

a similar problem arises.

fA used above by a sum of terms of the form

-1 -1

(with summation convention)

for some mi, h € Z+; 1 £ i < h and where kO = a.

Proceeding as in section 4.7.4, relabelling E,E”

' defined therein by F,F” respectively to avoid a clash of notation,

define
h -1 -1
F’ = I (I-T) . T (m,) . (I-T)
Kp_4P . kKi434 1735ky kpb
i=4
(1 s 2 € h)
-1
F’ =  (I-T)
kyb k, b
and F. = T(m,).. F’ (1 £ % < h)
3gb '3k, “k,b

(p), . -
so that Xag)ls given by Fab which can be computed iteratively.
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. . (1)
Now, values of Fab are required for all a,b with fA(a) € SNA
and £, (b) € Ey, so that {Fab} is not a vector as was the

case for cyclic networks in section 4.7.4.

Now, F£ p May be computed (by the function ESB) as
h

above, with the result represented in column oriented form, one

column vector for each b ¢ fA—l ( ). Next, F. L Mmay be

E
NA Ip
computed, also in column form, by successively taking the inner

product of T’(mh) with the columns of F£ b’ & simple process
h

since T’(mh) is stored by rows, recall (i). This inner product

is performed by the function MSM in Appendix 7. Then, F£ b

h-1
is the solution to the equations

(I-1) 5 Fip Fip (1,3 € Syp)

which can be solved by direct back substitution, since T is
lower triangular, giving ng in column form for each b. This
is performed by the function HSB in Appendix 7. Proceeding in

this way to calculate F£ b for £ = h,h-1,....0, one can see
A

by a straightforward inductive argument that a value for F£ b
o

representing Xég)results.
(NA) (E+)
For the case of Ha (IB), (a e SNA :r B € ENA)'

the only significant problem is that of the computation of

T p (NA)
(B4) ay Ty

NA

(18)
YES

for each B ¢ E This problem is again resolved, as for the

NA®
(p)

case of xaB

above, by representing { Ha(NA)(IB)} in column

oriented form, the pre-multiplication by T then being simple,
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giving a column form result. The function used in Appendix 7

to accomplish this, MSE, is a version of MSM modified to sum

(E+)

NA rather than the whole of S

over the domain S NA®

It will be appreciated that the property of the

integers-states mapping fA that the states in the sub-spaces

S (E+) and E are numbered consecutively (see section 5.4)

NA NA

is of great value in the implementation of functions to compute
the results presented in this chapter; the relevance being,

of course, to the resulting simple indexing of the part-rows

or part-columns required corresponding to the various domains

of summation.

5.7.3 Space and time constraints

From the results presented in sections 5.4, 5.5, 5.6
for the Laplace transform, momenté and discrete form of the
cycle time distribution in tree-like queueing networks respect-
ively, it can be seen that in a direct implementation, many
recursive function calls corresponding to each of the network's
sub-trees would be necessary. In fact one could envisage, in
each of the three cases, one call for each of the states of ENA
in the network for which a sub-tree is primary. Furthermore,
in the cases of the Laplace transform and the discrete form
calculations, a call could be necessary for each parameter value
and time interval sequence number respectively. Such a large
number of recursive function calls would clearly result in
considerable inefficiency with respect to both storage and
computation time.

The principle dilemma concerns the computation of the

transition matrices for sub-trees; once the transition matrix for

the whole network's state space is available, that for any
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sub-space may be obtained by selecting appropriate rows and
columns therefrom and re-normalising. The problem is in
selection of such rows and columns. A further, if minor,
complication is that under any state~integer mapping, in general
the sub-space of states involved in the centre service
completions in any sub-tree cannot be numbered consecutively.
This presents no problem when storage space is unlimited and
matrices are uncompressed, but in the linear representation
described for the sparse transition matrices considered here

the state-integer mapping functionsmust be invoked frequently.

A row in a sub-tree state transition matrix may be

computed as follows:

(1) find the state vector corresponding to the row number

by applying the integer-state mapping for the sub-tree;

(ii) find the row number in the state transition matrix
for the whole state space corresponding to this state vector,
expanded to represent zero customers at all centres not in the
sub-tree in question. This involves application of the state-

integer mapping function for the whole network;

(iii) map each column number associated with this row for
the whole network into a column number for the sub-tree by
applying (ii) and (i) in reverse.

Of course, corresponding to any sub-tree state there-
will be, in general, several states in the whole network with the
numbers of customers at each centre of the sub-tree determined by
the sub-tree state; the expansion of (ii) guarantees that any
transition in the whole network is due to a service completion in
the sub-tree, and so that every associated column in the whole

network matrix is required for the sub-tree matrix.
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Thus, the choices available concerning the transition

matrices for sub-trees are as follows:

(a) Only store the transition matrix for the whole network,
and whenever a row is required for a sub-tree, compute it

as described in (i) - (iii) above;

(b) Since very many such (repeated) row computations
will be required, (a) is very inefficient in terms of
execution time and can be improved, at the expense of
storage, by pre-computing as in (a) the whole of the
sub~-tree state transition matrix, in sparse form, and

storing it;

(c) The state transition matrix may be computed from

first principles for each sub-tree and stored.

It was found that option (c) turned out to be the most
convenient to program and the fastest to execute in the cases
tried. However, for any of the sub-~tree recursive functions'
evaluations a large proportion of the total execution time
required is used in the computation of the state transition
matrix for that sub-tree; in addition, the storage requirement
of this matrix is also considerable, even when represented in
the linear form described in section 5.7.2.

Thus it is desirable only to enter the function
corresponding to each sub-tree once in any calculation, to com-
pute all the results corresponding to every initial state
(associated with the target states in ENA for the tree of which
the sub-tree is primary), and every Laplace transform parameter

or time interval seguence number as appropriate. In this way

it is possible not only to reduce the number of function calls
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required, but also to save space by using a global variable
for the state transition matrices of all sub-trees. Such use
of impure recursive techniques is, of course, undesirable
where resources are unlimited, but necessary here. However,
the introduction of global variables demands a great deal of
care in the writing of the recursive programs, viz. with respect
to the order of evaluation within each function which must not
call a similar function for a sub-tree if reference to its
transition matrix is required subsequently. Such use of global
variables may be found explicitly in Appendix 7 in the functions
LT, MOM and DST for the calculations of the Laplace transform,
moments and discrete form of cycle time distribution respectively.
The reduction of the number of function calls by means
of storing intermediate results in this way is in effect an
explicit implementation of a "Memo Rule" type of system for
efficient evaluation of recursive functions, see [MICH67,HARR74].
Thus it has the same limitation; viz. that if very many such
intermediate results are required, insufficient storage may be
available. Thus another trade-off situation arises. Nevertheless,
this storage problem is only linear here since the number of sets
of intermediate results existing on the run time stack at any one

time cannot exceed the total number of sub-trees in the network.

Clearly, for increasihgly large networks, as the size of the

sub-space E a becomes excessive, a storage overflow would

N
ultimately occur, but for quite significant cases, such as those

presented in Appendix 8, this problem did not arise.
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5.7.4 Enhancement of the discrete distribution recursion

In this section, an enhancement to the efficiency of
the computation of the approximate discrete cycle time distribution
is described. As explained in the previous section, for this
computation it is preferable to compute in parallel the results
for every time interval number, £, (in the notation of Theorem
T5.4, section 5.6) in a single function call associated with a
sub-tree.

This presents no problem, certainly in APL, the

programming language of the software package of Appendix 7, for

.(NA)(Q) where

all except computation of the term QBJ

£ is the time interval number (1 < & < L for some LeZ+),
A 1is the tree-like network under analysis,
N 1is the population of the network (initially),

j 1is the number of a primary sub-tree of A.

Evaluation of .(NA)

83 by direct recursive methods
would include a function call for each of the L values of 2%
specified. These would each call functions corresponding to the
primary sub-trees of A, so overwriting the state transition

matrix of A which is required for subsequent values of {.

(NA) (4) in the form

However, the expression for QBj
of the explicit summation for the convolution involved, permits
its values corresponding to multiple values of % to be produced

in parallel. This expression is given by the following

Proposition.
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Proposition P5.4

In the notation of Theorem TS.4,

-1 i
QBj(NA)(z) C o= ) (xB) (1-x
120

(NAj)
B) HB’(j) (2-1-1i)

Proof

By induction on £ or direct substitution using the

definition of Theorem T5.4,

(NA) o (Na) ,,_ _ R -
QBj (2) = Xg QBj (L-1) + (1 XB) I . (2-1)

\ O (2 = 0)
For & =0 the sum is, of course, empty.

By substitution of this expression directly into the

definition of Hv(NA)(z|s) v e sN£E+)) given in Theorem T5.4,

the reference to QBj(NA) is eliminated and it is clear that

the results for any sub-tree may now be computed in parallel
for all values of &, 1 < & < L, as required and as accomplished

in the APL function DST of Appendix 7.
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5.8 Concluding remarks

5.8.1 The topics discussed

The comments relating to the analysis of tree-like
networks presented here are, in the main, the same as those made
for the analysis of cyclic networks in chapter 4.

Thus, this discussion will be limited to a summary of
that given for cyclic networks, but related to tree-like networks,
the details being available in the relevant sections of chapter
4. The following topics are considered: Laplace transform
inversion, decomposition methods, response time distribution
and finally some general remarks are made leading in to the

following chapters.

5.8.2 Laplace transform inversion

Although at first sight a method of inverting the
Laplace transform of the cycle time distribution, derived exactly
for tree-like networks here, might seem attractive, it is not
considered worthwhile, for the reasons given in section 4.8,

in brief:

(a) An approximate discrete form for this distribution

has been derived (section 5.6), and is convergent;

(b) The more important distribution is that of

response time, a sum of several consecutive cycle times;

(c) Inversion of Laplace transforms roses many problems.

In fact, the Laplace transform is itself of great use

for predicting performance measures directly, see section 4.8,
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5.8.3 Decomposition methods

Such methods were discussed at some length for cyclic
networks in section 4.9, but for tree-like networks their ease
of application is at once apparent in view of the recursive
nature of such networks. Indeed, the "memo rule" method of
storing intermediate results, referred to in section 5.7.3,
uses precisely decomposition methods, whether implemented by
the system or explicitly by limiting the number of function
calls. In order to achieve full decomposition techniques
in the sense of section 4.9, it would only be necessary that
all the results for every possible start state in the relevant
sub-trees be saved permanently and so be available from run to
run of the implementation. This could result in a large storage
requirement in that the (initial) population of any sub-tree
may take any value between one and the initial population of the
whole network, so that there are many possible start states.
Furthermore, in the case of calculation of the Laplace transform
or the discrete cycle time distribution approximation, the number
of results involved is proportional to the number of parameters
specified.

Such techniques are not implemented in the package

of Appendix 7.

5.8.4 Response time distribution

Of great importance to the analyst is the distribution
of response time in an interactive or real time computer system.
Whilst clearly closely related to cycle time distribution, it
is obvious that the latter distribution is not adequate in
itself, rather multiple convolutions for successive cycles being

the chief objective. However, as indicated in section 4.10, to
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derive such a convolution for successive cycles poses excessive,
indeed prohibitive, computational problems. Thus the approach
taken with regard to response time is to assume that the cycles
considered in any constitution of a time delay, (in particular
response time), are statistically independent so that the Central
Limit Theorem may be applied. 1In this case it is only necessary
to calculate the first two moments of cycle time distribution,
which are given exactly by Theorem T5.3 in section 5.5. The
accuracy of this independence assumption has not been tested
analytically, but empirical tests on the independence of cycle

times are reported in Appendix 8.

5.8.5 Summary

The exact derivation of cycle time distribution for
tree-like queueing networks presented here is a considerable
~generalisation of the method deveioped for cyclic networks in
chapter 4. As such it has the same limitation with respect to
efficiency (in execution time and storage requirement) and
similar types of application. 1Its own use as a practical tool
for the performance analyst must be limited to simple cases only,
and a major application is in the validation of approximate
techniques, notably the PSA methpd of chapter 3, applied to
tree-like networks. As emphasised in earlier chapters, it is
the approximate PSA method which is intended as the major
practical tool in view of its far superior efficiency (see
section 6.5). Ideally a formal analysis to provide bounds on
the error of the PSA method should be undertaken, at least
for the now solved tree-like networks. This is discussed further
in chapter 8 as a future research direction. In the following

chapter an empirical validation of the PSA method is described
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for the case of tree-like networks by comparing results with
those of the corresponding exact methods and also with
corresponding simulation runs.

Although the tree-like network is not fully general,
computation of the exact cycle time distribution in non tree-~
like networks involves explicit tagging of a customer and an
approach along the lines of [YU77]. The solution obtained in
this way, as discussed in section 2.3, is a special case of
results in the general theory of stochastic processes. This is
impractical for non trivial cases in that it is necessary to
solve a system of linear equations,the number of which is several
times that of the order of the original state space of the
network.

Validation of the assumptions and implementation of
the exact method described in this chapter is discussed in the
following chapter, and a comparison with sirmulated results may

be found in 2ppendix 8.
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§6. Validation of the Theoretical Models

6.1 Introduction

The purpose of validation is to support ones conviction
about the accuracy of a model. ©Now, inaccuracies may be intro-

duced into a model at two levels:

(a) In the process of abstraction from the physical
system represented. For example, approximations must be
made in order to allow development of a mathematically

solvable analytic model or programmable simulation model.

(b) In approximations which may be necessary in the
computation of model predictions. For example in an anal-
ytic model an infinite series may be truncated or a continu-
ous function approximated by a discrete representation as

here, see sections 3.3.3, 4.6 and 5.6.

Ideally one would like to perform a formal error
analysis to assess inaccuracies of type (b)- and also of type
(a) if a system with formal definition is modelled (e.g. a model
itself). However, such an analysis is frequently not possible,
for example in the case of our PSA results at the present time.
Thus validation is often performed in either case by making
statistical assessments of the error existing for a (represent-
ative) selection of environments, as represented by a choice of
model parameter values.

The suite of APL functions, developed by the author
and listed in Appendix 7, constitute analytic models providing
numerical predictions for properties of cycle time distribution
in tree-like queueing networks. These functions are based on
the results derived in previous chapters and may produce exact

or approximate (according to PSA) predictions. The parameter
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specification permitted for the tree-like networks, in terms of
network topology and customer population, is fully general,
limited only by the computing resources available. Clearly

for sufficiently complex networks or large populations, the
size of the state spaces involved would result in excessive
storage and/or CPU requirements, especially in the case of the
exact analysis. This is discussed on a quantitative basis in
Appendix 8.

Now, the objective of the theoretical analysis is the
provision of models capable of representing a variety of computer
system configurations in various environments. Thus validation
of type (a) must be based on a comparison with data measured on
actual systems. However,as stated in previous chapters, this
type of data is of a fine level of detail, for example requiring
measurements to be recorded whenever a CPU is switched or an
I-O transfer is initiated. As a result, such data is costly,
and therefore in practice administratively difficult, to obtain.

Because no measured data is available at present,
ultimate validation of both the PSA and the (assumptions of the)
exact models is not possible. However, some validation is

possible:

(1) Of the PSA model with respect to the exact one by
comparison of the results of the two models for networks

conforming to the assumptions of the latter.

(ii) By constructing a network simulation model of a real
system to generate test data on which to base wvalidation
of both analytic models. The independence of such valid-
ation is limited in that the simulation model

(a) itself requires validation,

(b) necessarily has built into it assumptions
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similar to those made for the theoretical analysis,

and (c) by design will be statistically well-behaved.

The next section outlines how a systematic mufual
validation methodology, based on the above, can increase confi-

dence in the analytic models.

6.2 A mutual-validation methodology

This is based on the following observations:

(1) Given its assumptions, we may assume that the math-
ematical analysis of the previous chapters has yielded

correct results. However, no attempt has been made to prove

their programmed implementation correct. Thus an independent

check should be made to substantiate any numerical results.

(ii) The same applies to the approximate results of the
PSA analysis for its less restrictive set of assumptions.
In addition, we would also wish to validate the assumptions

on which the approximation is based.

(iii) The assumptions of the simulation model can be
adjusted to match either exact or PSA models. Since the
computational procedure is quite different, its numerical
- results can provide {ndependent confirmation of the accuracy
of the implementation of each theoretical model. However,
the simulation model itself may contain errors, but agree-
ment between two models supports ones conviction in the

accuracy of each.

This leads to the following systematic scheme for
validation of the three models - exact analytic, PSA analytic

and simulation:
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(a) Compare the numerical predictions of each model for
a "base set" of networks conforming to the assumptions of
each model type; i.e. to those of the exact model. Their
agreement will mutually validate the computational

procedures of each in this restricted domain.

(b) At this point it is assumed, any proof or validation
being impossible for the present, that the simulation model
may be extrapolated, by relaxing the assumptions of (a), to

represent adequately non base set network specifications.

(c) We may now assess models with respect to a simulation
model, assumed validated itself. Such a process will
indicate the adequacy of the PSA model for networks which
conform to its own assumptions and also of both analytic
models for networks in which their respective assumptions
do not hold; a test on the "robustness property" (section
2.2) applied here to time delay prediction in queueing
networks. The extrapolation of the simulation model may
support but cannot validate ultimately the PSA model (in

particular) in its more general domain of applicability.

Concluding remarks

The implementation of the methodology described in

the previous section is a necessary and important step in the

development of representative models for prediction of time

delays in computer systems. This is particularly so when no

measured data is available. The detailed procedure constituted
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a significant part of the research reported in this thesis, but
its philosophical value is rather less than that of other
chapters, no fundamental advance in validation methodology being

proposed. Thus the details are presented in Appendix 8.

The conclusions drawn there may be summarised as:

(i) As required, the exact and simulation models were in
agreement for base set networks conforming to the

assumptions of the exact model.

(ii) The PSA approximation appeared very good for networks
conforming to its much less restrictive assumptions,

according to comparisons with the simulated results.

(iii) The robustness property of queueing networks was
emphatically not demonstrated in this study of time delays,

neither for the exact nor the PSA models.

(iv) The simulated successive cycle times of a particular
customer in the tree-like gueueing networks considered

were independently distributed. Thus it is valid, at feast
in these cases, to apply the Central Limit Theorem in

order to obtain an approximation to response time distri-

bution, see sections 4.10, 5.8.4.

The most important practical conclusion was the
accuracy of the PSA model. Since its assumptions hold for a
wide range of applications, it has emerged as a tool of great
potential for the computer performanqe analyst.

FPinally, the procedure detailed in Appendix 8 not only
achieves mutual validation as described in the previous section
but also demonstrates the methodology for the ultimate valid-

ation with respect to measured data.
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§7. Analysis of Transients in Queueing Networks

7.1 The need for tranéient analysis

It is almost universally assumed in queueing network
modelling that the network under analysis is in a state of
stochastic equilibrium, i.e. that the state space probabilities
are time independent. It is not disputed that this assumption
will be valid for the overwhelmingly larger proportion of time
periods considered. However, no analysis has been undertaken,
so far as is known to the author, to determine precisely when
this assumption can and can not be made; i.e. to estimate the
time constant of the transient component of the time dependent
state space probability distribution. Moreover, it should be
recognised that there are also time intervals of great signifi-
cance to the modeller during which the assumption is nof valid.
For example, the immediate effects 0of any disturbance to the
modelled system, such as the adjustment of a scheduling parameter,
may be predicted. This type of application is considered further
in chapter 8.

In the following section, an iterative approximate
solution is derived of the time dependent Kolmogorov differential-
difference equations for the state space probabilities of Jackson
or Gordon-Newell [JACK63,GORD67] type queueing networks. The
result demonstrates clearly, to first order, the way in which
the transient component decays and is shown to converge to the
exact time dependent solution, Originally the approach was
developed by the author for cyclic networks of just two centres
as an improvement to the PSA approximation for cycle time dis-
tribution, by way of an analysis in continuous time, [HARR78al].

The results of this research are summarised in section 7.3 and
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the intuitive assessment of the accuracy of the PSA method
for various classes of network (section 3.1) is given some

formal support.

7.2 Solution of the Kolmogorov equations

7.2.1 The convergent iterative solution

Let a Markovian queueing network of M exponential
servers with FCFS queueing discipline have state space S and

let

P(k,t) = Prob(queue length at server i=ki at time t, 1<izM)

(k € 8).

For notational conciseness and clarity a closed
network is considered, the modifications necessary for open
networks being simple.

The time dependent bglance equations for the

underlying Markov process are, [KLEI75],

M
P(k,t+At) = {1 - At ) ui(ki)} P(k,t)
i=1
M M .
+ 8t T ek ugCkyr)P(E™ 1)
i=1 j=1
+ o(At) e (E7.1)

where, for 1<i, jsM,

ui(n) is the service rate of server i when its

queue length is n ¢ Al

u; (0) 0o

0 (k.= 0)

8(ki) i

1 otherwise
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ij _ _ <
k = (kl""’ki 1""’kj+1"°"kM) (i#3)
k (i=J)

pji is the routing probability from centre j to

centre i, J # 1i.

The factor e(ki) is included to suppress invalid
transitions from states with negative valued queue lengths.

It is assumed, without loss of generality, that
Pij; = O, the modification of the method being simple if this
is not so, [GORD67].

Rearranging the equations (E7.1) and dividing by At,
the resulting Kolmogorov forward equations for the network

are, in the limit At »+ O, for k € S,

3P (k,t) o u i3
— = SA@P&,t) + ] L e (kypyyuy(k )P, E)
3t - - . . Ji"J" 3 -
i=1l j=1
M e (E7.2)
where A(k) = 7} u;(k;) 1is the total service rate
i=1

in state k ¢ S.

The iteration applied for solution of equations

(E7.2) is defined as follows:

Given the set of first order differential equations

oP,
i _ .
—_— = Fi(Pl’Pz""’Pm) (1l<iz<m)

ot
for some (suitably smooth) functions Fi’ let Pi(n) be the n'th

+ N
order approximation for the solution, Pi' Then Pi(n D is

defined to be the solution of

3P, .
1 Fi(Pl(n),Pz(n){...,P. (@) p, p, (@ p (D)

ot
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In the case of equations (E7.2), m = M, Pi = P(k,t) and
Pi(n) will be denoted by Pn(g,t). This mapping is valid since
the state space S is countable (M is finite); in fact finite

for the closed network considered here.

Thus the (n+l1)'th order approximation for the non-normalised
time dependent state space probabilities is the solution to the

equations
3P(k,t)

at 1si4j<M

8 {e*(E)tp(g,t)} = MEE g s(ki)pjiuj(kj+1)Pn(§ij,t)

ot 1<i#jsM

so that

M)t

P o(k,t) P(k,0)

n+l

t .
+ g~ME)T j eA(E)u{ Ye(k,)pi ui(k,+1)P (li,u)}du
173173 n'=
° i3
..... (E7.3)
where {P(k,0)|keS} is the initial state space probability
distribution. The normalised form is obtained by dividing by

keS

The zero order approximation is chosen to be the equilibrium

distribution so that

Po(g,t) = 0(k) where

o(k) A(k) I e (kppyyuyCkyrnet)

1<i#j<M ce...(E7.4)

©(k) is the well known product form solution for the

equilibrium state space probabilities, [GORD67,JACK63].
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This iterative scheme gives, in particular, a first

order approximation

e—l(l_(_)t

P, (k,t) = P(k,0) + {1 - e ®)to(k)... (®7.5)

by substituting (E7.4) in (E7.3) and performing the simple

integral.

This result is intuitively pleasing in that it is
an exponentially weighted average of the initial and equilibrium
state space probability distributions. The initial distribution

contribution dies away exponentially with ftime constant

A(E)_l, k € S, the mean time to the next service completion
(at any server) in state k. The equilibrium distribution is
accordingly approached exponentially also. Also pleasing is
that every iteration (except the zero'th) gives exact results
at time t=0 and as t>x , as shown in tﬁe following proposi-

tion.

Proposition P7.1

In the notation above, for all n ¢ Z+, k € S,

P, (k,0)

1]

P(k,0)

and Pn(E’t) + ©O6(k) as t > o

Proof
The first part of the proposition is trivial.

For the second part, suppose
P (k,t) > ©(k) for allk e S m<ne 2"
as t > =

Then for all € > O, ke S 3T € RT s.t.
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- 2
| P, (k,t) = 0(k) | < €/30,M
for all t »> Tk ’

where O = max {uj(kj)/x(gjl)}.
- 1<i,j<M
Let Ti = max T, -
1<i,jsM

Then, by the balance equations for (k) and the triangle

inequality,
I {;\(k)}'1 ) e(k,)p..us(ki+1)P__ (kij,t) - ok) |

- 1<i#j<M R e B
for all t > T£ .

Also, 37U ¢ Rt s.t.k le_A(E)tl < ¢/3 for all

Hence, by definition of the.iteration and since
IP(k,0)I,l0(k)I =1,

| P_(kst) - 6(k) | <e/3+ (1 -e KT ¢34 g3

< g for all t > max(U&,Tg)
by basic inequalities of mathematical analysis.
o P (k,t) + o0o(k) as t -+

and the proposition is proved by induction.

It is now shown that the iteration defined in

section converges to the exact time dependent solution.

The proof of the convergence property require

following Lemma.

< /3

t > Uk.

this

s the
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Lemma L7.1

For o,B £ S, let

6(a,B) be the number of the centre from which a departure
causes a state transition o + B which is undefined if a
one-step transition o + B8 is invalid. Similarly let ¢(o,B)
be the number of the centre at which a customer arrives

immediately after the one-step transition o =+ B, c.f. section

5.4.
Let
Zga ( pe(a,B)¢(a,B)”e(a,s)(“e(a,s))
A(B)
{ if a one-step transition a + B is valid
. O otherwise
Then for all n € Z+ ,
()" < ACa)
be A(B)
Proof

For n =1, the result is true by definition.

Suppose inductively that it is true for alln <m e ZT,

Then,
(M = I (" Pe(a,y)eca,m)Ve(e,y)
yeS A(y)
o
where the argument of p has been omitted and
Sq = {y|one-step transition o>y is valid}

AN He(a,v)
YESa A(B) ACY)

(2)%g, <

using the inductive hypothesis and that pe(a,y)¢(a,y) <1

for all o,y € S.



. - 1
' ()%, = X L Me(a,v)
YeS
a
- A
A(B)

which proves the Lemma.

In the notation of the Lemma, for o £ S, the iteration

may be given by

]

Po(,t) o(a)

e-A(a)t

Ppyq (@) P(a,0)

t
+ A(a)e M@ty E8 J MY (g,u)du
(o]

BeS
c....(E7.6)
Theorem T7.1
The iterative scheme defined above for Pn(a,t),
n e Z+, e S, O teR , converges to the exact transient

solution as n -+ o,

Proof
For t = 0, the result is true by Proposition P7.1,
For t > 0, let
Dn(a,t) = Pn(a,t) - Pn_i(a,t) (n =2 1)
so that
t
- -A(a)t = A(e)u
D (a,t) = A(a)e N HGBJ e Dn_i(B,u)du
o
BeS
Now let Sn(a,t) = sup | Dn(a,u) | so that
O<ust
_ a—A(o)t =
IDyCa,t)] = (1 - e ) I Eup Sp_4(Bst)

BeS



But for all T s.t. O < T <t
- t .
| Dy, | (1 - e MMEH f s s (8,0
BeS
since 1 - e MMt 5 4 _ MAT g sup |D,_,(a,u)lsS _, (a,t)
O<usT
-2(a)t =
S (a,t) < (1-e ) I Eyp S, 4(B,t)
BeS
Now let x = sup {1 - e—A(a)t}
0ES
so that O < x <1 for t > 0, all service rates being finite.
Then, by Lemma L7.1
n-1 A(B)
Sn(a,t) < X 2 {)\(G)} Sl(B,t)
BeS
= px*?
where A = Z {%%%%} Sl(B,t) is finite since for all BeS
BeS

A(B) < = and Sl(B,t) < P(B,0) + O(B) by eguation (E7.5).
.. For m>ne?l" ;, o € S, by the triangle inegquality,

|Pm(a,t) - Pn(a:t)l

IA
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m

)

j=n+1

| Dj(a.t) |

m

)

Jj=n+1

Sj(a,t)

m

L)

Jj=n+1

%xJ
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Now, for all e >0, 3INe Z* s.t. for all n > N

x? < e(1-x)/A and so

IP_(a,t) - P (a,t)| <& for all mn>N e z*.

Thus, for all t ¢ R+, ¢ e S

{Pn(a,t)} is convergent as n +

by Cauchy's theorem, with limit P_(a,t) say.

It is clear that on substitution of P, for Pn and Pn+1 in
equations (E7.6) P, is indeed the solution to the Kolmogorov
equations (E7.2), satisfying the initial condition

P_(a,0) = P(a,0) by proposition P7.1.

An alternative formulation of the iterative scheme,
avoiding the need for explicit integration, is by means of
power series expansions. This is discussed in the following

section.

7.2.2 Expansion in power series

Proposition P7.2

For all O <n e Z, k € S, Pn(g,t) has a power series

expansion with infinite radius of convergence.

Proof
The result is trivial for n = O.

Suppose true for Pn_i(g,t), n e z*.

Then the right hand side of equation (E7.3) has
infinite radius of convergence since for any functions f1 and

fz of t with infinite radii of convergence,
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(i) Their Weighted sum and product also have power
series with infinite radii of convergence.

(ii) The indefinite integral of f1 with respect to t

also has a power series with infinite radius of convergence.

Thus the proposition is proved by induction on n.

a

In the iteration defined in the previous section,let

P (k,t) = [ ap (k)" (k € 8)
m=0

A recurrence relation for the power series coefficients

(k) may be derived by substitution into equation (E7.3) as

nm
follows.
- o
m -A(k)t
I a‘n+1,m(£:-)t © P(k,0) + ] Am(E)By,
m=0 m=0
- ij
where A (k) = ) e(ki)pjiuj(kj+1)anm(5 )
1<izjsM
t
and B, = e~ ME)T f uBeM (B gy
0
m—1 [ < 2
(-)" “m! {-A(k)t}
ey T
{x(x)} Q=m+1 2!

(after some reduction).

Thus, by comparing coefficients of tm, mz2 0O, for k € S

=) M =1 A (k) .
a.n+1 m(l{_) = — {P(l{_,O) - 2 [—HL_'—)J'{-}\(E)} J}
’ m! §=0 A(k)
(m =2 1)
a,41,0(8) = P(k,0)
and
20, m(k) = (k) 8, is the initial condition.
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Therefore, using these fairly simple recurrence relations,
the power series for the time dependent state space probability
distribution may be computed as an alternative to the direct
method of performing the integration in equation (E7.3)

numerically.

7.3 Relevance to the PSA method

As remarked upon earlier, the transient analysis
presented here was originally pursued as an enhancement to the
PSA method for approximate computation of cycle time distribution
in two-centre cyclic queueing networks, [HARR78a]. The approach
taken was to derive a better approximation for the joint prob-
ability distribution of the pair of queue lengths faced by the

test customer (c.f. section 8.3.3) as follows:

(i) Assume an equilibrium State space probability dis-
tribution at the time of arrival of the test customer at

the first centre;
(ii) Set a time origin, t = 0, at this arrival time;

(iii) Evaluate the probability distribution of the queue
length existing at the second centre on arrival of the

test customer conditional on the queue length at the first
centre at time zero. This distribution was derived
approximately using time dependent state space probabilities
evaluated to first order by the iterative method described

in section 7.2.1.

The details may be found in Appendix 11 and yield the result,

in the heavy traffic case,
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q
1 1
P(a,la,) <« 0(a,) + {P(q,,0) - © }
2 ! 2 2 (q2) { '1+>\(q2)u1-1 }

in the following notation

q = (ql,qz) is the pair of queue lengths faced by the

test customer in his cycle;

Mi,uz are the service rates of the servers (assumed

constant);

©(k) 1is the equilibrium state space probability for

state (N-k,k),;

A(k) 1is the total service rate in state (N-k,k).

Now, i(aqp) = Mo (ap = N)
Ht+ Hg (1 =< dy < N-1)
1 9
and the factor - represents the degree of
1+ Aagiuy

the difference between the equilibrium queue length probability

e(qz) (as assumed under PSA) and this improved approximation.

Thus the difference decreases as a4 increases - i.e.
as the queue length faced on arrival at the first centre increa-
ses. For large qy therefore, the interpretation of section 3.1
is justified; on arrival of the test customer at the second
centre, the system will have had sufficient time to have come
close to its steady state.

In fact this intuition is supported in general by
the first order transient approximation., Suppose the test
customer arrives at some centre, c¢ say, at time zero, facing

queue length n. To first order, the time constant
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1

{total service rate of network}

1

service rate of centre c

= vi E (sojourn time at centre c)
n
Thus the expected time of departure from centre c¢
becomes very much greater (linearly) than T as the queue
length n increases. Consequently, for large n the system may
be assumed to be in equilibrium to a good (first order) approx-
imation on arrival of the test customer at the next centre in

his path.

7.4 Summary
In this section a convergent iterative method has
been developed for the solution of the Kolmogorov forward
equations for queueing networks of the Gordon-Newell type.
As a result, quantitative assessment of the equilibrium
assumption used in queueing network analysis may be made,
in particular by consideration of time constants, and analysis
of transient situations undertaken. Extension of the method
to the general BCMP class of networks appears straightforward.
The iterative schemes given in section 7.2 are
eminently suitable for implementation by computer, whether by
the direct method of numerical integration or using power
series. The most efficient method is probably the former since
the power series involved will not converge rapidly, being based

on the exponential series, and considerable effort has been
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expended in the past on techniques for efficient numerical
integration.
The method normally used for (exact) solution of

a linear system of differential equations,

dyi n
—_— = ) M.y, (1 £ i< n)
dt . J 7d
J=1
or y = My in matrix form

involves diagonalisation of the matrix M. Specifically, if

M has eigenvalues {Aili < i s n} with eigenvectors {Vi|1sisn}

Then v = Dv

where Dij = xiaij (1 £ 1,3 £ n)
so that
Ait
v x e

and y; may be obtained by inverse transformation. However,

this method is totally impractical for numerical computation

in view of the size of the matrix M; n is the order of the

state space of the network. In fact the method is analogous

to that of attempting to solve the balance equations explicitly

to obtain the equilibrium state space probability distribution

for a network with any non local state dependence (section 2.2).
Applications of the transient analysis presented in

this chapter have been suggested (section 7.1l) and are discussed

in more detail in section 8.2.
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§8. Applications of the Research and Areas for Future

Investigation

8.1 Applications of tﬁe time delay analysis

8.1.1 Model types

Practical situations in which the ability to predict
time delays is desirable were identified in chapter 2. The

types of time delay may be classified into two categories:

(i) Those incurred by progressing from one centre to

another along any one of a set of possible paths.
(ii) Those incurred by multiple passages of type (i).

Typically type (i) time delays arise in polling
systems and type (ii) represent the response time in a computer
system of a task requiring several cycles through the system's
network of resources. Models for each of these types of situ-
ation are described briefly in the following two sections.

Of course, such models by no means form an exhaustive set for
the two categories above. For example, the time delays for
messages sent in communication networks - the "end-to-end"
delay, [WONG78al- is another example of type (i).

The type of analytical model used in each case wiil
usually be the PSA approximate model in view.of its generality
of application (see chapter 3), computational efficiency and
expected accuracy (see Apoendix 8). However, in cases repre-
sented by very simple tree-like networks satisfying the
assumptions required by the exact analysis of chapter 5, the
exact model may well be preferred in view of its superior

accuracy and despite its inefficiency.
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8.1.2 Polling Systems

In a polling type of system, the time delay of
greatest interest is that incurred by sampling a set of status
indicators and performing tasks associated with the status
noted in each case. The set will normally form a loop and be
polled continuously in a cyclic manner. Of course, any indi-
cator's successor will not, in general, be uniqgue so that the
polling system's queueing network representation must allow
branches. '

This type of sampling situation is not quite that of
the conventional queueing network. The tasks associated with
any status indicator do not transit to another on their comp-
letion by the processor: rather the processor completes every
such task before sampling the next status indicator. Neverthe-
less, the PSA model can easily be applied in that it requires
as input only the probability distribution (or empirical relative
frequencies) of the number of tasks associated with each status
indicator and the distribution of their service times. The
tasks may even have different service time distributions provided
the probability distribution for the numbers of each type at each
centre is available in some form.

The status indicator could be a "data ready" line
in a multiplexor system or a sensor in a process control system
and it is immediately apparent that application of the PSA
method will allow prediction of the probability of a system
fault through failure to complete a sampling cycle within some

predefined time limit.
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8.1.3 Computer systems

The prediction of time delays in computer systems is
probably the most important application of the analysis pre-
sented in this thesis. The distribution of cycle time is itself
of great use - for example in detecting imbalances in a com-
puter system configuration, revealed through unexpected peaks
at times greater than the mean. However, the crucial measures
are those of response time (interactive systems) and turnaround
time, sums of successive cycle times, as discussed in section
2.3.

In fact response time can be represented quite simply
in a type (i) model. An interactive system may be represented

by the configuration in fig. 8.1.

Computer terminals
system
Pim
— M

fig. 8.1 Network representing an interactive computer

i

]_Q I
Active 1

|

|

system

In this network, the cycle time consists of the sum
of
(i) User think time, U say,

(ii) The response time of the system, R say.

A very simple model may be constructed for this
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configuration in which the active terminals, or rather their
users, are considered to have identical characteristics, in
particular independent, identically distributed service times,
U, and equal routing probabilities, Pyjr 2 £1 < M, Then the
complete set of terminals in use (centres 2-M in fig. 8.1) may
be represented as a single IS server, the number of tasks in
the network being equal to'the number of active terminals, M-1.
The resulting network is therefore cyclic with just two centres.
The tasks may have different processing time requirements,
reéulting in a multi-class model of the BCMP type, [BASK75],
given suitable queueing discipline for the computer system
server,

The probability distribution fof the queue length at
the computer system may be computed either using the BCMP result
or empirically. The service time distribution for the computer
system for each class of task may also be obtained empirically
by means of controlled experiments in each one of which only one

user is logged on tovthe actual system. By application of the
PSA method to the one-centre path consisting of the computer
system only, the probability distribution of response time may
be predicted. An important practical advantage of this simple
model is that measurements for the random variables U and R are
usually available from real computer installations, so that
validation problems are reduced.

This high level description of a computer system by
a single server may be refined by use of a model of the system
at a greater level of detail in which the individual computing
resources are represented explicitly. Many such models have
been constructed which find the service centre queue length

probabilities, e.g. [KRZE77b,BUZE78b], and usually consist of a
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server representing the processor(s) together with servers to
represent the various I-O sub-systems at various levels of
detail. A task created by a terminal server will require a
certain number of cycles in the computer system, with some
probability distribution, and the response time is the sum of
these cycle times. This is the situation described in sections
4.10 and 5.8.4, and assuming independence of successive cycles,
results in an asymptotically Normal distribution for the
response time as the number of cycles increases, for any given
task. In a model such as this, a task typically will have a
fixed probability of departure from the network at one or more
service centres, c.f. the probability of leaving the loop from
centre y in fig. 3.2, section 3.4. In this case the probability
distribution of the number of cycles is geometric and as repre-
sented in [LAZ078], but it could equally well -be obtained empiri-
cally. Either way, the asymptotic Normal distributions must be
weighted according to the probabilities of their‘associated
numbersof cycles, to give an analytic expression or (numerical)

histogram respectively for the overall response time distribution.

8.2 The use of transient analysis

The principal application of the time dependent
analysis of queueing networks presented in chapter 7 lies in
the determination of the decay characteristics of the transient
component of the state space probability distribution. In this
way the length of time required before a queueing network can be
considered to have attained stochastic equilibrium may be com-
puted.

For Jackson type networks it was shown that, to first

order in an iterative process, the decay was exponential with
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time constant for each state's probability equal to the
reciprocal of the total service rate in that state. This
result will also clearly generalise to the BCMP case.

However, apart from this very general result, relevant
in all modelling situations where the equilibrium assumption is
made, there are several more applications of the transient
analysis. The time dependent state space probabilities, com-
putable numerically to any degree of precision specified by the
modeller, may be used to describe the characteristics of the
network (and so predict those of the modelled system) immediately
- following the setting of a time origin, representing some type
of initialisation. This initialisation may take many forms in

an actual computer system, typically:

(i) The literal initialisation or "starting up" of the
system with some configuration of resources and tasks

specified.

(ii) More generally any disturbance to a system, whether
or not assumed in equilibrium, constitutes initialisation.
This is because the system's characteristics at all future
times depend on the nature and time of occurrence of the
disturbance - clearly the system cannot be in equilibrium
immediately following such an event. Disturbances may be
many and varied. For example, in a dual processor system,
the failure of one of the processors is quite clearly a
disturbance, and the ability to predict the effect on
system behaviour immediately after any such event is of
great value.

A more subtle disturbance is the entry/departure of a

task into/from the dispatchable set in a multiprogramming
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computer system. This is, of course, represented by the
arrival/departure of a customer at/from some server in

an open queueing network model of the system, and the
initial state space probability distribution is the
equilibrium one, [MITR79]. However, at times immediately
following the known time of this consequent disturbance,
the state space probabilities are time dependent since a
time origin has been set. In this way an analysis of the
edge effects associated with such events becomes possible.
This is, of course, the basis for the analysis in contin-
uous time of time delay distributions in queueing networks

discussed in chapters 2 and 7.

8.3 Future research areas

8.3.1 Qutline

In the main text of this thesis, most of the remaining
open questions have been identified so that a detailed dis-
cussion is not required here. Instead these research areas are
summarised and some new ones identified, with elaboration where

necessary in a few cases.

8.3.2 Acqguisition of measured data

One of the immediate priorities, as mentioned gquite
frequently, is to obtain suitable data from at least one real
computer system so that the validation by means of a three way
comparison between analytic, simulation and empirical results
may be achieved. The actual methods used to perform this

validation will be precisely those described in Appendix 8;
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there being more applications of each, of course, in view of
the increased number of sets of data.

The actual collection of the data could be by an event
driven software monitor or possibly by a hardware monitor if
theAsystem under study provided some means of identification
at the hardware level of the job in use of the CPU. The latter
possibility, if available, is the most attractive - to the
analyst in that system performance would not be distorted by
the considerable resource demands of the event driven monitor
and to the installation management in that the running costs
would be less for the same reason. In practice we shall be glad

to accept either alternative if offered!

8.3.3 The PSA method

Perhaps the most important practical contribution of
the research presented here is the PSA method of chapter 3 for
the approximate prediction of time delay distributions and their
moments. Consequently a considerable amount of research is
planned in this area. 1In the immediate future, the most
pressing need is the extension of the present implementation -
of the PSA model (Appendix 7) to cope with non exponential
service time distributions, IS queueing discipline (a trivial
task, see sections 3.2, 3.3.1) and state dependent service
rates. In addition, it is a simple matter to incorporate into
the model networks with service centre (class) queue length
probability distributions based on the BCMP result, [BASK75],
or operational measurement (the empirical case). In the former
case, LCFS queueing discipline could either be excluded or the
approximation given in section 3.2 could be used.

These enhancements would result in a PSA model able
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to be applied in its full generality, but only to cycle times
in tree-like gqueueing networks. Thus the next stage in the
development will be to extend the model for application to
time delays in general, in networks of general structure.
This stage will be based on the methods discussed in chapter 3
and will involve a considerable design and programming effort -
recall, for example, the problem of loops, section 3.4.
Validation of this fully generalised model will be by precisely
the methods described in this thesis (involving generalisation
of the simulator, therefore), hopefully with the availability
of measured data also, as discussed above.

The more fundamental research required in the area
of the PSA method concerns the acceptability of its approxima-
tions. In terms of the method's predictions, empirical tests
have indicated that such approximations are indeed acceptable.
However, a direct empirical test may be made on the fundamental
assumption of the method: independence of the queue length dis-
tributions for each centre in every valid path through the
network. The test in guestion is the ACF test, [CHAT751],
applied to cycle times in Appendix 8. In this case it would
be applied to a sample from the sequence of successive gqueue
lengths faced by a test customer in a simulated network or by
a particular task in an actual computer system. 2An alternative
test for independence of a data sample uses spectral analysis,
[JENK68], by computing the sample's cumulative periodogram which
should approximate to a straight line. This test could be applied
both to the cycle times and queue lengths samples.

Useful and convenient though these statistical tests
are, they may only be applied in specific instances and what is
really required to assess the degree of approximation in the

PSA method is a formal error analysis. Such an error analysis
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would not be expected to provide exact results for the error

in every network specification. Otherwise the exact selution

would be known so rendering the research worthless since either:

(1) The form of exact solution could be sufficiently
efficient in execution for practical purposes that

the approximate method would become superseded,

or (ii) The computation of the error would be too inefficient

for use as a practicable tool.

As an example, an error analysis in the second cate-
gory has been accomplished in this thesis for tree-like networks,

viz. the difference between the exact and PSA solutions.

Thus it is proposed to attempt to derive upper and
lower bounds on the error as relatively simple expressions in
terms of the network specifications. As a first step it would
appear simplest to consider the case of tree-like networks for
which an exact method of solution is known, bearing some resemb-
lance to the PSA analysis. The approach taken could be based
on that taken by the author in an analysis of another approxi-
mate method for cyclic networks, [HARR79al]. This method is an
enhancement of the PSA method in that the joint probability
distribution of the queue lengths faced by the test customer
in any path 1is computed by an exact algorithm, not based on
the assumption of independence of the servers. As in the PSA
method, however, the customer's sojourn time distribution for
each centre is assumed independent of the queue lengths faced
at othen centres in the path. This is valid for centres already
departed from (by the Markov property) but not for those still

to be entered. Hence the name of the method: "future path
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independence” or FPI. It was shown in [HARR79a] that the
FPI method gives an upper bound for the Laplace transform of
the cycle time distribution in cyclic queueing networks. 1In
view of this result and the closeness of the PSA and FPI
methods it may be worthwhile, in an attempt to obtain an upper
bound on the PSA method, to make an analytic comparison between
them - at least to pursue an analogous development for the PSA
method. However, this approach would only provide one bound,
and that on the Laplace transform of the cycle time distribution.

Thus, the problems involved in a formal analysis
providing efficiently computable bounds on the error of the PSA
method appear considerable even for tree-like networks. They
will presumably be even greater for more general networks for
which no simple exact analytic solution is known.

A compromise between the empirical and theoretical

approaches could be as follows:

(i) Network specifications for which the approximation
of the PSA method is expected to be poor should be
identified. In particular identification of the woxst
cases in any class of networks is most important.
Heuristically such networks would be cyclic by the
argument of section 3.1, a view which is sﬁpported by the
validation process described in Appendix 8. However,

analytic definition of such worst case networks is required.

(ii) Empirical tests could be made to estimate the error
in these cases and in this way the maximum error for any

class of network under analysis could be predicted.
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8.3.4 Other research areas

In the previous section the most significant research
areas have been discussed, but others have been identified in

the main text and are listed here together with three new ones:

(i) The importance of response time has been emphasised
in various places, and validation of the underlying independence
assumption via the autocorrelation function or cumulative
periodogram suggested. Another simple check would be to examine
samples of measured response times and to test the hypothesis
that they are drawn from a linear combination of Normal distri-
butions, weighted according to the probability distribution for

the number of cycles required, see section 8.1.3.

(ii) Inversion of the Laplace transforms of time delay
distributions could be investigated. Two possible methods for
this were identified in chapter 4: numerical and analytical.
Both methods have their problems and the latter has been given
for the PSA method with exponential server networks in Appendix
1. It has also been pointed out in section 4.8 that there is
little practical value from such an exercise which is primarily

of academic interest therefore.

(iii) In order to provide a truly practical tool for the
computer performance analyst, the implementation of the results
of the PSA and exact methods for time delay analysis muét be
made as efficient as possible. This will involve established
techniques such as the efficient handling of sparse matrix
operations, recursion and storage management, I£ may also
require the use of specialised techniques such as decomposition

methods, sections 4.9 and 5.8.3.
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(iv) The exact analytical method may be extended to
apply to networks in which each server may have any service
time distribution possessing rational Laplace transform.
The queueing discipline will still be restricted to FCFS.
The extension is based on the method of stages, [BASK75, COX55]
and because of the FCFS gqueueing discipline will, in general,
introduce blocking (section 2.1 and [BASK751) at the first
stage of each service centre. However, the state space trans-
ition matrix for the generalised tree-like network is easily
constructed for any state dependencies in the service rates.
The non overtaking property of the generalised tree-like network
is preserved by the FCFS gueueing discipline of the stages and
the blocking property which therefore permits parallel stages
to be used - the most general case. Blocking presents no
additional problem in this analysis in that the state transition
matrix must be analysed explicitly in the exact analysis.
There are two additional difficulties resulting from this
generalisation. The first is an increase in computational
inefficiency arising from expansion of the state space by the
addition of the stages. The second is that no equilibrium state
space probability distribution is known in closed form for FCFS
gueueing discipline and non exponential servers. Thus the
cycle time distribution and its related results may only be
derived analytically conditional on the initial state of the
network. Of course in practice it may be that empirical equi-

librium state space probabilities are available.

(v) As regards the transient analysis, it was observed
in chapter 7 that the method derived for Jackson type networks
should be easy to generalise to the BCMP class. This extension

is proposed. In addition actual implementation of the analysis
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as a software package has yet to be undertaken. The predictions
of such an implementation should be validated with respect to
data obtained for transient situations; by simulation experiments

and, ultimately, by monitoring actual computer systems.

(vi) A controller can be designed to optimise system
performance measures continuously by automatic tuning of the
system's parameters, resulting for example in dynamic scheduling
algorithms. The (operational) parameter adjustments may be
based on the performance predictions of a model corresponding
to optimal setting of the (model) parameter wvalues, [KRIT781],
the input to the model being based on current workload charact-
eristics. However, a computer Linstallation model has been
proposed, [LEHM79al, by which workload characteristics them-
selves may be predicted. Given a validated model such as this,
the control system described above could make (operational)
parameter adjustments based on antficipated rather than current

workload characteristics.

Note that this type of parameter adjustment constitutes
a form of initialisation in the sense of section 8.2. Thus the
immediate effects of such a disturbance to the system, for
example some form of instabilility, may be predicted by application

of the transient analysis as discussed in section 8.2,
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§9, Conclusion

The fundamental philosophy of this thesis is con-
cerned with the adequacy of the representation of models of
computer systems. Thus it was first argued that to achieve
a good representative model a phenomenological approach to
modelling is required. This will result in the identification
of the performance measures genuinely requiring prediction (as
opposed to those easily produced by some established class of
model) as well as the determination of the type and structure
of the model ideally suited for such prediction. Of great
interest to the modeller at present are the techniques of
gueueing network analysis, in view of the closeness of structure
between (abstract) queueing networks and (real) computer systems,
“and such techniques are strongly supported here as a means for
representative computer system modelling. The specific type
of analysis undertaken would depend on the phenomenological
study. The measures of most interest, to both users and
installation management, are the time delays incurred by indi-
vidual tasks (e.g. programs) in computer systems - not only
their mean values but also their relative frequency histograms,

or at least estimates for some higher moments.

The principal results of the research discussed here
are, then, the theoretical solutions for the distribution of
time delays in queueing networks. The solutions of greatest
importance are the exact ones which provide, in addition to
significant academic interest and achievement, standards against

which to assess the adequacy of approximate methods, e.g. theor-

etical or simulation. Such exact methods were developed first

for cyclic and then for tree-like queueing networks (chapters 4
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and 5) with a view to their actual implementation so that
computational efficiency was always considered an important
requirement. This resulted, in particular, in the choice of
the class of networks anélysed, viz. those possessing the
non-overtaking property (tree-like networks, chapter 5) for
which expansion of the state space is not required. Neverthe-
less, the exact method does have severe practical limitations,
both with its domain of application and its computational
inefficiency. As a practical tool for the performance analyst
the theoretical method assuming permanent stationarity (chapter
3) is of far more use since it is applicable in a very wide range
of situations, is efficient in execution and appears to provide
accurate approximations ( Apoendix 8).

indeed, the emergence of the PSA method as such a
potentially valuable tool is the most important practical
achievement of the research reported. Though we are convinced
of the justification for the approximations and the correctness
of the derivation, it must nevertheless be accepted that the
method has not been validated against measured data. Ultimately
only such validation can give total confidence in the wvalidity
of the results.

Perhaps of less practical, but of significant academic
interest is the transient analysis of chapter 7 which provides
a very simple, convergent, iterative solution to the time
dependent Kolmogorov equations for queueing networks, showing
the nature of the decay of the transient component. This novel
approach to the problem (to the author's best knowledge) is
very much more efficient in execution than the conventional
method involving eigenvalue analysis. 1In fact such transient
solutions have several applications in practice{ as discussed

in chapter 8, for example to quantify time periods in which the
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equilibrium assumption is valid in a queueing network model
or to predict the immediate effects of disturbances to a

system.

Finally, it is anticipated that this research into
modelling methodology in general and analysis of time delays
in particular will provide a sound foundation for a longer term
research objective. This is to integrate an efficient software
package, able to predict accurately the probability distribution
of time delays in a variety of computer system configurations
(e.g. cycle time, response time, turnaround time), into a larger
scale model of computer installations, [LEHM79a]. The install-
ation model would represent dynamic workload characteristics
making use of feedback from the time delay prediction component
which would itself be part of the sub-model of the computer
system, the processor of the applied workload. An application
of such a model was given in the context of scheduling in

section 8.3.4.

Such a dynamic model would result in a better under-
standing of the interrelationships existing between the various
components of an installation {applications of the user
community, user workload, computer system), their short term
variation and long term evolution. Thus more effective manage-

ment and control of the installation would be made possible.
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APPENDIX 1

The Laplace transform, F(xr,p), of cycle time
distribution as given in equation(E3.10)in section 3.2.1 may be
inverted by evaluation of the Bromwich contour integral defined
in general by
Y+ieo

ePt F(p)dap
y-i=

1
£(t) = 573

in which F(p) = L{f(t)} and

Y>Y, = Re(p,) where p, is the singularity of F(p)

with the largest real part, [SPAI70].

Assuming all singularities are isolated poles (as

in our case) the contour could be as shown in fig. Al and

1 .
£(t) = 373 .2mi] {residues of {eP*F(p) } at poles}
where the residue of G(p) at p, is the coefficient of B E B
o
in the Laurent expansion of G(p) about Po-
AIm
X
Poles X
b
X
YO Y Re
—

FIG. Al: THE BROMWICH CONTOUR
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1 J (k.-1)! tJde J
Now, ‘JJJ (k,t) = Z J
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using Leibnitz's rule and where the arbitrary summation index

has been chosen to be £..

j
e'“jt kj"l (k.-1)! tzj (k.=1-2.)!
e bykt) = ——— ] J ) -2 J
\(kj-l). zj 0 (k.—-1-% ).lj. Z.£i= _l_zj(igjl )
1#32 >0
Ly
. (-1) “(k;+2,-1)!
k. +%

i#j (ki-l)l(ui-uj) i 7i

using the generalisation of Leibnitz's rule given in Appendix 6

and indexing suitably.

-u.t L. k.-1-2.
e I (kj-1)tt =y 7 J
.. wj(hrt) = — )
L L L
I (k.-1)! I 2.=k.-1 T 2!
L i T P |
i=1 i=1 ,7 4 i=1
1
- '
. (k;+25-1) !
K. L.

lsiggsr, (My7Hy) i1

ceese.s (EA.2)

A recurrence relation for wj(g,t) is easily derived from (EA.1)

as follows:
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_ L 1im 1l d e
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3
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Now let Qy(k,t) = by(k,t) T (k;-1)! . Then, by substitution

1

1

in (EA.3) and (EA.4) or by direct derivation from (EA.1)

0.k, t) = 0. (k37,00 - ¥ a.xI*,e) .......(EA.5)
J J L#5 J

(kaz and kizl ;, 1<i#j<L)

with boundary condition

Q;(k,t) = I e 7 .......(EA.6)

1si#js<L (ui—uj)ki
(kj=1 and kizl, 1<i#j<L)

A product form solution does exist for equation (EA.5), viz:

L X
_ i
QGk,t) = N; I ox
i=1
L
where )) x; = t and Ny is independent of k, but this
i=1

expression cannot satisfy the boundary condition, (EA.6).

By inspection of the case for L=2 and the coefficients

in the expansion
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which would arise in a product form solution if this existed,

it can be seen that the solution of equations (EA.5) and (EA.6)

should be:
(k.~-1)! «r. k.-1-r.
Qi (k,t) = ] —L— tI= 7 Tt
L J
£ r.=k.-1 .
=1t 3 Torye
i=1
(1sisL)
ceassees. (EA.T)
ki+r 1si#i<L
where r g =
1 i=j

That this is the correct solution may be shown as follows -

Using (EA.7) with kaz '

L+

€, (77,0 - ] o T
2#3
(k.-2)! r.+1 k.=-2-r.
= ) —4— 7 97 T
Ir,=k.-2 L J
h O | '
I ri.
i=1
(k.=-2)! r. k.-2-r.
1<2#3<L Zri=kj~2 T r.!

i=1 1
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r.(k.=-2)! rJ kj—l-r
= 2 J - -
= ) 2 t 3 (=) I Q.7
Ir.=k.-1 . J
i I Ty
r.>0 i=1
r,{(k.-2)1 r, k.=2-r.
2 -
- . Tt 7 oy
1<2#j<L Zri—kj-l I ri!
r2>0 i=1

The restrictions that rj>0 and r2>0 may be removed because of

the multiplicative factors rj and r, so that the R.H.S. becomes:

k.=1l-r.

r.
9y Jo J -
(ky-2) 1t 3 (=) Q4 (z” %) {

r,.
i

It =20 W

i=1

L
= Qj(g,t) since ) r, = kj—l in the summation.

Indeed by substituting the boundary condition, (EA.6) for Qj(g’,t)
in (EA.7) and using the definition of Qj in terms of wj’ the

result (EA.2) is arrived at.
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APPENDIX 2

In this appendix it is shown that

R(3) = ( x R(3-1) + (1-x) Q(3-1) (322)
4 (1-x) Q (0) (3=1)
. O (j=0)

where R is the cumulative discrete probability distribution of
r which is the convolution of probability distributions p and q,

where g has cumulative distribution Q and p is geometric, defined

by
p(i) = {(l—x) x+1 (i21)
‘O (i=0)
Let Xp and Xq be random variables with probability

distributions p and q respectively. Then

R(3) = Prob (Xp + Xq < 3)
j .
= 1 Prob (Xp = j~i) Prob (Xq < i)
i=0
j-1
= I p(i-1) o)
i=0
and j-1
r(j) = ! p(i-i) q(i)
i=0
similarly, or by differencing w.r.t. j.
¢ 3-2
.*. R(3j) = ! x p(3-1-i) Q(i) + p(1) Q(j-1) (322)
| i=0
p(1) Q(O) (J=1)
0 (3=0)

with a similar result for r(j) which proves the result.
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APPENDIX 3

It is shown here that the convolution operation,
-applied to two distributions of positive random variables, is
commutative. Consider the convolution, H(t), of distributions

F(t) and G(t), t € RT.

H(t)

[F * G] (t)

t
[ F(t-u) dG(u)

o]
t t

= J d {F(t-u)G(u)} - J G(u) duF(t-u)
0] (0] )

t
= o + I G(t-v) dvF(V)

0
since F(0) = G(0) = 0 and by the change of variable
v = t-u
e H = F*G = G*F

as required.
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APPENDIX 4

The minimum of n independent negative exponentially
distributed random variables is itself negative exponential with
inverse mean equal to the sum of the inverse means of its

constituent components.

Proof

Let T = min T
l<isn

where Ti is an exponentially distributed random variable

with mean ui_l.

Pr(T > t) = Pr(Ti > t , 1<izn)

n
= I Pr(Ti>t) by independence
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APPENDIX 5

Computation of first entry probabilities to target states

In this appendix an expression is derived for the

probability, P of a network entering state t € S, < S (the

T
state space) at some future time, conditional on the network

st’

starting in state s and so that no other state in Sp is entered
before t. Sg; is the set of "target states" with the property
that having transited to a state not in ST from a state in ST’
the network can never return to any state in ST.

The result is required in the decomposition analysis

presented in section 4.8 for cyclic networks.

Let XSt be the probability of passage from state s to t

in any number of steps, including zero if s = t,

i.e. X = ) g? where T is the state transition matrix
=0

of the network, by Corollary CCL4.1,

1

so X = (I-T) ~.
Now
Xgp = L X, T, for s#t teseseses. (EA.B)
uesS
= Z Xsu Tut + 2 xsu Tut
ueSq u¢sT

But ST was defined to be such that for all t € ST’ if

ug¢g S s.t. Ttu #0 ,

T

then for all v e S s.t. Xuv #0, v ¢ ST’
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Thus

by considering equation (EA.8) with t = v, so that any route
implicit in st entering ST gives zero contribution, and so
P. = X .- Y X __ T .

st st ueST su “ut
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APPENDIX 6

In this appendix, the rule of Leibnitz for repeated
differentiation of a product of two functions is extended to

products of any number of terms.

n +
Let F(x) = II ui(x) (neZ , nz=21)
i=1
(jk)(
n x)
Then FP (x) = pr I S S
n k=1 Ik
Z Ji=p
k=1 k
jkzo

where the index (p) denotes differentiation w.r.t. x p times.

Proof

The proof is by induction on p.
(i) For p = 1, the result yields

n (3,.)
F ) = 7 1 ow K (x

vwhere D =v{(jllj21-'°ljn)ljk=ll ji=ol 1sizksn; lsksn}

which is known to be true.

(ii) Suppose the result is true for F(P)(x).
Then 4
FPH1) 5y = = p(P)(x
dx
n n oy (x)
= p! } I
Ejk=p i=1 k=1 jk!
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(j'k)
n n u (x)
) I 37, 1 K
i=1 Zj’k=p+1 k=1 j‘k:
J’kao
j'i>0
+ Gik
. (3,.)
n n u k (x)
I 5, 1 =
i=1  1j =p+l k=1 3t
jkzo

dropping the primes, since the terms for j.= O give zero
i

contribution, giving the result for F(p+l)(x) since
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APPENDIX 7

The following APL functions produce numerical predict-
ions of gquantities related to the cycle time distribution in
tree-like queueing networks. They implement the analytic results
presented in chapters 3 (under PSA) and 5 (exact). The package
may be used interactively by typing "CYCLE" when the workspace

has been loaded.
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CYCLE
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33 TINPUT NO. OF TIME STEPS REQUIRED®

41 Nl

$1 L1:'0D0 YOU REQUIRE EXACT OR APPROX. RESULTS ASSUMING PERMANENT STATIONARITY? INPUT ''S°° OR
41 +{"Eat=110 /L3, L2

73 4L1ixpafle  TRY AGAIN®

831 L2:3L4x00P0ePSD N

93 LI:TRM 1 —~

103 PDeSSP+.x¢1 0 0 ,N) DST SSI/NT

111 C&%:CRV'DISCRETE CYCLE TIME LISTRIBUTION:®

123 CR. 7 TIME PROB, " ,CR, 300" ="
131 T7 3 (N, LoD uNY, 15 3 1(N, 1)3FD
143 -
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03 Zea DST I ;LiJ; TRE;NSB;NRT;OM;TRG;SJ:X HD;&;P;PP;T1;a;TST; TL

11

21

4]

33
5]
7]

a8l
?1

1
1

1

171

0]

aAL11:TREE PTR,AC23:0LD M,AC3I:0LD HO.ACHI:MAX. TIME,I:INITIAL STATES

+(1=LeAlY]+Z0)/0
+{1=TRE+aC1]) /L7

X€{AC23,0)pJe0

Lé:2((pl)#1daXeX, AL2] NTS ICJed+13)/L6

L7:TeNIN+OMeMeMEMD2 ; MEMCL; J1HDI+1-HD&NETITRE]

NRT#NETCTRE+TI ™

+(TRE=pATSTFMT ((NRT-1)pJ¢0),1) /L0
TRM HD

Ievdeg

11 L8:4((oX)(21#pI¢I,STN Mt (HD-AL3IDIIX[:J=J+11) /LB
123
133
14l
131

41

183
191

“

201
213

LO:Q¢0, #~(14TSV)XD
+((0=NSB+NETTTRE+ZD) (N>1)/L1,L2
AaONLY 1 CUST

+L.3X0pTRGe, I~-NRT~1

L2:TRBFTLI(STN TSTI40,\STN 2xTST

A+CSRLOTLIXC(RPMLTL; 1#0) /RPHLCTLEHD+NRT~1;])+ . +TSVETRG]
PPE+/011¢3 172 8(L,pA)PAIXGTI L

Teoq

221 HeOM
231
241
253

2

261

271
281
291
302

3

323

3

1]
31

341

3

r " (m] ~
ArAA Kl TNt alal P

2 aXaialalial

5]

0]
13
21
33

1]
11

TRM HD

ZeC(pl), 0)p@tA(OpP) p(—(pPe((T-TRGL1I~1),pTRG)p0ICLI)tG
TieI-TRGL11~1

Xeq(OaPIp(—(pPICLIIPTSY

LS: Pe(Px@)+(1~@)x ('TRAN" MSE P)I+X

Pe(0,y"1+(pP)C1 AP

PC\eTRG; 11ePPL; 1+(pZ) €233

Pel=0,1"1+(pP)C13)0P

+(L="1tpZ¢Z,+/PCTL;1)/0

+LS

L1:Ze(T,0)pPeLl, (T~1)p0
L (LA 11 pZeZ, PE(PX@)I+(1-Q)XC TRAN® SHML P)+1,14TSV) /LY
Z«ZL1:1

Z«l ESB T:idJ

Ze{(I-13p0).1

L:JeTRANICT I+ \TRANICI+11-TRANICIeI+1]
+{TAPZeZ, (TRANCIIFTLIN »  XZTTIRANCTIITI/L

ZeGTd LiN:C;BiA; Q0. TRAN TRANI TRANC:TSV

23 A@(NSB.DA)DA*NI EIJX\CIJ((L-Nﬁi).nTRG)aGGﬁQETRG]

%]
351
41
71

3]
11
21
33

03
1]
231
3]
%]

351

Rel-&(L,nTRG) 0@Q

L1:3(NSBzN&N+pooCIN:; JeBX(NETLTRE+2+N1, OM. HD, L) DST,SJL:NDI/LL
Ne 11 0 xel

L2:2(LE71taZeZ, «/(NTCI XD (NEN+ 0 0 1) PAY/L2

ZGTJIeZ

ZeA HSB T,;4:I;R
Ze, (Re(pT)tA)IeL]

L: JeTRANILII# TRANILT+13-T
I

RANIEI€I+1)
+(T#6Z¢Z,REIJHITRANCII+TCITI+,

xZETRANCLIII /L

ZePTH LPA P;NSE;EOR;I
aPC13:SUB TREE POINTER,PC2T:LENGTH OF PATH VECTOR SO FAR
EORPTH,NETEPL113+0, « TI+NETCPC1I+1] -

4 ({I¢nZeV DI #NSBENETLPC11+2T) /L1

*GXDPIX&PIK P[“J*OZFEDR
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ZeA LT T:J:iTRE:NSB:NRT:OM:TRG:RATES S T X TL T2 T3 TR:HD : PARIK . TL:TST
aAL1]:TREE PTR,AL2J:0LD M.AL33:0LD HE,ACY+1 LAP TRANS PARAMS,I:INITIAL STATES
+(13TRE+AC1J)/L7
Xe(AL23.,0) pded
Lé:3((pl)kLlboX X, AL2T NTS ILJ&J+11)/L6
L7 :TeN!N+OMeM eMEMC2 , HEMOL ; 1 HD1+1-HD+NETLTRE]
NRTENETLTRE+K+1]
4(TRE=ppTST«§f((NRT-l)oTﬁZ«JbO),l)/LO
TRM HD
Iexd
LB:2((pX)C23MpIe1,STN Mt (HD-AL3IIIXL; JeJ+11)/L8
Le: #((B-NSB#NETCTRE¢°J).N>1)/L1 L
aONLY 1 CUST™
+L3xppTRG+, I-NRT=~1
L2:TRG+ 14 (STN TSTI+0,1STN 2xTST
L3: SJﬁIgagthbzgﬁgthRG]'.+\NSB]
RATES+(RPHLTL; ]#0)/RPHETL&HD+NRT-1 3
T3«CSRLCTLI+ I§!ETRGJ- ¥3i4
T2e({PAR"3%pA) , (pI), pTRE) oK +1+TeTL 60
LS:+(T#(oTRG)XpaT2LK; ; TIL(TRGETeT+1] ESE TSV+AL3I+KIICIII/LS
S(PAREK+K+1+T¢0) /LS
L4 : 2 (NSB#JXe0aT1¢TL+RATESLJIX(NETLTRE+2+J1, OM, HD, 34A) LT SJC; Jed+13) /L4
+0xppZe 2 1 2 RT2+.xT1XT3
L1:Z«((p1),0)p0
L16:Z¢Z, (1 ESB TSV+AL2+KeK+I1IICLJ
2{(aA)#A2+K)/L10
AaNG SUBS

LTR

"INPUT VALUES FOR LAPLACE TRANSFORM PARAMETERS, 3°

DENe.0

LL7'DO0 YOU REQUIRE EXACT OR APPROX. RESULTS ASSUMING PERMANENT STATIONARITY? INPUT
+CEAT=21tI/LL,L2

JLLxppd¢  TRY AGAIN'

L1:TRM 1

+L3xppLAP*SEP+. (1 0 0 ,DEN) LT SSI/T

L2:LAP+FSA - -

L3: "LAPLACE TRANSFORM OF CYCLE TIME DISTRIBUTION'

CR. " ] L.T.CS1'.CR, 300" ="
(3 3 7((aDEN) . 1) pDENY, 28 3 7((pLAPY.1)aLAP
CcR

CAP PLOT 120 1S ,¢(DENC2I-DENC11),DENLL]

0] ZeMEAMN N

11 Ge(1,aX)0l

23 L1:4(N# 1411066, L1+ XX, (71, pX) 16D /L1
31 G#,GC; X3

41 Ze(NXGOCN+13)+XC13xGLN]

03 ZeA MOM I;J;TRE;NSR;NRT;OM;TRG, RATES;SJ;T:X;T1,; T2, T3, TR; HD; PAR; K; TL; TST
1] AAL13:TREE PTR,AC2]:0LD M,AC3T:0LD HD.I:INITIAL STATES
21 +(1aTRE#AL1DI /L7
3] X«(AL2].,0)pJ¢0
41 Lo+ ((pI)ALipXeX, AL2] NTS ILJeI+13)/L6
$1 L7:T#NIN+OMeMEMENL2; MEMCL1; JtHDI+1-HD«NETCTRE]
61 NRTENETETRE+ReII™  °77 T
73 H(TREZPATSTEM ((MRT=1)pT¢ZeJe0), 1) /L0
8] TRM HD
2?3 I+ Jden
107 L8:((aX)L2]4aTl¢l,STN Mt (HD-ALIIIIXC;Jed+1])/L8
113 LO: *((0=NSB+NETCTRE+“]) N>1)/70L1, L2
121 aONLY 1 CUST
133 9L3xppTRGE, I-NRT=-1
147 L2:TRGETL(STN TSTI40,1STN 2xTST
157 L3:SJeTRANCCTRANIETRGI ., +1NSB]
161 a'NSB BEY LABELING DEFN.
177 RATES«(RPMETL1#0)/RPUCTLEHD+NRT=1;1
181 T3ehL1ITIAX+ TSYLTRG1), [11(XeX+T3VITRGI), L0.51(10), X«CHSRCTLI-TSVITRG]
191 TRe(T.0)p0
261 L?:27(pTRG)#14oTRETR, TRGCTET+11 ESE TSV) /L9
217 T2e(3,:(rI):pTRG)PK&1+T+T1¢0
223 T2C1::J€TRLCI:]
233 Xe(' TRAN® HSM TR)=KXK+8(DaTR)al, 1$I§!,\T9J#U
247 LS2:3(TRAC(ATREIXpaT2L2; ; TIF(TRE; TI#XL; TeT+11 HSB TISVICI1N /LS
293 TRe(C IRAN SATe0) MSM TR) =K xK
261 XeX=K
271 LE3:+(TH(aTRG) xppT2L3; ; TI«2X((TRL; T1 HEE TSV)+XC,;TeT+11 HSB TSVILI1/LS3
281 L4 *(NSB#JXppoTl+T1+RATESEJ]x‘NETCTRE+“+JJ OM.HD) MOM SJC:JeJ*11)/L4
291 Xe(TLCL;IxTICL; ), C1ICCTLEL; IxTIC2;1)+T1C2;3IXT3CL;1).C0.53 1 2 1 . xT1x0CL] T3
361 At 2 1 ARE RINOMIAL COEFFS IN LIEENITZ EXPANSION
317 ZeT2+. x0X
321 40xppZ¢ZC1,;;11,023¢+/C11 1 2 L ® "L 0 "1 ¥2V,00.53 1 2 1 +.x 1 2 1 ®0Z
333 L1:Z&(Xe( TRAN' SML 1 ESE TSY)+Ke¢1,134TSV*2) HSEB TSV
341 ZeZ,00.51 IXTTC TRAN' ShL Z75K) HSE TSV)*(X l;llTSV) HSB TSV
351 Z#1,C010 20511
361 aNO SUBS

OR
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Z«A MSE M;I1:X:J;K;D

Ze(0

1 xeM)ple=de~(aTSVI=(oi)C1]

L:iXesd, "I0TI+v ', a, ' IEIF11-", A, " ICIeI+1]"
2 A ((PTSVI#IXp0eZeZ 0138, A, "LDIXI+. XML (De+/0,55K) $K+J+* A, "CLXT; I /L

ZeA MSM M:I. X

Zedl

1 xaM)pl+0

L:ia’4((aTSVI#1to2¢Z, 0110, A, "LXI+ . XKL A, "CEXe LA, "TLIT+0 LA, "ICT+13-7, 4, " ICI#I+112:30/0L°

NM;EPS;DR1.A;DR2;B;C;588,T1;T2
*INPUT DEGREE OF PRECISION’
EPSe(]

T1eT~T2eH

DEN¢# 1 2 +A4¢ 0 0

Ci7'D0 YOU REQUIRE EXACT OR APPROX. RESULTS ASSUMING PERMANENT STATIONARITY? INPUT °*

‘E'" OR

+('EA‘'a1t@) /L3, L2

sL1xppQe’ TRY ABAIN'

L2:0¢DR1¢("1+Be(T3+PSA)I[1])+Ce1tDENCDEN+10
G¢DR2¢(=DR1-(T3C21-B)+C)+C T

+{(0#T /A« (DR1,DR2) xEPS<( IDR2~-ACL2IT IBR1-AC11),1) /L2, LY

L3:TRM OMTeT1+MeT2

8S¢SSI/ T~ - .
AeDRIE("T+Be(TIESSP+.x(1 0 0 ,DEN) LT SS)C11)+CeltDENDEN+10
A+DR2¢(-DR1-(TIC2T=m)+C)=C =TT ==

+(0Rr /A+(DR1, IR2) XEPS< ( 1 DR2~AC2I)F IDR1~AL1 1) /L3

LY4: 'MEAN OF CYCLE TIME DISTRIBUTION =',(Ae—=((aA)IAL', ' )=pACTEPS) TM16~-DRY
‘STANDARD ERROR = ', AvSE«((H2eDR2)=H1XN1)#0.5 -
C 03 KeMM NTS NK;I:TiN

C 1] TeN+pKerIe0

C 23 L:TeeN01, 2\ ({MM=1) A N+MM=TeI+1) = 1NeT

L 37 NKeNK=14T#, 2 1 PCTENK=0.1)/7(00,1N),C0.53 0, 14T

C 4] +(MM#EpKeK  N=TTC11I /L
C 0] Z&NWS K;KL1;K2;T1;T2;J

C 13 4(0=+/2€((1, T2¢aK) pK1¢K#0),0)/J¢0
€ 23 K2eK1/1T2

C 33 L:T1eT1+05T1e+/CNOC(PC (T2, T2 (2 1+H) IRPMI CK2CJeJ+1T; 30440

€ 4] K1e(T1xT2)p0

€ 53 K1C(0,T2x 1 "1+T1)+CNO/ 1 T23e1 °

€ 61 K1e(T1, T2)pK1

C 73 Z¢Z,C11¢K14(T1,T2) pK=K2LJII=1T2),CSRE"L+H+K2EJII1x (1 0=+/P), CNO/P
C 81 +(JupK2) /L

C 91 Zeloll] 2

C 0] PRTTRM:MNPW:A,;B:ROW:T.J

L 1] fPWel20+160

C 21 A+C(1+{aTH) ), 0)¥5TS

C 31 ((20BYp' "), (C(E®TL1taA), Wi’ 1 ), ((-B=TXC)p{(C~B+1)a0),1.(BeM0.5x 1+Ce1+p] 7l /CHRIRUINA
C %1 (C(CXTI+E+3)p" = *)

L 51 L:9(TIIeI+(anlleC(B+ppROWETR0)A" "), 1'3013)/0

L 6] ROWCTRANCLCJI1eTRANLCJeTRANICII+ TRANICI+1I~TRANICII]

C 731 +LxppleAll;1,' T 7, (CTIIYROW

PYRR
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01 2ePSA; PTH; PIX; ;G3R;A;E;d

11 BPTHE1PIXFD) LPn 1o

23 PPRePPRTF/PPRCEL(0=+/RPM) /1M

31 GFULTHT a1 +REZeD

43 L1:+(N#"1+11aG6rG. [124+\Xx, (71, 4)#G) /L1
51 G+GL;H3J

63 L2: JeﬁTH(PIx:RJ+\a+P:xrR+1J -PIXERR+131

73 Aex\ 173 3"R((CpDENY, N, B) oXT JIXCSRLIT) +DEN« .+ (N, B) oCERLJI

a7 Z#Z+(PPR[R]XX/+/AK(pA)D((E N)eGL@ NI )~ XEJ]».XGED\N-IJ 0)1+x/XEJINGENT
93 +(R#9PPR)/L"

01 Z¢PSD L;PTH:PIX:PPR:G:R:A:B:JiC:D:P:E:MQL:T:K:CSR
17 PTHe\PIRET) LPA T 0
21 3gg+ggg—+/PPR@t:<u=~/RPM)/\HJ
4] L1: %(N# 1+146G66,L114\X%, ("1, H)tGI /L1
51 GeGL;H3
61 L2:E¢1.Lp0
73 JePTHUPIXCRI+\B+PIXCR+11-PIXCR#R+113
81 1«{@0SCUI="F)1/J”
91 MQL®TH/CC(pI) M) pBEN+1=\ND XX \1,8((N=1),pT) PXCII) +GLN]I
101 CSR+CSR
113 csReITecsrrId+meL
12] Qe#-0OxCSRECJ]
133 Ie0
143 L3: 061, LaPeak)
15] Ce0, (1=QLII) X1, X\(L=1)pQLTeI+1]
163 +(QDSCJLIII="F )/Lé
171 ael
181 L7
197 L&:KeL+2
203 LW:DCKIe(KtD+. XD (KeK=1)1C
211 +(K»1)/L4%
223 ACA+DX(XCJICIII*P~1) xGON+1-PI=XCJEIIIX(0,GICL1+N~P+P+1]
233 +(P*N)/Lé&
241 AcA=BIND .
253 L7:KeL¥2
243 LS:ETKI€(KIE)+ . xD(KEK-1) 1A
273 S0 (K#1), I#B) /LS. L3
281 Z¢Z+PPRERIXLIE

291 3(R#sPPR) /L2

01 ZePSM; PTH:PIX;PPR;G;R;A;B;J;C:D;I;MaL

11 PTHe(\PIX<0I LPA"L 0

21 PRRePPRT*/PPRCEL (0=+/RPM) /1M1

%1 L1:(NA"1+11pG+6,013+\Xx, ("1, M) tG)/LL

531 GeGL: A3

43 L2:4¢ 1 3 2 8(DX(A+1)e,+C),00.5] DeCAeN) o, +CFCSREJEPTHLPIXERI+\BePIXIR+1I-PIXCReR+111]
7] I¢(QDSLJI#'F')/4

81 MALF(+/(( (A1) NI PGLN+1= NI xX\1,R((N=1),21)0XLT 1) ~GLN]
93 aC2.J11:3eR{N,2L)aM3LCSRLL]

103 ACL; hI:Jem(N, ol) p2xMQLXHGL (CSRETIXCSRLID)

111 Cel,x\B{{N=1),B)pXCd]

121 A(+/A% (PRI ACX{{BTN) oBLOINI) ~XC 1o, xGLOVN=1], 03 +BLNI
131 De+/+/AC2; 3w, xAL2: 3
147 Z¢Z+PPRCRIX(0+/A)+0,D-AL2:3+ . xAL2:1]

153 S(R#aFPR) /L2

C 01 ZeA SHL V;T.iX
L 11 ZeyIed _ ‘
€ 23 Lia +C(pTSYIHPZHZ, " oA, [XI+. 2V, A, 'COXe A, "ILTT+v A, " I0I+11=" LA, TCIFI+11IDI/L
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0] SPEC NWK;SUB;A;I;J;QFF
13 SUBepMEM&MEM.CEN.O

33 Ll ‘CENTRE ':(VCEN)- : HEAD OF SUER-NETWORK ‘', (¥NWKC2]), ' CONNECTED TQ CENTRE ', rNWKC1]

43 *INPUT ROUTING PROBABILITY 7O THIS CENTRE FROM CENTRE ‘', vNWKLC13
51 NETCNWKC313e1+pNET

&3 RPMCNWKC11:CENIC]

73 LO:'INPUT NO. OF CENTRES IN ROOT SEGMENT®

81 NETENET.CEN, A¢N

93 RPMLCEN+-1+1A=1:1¢((A=1), 1) A(CEN#0), 1, (H=CEN) o0
103 I-CEN+A

113 *THPUT SERVICE RATES'

127 L2:Jeolle 'CENTRE NO. ‘. (7CEN),’

131 CSRLCENT#4O

181 SPEC(I=1),d,OFF+Jed+1
193 »L3
2031 Lb4:MEMCSUBLL]: SUBL2I1eCEN-1

T 0] Z«STH K. MiNiSK
L 13 SKeN—+/K: MeT 1 +ZeN=NEN
L 21 L: 0LX\bK#N*N-KEH]+aDZhZ++/(-K[HJ)tx\((N-H)$\M+N-Hk1+ﬁ)-\N

03 THM:A

21 +CEAT=11D) /L3 L2

371 aLlxeolle TRY AGAIN'

43 L2:3LuXooAeL, PSH

S L3:TRM 1

61 ACSSP+.xPNE~® 1 0 0 MOM SSI/T

73 L4TTHEAN CYCLE TIME = '.vHCTeﬁEZJ -

81 *‘3STANDARD ERROR = ‘.rbE«(AE3J AL2IxACAI)#0.S

e alalalux¥aXalalal

01 TRM H;I;A;B;C;J;MAT;STS

13 g¥S~(0, H)99TRAN6TRAN§PTSV+\TRANI# 10

21 5{R=1Hs01 ~ 7 TTTTT YT TTTTT

31 35P«SSIen0

43 CI7+7T71et+I+0Ae 1 dr0)/L2

5] S(0=Be"1+1toMATENWS Ce, ("1, M) 1STS+STS, [13 M NTS ID/L3
61 L:+(B®oA*A,STN “14MATCJeJ+1:1)/70

71 L3:TRANCFTRANC, A

151 CR. TRANSITION MATRIX FOR SUB NETWORK WITH ROOT CENTRE . 1H
163 FRTTRM
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APPENDIX 8

A8 The Mutual Validation Process

AS8.1 Introduction and outline

This appendix describes in detail the mutual wvalidation

process discussed in chapter 6. Three model types were compared:

(i) Exact analytic.
(ii) Approximate (PSA) analytic.
(iii) Simulation.

The networks represented by the models all had tree-like topologies.

Analytic predictions were produced by the APIL package
listed in Appendix 7 and simulated results by the author's network
simulator, see section 6.1. The numerical results, presented as
tables and graphs in Appendices 9 and 10 respectively, are also

discussed in some detail in this Appendix.

The validation process consisted of the following

steps:

(1) Various network specifications were defined to conform

with the assumptions of the theoretical analysis of chapter 5,
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In all,nine networks were considered (the base se¢t), their

specifications being given in the following section.

(ii) Predictions were made, both for the exact analytical

method and that using PSA, for each network -defined in (i) using

the implementation of Appendix 7.

(iii{; Simulated results were generated, first for each of
the cases in the base set defined in (i), and then for various
modifications of these cases where the underlying assumptions
of the exact theoretical model are violated. In particular,
different queueing disciplines and service time distributions
(with the same mean) were used. 1In all, twenty-one simulation

runs were made in this way.

(iv) The exact and approximate theoretical predictions were
compared, by methods to be described in section A8.3, for each

base set case.

(v) The simulated results for each of the cases defined
in (iii) were re-organised to represent cycle times for a single
customer as well as for all customers. This resulted in two

sets of simulated data.

(vi) For each simulation run and for each set of results
given by (v) independence tests were performed by applying the
autocorrelation function to the samples of cycle times. This can
be used to'assess the justification for application of the
Central Limit Theorem for response time prediction. Independence
is also required if the formulae for the estimates of the mean
and variance of the cycle time distribution as simple averages

are to be applied,and if a simple histogram is to be used to
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represent the distribution itself.

(vii) For each simulation run, the moments derived from
each set of results were compared with the theoretical exact
and approximate counterparts, under their own assumptions if
those of the simulation run were incompatible. There were

thus four comparisons for each network.

(viii) Finally the one-sample Kolmogorov-Smirnov statistical
test, [SIEG56], was applied to find the confidence level for each
set of simulated results from each simulation run being drawn
from a distribution given by the corresponding theoretical dis-
crete form(defined in section 5.6). The tests were applied for
both the exact and PSA theoretical discrete form distribution app-
roximations, giving four in all for each network specification.
The theoretical results were based on their own assumptions if

those of the corresponding simulation could not be accommodated.

In the next section the networks used in the wvalidation
process steps (i) and (iii) are defined. This is followed by
two sections in which the actual statistical analyses and
interpretations are given for the comparisons of exact with
approximate theoretical results and simulated with theoretical

results respectively.
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A8.2.1 Networks for the theoretical models

The nine tree-like networks (base set) specified for
analysis by the exact theoretical model were based on the three

topologies shown below.

(1) Cyclic
P —
(ii) Simplest non cyclic tree-like network
v
Y Y
P12 P13
(iii) More complex
;
v ] v
P23 P2y P27
v v
Pys Pye
fig, A8,1

fig. A8.1 Network topologies
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The particular network specifications were chosen so
as to constitute a sample covering the most significant character-
istics of tree-like networks; i.e. cyclic case (the most simple),
branching in its simplest form with a selection of routing
probabilities, and more complex configurations involving tandem
segments (definition D5.1, section 5.2) of more than one centre
and several (multiple) branches.

In cases (ii) and (iii),'{pijli,j e 27} are the routing
probabilities of the network. The networks were parameterised
in various ways as shown in table A8.1, by choices of network
population (topologies one and two) and of routing probabilities
or service rates (topology two). The labelling of the nine net-
work specifications is not consecutive since the number of net-
works considered is increased, for the simulation runs, to 21,

including the original nine interspersed throughout.

A8.2.2 Networks for the simulation models

The network specifications used for the simulation runs
consisted of the base set discussed in the previous section, for
which theoretical predictions were made, together with twelve
other specifications derived by violating some of the underlying
assumptions of the base set. The violations were made by choice
of queueing disciplines other than FCFS and/or by choice of
service time distributions other than negative exponential for
one or more service centres in a base set specification. The
details of each of the 21 specifications considered are presented

in table A8.1 below.



Specifi-{Network [Number of|Queueing Routing Service Service time Associated|Network
cation topology| customers|disciplines probabilities rates distributions| base used for
label network PsSA
predictions
*
sl (1) 2 FCFS for all All one Server 1:1 |All negative sl sl
servers Server 2:2 exponential
Server 3:3
s2” (1) 4 as S1 as .51 as sl as sl s2 s2
53" (1) 6 as S1 as S1 as Sl as S1 s3 s3
s4. (1) 4 as Sl as S1 as S1 All Erlang(2) s2 s2
ss T (1) 4 |ps for al1 as 81 as sl as sl s2 S5
' servers
* .
S6 (ii) 2 1FCFS for all P12 = 0.5 Server 1:1 All negative S6° S6
servers P,; = 0.5 Server 2:2 exponential
Server 3:2
s7” (11) 4 ‘as S6 as S6 as S6 as S6 s7 s7
ss" (11) 6 as S6 as S6 as S6 as S6 S8 s8
89* (i1) 4 as S6 P12 = 0.4 as S6 as S6 s9 S9
‘ P,; = 0.6
*
s1o (ii) 4 as S6 Pya = 0.4 Server 1:1 as S6 slo0 510
P,, = 0.6 Server 2:2
Server 3:0.5
Ssl1 (ii) 4 as S6 as S6 as S6 All Erlang(2) s7 - 87
s1l2 (i1) 4 LCFS for all as S6. as S6 as S6 s7 s13

servers

Table A8.1 Network Specifications

-L0C-



Number of

Specifi-|Network Queueing Routing Service Service time Associated |Network
cation topology| customers|disciplines probabilities rates distributions| base used for
label network Psa
predictions
Sl3Jr (i1) 4 PS for all as S6 -as 86 as S6 s7 S13
servers
S14 (11) 4 Centre 1l:LCFS as S6 as S6 as S6 S7 S16
: Centre 2:FCFS
Centre 3:FCFS
S15+ (i1) 2 ‘|Centre 1:Ps as 86 as S6 as S6 S6 Ss15
. Centre 2:FCFS
Centre 3:FCFS
si6 ¥ (11) 4 ‘as §15 as S6 as S6 as S6 s7 S16
s17t (11) 6 as 15 as S6 as S6 as S6 s8 517
s18 (11) 4 as S15 as S6 as S6 All Erlang(2) s7 S16
*
819 (111) 4 FCFS for all | p,, = 1.0 Server 1:1 All negative 519 519
: servers Py, = 0.2 Server 2:2 exponential
Pay = 0.5 Server 3:3
P2y = 0.3 Server 4:4
Pys = 0.4 Server 5:5
Pyg = 0.6 Server 6:3
Server 7:2
s20t (111) 4 Centre 1:PS as S19 as S19 as S19 S19 S20
all others: :
FCFS
521 (111) a as 520 as §19 as 519 | Centre 1: S19. 520
‘Erlang(2)
all others
negative
exponential

Table A8.1(cont.)

-80¢~
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In this table, the network specification labels are

marked as follows:

(i) With an asterisk if the assumptions of both

theoretical models are satisfied (base networks).

(ii) With a dagger if the assumptions of the PSA

theoretical model only are satisfied.

Theoretical predictions were made for the base set
specifications and corresponding simulated results produced for
the complete set. The assumptions required by the PSA approxim-
ate theoretical method were satisfied for the complete set of
specifications excluding those involving LCFS queueing discipline
(see section 3.2). 1In fact the implementation of service time
distributions other than negative exponential has not been com-
pleted so that these cases also are excluded from theoretical
analysis under PSA. However, six networks in addition to the
base set could be analysed by this method, the remaining six each
being represented by the one of these with closest specifications,
as shown in table AS8.1.

Comparisons were made between the exact and approximate
theoretical results and between the theoretical and simulated
results in a mutual validation procedure. Of course,
in the case of the base set specifications, it is necessary that
the second comparison shows good agreement, certainly for the
exact theoretical results, since the two model types are based
on the same set of assumptions about the network characteristics.

Thus the validation methodology is effectively to:

(a) Validate the simulation and PSA models with respect

to the exact theoretical model for the base set networks;

(b) Validate the theoretical models in non base set cases
with respect to the extrapolated simulation model. The extra-

polation is as4umed valid, no formal justification being
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possible for the present.

The results of these comparisons follow in the next two sections.

A8.3 Comparison of exact and approximate theoretical results

A8.3.1 The approach to validation of the approximate

method

For both the exact and approximate (PSA) theoretical
methods, numerical predictions were made, for each network

specification of the base set, of the following quantities:

(a) The mean and the variance of the cycle time
distribution, given by the formulae for the first and
second moments in Theorem T5.3, section 5.5 and equation

E3.4, section 3.2 respectively;

(b) The approximate discrete form of the cycle time
distribution, given by the formulae in Theorem T5.4,
section 5.6 and section 3.3.3 respectively. The adequacy
of the approximation may be assessed by comparing the mean
and the variance estimated from the discrete form
distribution with the analytic counterparts of (a). The

results of this test are discussed in section AS8.3.3.

In addition, the Laplace transform was computed for the

specifications S2 and S7 (see table A8.1).

The validity of the approximate method was assessed
by comparing its predictions and those of the exact method with

respect to the following quantities:

(1) The predicted values for cycle time standard error.
Recall from section 3.5 that the mean value given under

PSA is exact:;
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(ii) The discrete forms for the distribution evaluated

according to (b).

The results of these comparisons are presented in
sections A8.3.2andA8.3.4 respectively. A rough guide as to
the closeness of the approximation is obtained by inspection
of the Laplace transforms of the two methods. Graphs for the
network specifications S2 and S7 of these Laplace transforms
may be found in Appendix 10 and suggest a satisfactory fit.

Of course, another way of judging the adequacy of
the approximate method is by comparison of its predictions
with simulated results (and real data when available). This
test is described as part of the comparison between simulated
and theoretical results in general in section A8.4. Here, in
fact, it provides the only validation in the cases of the six
specifications which can be represented under PSA but not by

the exact analytical method.

A8.3.2 Comparison of standard errors

In table A9.1, Appendix 9 the standard deviations for
each of the base networks,computed by the exact and approximate
(PSA) theoretical methods are displayed together with their
percentage difference. The mean values (the same for both
methods) are also shown in the first column in order to provide
an idea of scale. On inspection of the table it can be seen that
the methods give results in good agreement. The least good
results occur in the cases of networks éz, S3, S10 and S19.

The first two of these are cyclic networks for which PSA was not
expected to provide a very good representation (section 3.1).
Of course the network S1 is also cyclic, but the number of

customers is only 2 in this case so that the situation is closer



-212-

to that of a network with just one customer, for which PSA
gives exact results (section 3.5). The network S10 was
designed to be imbalanced, so giving a high standard deviation
of cycle time distribution and perhaps requiring a.rather more
detailed analysis of the passage of the test customer than the
overall, equilibrium representation provided under PSA. In the
case of S19, the network is more complex, but not in the sense
of (ii) in section 3.1 since there is only one arrival stream
to each centre. Thus the states existing on arrival of the
test customer at each centre in its path are highly conditional
on the initial state space distribution by the argument of

(1) in section 3.1.

Nevertheless, the results of table A9.l1 are very prom-
ising and provide support for further investigation into the PSA
~model.

A8.3.3 Validity of the discrete form approximations

For each of the nine base networks, discrete form
approximations were computed for the cycle time distribution
by the exact and approximate methods. For the latter method
this was also performed for the other networks in which the
only change in the specifications was the use of PS queueing
discipline, see section A8.2.2. In each case, the range con-
sidered on the time axis was between the origin and four times
the mean value of the cycle time, as given in table A9.1l. The
number of time steps used was 50, resulting in a mesh size, Ai,
of eight per cent of the mean. (1 < i < 21).

Denote the resulting discrete form cumulative

distributions by

{ HEi(j) | 1€ SE }

for the exact analysis and
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{ A, (3) | ies8, }
for the approximate analysis

Where SE = {1,2,3,6{7,8,9,10,19}

S, = - {1+,2,3,5,6,7,8,9,10,13,15,16,17,19,20}

represent the networks analysed theoretically and
j = 1,2,....,50
is the time interval number corresponding to time in.

The adequacy of these discrete approximations may be
assessed by comparing the means and standard deviations computed
analytically, given in table A9.1, with the corresponding
quantities computed from the discrete form distributions as

follows. Define

50

MHE, = ) (3-%) A, {HEi(j) - HEi(j-i)}

j=1
where HEi(O) = 0, ie SE

50 .
we, =1 {Gmwey -}t {mey ) - ey oo}

=1
SHE, = /VHEi .

Then MHEi and SHEi are estimates of the mean and
standard deviation of the cycle time distribution according to
the (exact method) discrete approximation. Similarly estimates
for the PSA analysis, MHAi and SHAi, may be made, i € SA'
These values were computed for each network in the sets SE’ SA
and are displayed in tables A9.2 and A9.3 alongside their

analytic counterparts. The values for MHE; and MHA, are Shift

compensated in the following way.
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Recall from Proposition P4.3 that

Has(j) < WaB(j) < HaB(j+zaB)

where o,8 € S , the state space of a cyclic network,

j€Z+l

waB is the discrete form probability distribution
for the time delay between states o and f and
Hae the approximation to YaB derived by the

exact analysis,

Eae is the number of transitions involved in

the routes from o to B.

This result applies to cyclic networks, but the result
is clearly true, by the argument of proposition P4.3, for tree-
like networks if zas is chosen to be the maximum iength of the
routes between states a and B8, m,g Say. A similar result
obviously applies to the PSA analysis also.

Thus the approximated discrete form distributions
may be shifted to the right of the true discrete forms by up to
maBA time units for mesh size A. For small A this is of no

consequence since m 8 is always finite and here the effective

o
shift is never larger than around 6A. The shift, which will
not in general be uniform over the whole time axis, will result
in an estimate for the mean which is too large. For the mesh
sizes chosen as described above, A ~ 0.2 - 0.4, the shift is
significant and so is removed by shift compensation in which
the first few points (corresponding to small values of j) of

the discrete approximation are omitted. Thus, the matching of

means in tables A9.2, A9.3 is unimportant, but note that the
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shift compensation has little effect on standard deviation which
becomes the main criterion for the validation. For the smaller
mesh size used in section A8.4.5,shift compensation was
unnecessary and not applied. Note further that for non cyclic
tree-like networks, the number of convolutions involved in the
PSA method is smaller than for the exact method since, under
PSA, transitions in paths other than the one taken by the test
customer are not considered. Thus, in general, shift compen-
sation is less for the PSA method.

On inspection of tables A9.2 and A9.3 it is immediately
apparent that the standard deviations estimated by the approxi-
mate discrete forms for the cycle time distributions are in close
agreement with their analytically derived counterparts. It can
also be seen that the accuracy decreases as the number of trans-
itions involved in the test customer's passage through a
network increases. This is exactly what one would expect since
further approximation is introduced whenever a convolution is
performed, and application of the convolution operation is in
1-1 correspondence with these transitions.

Further validation tests are performed in sections

A8.4.4and A8.4.5by comparing with simulated results.

A8.3.4 Comparison of the discrete form distributions

Having compared the approximated discrete form
distributions, derived by the exact and PSA methods, with respect
to their standard deviation estimates, in this section the
validity of the latter is assessed by comparison with the former.
Two comparisons are made as shown in f£fig.A8.2 for two continuous

curves:
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(i) Vertical: The maximum vertical distance between
the two discrete form distributions for base networks
ie SE is |
D. = max {IHEi(j) - HAi(j)l}
153<50
The physical interpretation of this measure is that it
represents the maximum error in the wvalue of a percentile,

based on PSA, placed at any point on the time axis;

(1i) Horizontal: In order to compute the maximum
horizontal distance between the two discrete form
distributions for base networks i € SE it is first
necessary to define their inverse functions. These
were defined on a mesh of 100 points on the cumulative
probability distribution axis (the P-axis), viz.

0.01 i (0sis<99), the probability values, of course,
lying in the range [0,1). The method used was as
follows:

Given mesh Pi = 0.011i (0<i<99) on the P-axis,
mesh tj = jA (1<j<50) on the time axis and monotonic
increasing function f : {tjlistSO} + {P, l0si<99} ,
then an inverse function of f,f_1 is given, using linear

interpolation, by

-1 - - -
£O(Ry) = gy (5, - ty) {p; f(tj)}

)-f(tj)

Fltyyy

where j is such that f(tj) < P, < £(t ) (1 s j s 50),

i j+1

the ratio is unity if f(tj) = f£(t.

J+1) and f(t51)= 1.

Since the discrete form distribution approximations

are monotonic increasing, the inverse function of HEi’ HIEi say,
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is given by £ ! in the above where £ = HE, and A = AJ

The inverse, HIAi, of HAi is defined similarly.

Thus the maximum horizontal distance between the two

discrete form distributions for base networks i e SE is

Di‘H') max {lHIEi(j) - HIA, (j) 1}.

1<3<100
The physical interpretation of this measure is that
it is the maximum error (in time units) in the positioning of a

given percentile on the time axis.

P A Horizontal difference, p (H)
1 |
HA (t)
HE (t)
Vertical difference, D(V)
> t
(@]

fig. A8.2 Vertical and horizontal comparisons

In tables A9.4 and A9.5 the maximum vertical and
horizontal differences between the exact and PSA discrete form
distribution approximations are shown. The corresponding
abscissa and ordinate values are also given, together with the
(exact) mean of the distribution. From these tables it can be

seen that the PSA method provides results in close agreement with
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the exact one. The worst cases are for networks S2,53,810 and S19,

which is as found in section A8.3.2. The discrete form
distributions may be seen in graphical form, along with the
corresponding histograms derived from simulated results, for

various networks in Appendix 10.

A8.3.5. General assessment of the PSA method

The results discussed in the previous sections and
presented in tables A9.1-A9.5 lead to the conclusion that the
PSA method of analysing cycle times in tree-like networks
provides good approximations to the exact results, the poorest
accuracy being obtained in the types of cases predicted in
section 3.1l. Furthermore, the method is computationally efficient
and so provides the basis for a practical tool in computer
performance evaluation. |

The ultimatetest remains validation with respect to
actual data, or simulated data in its absence, which is discussed
in the following section. 1In this way the adequacy of the
approximation with respect to network specifications more general

than the tree-like case can be judged.

A8.4 Comparison of theoretical and simulated results

A8.4.1 The approach to validation

As discussed in section A8.1,sequences of cycle times,
together with identification of the customer completing its
cycle, were obtained using a simulation program for tree-
like networks. The pair (cycle time, customer identification)
is defined to be an efement in what follows. A sequence of

around 1000 such elements was generated for each of the 21
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network specifications given in table A8.1. Now, each network
was initialised with its customers at certain service centres
at the start of its simulation. Thus an equilibrium situation
could not be assumed initially and so only the last 600 elements
were considered for statistical analysis. That is, it is
assumed that steady state equilibrium would have been attained
after 400 arrivals to the first (root) centre in the closed
tree-like network modelled. Such an assumption is quite com-
monplace in contemporary queueing network modelling and its
validity is not in doubt. However, this validity could be
assessed quantitatively via the transient analysis presented
in chapter 7.

Two sets of data were produced from each of the

sequences of 600 cycle time/customer identifier elements:

(1) The 600 cycle times in their order of occurrence;

(ii) The sequence of cycle times pertaining to the identifier
of one particular customer. This sequence, then, contains a
much smaller number of elements, of expected value 600 * n
where n is the number of customers in the network specific-

ation.

In order that statistics based on data such as this
be unbiased, it is necessary that the data in the sample be
independent. Thus the first test made is to assess the inde-
pendence of each of the two sets of data for each of the network
"specifications by use of the autocorrelation function. The
results of the test are reported in the next section, and suggest
very strongly that the independence condition is not violated for

sequence (ii). For sequence (i) this was less conclusive.
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Thus, unbiased estimates for the mean and standard devi-
ation can be obtained by the usual formulae and then compared
with similar quantities obtained for both of the corresponding
theoretical models. These results are discussed in section
A8.4.3. In this way a check can be made that the'results are
sufficiently close for the nine base network specifications;
the simulation and analytic models are, in these cases, based
on the same assumptions. In addition, the theoretical predict-
ions for the base networks can be tested for cases in which
their underlying assumptions are violated in various ways -

a check on the "robustness“ property applied to time delay
distributions. Of course, the PSA theoretical method can model
most of the non-base networks (all except those given in
section A8.2.2)and so tests on its generality can be made
empirically.

The final statistical test used in the validation
process is the Kolmogorov-Smirnov (KS) test. This was used to
compare, for each network specification, the theoretical discrete
form distribution approximations with the cumulative relative
frequency histograms derived from each of the corresponding two
sets of simulated data. This is discussed in section A8.4.4:and
gives rather disappointing results because the size of mesh used
is too great in the theoretical analysis.

Thus there follows a section in which some of the-
theoretical predictions are refined by use of a smaller mesh
size. The section closes with a short summary and general

assessment of the analytic methods.
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A8.4.2 Independence tests

Given a time series { z_ | te Z }

the autocorrelation function (ACF) at lag k, is defined

Py s
by, [CHAT75]

E(ztzt_k)

0
k E(ztz).

where E denotes expectation.

Py has an unbiased estimate, T given by

N~k
I 2eZegy
=1
T =
k N
I oz.?
t=1

for a sample of data {zt | £t =1,2,...,N} .

For the series to be independently distributed,

P = 0 for k=2 1.

Now, the so-called large lag standard error, of

Ol
I for the k‘th lag, where T, is deemed to have become zero for

lags £ 2 k, is given by, [BART46]
o = 1
k YN °*
Thus the independence requirement becomes

rk = 0 for k > 1

with confidence band # 2//N outside of which less than 5%
of the estimates computed for ry should lie if this condition

is to be satisfied. Estimates for the first 50 lags of the ACF
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were made for each network specification and each sample of
simulated cycle times.

In tables A9.6 and A9.7, for each network specific-
ation the large lag standard error, the ACF estimates for the
first 12 lags and the number of estimates in the first 50 lags
lying outside the +1//N and 2//N confidence bands are dis-
played. 1In table A9.6 the results are based on the complete
sets of simulated cycle times, regardless of customer identifi-
cation, and in table A9.7 on the simulated cycle times for a sin-
gle customer. Intuitively it is to be expected that the first
table will reveal the lesser degree of independence, especially
for the cases of cyclic networks with FCFS queueing discipline.
This is because one would expect a customer's cycle time to be
highly correlated with that of the customer completing the
previous cycle; this customer always being the same under the
assumptions specified. On inspecﬁion of the tables, it is at
once apparent that the samples associated with the cycle times
of a single customer satisfy the independence test given above
for all the network specifications. This is not so for most of
the samples based on the complete set of cycle times, many of
which show a first lag ACF significantly different from zero.Thus
independence is in doubt and the above intuition is well founded.

It is therefore concluded that the statistical
analysis may proceed, certainly for the "single customer”
samples, with estimation of the mean, standard deviation and
cumulative histogram for each network specification. This is
discussed in the following section.

There is, however, a further important consegquence,
perhaps even more important from the modelling viewpoint, of

the independence property of the single c¢ustomer samples. This
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concerns response time distribution (see sections 4.10, 5.8.4).
Since it is strongly suggested that it is valid to assume that
successive éycle times of any particular customer are independ-
ently distributed, the Central Limit Theorem may be applied to
their sum. In this way a good approximation to response time
distribution should be possible by use of just the mean and

standard deviation of the cycle time distribution,

A8.4.3 Comparison of moments

For each network specification and each sample of
simulated cycle times the mean and the variance were estimated
by the usual formulae*; certainly a valid step for the single
customer sample type in view of the independence properties
established in the previous section. Four comparisons were

then made on the mean and standard deviation values:

(i) Between the estimates based on the complete sample

of simulated cycle times and the corresponding theoretical

(a) exact predictions

(b) PSA predictions;

(ii) Between the estimates based on the single customer
sample of simulated cycle times and the corresponding

theoretical
(a) exact predictions

(b) PSA predictions.

* For the sample {Ztl1 < t < N} these estimates are

N
- 1
zZ = g £1 z, for the mean and
N
% ! (z, - Z)? for the variance.

=1
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The results of these comparisons are presented in
tables A9.8 to A9.11. For cases in which the network specific-
ation violated the assumptions for tree-like networks, the
exact theoretical results for the associated base networks were
used in (i) (a) and (ii) (a). For networks S4, S11, sl2, Sl4,
518 and S21, other specifications (as given in table A8.1) had
to be used in the PSA models of (i) (b) and (ii) (b) since the
PSA analysis cannot handle LCFS queueing discipline or, for
the present, non exponential service times. In such cases,
LCFS was represented by PS queueing discipline and the Erlang
(2) service time distribution by negative exponential.

Any conclusions based on (i) (tables A9.8, A9.9)
must carry less weight than those based on (ii) (tables A9.10,
A9.11) since significant correlation was observed in the
sampled data used, section A8.4.2. However, it turned out that
the comparisons (i) were not in disagreement with (ii) to any
great extent.

For the case of mean value comparisons, the results
based on either of the simulated data samples were in close
agreement with both theoretical counterparts for every network
specification. This is as exXpected since the mean cycle time
for any path is the sum of the mean sojourn times for each
centre in the path, see section 3.5. The mean sojourn time for
a centre is unaffected by choice of queueing discipline or, of
course, service time distribution with same mean. Thus the
means are always those of the associated base networks.
Furthermore, for the base networks, good agreement was obtained
with respect to the standard deviations ; particularly so in the
comparisons with the results of the exact theoretical method.

This is as was hoped, for otherwise an error must have been
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present in the simulation program or abnormal simulation runs
must have occurred since the underlying assumptions of both
models are identical.

However, for non-base networks, the exact theoretical
model's predictions of the standard deviation for the associated
base networks differed considerably from the simulated results,
table A9.10. The worst cases were’specifications 512, Ssl4,

516, S17, S18 which all involve a change of queueing discipline
to PS5 or LCFS at the root centre in network topology (ii),

fig. A8.1, and also at the other centres in case S12. It can
be seen that the use of these queueing disciplines causes an
increase in the cycle time standard deviation, especially for
ILCFS. It is perhaps a little surprising that the error involved
in case 513 where all centres have PS queueing discipline is
about half that for case 516 which differs from S13 in that
only the root centre has PS discipline, the others FCFS. It
is possible that this result is due to an excepntional simu-
lation run. One would also expect poor results for network
515, but here an operational error in the running of the
simulation is suspected in that the results are identical with
those of network S6; indeed this is also true of the histogram
representationgs of the cycle time distribution. Thus it is
concluded that the robustness property does not hold in the
conﬁext of time delay distributions and that the exact method
must be restricted to modelling networks which conform to its
own assumptions.

It can be seen from table A9.11 that the PSA method
gave far better standard deviation predictions than the exact
method for the non-base network comparisons, especially in cases

conforming to the assumptions of the PSA model. The predictions
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are particularly impressive for cases involving PS discipline
(except for network S15 for which the data is suspect) and
less so for LCFS which had to be represented by PS anyway.
As stated above, the results were also perfectly adequate for
the base networks.

Thus confidence in the PSA model in its full generality
is increased. The final statistical test performed on the method
relates to the predicted forms of the cycle time distributions

themselves and is included in the following section.

A8.4.4 Comparison of distributions: the KS test

For each network specification, each sample of
simulated cycle times was used to form a cumulative relative
frequency histogram with time-axis mesh ‘defined as for the
cérresponding base network in section A8.3.3. Four comparisons,
defined in (i) and (ii) of the pfevious section, are therefore
vpossible, those involving the complete samples, (i), being of
much less significance in view of their inability to satisfy
the independence condition. Graphs showing various combinations
of cumulative histograms, based on the approximate and exact
theoretical analyses and on sampled data may be found in
Appendix 10.

The comparisons were made by application of the KS
statistical test to the maximum absolute (vertical) difference,
D, over the time axis mesh, between the relative frequencies
according to the appropriate theoretical predictions and the
simulation samples. The results of these tests are presented
in tables A9.12 and A9.13 in Appendix 9 for comparisons (i) and.
(1i) respectively. Thus the table of greatest significance is
A9.13, see above.

Again, as discussed in the previous section, it is
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to be hoped that, for the base networks, the KS test will
indicate a good fit between the discrete form distribution
predicted by the exact method and the corresponding histogram
constructed from the simulated data. However, this was not
found to be the case, as can be seen in table A9.13 in which
the significancelevels are very low. Not surprisingly therefore,
the results are very poor in non-base network comparisons for
the exact theoretical method; some of the maximum differences,
D, approaching 0.5. The results for the PSA method are not
especially good either, particularly for the cases it could
not model explicitly.

The cause of this lack of fit by the theoretical
methods was assumed to be that their mesh sizes were too large;
this problem had already been suggested by the need for shift
compensation of the resulting discrete form distributions.
A smaller mesh size was not chosén originally for the sole
reason of computational efficiency. Evaluation by the exact
method requires a great deal of computing power which increases
considerably with the Aumber of points in the time-axis mesh.
Thus any significant decrease in mesh size for the whole base
set of networks was ruled out, and it was preferred to define
the mesh size for all networks and modelling methods in the same
way. For the PSA method the computational problems involved in
decreasing the mesh size are insignificant, see section 2A8.4.6.
Consequently‘it was decided to decrease the mesh size in evexay
case for the networks modelled by the PSA method, and in just
two of the base set cases for the exact method. The results
are reported in the next section.

Finally, it may have been noticed that the predictions

of the PSA method are better than those of the exact method in

some of the base set cases. This is simply explained by
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the following two reasons:

(i) The effects of shift compensation; the size of the

shift is restricted to an integral number of time steps.

(ii) The PSA method requires fewer convolutions in
general (see section A8.3.3),so that the resulting
(additional) approximation is less than for the exact
method = recall each convolution operation introduces
some error. Thus it may well be that this single
inaccuracy incurred by the exact method outweighs

the double one incurred by the PSA, approximate method,
particularly in view of the accuracy of the latter method

seen in previous sections.

A8.4.5 Use of a finer mesh

In order to obtain better approximations for various
discrete form distributions by the theoretical methods, use of
a smaller mesh size is necessary (and sufficient,by the con-
vergence property of Corollary CT5.4). However, since the
range considered on the time axis should not be decreased, this
being defined independently of the required precision, the
number of time steps required must increase in inverse propor-
tion to the mesh size. In each of the cases considered in this
section, the mesh size was reduced to one quarter of its
original value given in section A8.3.3resulting in the number
of points in the mesh being increased to 200. 1In order to
compare each resulting discrete form distribution with the
histogram constructed from the corresponding simulation run,
by means of the KS test discussed in the previous section, the

mesh must be the same for both cases. For reasons concerning
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computer storage availability, the raw simulation data was not
kept locally and the histograms were not easy to re-construct.
Thus the theoretical distributions were re-cast into a mesh of
50 points by taking every fourth point.

The network specifications analysed in this way were
S2 and S7 for the exact method, and the same subset as in the
previous sections for the PSA method. Only two cases were
considered for exact analysis for reasons of computer resource
usage. The increased precision had the result that shift
compensation was no longer necessary in any of the cases con-
sidered - a promising start to the analysis. The improvement
obtained may be seen graphically in Appendix 10 for some cases.

The results were analysed in precisely the same way
as were their predecessors in previous sections and tables A9.14
to A9.19 are analogous to tables A9.2 to A9.5 and A9.12, A9.13,
The conclusions to be drawn from these tables are self evident

and briefly discussed as follows:

(i) From tables A9.14, A9.15 it can be seen that in

every case the discrete form approximation gave standard devi-

ation estimates much closer to their true values than were
obtained for the original mesh, and similar means. This
is the more impressive in view of the absence of shift
compensation, and demonstrates examples of convergence

of the method.

(ii) From tables A9.16, A9.17 it can be seen that the
approximate discrete forms for the exact and PSA methods
became closer to each other for network S7. However, for
network S2, the results show a marginally greater differ-

ence. This is assumed to be due to the effects of the shift

compensation which was -applied for the larger mesh size only,

but rounding errors may also have played a partf
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(iii) Finally, from tables A9.18, A9.19 (the former
being of less importance because of the correlation
in the sample of simulation data) it can be seen that
the goodness of fit according to the KS test increased
considerably. Indeed, for every test involving a network
with no specification violating the assumptions of the
corresponding theoretical model, the hypothesis that the
sampled data was drawn from the theoretical discrete form
distribution could not be rejected, even at quite low
confidence levels (given by higher numerical values in
the tables). As in (ii), the exact results for network S2
were slightly poorer.

The tests for networks with associated base network
S2 or S7 (excluding S2 and S7 themselves) were again poor
for the exact analysis, as expected in view of the dis-
cussion of section A8.4.3. For the cases not modelled
directly by the PSA method, the KS test gives improved,

although not really adequate results.

The conclusion (iii) is particularly pleasing from
the point of view of the PSA method - in the cases of the exact
method applied to specifications S2 and S7, it was only to be
expected for reasons already given. Indeed, the main practical
achievement of the validation discussed here has been the emer-
gence of the PSA method as a potentially valuable tool for the

computer performance analyst.
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A8.5 Conclusions

A8.5.1 Assessment of the exact theoretical method

The validation process discussed in this appendix has
confirmed that the predictions for properties of cycle times
made by the exact theoretical model are in close agreement with
those of the network simulator for specifications which conform
to the assumptions of tree-like networks. However, if these
assumptions are violated, for example by use of queueing discip-
lines other than FCFS, the accuracy of the predictions becomes
very poor. Thus, it may be concluded that the robustness property
of gueueing network analysis discussed in section 2.2 does not
apply to the modelling of cycle time distribution by this method.
Consequently the domain of situations in which the exact theoret-
ical analysis may be applied is somewhat limited, viz. to tree-
like gueueing networks.

Furthermore, the exact model, in the form of a computer
program (Appendix 7) which produces numerical predictions based on
the analytic results of chapter 5, has a tremendous appetite for
computing resources, even for the solution to quite simple net-
works. The resources required include primarily both main storage
and CPU time. In fact, in order to obtain the solutions for net-
work specification S19 (table A8.1) several APL functions had to
be modified to use temporary auxiliary storage (APL files) for
intermediate results so as to free main storage for use in
expression evaluation. This avoided a storage overflow but
increased processing time; in fact other such trade-offs between
execution time and storage requirements were also necessary to
prevent such an overflow., Finally, the package took more than
one hour, on a very powerful APL implementation, to compute the

50 point discrete form approximation of the cycle time distribution
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- hence the reluctance to re-run with a mesh of 200 points!

Thus it is apparent that this case of a tree-like
network with 7 service centres and 4 customers is close to the
limit of complexity permitting practicable solution by the
exact method. Certainly the method must fairly soon become
impracticable as networks become more complex, in terms of more
servers or more customers, because of the sheer size of the
state space and the operations involved.

For a network of M servers and N customers, the size

M+ N
of the state space is ( J and the storage requirement of
N M+ N
the state transition matrix alone is of the order of M ’
N

see section 4.7.2. The number of operations involved in the
computation of the defining expression of any result in chapter
5 will be of at least this order since every such expression
includes at least one reference to the transition matrix. In
fact the order will generally be a lot higher. The expression’
for the second moment for example is a matrix product with five
(indirect) references and the computation for the discrete form
distribution involves many operations on intermediafe data
objects of size comparable with the transition matrix. Further-
more, in the latter case, the execution time requirement is
directly proportional to the number of time-axis mesh points.
Thus it can be seen that the computing requirements with respect
to both storage and execution time, of the exact theoretical
model increase at feast combinatorially with the number of
centres and population of the tree~like network.

As a result, the exact method is not only rather
limited by its domain of applicability bﬁt also by its computing
resource requirements. Nevertheless, it is an excellent practi-

cal tool for the simpfe cases in which it is applicable, as well
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as a basis for validation of approximate methods.

A8.5.2 Assessment of the PSA method

For the network specifications considered in the
validation process which conform to the assumptions of the
PSA method+, it has been established in this avpendix that the
PSA model provides good predictions concerning the distribution
of cycle time. These assumptions are very general in nature,
only LCFS gqueueing discipliﬁe not being admissible in the
specifications of table A8.1 (in addition to non exponential
service time distributions). Thus the PSA method can be applied
with confidence, in a domain of situations which is far more
general than for the exact method.

Furthermore, it is also far more efficient than the
exact methdbd. The guantities relating to cycle time distribu-
tion, conditional on the choice of some given path, can be
computed as some composition of the same quantities evaluated
for the individual service centres in the path, see chapter 3.
This is because of the assumption that the service centres in
any path of the test customer through the network modelled
operate independently. For example, the composition referred
to may be convolution (for the distributions themselves), a
product (for their Laplace transforms) or more complex (for the
moments). Thus the storage requirement of this method reduces
to that of storing the intermediate results in the seguence of
composition operations together with that of the computation of
the results for a single centre and performing the composition.

Thus, for a network of M centres and N customers and

finite number of paths for the test customer, the execution time

+ The PSA method as implemented at present cannot represent

non exponential service time distributions.
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requirement is of the order of
(Number of possible paths) x M x N

since M is an upper bound for path lengths and the number of
operations required for a single centre is of order N.

The storage requirement is of a smaller order in that
the results need not be retained for every individual server
computation; only the intermediate results need be kept in the
sequences of compositions (referred to above) and paths' weight-
ings. Thus it can be seen that the PSA method is very much
more efficient than the exact method, with respect to both
storage and execution time. This was quite evident in practice:
the computation of the discrete form distribution approximation
for network S19 took less than a minute to compute for the PSA
method compared with more than one hour for the exact method.

Thus the PSA method provides a far more practical
tool for the computer performance analyst than the exact method
in view of its superior efficiency and greater generality of
application. It is tentatively assumed that the PSA method can
be applied as a representative model to any network specification
which conforms to its underlying assumptions. This assumption
was shown to be acceptable for the selection of tree-like
networks considered in this appendix. However, intuitively,
one would expect the method to provide a better representation
in networks not possessing the non-overtaking property of tree-
like networks since in such cases the network can reach equi-
librium more quickly (see section 3.1). Thus the assumption
is intuitively valid.

For various tree~like networks violating the assump-
tions of the PSA method, notably involving LCFS discipline, if

was seen in this appendix that the method's predictions were
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barely adequate. Thus the robustness property (c.f. section
2.2) is again not valid, although it is not contradicted so
drastically as in the case of the exact method, on the basis of
the numerical results presented here. This is as expected,
given adequate representation of the networks which can be
modelled explicitly by the PSA method, in view of the greater
generality of application which permits more choices for a
network structure cfosde to the one to be modelled. For example,
in the cases considered in this appendix, the PSA method could
use PS queueing discipline in place of LCFS whereas the exact

method was restricted to use of FCFS, with poorer predictions.

Finally, the need for a formal error analysis of the
PSA method should again be stressed. This poses many problems and
is discussed in more detail in chapter 8. Intuitively the method
appears to provide representative models for a wide variety of
network specifications. However, validation has been performed
for only 15 cases (see table A8.1), and while offering
support forthe method, does not prove its adequacy. However,
and in the absence of such an error analysis, one may follow
the contemporary modelling approach, "if it works, do it", as
discussed in section 2.2, given, of course, stringent empirical

tests as justification.

A8.5.3 Ultimate validation

As discussed in chapter 6, the process described in
this appendix is only a systematic mutual validation of three
models with respect to each other. Thus, although the results
give support to ones conviction in the accuracy of each model

type, ultimately validation must be performed with respect to

data measured on at least one actual computer system.
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APPENDIX 9

Tables showing the results of the validation process

described in chapter 6 and Appendix 8.



Network Mean Cycle Standard devn. Standard devn. Percentage

Specification Time (exact) (PSA) difference
S1 2.576 1.441 1.520 5.4
g2 Y. 245 1.962 2,187 11.5
53 6,091 2.421 2.738 13.1
S4 2,250 1.u451 1.4808 2.6
57 W.ous 2,035 2,115 ‘ 3.9
48 6,006 2.491 2,57 3.4
89 b, oug 2.033 2.119 4.2
£10 5,607 3.916 b, 241 8.3
§519 . 248 1.995 2,171 8.8

Table A9.1 Cycle time standard deviations predicted by exact and PSA theoretical methods

o

w

Network Mean Cycle Mean estimated Percentage Standard  Std. devn. est. Percentage n
Specification Time by disc. distn. error devn. by disc. distn. error
61 2,576 2.560 b 1.441 1.440 1.3
82 W, 245 W32y 1.9 1.962 2.069 5.5
83 6,091 6,224 2,2 2,421 2,619 8.2
86 2,230 2.221 1.3 1.451 1.459 Wb
687 U, ous 4.028 2 2,035 2,102 3.3
658 6.006 6.270 b4 2.491 2,573 3.3
89 4, 0ug . 043 .1 2.033 2.100 3.3
510 5.607 S.624 .3 3.916 b,039 3.2
819 4. 244 W, 246 S 1.99%G 2,193 9.9

Table A9.2 Discrete form distribution for exact theoretical method




Network Mean Cycle Mean estd. by Percentage Standard std. devn. estd. Percentage
~Specification Time disc. distn. error devn. by disc. distn. error
61 2,576 2,402 1.0 1.520 1.539 1.3
82 4,245 H . 344 2.3 2,187 2,317 5.9
83 6,091 4,341 4.1 2.738 3.010 2.9
8% 4,245 4,333 2.1 J3.101 2.872 .h
84 2.350 2.314 2.9 1.488 1,66 1.5
87 4,045 4,209 4.1 2.115 2,179 3.0
58 6.006 6,320 5.2 2.974 2,673 3.8
89 h.o0u8 4.215 4,1 2.119 2.185 3.1
510 5.407 5.719 2.0 4,241 4.426 4.3
6513 4. o045 3.8ué .Y 3,455 3.063 11.6
515 2.250 2.195 2.5 1,762 1.617 8.2
516 W.0us 3.900 3.6 J3.453 3.088 11.4
617 4&.006 5.741 .4 $5.382 b.671 13.2
819 4.246 4,034 h.9 2.171 2,329 7.3
G20 I, 244 W, 442 4.4 3.02% 3.039 <
Table A9.3 Discrete form distribution for the PSA theoretical method
Network Max. Vert. Time Percentile Mean
Specification difference value
51 01726 3,50 7 2,974
s2 04098 2.38 1L 4,245
93 U214 8.?7 .82 6.091
86 03020 2,16 5l 2,280
87 03332 .53 A2 4,045
58 . 01338 8.17 1T 6.006
49 03402 4.53 62 4. o0us
810 04121 3.59 .13 5.607
619 04594 2.98 V26 4. 244
Table A9.4 Vertical comparison of exact and PSA theoretical methods
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Network Max. hor. Time Percentile Mean

Specification difference value

51 .25181 7.32 .99 2.576

§2 65570 10,82 .99 4. 245

63 1.08394 13.54 99 6.091

86 . 21225 7.00 29 2.250

87 . 346968 10.31 .99 4. o045

s8 L {1 12.58 .98 46,006

69 39341 10.31 .99 4,048

810 1.66766 18,04 .99 5.607

819 1237 2.2 .13 h.244

Table A9.5 Horizontal comparison of exact and PSA theoretical methods No. in first 50

outside

Network Large | ---------- Autocorrelation function for first 12 lags ===~ —~~"~====""7~ | LLSE LLSE x 2

Spec.  lag SE
61 L0810 U371 TL0u9 L0892 T.028 T.020  L00% T.029%5 T.017 0 L0055 .015 T.003 T.00% 12 Y
82 041 L4671 W12 147 T.128 TL.0467 TLO033 TL005 033 .o0uy L 0B0 0 024 7,020 1y 9
63 O L7920 LALT 0 37 249 093 TL078 TL037 TL004 003 007 TL01G5 TL049 14 12
sy 01 LES50 L3700 142 TL168 T iu2 TL110 TL123 T.073 TL012 0 022 0146 7023 12 é
65 L0 L1990 225 (163 026 T.001 TL083 016 T.023 0046 T.001 026 020 11 9
86 oW1 L3700 062 041 TL015 T.030 L0166 T.022 T.01y 011 031 .031 7,023 10 2
87 SO0B1 613 4sé6 L2520 L0646 020 T,003 T.017 T.023 .007 .013 T.0146 7,034 1y 10
58 LO41 0 L7500 L4639 481 L3330 179 L0465 011 .006 T.008 T.009 T.034 T,058 17 in

59 041 L4650 JuB6 251 078 002 T.018 003 .010 .033 ,011 T.017 T.O045 13 ?
S10 .01 407 273 ,18% 044 7,081 T.037 T.071 T.091 .002 T,033 .015 .038 ih )
§11 . 041 .6%8 (429 181 T.048 T.114 T.119 T.109 T.087 T.027 .008 .033 T.017 10 v
812 041 T.042 T.046 024 .019 T.O041 T,048 T,011 T,013 T.035 T.015  .015 T.027 é 3
613  .ou1 050 106 066 014 T.024 ,003 T.027 011 .068 .000 .000 041 11 3
Sih .041 7,009 T.056 T.020 .030 ".041 T.028 T.040 ,010 T.08% .013 T.031 .001% 4 2
S1%  .041 370 . 062 ,041 T,015 T.030 L0146 T.022 T,o014 ,011 ,031 .031 T.023 10 2
516 041 090 .126 .045 .030 T.033 T.019 T.031 T.014 033 .04 005 021 10 4
517 .0u1 ,035 ,021 ,002 ",061 002 ,051 ,004 ,080 ".013 T.038 ".002 ",020 9 1
518 .041 T,.040 T.005 T.065 .015 T.033 "T.045 T.018 ".050 ~.025 ~.020 T.001 .003 4 1
519 .041 096 422 204 ,022 T.048 T.040 T,022 ,003 .037 .061 .031 .023 h 10
520 .0n1 123,095 ,088 T.004 .078 ,017 T,054 T.013 ".008 T.020 ".077 ".021 12 7

L 1

821 041 T.011 T.014 023,022 T,050 T.046%9 T.O04u T.0%9 .020 .O01% .043 .020 ()

Table A9.6 Autocorrelation of the complete sets of simulated data
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No. in first 50
outside

Network Large | mmmmm e Autocorrelation function for first 12 lags--------—- | LLSE LLSE x 2
Spec. lag SE

S1 058 T 0463 7,070 063 TL.043 0 027 022 7,128 T.0u1 7,027 T.007 ,048 ,084
82 L082 To14u 0 041 7,005 TL135 0 .0u8 135 T,078 186 T.122 043 T.004 7,064
63 100 7088 020 7,107 Jiu0 T.01% 0,083 .0u3 T.090 T.028 011 7,018 T.175
Sl 2082 7190 7,079 . 058 T.109 064 TL208 L0013 151 T.188 049 T,037  .033
5% 082 7137 TL059 T.044L 7,034 025 TL023 0 .089 T.112 0,128 049 7,011 7,019
86 058,050 L0086 L030 7,070 7,025 T.049 T.iul T.0461 TL.06 T.110 123 7,051
87 082 7,008 T.036 7,029 T.106 L1146 145 7,030 ,000 T.057  .010 ,013 044
o8 100 7L03w 7,102 7,108 . 251 097 T.068 .00 T.O042 7,035 T.012 T.040 7,109
59 082 L0039 .02% 7,018 T.036 L 020 078 057 T.058 042 ,030 017 7,098
510,081 .0u2 ,020 T.i14% 039 T.072 047 T.10&6 T.024 07w 113 L0465 T.114
511,081 7,047 7,178 7,025 T.010 .007 T.122 003 044 T,071 T.084 ,000 .125
512,083 7,038 .096 T.003 T.028 ,059 T.123 7,064 T.042 T.045 7,039 T.016 .022
$13  .081 .176 056 T.076 L0111 .1u0  .011  .0346 T.09% T.090 ,040 ,028 T.090
814 . 084 T.016 L0685 T.04S  ,128 T,071 T.101 T.019 T.056 T.065 T.049 T.049 T,030
§1%  .058 050 006 030 T.070 T,025 T.049 T.iuil T.061 T.064 T,110 123 ~,051
516 ,080 .047 7,144 .04 059,042 T.039 T.125% . 012 007 .021 .080 T,071
817,095 T.018 L2207 131 T.016  ,102 T.048 T.024 T.031 T.155 T.028 T.0346 T.181
518 .082 7,004 ,032 111 192 L0467 T.033 T.003 T.104 T,102 T,029 T.075 T.135
519,082 7,002 .008 .0346 T.108 097 199 T.010 T.017 .052 T.020 ".021 “.113
520 082 7,093 T.015 004 L0865 086 T.035 053 107 ,021 T.09% 141  .008
821 .080 71312 010 T.114 7,019 T.100 TL056 015 017 T.032 T.003 T.051 117

-
G A= UMl N FO~NI2IIEEF

el 2 it I B G I = M A I S SR R

Table A9.7 Autocorrelation function of the single customer sets of simulated data
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Network Theoretical Estimated Percentage Theoretical Estimated Percentage

Specification mean mean difference S.D. (exact) S.D. difference
81 2,574 2.482 3.6 1441 1.519 9.4
52 b, 245 4.0%51 4.4 1,962 2,045 .3
53 6,091 9.868 3.7 2,421 2.442 .9
54 245 3.918 .7 1,962 1.919 22,46
8% b, 245 4,051 . b 1.962 2.529 28.9
56 2,250 2,152 .4 1.451 1,263 12.8
a7 U, OM5 3.912 3.3 2,035 1.824 10.3
58 6.006 95.816 3.2 2,491 2,244 v.8
59 4.oug 3.958 2.2 2,033 1.823 10.3
510 G.607 5,918 1.6 3.914 3. 434 12.3
Si1 W, 0uG 3.896 3.7 2,035 1.393 31.5
512 ., 0% 3.888 3.9 2,035 5.311 i61.0
513 b, 0us 3.912 3.3 2.03% 2.979 hé. 4
S1u b, 0L5 3.888 3.9 2,039 5.315 i61.2
815 2.2%0 2,182 . L 1.451 1,265 12.8
516 . ou% 3.212 3.3 2,035 2,956 45,3
517 6,006 5.800 3oh 2,u91 H.706 129.1
518 h.ous 3.9210 3.3 2,039 3.386 66 .4
61y I, 2ué h.023 5.2 1.99% 1.8uy 7.6
820 4,244 4,023 9.3 1,995 2.713 36.0
G521 b, 246 3.945 6.8 1.99% 2.62% 31.6
Table A9.8 Comparison of exact theoretical and complete sample simulated results

via mean and standard deviation.
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Network Theoretical Estimated Percentage Theoretical Estimated Percentage

Specification mean mean difference S.D. (Psa) S.D. difference
51 2,976 2.u482 3.6 1,520 1.519 il
62 .24y 4.051 h.4 2,187 2,045 6.5
53 4,091 5,848 3.7 2,738 2,442 10.8
Sy b, 2G5 3.914 v, 2,187 1,519 30,5
55 I, 248 h,051 h.4 3.101 2,829 18.4%
56 2,250 2,152 U4,y 1.u484 1.265 15,0
97 W, 0us 3.912 3.3 2,115 1.826 13.7
59 4,006 H5.816 3.2 2,874 2.244 12,7
GY W, 0ug 3.958 2,3 2.119 1.823 13.9
510 G.607 5.918 1.6 4,241 3430 19.0
511 U, 0us 3.6896 3.7 2,115 1,393 34,1
612 4, 0us 3.888 3.9 . 2,115 5.311 151.1
513 Y, 0us 3.912 3.3 3.45% 2.979 13.8
=R AT I, 0us 3.688 3.9 2.115 5.315 151.3
615 2.250 2,152 4.4 1,762 1,265 28.2
516 b, 0us 3.912 3.3 3453 2,956 4,14
617 6,006 %.800 3.4 %.382 H.706 6.0
518 Y, 0us 3,910 3.3 2,115 3,386 60.1
S1¢9 i, 244 4,023 H.2 2.171 1,844 15.1
820 I, 204 4,023 9.3 3.025 2.713 10.3
e I, 246 3,955 6.8 2.171 2,625 20.9
Table A9.9 Comparison of PSA theoretical and complete sample simulated results

via mean and standard deviation.
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Table A9.10

Network Theoretical Estimated Percentage Theoretical Estimated Percentage
Specification mean mean difference S.D.Exact) S.D. difference
51 2.874 2.482 1.441 1.539 6.8
82 . 245 4,045 1.962 2.100 7.0
63 6.091 H.872 2.0 2.307 b.,7
oh 4,285 3.918 1.962 1.558 20.6
8% b, 245 b, 104 1.962 2.528 28,9
864 2,250 2,134 1.u51 1.290 11.1
67 L, ous 3.923 2,035 1.86u4 8.4
58 6,006 5,804 2,091 2,34y 9.9
59 I, oud 3.9466 2.033 1.803 11.3
§10 9.607 5.u852 3.916 3.312 15.4
511 b, O 3.878 2,039 1.377 32.3
812 . 0us 3.995 2.035 5.758 182.9
6513 . ous 3.796 2,035 2.401 27.8
Siy 4. 045 4.080 2.035 9.581 174.2
615 2.250 2.134 1.451 1.290 11.1
816 W, 045 3.738 2.035 3.2140 57.7
517 6.004 5.150 2.491 S.79% 132.7
S18 W, 0us 3.900 2.035 3.168 99.7
519 h.2446 H.016 1.995 1.752 12,2
820 4,206 h.031 1,995 2,571 28,9
521 246 3.6812 1,999 2,267 13.6

Comparison of exact theoretical and single customer sample simulated results

via mean and standard deviation.
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Network Theoretical Estimated Percentage Theoretical Estimated Pgrcentage
Specification mean ’ mean difference S.DJ/PSA) S.D. difference
81 2.576 2.482 3.6 1.520 1.539 1.3
82 .245 . 045 h.7 2.187 ¢.100 4.0
53 6,091 S.872 3.4 2,738 V307 15.7
sS4 W.2ns 3.919 .7 2,187 1.558 28.7
6% U, 245 b.104 3.3 J.101 2.528 18.5
56 2250 2.13%6 I | 1.488 1.290 13.3
57 b, OWS 3.923 3.0 2,115 1.86u 11.9
S8 6.006 9.804 3.4 2.9 2,34y 8.9
59 h.ooug 3.946 2.0 2,119 1.803% 14,9
510 S.607 S.452 2.8 4. 241 3,312 21.9
811 W, 045 3.878 4.1 2,116 1.377 3.9
512 W, 0435 3.995 1.2 2,115 B3.758 172.2
513 W.UHS 3.796 6.1 3,455 2,601 24,7
51y L 3 H.080 .9 2,115 “.581 163.8
515 “,”50 2,136 9.1 1,762 1.290 26.8
816 b.ous 3.738 7.6 3.453 3.210 7.0
517 6.004 5.150 1.2 5,382 2,799 7.7
518 . 045 3.900 3.6 2,115 3.1468 49.8
819 I, 214 4.014 o4 2,171 1.782 19.3
520 4,244 4.031 J.1 3.025 2,571 15.0
621 b, 2564 J.6812 10.2 2,171 2,267 b4

Table 249,11 Comparison of PSA theoretical and single customer sample simulated results

via mean and standard deviation.
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Network

Specification

D value

(exact method)

D value
(PSA method)

Conf. level

(exact method)

Conf. level
(PSA method)

81
82
53
54
6%
56
67
848
69
810
811
512
513
Sih
515
816
817
518
619
520
521

Table A9.12

08036
09998
V11BYS
11855
V16197
05281
06709
V12057
06777
10087
10658
L29728
17562
29895
05281
» 17395
36875
L23823
Jiouk7?
17058
. 22118

08581
. 08581
15212
13559
07527
08137
09987
13233
09834
. 11085
. 13594
15163
06085
16091
L 056u2
06948
10873
12402
084 6
11642
16304

.00
.00
.00
00
.00
03
.00
.00
.00
.00
00
.00
.00
.00
<05
.00
.00
.00
00
.00
.00

.00
.00
.00
.00
00
.00
00
.00
.00
.00
.00
.00
01
.00
.01
.00
.00
.00
.00
.00
00

KS test for the complete sample of simulated data with

the theoretical methods.
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Network

D value

D value

Conf. level

Conf. level

Table A9.13

KS test for the single customer sample of simulated data with

Specification (exact method) (PSA method) (exact method) (PSA method)
S1 08743 09260 01 01
82 12499 10656 .01 . .05
53 13431 4670 .05 01
G4 14187 225 .00 .00
55 18373 L0324 .00 20
86 07812 10668 05 .00
67 s B7555 Ld0ua9 L 20 05
58 K] LAR089 .01 01
He LOPH29 10891 20 05
S1i0 10732 L 11u89 05 .01
511 12088 15237 .01 .00
812 L2PPE2 164064 .00 .00
513 . 180846 7820 .00 20
Siy4 29174 . 15889 .00 00
815 07812 059468 05 20
5146 L22276 124655 .00 .01
817 46308 20306 .00 .00
518 244684 11757 00 .01
519 L1211 10082 .01 05
820 17558 11122 .00 01
821 22770 17710 00 00

the theoretical methods.
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Network Mean Estimated Percentage Std. devn. Estimated Percentage

Specification mean error S.D. difference
82 4,205 u.331 2.0 1.962 1.998 1.9
57 4,045 4,055 3 2.035 2.052 .8

Table A9.14 Changes to table A9.2 resulting from finer mesh (exact method).

Network Mean Estimated Percentage Std. devn. Estimated Percentage

Specification mean error ' S.D. difference
51 2.574 2,642 1.3 1.520 1.508 .8
52 4,249 4,292 1.1 2.187 2.216 1.3
63 6,091 6.289 3.3 2.738 2.802 2.3
6% W, 245 4,055 .49 3.101 2.889 6.0
Bé 2,250 2.183 3.0 1.488 1,457 2.1
87 4,045 4,034 .3 2.115 2,129 S
68 6,006 6.116 1.8 2,574 2.602 1.1
89 4,048 4.037 .5 2.119 2,133 7
810 5.407 5.490 2.1 4,241 4.148 1.7
813 4.045 3.718 8.1 3.455 3,044 11.3
515 2,25 2.112 6.1 1.762 1.620 8.1
516 I, 045 3.730 7.8 3.453 J.064 11.3
617 6.006 S.472 8.9 %.382 4.684 13.0
819 4. 246 4.320 1.7 2.171 2.211 1.8
520 4. 2464 h.190 1.3 3.025 2.9463 2.1

Table A9.15 Discrete form distribution for the PSA theoretical method (finer mesh)

Network Max. vert. Time Percentile Mean value
Specification difference

62 L0504y 2.38 .12 4,245
87 01914 1.94% 11 4. 0us

Table A9.16 Changes to.table A9,4 resulting from finer mesh (vertical)
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Network Max. hor. Time Percentile Mean value
Specification difference
L4 L8727 1.82 .0y 4,245
87 L 22438 1.13 .02 . 045

Table 29.17

Changes to table A9.5 resulting from finer mesh (horizontal).

Network D value D value Conf. level Conf. level
Specification (exact method) (PSA method) (exact method) (PSA method)
61 08036 07110 .00 .00
62 . 10687 07603 .00 .00
83 11845 13273 00 A0
G4 11064 11928 L 00 .00
6% L1925 06177 00 01
54 05281 UG A5 A5
87 Jauy L06813 01 L00
58 12057 L 09994 00 00
69 IV rarad 07087 00 00
810 10087 LLONST .00 .00
611 10394 L0969 00 .00
512 L3062 L3725 .00 00
513 18396 L0007 LU0 00
Si4 30629 L4040 .00 .00
6815 05201 07414 05 .00
516 .18129 07392 .00 .00
517 36075 L0957 .00 .00
618 24081 10841 .00 .00
519 Jdounz 10903 .00 .00
§820 17058 08815 .00 .00
821 , 22118 12757 00 .00

Table A9.18

the theoretical methods (finer mesh)

KS_ test for the complete sample of simulated data with
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Network D value D value Conf. level Conf. level
Specification (exact method) (PSA method) (exact method) - (PSA method)

851 2 X 7782 .01 05
52 13258 L9770 .01 .10
53 13431 2312702 A5 05
sS4 213726 2657 .00 01
69 17691 533 .00 V20
56 07812 061470 05 15
. 87 07627 C06t68 .20 W20
58 JANG31 11160 .01 i
59 LOTH29 07619 20 20
510 10732 10861 05 Rt
511 11807 12253 01 01
612 30573 14828 .00 .00
513 18705 07691 .00 .20
Siu 29908 . 13838 .00 .00
§1% 07812 07521 05 05
516 22758 10782 00 05
8517 L6308 ATHOU .00 .00
518 231646 12076 .00 .01
819 12114 12569 .01 01
520 17558 . 08638 .00 20
821 22770 w167 .00 00

Table A9.19

KS test for the single customer sample of simulated data with

the theoretical methods (finer mesh)
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APPENDIX 10O

The following plots were produced to demonstrate the
characteristics of predicted cycle time distribution for a selection
of the network specifications given in Table A8.1. The predictions
were made by various combinations of the simulation, exact and PSA

theoretical models as follows:

Plots (i) - (ii)

Networks S2 and S7: Laplace transform of cycle time
probability distribution computed by the exact and PSA theoretical

methods.

Plots (iil) - (vii)

Networks S2, S7, S10, S17, S19: - Cumulative discrete form
cycle time probability distribution computed by the exact and PSA

theoretical methods and the simulator.
Plot (viii)

Discrete cycle time probability distribution for networks
S6, S7 and S8 computed by the exact theoretical method. This shows
the change in the form of the distribution in network configuration

(1ii) as the number of customers increases from 2 to 4 and 6.
Plot (ix)

Cumulative discrete form cycle time probability distrib-
ution computed by the PSA method for networks S8 and S17. This
shows the change in the form of the distribution for network con-
figuration (ii) with 6 customers when the queueing discipline at

the root centre is changed from FCFS to PS.
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Plot (x)

Cumulative discrete form cycle time probability distrib-
ution computed by the exact method for network S7 showing the
effect of decreasing the mesh size.

Plot (xi)

Cumulative discrete form cycle time probability distrib-

ution computed by the PSA method for network S17 showing the

effect of decreasing the mesh size.
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APPENDIX 11

In a two-centre cyclic network with population N, the
probability distribution of the queue length faced at the second
centre conditional on that faced at the first by the test custo-
mer is derived, to a first order approximation, by an analysis

in continuous time.

Let the pair of queue lengths faced be given by the
random variables 9,9, and suppose the test customer arrives at
the first centre at time t = 0. Then it is required to find
P(qzlql). Denote the state space of the network by S and let
state k = (kl’kz) € S have time dependent frobability P(kz,t) and
equilibrium (time independent) probability O(k2)=lim P(kz,t).It is

tr
not necessary to specify k1 in the arguments since k1+k2=N. Now

<o
P(qzlqi) = f P{qz,thi'th centre 1 departure occurs in time
© interval (t,t+dt)}

X Pr{qi'th centre 1 departure occurs in time
interval (t,t+dt)}
The approximation is now made that the random variables,
q4 and g5 for the queue lengths faced by the test customer are

assumed independent. The Markov property is also assumed so that

=) _uit q1-1
: e (u,t)
P(gyla,) = j P(q,,tl1 £ g, s N) 1 u,dt
0 Y
Prob. distn. of Prob.of g, -1 dep- Prob.of depart-

ure from centre
1 in (t,t+dt) of
test customer.

gueue lengths

) es f cen-
at time t. artures from

tre 1 in (0O,t)
(Poisson distn.)

~ s
>

Erlang (ql) distn,

where ul,uz are the centre service rates, assumed constant, and

d,:9p > O. Using the first order, non-normalised approximation
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to the solution of the Kolmogorov equations,

p(q,t) = e M DEp(q,0) - o(q)} + 6(q)

where A (g) is the total service rate when there are g customers

at the second centre (N-q at the first).

| P(q,t)
.. P(g,t | 1<gq=sN) =
N
1 P(k,t)
k=1
so that
. “u,t “{u, +A(q,) It q,-1
lowpe P Hrigy0-00mnte 1 Ly ! uja
P13219,)7 N @,
° T {0 (k)+[P(k,0)-0(k)le * Kt} 1
k=1

Thus P(qzlql) may be computed numerically and the PSA
approximation (chapter 3) for the cycle time distribution
improved using P(g) = P(qzlql)e’(N-qi) for the joint probability
distribution of the queue lengths faced by the test customer.
0° (k) is the equilibrium probability of state (N-k,k) seen by the
test customer on arrival at the first centre, [MITR791, c.f.

section 4.3.

The improvement arises because it is no longer necessary to
assume independence of the'queue lengths faced by the test

customer, c¢.f. section 8.3.3.

For large N,

o q,-
~{u FAlay) e (ugt) T
0 (ql_i):
' q
| 1 1
= {P(a,,0) - O(a)  {——ryr + Ofay)
1 + m 2

1
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