

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Preclinical Risk of Bias Assessment
and PICO Extraction using Natural

Language Processing

Qianying Wang

Doctor of Philosophy

Centre for Clinical Brain Sciences

The University of Edinburgh

2021

1

Declaration

I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and that

this work has not been submitted for any other degree or professional

qualification except as specified.

Qianying Wang

2

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Prof

Malcolm Macleod for all your guidance, patience and continuous support

throughout the years. Thank you for providing the opportunity and always

believing in me. I would also like to thank my other supervisor Prof Mirella

Lapata for all the helpful advice on my work, and Dr Jing Liao for your technical

and mental support. I am grateful to do research at the University of Edinburgh

and I would like to thank the China Scholarship Council for funding my PhD.

I feel honoured to do my PhD in the CAMRADES group, and I would like to

thank Emily and Gill for their comments on my presentations; Zsanett and

Kaitlyn, for all the lunchtime chats, Scottish culture experiences and support in

the conferences; Can and Chris, for solving my boring technique issues on

pomegranate; Emma, Alex and Jing, for proofreading my thesis. And finally,

Ezgi, it's lucky to work with you and thank you for always understanding my

ups and downs in the journey.

Away from work, special thanks to my dearest friend Yuwei for always listening

to my struggles and helping me relieved from anxiety. It is a tough journey but

we will find a way. Yaqiu, thank you for pushing me to do exercise and

comforting me whenever I feel upset. I will miss the hilarious dancing and

cooking classes. Xiaomin, for always being available for a fancy but non-

alcohol drink. Xueke, for pushing me for the application and helping me learn

to accept myself. Xuerui and Bingyu, for your accompany and I will miss all the

funny times we had together. Thanks Shen, Buyi, Jun, Yuxi, Yang and Zhan

who bring me so much happiness during hard times. I could not have

overcome all the difficulties without your help and wish you all can achieve the

things you love.

Finally, I want to express my deepest love to my parents who are always proud

of me and support me no matter what decision I make. I dedicate the thesis to

my loving family.

3

Abstract

Drug development starts with preclinical studies which test the efficacy and

toxicology of potential candidates in living animals, before proceeding to

clinical trials examined on human subjects. Many drugs shown to be effective

in preclinical animal studies fail in clinical trials, indicating the potential

reproducibility issues and translation failure. To obtain less biased research

findings, systematic reviews are performed to collate all relevant evidence from

publications. However, systematic reviews are time-consuming and

researchers have advocated the use of automation techniques to speed the

process and reduce human efforts. Good progress has been made in

implementing automation tools into reviews for clinical trials while the tools

developed for preclinical systematic reviews are scarce. Tools for preclinical

systematic reviews should be designed specifically because preclinical

experiments differ from clinical trials. In this thesis, I explore natural language

processing models for facilitating two stages in preclinical systematic reviews:

risk of bias assessment and PICO extraction.

There are a range of measures used to reduce bias in animal experiments and

many checklist criteria require the reporting of those measures in publications.

In the first part of the thesis, I implement several binary classification models

to indicate the reporting of random allocation to groups, blinded assessment

of outcome, conflict of interests, compliance of animal welfare regulations, and

statement of animal exclusions in preclinical publications. I compare traditional

machine learning classifiers with several text representation methods,

convolutional/recurrent/hierarchical neural networks, and propose two

strategies to adapt BERT models to long documents. My findings indicate that

neural networks and BERT-based models achieve better performance than

traditional classifiers and rule-based approaches. The attention mechanism

and hierarchical architecture in neural networks do not improve performance

but are useful for extracting relevant words or sentences from publications to

inform users’ judgement. The advantages of the transformer structure are

hindered when documents are long and computing resources are limited.

4

In literature retrieval and citation screening of published evidence, the key

elements of interest are Population, Intervention, Comparator and Outcome,

which compose the framework of PICO. In the second part of the thesis, I first

apply several question answering models based on attention flows and

transformers to extract phrases describing intervention or method of induction

of disease models from clinical abstracts and preclinical full texts. For

preclinical datasets describing multiple interventions or induction methods in

the full texts, I apply additional unsupervised information retrieval methods to

extract relevant sentences. The question answering models achieve good

performance when the text is at abstract-level and contains only one

intervention or induction method, while for truncated documents with multiple

PICO mentions, the performance is less satisfactory. Considering this

limitation, I then collect preclinical abstracts with finer-grained PICO

annotations and develop named entity recognition models for extraction of

preclinical PICO elements including Species, Strain, Induction, Intervention,

Comparator and Outcome. I decompose PICO extraction into two independent

tasks: 1) PICO sentences classification, and 2) PICO elements detection. For

PICO extraction, BERT-based models pre-trained from biomedical corpus

outperform recurrent networks and the conditional probabilistic module only

shows advantages in recurrent networks. Self-training strategy applied to

enlarge training set from unlabelled abstracts yields better performance for

PICO elements which lack enough amount of instances.

Experimental results demonstrate the possibilities of facilitating preclinical risk

of bias assessment and PICO extraction by natural language processing.

5

Lay Summary

In drug development, drug efficacy must be tested in preclinical animal

experiments before the candidates proceed to clinical trials. Many drugs

proven to be effective in living animals fail in clinical trials, suggesting the

translation issue between preclinical to clinical research. Many factors affect

the validity and credibility of preclinical animal studies and scientists obtain

less biased research findings by conducting systematic reviews to collate all

relevant evidence from publications. Systematic reviews are time-consuming,

and automation techniques can be used to speed up the process and reduce

human efforts, which have achieved good progress in clinical systematic

reviews. Tools for preclinical systematic reviews are scarce and should be

designed separately because preclinical experiments differ from clinical trials.

The development of natural language processing (NLP) which uses computer

programming to process, analyse and understand human language, enables

the exploiting of such tools for preclinical systematic reviews. In this thesis, I

explore NLP techniques to facilitate two stages for preclinical systematic

reviews, risk of bias assessment and PICO extraction.

There are a range of measures used to reduce bias in animal experiments and

several checklist criteria require the reporting of these measures in

publications. In the first past of the thesis, I focus on using text classification

models to automatically indicate if random allocation to groups, blinded

assessment of outcome, conflict of interests, compliance of animal welfare

regulations, and animal exclusions are reported in preclinical publications. I

compare traditional machine learning classifiers with several text

representation methods, three neural networks, and propose two strategies to

adapt transformer models to long documents. My findings suggest that neural

networks and transformer models achieve better performance than traditional

classifiers and rule-based approaches but some complicated structures do not

show advantages for long documents.

6

When retrieving publications in the database and determining whether the

studies should be included or excluded in a systematic review for a biomedical

research question, the key elements of interest are Population, Intervention,

Comparator and Outcome, which compose the framework of PICO. In the

second part of the thesis, I focus on extracting PICO phrases from publications

by NLP methods, which is further categorised into two types of tasks: question

answering and named entity recognition, depending on the annotation format

of datasets. The principle of the two tasks is to classify each word in the article

into pre-defined PICO categories, and find the most possible combination of

the starting and end words of a PICO phrase, which are then extracted from

the text. I first apply question answering models to extract phrases describing

intervention or method of induction of disease models from clinical abstracts

and preclinical full texts. For preclinical datasets which have multiple

interventions or induction methods described in the full texts, I apply additional

unsupervised methods to extract relevant sentences. The question answering

models achieve good performance when texts are at abstract-level and contain

only one intervention or induction method, while for truncated documents with

multiple PICO mentions, the performance is less satisfactory. Considering this

limitation, I then collect preclinical abstracts with finer-grained PICO

annotations and develop PICO recognition models for extraction of preclinical

PICO elements including Species, Strain, Induction, Intervention, Comparator

and Outcome. My findings suggest transformer models pre-trained from

biomedical corpus outperform other neural networks and a probabilistic

module which proved to be beneficial in neural networks does not show

advantages in transformer models. A semi-supervised strategy is applied to

enlarge the training set from unlabelled abstracts, which yields better

performance for PICO elements lacking enough amount of instances.

Experiments results demonstrate the possibilities of facilitating preclinical risk

of bias assessment and PICO extraction by natural language processing.

7

Contents

Chapter 1 Introduction ... 21

1.1 Preclinical Research ... 21

1.2 Systematic Review ... 22

1.3 Automation for Systematic Review ... 26

1.4 Thesis overview .. 29

Chapter 2 Assessing Risk of Bias Reporting in Preclinical Literature:

Text Classification ... 32

2.1 Related Work .. 33

2.2 Dataset ... 35

2.3 Methods .. 37

2.3.1 Text representations ... 38

2.3.2 Baseline Models ... 42

2.3.3 Neural Networks ... 44

2.3.4 BERT with Two Strategies ... 59

2.3.5 Evaluation metrics .. 67

2.3.6 Comparison to Regular Expression .. 68

2.4 Experiments .. 69

2.4.1 Experiments of Baseline Models .. 69

2.4.2 Experiments of Neural Networks .. 76

2.4.3 Experiments of BERT with Two Strategies 91

2.4.4 Comparison to Regular Expression .. 97

2.5 Discussion .. 98

2.5.1 Tool and Streamlit interface ... 99

2.5.2 Error Analysis ... 101

2.5.3 Limitation and Future Work .. 102

2.6 Summary .. 102

Chapter 3 Identifying Intervention and Method of Induction of Disease

Model: Question Answering .. 104

8

3.1 Related Work ... 105

3.2 Dataset .. 106

3.2.1 Clinical dataset: MND ... 106

3.2.2 Preclinical Dataset: Psycho-CIPN ... 108

3.3 Methods ... 111

3.3.1 Sentence Retrieval .. 113

3.3.2 Question Answering Models ... 118

3.4 Experiments .. 129

3.4.1 Experiments of Sentence Retrieval ... 129

3.4.2 Experiments of Question Answering Models 132

3.4.3 Overall Performance ... 139

3.5 Discussion ... 140

3.5.1 Streamlit Interface ... 140

3.5.2 Error Analysis .. 142

3.5.3 Limitation and Future Work ... 143

3.6 Summary ... 144

Chapter 4 Extracting PICO Elements in Preclinical Text: Named Entity

Recognition…………………………………………………………………….. 146

4.1 Related Work ... 146

4.2 Dataset .. 148

4.3 Methods ... 154

4.3.1 PICO Sentence Classification ... 155

4.3.2 PICO Entity Recognition ... 155

4.4 Experiments .. 164

4.4.1 Experiments of PICO Sentence Classification 164

4.4.2 Experiments of PICO Entity Recognition 165

4.4.3 Overall Performance ... 173

4.5 Discussion ... 174

4.5.1 Streamlit Interface ... 174

9

4.5.2 Error Analysis ... 176

4.5.3 Limitation and Future Work .. 178

4.6 Summary .. 179

Chapter 5 Conclusions and Future Work ... 180

5.1 Conclusions .. 180

5.2 Future Work .. 184

Appendix .. 191

Bibliography ... 212

10

List of Abbreviations

AE: Animal Exclusions

Attn: Attention mechanism

BAO: Blinded Assessment of Outcomes

BERT: Bidirectional Encoder Representations from Transformers

BERT-DCP: BERT with Document Chunk Pooling

BERT-SE: BERT with Sentence Extraction

Bi: Bidirectional

BiDAF: Bidirectional Attention Flow

BM25: Okapi BM25

bow: Bag-of-Words

CAWR: Compliance of Animal Welfare Regulations

CI: Conflict of Interests

CNN: Convolutional Neural Network

CRF: Conditional Random Field

d2v: doc2vec

DBOW: Distributed Bag-of-Words

DM: Distributed Memory

EM: Exact Match

GRU: Gated Recurrent Unit

11

HAN: Hierarchical Attention Network

LogReg: Logistic Regression

LSTM: Long Short-Term Memory

MAP: Mean Average Precision

MMR: Mean Match Ratio

NER: Named Entity Recognition

QA: Question Answering

RA: Random Allocation

RF: Random Forest

rMAP: 'ratio-mode' Mean Average Precision

rMMR: 'ratio-mode' Mean Match Ratio

RNN: Recurrent Neural Network

RoB: Risk of Bias

SBERT: Sentence BERT, or Sentence Transformers (Sentence Embeddings

using Siamese BERT-Networks)

sMAP: 'strict-mode' Mean Average Precision

sMMR: 'strict-mode' Mean Match Ratio

SVM: Support Vector Machine

TF-IDF: Term Frequency - Inverse Document Frequency

w2v: word2vec

12

List of Tables

Table 2.1: Example sentences from a full-text publication indicating the risk of

bias reporting. ... 36

Table 2.2: Dataset statistics. Samples for random allocation, blinded

assessment of outcomes and animal exclusions consist of 7,840 records;

samples for animal welfare regulations and conflict of interests consist of 7,089

records.. 37

Table 2.3: The confusion matrix between the Regex tool and NLP model in the

McNemar’s test. N represents the number of cases - its first superscript

represents the Regex tool predicts correctly (+) or wrong (-), and the second

superscript represents the NLP model predict correctly (+) or wrong (-). 68

Table 2.4: Performance of the best model for each risk of bias item on the

validation set and final performance on the test set. ‘R’, ‘P’ and ‘S’ refer to

recall, precision and specificity respectively. .. 71

Table 2.5: Performance of support vector machine with three text

representation methods for five risk of bias items on the validation set. 72

Table 2.6: Performance of logistic regression with three text representation

methods for five risk of bias items on the validation set. 73

Table 2.7: Performance of random forest with three text representation

methods for five risk of bias items on the validation set. 73

Table 2.8: Performance of the convolutional neural network model with the

optimal configuration for each risk of bias item on the validation set, and final

performance on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and

specificity respectively. ... 78

Table 2.9: Effect of freezing embedding in the convolutional neural network for

risk of bias classification. .. 80

Table 2.10: Performance of the recurrent neural network with attention using

the optimal configuration for each risk of bias item on the validation set, and

final performance on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and

specificity respectively. ... 82

13

Table 2.11: Effect of different cell structure in the recurrent neural network

models. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity respectively. 85

Table 2.12: Performance of the hierarchical attention network with the optimal

configuration for each risk of bias item on the validation set, and final

performance on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and

specificity respectively. .. 86

Table 2.13: An example of prediction and relevant sentences extracted from

the hierarchical attention network for risk of bias items on a full-text publication

(PMCID: PMC6579011). Sentences are not exactly same as the original text

because I remove digits and some punctuations in the text pre-processing

step. ... 88

Table 2.14: Effect of three hyperparameters on validation performance of

BERT-document chunk pooling models with convolution head, for random

allocation. The default settings are: 1) averaging output from the last 10

encoder layers at the first pooling layer; 2) concatenating hidden states of all

tokens within each chunk at the second pooling layer; 3) freezing all BERT

layers. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity respectively. . 93

Table 2.15: Effect of the number of sentences extracted from full-text

publications on validation performance of BERT-sentence extraction models

with linear/convolution/LSTM head, for random allocation. 95

Table 2.16: Performance of the BERT-document chunk pooling and BERT-

sentence extraction models using the optimal configuration for each risk of bias

item on the validation set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity

respectively. ... 96

Table 2.17: Validation F1 of three baseline models with averaged word

embeddings from biomedical word2vec or averaged sentence embeddings

from BioBERT for risk of bias classification. .. 97

Table 2.18: Performance of the best NLP model and regular expression

approach for each risk of bias item on the test set, and the corresponding table

of McNemar test. ‘+’ (‘-’) refers to records correctly (incorrectly) predicted by

the approach. ‘R’, ‘P’ and ‘S’ means recall, precision and specificity

14

respectively. A regular expression approach has not been developed for

animal exclusions so the performance cannot be compared. 98

Table 3.1: Summary statistics of clinical MND dataset and preclinical Psycho-

CIPN dataset. ‘1225’ is the number of preclinical records before splitting them

by number of answer candidates. ... 110

Table 3.2: An example of precision and recall calculation for each pair of true

and predicted answer candidates in one list-type record with multiple answer

candidates. ... 129

Table 3.3: Effect of n-grams for TF-IDF method and pre-trained modules for

SBERT on sentence retrieval performance. sMMR (rMMR) refers to strict

(ratio) mean match ratio, and sMAP (rMAP) refers to strict (ratio) mean

average precision. Here sMMR is the most important metric as it directly

indicates whether the new passage contains the exact answer tokens. 132

Table 3.4: Validation performance of BiDAF model with different hidden

dimensions on the clinical MND dataset and preclinical Psycho-CIPN-

factoid/list dataset. * For the Psycho-CIPN-list dataset, I increase the threshold

learning rate to 1e-3 when the hidden dimension equals 32 or 64, because

models with learning rate 1e-4 do not converge after 40 epochs. 134

Table 3.5: Validation performance of QANet model with different number of

blocks in the model encoder layer on the clinical MND dataset and preclinical

Psycho-CIPN-factoid/list dataset. ... 136

Table 3.6: Performance of fine-tuning BERT/DistilBERT with different pre-

trained modules on the clinical MND dataset and preclinical Psycho-CIPN-

factoid/list dataset. .. 138

Table 3.7: Overall validation performance of BiDAF, QANet and BERT with

their optimal settings on the clinical MND, preclinical Psycho-CIPN-factoid/list

datasets. ... 139

Table 4.1: Statistics of PICO entities in the 400 annotated preclinical abstracts.

 ... 151

Table 4.2: The calculation of entity-level metrics for an example sample

containing two records. ... 164

15

Table 4.3: Performance of PICO sentence classification by fine-tuning BERT

with different pre-trained modules on the validation and test set. ‘F’, ‘R’, ‘P’, ‘S’

represents F1, recall, precision and specificity separately. 165

Table 4.4: Overall performance of CRF, BiLSTM and BiLSTM-CRF for PICO

entity recognition on validation and test set. ‘F’, ‘R’, ‘P’ represents F1, recall

and precision separately. ... 166

Table 4.5: Entity-level performance of CRF, BiLSTM and BiLSTM-CRF for

PICO entity recognition on validation and test set. ‘F’, ‘R’, ‘P’ represents F1,

recall and precision separately... 167

Table 4.6: Validation performance of BiLSTM models with different hidden

dimension. ... 169

Table 4.7: Overall performance of BERT, BERT-CRF and BERT-LSTM-CRF

with different pre-trained weights on validation and test set. ‘F’, ‘R’, ‘P’

represents F1, recall and precision separately... 170

Table 4.8: Entity-level performance of BERT, BERT-CRF and BERT-LSTM-

CRF with the optimal pre-trained weight on validation and test set. ‘F’, ‘R’, ‘P’

represents F1, recall and precision separately... 171

Table 4.9: Improvement of entity-level performance of PubMedBERT from the

best self-training iteration compared to that of PubMedBERT without self-

training on the gold validation and test set (threshold = 0.95). 173

Table 4.10: Performance of the best PICO entity recognition model (after self-

training applied) on the validation and test set. ‘F’, ‘R’, ‘P’ represents F1, recall

and precision separately. ... 174

16

List of Figures

Figure 2.1: An overview of text representation methods and classification

models being explored. .. 38

Figure 2.2: An example of a skip-gram model with window size 1 (considering

one adjacent word of the central word, from both directions 40

Figure 2.3: An example of distributed memory and distributed bag-of-word

model (with window size 3). The classifier is a linear neural network. 42

Figure 2.4: A decision tree structure. .. 44

Figure 2.5: An example of convolutional neural network for document

classification. A document with 8 words is mapped by a 5-dimension word

embedding. Two filters size [3, 4] are used, and each of them has two filters.

 ... 46

Figure 2.6: The architecture of bidirectional recurrent neural network for

document classification... 50

Figure 2.7: The architecture of a long short-term memory block (one direction).

 ... 52

Figure 2.8: The architecture of a gated recurrent unit block (one direction). 53

Figure 2.9: A example text piece from a publication which reported compliance

of animal welfare regulations. The colour demonstrates the importance of the

word in the classification decision and deeper colour means the word has a

larger contribution to the decision. .. 54

Figure 2.10: The architecture of bidirectional recurrent neural network with

attention mechanism for document classification. .. 55

Figure 2.11: The architecture of hierarchical attention network for document

classification. 𝑖 is the sentence index of the document and 𝑡 is the word index

of the 𝑖-th sentence. In the word-level attention module, the figure displays the

part for the second sentence only (𝑖 = 2). ... 58

Figure 2.12: The architecture of transformer encoders. Dash lines represent

the residual connection. .. 60

17

Figure 2.13: The illustration of calculations in the multi-head self-attention

layer. In this example, the document length is 2, embedding dimension is 5,

dimension of key and value vectors is 3, and the number of heads is 8. 61

Figure 2.14: Two development stages of BERT (Alammar, 2018) 62

Figure 2.15: The architecture of BERT with document chunk pooling strategy

for long documents classification. The red/black/blue block on the bottom

refers to the option of the linear/convolution/LSTM head on top respectively.

 ... 66

Figure 2.16: Effect of the method for generating document vectors in doc2vec.

 ... 75

Figure 2.17: Effect of the dimension of document vectors generated from

doc2vec. .. 75

Figure 2.18: Effect of the number of filters for each filter size in the

convolutional neural network for risk of bias classification. 79

Figure 2.19: Effect of filter size in the convolutional neural network for risk of

bias classification. .. 80

Figure 2.20: Most important words in the decision of classification for each risk

of bias item, based on the average attention scores from RNN output across

all positive samples. ... 83

Figure 2.21: Effect of the number of hidden dimension in the recurrent neural

network models for risk of bias classification. .. 84

Figure 2.22: Effect of the maximum number of sentences in each document in

the hierarchical neural network models for risk of bias classification. 90

Figure 2.23: Effect of the maximum number of words in each sentence in the

hierarchical neural network models for risk of bias classification. 90

Figure 2.24: Effect of the dimension of word/sentence hidden states in the

hierarchical neural network models for risk of bias classification. 91

Figure 2.25: Learning curves of BERT-document chunk pooling models (with

linear/convolution/LSTM head) for random allocation. Solid and dash lines

refer to training and validation curves respectively; brown and cyan lines refer

to loss and F1 respectively. ... 92

18

Figure 2.26: A demonstration Streamlit app for preclinical risk of bias

assessment. ... 100

Figure 2.27: Usage commands of the preclinical risk of bias tool. 100

Figure 2.28: Percentages of the false positive, false negative, true positive and

true negative of the optimal model for each risk of bias item on the test set.

 ... 101

Figure 3.1: Preparation process of the clinical MND dataset. 107

Figure 3.2: Distributions of text characteristics in the clinical MND dataset.

 ... 108

Figure 3.3: The preparation process of the preclinical Psycho-CIPN dataset.

 ... 109

Figure 3.4: The distributions of text characteristics in the Psycho-CIPN dataset.

 ... 110

Figure 3.5: Task formulation for interventions identification of MND data. .. 112

Figure 3.6: An example question answering record of intervention/induction

identification in SQuAD format. ... 112

Figure 3.7: Task formulation for interventions identification of Psycho-CIPN

data. ... 113

Figure 3.8: An illustrated example for metric (mean average precision)

calculation in sentence retrieval. ‘Acc sents retrieved’ refers to the

accumulated number of retrieved sentences; ‘Acc relevant’ refers to the

accumulated number of relevant sentences. .. 117

Figure 3.9: The architecture of the bidirectional attention flow (BiDAF) model.

 ... 119

Figure 3.10: The architecture of QANet model. .. 124

Figure 3.11: A comparison of the normal convolution and depthwise separable

convolution which includes the depthwise convolution and pointwise

convolution. .. 125

Figure 3.12: Fine-tuning BERT/DistilBERT with a linear layer for question

answering. ‘E’ and ‘P’ refers to the embedding and probability of each token in

the sequence, respectively. .. 127

19

Figure 3.13: Effect of number of sentences extracted on strict mean match

ratio (sMMR) and strict mean average precision (sMAP) for three sentence

retrieval methods. Charts on the left are from the Psycho-CIPN-factoid dataset;

charts on the right are from the overall Psycho-CIPN dataset (Psycho-CIPN-

list dataset before splitting into sub-records). ... 131

Figure 3.14: Validation performance of BiDAF model with different answer

thresholds on the preclinical Psycho-CIPN-list dataset. 133

Figure 3.15: Validation performance of QANet model with different answer

threshold on the Psycho-CIPN-list dataset. ... 135

Figure 3.16: Validation performance of DistilBERT model with different answer

thresholds on the Psycho-CIPN-list dataset. .. 137

Figure 3.17: Learning curves of BiDAF, QANet and BERT models with their

optimal settings on three datasets. Solid and dash lines represent training

curves and validation curves separately. ... 140

Figure 3.18: A demonstration Streamlit interface for intervention/induction

identification in preclinical text.. 142

Figure 4.1: Example of PICO phrases annotation for a preclinical abstract.

Screenshot from tagtog. ... 150

Figure 4.2: Visualisation of 6,837 PICO phrases represented by vectors using

biomedical word2vec and BERT embeddings from four pre-trained modules.

Axes refer to the two most important dimensions selected by the t-SNE

algorithm. ... 153

Figure 4.3: The workflow of PICO extraction. .. 154

Figure 4.4: The architecture of CRF model for PICO entity recognition. 159

Figure 4.5: The architecture of BiLSTM-CRF model for PICO entity recognition.

 ... 160

Figure 4.6: The architecture of BERT-LSTM-CRF model for PICO entity

recognition. .. 161

Figure 4.7: The workflow of self-training experiments. 163

Figure 4.8: Transition matrix of PICO entity tags from the best BiLSTM-CRF

model. Rows refer to the tag of the previous token, and columns refer to the

tag of the current token. ... 168

20

Figure 4.9: Performance of BERT (pre-trained on PubMed abstracts and full

texts) for PICO entity recognition using self-training. ‘F’, ‘R’, ‘P’ represents F1,

recall and precision separately. .. 172

Figure 4.10: A demonstration Streamlit interface for PICO extraction in

preclinical abstracts. ... 176

21

Chapter 1 Introduction

1.1 Preclinical Research

Developing a new drug is time-consuming and costly. Scientists first conduct

the basic research to understand the mechanism of a disease and discover

potential compounds as drug candidates. This is followed by preclinical studies

to test the efficacy and toxicology of drug candidates inside and outside of the

living animals. Finally, clinical trials are conducted to test if the drug has similar

effects on human subjects over five phases (Honek, 2017). It can take up to

12 years to go from discovery to approval to reaching target patients, with an

average cost of over 2 billion dollars (Wouters et al., 2020).

Preclinical research is an important interlink between drug discovery and

clinical testing. Researchers conduct preclinical studies in living animals (in

vivo) and microorganisms, cells, or biological molecules (in vitro) to obtain

information for how to treat the diseases by drug candidates, and whether the

candidates are effective and safe. Regulatory agencies including Food and

Drug Administration (FDA) and European Medicines Agency (EMA) require

drug candidates to undergo a series of investigations including

pharmacodynamics (biochemical and physiological effects of drugs on the

living body), pharmacokinetics (uptake, distribution, metabolites and

elimination of drugs in the living body) (Nordberg et al., 2004), and toxicology

testing. These tests are used to determine the formulation, route, frequency,

dosage, and duration of exposure of drugs, and must be accurate to guarantee

the efficacy and safety. Candidates that do not pass the tests at the preclinical

stage must be abandoned and cannot proceed into the clinical trials.

Reproducibility Crisis and Translation Failure

More than one hundred million animals are used for biomedical experiments

every year and the number of preclinical studies is rapidly increasing (Taylor

et al., 2008). Guidelines including the Good Laboratory Practice (GLP) and

Good Scientific Practices (GSP) have been established to regulate the

22

implementation of animal experiments to ensure their reliability and

reproducibility (Shegokar, 2020). However, evidence has uncovered a

reproducibility crisis of preclinical studies and difficulties in translating findings

from preclinical to clinical research. For example, when a pharmaceutical

company investigated their 67 in-house projects in the fields of oncology,

woman’s health and cardiovascular, they were able to reproduce only 21% of

the results (Prinz et al., 2011). Scott et al analysed 70 drugs on their abilitiy to

extending life in a murine model of amyotrophic lateral sclerosis, tested 18,000

mice across 221 studies, but none of the significantly positive or negative

results could be replicated (Scott et al., 2008). In experimental stroke research,

1026 treatments were tested in preclinical experiments and 374 interventions

were tested effective in in vivo experiments, but only one intervention was

proved to be effective in clinical trials (O’Collins et al., 2006). The low success

rate indicates that the preclinical studies are not robust as expected and the

usability is limited.

1.2 Systematic Review

Traditionally, biomedical scientists make decisions on experimental design or

clinical practice based on individual expertise, intuition, previous experience,

or combined with a narrative review of relevant published work. This decision-

making process can produce rapid solutions but often lacks a clear definition

of the research question, a systematic search and selection criteria of all

relevant studies, and rigorous summarising and evaluation of results (Pae,

2015). Findings from narrative reviews are subjective, biased, and can be

inconsistent (Cipriani and Geddes, 2003). Systematic review is developed and

advocated for in the field of evidence-based medicine which aims to inform the

best decision making using all available research findings relevant to a pre-

specified research question (Sackett et al., 1996; Masic et al., 2008; Higgins

et al., 2011).

To conduct a systematic review, investigators first formulate the research

question, and define the inclusion and exclusion criteria for studies (Uman,

23

2011). A search strategy is then developed based on a comprehensive list of

Medical Subject Headings (MeSH) terms (Bodenreider, 2004), which are used

to retrieve articles from databases such as PubMed, Embase and Web of

Science. Next, two independent investigators perform citation screening to

manually check if retrieved study should be included or excluded. They then

extract data from the included full-text publications and organise the

information for later analysis. Any disagreement during the process is solved

by a senior expert. The validity of studies varies and quality assessment is

applied to inform bias of the quantitative results from meta-analysis (Julian P.

T. Higgins et al., 2011). Those stages are transparent and reproducible, and

the conclusions from a systematic review are less biased.

Preclinical vs. Clinical

Systematic review of clinical studies has reshaped the evidenced-based

medicine (Sackett et al., 1996; Szajewska, 2018) and contributed greatly to

the clinical practice (Macleod et al., 2004) while the development of methods

and standards in systematic review for laboratory animal experiments is

relatively backward (de Vries et al., 2014). Preclinical systematic review is

distinguished from clinical systematic review because the characteristics of

animal experiments and clinical trials are different in many aspects

(Muhlhausler et al., 2013). Preclinical animal studies aims to explore new

hypotheses for treatment development and test the safety of interventions,

while clinical trials mainly aim to examine the treatment efficacy on human

patients (Hooijmans et al., 2014). Clinical trials enrol patients with naturally

presenting disease, whilst preclinical studies rely on induction of disease

models by human researchers. The sample size in preclinical experiments is

relatively small due to concerns regarding the cost and ethics of using animals

(Sena et al., 2014), and different species can be involved. Various lab

outcomes including post-mortem outcomes such as histopathology of organs

can be investigated in animal experiments, while outcomes in clinical trials are

directly relevant to the patient. These factors induce more variations to

outcomes of preclinical studies, thus the methods of interpreting the variations

24

and exploring the source of heterogeneity are different from that in the clinical

systematic review (Hooijmans et al., 2018). The proper implementation of a

preclinical systematic review can provide a reliable summary of research

findings, inform future experimental design and animal model selection

(Higgins et al., 2011; Hooijmans et al., 2014; Hooijmans et al., 2018), indicate

if an intervention can proceed into clinical trials (Pound and Ritskes-Hoitinga,

2020), and reduce research waste (Macleod et al., 2014; Ioannidis et al., 2014;

Moher et al., 2016).

Risk of Bias

Systematic review is not bias free and many potential factors affect the validity

and credibility of preclinical animal studies (Sena et al., 2014). The validity of

an individual animal study affects its usability, generalisation and the

evaluation of summarised findings from all relevant animal studies in the same

topic domain, and further affects the transition to clinical trials. Four categories

of validity are considered in preclinical animal studies. These are internal

validity (how well the experiments were performed), external validity (whether

the results can be generalised to experiments conducted in other conditions,

population, time points, etc), construct validity (whether the animal models can

represent the methodology behind), and reporting bias (non-significant results

tend to take longer to be published) (van der Staay et al., 2009; Worp et al.,

2010). Particularly, internal validity is influenced by a range of biases including

selection bias, performance bias, detection bias, attrition bias and other biases

(Hooijmans et al., 2014). In animal experiments, these biases can be reduced

by measures such as randomly allocating animals to groups, blinding scientists

who perform the experiments and analyse the outcomes so they do not know

which intervention an animal received, and specifying any exclusion of animals

and outcome data (Macleod et al., 2015).

Synthesis of results from experiments lacking these measures can lead to the

efficacy of a treatment or intervention being overestimated or underestimated,

which can be partially reflected by some reporting issues. For instance, in a

preclinical systematic review of focal cerebral ischaemia, the intervention was

25

found 30% more effective in the studies that did not report blinded assessment

of outcome than the studies that reported blinding (MacLeod et al., 2008); and

the treatment effect of acute ischaemic stroke was 10% more effective in the

studies that did not report randomisation than the studies that reported

randomisation (Van Der Worp et al., 2007). Poor reporting does not directly

mean the experiments were conducted in a biased manner, as sometimes

investigators may not report the bias-related measures of a rigorous

experimental study in the publication, for a certain reason. Once journals reach

a consensus and widely require the reporting of a series of designs, measures

and implementations in the publications, there is no doubt that the results in

the publications which do not report those measures should be questioned. To

raise the awareness of the importance of reporting, and enable the

assessment process transparent and objective, standard checklists for risk of

bias assessment in animal intervention studies have been developed, such as

CAMARADES ten-item quality checklist (Macleod et al., 2004), ARRIVE

guidelines (Kilkenny et al., 2010), Landis checklist (Landis et al., 2012) and

SYRCLE’s risk of bias tool (Hooijmans et al., 2014). Although the specific

criteria of risk of bias items may vary depending on the study, some checklist

items are widely applicable across experiments with different treatments or

interventions (Macleod et al., 2015), such as random allocation of animals to

groups, blinded assessment of outcome, compliance of animal welfare

regulations, potential conflict of interests, animal exclusions from the study,

etc. Clear reporting of the risk of bias items provides more options for exploring

the source of heterogeneity and discussing the effect of relevant measures on

the overall efficacy in meta-analysis, hence reduce the risk of an intervention

being overestimated or underestimated.

PICO

Literature search, citation screening and data extraction are the critical steps

in systematic reviews. The key elements of interest in these procedures are

the Population/Problem, Intervention, Comparator and Outcome, which

compose the framework of PICO (Richardson et al., 1995). The PICO frame

26

has been used as the basis for retrieval, inclusion and classification of

published evidence, and is beneficial to clinical evidence based medicine (Jin

and Szolovits, 2018a). Empirical studies have shown the usage of PICO

elements in literature retrieval facilitates more complex search strategies and

yields more precise search results for systematic reviews or answering clinical

questions (Huang et al., 2006; Schardt et al., 2007; Boudin et al., 2010;

Chabou and Iglewski, 2018; Booth et al., 2000). During citation screening,

investigators screen abstracts to determine the inclusion or exclusion of

studies. Abstracts that are pre-structured according to the PICO frame or

combine demonstration with PICO phrases enable faster judgement of study

relevance for each PICO element (Jin and Szolovits, 2018b; Tsafnat et al.,

2018; Brockmeier et al., 2019). Pre-structured PICO information also allows

investigators to locate relevant descriptions from full-text articles which may

speed up the data extraction process (Wallace et al., 2016).

The application PICO framework is less common in the preclinical field.

Considering the leading clinical research and its difference compared to the

preclinical experiments, the SYRCLE group have derived the definition of

preclinical PICO from the clinical PICO frame, where “Population” does not

represent patients but instead represents the animal species, strain and

method of induction of disease model, and outcomes can involve survival,

behavioural, histological and biochemical outcomes which are not directly

relevant to clinical situations (Hooijmans et al., 2018).

1.3 Automation for Systematic Review

Both the number of biomedical publications and the number of systematic

reviews are rapidly increasing (Bastian et al., 2010; Fontelo and Liu, 2018). In

an investigation of 195 reviews registered in PROSPERO, the number of

studies entered into a systematic literature search ranged from 27 to 92,020,

and it took more than 2.5 years on average to complete a systematic review

and publish the results (Borah et al., 2017). The large number of publications

require many human efforts across all stages in a systematic review, and the

27

lengthy duration to reach publication means the findings of reviews may go out

of date (Shojania et al., 2007).

The evidence synthesis community has advocated for the use of automation

techniques to assist systematic reviews (Elliott et al., 2017; Thomas et al.,

2017). Recent developments in machine learning and natural language

processing have allowed the training and building of automation tools which

can aid systematic reviews. The main tasks involved in systematic reviews can

be formulated into text classification and data extraction (Marshall and

Wallace, 2019).

Text Classification

Text classification is a categorisation task which aims to group documents into

classess of interests. More formally, given a document 𝑥 ∈ 𝑋 and a set of

classes 𝐶 = {𝑐1, 𝑐2, … } , where 𝑥 is the numeric representation of the

document and 𝑋 is the document space, a classification function or model 𝑓

is learned to map the representations of documents into classes, i.e. 𝑓 : 𝑋 →

𝐶 (Manning et al., 2008). For example, citation screening can be modelled to

automatically classify abstracts or full-text articles into two classes, such as

studies that describe in vivo experiments and those that do not, or studies

which investigate a certain disease and those that do not. Similarly, risk of bias

assessment can be modelled to classify the representations of full texts or their

sentences into two classess including ‘reported’ and ‘unreported’, for each

checklist item.

Data Extraction

Data extraction, including PICO extraction, aims to identify numeric values or

precise words and then tabularise the information so it can be used directly in

the following meta-analysis. However, in practice, considering the difficulties

of identifying structured information, PICO extraction is often converted to

identify sentences, snippets or phrases describing PICO elements from full

texts. Particularly, identifying snippets or phrases requires the classification of

28

words (or tokens) in the given text, so the consecutive tokens with high

probabilities can be then concatenated together to form the phrases. In the

field of natural language processing, extracting words or phrases from context

is the word or token classification task, which can be further categorised into

question answering or named entity recognition (Manning et al., 2008),

depending on the format of annotations in the labelled training data.

More specifically, in the question answering architecture, given a question

sequence such as “What is the intervention?” and its relevant context, i.e. the

corresponding publication, a model is learned to find the position of answer

strings from the publication context, by classifying the representation vector of

each context token into two classes to indicate if the token belongs to the

intervention answer strings or not respectively. While in the named entity

recognition architecture, a model is learned to classify the representation of

each token into pre-defined PICO entity types such as “Intervention” or

“Outcome”. Both tasks belongs to the multi-class token classification problem:

given an input text sequence 𝑋 = {𝑥1, 𝑥2, … }, where 𝑥𝑖 is the 𝑖-th token (word)

in the sequence, the goal is to assign a label for each token and generate an

output label sequence 𝑌 = {𝑦1, 𝑦2, … }. For each individual publication, the

question answering architecture requires the annotation of the position of exact

answer strings, which is more applicable for the situation where only one or

two precise answer strings exist for the question, while the named entity

recognition architecture requires the annotation of every mentioned PICO

phrases, which allows multiple mentions of a same PICO phrase.

The basis of solving those tasks is first converting text into numeric

representations of individual words, sentences or whole documents, and then

training classifiers to learn patterns, relations and parameters across different

dimensions and positions of text representations, which can then be used to

score new articles for prediction. Both text representation methods and

classifiers involve statistical methods and traditional machine learning models,

and the development of neural network methods (Goldberg, 2016) enriches

the field, especially the transformer-based models (Vaswani et al., 2017) which

29

achieve state-of-the-art performance on a wide range of tasks (Devlin et al.,

2018).

Automation tools developed using machine learning and natural language

processing algorithms have achieved great success in clinical fields, such as

EPPI reviewer (Shemilt et al., 2016) for citation screening, ExaCT (Kiritchenko

et al., 2010) for data extraction and RobotReviewer (Marshall et al., 2016) for

bias assessment. However, tools for preclinical systematic reviews are scarce.

Citation screening tools for automatically classifying in vivo abstracts (Liao et

al., 2018) is well established, and a preclinical risk of bias assessment tool

exists (Bahor et al., 2016) but it is built on a rule-based method which

generates only binary labels and is limited to a certain disease. Tools for risk

of bias assessment and PICO extraction using recent natural language

processing techniques are waiting to be explored.

1.4 Thesis overview

Preclinical research is critical to decide which drugs to move forward to clinical

trials but there are reproducibility crises and translation issues which limit

clinical success. Scientists conduct systematic reviews on preclinical animal

experiments to obtain less biased summarises of findings and explore the

reliability of treatment efficacy. Procedures in systematic reviews including

quality assessment and data extraction are time-consuming. Automation tools

designed for preclinical systematic reviews are necessary to speed up the

process and reduce human efforts, which may further contribute to the

translation from preclinical to clinical research.

The overall aim of the thesis is to investigate and apply natural language

processing models for risk of bias assessment and PICO elements extraction

in preclinical publications. More specifically, I formulate risk of bias

assessment as a long document classification task, and PICO elements

extraction as a token classification task, which is further categorised into

question answering and named entity recognition, depending on the specific

30

format of annotations in the datasets. The remainder of this thesis is structured

as follows.

In Chapter 2, I perform a series of binary classification models for full-text

preclinical publications, to automatically indicate if they reported five risk of

bias items including random allocation to groups, blinded assessment of

outcomes, conflict of interests, compliance of animal welfare regulations, and

statement of animal exclusions. I perform traditional machine learning

classifiers with several text representation methods as baselines. I illustrate

the mechanism of the convolutional, recurrent and hierarchical neural

networks, and how they are used to construct the classification model. I

present critical elements in transformer models and propose two strategies to

adapt BERT models to long documents. After implementation, training and

parameters tuning procedures, I compare the validation performance of above

models, and select the best model for each risk of bias item separately. I

discuss whether the attention mechanism in the recurrent and hierarchical

structure can be used to extract the most important words and relevant

sentences for risk of bias assessment. I use the optimal models to build the

preclinical risk of bias tool and compare the test performance with an existing

text mining approach.

In Chapter 3, I present question answering models and demonstrate the

possibilities to extract phrases describing the intervention used or the method

of induction of disease models from clinical abstracts and preclinical full texts.

For clinical abstracts which focus on one intervention measure, I implement

the classic question answering models based on attention flows and

transformers to extract the exact phrases. For preclinical datasets which have

multiple interventions or induction methods described in the full texts, I explore

several information retrieval methods to extract relevant sentences which are

concatenated into new passages, and implement the question answering

models to extract and filter out a list of candidates for interventions or induction

methods from the shortened passages. I compare the performance of

information retrieval methods and question answering models, and

31

demonstrate the prototype of an interface developed using the best model

trained from the preclinical datasets.

In Chapter 4, I present the annotation of six PICO elements (Species, Strain,

Induction, Intervention, Comparator and Outcome) in the collected preclinical

abstracts, and use them to develop models for PICO phrases extraction. I

decompose PICO extraction into two independent tasks: 1) PICO sentences

classification, where I apply BERT to classify sentences from abstracts and

remove non-PICO sentences to obtain the shortened texts; 2) PICO elements

detection, where I implement recurrent networks and BERT-based models with

or without a conditional probabilistic model, on the truncated abstracts to

extract precise PICO phrases. I apply the self-training strategy to enlarge the

training datasets and discuss whether it can enhance the test performance.

In Chapter 5, I summarize the conclusions from previous chapters, and discuss

directions for future work.

32

Chapter 2 Assessing Risk of Bias Reporting in

Preclinical Literature: Text

Classification

Systematic review is believed to be the least biased method of collating

evidence from research publications. It is not bias free and quality assessment

is performed to evaluate the internal validity of individual studies (van der Staay

et al., 2009; Worp et al., 2010). Flaws in experimental design reflect from some

reporting issues in publications and studies have shown that publications

lacking clear reporting of risk of bias leads to the treatment efficacy being

overestimated or underestimated (Van Der Worp et al., 2007; MacLeod et al.,

2008; Sena et al., 2014), which further affect the translation to clinical research.

To reduce risk of bias, regulate experimental designs and raise the awareness

of reporting issues in preclinical systematic reviews, several risk of bias tools

have been established, such as CAMARADES ten-item quality checklist

(Macleod et al., 2004), ARRIVE guidelines (Kilkenny et al., 2010), Landis

checklist (Landis et al., 2012) and SYRCLE’s risk of bias tool (Hooijmans et

al., 2014). In the field of evidence synthesis, the risk of bias 'tools' often refer

to the guidelines or checklist forms with a series of criteria of items related to

experimental designs such as randomisation, blinding and sample size

calculation. The assessment process is conducted by at least two independent

investigators to check every included full-text publication separately, extract

the relevant descriptions and then make the judgement if the publication has

low, high, or unknown risk for a specific bias item. A senior adjudicator is also

required to resolve any disagreements between the two investigators. The

reviewing work is repetitive and workload is rapidly increasing due to the fast-

growing number of preclinical publications. To speed up the workflow and

systematically evaluate the risk of bias, it is critical to develop tools to

automatically appraise risk of bias reporting. Improving this workflow enables

the processing and evaluation of large amounts of publications to guide

33

researches by institutions, journals and funders, which may improve research

activities and provide more precise findings to inform clinical trials.

2.1 Related Work

Systematic reviewers have advocated the use of automated approaches to

assist risk of bias assessment, using human effort and machine automation in

mutually reinforcing ways (Elliott et al., 2017). The development of machine

learning and natural language processing, including neural models and

transfer learning, provides opportunities to create robust tools for risk of bias

assessment.

For clinical trials, Marshall et al have applied support vector machine with bag-

of-word representations at sentence/document/joint levels, using 2,200 full-

text clinical reports with annotated document labels (‘low risk’ and

‘unknown/high risk’) and sentence quotes which indicate the justification. They

found joint models using associated sentence-level annotations improve the

predictions by between 1% and 9% for six bias domains, and the optimal model

achieves F1 of 72% for random sequence generation and 67% for blinded

assessment of outcome (Marshall et al., 2015). In a later development of

RobotReviewer (Marshall et al., 2016), they use distant supervision (Mintz et

al., 2009) to automatically derive pseudo document and sentence level

annotations from unlabelled clinical reports, based on the 1,400 unique strings

of bias domains from the Cochrane Database of Systematic Reviews. By

training the support vector machine separately for each bias domain or jointly

for all domains (multi-task learning (Ruder, 2017)) on 6,610 algorithmically

annotated full texts, they obtain the accuracy of 76% for random sequence

generation and 67% for blinded assessment of outcome. Experiments have

shown their automation tool is quicker than pure manual assessment

(Soboczenski et al., 2019). A risk of bias assessment function is also

developed in Trialstreamer (Marshall et al., 2020), by training a logistic

regression model on 13,463 abstracts of clinical trials which achieves a recall

of 46% and precision of 44%. Similarly, Millard et al apply logistic regression

34

models on 1,467 full-text clinical reports for sentence and document

classification separately, which achieves an area under the ROC curve over

72% for randomisation sequence generation, allocation concealment and

blinding (Millard et al., 2016).

With the same datasets used in the development of RobotReviewer, Zhang et

al consider the supported sentence annotations of bias domains as ‘rationales’

and use them to train convolutional neural networks (Kim, 2014) to classify

sentences into three classes (positive, negative and neutral) for a bias item in

each document (Zhang et al., 2016). They explore different approaches to

summarise sentence vectors to obtain the document representation, by simply

summarising, summarising by class weights, or summarising by sentence

weights which are jointly learned in the convolutional neural network with an

‘attention’ mechanism (Yang et al., 2016). The accuracies of four bias items

are improved by 5% using the rationale-augmented convolutional neural

networks, compared to their baseline support vector machines.

Menke et al have reported the performance of a proprietary tool ‘SciScore’

(Menke et al., 2020) which trains conditional random fields (Sutton and

McCallum, 2011) on 250 research articles manually labelled with entity

mentions for random allocation and blinding. The training corpus is randomly

selected from the PubMed Open Access articles, and the portion of clinical or

preclinical publications is not clear.

Compared with clinical trials, animal studies are conducted in relatively small

teams, are reported in a different style, have been shown to have lower

reporting of strategies to reduce risk of bias (Macleod et al., 2015), and are

susceptible to different risk of bias items (Hooijmans et al., 2014). Hence,

separate tools for RoB assessment in preclinical literature are necessary.

Bahor et al. have previously reported the use of regular expressions based on

rule-based string matching to recognise phrases related to bias reporting in

experimental animal studies, which requires many hand-crafted term

selections (Bahor et al., 2017).

35

2.2 Dataset

I use a collection of full-text publications which have been annotated for risk of

bias items in preclinical systematic reviews in three domains: 2,453 records of

a focal ischaemic stroke study (McCann et al., 2016), 1,626 records of a

chemotherapy-induced peripheral neuropathy study (Currie et al., 2019), 2,404

records of a psychotic disorder study (Bahor et al., 2016); and from two studies

assessing the effectiveness of interventions to improve reporting quality across

in vivo research: 760 records of NPQIP (Nature Publication Quality

Improvement Project) (The NPQIP Collaborative Group, 2019) and 665

records from the IICARus project (Intervention to Improve Compliance with the

ARRIVE guidelines) (Hair et al., 2019). The risk of bias labels are at the

document level (1 for reported, 0 for not reported/unknown) which are derived

from the annotations of two independent investigators followed by an internal

validation process.

I consider five risk of bias items: (1) Random Allocation (RA): animals are

randomly allocated to treatment or control groups at the start of the experiment;

(2) Blinded Assessment of Outcome (BAO): group identity is concealed from

the scientist measuring the outcome; (3) Conflict of Interests (CI): the authors

report any relationship which might be perceived to introduce a potential

conflict of interests, or the absence of such relationships; (4) Compliance with

Animal Welfare Regulations (CAWR): the researchers report that they

complied with animal welfare regulations; (5) Animal Exclusions (AE): a

statement of whether or not all animals, all data and all outcomes measured

are accounted for and presented in the final analysis. Some example

sentences indicating the reporting of each risk of bias item are displayed in

Table 2.1.

Publications are initially in PDF format and I convert them to plain texts using

Xpdf (www.xpdfreader.com). I convert all text to lower case and use regular

expression to remove references, citations, URLs, digits, non-ASCII

characters and text which precedes the “Introduction” section, because they

36

are unlikely to report risk of bias. I use Stanford CoreNLP (Manning et al.,

2015) for word and sentence tokenisation. After removing invalid records (for

instance where text conversion fails), 7,840 full-text publications have

annotations for random allocation, blinded assessment and animal exclusions,

and 7,089 of them have annotations for animal welfare regulations and conflict

of interests. Records are shuffled and randomly split into training, validation

and test set (80%/10%/10%). Some summary statistics of the dataset are

shown in Table 2.2.

Risk of bias item Positive example

Random allocation
…a randomisation code is used to allocate animals
to treatment group…

Blinded assessment of
outcome

…the midbrain sections from each animal were
screened for … by a person unaware of the
treatment condition of the animals…

Conflict of interests
The authors declare that they have no competing
interests.

Compliance of animal
welfare regulations

…experiments were performed in accordance with
protocols by the Institutional Animal Care and Use
Committee at…

Animal exclusions
... cases in which the lesion was assessed to involve
less than <50% of the dopamine neurons, the animal
was excluded from...

Table 2.1: Example sentences from a full-text publication indicating the risk of bias

reporting.

37

Samples for RA,
BAO, AE

Samples for
CAWR, CI

Train Valid Test Train Valid Test

No. documents 6272 784 784 5671 708 710

Avg no. tokens per document 4977 5112 5077 4947 5057 4964

Avg no. sentences per document 180 186 184 178 182 178

Avg no. tokens per sentence 28 28 28 28 28 28

Ratio of records reported RA 27% 25% 30% -- -- --

Ratio of records reported BAO 30% 29% 33% -- -- --

Ratio of records reported AE 12% 14% 11% -- -- --

Ratio of records reported CAWR -- -- -- 78% 77% 75%

Ratio of records reported CI -- -- -- 32% 28% 31%

Table 2.2: Dataset statistics. Samples for random allocation, blinded assessment of

outcomes and animal exclusions consist of 7,840 records; samples for animal

welfare regulations and conflict of interests consist of 7,089 records.

2.3 Methods

Risk of bias assessment can be cast as a typical text classification task: the

input is the full-text publication, and the output is the binary risk of bias label

(reported/unreported) for each item. A classification model cannot be trained

from the plain text directly and I need to convert text information into analysable

data. The core concept is to map each document to a matrix consisting of fixed-

dimension word vectors or word embeddings (Daniel and Martin, 2020), before

training a classification model which learns to map the numeric text

representations to the binary output label. For text representation methods, I

explore bag-of-words (Goldberg, 2017), word2vec (Mikolov, Chen, et al.,

2013), doc2vec (Le and Mikolov, 2014) and embeddings from BERT (Devlin

et al., 2018). For classification models, I implement three baseline models

(support vector machine, logistic regression and random forest), neural models

(convolutional neural network, recurrent neural network with attention and

hierarchical neural network) and BERT models using two strategies (document

38

chunk pooling and sentence extraction). An overview of the methods is

demonstrated in Figure 2.1, and details are described in the following sections.

Figure 2.1: An overview of text representation methods and classification models

being explored.

2.3.1 Text representations

Bag-of-words (bow) uses the word frequency within a document to represent

the word importance. In this method, a document with 𝑠 words is converted to

a 𝑠-dimensional vector where the 𝑖-th element is the 𝑖-th word frequency. Stop

words such as ‘the’ and ‘a’ should be assigned lower weights or removed as

they usually have high counts but are less helpful to understand texts. Some

words related to the topic may appear more common than other words among

the documents and should be assigned higher weights. The common solution

is using TF-IDF (Term Frequency-Inverse Document Frequency) weighting

39

(Goldberg, 2017). In a collection of full-text publications, the TF-IDF weight of

the 𝑖-th word 𝑤𝑖 in the 𝑗-th document 𝑑𝑗 is:

tfidf 𝑤𝑖, 𝑑𝑗 , 𝐷 =
𝑓 𝑤𝑖, 𝑑𝑗

𝑙 𝑑𝑗

× ln
𝑁(𝑑)

𝑛(𝑤𝑖)
(2. 1)

where 𝑓(𝑤𝑖, 𝑑𝑗) is the frequency of word 𝑤𝑖 in the document 𝑑𝑗 , 𝑙(𝑑𝑗) is the total

number of words in the document 𝑑𝑗 , i.e. document length, 𝑁(𝑑) is the total

number of documents in the collection of full-text publications (corpus) 𝐷, and

𝑛(𝑤𝑖) is the number of documents containing the word 𝑤𝑖 . Words can be

counted by unigram (each word is counted alone as one token), bigram (every

two adjacent words are counted as one token) and combination of unigram

and bigram (Goldberg, 2016).

Word2vec is a type of language modelling which learns to map words to

continuous vectors which can preserve the semantic relationship among

words. For example, the cosine distance of vector(‘King’) and vector(‘Man’) is

similar to the distance of vector(‘Queen’) and vector(‘Woman’). These word

vectors can be generated from the learning process jointly within the neural

network and one commonly used method is the skip-gram model, which

predicts surrounding context words given a centre word (Mikolov, Chen, et al.,

2013). Initially, from a large corpus with vocabulary size 𝑣, every single word

is represented by a 𝑣-dimensional one-hot vector and is fed into a simple

neural network. As Figure 2.1 shows, the input layer receives the one-hot

vector of a centre word (‘treatment’), and the output layer generates the

probability vectors 𝑦 ̂of the predicted context words (‘effects’ and ‘therapy’).

The neural network is trained to update the parameter matrix 𝑊 ∈ ℝ𝑣×ℎ and

𝑊 ∈ ℝℎ×𝑣 to get a low cross-entropy loss between the probability vectors 𝑦 ̂

and the actual one-hot vectors 𝑦, where ℎ is the size of the hidden layer. The

parameter matrix 𝑊 obtained through this training process is the

representation matrix consisting of 𝑣 word vectors or embeddings, which can

be used for other natural language processing tasks. Word vectors are pre-

trained on a large amount of corpora like GoogleNews and Wikipedia, and are

40

then applied as the input of new tasks, either fixed or jointly updated with other

new parameters. Large vocabulary size 𝑣 increases computing expenses of

updating weight matrix 𝑊 , and negative sampling (Mikolov, Sutskever, et al.,

2013) is introduced to solve this issue. In the negative sampling method,

instead of updating all ℎ × 𝑣 parameters in 𝑊 , a small amount of ‘negative’

words are selected, for example 10 words, by uniform distribution, and

parameters of ‘positive’ words (‘effects’ and ‘therapy’ in Figure 2.2) and 10

‘negative’ words (other words excluding ‘effects’ or ‘therapy’ in Figure 2.2) are

selectively updated. The computation complexity is then reduced from 𝑂(ℎ × 𝑣)

to 𝑂(ℎ × 10), where 𝑣 is often on billion-level.

Figure 2.2: An example of a skip-gram model with window size 1 (considering one

adjacent word of the central word, from both directions)

Doc2vec is an unsupervised method which learns to represent a document by

a dense vector (Le and Mikolov, 2014). For baseline classification models

which only receive a vector representation as input, a document’s matrix

representation from word2vec is needed to be summarised or averaged to

reduce dimension. Representation from doc2vec can be fed to those baseline

41

classifiers directly, which often outperforms simply summarised or averaged

word vectors. There are two methods to generate the document vector:

Distributed Memory (DM) and Distributed Bag-of-Words (DBOW), see Figure

2.3. In the distributed memory method, the 𝑖-th document is represented by a

unique vector 𝑑𝑖 , and a matrix consisting of word vectors {𝑣𝑖,1, 𝑣𝑖,2 , …} in

sequential order, where the vector of each unique word is the same across all

documents in the training corpus. 𝑑𝑖 can be considered as a special word

vector which summarises the topic of the document and contains information

missed by individual word vectors. The document vector 𝑑𝑖 and word vectors

{𝑣𝑖,𝑗} are concatenated or averaged, and are then trained by a linear classifier

to predict the next word in a context window. Distributed bag-of-words is similar

to the skip-gram model described in the word2vec section. Instead of using the

one-hot vector of a centre word as input, DBOW uses an initialised document

vector as input, and updates the vector by training a linear projection network

to classify whether a randomly sampled word from the document belongs to a

randomly sampled text window cut from the document. DBOW consumes less

memory than DM because it does not require to store and update word vectors.

From previous studies, DM alone works well for multiple tasks, but its

combination with DBOW is more consistent across several tasks (Le and

Mikolov, 2014).

42

Figure 2.3: An example of distributed memory and distributed bag-of-word model

(with window size 3). The classifier is a linear neural network.

All three text representation methods are explored for baseline classification

models, and word2vec is used for neural models. Text representation for

BERT models is described later in Section 2.3.4.1.

2.3.2 Baseline Models

I explore three baseline models for the classification task: Support Vector

Machine (SVM), Logistic Regression (LogReg) and Random Forest (RF). I

define the representation vector of the 𝑖-th document in the training collection

of publications as 𝑋𝑖 ∈ ℝ𝑑, where 𝑑 is the vocabulary size when using the bag-

of-words approach, or pre-defined dimension of the continuous vector induced

from word2vec or doc2vec. Support vector machine and logistic regression

learn to map document vector 𝑋𝑖 to the target label 𝑌𝑖 by 𝑌𝑖 = 𝑊𝑋𝑖, where the

weight matrix 𝑊 is trained to minimise the objective function:

𝐿(𝑌𝑖, 𝑊𝑋𝑖) + 𝜆𝑅(𝑊)
𝑁

𝑖=1
(2. 2)

𝑁 is the number of document, 𝐿 is the loss function, 𝜆 is a constant and 𝑅 is

a regularisation term defined as 𝑅(𝑊) = ‖𝑊 ‖2 2⁄ , which serves as a penalty

43

for a large number of features (Hastie, Trevor, Tibshirani, Robert, Friedman,

2009).

For support vector machine, 𝐿 is hinge-loss and the loss of 𝑖-th document is

calculated by

𝐿(𝑌𝑖, 𝑊𝑋𝑖) =
𝑚𝑎𝑥(0, 1 − 𝑊𝑋𝑖) , 𝑌𝑖 = 1 (𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵)
1, 𝑌𝑖 = 0 (𝑛𝑜𝑡 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵) (2. 3)

Stochastic gradient decent algorithm (Goldberg, 2016) is used to update

parameter matrix 𝑊 . At one iteration step, the gradient of the loss is estimated

by one record randomly sampled from the training data, and 𝑊 is then

updated following the rule:

𝑔 =
𝜕 𝐿 𝑌𝑗 , 𝑊 𝑇 𝑋𝑗 + 𝜆𝑅(𝑊)

𝜕𝑊
(2. 4)

𝜂 =
1

𝜆(𝑡0 + 𝑡)
(2. 5)

𝑊 ← 𝑊 − 𝜂 × 𝑔 (2. 6)

where 𝑗 is the index of one randomly sampled record from training data, 𝜂 is

the decreasing learning rate by iteration step 𝑡 , 𝑔 is gradient, and 𝑡0 is a

heuristic constant (Bottou, 2012). It is faster and less memory-consuming,

compared to the gradient descent method (Lemaréchal and Lemaréchal,

2012) which updates parameters using average gradients of all training data

in one iteration step.

For logistic regression, 𝐿 is log-loss and the loss of 𝑖-th document is calculated

by

𝐿 𝑌𝑖, 𝑊 𝑇 𝑋𝑖 =
log 1 + e−W𝑋𝑖 , 𝑌𝑖 = 1 (𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵)

log 1 + eW𝑋𝑖 𝑌𝑖 = −1 (𝑛𝑜𝑡 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵)
(2. 7)

Limited-memory BFGS (Nocedal, 1980) is applied to update parameter matrix

𝑊 , which uses a dimension-reduced approximation of the Hessian matrix of

the loss function and is proved to be the best choice for log-linear models with

L2 regularisation (Andrew and Gao, 2007).

44

Random forest is an ensemble-based method which combines several

decision trees trained on sub-samples and then average results of multiple

trees to avoid over-fitting (Breiman, 2001). Decision tree is a non-parametric

method and the basic tree structure is displayed in Figure 2.4. For the text

classification task, a decision tree first splits documents into two nodes

(leaves) based on their representation vectors. Then within each node, it

repeats the splitting process and forms its own branch, until a pre-defined

maximum depth of trees, maximum number of leaf nodes, or the minimum

number of samples required to form a leaf node, is reached.

Figure 2.4: A decision tree structure.

2.3.3 Neural Networks

I explore three neural models: Convolutional Neural Network (CNN), a

powerful model for text classification (Kim, 2014); Recurrent Neural Network

(RNN) which is good at modelling sequential text data (Hochreiter and

Schmidhuber, 1997); and Hierarchical Attention Network (HAN) which takes

the hierarchical structure among word, sentence and document into

consideration (Yang et al., 2016).

2.3.3.1 Convolutional Neural Network

An individual document can be considered as a long-text sentence and I use

the one-layer convolutional neural network structure for sentence classification

45

(Kim, 2014). Critical elements of this architecture are described below and

shown in Figure 2.5.

Embedding layer. The CNN architecture begins with mapping each document

into a representative matrix 𝑥 ∈ ℝ𝑙×d by a pre-trained word embedding 𝐸 ∈

ℝv×d, where each row is a word vector representing one word, 𝑙 is the number

of words in the document, d is the dimension of the pre-trained embedding and

𝑣 is the vocabulary size which depends on the specific pre-training corpus. The

shape of the weight matrices trained in CNN are fixed, but length 𝑙 varies

among different documents. Hence, I define a threshold s for document length,

and cut the document when its length 𝑙 is larger than s or pad the document

with zeros when its length 𝑙 is smaller than s. This guarantees the embedding

matrix of every document has the same dimension (ℝ𝑠×d).

Convolution layer. The main characteristic of a convolution layer is the

multiple filters (2D matrices) with different sizes. Let 𝑥[𝑖: 𝑗] denote the matrix

extracted from row 𝑖 to row 𝑗 in the document matrix. For one document matrix

𝑥 ∈ ℝ𝑠×d and one filter 𝑓 ∈ ℝℎ×d, where ℎ is the filter size, the convolution layer

sequentially extracts a sub-matrix which has the same dimension as filter 𝑓 ,

and then summarise the element-wise productions between 𝑥[𝑖: 𝑖 − ℎ + 1] ∈

ℝℎ×d and 𝑓 :

𝑐𝑖 = 𝑥[𝑖: 𝑖 − ℎ + 1]
𝑑

𝑘=1
⨀𝑓

ℎ

𝑗=1
(2. 8)

where 𝑖 = 1, … , 𝑠 − ℎ + 1, 𝑐𝑖 ∈ ℝ. This generates a summarised feature vector

𝑐 = [𝑐1, 𝑐2, … , 𝑐𝑠−ℎ+1] ∈ ℝ𝑠−ℎ+1, by one filter 𝑓 with size ℎ. For each filter size,

multiple filters are used to extract multiple features. As the example shown in

Figure 2.5, a document with 8 words is mapped to a matrix by a 5-dimension

word embedding, i.e. s=8, d=5. Four filters are used, where two of them have

size 3 (h=3) and another two have size 4 (h=4). After the convolution operation,

four feature vectors are generated, where two with 8-3+1=6 elements and

another two with 8-4+1=5 elements, for each filter size respectively.

46

Figure 2.5: An example of convolutional neural network for document classification.

A document with 8 words is mapped by a 5-dimension word embedding. Two filters

size [3, 4] are used, and each of them has two filters.

These feature vectors are then passed through an activation function to induce

more non-linearity to the network, and the rectified linear activation function

(ReLU) is a preferred default in convolutional neural networks (Krizhevsky et

al., 2012), which is defined as ReLU(𝑐) = max (0, 𝑐) ∈ ℝ𝑠−ℎ+1.

Max-pooling layer. Max-pooling (Dumoulin and Visin, 2016) is applied to take

the maximum value of each feature vector 𝑐 , which represents the most

important feature extracted by the corresponding filter. This layer generates 𝑞

maximum scalars which are concatenated into one vector, where 𝑞 = total

number of filters = number of different filter sizes ∗ number of filters for each

filter size.

Dropout layer. Dropout serves as a regularisation strategy to prevent over-

fitting (Srivastava et al., 2014). It randomly ignores some ‘neurons’ by setting

some elements in the feature vector to zeros during the training process. The

dropout rate refers to the proportion of neurons being ignored.

47

Fully connected layer. Fully connected (FC) layer performs a linear

transformation to map the 𝑚-dimensional vector from the max-pooling layer

into a 2-dimensional vector [𝑝1, 𝑝0], which refers to the score of ‘reported’ and

‘unreported’ respectively.

Batch normalisation layer. Batch normalisation (Ioffe and Szegedy, 2015) is

performed before the final output layer. ‘Batch’ refers to the sub-sample split

from the whole training set. In one training iteration (epoch), neural networks

use a batch training strategy (Goodfellow et al., 2016), which splits the whole

training sample into several subsets, i.e. ‘mini-batches’, and updates

parameters after the calculation of gradients within every mini-batch. This

strikes a balance between the gradient descent algorithm and stochastic

gradient descent algorithm for memory, computing efficiency and convergence

robustness. Batch normalisation performs normalisation within each mini-

batch to reduce the dependency of parameters' distribution changes among

layers, where high dependency makes it more difficult to distinguish output

values between classes. For a mini-batch 𝛣 including 𝑛 documents, the output

from the fully connected layer is {[𝑝𝑖
1, 𝑝𝑖

0]} ∈ ℝ𝑛×2, 𝑖 = 1, … , 𝑛. The mean and

variance of score of each class (reported/unreported) across the mini-batch

are calculated by:

𝜇1 =
1

𝑛
𝑝𝑖

1𝑛

𝑖=1
, 𝜎1 2

=
1

𝑛
𝑝𝑖

1 − 𝜇1 2𝑛

𝑖=1
 (2. 9)

𝜇0 =
1

𝑛
𝑝𝑖

0𝑛

𝑖=1
, 𝜎0 2

=
1

𝑛
𝑝𝑖

0 − 𝜇0 2𝑛

𝑖=1
(2. 10)

Scores are then normalised, scaled and shifted by:

𝑝𝚤
1 = 𝛾

𝑝𝑖
1 − 𝜇1

√(𝜎1)2 + 𝜖
+ 𝛽, 𝑝𝚤

0 = 𝛾
𝑝𝑖

0 − 𝜇0

√(𝜎0)2 + 𝜖
+ 𝛽 (2. 11)

where 𝛾 and 𝛽 are the scaled and shifted parameters to be trained.

A softmax function is then applied to convert scores to probabilities ranging

from 0 to 1:

48

𝑝𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 =
exp 𝑝1

exp 𝑝1 + exp 𝑝0
, 𝑝𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 =

exp 𝑝0

exp 𝑝1 + exp 𝑝0
(2. 12)

Parameters in the network are trained and updated using Adam algorithm

(Kingma and Ba, 2015) to minimise the cross-entropy loss for binary

classification, calculated by:

𝐿𝑜𝑠𝑠 = −[𝑦 × 𝑙𝑜𝑔 𝑝𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 + (1 − 𝑦) × 𝑙𝑜𝑔 1 − 𝑝𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑]

=
−𝑙𝑜𝑔 𝑝𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 , 𝑦 = 1 (𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵)

−𝑙𝑜𝑔 1 − 𝑝𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 , 𝑦 = 0 (𝑛𝑜𝑡 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵)
(2. 13)

Adam is a type of adaptive optimisation method, which updates different

parameters with different learning rate based on the gradient values of the

parameters. Parameters showing small gradient updates from previous

iterations will be updated faster with a larger learning rate, and parameters with

large gradient updates will be updated slower. More specifically, at an iteration

time step 𝑡, it first updates two estimates 𝑚 and 𝑣, which are the mean and

uncentred variance of gradients 𝑔, by:

𝑔 ←
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊
+ 𝜆W (2. 14)

𝑚 ← 𝛽1𝑚 + (1 − 𝛽1)𝑔 (2. 15)

𝑣 ← 𝛽2𝑣 + (1 − 𝛽2)g2 (2. 16)

where 𝑊 represents weight parameters, 𝜆 is the regularisation constant, 𝛽1

and 𝛽2 are constants to control the decay rate of 𝑚 and 𝑣 separately. The two

biased estimates are then rescaled by

𝑚 =
𝑚

1 − 𝛽
1
𝑡

, 𝑣 =
𝑣

1 − 𝛽
2
𝑡

(2. 17)

and the training parameters are updated by

𝑊 ← 𝑊 −
𝛼𝑚

√𝑣 + 𝜖
(2. 18)

49

When gradients change slowly, the gradient variance 𝑣 approximately equals

to the quadratic gradient mean 𝑚 2, so the decay value of 𝑊 is close to the

learning rate 𝛼; when gradients change rapidly, 𝑚′2 is much smaller than 𝑣′, so

the decay value is much smaller than 𝛼, which means the parameters would

be updated slower (Kingma and Ba, 2015).

2.3.3.2 Recurrent Neural Network

Recurrent neural network (RNN) is a type of neural network which builds

connections over time steps (Abiodun et al., 2018). It is good at modelling

sequential data and capturing information from earlier or later time steps,

where here a time step refers to a word or a token in the text sequence. Figure

2.6 demonstrates a basic one-layer bidirectional RNN (BiRNN) for text

classification. ‘Bidirectional’ means words are modelled in both positive and

reverse order, so the model can learn from the text before and after the current

word.

Similar to the convolutional neural network, a document is first mapped into an

embedding matrix 𝑥 ∈ ℝ𝑠×𝑑, and vector 𝑥𝑡 ∈ ℝ𝑑 is the embedding of the word

at position 𝑡, where 𝑡 = 1, … , s, 𝑑 is the embedding dimension, and 𝑠 is the

document length after padding or cutting. Then in the RNN layer, the RNN cell

at position 𝑡 combines information from the corresponding input state 𝑥𝑡 and

the previous hidden state ℎ𝑡−1 ∈ ℝℎ, where ℎ is the hidden dimension. The

simplest structure of the RNN cell is the linear operation followed by an

activation function (for one direction):

ℎ𝑡 = 𝜎(𝑊ℎℎℎ𝑡−1 + 𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ) (2. 19)

where 𝑊𝑥ℎ ∈ ℝ𝑑×ℎ is the weight between each pair of the input state and the

hidden state, 𝑊ℎℎ ∈ ℝℎ×ℎ is the weight between each pair of the previous

hidden state and the current hidden state, and 𝜎 is the activation function such

as the hyperbolic tangent function, Tanh(𝑎) =
exp(𝑎)−exp (−𝑎)

exp(𝑎)+exp (−𝑎)
. The same operation

is applied in a reversed order to obtain another hidden state ℎ𝑡 , and the output

of the RNN cell at position 𝑡 is the concatenation of two hidden states [ℎ𝑡, ℎ𝑡] ∈

50

ℝ2ℎ. This generates a hidden matrix ∈ ℝ𝑠×2ℎ for a sequence with s words, and

to reduce dimension, the output can be obtained from the last hidden state

[ℎ𝑠, ℎ1] ∈ ℝ2ℎ, or element-wise maximum or mean of all hidden states [ℎ�̅�, ℎ𝑡
̅].

The rest of the operations to obtain probabilities for two classes

(reported/unreported) are similar to what has been described in the

convolutional neural network (see Section 02.3.3.1). RNN can have multiple

hidden layers, which is supposed to capture more complicated text

information.

Figure 2.6: The architecture of bidirectional recurrent neural network for document

classification.

RNN can handle any-length texts and it is supposed to catch the memory of

previous or future steps. However, if the sequence is very long, it is difficult to

keep the information from very earlier steps to later steps because of the

exploding or vanishing gradient problem (Pascanu et al., 2012). Following the

logic in RNN, the weight matrices are multiplied by themselves multiple times

which depends on the sequence length, so the gradients of the loss for a long

sequence would expand to very large values (exploding gradient) or approach

51

to zero (vanishing gradient), which stops the network learning efficiently. To

solve this ‘short-memory’ problem, two variants of RNN cell, Long Short-Term

Memory (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit

(Chung et al., 2014) are developed. They are supposed to be used in the same

chain structure in Figure 2.6, but the module for each time step is different.

Long Short-Term Memory (LSTM)

The basic RNN cell passes the hidden state and the current input state through

the simple linear and Tanh operation, while LSTM has a cell state 𝑐𝑡 for time

step 𝑡 and three gates (forget gate, input gate and output gate) to control

information which should be flowed straight, forgotten, stored and updated to

the next step (Hochreiter and Schmidhuber, 1997), see the grey area in Figure

2.7. Both the forget gate (block in green dash line) and input gate (block in red

dash line block) check the information from the previous hidden state ℎ𝑡−1 and

current input state 𝑥𝑡, and generate a value between 0 and 1 using the sigmoid

function Sigmoid(𝑎) = 1

1+exp (−𝑎)
. The forget gate decides how much information

should be forgotten in the previous cell state by

𝑓𝑡 = Sigmoid 𝑊𝑓ℎℎ𝑡−1 + 𝑊𝑓𝑖𝑥𝑡 + 𝑏𝑓 (2. 20)

where less information will be forgotten when the value is closer to 1. The input

gate decides how much new information should be stored in the new cell state

by

𝑖𝑡 = Sigmoid(𝑊𝑖ℎℎ𝑡−1 + 𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖) (2. 21)

Then the cell state is updated by combining the information kept from the forget

gate and new information selected from the input gate:

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ c𝑡 (2. 22)

where c𝑡 = Tanh(𝑊𝑐ℎℎ𝑡−1 + 𝑊𝑐𝑖𝑥𝑡 + 𝑏𝑐), which decides what new information

will be updated to the cell state. The output gate (block in brown dash line)

decides the portion of information for output:

52

𝑜𝑡 = 𝜎(𝑊𝑡ℎℎ𝑡−1 + 𝑊𝑡𝑖𝑥𝑡 + 𝑏𝑜) (2. 23)

The new hidden state is then updated by multiplying the portion from the output

gate and current cell state through the Tanh operation:

ℎ𝑡 = 𝑜𝑡 ∗ Tanh (𝑐𝑡) (2. 24)

𝑊 and 𝑏 in the above equations are parameters trained in the network.

Figure 2.7: The architecture of a long short-term memory block (one direction).

Gated Recurrent Unit (GRU)

GRU (Chung et al., 2014) is a simplified variation of LSTM which converts the

forget gate and input gate into a reset gate 𝑟𝑡 and update gate 𝑧𝑡, and merges

the output gate and cell state together, see Figure 2.8.

The reset gate 𝑟𝑡 decides how important the previous hidden state ℎ𝑡−1 is to

the next step hidden state ℎ𝑡 by:

𝑟𝑡 = Sigmoid(𝑊𝑟ℎℎ𝑡−1 + 𝑊𝑟𝑖𝑥𝑡 + 𝑏𝑟) (2. 25)

A temporary hidden state ℎ𝑡 is calculated by combining the current input state

and the important portion from the previous hidden state by:

ℎ𝑡
′ = Tanh(𝑟𝑡 ∗ 𝑊ℎℎℎ𝑡−1 + 𝑊ℎ𝑖𝑥𝑡 + 𝑏ℎ) (2. 26)

53

The update gate decides what should be kept from the previous hidden state

ℎ𝑡−1 and what should be updated from the new hidden state ℎ𝑡 :

𝑧𝑡 = Sigmoid(𝑊𝑧ℎℎ𝑡−1 + 𝑊𝑧𝑖𝑥𝑡 + 𝑏𝑧) (2. 27)

Then the hidden state is updated by combining the information from the

previous hidden state ℎ𝑡−1 and the temporary hidden state ℎ𝑡 . When the output

value 𝑧𝑡 from update gate is 1, the hidden state is entirely copied from the

previous hidden state; when 𝑧𝑡 is 0, the hidden state is entirely updated from

the temporary hidden state:

ℎ𝑡 = 𝑧𝑡 ∗ ℎ𝑡−1 + (1 − 𝑧𝑡) ∗ ℎ𝑡 (2. 28)

Figure 2.8: The architecture of a gated recurrent unit block (one direction).

RNN with Attention

In the general RNN structure, the output from the hidden layer is obtained by

simply taking the hidden state of the last RNN cell (one cell in the unidirectional

RNN or two cells in the bidirectional RNN), which lose some information from

other RNN cells; or averaging hidden states of all RNN cells, which treats

words at different positions equally. However, words contribute differently and

the same word in different positions also plays a different role in the decision

of the classification. As the example shown in Figure 2.9, ‘committee’ is the

54

most important word in the text piece, and the word ‘animals’ in the fifth line

and seventh line contributes differently to the decision of the reporting of

compliance of animal welfare regulations. Therefore, in my implementation, I

add an attention module after the RNN hidden layer, which is analogous to the

word-level weights used in the memory networks for machine translation

(Bahdanau et al., 2015). It should be noted that the term ‘attention’ here is

different from the ‘self-attention’ (Vaswani et al., 2017) in transformer models

(see Section 0). The architecture of RNN with attention for document

classification is displayed in Figure 2.10.

Figure 2.9: A example text piece from a publication which reported compliance of

animal welfare regulations. The colour demonstrates the importance of the word in

the classification decision and deeper colour means the word has a larger

contribution to the decision.

55

Figure 2.10: The architecture of bidirectional recurrent neural network with attention

mechanism for document classification.

Considering a document with 𝑠 words, after the embedding layer and the

bidirectional RNN hidden layer, the output of word at position 𝑡 is the hidden

state ℎ𝑡 ∈ ℝ2ℎ, which is passed to the Tanh function to obtain a new hidden

representation 𝑢𝑡:

𝑢𝑡 = Tanh(𝑊𝑤ℎ𝑡 + 𝑏𝑤), 𝑢𝑡 ∈ ℝ2ℎ, 𝑡 = {1, … , s} (2. 29)

A global word context vector 𝑐𝑤 ∈ ℝ2ℎ is initialised to represent the whole

document. The word attention score is calculated by multiplying the new

hidden state 𝑢𝑡 and the context vector 𝑐𝑤 to measure the importance of the

word at position 𝑡 in the whole document, and then normalised by the Softmax

function:

56

𝑎𝑡 = Softmax(𝑢𝑡 ⋅ 𝑐𝑤), 𝑎𝑡 ∈ [0, 1] (2. 30)

The summarisation of the weighted hidden states ∑ ℎ𝑡 ⋅ 𝑎𝑡
𝑠
𝑡=1 ∈ ℝ2ℎ is then

sent to the output layers. The training and optimisation strategies follow the

same rule described in the convolutional neural network (Section 2.3.3.1).

2.3.3.3 Hierarchical Attention Network

In the document classification task, words contribute differently to an individual

sentence and sentences contribute differently in the whole document.

Hierarchical Attention Network (HAN) is proposed to imitate the hierarchical

structure of documents, which has two levels of attention mechanisms applied

at the word-level and sentence-level (Yang et al., 2016). The model

architecture is shown in Figure 2.11.

I assume a document has 𝐿 sentences, and the 𝑖-th sentence has 𝑇 words

(the value of 𝑇 varies in different sentences). For the 𝑖-th sentence, 𝑇 word

hidden states ℎ𝑖𝑡 ∈ ℝ2ℎ_𝑤, 𝑡 ∈ [1, 𝑇] are obtained from the bidirectional GRU

layer, where ℎ_𝑤 is the dimension of word hidden states for one direction.

In the word-level attention module, which is similar to the attention illustrated

in Figure 2.10, a new hidden representation 𝑢𝑖𝑡 for the 𝑡-th word in the 𝑖-th

sentence is obtained by

𝑢𝑖𝑡 = 𝑇𝑎𝑛 ℎ(𝑊𝑤ℎ𝑖𝑡 + 𝑏𝑤), 𝑢𝑖𝑡 ∈ ℝ2ℎ𝑤 , 𝑡 ∈ [1, 𝑇] (2. 31)

A local word context vector 𝑐𝑤 ∈ ℝ2ℎ_𝑤 is initialised to represent the 𝑖 -th

sentence. The word attention scores in the 𝑖-th sentence are calculated by

multiplying 𝑢𝑖𝑡 and 𝑐𝑤 to measure the importance of the 𝑡-th word in the 𝑖-th

sentence, and are then normalised by the Softmax function:

𝑎𝑖𝑡 = Softmax(𝑢𝑖𝑡 ⋅ 𝑐𝑤), 𝑎𝑖𝑡 ∈ [0, 1], 𝑡 ∈ [1, 𝑇] (2. 32)

In the sentence-level attention module, the sentence representations are first

calculated by summarising the weighted word attention scores for each

sentence:

57

𝑠𝑖 = ℎ𝑖𝑡 ⋅ 𝑎𝑖𝑡
𝑇

𝑡=1
, 𝑠𝑖 ∈ ℝ2ℎ𝑤 , 𝑖 ∈ [1, 𝐿] (2. 33)

Similar to the word-level attention module, sentence hidden states ℎ𝑖 ∈

ℝ2ℎ_𝑠, 𝑖 ∈ [1, 𝐿] are obtained from the bidirectional GRU layer, where ℎ_𝑠 is the

dimension of sentence hidden states for one direction. Then the new sentence-

level hidden representations are calculated from the Tanh operation:

𝑢𝑖 = Tanh(𝑊𝑠ℎ𝑖 + 𝑏𝑠), 𝑢𝑖 ∈ ℝ2ℎ𝑠, 𝑖 ∈ [1, 𝐿] (2. 34)

A global sentence context vector 𝑐𝑠 ∈ ℝ2ℎ_𝑠×2ℎ_𝑠 is initialised to represent the

whole document and multiplied by the new sentence-level hidden

representation to measure the importance of each sentence in the whole

document:

𝑎𝑖 = Softmax(𝑢𝑖 ⋅ 𝑐𝑠), 𝑎𝑖 ∈ [0, 1], 𝑖 ∈ [1, 𝐿] (2. 35)

Then the document representations are calculated and sent to the output

layers, by:

𝑑 = ℎ𝑖 ⋅ 𝑎𝑖
𝐿

𝑡=1
, 𝑠𝑖 ∈ ℝ2ℎ𝑠, 𝑖 ∈ [1, 𝐿] (2. 36)

The training and optimisation strategies follow the same rule described in the

convolutional neural network (section 2.3.3.1).

58

Figure 2.11: The architecture of hierarchical attention network for document

classification. 𝑖 is the sentence index of the document and 𝑡 is the word index of the

𝑖-th sentence. In the word-level attention module, the figure displays the part for the

second sentence only (𝑖 = 2).

59

2.3.4 BERT with Two Strategies

One limitation of word embeddings like word2vec is that the representation

vector of the same word is fixed and independent, no matter what the context

words are. To solve this issue, contextualised word representation models like

ELMo (Peters et al., 2018) and BERT (Devlin et al., 2018) are proposed. ELMo

generates the contextual word embeddings by training a bidirectional LSTM to

predict the next word in the sequence; while BERT extracts the contextualised

embeddings by training the bidirectional encoders from the Transformer

(Vaswani et al., 2017) to finish two language modelling tasks: randomly

masked words prediction and next sentence prediction. Transformers can

learn long-range dependency better than LSTM models (Vaswani et al., 2017)

and many state-of-the-art models for multiple NLP tasks are created based on

transformers. The next section explains the structure of transformer encoders

used in BERT and how I use BERT for risk of bias classification in long

documents.

2.3.4.1 Premise: Transformer Encoder and BERT

Transformer encoders in BERT mainly consist of twelve identical blocks and

each block contains two sub-layers: a multi-head self-attention layer and a

feed-forward neural network layer. Each sub-layer has a residual connection

around and is followed by the layer normalisation operation (Vaswani et al.,

2017), see Figure 2.12. Similar to the previous neural models, considering a

document with 𝑠 tokens (after padding/cutting), each input token is mapped to

an embedding vector 𝑥𝑖 ∈ ℝ𝑑𝑒𝑚𝑏𝑒𝑑 , 𝑖 ∈ [0, 𝑠 − 1]. Positional encoding vectors are

added to the input vectors to inject the order information in the sequence:

𝑥𝑖 ← 𝑥𝑖 + 𝑃𝐸𝑖,𝑗
𝑑𝑒𝑚𝑏𝑒𝑑−1

𝑗=0
(2. 37)

𝑃𝐸𝑖,𝑗 =

⎩⎪
⎨
⎪⎧ sin

𝑖

10000𝑗 𝑑𝑒𝑚𝑏𝑒𝑑⁄
, 𝑗 = 0,2,4, …

cos
𝑖

10000𝑗−1 𝑑𝑒𝑚𝑏𝑒𝑑⁄
, 𝑗 = 1,3,5, …

(2. 38)

where 𝑗 is the element index in the embedding vector.

60

Figure 2.12: The architecture of transformer encoders. Dash lines represent the

residual connection.

The self-attention calculation is illustrated in Figure 2.13. For a document with

input representation 𝑋 ∈ ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 , three matrices 𝑄, 𝐾 and 𝑉 are calculated

by

𝑄 = 𝑋𝑊 𝑄 ∈ ℝ𝑠×𝑑𝑘, 𝑊 𝑄 ∈ ℝ𝑑𝑒𝑚𝑏𝑒𝑑×𝑑𝑘 (2. 39)

𝐾 = 𝑋𝑊 𝐾 ∈ ℝ𝑠×𝑑𝑘, 𝑊 𝐾 ∈ ℝ𝑑𝑒𝑚𝑏𝑒𝑑×𝑑𝑘 (2. 40)

𝑉 = 𝑋𝑊 𝑉 ∈ ℝ𝑠×𝑑𝑣, 𝑊 𝑉 ∈ ℝ𝑑𝑒𝑚𝑏𝑒𝑑×𝑑𝑣 (2. 41)

where the 𝑖-th row of 𝑄, 𝐾 and 𝑉 refers to the query vector, key vector and

value vector of the 𝑖-th token respectively; 𝑑𝑘 and 𝑑𝑣 are the dimension of the

key vector and value vector; 𝑊 𝑄, 𝑊 𝐾 and 𝑊 𝑉 are initialised weight matrices.

The single-head attention matrix is then computed by

𝑍𝑠𝑖𝑛𝑔𝑙𝑒 = Softmax
𝑄𝐾𝑇

√𝑑𝑘

𝑉 ∈ ℝ𝑠×𝑑𝑣 (2. 42)

61

Vaswani et al pointed out that repeating the attention calculation with different

linear projections multiple times, i.e. multi-head attention, improves the

performance (Vaswani et al., 2017). After the self-attention layer with ℎ heads,

the attention matrices are concatenated from different heads and are then

multiplied by another initialised weight matrix 𝑊 ∈ ℝℎ𝑑𝑣×𝑑𝑒𝑚𝑏𝑒𝑑 , to generate the

output matrix 𝑍 ∈ ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 . The followed layer normalisation is performed over

the summation of 𝑋 and 𝑍, and the output are fed to the next sub-layer, i.e. a

position-wise feedforward network for each token:

𝑍′ = LayerNorm(𝑋 + 𝑍) ∈ ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 (2. 43)

𝑍 = Feedforward(𝑍) = Linear(ReLU (Linear(𝑍)) ∈ ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 (2. 44)

Then the output after the first encoder block is LayerNorm(𝑍 + 𝑍) ∈

ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 , which will be sent to the next identical encoder block. After repeating

the procedure with the rest eleven encoder blocks, the new representation

vectors of each token are generated as the final output.

Figure 2.13: The illustration of calculations in the multi-head self-attention layer. In

this example, the document length is 2, embedding dimension is 5, dimension of key

and value vectors is 3, and the number of heads is 8.

62

BERT is developed with two stages: the pre-training stage and fine-tuning

stage, as Figure 2.14 shows. In the pre-training stage, BERT trains transformer

encoders on the collection of BooksCorpus (0.8 billion words) and English

Wikipedia (2.5 billion words). In the fine-tuning stage, the same encoder

architecture is used and initialised with the weights from the pre-training stage,

and all the weights are then fine-tuned on the downstream task dataset (Devlin

et al., 2018). The pre-training weights are expensive to train but they are made

freely available to the public, so I can download them and only need to fine-

tune models on the custom dataset.

Previous work indicates the domain corpus used for pre-training affects the

performance of the downstream task (Beltagy et al., 2019). Since the risk of

bias assessment task focus on the biomedical publications, I use BioBERT to

initialise models, which applies the same architecture in BERT and is pre-

trained on the combinations of text corpora including BookCorpus, English

Wikipedia, PubMed abstracts (4.5 billion words) and PubMed Central full-text

articles (13.5 billion words) (Lee et al., 2019).

Figure 2.14: Two development stages of BERT (Alammar, 2018)

The input embeddings of BERT are the sum of three embeddings: token

embeddings, segment embeddings and position embeddings. For token

63

embeddings, BERT uses WordPiece (Wu et al., 2016) with a 30,000-token

vocabulary for tokenisation. It is a subword tokenisation algorithm which

handles rare words better than ‘pure’ word embeddings and more efficiently

than character embeddings. For example, ‘randomisation’ can be decomposed

into two subwords ‘random’ and ‘isation’ which appear more frequently than

‘randomisation’, while keeping the meaning of ‘randomisation’ at the same

time. In BERT’s tokenizer, tokens of the two subwords are marked as

['random', '##isation'], where ‘##’ means the rest characters ‘isation’ should be

concatenated to the previous token ‘random’ when converting subword tokens

back to the complete word in the decoding or prediction stage. Segment

embeddings work for a special segmentation token ‘[SEP]’, which are

designed for the ‘two-sequences’ tasks to indicate the first and the second

portions of the sequence pair. For example, in a question answering task, the

segment embeddings of the question tokens are marked as [A] while the

segment embeddings of the context tokens are marked as [B]. In a text

classification task, segment embeddings do not have any influence on the

model result, but they are kept as a default input formatting of BERT. In

addition, the first token of every sequence is a special classification token

‘[CLS]’ and the corresponding embedding can be used to generate the

decision of the sequence classification, see the embedding layer in Figure

2.15. Position embeddings provide the order information of the tokens in the

sequence as described in Section 2.3.4.1

2.3.4.2 Applying BERT with Two Strategies

One drawback of BERT is that it can only accept embeddings of maximum 512

tokens as input, which limits the usage for tasks with long documents. There

are other transformer models designed for long documents, such as

Transformer XL (Dai et al., 2019) which has no limitation for sequence length

and Longformer (Beltagy et al., 2020) which can process a maximum of 4096

tokens. However, they are still computationally expensive and very memory-

consuming from my initial experiments on full-text publications containing 5000

64

tokens on average. To solve this issue, I propose two strategies as described

below.

BERT with Document Chunk Pooling (BERT-DCP). I split documents into

text chunks, apply BioBERT to each chunk, and pool the hidden states from

different chunks using multiple strategies. This is similar to the structure

applied in the classification of clinical notes for patient smoking status (Mulyar

et al., 2019), with some modifications (see Figure 2.15). Module in the

red/black/blue box refers to the linear head, convolution head and LSTM head

separately. After the WordPiece tokenisation, a document with 𝑠 tokens is split

into 𝑚 = ⌈𝑠/(512 − 2)⌉ = ⌈𝑠/510⌉ chunks (excluding the classification token

‘[CLS]’ and the segmentation token ‘[SEP]’). The input representation of the

document is X ∈ ℝ𝑚×512×ℎ, where ℎ is the hidden dimension throughout the

embedding layer and encoder layers in BioBERT. Instead of taking the hidden

states from the last encoder layer, I perform the average pooling operation

over several encoder layers to obtain the output (see the 1st pooling layer in

Figure 2.15). I then summarise across tokens within each chunk using five

different options: 1) max-pooling, 2) average-pooling, 3) concatenate output

from max-pooling and average-pooling, 4) use hidden states of the ‘[CLS]’

token, and 5) concatenate hidden states of all tokens (see the 2nd pooling

layer in Figure 2.15). The output dimension from the second pooling layer is

[𝑚, 1, ℎ] for option 1), 2) and 4), [𝑚, 2, ℎ] for option 3), and [𝑚, 512, ℎ] for option

5). After two pooling layers, I add a head layer for the downstream

classification task, and I explore three different heads

(linear/convolution/LSTM). The convolution head and LSTM head use the

same architecture as described in the previous sections (see Section 2.3.3.1

and 2.3.3.2 respectively). Unlike the convolution head or LSTM head, the

linear head cannot handle sequences with different lengths, so I add another

pooling layer to obtain the fixed-dimension output. The pooling methods use

the same options applied in the second pooling layer, with the exclusion of

‘concatenate hidden states of all tokens’, because it does not generate a fixed-

dimension output.

65

BERT with Sentence Extraction (BERT-SE). Instead of using the full-text

documents as input, I extract the most relevant sentences to the risk of bias

description. I first use scispaCy (Neumann et al., 2019) to split a document into

sentences, and then apply SentenceTransformers (Reimers and Gurevych,

2019) to obtain a representation vector for each individual sentence. I also feed

the description sentence of each risk of bias item to SentenceTransformers to

obtain the corresponding ‘RoB item vector’. The RoB description sentences

are same across different documents. For example, the description sentence

for random allocation is “animals are randomly allocated to treatment or control

groups at the start of the experiment” (see description sentences for other

items in section 0). Therefore, the five ‘RoB item vectors’ are also same across

documents. Next, for each individual document, I calculate the cosine similarity

score between each sentence vector and the RoB vector of one item. I take

the first 𝑘 sentences with the highest similarity scores, i.e. the most 𝑘 relevant

sentences, to form a new shorter passage. I then fine-tune DistilBERT (a

smaller, faster and lighter version of BERT) (Sanh et al., 2019) with a

linear/convolution/LSTM head on the new passage, to generate the

probabilities of risk of bias reporting. The sentence extraction process is

unsupervised and is independent of the actual training process.

66

Figure 2.15: The architecture of BERT with document chunk pooling strategy for

long documents classification. The red/black/blue block on the bottom refers to the

option of the linear/convolution/LSTM head on top respectively.

In the training procedure, I apply gradient clipping with a maximum norm 0.1

to rescale gradients, where all gradients are concatenated into a single vector

and normalised, then the elements in the vector larger than 0.1 are replaced

by 0.1. This can prevent vanishing/exploding gradients issues and accelerate

training (Zhang et al., 2019). I use gradient accumulation every 16 steps (mini-

batches) to reduce memory consumption, where the model parameters are not

updated from gradients after every mini-batch, but from gradients accumulated

after every 16 mini-batches. Parameters are trained to minimise the cross-

67

entropy loss using AdamW algorithm (Loshchilov and Hutter, 2017). I use the

slanted triangular learning rate scheduler (Howard and Ruder, 2018), where

the learning rate is linearly increased from zero to a threshold value over the

warm-up training steps, then linearly drops to zero in the following steps.

2.3.5 Evaluation metrics

For all classification models described above, four metrics are reported for

performance evaluation, which are calculated by:

Recall =
True Positive

True Positive + False Negative
(2. 45)

Precision =
True Positive

True Positive + False Positive
(2. 46)

F1 =
2 ∗ Recall ∗ Precision

Recall + Precision
(2. 47)

Specificity =
True Negative

True Negative + False Positive
(2. 48)

where ‘True Positive’ is the number of records which report the risk of bias item

and are predicted as reported; ‘True Negative’ is the number of records which

do not report the risk of bias item and are predicted as unreported; ‘False

Positive’ is the number of records which do not report the risk of bias item but

are predicted as reported; and ‘False Negative’ is the number of records which

report the risk of bias item but are predicted as unreported. Recall (or

sensitivity) measures the portion of records which are identified as reported

among all truly reported records. Precision measures the portion of truly

reported records among all records identified reported. Specificity measures

the portion of records identified as non-reported among all non-reported

records. F1 is the harmonic mean of recall and precision, and I use it as the

main metric for hyperparameter and model selection.

For evaluation in batch training for neural models and BERT models, loss and

four metric scores are calculated within every mini-batch, and the final training

68

loss, F1 and other scores are averaged by the number of mini-batches

respectively.

2.3.6 Comparison to Regular Expression

A regular expression (Regex) tool developed for preclinical risk of bias

assessment (Bahor et al., 2016) is evaluated on my test set, and the

performance are compared with that of each item’s best NLP model selected

from experiments of the previously described models. The Regex tool is built

based on the rule-based string matching method to recognise phrases

associated with the reporting of random allocation, blinded assessment of

outcome, conflict of interest and animal welfare regulations in experimental

animal studies. The McNemar’s test (Raschka, 2018) is performed to compare

how the two methods perform differently, which includes two scenarios: 1)

Regex tool predicts correctly but NLP model predicts wrong, and 2) Regex tool

predicts wrong but NLP model predict correctly, as shown in Table 2.3.

 NLP model

 Correct Wrong

R
eg

ex

C
o

rr
ec

t

𝑁++ 𝑁+−

W
ro

n
g

𝑁−+ 𝑁−−

Table 2.3: The confusion matrix between the Regex tool and NLP model in the

McNemar’s test. 𝑁 represents the number of cases - its first superscript represents

the Regex tool predicts correctly (+) or wrong (-), and the second superscript

represents the NLP model predict correctly (+) or wrong (-).

A Chi-square statistic is computed as below:

 𝜒2 =
(|𝐵 − 𝐶| − 1)2

𝐵 + 𝐶
 (2. 49)

to test the null hypothesis that the two methods do not perform differently.

69

2.4 Experiments

This section describes details of training, implementation, parameters tuning

and sensitivity analysis. Processed datasets are available in the Preclinical

RoB Assessment repository (osf.io/fjwx6).

2.4.1 Experiments of Baseline Models

I roughly tune parameters for three baselined models with three text

representation methods, which induces nine combinations. For bag-of-words,

I tune word n-gram size among {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} where

(p, q) means every p, p+1, …, q adjacent words are counted as features, with

or without TF-IDF weighting. For word2vec, document representations are

generated by averaging their word vectors as all baseline models require a

single dimension vector as input. For doc2vec, I set the initial learning rate to

0.01 and it drops linearly to 0.001 during 20 training epochs. I draw 5 ‘negative’

words in negative sampling. I average the context vectors to generate the

document vector representation. I tune the dimension of feature vectors

among {100, 200, 300, 400, 500}, and doc2vec training models among {DM,

DBOW, concatenation of DM and DBOW}. For bag-of-words and word2vec, I

tune minimum document frequency (words with a document frequency lower

than this threshold are ignored) among {10, 20, 50, 100}, maximum vocabulary

size (when building the corpus, only the top words ordered by term frequency

are considered) among {500, 1000, 2000, 5000}. For doc2vec, I set the

minimum document frequency to 10 and only tune the maximum vocabulary

size among {5000, 10000} as these two parameters did not affect performance

much from my initial experiments.

I assign class weights for all three classification models to solve the data

imbalance issue, calculated by

number of samples

2 ∗ number of reported samples
,

number of samples

2 ∗ number of unreported samples
(2. 50)

70

for the positive and negative class respectively. For support vector machine, I

tune 𝛼 which is used to multiply the 𝑙2 regularisation term and compute the

learning rate (Pedregosa et al., 2011), from 5e-10 to 1e-2. 10% of the training

samples were used for early stopping to terminate training. For logistic

regression, I tune the inversed value of regularisation strength among {1, 100,

1000}, which is a multiplier for loss function 𝐿 and large value means less

strong regularization penalty. For random forest, I set the maximum depth of

an individual tree to 2. I tune the number of trees in the forest among {100,

500, 1000}, and the maximum number of features considered in the splitting

process, which is selected from the total number of features (vocabulary size

for bag-of-words, or dimension of document vector for wor2vec and doc2vec),

𝑠𝑞𝑟𝑡(total number of features), or 𝑙𝑜𝑔2(total number of features).

Bag-of-words and averaged word2vec are implemented using function

CountVectorizer and TfidfTransformer from Python library scikit-learn

(Pedregosa et al., 2011). Doc2vec is implemented via Doc2Vec from library

Gensim (Rehurek and Sojka, 2010). Support vector machine, logistic

regression and random forest are implemented using SGDClassifier,

LogisticRegression and RandomForestClassifier in scikit-learn respectively.

The hyperparameters in all the baseline experiments are tuned in the grid

search manner. All baseline experiments are conducted using a CPU with 16

cores and codes are available at github.com/qianyingw/rob-chia.

Results

After tuning parameters for each risk of bias item, I select the model with the

highest F1 score on the validation set, and then evaluate performance on the

test set, as reported in Table 2.4. Logistic regression with doc2vec works well

for blinded assessment of outcomes and conflict of interests, with F1 around

60% and 68% respectively. Support vector machine with word2vec shows

strong performance for animal welfare regulations, with F1 of 90%. Random

forest with bag-of-words achieves the best performance on the validation set

for random allocation and animal exclusions, but proves to be over-fitting as

71

the large difference of results between validation and test set shows. The

optimal setting for each risk of bias items are: {maximum vocabulary size 2000,

minimum document frequency 10, 1-gram, applying TF-IDF weighting; 500

trees in the forest, 2000 features considered for splitting trees} for random

allocation, {maximum vocabulary size 10000, minimum document frequency

10, using DBOW, document vector size 300; inverse regularization constant

1} for blinded assessment of outcome, {maximum vocabulary size 10000,

minimum document frequency 10, using DBOW, document vector size 400,

inverse regularization constant 1} for conflict of interests, { 𝛼 of 5e-10,

maximum vocabulary size 10000, minimum document frequency 10} for

animal welfare regulations, {maximum vocabulary size 5000, minimum

document frequency 20, 2-grams and 3-grams, not using TF-IDF; 100 trees in

the forest, 5000 features considered for splitting trees} for animal exclusions.

RoB

item
Model

Valid Test

F1 R P S F1 R P S

RA RF + bow 67.2 79.9 58.1 81.0 10.1 6.3 26.3 92.3

BAO LogReg + d2v 60.0 69.1 53.0 74.5 58.4 62.3 54.9 74.6

CI LogReg + d2v 68.8 76.1 62.8 82.6 67.9 74.9 62.1 79.6

CAWR SVM + w2v 90.1 96.3 84.6 42.8 89.6 94.0 85.6 51.1

AE RF + bow 48.8 44.6 53.8 93.6 15.9 22.6 12.3 80.6

Table 2.4: Performance of the best model for each risk of bias item on the validation

set and final performance on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and

specificity respectively.

Within each baseline model, I compare the performance of three text

representation methods on the validation set, as shown in Table 2.5, Table 2.6

and Table 2.7. For support vector machine and logistic regression, doc2vec

and word2vec outperform bag-of-words in general, and doc2vec performs

slightly better than word2vec, with F1 increased by from 1% to 5%. For random

forest, doc2vec and bag-of-words work better than word2vec, with the

improvement of F1 ranging from 1% to 24%, but bag-of-words tends to be

over-fitting easily. Doc2vec yields the best result in almost all baseline models,

72

which is reasonable because doc2vec is generated and updated from the

training sample itself, which is closer to the preclinical domain, while the pre-

trained word vectors are induced from the more general biomedical corpus.

RoB item Feature F1 Recall Precision Specificity

Random
allocation

bow 44.1 72.7 31.6 48.3

w2v 51.0 58.2 45.4 76.9

d2v 51.9 72.2 40.5 65.1

Blinded
assessment
of outcome

bow 47.4 94.3 31.6 15.3

w2v 53.4 74.8 41.5 56.3

d2v 59.3 67.8 52.7 74.7

Conflict of
interests

bow 52.4 83.2 38.2 48.1

w2v 65.7 70.6 61.5 83.0

d2v 67.1 79.7 57.9 77.7

Compliance
of animal
welfare
regulations

bow 87.3 97.4 79.0 15.7

w2v 90.1 96.3 84.6 42.8

d2v 86.7 82.7 91.2 74.1

Animal
exclusions

bow 29.4 81.3 17.9 38.1

w2v 38.7 49.1 32.0 82.6

d2v 39.0 64.3 28.0 72.5

Table 2.5: Performance of support vector machine with three text representation

methods for five risk of bias items on the validation set.

73

RoB item Feature F1 Recall Precision Specificity

Random
allocation

bow 42.1 59.3 32.7 59.8

w2v 56.3 75.3 44.9 69.7

d2v 51.0 65.5 41.8 70.0

Blinded
assessment
of outcome

bow 46.6 78.3 33.1 34.5

w2v 56.3 68.3 47.9 69.1

d2v 60.0 69.1 53.0 74.5

Conflict of
interests

bow 50.7 83.2 36.4 44.0

w2v 66.1 74.6 59.3 80.2

d2v 68.8 76.1 62.8 82.6

Compliance
of animal
welfare
regulations

bow 86.9 100.0 76.9 1.8

w2v 84.1 78.4 90.6 73.5

d2v 87.6 85.4 89.9 68.7

Animal
exclusions

bow 29.5 62.5 19.3 56.5

w2v 36.8 65.2 25.6 68.5

d2v 41.4 62.5 31.0 76.8

Table 2.6: Performance of logistic regression with three text representation methods

for five risk of bias items on the validation set.

RoB item Feature F1 Recall Precision Specificity

Random
allocation

bow 67.2 79.9 58.1 81.0

w2v 43.4 60.3 33.9 61.4

d2v 50.4 59.8 43.6 74.6

Blinded
assessment
of outcome

bow 50.7 57.8 45.1 70.8

w2v 49.3 73.0 37.3 48.9

d2v 57.8 68.3 50.2 71.8

Conflict of
interests

bow 52.8 72.6 41.4 60.5

w2v 55.1 60.4 50.6 77.3

d2v 65.1 68.5 61.9 83.8

Compliance
of animal
welfare

regulations

bow 87.7 92.1 83.7 41.6

w2v 85.3 86.5 84.1 46.4

d2v 88.8 89.7 88.0 60.2

Animal
exclusions

bow 48.8 44.6 53.8 93.6

w2v 35.0 64.3 24.1 66.2

d2v 40.9 61.6 30.7 76.8

Table 2.7: Performance of random forest with three text representation methods for

five risk of bias items on the validation set.

74

Keeping other parameters constant, I compare methods used for generating

document vectors in doc2vec, which includes DM, DBOW, and concatenation

of DM and DBOW. The original study suggests using DM or concatenation of

DM and DBOW (Le and Mikolov, 2014), but my experiments demonstrate that

DBOW alone achieves the best performance on almost all cases of three

baseline models for each risk of bias item, with exception of random forest for

random allocation and animal exclusions, where the concatenation of DM and

DBOW works better, as shown in Figure 2.16 and Appendix Table 1. The

optimal dimension of document vectors generated from doc2vec depends on

the specific risk of bias item and classification model, as shown in Figure 2.17

and Appendix Table 2. Different dimensions of document vectors can induce

10% changes to F1 for animal exclusions. For the other four items, logistic

regression is less sensitive to the dimension of document vectors, with

changes of F1 less than 2%, while support vector machine and random forests

can change F1 by 6%.

In practice, among baseline models, I recommend support vector machine or

logistic regression with doc2vec which gives general good performance and is

less prone to be over-fitting, compared to random forest or other combinations.

75

Figure 2.16: Effect of the method for generating document vectors in doc2vec.

Figure 2.17: Effect of the dimension of document vectors generated from doc2vec.

76

2.4.2 Experiments of Neural Networks

This section describes experiments and results of three neural network models

including convolutional neural network, recurrent neural network and

hierarchical attention network. For all three models, the pre-trained word

vectors used in the embedding layer are induced on a combination of PubMed

and PMC texts with texts extracted from a recent English Wikipedia dump (5.5

billion words), using the skip-gram model with a window size of 5 (Pyysalo et

al., 2013). Tokens with document frequency less than 10 are excluded when

building the vocabulary. I set the number of samples included in every mini-

batch (batch size) to 32 according to the suggestion from previous studies

(Masters and Luschi, 2018). In the Adam algorithm, I set the learning rate to

1e-4, and coefficients for the mean and variance of gradients (𝛽1, 𝛽2) to 0.9

and 0.999. I set dropout rate to 0.5. In default, I assign class weight [1/number

of reported training samples, 1/number of unreported training samples] to

records belonging to positive and negative class respectively and apply batch

normalisation before the final softmax function. I use early stopping to

terminate training and the stopping criteria are set based on the validation loss

and F1 score. For one epoch, if (current validation loss - minimum validation

loss of previous epochs) < 𝑐1 and (maximum validation F1 of previous epochs

- current validation F1) > 𝑐2, this epoch is marked as ‘stopping’. When the

number of ‘stopping’ epochs reaches a value ‘𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒’, training stops. The

values of 𝑐1, 𝑐2 and 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 are determined for different models and risk of

bias items separately, based on the learning curves. Other configurations are

described separately for each model in the following sections.

Hyperparameters of neural networks are tuned sequentially, i.e. tuning one

hyperparameter each time and selecting the optimal value, and then tuning the

next hyperparameter.

Neural network models are implemented using PyTorch (Paszke et al., 2019)

and all the experiments are conducted on a GTX 1080 GPU with 12GB

memory. Codes are available at github.com/qianyingw/pre-rob.

77

2.4.2.1 Experiments of Convolutional Neural Networks

As a starting configuration, I use three filter sizes [3,4,5] and apply 100 filters

for each of the filter sizes. Documents are padded or cut when the number of

words is less or more than 5000 respectively, and I consider 5000 most

frequent words as features from the training corpus to build the vocabulary.

With this setting unchanged, I tune maximum document length among {5000,

10000, 15000}, number of filters for each filter size from 20 to 300, filter sizes

among {[3,4,5], [4,5,6], …, [11,12,13]}, maximum number of features among

{5000, 7000, 9000}, assigning class weight or not, applying batch

normalisation or not, freeze embedding or not. I explore the undersampling

strategy (Fernández et al., 2018) for animal exclusions particularly because it

has the most imbalanced classes (reported/unreported=12%) compared to the

other four items in the dataset. More specifically, I randomly remove some

unreported records from the training set, to increase the ratio of reported to

unreported records to 100%, 50% or 25%. Based on the results and learning

curves from some initial experiments, the number of training epochs and early

stopping criteria are set to {𝑐1=5e-3, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=9, 20 epochs} for

random allocation, { 𝑐1=6e-3, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 =1, 20 epochs} for blinded

assessment of outcome, {𝑐1=0.01, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=2, 20 epochs} for conflict

of interests, and {𝑐1=0.01, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=3, 40 epochs} for animal welfare

regulations and animal exclusions.

Results

After parameters tuning, I select configurations which achieve the highest F1

score on the validation set, and evaluate performance on the final test set, as

reported in Table 2.8. Compared to baseline models (Table 2.4), CNN models

improve the F1 score by 10% to 20% for four items, with exception of

compliance of animal welfare regulations, where the validation F1 decreases

by 3%. CNN models are also more robust than baseline models in general, as

the difference of F1 between the validation set and test set is smaller, except

for animal welfare regulations, where the difference of F1 is 13% higher than

78

that of baseline models. The optimal setting for each risk of bias items are:

{maximum 10000 tokens in each document, 120 filters for each filter size of

[10,11,12], applying class weight balancing, no batch normalization, 7000 most

frequent tokens considered for building vocabulary} for random allocation,

{maximum 14000 tokens in each document, 140 filters for each filter size of

[9,10,11], applying class weight balancing, no batch normalization, 5000 most

frequent tokens considered for building vocabulary} for blinded assessment of

outcomes, {maximum 14000 tokens in each document, 100 filters for each filter

size of [3,4,5], applying class weight balancing, no batch normalisation, 5000

most frequent tokens considered for building vocabulary} for conflict of

interests, {maximum 10000 tokens in each document, 280 filters for each filter

size of [3,4,5], no class weight balancing, applying batch normalization, 5000

most frequent tokens considered for building vocabulary} for compliance of

animal welfare regulations, and {no limitation for maximum document length,

50 filters for each filter size of [3,4,5], applying class weight balancing, no batch

normalisation, 9000 features considered for building vocabulary} for animal

exclusions.

RoB item
Valid Test

F1 R P S F1 R P S

RA 86.4 93.2 81.8 92.8 84.4 88.1 82.0 91.5

BAO 82.4 88.5 77.8 89.4 81.6 85.9 79.7 89.0

CI 84.5 86.8 84.1 93.8 82.7 80.6 86.2 93.9

CAWR 86.9 83.3 92.4 97.4 72.8 71.3 76.9 93.8

AE 60.2 73.6 54.2 89.7 46.6 56.5 45.0 91.1

Table 2.8: Performance of the convolutional neural network model with the optimal

configuration for each risk of bias item on the validation set, and final performance

on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity respectively.

With other configurations constant, I explore the effect of the number of filters

for each filter size, and the changes of F1 score on the validation set are

displayed in Figure 2.18 and Appendix Table 3. For random allocation, blinded

assessment of outcome and conflict of interests, the performance does not

79

vary much with the different number of filters (fluctuation of F1 is less than 2%),

but the optimal number is between 100 to 140. For animal welfare regulations,

there is a clearly ascending trend in F1, with 10% improvement when the

number of filters rises from 40 to 300. For animal exclusions, the F1 score first

rises then becomes relatively stable when the number of filters is larger than

60, with fluctuation less than 5%. Consider the performance improvement and

computation cost, it is unlikely worth trying a larger number of filters. For the

effect of the filter size, [3,4,5] is a good choice for all risk of bias items, as

shown in Figure 2.19 and Appendix Table 4. For conflict of interests, animal

welfare regulations and animal exclusions, increasing filter size harms the

performance, with a reduction of F1 by 2%, 4% and 20% respectively, while

larger filter size like [9,10,11] or [10,11,12] provides the possibility of better

performance for random allocation and blinded assessment of outcomes.

Table 2.9 shows that freezing embeddings harms the performance by 0.2% to

15%, which indicates the embeddings should be jointly trainable within the

neural network in this task.

Figure 2.18: Effect of the number of filters for each filter size in the convolutional

neural network for risk of bias classification.

80

Figure 2.19: Effect of filter size in the convolutional neural network for risk of bias

classification.

RoB item Embedding F1 Recall Precision Specificity

RA
freeze 86.2 91.2 82.7 92.6

trainable 86.4 93.2 81.8 92.9

BAO
freeze 79.9 87.2 75.7 87.6

trainable 82.4 88.5 77.8 89.1

CI
freeze 81.9 83.5 82.0 90.5

trainable 84.5 86.8 84.1 91.7

CAWR
freeze 82.9 80.1 86.5 93.3

trainable 86.9 83.3 92.4 93.3

AE
freeze 45.6 76.1 36.2 76.3

trainable 60.2 73.6 54.2 86.8

Table 2.9: Effect of freezing embedding in the convolutional neural network for risk

of bias classification.

81

2.4.2.2 Experiments of Recurrent Neural Network with Attention

As a starting configuration, I use LSTM as the RNN cell in the one-layer

bidirectional structure and set the dimension of hidden states to 50. I set the

maximum document length to 10000, and consider 5000 most frequent words

as features from the training corpus to building the vocabulary. With this setting

unchanged, I explore the effect of the different structure of RNN cell (LSTM or

GRU). I tune the dimension of hidden states from 2 to 100, maximum

document length from 5000 to 20000, the maximum number of features

considered for building vocabulary from 3000 to 20000, using bidirectional

structure or not, assigning class weight or not, applying batch normalisation or

not, and freezing embedding or not. For the number of hidden layers, I only

explore models with one or two layers as my initial experiments showed that

models with deeper layers tended to be over-fitting. Similar to the CNN

experiments, I also explore an undersampling strategy for animal exclusions.

For the context vector in the attention module, I use the Kaiming initialisation

method which helps to prevent the gradients from growing or shrinking (He et

al., 2015). It samples the values of weight 𝑊 following a uniform distribution

𝑊 ~𝑈[− 2

ℎ
, 2

ℎ
], where ℎ is the dimension of inputs to the hidden layer.

Based on the results and learning curves from some initial experiments, the

number of training epochs and early stopping criteria are set to {𝑐1=0.01,

𝑐2 =0.008, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 =2, 20 epochs} for random allocation and conflict of

interests, {𝑐1=0.02, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=6, 20 epochs} for blinded assessment of

outcome, {𝑐1=0.01, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=3, 40 epochs} for compliance of animal

welfare regulations, and {𝑐1=0.01, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=3, 20 epochs} for animal

exclusions.

Results

After parameters tuning, I select configurations which achieve the highest F1

score on the validation set, and evaluate performance on the final test set, as

reported in Table 2.10. RNN with attention also outperforms baseline models

(Table 2.4) with an improvement of F1 by 10% to 24% for four items, while the

82

validation F1 of animal welfare regulations decreases by 14%. Compared to

CNN models (Table 2.8), RNN with attention does not show many advantages,

as the validation F1 increases by less than 1% for random allocation and

blinded assessment of outcome, but declines by 2% for conflict of interests

and animal exclusions, and by 11% for animal welfare regulations. Similar to

CNN models, the performance of RNN with attention is also less robust than

that of the baseline model for animal welfare regulations, as the difference of

F1 between the validation set and the test set is as high as 12%.

The optimal setting for each risk of bias items are: {one-layer bidirectional

LSTM with hidden dimension 14, applying class weight balancing, no batch

normalisation} for random allocation, {two-layers bidirectional GRU with hidden

dimension 100, applying class weight balancing, no batch normalisation} for

blinded assessment of outcomes, {two-layers bidirectional GRU with hidden

dimension 20, applying class weight balancing, no batch normalisation} for

conflict of interests, {one-layer bidirectional GRU with hidden dimension 4, no

class weight balancing, applying batch normalisation} for compliance of animal

welfare regulations, and {one-layer bidirectional LSTM with hidden dimension

6, applying class weight balancing and batch normalization, no under

sampling} for animal exclusions. The optimal maximum document length is

10000 and feature numbers for building vocabulary is 5000 for all items.

RoB item
Valid Test

F1 R P S F1 R P S

RA 87.2 92.4 83.7 93.7 82.0 86.8 79.5 89.6

BAO 83.0 91.1 77.2 88.5 81.6 87.8 78.2 88.4

CI 82.9 85.4 82.0 92.9 81.5 81.6 82.6 92.2

CAWR 76.3 77.6 78.3 93.5 76.3 77.6 78.3 93.5

AE 58.0 68.3 54.3 90.0 42.3 50.6 38.7 90.9

Table 2.10: Performance of the recurrent neural network with attention using the

optimal configuration for each risk of bias item on the validation set, and final

performance on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity

respectively.

83

For each risk of bias item, I use its optimal RNN model to output the attention

scores of tokens in every individual papers which reported the item, thus I can

extract the most important words in the decision of risk of bias classification.

The five most important words are {"randomly", "induced", "supported",

"randomized", "increase"} for random allocation, {"blind", "by", "observer",

"experimenter", "investigator"} for blinded assessment of outcome, {"interest",

"of", "no", "authors", "statement"} for conflict of interests, {"animal", "care",

"procedures", "figure", "committee"} for animal welfare regulations, and

{"excluded", "were", "from", "included", "died"} for animal exclusions, as shown

in Figure 2.20. This may inform future rule-based approaches development.

Figure 2.20: Most important words in the decision of classification for each risk of

bias item, based on the average attention scores from RNN output across all

positive samples.

The effect of the hidden dimension on validation F1 are displayed in Figure

2.21 and Appendix Table 6. For random allocation and blinded assessment of

outcome, the performance is relatively stable and the optimal hidden

dimension is around 20. For conflict of interests, a hidden dimension larger

than 30 harms the performance by 20% and the model tends to be over-fitting.

For animal welfare regulations, F1 reduces by 16% when the hidden

dimension rises from 2 to 100. For animal exclusions, the changes of F1

fluctuate and the model with 6-dimension hidden states achieves the best

performance. Considering the performance reduction, memory consumption

84

and running cost, it is unnecessary to explore hidden dimensions larger than

20 in RNN models for risk of bias classification.

Figure 2.21: Effect of the number of hidden dimension in the recurrent neural

network models for risk of bias classification.

The effect of cell structure in RNN models on the validation performance is

reported in Table 2.11. Bidirectional structure performs better than

unidirectional structure, with the improvement of F1 ranging from 0.5% to 20%

for four items, except for conflict of interests, where the validation F1 of the

bidirectional GRU is 7% lower than that of the unidirectional GRU. The

selection of RNN cell structure between LSTM and GRU depends on the

specific risk of bias item and other model configurations. GRU performs slightly

better than LSTM for random allocation, while LSTM is optimal for blinded

assessment of outcome, although the difference is almost negligible. The

conclusions for the other three items are different when the RNN cell is applied

in the unidirectional or bidirectional manner.

85

RoB item RNN cell
Bidirectional Unidirectional

F1 R P S F1 R P S

RATC
LSTM 85.0 89.1 82.6 93.9 83.6 92.5 77.6 91.5

GRU 85.2 91.6 80.7 92.9 84.9 89.7 81.7 93.6

BAO
LSTM 81.6 88.4 76.4 88.1 81.0 87.5 77.2 88.5

GRU 81.2 88.4 76.1 88.4 79.6 87.4 74.7 87.7

CI
LSTM 73.4 72.3 76.2 91.6 53.5 50.0 59.1 87.4

GRU 73.1 76.8 72.4 89.1 80.1 80.0 81.0 93.2

CAWR
LSTM 73.6 69.8 81.3 95.2 73.4 71.8 76.7 93.3

GRU 76.3 77.6 78.3 93.5 71.4 75.9 72.1 90.9

AE
LSTM 58.0 68.3 54.3 90.0 46.4 73.1 36.4 79.1

GRU 51.6 60.8 46.7 89.3 48.7 58.9 44.3 88.4

Table 2.11: Effect of different cell structure in the recurrent neural network models.

‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity respectively.

2.4.2.3 Experiments of Hierarchical Attention Network

As a starting configuration, each document is padded or cut when it has less

or more than 500 sentences, and each sentence is padded or cut when it has

less or more than 100 words. I set the dimension of word hidden states and

sentence hidden states to 50. I consider the 5000 most frequent words as

features when building the vocabulary. With the setting unchanged and

considering the memory limitation of our GPU, I tune the maximum number of

sentences in each document from 200 to 1000, the maximum number of words

in each sentence from 10 to 100, dimension of word hidden states and

sentence hidden states from 5 to 80, the maximum number of features from

3000 to 9000, assigning class weight or not and applying batch normalisation

or not. I also explore an undersampling strategy for animal exclusions like

previous neural network experiments. I use the Kaiming initialisation method

(He et al., 2015) to initialise the local word context vector and the global

sentence context vector. Based on the results and learning curves from some

initial experiments, the number of training epochs and early stopping criteria is

set to {c1=0.01, c2=0.008, patience=2, 20 epochs} for random allocation,

86

blinded assessment of outcome and conflict of interests, and {c1=0.01,

c2=0.01, patience=5, 30 epochs} for compliance of animal welfare regulations

and animal exclusions.

Results

After parameters tuning, I select configurations which achieves the highest

validation F1 score for each item and evaluate performance on the final test

set, see Table 2.12. Similar to CNN and RNN with attention models, HAN

outperforms baseline models (Table 2.4) with an improvement of F1 by 8% to

21% for four items, while the validation F1 of animal welfare regulations

decreases by 11%. Compared to CNN models (Table 2.8), HAN models do

not show any advantages as the validation F1 decreases for all five items by

1% to 8%. Compared to RNN models (Table 2.10), the validation F1 of HAN

models declines by around 1% for random allocation, 2% for blinded

assessment of outcome and 5% for animal exclusions, but increases by 0.3%

and 3% for conflict of interests and animal welfare regulations respectively.

The difference of HAN performance between the validation and test set is also

less robust than that of baseline models for animal welfare regulations, as the

difference of F1 increased by 13%.

RoB item
Valid Test

F1 R P S F1 R P S

RA 86.2 91.3 83.1 93.7 83.2 86.8 80.9 91.0

BAO 81.3 86.4 77.5 89.1 80.2 83.4 78.4 89.0

CI 83.2 84.7 82.8 93.2 81.0 79.7 84.1 92.9

CAWR 79.3 77.8 84.5 94.9 73.5 73.1 75.3 93.1

AE 53.4 58.4 54.0 88.9 42.4 53.3 38.2 88.9

Table 2.12: Performance of the hierarchical attention network with the optimal

configuration for each risk of bias item on the validation set, and final performance

on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity respectively.

The optimal setting for each risk of bias items are: {maximum 500 sentences

in each document, maximum 40 words in each sentence, word/sentence

87

hidden states with dimension 50, applying class weight balancing, no batch

normalisation} for random allocation and conflict of interests, {maximum 500

sentences in each document, maximum 50 words in each sentence,

word/sentence hidden states with dimension 50, applying class weight

balancing, no batch normalisation} for blinded assessment of outcomes,

{maximum 600 sentences in each document, maximum 50 words in each

sentence, word/sentence hidden states with dimension 50, not assigning class

weight, applying batch normalisation} for compliance of animal welfare

regulations, and {maximum 900 sentences in each document, maximum 100

words in each sentence, word/sentence hidden states with dimension 20,

applying class weight balancing, no batch normalisation, no undersampling}

for animal exclusions. The optimal feature number for building vocabulary is

5000 for all items.

Table 2.13 demonstrates the prediction probability and relevant sentences

extracted from the optimal HAN model for each risk of bias item on an example

full-text publication. Unlike the previous regular expression approaches which

generate the yes/no label only, HAN can be used to extract the most relevant

sentences from full text, which can enhance the judgment from the prediction

probabilities, or provide signals whether users need to re-check the full texts.

As the example shows, sentences extracted for blinded assessment of

outcome and animal exclusions indicate the clear relation with the items and

positive evidence for the prediction probabilities, while sentences extracted for

conflict of interests do not show any relation with the items, which proves the

prediction in a different direction. For the other two items, the conclusions from

the prediction probability and the extracted sentences are opposite, where

users can find enough positive evidence from the extracted sentences for

random allocation to reject the prediction, but may need to re-check full text for

animal welfare regulations.

88

RoB item True Predicted High scored sentences

Random
allocation

Yes 0.1712

video records of randomly selected animals were
recoded by an observer blind to the experimental
conditions

in the stress groups animals were presented with ten
sec db white noise tones that coterminated with a sec
ma footshock measured according to the method of
sananes and davis one tonefootshock pair was
presented randomly within each of consecutive min
intervals

Blinded
assessment
of outcome

Yes 1.0000

video records of randomly selected animals were
recoded by an observer blind to the experimental
conditions

animals were coded initially by an observer not blind
to the experimental conditions

Conflict of
interests

No 2e-7

schematic depictions of the regions dissected for
neurochemical analysis are presented in figure
tissue da and its metabolite dihydroxyphenylacetic
acid dopac and ht and its metabolite hydroxy
indoleacetic acid hiaa were isolated according to a
modification of the procedure of reinhard et al

** statistically significant difference versus the sham
no stress group p statistically significant difference
versus the sham no stress group p …

Compliance
of animal
welfare
regulations

No 0.9998

the journal of neuroscience august role of the
amygdala in the coordination of behavioral
neuroendocrine and prefrontal cortical monoamine
responses to psychological stress in the rat …

the present study used a conditioned stress model in
which rats were trained to fear a substartle threshold
tone paired previously with footshock and assessed
for behavioral neuroendocrine and neurochemical
stress responses

Animal
exclusions

Yes 0.9989

in of the original lesioned animals in the pretraining
experiment the lesions were judged incomplete by
the criteria above and were excluded from the data
analyses

animals were subjected to bilateral sham sham or
excitotoxic lesions of the amygdala amyg d before
conditioning

Table 2.13: An example of prediction and relevant sentences extracted from the

hierarchical attention network for risk of bias items on a full-text publication (PMCID:

PMC6579011). Sentences are not exactly same as the original text because I

remove digits and some punctuations in the text pre-processing step.

For the configurations related to padding and cutting, I explore the effect of the

maximum number of sentences in each document (Figure 2.22 and Appendix

89

Table 7) and the effect of the maximum number of words in each sentence

(Figure 2.23 and Appendix Table 8). Although the average number of

sentences in a document is 180 (Table 2.2), the optimal threshold for sentence

numbers is around 600 for animal welfare regulations and 500 for the other

four items because of some long publications. Sentence counts larger than

those values cause some reductions on performance. For the maximum word

count in each sentence, the optimal threshold is around 40 for random

allocation and conflict of interests, 50 for blinded assessment of outcomes, and

60 for animal exclusions. When the word count in each sentence is larger than

those optimal values, the validation F1 first drops sharply and then goes up

back to the peal value for four items, excluding random allocation where the

performance remains stable after 60. There might be an improvement when

the maximum word number in each sentence is larger than 100, but I am not

able to continue the experiments with the limited GPU memory.

The effect of the dimension of word and sentence hidden states is displayed

in Figure 2.24 and Appendix Table 9. The trend of the validation F1 for random

allocation, blinded assessment of outcome and conflict of interests is relatively

stable as the hidden dimension changes. For animal welfare regulations, the

validation F1 declines by 22% when the word/sentence hidden dimension

increases from 5 to 40. It rises up to a peak value when the dimension is 50

and then decreases again. For animal exclusions, the validation F1 fluctuates

as the hidden dimension changes and there is no clear trend.

90

Figure 2.22: Effect of the maximum number of sentences in each document in the

hierarchical neural network models for risk of bias classification.

Figure 2.23: Effect of the maximum number of words in each sentence in the

hierarchical neural network models for risk of bias classification.

91

Figure 2.24: Effect of the dimension of word/sentence hidden states in the

hierarchical neural network models for risk of bias classification.

2.4.3 Experiments of BERT with Two Strategies

BERT models are implemented using PyTorch (Paszke et al., 2019) and

HuggingFace Transformers (Wolf et al., 2019). All the experiments are

conducted on a GTX 1080 GPU with 12GB memory. Codes are available at

github.com/qianyingw/pre-rob.

2.4.3.1 Experiments of BERT-Document Chunk Pooling

After tokenisation, each document is split into chunks with 512 tokens

(including the two special tokens ‘[CLS]’ and ‘[SEP]’) and the maximum

number of chunks is set to 20 because of the memory limitation. Therefore,

the model can process maximum 10,200 (510x20) tokens for each document,

and documents with tokens more than 10,200 are cut. The last chunk with

tokens less than 512 is padded when the total number of tokens is less than

10,200. I use the default configuration of the BERT-Base-Uncased module, i.e.

12 encoder layers, 768 units in hidden states, 12 attention heads (Devlin et al.,

2018). As a starting setting, I perform average pooling over the last 10 encoder

layers for the first pooling layer; I concatenate hidden states of all the tokens

92

within every chunk for the second pooling layer, i.e. no pooling. I set batch size

to 32 for models with the linear/convolution head and 16 for models with the

LSTM head, and assign class weights to solve the data imbalance issue.

Considering the memory issue, I freeze all the BERT layers and only fine-tune

the linear/LSTM/convolution head for the classification task. For BERT with

linear head, I use the average pooling method for the third pooling layer. For

BERT with convolution head, I set three filter sizes to [3,4,5] and apply 100

filters for each filter size. For BERT with LSTM head, I use one-layer

unidirectional LSTM, and the hidden dimension is set to 768, which is same as

the dimension in the BERT encoder layers. The threshold learning rate is 1e-

3, the weight decay rate is 1e-2, and coefficients of controlling decay rate of

gradients mean and variance are 0.9 and 0.999 respectively. With these

settings, I test models for 30 epochs for random allocation, and the learning

curves are shown in Figure 2.25. Models with the linear head or LSTM head

are not trained properly and do not show promising performance, with the

highest validation F1 around 50%. Considering the running cost and

performance gain, I continue experiments of models with the convolution head

only.

Figure 2.25: Learning curves of BERT-document chunk pooling models (with

linear/convolution/LSTM head) for random allocation. Solid and dash lines refer to

training and validation curves respectively; brown and cyan lines refer to loss and F1

respectively.

I tune three hyperparameters sequentially for BERT-DCP models with the

convolution head. For the first pooling layer, I explore the different number of

encoder layers being averaged from the last 10 to 1 encoder layers from

93

BERT. For the second pooling layer, I explore five pooling methods described

in section 2.3.4.2. I freeze all BERT layers in default, which hinders the

advantages of BERT architecture. With the available GPU, I can only fine-tune

the last encoder layer but need to reduce batch size to 4, otherwise it causes

the memory issue. Results reported in Table 2.14 indicate the number of

encoder layers averaged at the first pooling layer does not have much effect

on the performance. At the second pooling layer, pooling the output over

tokens within each chunk with different methods harms the performance by

40%, compared with concatenating the hidden states of all the tokens within

each chunk. Fine-tuning the last encoder layer from BERT harms the

performance by 20%. Considering the running cost and reduction of

performance, I use the optimal default settings for the other four risk of bias

items and do not continue tuning parameters for them.

 BERT-DCP Settings F1 R P S

Default
10 layers, no pooling,

freeze all
85.4 92.7 80.1 92.2

1) Encoder layers
averaged in the
1st pooling layer

Last 8 layers 84.5 92.0 79.2 91.6

Last 6 layers 84.8 92.6 79.5 92.3

Last 4 layers 85.0 91.4 81.1 93.7

Last 2 layers 85.3 92.3 80.2 91.9

Last 1 layer 84.7 92.1 79.4 92.3

2) Method in the
2nd pooling layer

Average-pooling 50.6 83.5 37.6 54.5

Max-pooing 42.9 73.9 30.9 46.9

Average- and max-pooling 48.1 82.5 35.3 52.2

Hidden states from [CLS] 45.8 70.0 35.1 57.0

3) Unfreeze Fine-tune the last encoder 62.0 65.8 61.1 91.0

Table 2.14: Effect of three hyperparameters on validation performance of BERT-

document chunk pooling models with convolution head, for random allocation. The

default settings are: 1) averaging output from the last 10 encoder layers at the first

pooling layer; 2) concatenating hidden states of all tokens within each chunk at the

second pooling layer; 3) freezing all BERT layers. ‘R’, ‘P’ and ‘S’ refer to recall,

precision and specificity respectively.

94

2.4.3.2 Experiments of BERT-Sentence Extraction

As a default setting, the maximum number of sentences extracted from full-

text publications is set to 30. The new passage concatenated from the most

30 relevant sentences with the number of tokens larger than 512 is truncated.

I use the default configuration of the DistilBERT-Base-Uncased module: 6

encoder layers, 768 hidden units, 12 attention heads (Sanh et al., 2019). I set

batch size to 16, and assign class weights to solve the data imbalance issue.

The threshold learning rate is 2e-5, the weight decay rate is 1e-2, and

coefficients of controlling decay rate of gradients mean and variance are 0.9

and 0.999 respectively. As the new passages are much shorter compared to

the full-text publications, I do not need to freeze any encoder layer like BERT-

DCP models and can fine-tune the whole DistilBERT with the additional

linear/convolution/LSTM head for the classification task. For models with the

linear head, I use the hidden states of the ‘[CLS]’ token from the last encoder

layer as the output vectors. For models with the convolution head, I set three

filter sizes to [3,4,5] and apply 100 filters for each filter size. For models with

the LSTM head, I use a one-layer unidirectional LSTM and hidden dimension

768. With these settings, I run each model for 30 epochs with the different

number of sentences extracted, see Table 2.15. The performance of models

with different head or number of sentences extracted does not show much

difference. Considering the running cost and experience from previous

experiments, I use model with the convolution head with default setting as the

final choice, and do not continue tuning parameters for the other four risk of

bias items.

95

BERT-SE No.sents F1 Recall Precision Specificity

Linear

head

10 78.1 79.7 81.0 92.6

20 80.1 83.6 81.6 92.9

30 80.5 82.2 83.3 94.1

40 80.5 82.2 83.3 94.1

Convolution

head

10 77.9 78.7 80.6 92.5

20 79.6 84.8 79.5 90.8

30 80.6 82.0 82.0 92.7

40 78.8 81.7 79.7 92.7

LSTM

head

10

20

30

40

78.0

79.3

77.9

78.7

79.6

83.6

84.1

82.1

82.4

80.6

77.8

78.9

93.5

92.3

91.1

92.6

Table 2.15: Effect of the number of sentences extracted from full-text publications on

validation performance of BERT-sentence extraction models with

linear/convolution/LSTM head, for random allocation.

BERT models using two strategies do not outperform neural models, except

for animal welfare regulations, where the validation F1 is increased by 3% to

4%, see the final performance in Table 2.16. This is reasonable because, in

the document chunk pooling strategy, I do not take any advantage of BERT

architecture by freezing all the encoder layers, and multiple pooling strategies

help little to address this limitation; while in the sentence extraction strategy,

although I can fine-tune all the encoder layers in DistilBERT, I still lose some

information by using shorter texts extracted from full publications.

96

RoB item
BERT-DCP BERT-SE

F1 R P S F1 R P S

RA 85.4 92.7 80.1 92.2 80.6 82.0 82.0 92.7

BAO 83.1 91.8 77.0 87.7 79.9 84.7 79.8 89.9

CI 79.5 84.6 76.8 90.1 64.0 64.3 70.9 88.3

CAWR 93.8 92.1 95.8 87.7 94.0 94.6 93.8 75.1

AE 56.2 77.0 46.8 84.7 34.4 46.5 30.5 79.5

Table 2.16: Performance of the BERT-document chunk pooling and BERT-sentence

extraction models using the optimal configuration for each risk of bias item on the

validation set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity respectively.

2.4.3.3 BERT embeddings in baseline models

In the optimal BERT-DCP models with the convolution head where all encoder

layers are untrainable, the essence of the architecture is analogous to the

convolutional neural network, while the text representations are BERT

embeddings instead of word2vec vectors. The inconspicuous difference of

performance between BERT-DCP models with convolution head and CNN

models indicate that BERT embeddings are not superior to word2vec vectors

in neural network models for risk of bias classification, from another

perspective. I then conduct experiments to test if BERT embeddings

outperform word2vec embeddings in baseline models. For models using BERT

embeddings, each document is split into sentences by scispaCy (Neumann et

al., 2019) and each sentence is then encoded into an embedding by

SentenceTransformer (Reimers and Gurevych, 2019) with the pre-trained

weights from BioBERT (Lee et al., 2019). The text representation of the

document is the averaged sentence embeddings. Other details of model

implementation and parameters tuning are same as the models using

word2vec which are described in Section 2.3.2. The validation results of three

baseline models using averaged word embeddings from biomedical word2vec

and averaged sentence embeddings from BioBERT are reported in Table 2.17.

In support vector machines, F1 of BERT embeddings declines by 2% to 6%

for four items; in logistic regression models, F1 reduces by 8% for random

97

allocation, but increase by 2% for animal welfare regulations; in random

forests, BERT embeddings improve F1 by 2% to 4% for blinded assessment

of outcome and conflict of interests, but harm performance by 3% for animal

exclusions, compared to word2vec embeddings. Other improvements or

reductions are less than 1%. Although the selection of the embeddings in

baseline models depends on the specific classifier and risk of bias item, none

of the models using BERT embeddings outperform the best baseline model for

each risk of bias item. Model architecture still plays a more important role than

text representation methods on the risk of bias classification.

RoB item Feature SVM LogReg RF

RA
bert 44.7 47.9 43.9

w2v 51.0 56.3 43.4

BAO
bert 54.0 56.0 53.2

w2v 53.4 56.3 49.3

CI
bert 64.2 65.6 57.4

w2v 65.7 66.1 55.1

CAWR
bert 86.6 86.4 85.3

w2v 90.1 84.1 85.3

AE
bert 35.8 37.6 31.6

w2v 38.7 36.8 35.0

Table 2.17: Validation F1 of three baseline models with averaged word embeddings

from biomedical word2vec or averaged sentence embeddings from BioBERT for risk

of bias classification.

2.4.4 Comparison to Regular Expression

With the best model and its optimal setting for each risk of bias item, I evaluate

and compare the performance with the regular expression approach on the

test set. Note that I select RNN with attention as the optimal model for blinded

assessment of outcome rather than BERT with document chunk pooling

strategy, considering the negligible improvement (0.1%) and complexity of pre-

processing by the latter approach. From Table 2.18, NLP models improve

performance by between 13% and 36% for four RoB items tested, and these

98

improvements are significant with p < 0.05 according to McNemar’s test

(Raschka, 2018).

RoB item Method
Test performance McNemar table

F1 R P S regex+ regex-

RA
RNN+Attn 82.0 86.8 79.5 89.7 nlp+ 548 156

Regex 68.8 96.4 53.6 62.7 nlp- 22 58

BAO
RNN+Attn 81.6 87.8 78.2 88.4 nlp+ 601 87

Regex 68.3 59.8 79.6 92.1 nlp- 28 68

CI
CNN 82.7 80.6 86.2 93.9 nlp+ 533 103

Regex 48.7 33.8 87.1 97.8 nlp- 21 54

CAWR
BERT-SE 91.5 91.4 92.0 70.9 nlp+ 327 293

Regex 55.2 40.9 85.2 78.2 nlp- 28 63

AE
CNN 60.2 73.6 54.2 89.7 nlp+ -- --

Regex -- -- -- -- nlp- -- --

Table 2.18: Performance of the best NLP model and regular expression approach

for each risk of bias item on the test set, and the corresponding table of McNemar

test. ‘+’ (‘-’) refers to records correctly (incorrectly) predicted by the approach. ‘R’, ‘P’

and ‘S’ means recall, precision and specificity respectively. A regular expression

approach has not been developed for animal exclusions so the performance cannot

be compared.

2.5 Discussion

I have shown that different models are optimal for the detection of reporting of

different risks of bias. CNN is the best choice for conflict of interests and RNN

with attention works well for random allocation and blinded assessment of

outcome. For compliance with animal welfare regulations, models using BERT

with sentence extraction strategy achieve the best performance. For animal

exclusions, CNN achieves the best performance on the validation set, but no

models provide reliable performance on the test set.

99

2.5.1 Tool and Streamlit interface

I make the codes and weights of optimal models for five risk of bias items

available at github.com/qianyingw/pre-rob. A Streamlit web application is

developed to demonstrate the function of the risk of bias tool, as shown in

Figure 2.26. After a single TXT file is uploaded by the user, the app processes

the text and runs the optimal model for each item in the background. It then

generates probabilities and the most three relevant sentences which can assist

judgement. However, it is often slow and memory-consuming to use the app

for a single prediction because the models involve large pre-trained weights

loading and heavy computations for neural networks and BERT models. For

batch processing, I recommend to clone the source codes and keep pre-

trained modules locally. More specifically, users need to have miniconda3

installed under the Linux environment. The tool receives the path of a CSV file

as input, where the CSV contains the absolute paths of individual full-text TXT

files. The plain texts of preclinical publications can be obtained by 1) converting

from PDFs using tools like Xpdf, 2) parsing from PubMed NXML files using

tools like PubMed Parser (Achakulvisut et al., 2020), or 3) copy and paste.

After activation of the virtual environment, installation of relevant python

packages, downloading of pre-trained modules and configurations, users can

obtain the prediction probabilities or relevant sentences (if the number of

sentences is specified in the command) in an output CSV file by launching the

python command, see Figure 2.27.

100

Figure 2.26: A demonstration Streamlit app for preclinical risk of bias assessment.

Figure 2.27: Usage commands of the preclinical risk of bias tool.

101

2.5.2 Error Analysis

Among the incorrect records, my models are more likely to conclude that

publications report random allocation, blinded assessment of outcome and

animal exclusions (false positive greater than false negative), and less likely to

predict that publications report conflict of interests and animal welfare

regulations (false negative greater than false positive), see Figure 2.28. To

analyse sources of error I randomly select 10 incorrect records for each item

from the test set. My models do not recognise phrases like ‘unaware’ for

blinded assessment but consider that ‘animals are randomly selected for

testing’ indicated random allocation to the experimental group. It may be that

most records in the training set describe random allocation based on the

presence of the word ‘random’ and blinded assessment based on the word

‘blind’, and that the training corpus does not have sufficient examples of

alternative valid descriptions for these to be learned. I also find two records

where a conflict of interest is given before the ‘Introduction’ section or after the

‘Reference’ section, where I have removed the relevant text in the text

processing stage.

Figure 2.28: Percentages of the false positive, false negative, true positive and true

negative of the optimal model for each risk of bias item on the test set.

8%

6%

4%

8%

7%

5%

7%

6%

4%

3%

0% 20% 40% 60% 80% 100%

Animal exclusions

Animal welfare regulations

Conflict of interests

Blinded asessment of outcome

Random allocation

FP FN TP TN

102

2.5.3 Limitation and Future Work

This work has several limitations. First, the training dataset includes

publications drawn from three datasets focusing on specific disease models

(focal ischaemic stroke, chemotherapy-induced peripheral neuropathy,

psychotic disorders), as well as two datasets from unselected preclinical

studies published in PLOS One and Nature. This may influence the

generalisability of the findings. Second, PDF to text conversion loses

document structure and I cannot identify the main sections of publications. This

introduces some noise (for instance text from figures and tables) to the training

corpus. Tools like GROBID (github.com/kermitt2/grobid) can convert PDFs to

structured XML but it highly depends on the quality of PDF, and in my

experience it does not work well for some preclinical publications. However,

enhanced approaches to PDF conversion, and increased availability of

publications in XML format, means that this approach may become feasible in

the future.

In future work I will seek to improve performance further, using datasets

involving more journals and a wider range of preclinical experiments (both

disease modelling and mechanistic studies), and will exploit diseases and texts

from structured PubMed XMLs, which may yield better performance. I will

continue improving the attribution of animal exclusions to achieve more reliable

performance and I will develop approaches for the other risk of bias items

including sample size calculation and allocation concealment. I will also

develop a user-friendly function embedded in the preclinical systematic review

facility SyRF (http://syrf.org.uk/) and a standalone API, enabling usage to

others.

2.6 Summary

In this chapter, I present multiple text classification models for risk of bias

assessment in preclinical publications, including baselines (support vector

machine, logistic regression, random forest), neural networks (convolutional

neural network, recurrent neural network with attention, hierarchical neural

103

network) and BERT models using two strategies (document chunk pooling and

sentence extraction); and text representation methods, including bag-of-

words, word2vec, doc2vec, BERT embeddings.

Support vector machine and logistic regression are robust choices among

baseline models, while neural models and BERT models have substantial

improvements on performance compared to baselines, for four risk of bias

items (random allocation, blinded assessment of outcome, conflict of interests

and animal exclusions). For animal welfare regulations, baselines and BERT

models have competitive performance and they both outperform neural

models. Among three neural models, the difference on performance between

CNN and RNN is not obvious, and the hierarchical structure in HAN does not

show advantages. However, the attention mechanism can be used to develop

the sentence extraction function to provide potentially relevant snippets as

clues for users making judgements. Between the two BERT models, the

document chunk pooling strategy works better than the sentence extraction

strategy in general. Representations containing semantic information like

word2vec or contextual embeddings yield better performance than the simple

use of weighted frequency representations. If computational limitations require

the implementation of a single tool, I recommend convolutional neural

networks.

Compared to the previous regular expression approach, the performance of

the best NLP models is significantly improved for four risk of bias items. I

encourage the use of NLP techniques to assist the risk of bias assessment

and reduce workflow for the preclinical systematic review. The performance of

these tools is such that they could be deployed in automated approaches to

monitor risks of bias reporting as part of institutional research improvement

activities.

104

Chapter 3 Identifying Intervention and Method

of Induction of Disease Model:

Question Answering

Identifying information from publications can be cast as Question Answering

(QA), which is defined as answering a question in natural language, by

automatically copying or summarising a piece of text from available context or

document(s). Answering biomedical questions varies from answering general-

domain questions because of the different data sources, knowledge taxonomy

and more complicated constraints for answer candidates (Niu et al., 2003).

Competitions such as the BioASQ challenge (Krallinger et al., 2020) are held

annually which aims to solve the information retrieval and question answering

particularly for biomedical research, and several biomedical QA systems have

been developed, including MedQA (Lee et al., 2006), AskHERMES (Cao et al.,

2011), Olelo (Neves et al., 2017), and SemBioNLQA (Sarrouti and Ouatik El

Alaoui, 2020), etc. The architecture of these systems is end-to-end which

contains four main stages: 1) analysing and parsing a question, 2) retrieving

and ranking documents from large databases or corpora, 3) ranking and

extracting passages/snippets from the top relevant documents, and 4)

extracting answers by copying or summarising pieces of text from the top-

ranking snippets (Prager, 2006). For PICO extraction in systematic reviews,

the first two stages are not in my consideration because 1) the questions for

PICO elements are generalised and fixed, such as ‘What are the

interventions?’, and I cannot ask a more informative question for a specific

disease or species without knowing other three PICO elements; 2) answers

are extracted from each publication separately, where the publication is

obtained by searching from biomedical database like PubMed or Embase via

the MeSH (Medical Subject Headings) terms pre-defined by investigators. The

publications are further checked by researchers or screened by some text

mining algorithms to exclude irrelevant publications, so all the remaining

documents are supposed to be relevant to the research topic of a systematic

105

review. Therefore, I focus on retrieving PICO snippet from each document and

extracting short precise answers from those snippets.

3.1 Related Work

For snippet retrieval, early works apply keywords or medical concepts

matching by TF-IDF and BM25 (Robertson and Zaragoza, 2009). More

complicated methods are also explored to retrieve and re-rank snippets,

including training neural networks like LSTM (Wang and Nyberg, 2015) and

CNN based models (Pappas et al., 2020), and fine-tuning transformer-based

model BERT (Nogueira and Cho, 2019). The advanced models demonstrate

some improved performance but the improvement is limited, compared to the

unsupervised baseline methods (Kazaryan et al., 2020). In addition, those re-

ranking models are supervised and require annotations of the relevance of

snippets in the dataset, such as the Text REtrieval Conference (TREC) Data

(Voorhees, 2001). For more precise answer extraction, similarly, hand-crafted

matching patterns have been explored, while neural models like BiDAF (Seo

et al., 2016), QANet (Yu et al., 2018) and more recent BERT models achieve

promising performance. I describe these models in greater detail in the method

section.

Among a few question answering approaches designed specifically for PICO

extraction, Demner-Fushman et al use 275 clinical abstracts with PICO

annotations to manually derive rule-based patterns for population, intervention,

and comparator, assisted by the software MetaMap (Aronson and Lang, 2010)

which can identify the Unified Medical Language System (UMLS) concepts

(Bodenreider, 2004). While for outcomes, they do not develop a similar rule-

based snippet-level extractor, but train a Naïve Bayes classifier to identify

sentences containing outcome descriptions (Demner-Fushman and Lin,

2005). More recent work has applied the transformer-based models to extract

PICO elements (Schmidt et al., 2020), using a dataset converted from the

‘EBM-NLP’ corpus (Nye et al., 2018) which contains 5000 clinical abstracts

annotated with exact positions of PICO spans and is originally designed for

106

PICO extraction via named entity recognition models. To adapt the dataset to

the question answering task, Schmidt et al split each abstract into sentences,

convert the sentence-question-answer triplets into the SQuAD (Stanford

Question Answering Dataset) format (Rajpurkar et al., 2016). They then inject

additional records from the SQuAD dataset and fine-tune the

BertForQuestionAnswering module from the Hugging Face Transformers

library (Wolf et al., 2019), which achieves good performance (F1 over 75% for

each PICO category) and outperforms the named entity recognition models on

the EBM-NLP leaderboard (ebm-nlp.herokuapp.com/#Leaderboard). These

works all focus on the clinical PICO extraction and no question answering

approaches have been applied to the preclinical PICO extraction.

3.2 Dataset

The available datasets are from three systematic review projects: one focuses

on clinical motor neuron disease, and the other two focus on preclinical

psychotic disorders and chemotherapy-induced peripheral neuropathy. PICO

annotations of each record contain only one answer phrase (factoid type) or a

list of answer phrases (list type) and no position information is provided. The

cleaning process and some summary statistics of the datasets are described

below.

3.2.1 Clinical dataset: MND

MND dataset is obtained from the ReLiSyR-MND (Repurposing Living

Systematic Review for Motor Neuron Disease) project, which aims to collect

the clinical and preclinical evidence of motor neuron disease (MND) and other

neurodegenerative diseases to inform the selection of drugs for repurposing in

MND clinical trials (Macleod and Wong, 2019). 8,566 records with title and

abstract from 3,122 papers annotated by multiple investigators were collected

on 28th July 2020. I remove records without valid abstracts, where in most

cases only titles can be found, and records without investigator information so

I cannot trace back for data validation when necessary. The dataset includes

two parent questions: ‘what is the intervention measure used?’ and ‘what is

107

the disease investigated?’. As the whole dataset focuses on MND disease, the

number of unique answer strings of the disease question is limited to 6 and I

decide to focus on the intervention question. After removing duplicate records

and records with inconsistent annotations from multiple investigators, I obtain

2,476 records with 1,812 unique answers in total. Among those, only 1,983

records have annotations which can be exactly matched in the title and

abstract, as demonstrated in Figure 3.1. On average, there are 12 sentences

and 289 tokens in an abstract, 25 tokens in a sentence and 2 tokens in an

answer string (Table 3.1). The distributions of these characteristics are shown

in Figure 3.2.

Figure 3.1: Preparation process of the clinical MND dataset.

108

Figure 3.2: Distributions of text characteristics in the clinical MND dataset.

3.2.2 Preclinical Dataset: Psycho-CIPN

Psycho-CIPN dataset is concatenated from two systematic reviews which aim

to collect the preclinical evidence of psychotic disorders (Psychosis) (Bahor et

al., 2016) and chemotherapy-induced peripheral neuropathy (CIPN) (Currie et

al., 2019) respectively. In the Psycho dataset, 12,440 papers with abstracts

were obtained on 29th March 2018 and 3,024 records (two records for each of

the 1,512 papers) with annotations of “treatments tested” (interventions) and

“method of model induction” were filtered out. The annotations of each record

consist of one or more than one answer candidates delimitated by a comma

and whitespace. In the CIPN dataset, 1,397 records were obtained from 694

papers on 7th Sep 2020. Each record refers to a cohort in an individual study

and some grouping process are required to generate the answer lists of

intervention/model induction for each paper. 33% of records do not have

answer matches (case insensitive) in titles and abstracts so I decided to work

on full texts for preclinical intervention and induction identifications. I removed

records without full texts and missing answer matches, and obtained 1,225

109

question-answer-context triplets from 906 papers, as demonstrated in Figure

3.3.

Figure 3.3: The preparation process of the preclinical Psycho-CIPN dataset.

Psycho-CIPN-factoid & Psycho-CIPN-list

Among the final 1,225 records, 796 of them have only one answer and 429 of

them have more than one answer candidates. On average, there are 203

sentences and 6,157 tokens in a full-text publication, 30 tokens in a sentence,

and 1.1 tokens in an answer candidate (Table 3.1). The distributions of these

characteristics are shown in Figure 3.4. In the actual experiments, I use the

Psycho-CIPN data in two ways: 796 records with only one answer as Psycho-

CIPN-factoid dataset, and records with one or more than one answers as

Psycho-CIPN-list dataset. Additional processing is implemented for Psycho-

CIPN-list records because it is not applicable to compare multiple positions of

true answer candidates and predicted answer candidates, and compute loss

during the training procedure. Therefore, a parent record with more than one

answer candidates is split into separate sub-records for each answer

candidate, which share the same id, context and question strings. This

110

generates 1,984 sub-records as Psycho-CIPN-list dataset, which can be

trained like the factoid-type question answering task. After training, the sub-

records will be merged by ids for evaluation.

Figure 3.4: The distributions of text characteristics in the Psycho-CIPN dataset.

 MND Psycho-CIPN

Avg no. sents per doc 12 203

Avg no. tokens per sent 25 30

Avg no. tokens per doc 289 6157

Avg no. tokens per answer 2.5 1.1

Avg no. answer candidates 1 1.6

Number of records 1983 1225 (796 factoid, 1984 list)

Table 3.1: Summary statistics of clinical MND dataset and preclinical Psycho-CIPN

dataset. ‘1225’ is the number of preclinical records before splitting them by number

of answer candidates.

111

3.3 Methods

Identifying intervention/method of induction in biomedical literature can be

formulated as a question answering (QA) task: given a question (“what is the

intervention” or “what is the method of model induction of disease model”) and

its corresponding context (an abstract or a full-text publication), I need to build

a model to automatically extract answers (pieces of text describing

interventions/induction) from the context, as demonstrated in Figure 3.5. I thus

convert the datasets into the format in the standard reading comprehension

challenge of Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al.,

2016), as shown in Figure 3.6. The inputs of a standard QA model are the

numeric representations of the tokenised question and context, and the true

starting/ending positions (indices) of the answer strings, which are then

compared to the predicted answer positions for training/evaluation, or

converted back to answer tokens for prediction. However, the datasets do not

contain any position information of the answer strings and I cannot compute

the training loss for a QA model without the exact answer positions. As a

compromise, I use the position of the first answer match in the context as the

plausible position, inspired by a pre-processing strategy applied in a

biomedical question answering challenge (Yoon et al., 2019).

112

Figure 3.5: Task formulation for interventions identification of MND data.

Figure 3.6: An example question answering record of intervention/induction

identification in SQuAD format.

The average context length of the Psycho-CIPN dataset is much longer than

that of the MND dataset, which includes 203 sentences and 12 sentences

respectively. The ‘true’ index of answer strings is obtained from the first answer

match in the context and a longer context can make the ‘true’ answer index

more plausible. In a real case, the first answer match in the abstract could be

the real correct answer, while the first answer match in the full-text paper is

113

normally not. In a full-text publication, the answer is also mentioned in the

introduction or background sections, which may not describe the actual

intervention measures in the experiments. Context with full-text length also

increases the training time and is likely to cause memory issues. To solve this,

I add a sub-module for Psycho-CIPN datasets to retrieve relevant sentences

which are then concatenated as new shorter passages, before training the

question answering models, see Figure 3.7.

Figure 3.7: Task formulation for interventions identification of Psycho-CIPN data.

The following sections describe the sentence retrieval module and classical

QA models including BiDAF (Seo et al., 2016), QANet (Yu et al., 2018), fine-

tuned DistilBERT (Sanh et al., 2019) and BERT (Devlin et al., 2018) with

different pre-trained weights.

3.3.1 Sentence Retrieval

The sentence retrieval module is designed analogically to the document

retriever (Chen et al., 2017) for the open-domain question answering task. The

114

open-domain question answering system takes a question as the only input

and the answers are obtained through several processes including documents

retrieval from the open-source knowledge base such as Wikipedia,

passages/snippets retrieval, re-ranking from the top relevant documents, and

answer span extraction from the top relevant snippets. Many retrieval modules

use unsupervised approaches to extract the most relevant passages/snippets

based on the ranked similarity scores between the question and each

passage/snippet (Semnani and Pandey, 2020). Analogously, I can calculate

the similarity scores between the question sentence and each sentence in the

full-text publication to obtain the most relevant sentences. However, questions

like ‘what is the intervention’ and ‘what is the method of model induction’ are

not informative enough to retrieve sentences, so I concatenate the original

question and the title of the publication to form a ‘new question’ for similarity

calculation, as demonstrated in Figure 3.7.

To calculate similarities, sentences should be converted to numerical vectors

and here I explore three representation methods: bag-of-words with TF-IDF

(Goldberg, 2017), bag-of-words with BM25 (Robertson and Zaragoza, 2009),

and Sentence-Transformers or Sentence-BERT (SBERT) (Reimers and

Gurevych, 2019). Bag-of-words with TF-IDF method uses word frequency with

normalisation of term and inverse document frequency to represent word

importance, as described in Section 2.3.1. The difference is now the whole

corpus is one full-text publication and the document is an individual sentence

in the publication. The TF-IDF weight of the word 𝑤𝑖 in the sentence 𝑠𝑗 is:

tfidf 𝑤𝑖, 𝑠𝑗 , 𝑆 =
𝑓 𝑤𝑖, 𝑠𝑗

𝑙 𝑠𝑗

× ln
𝑁(𝑠)

𝑛(𝑤𝑖)
(3. 1)

where 𝑓(𝑤𝑖, 𝑠𝑗) is the frequency of word 𝑤𝑖 in the sentence 𝑠𝑗 , 𝑙(𝑠𝑗) is the total

number of words in the sentence 𝑠𝑗 , 𝑁(𝑠) is the total number of sentences in

the full-text publication (corpus) 𝑆 , and 𝑛(𝑤𝑖) is the number of sentences

containing the word 𝑤𝑖. Similar to the risk of bias project, words can be counted

by unigram, bigram, or the combination of unigram and bigram.

115

BM25 is a modified version of TF-IDF weighting which takes the frequency

saturation and average sentence length into consideration. The BM25 weight

of the word 𝑤𝑖 in the sentence 𝑠𝑗 is calculated by:

bm25 𝑤𝑖, 𝑠𝑗 , 𝑆

=
(𝑘1 + 1)𝑓 𝑤𝑖, 𝑠𝑗

𝑓 𝑤𝑖, 𝑠𝑗 + 𝑘1 1 − 𝑏 + 𝑏
𝑙 𝑠𝑗

𝐿

× 𝑙𝑛
𝑁(𝑠) − 𝑛(𝑤𝑖) + 0.5

𝑛(𝑤𝑖) + 0.5
+ 1 (3. 2)

where constant 𝑘1 ∈ [1.2, 2] controls how much a single word can affect the

weight of a sentence, constant 𝑏 ∈ [0.5, 0.8] controls the effect of relative

sentence length compared to the average length (sentence length

normalisation), and 𝐿 is the average sentence length over corpus 𝑆

(Robertson and Zaragoza, 2009).

Sentence-BERT (SBERT) takes advantage of the powerful pre-trained

transformer-based model, BERT (Devlin et al., 2018), to derive semantically

meaningful sentence embeddings by averaging BERT output vectors of all

tokens in the sentence (Reimers and Gurevych, 2019). I explore six pre-trained

modules including 1) DistilBERT-NLI-STSb: DistilBERT (Sanh et al., 2019)

trained on the combination of the multi-genre Natural Language Inference

(NLI) dataset (Bowman et al., 2015), the Stanford Natural Language Inference

(SNLI) dataset (Williams et al., 2017) and Semantic Textual Similarity

benchmark (STSb) dataset (Cer et al., 2017); 2) DistilBERT-Marco: DistilBERT

trained on a large scale MAchine Reading Comprehension (MS MARCO)

dataset (Bajaj et al., 2016); 3) BERT-Base: the original BERT trained on the

combination of BookCorpus, and English Wikipedia; 4) BioBERT (Lee et al.,

2019): BERT trained on the combination of BookCorpus, English Wikipedia,

PubMed abstracts and PubMed Central full-text articles (mixed-domain

pretraining); 5) PubMedBERT-Abs: BERT trained on PubMed abstracts only,

and 6) PubMedBERT-Abs-Full on a combination of PubMed abstracts and

PubMed Central full-text articles (domain-specific pretraining) (Gu et al., 2020).

With the numerical sentence vectors, the similarity score of the question vector

𝑞 and the 𝑖 -th sentence vector in the full-text publication is calculated by

116

similarity(𝑞, 𝑠𝑖) =
𝑞∙𝑠𝑖

‖𝑞‖×‖𝑠𝑖‖
. Then the top 𝑘 sentences with the highest similarity

scores are concatenated to form a new passage for each context in the training

of QA models. Some open-domain QA systems also train a document or

passage re-ranker (Nogueira and Cho, 2019) to obtain more precise

passages. I do not apply this strategy here for two reasons. First, when the

answer consists of several intervention measures, one sentence may not

contain all the answer candidates. Some candidates are mentioned more

frequently than other candidates throughout the full-text publication, and

sentences containing the same most mentioned candidates may be ranked

higher than sentences containing the rest but less mentioned candidates,

which may leave some truly relevant sentences out when constructing the new

passage. Second, to train a sentence re-ranker, I need to know the true

relevance label of each sentence, which is not applicable in my datasets. The

relevance label could be generated by judging if the sentence contains the

answer strings but this strategy may introduce extra errors.

Metrics for Sentence Retrieval

A widely used metric of the general document retrieval tasks is the Mean

Average Precision (MAP). For one question (information need), average

precision (AP) is obtained from precisions of the top 𝑘 relevant documents (𝑘

is the pre-defined number of documents required to be retrieved in total). Then

MAP is obtained by taking the mean value of the average precisions of multiple

questions (information needs) (Manning et al., 2008). In the document retrieval

task, the dataset used for training usually provides the relevance/irrelevance

labels, which is different from my question answering datasets which do not

have any relevance annotations at the sentence level.

Therefore, I introduce and illustrate two modified metric scores based on

different definitions of ‘relevance’: sMAP (strict MAP) and rMAP (ratio MAP). I

explain these scores with an example demonstrated in Figure 3.8, where

seven sentences are retrieved for a question and the cyan/orange rectangle

117

shapes represent two answer candidates. The precision of the 𝑖-th sentence

is defined as

Precision𝑖 =
accumulated number of relevant sentences

accumulated number of retrieved sentences
(3. 3)

In the strict mode, a sentence is considered relevant only when it contains all

answer candidates (mark as 1). In the ratio mode, a sentence is considered

relevant when it contains at least one answer candidate, but the accumulated

relevance number is marked as the ratio of number of answer candidates

included to the total number of answers in the sentence .

Figure 3.8: An illustrated example for metric (mean average precision) calculation in

sentence retrieval. ‘Acc sents retrieved’ refers to the accumulated number of

retrieved sentences; ‘Acc relevant’ refers to the accumulated number of relevant

sentences.

Only precisions of relevant sentences are counted in the calculation of average

precisions for one single record:

AP =
∑ Precision𝑖 × Relevance𝑖

𝐾
𝑖=1

accumulated number of relevant sentences
(3. 4)

Relevance𝑖 = 1, ith sentence is relevant
0, else

(3. 5)

Therefore in the example, the strict-mode AP is
0
1
×0 + 0

2
×0 + 0

3
×0 + 1

4
×1 + 1

5
×0 + 2

6
×0 + 2

7
×0

2
= 29.2% , and the ratio-mode AP is

0.5
1

×1 + 0.5
2

×0 + 1
3
×1 + 2

4
×1 + 2.5

5
×1 + 3.5

6
×1 + 3.5

7
×0

3.5
= 69.0% . Then sMAP and rMAP are

118

calculated by averaging the strict and ratio APs across all records,

respectively.

MAP scores measure the retrieval performance at the sentence level which is

a little difficult to interpret for my task and datasets. Hence, I introduce another

metric, Mean Match Ratio (MMR), to measure the retrieval performance on the

entire passage (constructed from the relevant sentences). For one single

record, in the strict-mode, the match ratio (MR) is set to 1 if the passage

includes all the answer candidates, else zero; while in the ratio-mode, the

match ratio is equal to the percentage between the number of answer

candidates which can be found in the passage and the number of all true

answer candidates. Then MMR is calculated by averaging match ratios across

all records.

3.3.2 Question Answering Models

In this section, I present three question answering models: 1) Bidirectional

Attention Flow (BiDAF) (Seo et al., 2016), an influential milestone in the

question answering field, 2) QANet (Yu et al., 2018), a faster and the last

superior model before BERT (Devlin et al., 2018), and 3) fine-tuning BERT with

different pre-trained modules for the downstream question answering task. As

the input of QA models, questions and contexts are converted to numeric

representations. For BiDAF and QANet, I use the biomedical word2vec

(Pyysalo et al., 2013) to generate text embeddings, as described in Chapter 2

(see Section 2.3.1), and WordPiece tokenisation (Wu et al., 2016) for BERT

models.

3.3.2.1 BiDAF

I implement BiDAF as the baseline QA model. The original BiDAF architecture

includes three embedding layers for character embeddings, word embeddings

and contextual embeddings, an attention flow layer, a modelling layer, and an

output layer which are described in greater detail below. From the model

ablation analysis in the original study, the semantics information is mainly

represented by word-level embeddings and the absence of character-level

119

embeddings harms the performance by about 2% (Seo et al., 2016).

Considering the little improvement and the training size of my dataset, I do not

use character-level embeddings in the experiments and follow a simplified

architecture described in the Stanford CS 224N project handout (Francois

Chaubard, Michael Fang, Guillaume Genthial, Rohit Mundra, 2019), as shown

in Figure 3.9.

Figure 3.9: The architecture of the bidirectional attention flow (BiDAF) model.

Word embedding layer

The word embedding layer maps individual words in the context and question

into fixed dimension vectors, by the pre-trained biomedical word vectors

(Pyysalo et al., 2013). It generates a context representation 𝐶𝐸 ∈ ℝ𝑐𝑙𝑒𝑛×𝑑 and

120

a question representation 𝑄𝐸 ∈ ℝ𝑞𝑙𝑒𝑛×𝑑 , where 𝑐𝑙𝑒𝑛 is the number of tokens in

the context, 𝑞𝑙𝑒𝑛 is the number of tokens in the question, and 𝑑 is the

embedding dimension. Each row of 𝐶𝐸 and 𝑄𝐸 represents a word token in the

text. A linear projection is applied to change the dimension of representation

vectors from 𝑑 to ℎ:

𝐶𝐸 ∈ ℝ𝑐𝑙𝑒𝑛×𝑑 → 𝐶𝐸 ∈ ℝ𝑐𝑙𝑒𝑛×ℎ (3. 6)

𝑄𝐸 ∈ ℝ𝑞𝑙𝑒𝑛×𝑑 → 𝑄𝐸 ∈ ℝ𝑞𝑙𝑒𝑛×ℎ (3. 7)

where ℎ is the universal hidden dimension across the model.

Highway network layer

A two-layer highway network is then applied to refine context and question

representations. Highway network uses gates to control information flow,

which is designed to ease gradient-based training of very deep networks

(Srivastava et al., 2015). Highway network feeds the input 𝑥 to a transform

gate 𝑓𝐻 and a carry gate 𝑓𝐶 , which decides how much the information of input

is transformed or carried to generate the output:

𝑦 = 𝑓𝐻 (𝑥) ∙ 𝑓𝑇 (𝑥) + 𝑓𝐶(𝑥) ∙ 𝑥 (3. 8)

where 𝑓𝐻 and 𝑓𝑇 are functions consist of a linear projection followed by a non-

linear activation function:

𝑓𝐻 (𝑥) = ReLU(𝑊𝐻𝑥 + 𝑏𝐻) (3. 9)

𝑓𝑇 (𝑥) = Sigmoid(𝑊𝑇 𝑥 + 𝑏𝑇) (3. 10)

and the carry gate 𝑓𝐶 is set as 1 − 𝑓𝑇 (𝑥). After the highway network layer, the

context matrix and question matrix are converted from 𝐶𝐸 and 𝑄𝐸 to

 𝐶�̿� ∈ ℝ𝑐𝑙𝑒𝑛×ℎ and 𝑄�̿� ∈ ℝ𝑞𝑙𝑒𝑛×ℎ, respectively.

Encoder layer

121

The encoder layer uses a bidirectional LSTM to model the dependency

between words at different positions, and generate hidden states for the

context and question.

𝐶 = 𝐵𝑖𝐿𝑆𝑇𝑀 𝐶�̿� ∈ ℝ𝑐𝑙𝑒𝑛×2ℎ (3. 11)

𝑄 = 𝐵𝑖𝐿𝑆𝑇𝑀 𝑄�̿� ∈ ℝ𝑞𝑙𝑒𝑛×2ℎ (3. 12)

Attention flow layer

The attention flow layer is designed to connect and combine information

between context and question from both directions, by calculating the Context-

to-Question (C2Q) attention and Question-to-Context (Q2C) attention. Both

attentions are calculated based on a similarity matrix 𝑆 ∈ ℝ𝑐𝑙𝑒𝑛×𝑞𝑙𝑒𝑛. The

similarity score of the 𝑖-th token in the context and the 𝑗-th token in the question

is computed by:

𝑆𝑖𝑗 = 𝑊𝑠 𝐶𝑖:; 𝑄:𝑗; 𝐶𝑖: ∘ 𝑄:𝑗 ∈ ℝ (3. 13)

where 𝐶𝑖: ∈ ℝ2ℎ is the 𝑖-th row of the context hidden states 𝐶 from the encoder

layer output, 𝑄:𝑗 ∈ ℝ2ℎ is the 𝑗-th column of the question hidden states 𝑄 from

the encoder layer output, and 𝑊𝑠 ∈ ℝ6ℎ is the weight vector.

To calculate the C2Q attention, we first take the row-wise softmax of the

similarity matrix 𝑆 to obtain 𝑆̅ ∈ ℝ𝑐𝑙𝑒𝑛×𝑞𝑙𝑒𝑛, where the 𝑖-th row of 𝑆, i.e. 𝑆𝚤: ∈

ℝ𝑞𝑙𝑒𝑛 , indicating the importance of each question token to the 𝑖-th context

token. Then the C2Q attention output 𝐴 is generated by:

𝐴 = 𝑆̅𝑄 ∈ ℝ𝑐𝑙𝑒𝑛×2ℎ (3. 14)

where each row refers to the context token representation weighted by the

question attentions.

Similarly, to calculate the Q2C attention, we take the column-wise softmax of

the similarity matrix 𝑆 to obtain 𝑆̿ ∈ ℝ𝑐𝑙𝑒𝑛×𝑞𝑙𝑒𝑛, where the 𝑗-th column of 𝑆̿, i.e.

122

𝑆:𝚥
̿ ∈ ℝ𝑐𝑙𝑒𝑛, indicating the importance of each context token to the 𝑗-th question

token. Then the Q2C attention output 𝐵 is generated by:

𝐵 = 𝑆̅𝑆̿𝑇 𝐶 ∈ ℝ𝑐𝑙𝑒𝑛×2ℎ (3. 15)

Finally, the context hidden states 𝐶, the C2Q attention output 𝐴 and the Q2C

attention output 𝐵 is combined to generate the output of the bidirectional

attention flow layer:

𝐺 = [𝐶; 𝐴; 𝐶 ∘ 𝐴; 𝐶 ∘ 𝐵] ∈ ℝ𝑐𝑙𝑒𝑛×8ℎ (3. 16)

Modelling layer

The modelling layer uses a two-layer bidirectional LSTM to capture the

dependencies between context tokens weighted by the question attentions

and question tokens weighted by the context attentions. The structure is similar

to that of the encoder layer, and the difference is the context hidden states are

no longer independent with question hidden states. The hidden size in the

modelling layer is set to ℎ and the modelling layer output is calculated by:

𝑀 = BiLSTM(𝐺) ∈ ℝ𝑐𝑙𝑒𝑛×2ℎ (3. 17)

Output layer

To extract the answer from the context, I need to locate the relative answer

position, which is obtained by generating distributions across context tokens

for the answer start token and the answer end token separately. The output

layer produces the probabilities of the start token and end token by

𝑝𝑠𝑡𝑎𝑟𝑡 = Softmax(𝑊𝑠𝑡𝑎𝑟𝑡[𝐺; 𝑀]) ∈ ℝ𝑐𝑙𝑒𝑛 (3. 18)

𝑝𝑒𝑛𝑑 = Softmax(𝑊𝑒𝑛𝑑 𝐺; 𝑀) ∈ ℝ𝑐𝑙𝑒𝑛 (3. 19)

where 𝑀 ∈ ℝ𝑐𝑙𝑒𝑛×2ℎ is the output from another bidirectional LSTM module.

The model is trained to minimise the sum of the cross-entropy loss for the

answer start and end indices:

𝐿𝑜𝑠𝑠 = CrossEntropy(𝑝𝑠𝑡𝑎𝑟𝑡, 𝑦𝑠𝑡𝑎𝑟𝑡) + CrossEntropy(𝑝𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑)

123

=
−1

𝑐𝑙𝑒𝑛

𝑦𝑠𝑡𝑎𝑟𝑡 log(𝑝𝑠𝑡𝑎𝑟𝑡) + (1 − 𝑦𝑠𝑡𝑎𝑟𝑡) log(1 − 𝑝𝑠𝑡𝑎𝑟𝑡)
+𝑦𝑒𝑛𝑑 log(𝑝𝑒𝑛𝑑) + (1 − 𝑦𝑒𝑛𝑑) log(1 − 𝑝𝑒𝑛𝑑)]

𝑐𝑙𝑒𝑛

𝑖=1

(3. 20)

where 𝑦𝑠𝑡𝑎𝑟𝑡, 𝑦𝑒𝑛𝑑 ∈ ℝ𝑐𝑙𝑒𝑛 are the one-hot vectors indicating the true positions of

answer start token and answer end token. For evaluation, I obtain the answer

start index idx𝑠𝑡𝑎𝑟𝑡 and the answer end index idx𝑒𝑛𝑑 from the pairwise elements

in (𝑝𝑖,𝑠𝑡𝑎𝑟𝑡 , 𝑝𝑖,𝑒𝑛𝑑) which has the maximum joint probability 𝑝𝑖,𝑠𝑡𝑎𝑟𝑡 × 𝑝𝑖,𝑒𝑛𝑑 , 𝑖 =

1, … , 𝑐𝑙𝑒𝑛 , subject to the constraints idx𝑠𝑡𝑎𝑟𝑡 < idx𝑒𝑛𝑑 and idx𝑒𝑛𝑑 − idx𝑠𝑡𝑎𝑟𝑡 <

maximum answer length. I then convert idx𝑠𝑡𝑎𝑟𝑡 and idx𝑒𝑛𝑑 back to the actual

text tokens and compare it with the true answer text. The calculation details of

the evaluation metrics are described in Section 3.3.2.4.

3.3.2.2 QANet

QANet (Yu et al., 2018) is another classical question answering model which

has a similar structure to BiDAF but replaces the recurrent modules (LSTM

blocks) by the depthwise separable convolution (Kaiser et al., 2017) and self-

attention mechanism (Vaswani et al., 2017). The motivation to remove

recurrent blocks is to speed up the training process and provide the possibility

to inject more attention modules. From the architecture demonstrated in Figure

3.10, the input embedding layer, attention flow layer and output layer are same

as that of BiDAF, while the embedding encoder layer and modelling encoder

layer are different which are described in greater detail below.

The main elements in the embedding encoder layer and modelling encoder

layer are the stacked encoder blocks which consist of repeated separable

depthwise convolution layers, a self-attention layer and a feedforward network

followed with layer normalisation each (see the blue block in the right top of

Figure 3.10). The positional encoding input, multi-head self-attention and

feedforward network are same as described in the transformer architecture

(see Section 2.3.4.1).

124

Figure 3.10: The architecture of QANet model.

The depthwise separable convolution is proposed to reduce the number of

operations for more efficient training (Chollet, 2017). I demonstrate the

advantage of depthwise separable convolution over normal convolution by an

example displayed in Figure 3.11. The sequence in the example consists of 7

tokens and each token is represented by a 4-dimensional vector, so the

sequence is encoded by a matrix ∈ ℝ7×4 . After padding, the normal

convolution uses two filters ∈ ℝ3×6 to generate a new representation matrix ∈

ℝ7×2 for the sequence, which involves 3 × 6 × (9 − 3 + 1) × 2 = 252

multiplications. In the depthwise separate convolution, the padded input matrix

125

is first passed to the depthwise convolution, using four separate filters ∈ ℝ3×1

to move vertically through the matrix and generate an intermediate

representation matrix ∈ ℝ7×4 ; then to the pointwise convolution, using two

filters ∈ ℝ3×1 to generate the final output matrix ∈ ℝ7×2 of the whole

convolution operation. The two separate convolutions involve 4 × 3 × (9 − 3 +

1) + 7 × 4 × 2 = 140 multiplications, which are almost half less than the normal

convolution. Applying depthwise separable convolution is more beneficial

when the sequence length, hidden dimension or the number of filters is large.

In my implementation, for dimension consistency, the depthwise separable

convolution is also applied as the connection between the input embedding

layer and embedding encoder layer, and between the context-question

attention layer and modelling encoder layer, which is not explicitly described

in the original work of QANet (Yu et al., 2018).

Figure 3.11: A comparison of the normal convolution and depthwise separable

convolution which includes the depthwise convolution and pointwise convolution.

Another difference between QANet and BiDAF is how to generate the output

matrix 𝑀 of the modelling layer from the output 𝐺 of the context-question

126

layer, which will be used to calculate probabilities of answer start token and

answer end token.

BiDAF uses two different encoders (LSTMs) to generate separate 𝑀 and 𝑀 ,

while QANet uses three identical encoders (stacked encoder blocks described

earlier) which share the same weights to generate 𝑀0 , 𝑀1 and 𝑀2

sequentially:

𝑀0 = ModelEncoder(𝐺) (3. 21)

𝑀1 = ModelEncoder 𝑀0 (3. 22)

𝑀2 = ModelEncoder 𝑀1 (3. 23)

Then the probabilities of the answer start tokenand answer end token from the

output layer are computed by

𝑝𝑠𝑡𝑎𝑟𝑡 = Softmax(𝑊𝑠𝑡𝑎𝑟𝑡 𝑀0; 𝑀1) (3. 24)

𝑝𝑒𝑛𝑑 = Softmax(𝑊𝑒𝑛𝑑 𝑀0; 𝑀2 (3. 25)

The training loss calculation and evaluation methods from these probabilities

are same as that of BiDAF (see Section 3.3.2.1).

3.3.2.3 Fine-tuning BERT

Transformer models like BERT (Devlin et al., 2018) or DistilBERT (Sanh et al.,

2019) can be also trained for question answering tasks. As Figure 3.12 shows,

words in each context-question pair are concatenated, tokenised by

WordPiece (Wu et al., 2016) and then encoded into embeddings as input,

where ‘[CLS]’ refers to the conventional classification token and ‘[SEP]’

represents the segmentation of the context and question sequences.

BERT/DistilBERT combined with a linear layer is then fine-tuned to generate

log probabilities for each token, and the indexes of answer tokens are inferred

from the maximum joint probabilities (𝑝𝑠𝑡𝑎𝑟𝑡*𝑝𝑒𝑛𝑑), subject to idx𝑠𝑡𝑎𝑟𝑡 < idx𝑒𝑛𝑑 and

idx𝑒𝑛𝑑 − idx𝑠𝑡𝑎𝑟𝑡 < maximum answer length. For pre-trained modules, I explore

similar modules as described in Section 3.3.1, including DistilBERT-Base

127

(Sanh et al., 2019), BERT-base (Devlin et al., 2018), BioBERT-Base (Lee et

al., 2019), PubMedBERT-Abs, and PubMedBERT-Abs-Full (Gu et al., 2020).

Figure 3.12: Fine-tuning BERT/DistilBERT with a linear layer for question answering.

‘E’ and ‘P’ refers to the embedding and probability of each token in the sequence,

respectively.

3.3.2.4 Evaluation Metrics

Metrics for factoid-type dataset

For the MND dataset and Psycho-CIPN-factoid dataset which have only one

answer for each question, i.e. factoid-type datasets, the performance of a QA

model is assessed by the Exact Match (EM) score and F1 score. For each

context-question record, EM is marked as 1 if the predicted answer string is

exactly same as the true answer string; otherwise 0. To calculate F1 score, I

first compute the individual precision and recall for each record by:

𝑝𝑖
factoid =

number of predicted tokens which belong to the true tokens

number of predicted tokens
(3. 26)

𝑟𝑖
factoid =

number of predicted tokens which belong to the true tokens

number of true tokens
(3. 27)

For example, in one record, if the true answer is "timed light therapy", and the

predicted answer from the model is "light therapy", then the precision score is

128

2/2 = 100% (because the predicted answer tokens "light" and "therapy" all

belong to the true answer tokens), and the recall is 2/3 = 66.7% (because the

model predicts two tokens out of the true answer tokens). Then the individual

F1 score is the harmonic mean of precision and recall: 𝐹1𝑖
factoid =

2 × 𝑝𝑖
factoid × 𝑟𝑖

factoid (𝑝𝑖
factoid + 𝑟𝑖

factoid). The overall EM and F1 scores are then

obtained by averaging all individual EM and F1 scores across the entire

evaluation set.

Metrics for list-type dataset

For the Psycho-CIPN-list dataset, each sub-record is learned to generate

fixed-number answer candidates, which are then concatenated into an answer

list for the parent record. A threshold is used to filter answer candidates in the

list: candidates with the joint probabilities higher than the threshold form the

final answer list for the parent record. Although the training process is

conducted on the sub-records, the evaluation should be performed on the

parent record.

As the parent record may have more than one answer candidate and each

candidate may consist of several tokens, I first calculate precision and recall

for every pair of true and predicted answer candidates:

𝑝𝑖
list =

1

𝑇𝐾
𝑝𝑡,𝑘

factoid𝐾

𝑘=1

𝑇

𝑡=1
(3. 28)

𝑟𝑖
list =

1

𝑇𝐾
𝑟𝑡,𝑘

factoid𝐾

𝑘=1

𝑇

𝑡=1
(3. 29)

where 𝑇 is the number of true answer candidates, 𝐾 is the number of

predicted answer candidates; 𝑝𝑡,𝑘
factoid (𝑟𝑡,𝑘

factoid) refers to the precision (recall) of

the 𝑡-th candidate in the true answer list and the 𝑘-th candidate in the predicted

answer list, as how the precision (recall) for each factoid-type record is

calculated. Then F1 score of the 𝑖 -th record is 𝐹1𝑖
list =

2 × 𝑝𝑖
list × 𝑟𝑖

list (𝑝𝑖
list + 𝑟𝑖

list). For example, in one record, the true answer

candidates are [“isolation rearing”, “DNA dopamine aptamer”, “clozapine”] and

129

the predicted answer candidates are [“clozapine”, “dopamine aptamer”]. After

calculating the precision and recall of each pairwise candidates (Table 3.2),

the precision of this record is (1+2/2)/6 = 33%, and recall is (1+2/3)/6 = 28%,

so the F1 score is 2*33%*28%/(33%+28%) = 30%.

 Pred
True

clozapine
dopamine,
aptamer

isolation,
rearing

p = 0
r = 0

p = 0
r = 0

DNA,
dopamine,
aptamer

p = 0
r = 0

p = 2/2
r = 2/3

clozapine
p = 1
r = 1

p = 0
r = 0

Table 3.2: An example of precision and recall calculation for each pair of true and

predicted answer candidates in one list-type record with multiple answer candidates.

The overall F1 score is then obtained by averaging all the individual F1 scores

across the evaluation set.

3.4 Experiments

Processed datasets are available in the Intervention/Induction Identification by

Question Answering repository (osf.io/wr4xa) and codes of experiments are

available at github.com/qianyingw/bioqa.

3.4.1 Experiments of Sentence Retrieval

I apply three sentence retrieval methods for the overall 1,225 Psycho-CIPN

records (pre-processed Psycho-CIPN-list dataset before splitting into sub-

records) and 796 factoid-type records. For TF-IDF and BM25 methods, stop

words and punctuations are removed, and tokenisation is implemented via

scispaCy (Neumann et al., 2019). SBERT uses WordPiece tokenisation (Wu

et al., 2016) like most transformer models. Sentence retrieval and ranking are

implemented using scikit-learn (Pedregosa et al., 2011), Gensim (Rehurek and

Sojka, 2010) and Sentence-Transformers (Reimers and Gurevych, 2019) for

three retrieval methods respectively. As a default configuration, I use unigram

130

features in TF-IDF and ‘DistilBERT-NLI-STSb’ for the pre-trained weights in

SBERT.

I explore the effect of number of sentences on the strict mean match ratio

(sMMR) and strict mean average precision (sMAP) among three retrieval

methods. For the overall 1,225 Psycho-CIPN records, around 65% of

passages concatenated from the top 5 relevant sentences contain all answer

candidates, and achieving 90% of the strict mean match ratio requires over 30

sentences to be extracted. For the 796 factoid records, around 75% of

passages concatenated from the top 5 relevant sentences contain all answer

candidates and achieving 90% of the strict mean match ratio requires over 20

sentences to be extracted. In the overall dataset, SBERT shows slightly better

performance than TF-IDF and BM25, with an average 1.8% and 2.8%

improvement respectively; while in the factoid dataset, the improvements are

less obvious (2.1% and 0.9% respectively), as demonstrated in Figure 3.13

and Appendix Table 10-11. The strict mean average precision shows a

decreasing trend when the number of extracted sentences increases, for all

three retrieval methods in two datasets. This is because compared to the

increased relevance of answers included, the number of sentences retrieved

has a larger impact on the average precisions. SBERT outperforms other two

methods with strict mean average precision improved by between 2% and 7%.

131

Figure 3.13: Effect of number of sentences extracted on strict mean match ratio

(sMMR) and strict mean average precision (sMAP) for three sentence retrieval

methods. Charts on the left are from the Psycho-CIPN-factoid dataset; charts on the

right are from the overall Psycho-CIPN dataset (Psycho-CIPN-list dataset before

splitting into sub-records).

I also explore the effect of n-grams in TF-IDF and the effect of pre-trained

modules in SBERT, as shown in Table 3.3. TF-IDF with unigram performs

better than that with bigram (2.4% improvement of strict mean match ratio) or

its combination with bigram (0.6% improvement). For SBERT method, different

pre-trained modules do not show much difference, but ‘DistilBERT-NLI-STSb’

gives slightly better scores and also spends at least twice less time than other

modules. Therefore, I use SBERT with ‘DistilBERT-NLI-STSb’ as the final

choice for the retrieval module to extract sentences and construct the input of

the next question answering stage. For the Psycho-CIPN-factoid dataset, I use

the passages concatenated from the top 20 sentences retrieved from the full

132

texts, with sMMR of 91.5%; while for the Psycho-CIPN-list dataset, I use the

passages are concatenated from the top 30 sentences, with sMMR of 90.7%.

Method Setting sMMR rMMR sMAP rMAP

TF-IDF

Unigram 88.7 91.5 36.3 46.8

Bigram 86.3 89.5 33.6 42.9

Uni- & Bi-gram 88.1 91.2 35.6 45.9

SBERT

DistilBERT-NLI-STSb 90.7 93.4 40.0 51.6

DistilBERT-Marco 90.0 92.7 41.1 53.7

BERT-Base 90.1 93.0 41.5 54.4

BioBERT 89.4 92.5 43.2 55.6

PubMedBERT-Abs 89.1 91.7 37.9 50.0

PubMedBERT-Abs-Full 87.7 91.0 38.3 50.5

Table 3.3: Effect of n-grams for TF-IDF method and pre-trained modules for SBERT

on sentence retrieval performance. sMMR (rMMR) refers to strict (ratio) mean match

ratio, and sMAP (rMAP) refers to strict (ratio) mean average precision. Here sMMR

is the most important metric as it directly indicates whether the new passage

contains the exact answer tokens.

3.4.2 Experiments of Question Answering Models

For all three models (BiDAF, QANet and fine-tuning BERT), parameters are

trained to minimise the sum of the cross-entropy loss of answer start and

answer end tokens using AdamW algorithm (Loshchilov and Hutter, 2017). I

apply gradient clipping with the threshold norm 0.1 to rescale gradients and

use gradient accumulation every 4 mini-batches to reduce memory

consumption. The warm-up fraction in the slanted triangular learning rate

scheduler (Howard and Ruder, 2018) is set to 0.1. Dropout rate is set to 0.1

for all models. The maximum number of tokens in an answer string is 15. All

three datasets (MND, Psycho-CIPN-factoid, and Psycho-CIPN-list) are split

into train (80%), validation (10%) and test (10%) set separately. Scores from

the epoch with the minimum validation loss are recorded for comparison.

133

3.4.2.1 Experiments of BiDAF

For both two factoid datasets (MND and Psycho-CIPN-factoid), batch size is

set to 32. Models are trained for 20 epochs. I explore the threshold learning

rate in the slanted triangular scheduler and set it to 1e-3 in the end. The

similarity matrix in the attention flow layer is initialised using Kaiming

initialisation (He et al., 2015). For the Psycho-CIPN-list dataset, I set the

maximum number of answers extracted from each sub-records to 5 and the

threshold learning rate to 1e-4. Models are trained for 40 epochs. I tune the

threshold for filtering answer candidates and use 0.1 as the final choice which

yields the highest F1 score of 13.9%, as demonstrated in Figure 3.14.

Figure 3.14: Validation performance of BiDAF model with different answer

thresholds on the preclinical Psycho-CIPN-list dataset.

With other configurations unchanged, I tune the universal hidden dimension in

the model among {32, 64, 128, 256, 512} and the validation performance are

reported in Table 3.4. I do not explore a larger dimension because of the over-

fitting issue. The BiDAF model achieves good performance on MND data, with

the highest exact match around 60% and F1 around 80%. When the hidden

dimension increases from 64 to 512, the validation F1 changes by between

2% and 6%. For the Psycho-CIPN-factoid dataset, the best performance is

achieved when the hidden dimension is 512, with F1 around 40%. Models

134

achieve poor performance on the Psycho-CIPN-list data, with F1 of only 13%,

and the effect of the hidden dimension is trivial when the dimension changes

from 128 to 512, with the fluctuation of F1 within 2%.

Dataset Dimension EM F1 Recall Precision

MND

32 35.2 59.8 61.5 71.5

64 58.8 76.6 76.8 82.6

128 56.8 76.1 75.5 84.7

256 61.3 79.0 79.6 85.0

512 54.8 76.9 78.9 85.0

Psycho-CIPN

-factoid

32 26.6 27.2 27.0 27.8

64 31.6 32.6 33.3 33.1

128 38.0 38.0 38.0 38.0

256 39.2 39.2 39.2 39.2

512 41.8 41.8 41.8 41.8

Psycho-CIPN

-list

32* -- 5.9 7.3 5.4

64* -- 7.6 10.1 6.5

128 -- 12.0 14.2 11.1

256 -- 13.8 16.1 12.7

512 -- 12.4 14.5 11.5

Table 3.4: Validation performance of BiDAF model with different hidden dimensions

on the clinical MND dataset and preclinical Psycho-CIPN-factoid/list dataset. * For

the Psycho-CIPN-list dataset, I increase the threshold learning rate to 1e-3 when the

hidden dimension equals 32 or 64, because models with learning rate 1e-4 do not

converge after 40 epochs.

3.4.2.2 Experiments of QANet

I use the same setting as described in the original QANet model (Yu et al.,

2018): in the embedding encoder layer, the number of separable convolution

layers is 4, filter size is 7 and the number of blocks in the encoder is 1; in the

modelling encoder layer, the number of separable convolution layers is 2, filter

size is 5 and number of blocks in the encoder is 7. Models are trained for 20

epochs. The similarity matrix in the attention flow layer is initialised using

135

Kaiming initialisation (He et al., 2015) with the values of weights 𝑊 following

a normal distribution 𝑊 ~𝑁[0, 2

ℎ
]. I try different threshold learning rates in the

slanted triangular scheduler and set the value to 1e-4 for MND and Psycho-

CIPN-list data, and 1e-3 for Psycho-CIPN-factoid data. I also explore different

maximum context length (number of tokens in the context) and set the value

to 512 for MND and 768 for Psycho-CIPN data. Batch size is set to 16. For

Psycho-CIPN-list dataset, the number of answers extracted from each sub-

records is 5. I tune the threshold for filtering answer candidates and value 0.13

achieves the highest F1 score of 14.8%, as demonstrated in Figure 3.15.

Figure 3.15: Validation performance of QANet model with different answer threshold

on the Psycho-CIPN-list dataset.

I tune the number of encoder blocks in the model encoder layer and the

performance is reported in Table 3.5. For MND data, the highest F1 (79.9%)

is achieved by 7 blocks in the model encoder; while for Psycho-CIPN-factoid

data, the highest F1 (45.6%) is achieved by 5 blocks. The deficiency in the

performance of models with a small number of blocks is larger in Psycho-

CIPN-factoid data than that in MND data, with 6% and 12% reduction of F1

respectively. However, for Psycho-CIPN-list data, the model using one block

in the model encoder yields the best performance. Compared to BiDAF (Table

136

3.4), the validation F1 is slightly improved by 0.9%, 3.8% and 1% for MND,

Psycho-CIPN-factoid and Psycho-CIPN-list datasets respectively.

Dataset No. blocks EM F1 Recall Precision

MND

7 65.8 79.9 83.2 84.3

5 62.8 78.6 84.3 81.5

3 62.3 79.2 84.0 83.8

1 59.3 75.8 80.2 80.9

Psycho-CIPN

-factoid

7 44.3 44.5 45.6 44.4

5 45.6 45.6 45.6 45.6

3 31.6 31.6 31.6 31.6

1 32.9 32.9 32.9 32.9

Psycho-CIPN

-list

7 -- 12.3 15.7 10.7

5 -- 14.1 17.2 12.6

3 -- 14.1 18.1 12.2

1 -- 14.8 18.2 13.3

Table 3.5: Validation performance of QANet model with different number of blocks in

the model encoder layer on the clinical MND dataset and preclinical Psycho-CIPN-

factoid/list dataset.

3.4.2.3 Experiments of Fine-tuning BERT

For all three datasets, bath size is set to 32 and the threshold learning rate in

the slanted triangular scheduler is set to 5e-5. For the MND dataset, models

are trained for 20 epochs for all pre-trained modules; for Psycho-CIPN-

factoid/list datasets, models are trained for 30 epochs for the DistilBERT-Base

and BERT-Base modules, 20 epochs for BioBERT-Base, and 40 epochs for

the PubMedBERT-Abs and PubMedBERT-Abs-Full modules. These are

determined based on the learning curves from some initial experiments. For

the Psycho-CIPN-list dataset, I set the number of answers extracted from each

sub-records to 5. I also explore extracting 3 or 7 answers, but the changes in

performance are negligible. I tune the threshold for filtering answer candidates

137

in the BERT/DistilBERT model and use 0.32 as the final value as it achieves

the highest F1 score of 30.8%, as demonstrated in Figure 3.16.

Table 3.6 demonstrates the validation performance of fine-tuning

BERT/DistilBERT with different pre-trained modules on three datasets. For the

MND data, all five modules achieve good performance with F1 over 84%, and

BioBERT and PubMedBERT pre-trained on abstracts give the highest F1

score of 88%. For the Psycho-CIPN-factoid data, fine-tuning PubMedBERT

pre-trained only on the abstracts yields the highest F1 score of 92%, while fine-

tuning the module pre-trained on the combination of abstracts and full texts

reduces the validation F1 by 3%. The other three pre-trained modules harm

the performance severely, where F1 declines by around 20%, particularly for

that of BioBERT, which has the poorest F1 of 66%. The performance on the

Psycho-CIPN-list dataset is much lower than that of factoid-type datasets, as

it is more difficult to filter the accurate number of answer candidates and extract

strings. The best performances are achieved by the two PubMedBERT

modules, with F1 around 44%. The performance of BioBERT is slightly lower

(1.5% reduction), while that of DistilBERT and BERT-Base are 15% lower,

compared to the best module.

Figure 3.16: Validation performance of DistilBERT model with different answer

thresholds on the Psycho-CIPN-list dataset.

138

Dataset Pre-trained module EM F1 Recall Precision

MND

DistilBERT-Base 76.9 87.4 88.1 89.7

BERT-Base 73.9 84.1 85.0 86.0

BioBERT-Base 78.4 88.0 88.0 91.0

PubMedBERT-Abs 78.4 88.0 88.4 90.3

PubMedBERT-Abs-Full 76.4 86.6 88.3 88.3

Psycho-CIPN

-factoid

DistilBERT-Base 68.4 68.4 68.4 68.4

BERT-Base 70.9 70.9 70.9 70.9

BioBERT-Base 65.8 65.8 65.8 65.8

PubMedBERT-Abs 91.1 92.4 92.8 92.8

PubMedBERT-Abs-Full 89.9 89.9 89.9 89.9

Psycho-CIPN

-list

DistilBERT-Base -- 30.8 32.9 29.8

BERT-Base -- 28.9 30.8 28.0

BioBERT-Base -- 42.9 44.6 42.1

PubMedBERT-Abs -- 44.4 46.5 43.3

PubMedBERT-Abs-Full -- 43.7 45.6 42.9

Table 3.6: Performance of fine-tuning BERT/DistilBERT with different pre-trained

modules on the clinical MND dataset and preclinical Psycho-CIPN-factoid/list

dataset.

139

3.4.3 Overall Performance

Table 3.7 demonstrates the overall validation performance of BiDAF, QANet

and BERT with the corresponding optimal settings on the MND and Psycho-

CIPN-factoid/list datasets. Compared to BiDAF and QANet, BERT with the

optimal pre-trained module improves the performance significantly, particularly

for the preclinical datasets, by 50% for the factoid-type data and 30% for the

list-type data. Fine-tuning BERT also requires less parameter tuning and

achieves lower loss easily without overfitting, as shown in the learning curves

in Figure 3.17.

Dataset Model EM F1 Recall Precision

MND

BiDAF 61.3 79.0 79.6 85.0

QANet 65.8 79.9 83.2 84.3

BioBERT-Base 78.4 88.0 88.0 91.0

Psycho-CIPN

-factoid

BiDAF 41.8 41.8 41.8 41.8

QANet 45.6 45.6 45.6 45.6

PubMedBERT-Abs 91.1 92.4 92.8 92.8

Psycho-CIPN

-list

BiDAF -- 13.9 16.7 12.5

QANet -- 14.8 18.2 13.3

PubMedBERT-Abs -- 44.4 46.5 43.3

Table 3.7: Overall validation performance of BiDAF, QANet and BERT with their

optimal settings on the clinical MND, preclinical Psycho-CIPN-factoid/list datasets.

140

Figure 3.17: Learning curves of BiDAF, QANet and BERT models with their optimal

settings on three datasets. Solid and dash lines represent training curves and

validation curves separately.

3.5 Discussion

3.5.1 Streamlit Interface

For a potential application, I develop an answer extraction module for

identifying intervention and method of model induction in preclinical abstracts

or full texts. In real-world cases, we cannot know how many interventions or

141

methods of induction are described in an abstract or a full-text paper, so

models developed for MND and Psycho-CIPN-factoid datasets aiming to

extract only one answer are not suitable. Hence, I build the answer extraction

module using the best model trained for the Psycho-CIPN-list dataset, which

can extract a list of answer candidates (test performance: 48.3% of F1, 51.6%

of recall, 46.6% of precision; see validation performance in Table 3.7). If the

input text is an abstract or a paragraph with abstract length, answers can be

extracted by the question answering model directly, as demonstrated in the

interface developed via Streamlit (Figure 3.18). If the input text is a full-text

paper converted from PDF, the module first cleans the text including removing

references and sections before ‘Introduction’, lines with

digits/punctuations/line character only, and non-ASCII characters. Users are

required to input the title for the sentence retrieval function constructed on

SBERT with the ‘DistilBERT-NLI-STSb’ pre-trained module. 30 sentences

extracted from the cleaned text are then concatenated as the final context for

the question answering model. The maximum number of answer candidates

are determined by users (5 candidates in default), and candidates consist of

digits, punctuations and stop words only are removed from the final answer

list. Relevant contexts for intervention and method of induction are also

displayed to provide clues for users.

142

Figure 3.18: A demonstration Streamlit interface for intervention/induction

identification in preclinical text.

3.5.2 Error Analysis

I randomly select 10 preclinical publications to inspect the answer extraction

function. For each publication, I obtain the predicted answer candidates in two

ways: 1) upload only abstract, and obtain 10 candidates from the abstract; 2)

upload the full text converted from PDF, input title, get relevant sentences and

obtain 10 candidates from the text concatenated from those sentences. I

compare the two candidate lists and find that for some records, answers

extracted from the abstract are more accurate than answers extracted from

the ‘shortened’ full text; while for other records, vice versa. It may depend on

whether the abstract mentions intervention or induction, and whether the

sentence retrieval module can detect the true relevant sentences. The module

sometimes ranks sentences from the introduction and discussion sections

143

higher than sentences from the method or result sections, which are unlikely

to be the best answer positions and may affect the accuracy of the answer

extraction.

The main error is the module does not handle well with the boundary of answer

strings. Some of the difficulties are from the punctuations in some chemical

names. For example, the true interventions of a publication is ‘WIN 55,212-2’

and ‘minocycline’, while the top 5 answer candidates predicted from my

module are {'WIN', 'WIN 55, 212', 'WIN 55, 212-', '55, 212-2', '212-2', 'WIN 55',

', 212-2', '-2', 'in the present', 'in the present study'}. It does not identify the full

string of ‘WIN 55,212-2’, and ranks several pieces of the string as the top

candidates. This may make other potential candidates do not appear at the top

of the list. Another error is the module does not capture the complete name of

abbreviations. For instance, a method of model induction is ‘Stable Tubule

Only Peptide’ which is abbreviated as ‘STOP’. 5 out of 10 answer candidates

contain ‘STOP’ but none of the candidates contains the full name. For users

who do not check context may not know the meaning of the abbreviation

defined by authors.

3.5.3 Limitation and Future Work

The work has several limitations. First, the preclinical dataset is limited to two

diseases (psychosis disorder and chemotherapy-induced peripheral

neuropathy). Although there are 518 unique interventions and 79 unique

induction methods in the overall 1,225 records, the optimal models,

experiments and their performance are still task-dependent, and may not

generalise enough to be applied to other diseases. Second, I use the first

answer match in the context concatenated from retrieved sentences to obtain

the plausible answer position, which induces extra noises. In some cases, the

module does extract the true answer string, but most sentences in the context

are from the introduction and discussion sections, which may not be the most

appropriate places. Last, in the sentence retrieval module, I use the

combination of question and title to extract relevant sentences, while I believe

there should be better retrieval strategies. For example, using only biomedical

144

entities in the title to retrieve sentences would change the performance. Similar

to the project of risk of bias assessment, all texts are converted from PDFs by

Xpdf. The datasets do not contain PMIDs or PMCIDs of publications, which

can be used to search the PubMed XML files to extract the method and result

sections.

In future work which aims to extract PICO elements from preclinical

publications using question answering methods, datasets with more precise

annotations are necessary. The annotations can be the exact string position in

the full texts, passages, or complete text snippets/sentences which can be

located or retrieved easily. For cases where it is difficult to determine the most

‘appropriate’ position, separate annotation of relevant sentences can be

provided. This can provide more flexible strategies for information retrieval and

answer extraction modules. To develop more generalisable modules, datasets

should also involve a wider range of preclinical studies, include more diverse

disease models and mechanistic experiments.

3.6 Summary

In this chapter, I demonstrate three question answering models for identifying

intervention and induction measures from clinical abstracts and preclinical full-

text publications, including BiDAF, QANet and fine-tuning BERT with different

pre-trained weights. For preclinical full texts, to obtain shorter passages, I also

explore three information retrieval methods (TF-IDF, BM25 and biomedical

BERT embeddings) to extract relevant sentences, and the best retrieval

method (biomedical BERT embeddings) require 30 sentences to be extracted

to contain the answer strings. All three question answering models achieve

good performance for clinical abstracts focusing on MND disease (F1 around

80%), while fine-tuning biomedical BERT significantly outperforms BiDAF and

QANet on preclinical publications focusing on psychosis disorder and

chemotherapy-induced peripheral neuropathy, for both factoid and list type

datasets. With some pre-processing and post-processing procedures, the

question answering module can extract multiple answer candidates for one

145

publication, although the prediction module tends to put string candidates

containing the same keyword on top of the answer list rather than other

potential intervention/induction methods. Datasets focusing on a wider range

of disease or mechanisms, and more granular sentence annotations to locate

answers are necessary to develop question answering models for PICO

extraction.

146

Chapter 4 Extracting PICO Elements in

Preclinical Text: Named Entity

Recognition

In the previous chapter, I apply question answering models to extract

interventions or methods of induction of disease model from clinical abstracts

and preclinical full texts, which achieves satisfactory performance for records

with only one answer candidate. The performance of records with multiple

answer candidates is poor because of the difficulties of predicting the number

of candidates and handling the span boundary of each candidate properly. In

most cases, PICO elements are mentioned multiple times throughout an

abstract or a full-text article, and it is difficult to determine the most appropriate

or exact position of a candidate. In this scenario, the usability of question

answering models is limited, and named entity recognition (Manning et al.,

2008) is more appropriate for PICO elements extraction. Named entity

recognition seeks to classify each word in the text into pre-defined categories

so adjacent words belonging to the same category can be extracted to

formulate answer strings and repeated mentions are allowed. In this chapter,

I annotate preclinical abstracts with PICO mentions and apply named entity

recognition models to extract PICO elements.

4.1 Related Work

While extracting PICO elements from clinical reports is relatively well-explored,

no method has been developed or evaluated for preclinical animal literature.

Here I discuss related work of PICO extraction for clinical trials.

Most of the previous work casts PICO extraction as a sentence classification

task, which aims to identify sentences containing at least one PICO concept.

The training datasets are often small-size abstracts annotated by human

reviewers, or large-size data derived from structured PubMed abstracts which

contain explicit keywords in subheadings like ‘Patients’, ‘Interventions’ and

147

‘Outcomes’, so sentences that belong to the corresponding sections can be

annotated automatically (Boudin et al., 2010; Jin and Szolovits, 2018a; Jin and

Szolovits, 2018b). Some early studies represent sentences by numeric vectors

based on a series of text features, including sentence position, sentence

length, number of words, digits, and UMLS (Unified Medical Language

System) concepts (Bodenreider, 2004), etc. Classification models are then

trained on the sentence representations to classify PICO sentences, including

conditional random fields (Chabou and Iglewski, 2018), support vector

machine, random forest and Naïve Bayes (Boudin et al., 2010). Differently,

Wallace et al use a collection of free-text PICO summaries from the Cochrane

Database of Systematic Reviews (www.cochranelibrary.com/cdsr/about-cdsr)

to automatically derive PICO annotations by checking if each sentence shares

at least 4 common words with the summary descriptions of a review. Using the

pseudo labels, they trained logistic regression models assisted by distant

supervision for PICO sentence classification (Wallace et al., 2016). More

recent studies have used recent neural network models for PICO sentence

classification such as the bidirectional LSTM (Jin and Szolovits, 2018a) with

some variations (Jin and Szolovits, 2018b) and texts are mainly represented

by word vectors, which requires less feature engineering.

More precise PICO phrases extraction is formulated as a named-entity

recognition task, and LSTM or BERT models with a conditional random field

layer are common approaches (Brockmeier et al., 2019; Nye et al., 2018). The

training datasets involved contain fine-grained PICO span annotations

(DeYoung et al., 2020). In a less common approach, Zhang et al trains a graph

learning model (Perozzi et al., 2014) on the UMLS concepts to obtain graph

representations for PICO entities, which achieves small marginal

improvements for disease identification in sentences describing population

and outcomes (Zhang et al., 2020).

There are also some work aiming to predict the result of a clinical treatment

given partial of PICO elements (Lehman et al., 2019) and additional trial

proposal (Jin et al., 2020), or extract relations among PICO entities (Nye et al.,

148

2020), which are beyond the discussion here due to the limited format of

preclinical datasets I can obtain.

4.2 Dataset

2,207,654 articles from PubMed Central Open Access Subset database

(www.ncbi.nlm.nih.gov/pmc/tools/openftlist) published from 2010 to 2019 are

downloaded, and a citation screening filter is used to identify in vivo research

from title and abstract (developed by EPPI-Centre, UCL, (Liao et al., 2018)). I

choose an inclusion cut-point with a precision of 99% and obtain 50,653

abstracts describing in vivo animal experiments. I randomly select 400

abstracts for the annotation task and another 10,000 for the self-training

experiments.

I use the online platform tagtog (https://www.tagtog.net) for PICO phrases

annotation. In addition to Intervention, Comparator and Outcome, I divide the

Population category into three sub-entities: the Species, the Strain, and the

method of Induction of the disease model. After the initial annotation process

and discussion with a senior clinician, I propose with some general rules for

the annotation task:

 Only PICO spans describing in vivo experiments are annotated, i.e.
interventions or treatments should be conducted within an entire, living
organism. Interventions applied to tissues derived from an animal or in
cell culture (ex vivo or in vitro experiments) should not be annotated;

 Texts describing the introduction, conclusion or objectives should not
be annotated in most cases because these might relate to work other
than that described in the publication. They should be annotated only
when the remaining text lacks a clear description of the method, or
where the text gives the meaning of abbreviations;

 The first occurrence of abbreviation should be annotated together with
the parent text. For example, "vascular endothelial growth factor
(VEGF)" should be tagged as one entity for its first occurrence; in the
remainder of the text, "VEGF" or "vascular endothelial growth factor"
could be annotated separately if they are not mentioned together;

 Uninformative phrases like "control" or "wild-type" should not be
annotated;

149

 Any extra punctuations between phrases (such as commas) should not

be annotated. However, if the entity appears only one time in the text,
punctuations can be included in a long span of text which consists of
several phrases;

 Entity spans cannot be overlapped. Annotations in tagtog are output in
EntitiesTsv format which resembles the tsv output in the Stanford NER
tool (Finkel et al., 2005), and this does not support overlapped entities.

Figure 4.1 demonstrates an example of annotated abstract (PMC3541238)

using tagtog. After excluding the title, introduction sentence, first part of the

objective sentence and the conclusion sentence which do not explicitly

describe experimental elements, PICO entities are extracted from the rest of

the sentences: 1) Species: mice; 2) Strain: C57BL/6; 3) Induction: fed normal

chow (NC), fed high-fat diet (HFD); 4) Intervention: aerobic exercise training,

exercise, treadmill running; 5) Comparator: sedentary; and 6) Outcome:

protein spots.

150

Figure 4.1: Example of PICO phrases annotation for a preclinical abstract.

Screenshot from tagtog.

On average, there are 11 sentences in an abstract, and 5 of them describe

PICO elements. Among 400 abstracts, 6,837 entities are annotated in total,

where around 41% of entities belong to outcomes, 24% to interventions, 20%

to species, 11% to the method of induction of disease, 3% to strain and less

than 2% belong to comparators, as shown in Table 4.1. Almost all abstracts

describe outcomes and species, 90% of documents describe interventions, 60%

describe the method of induction of disease, 30% describe animal strains, and

16% describe comparators. Each abstract mentions around 7 entities for

outcomes, 4 entities for interventions, 3 entities for species, 1 entity for the

method of induction of disease and less than 1 entity for comparator and

animal strain.

151

Distribution of

PICO entities

across

all abstracts

Percentage of

abstracts

annotated

with PICO entity

Avg number. of

PICO entities

in each abstract

Intervention 24.1% 92.5% 4.1

Comparator 1.8% 16.8% 0.3

Outcome 40.6% 99.8% 6.9

Induction 10.6% 64.0% 1.8

Species 19.6% 98.3% 3.4

Strain 3.3% 30.5% 0.6

Total 100% 100% 17.1

Table 4.1: Statistics of PICO entities in the 400 annotated preclinical abstracts.

To check the ambiguity of PICO entities, I convert all the 6,873 PICO phrases

into text embeddings and apply the t-distribution stochastic neighbouring

embedding (t-SNE) algorithm (Van Der Maaten and Hinton, 2008) to project

the high-dimensional embeddings into the 2-dimensional space. I use five

embeddings for phrases conversion: biomedical word2vec (Pyysalo et al.,

2013) and BERT embeddings with four pre-trained modules including 1)

BERT-Base, the original BERT trained on the combination of BookCorpus, and

English Wikipedia (Devlin et al., 2018); 2) BioBERT-Base, which trains BERT

on the combination of BookCorpus, English Wikipedia, PubMed abstracts and

PubMed Central full-text articles (Lee et al., 2019); 3) PubMedBERT-Abs,

which trains BERT on PubMed abstracts only, and 4) PubMedBERT-Abs-Full

on a combination of PubMed abstracts and PubMed Central full-text articles

(Gu et al., 2020). For word2vec embeddings, each PICO phrase is split into

words by scispaCy (Neumann et al., 2019) and the phrase embedding is

obtained by averaging its word embeddings (dimension 200); while for BERT

embeddings, each PICO phrase is tokenised by WordPiece (Wu et al., 2016),

and the phrase embeddings are generated by averaging its token embeddings

(dimension 768). The visualisation of PICO entities by t-SNE is displayed in

Figure 4.2. The iteration step is 1000 and I compare the scatter charts using

different perplexity from 2 to 50, and set the final perplexity as 5. For all five

152

representation approaches, points of Species are clearly separated from

points of other entities. The boundary between points of Intervention and

Outcome is less clear, especially for embeddings from biomedical word2vec

and BERT-Base. Points of Induction and Intervention are overlapped, which

implies the ambiguity of these two PICO types and the difficulties of

distinguishing those two elements in the following entity recognition task.

153

Figure 4.2: Visualisation of 6,837 PICO phrases represented by vectors using

biomedical word2vec and BERT embeddings from four pre-trained modules. Axes

refer to the two most important dimensions selected by the t-SNE algorithm.

154

4.3 Methods

From the last section, less than 50% of sentences in each abstract contain

PICO phrases and using the entire abstracts to train an entity recognition

model is inefficient. Therefore, I decompose the PICO phrases extraction task

into two subtasks: 1) PICO sentence classification, and 2) PICO entity

recognition, as the workflow demonstrated in Figure 4.3. The training materials

of the first task are individual sentences from the annotated abstracts, where

each sentence is labelled as yes/no if it contains or does not contain any PICO

phrases. The training materials for the second task are the truncated abstracts

consisting of only PICO sentences, where non-PICO sentences (sentences do

not contain any PICO phrases) are removed automatically. For PICO entity

prediction in the future application, sentences in an individual abstract are

classified by the best PICO sentence classifier from the first task, and the non-

PICO sentences are then removed automatically based on the sentence

classification labels. The two tasks are trained independently, which

guarantees the quality of training samples for the PICO entity recogniser and

the efficiency of training programs.

Figure 4.3: The workflow of PICO extraction.

155

4.3.1 PICO Sentence Classification

Text from 400 abstracts are split into 4,247 sentences by scispaCy (Neumann

et al., 2019) and sentences containing at least one PICO entity are labelled as

‘yes’ for PICO sentence. Sentences are shuffled and split into training,

validation and test set (80%/10%/10%). For the sentence-level classification

task, I fine-tune BERT (Vaswani et al., 2017) with four pre-trained weights

(BERT-Base, BioBERT-Base, PubMedBERT-Abs and PubMedBERT-Abs-

Full). The validation metrics including F1, recall, precision and specificity are

same as what has been described in Chapter 2 (see Section 2.3.5).

4.3.2 PICO Entity Recognition

Identifying specific PICO phrases from the remaining texts in each abstract is

a standard named entity recognition (NER) task, and NER models aim to

assign an entity tag for each word/token. As a PICO phrase may consist of

several tokens, labelling all those tokens with the same entity tag is

ambiguous. For example, if the tokens of an intervention phrase are [‘aerobic’,

‘exercise’, ‘training’] and they are tagged as [‘Intervention’, ‘Intervention’,

‘Intervention’], we cannot tell if these tokens are three different interventions or

they are part of one intervention. To solve this, the BIO (Beginning-Inside-

Outside) tagging format (Ramshaw and Marcus, 1995) is proposed where the

beginning token of an entity phrase is labelled as ‘B-XX’, and the remaining

tokens of the phrase are labelled as ‘I-XX’ (‘XX’ refers to one unique entity

type). All other tokens which do not belong to any entities are tagged as ‘O’. In

the example described above, the entity tags in BIO format are [‘B-Intervention’,

‘I-Intervention’, ‘I-Intervention’], which clearly indicates the three tokens belong

to one PICO phrase. This tagging format generates 13 unique tags for 6 PICO

entities (two tags for each entity type, plus tag ‘O’).

The following sections describe PICO entity recognition models including

conditional random field (CRF) (Sutton and McCallum, 2011), the bidirectional

LSTM with a CRF layer on top (BiLSTM-CRF) (Lample et al., 2016), which is

a classic NER model, fine-tuning BERT model with CRF/LSTM layer on top,

156

and self-training strategy (van Engelen and Hoos, 2020) which aims to solve

the data-hungry issue.

4.3.2.1 CRF, BiLSTM and BiLSTM-CRF

Conditional random field (CRF) is a discriminative probabilistic model (Sutton

and McCallum, 2011) which aims to find the optimal path (predicted tag

sequence) achieving the maximum joint probabilities and learn the transition

constraints among predicted tags. One example of the transition constraint is:

if the tag of a word in the sequence is ‘I-Outcome’, the tag of the previous word

can only be ‘B-Outcome’ or ‘I-Outcome’, and impossible to be ‘I-Intervention’,

‘O’ or other tags. CRF is supposed to reduce the transition errors among tags

and has been proved beneficial when it is added on top of other layers (Lample

et al., 2016).

Formally, in the scenario of a linear-chain CRF applied in named entity

recognition, given a text sequence with 𝑇 tokens �⃗� = {𝑥1, 𝑥2, … , 𝑥𝑇 }, the goal

is to assign an entity tag for each word token, which forms the corresponding

tag (state) sequence 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑇 }. We need to build a model to estimate

the conditional probability

𝑝(𝑦|𝑥; �⃗�) = 𝑝(𝑦1, … , 𝑦𝑇 |𝑥1, … , 𝑥𝑇 ; �⃗�) (4. 1)

where 𝑤 ∈ ℝ𝑑 refer to the parameters learned from the training process.

According to the chain rule of conditional probabilities and the Markov

assumption (Collins, 2011) - the tag of the token at position 𝑡 only depends on

the tag of its previous token at position 𝑡-1, the conditional probability can be

written as

𝑝(𝑦|�⃗�; 𝑤) = 𝑝(𝑦1, … , 𝑦𝑇 |𝑥1, … , 𝑥𝑇 ; 𝑤)

= 𝑝(𝑦1|�⃗�; 𝑤)𝑝(𝑦2|𝑦1, �⃗�; 𝑤) … 𝑝(𝑦𝑇 |𝑦1, … , 𝑦𝑇 −1, �⃗�; 𝑤)

= 𝑝(𝑦𝑡|𝑦1, … , 𝑦𝑡−1, �⃗� ; 𝑤)
𝑇

𝑡=1

= 𝑝(𝑦𝑡|𝑦𝑡−1, 𝑥 ; �⃗�)
𝑇

𝑡=1
(4. 2)

157

The term 𝑝(𝑦𝑡|𝑦𝑡−1, �⃗� ; 𝑤) can be modelled by a log-linear model as

𝑝(𝑦𝑡|𝑦𝑡−1, 𝑥 ; �⃗�) =
exp �⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡)

∑ exp �⃗� ∙ 𝜙 𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡𝑦𝑡 𝜖Υ

(4. 3)

where 𝜙 is defined as a feature function constructed by all tokens in the text

sequence (𝑥1, … , 𝑥𝑇), the position of the token being tagged (𝑡), the previous

tag (𝑦𝑡−1) and the new tag (𝑦𝑡); 𝑦𝑡 is the tag of 𝑡-𝑡ℎ token and can take any value

in the set Υ of all possible entity tags. Therefore,

𝑝(𝑦|�⃗�; 𝑤) =
𝑒𝑥𝑝 𝑤 ∙ 𝜙(�⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡)

∑ 𝑒𝑥𝑝 𝑤 ∙ 𝜙 �⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡𝑦𝑡 𝜖Υ

𝑇

𝑡=1

=
exp ∑ �⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡)

𝑇
𝑡=1

∏ ∑ 𝑒𝑥𝑝 �⃗� ∙ 𝜙 𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡𝑦𝑡 𝜖Υ
𝑇
𝑡=1

(4. 4)

We need to find the most likely tag sequence for the given text sequence:

𝑎𝑟𝑔𝑚𝑎𝑥
𝑦

 𝑝(𝑦|�⃗�; 𝑤) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦1,…,𝑦𝑇

𝑒𝑥𝑝 [∑ 𝑤 ∙ 𝜙(�⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡)
𝑇
𝑡=1]

∏ ∑ 𝑒𝑥𝑝 𝑤 ∙ 𝜙 �⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡𝑦𝑡 𝜖Υ
𝑇
𝑡=1

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦1,…,𝑦𝑇

𝑒𝑥𝑝 [𝑤 ∙ 𝜙(�⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡)
𝑇

𝑡=1
]

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦1,…,𝑦𝑇

�⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡)
𝑇

𝑡=1
(4. 5)

The most straightforward solution is to traverse all possible paths to find the

optimal tag combination which has the maximum joint conditional probability.

However, if the total number of entity types is 𝐾 (𝐾 = 13 for my dataset) and

the sequence length is 𝑇 , there are 𝐾𝑇 possible tag combinations, which is

inefficient and memory-consuming especially when 𝑇 is large. Viterbi

algorithm is applied to find the optimal path recursively (Forney, 1973), which

reduces the computing complexity from 𝑂(𝐾𝑇) to 𝑂(𝑇𝐾2). Specifically, 𝛿𝑡,𝑦𝑡
 is

defined as the maximum probability of any tag sequence which ends with tag

𝑦𝑡 at position 𝑡. Then for sequence with 𝑇 words,

158

𝛿1,𝑦1
= �⃗� ∙ 𝜙(�⃗�, 1, 𝑦0, 𝑦1), 𝑦1 ∈ Υ (4. 6)

𝛿𝑡,𝑦𝑡
= 𝑚𝑎𝑥

𝑦𝑡−1∈Υ
𝛿𝑡−1,𝑦𝑡−1

+ �⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡) , 𝑡 = 2, … , 𝑇 , 𝑦𝑡 ∈ Υ (4. 7)

By calculating 𝑦𝑡 forward from the first word (𝑡 = 1) to the final word (𝑡 = 𝑇), the

highest probability can be obtained by

𝑚𝑎𝑥
𝑦1,…,𝑦𝑇

𝑝(𝑦|𝑥; �⃗�) = 𝑚𝑎𝑥
𝑦1,…,𝑦𝑇

�⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡)
𝑇

𝑡=1
= 𝑚𝑎𝑥(𝛿𝑇 ,𝑦𝑇

) (4. 8)

and the optimal tag sequence can be obtained by backpointers (Collins, 2011).

The term 𝑤 ∙ 𝜙(�⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡) can be decomposed as

�⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡) = 𝑎(𝑦𝑡, 𝑦𝑡−1, 𝑥, 𝑡) + 𝑏(𝑦𝑡, 𝑥, 𝑡) (4. 9)

where 𝑎(𝑦𝑡, 𝑦𝑡−1, �⃗�, 𝑡) denotes the transition score of the tag at step 𝑡 switched

from the previous step 𝑡-1, and 𝑏(𝑦𝑡, �⃗�, 𝑡) represents the emission score of the

tag at step 𝑡 given the text sequence. In the actual training, parameters

including the transition matrix 𝐴 ∈ ℝ𝐾×𝐾 between every unique pair of entity

types are updated to minimise the negative log-likelihood loss function

𝐿(�⃗�) = −
1

𝑛
𝑙𝑜𝑔 𝑝 𝑦�⃗� 𝑥�⃗�; �⃗�

𝑛

𝑖=1
−

𝜆‖�⃗�‖2

2
(4. 10)

where 𝜆‖𝑤‖2/2 is the regularisation term to penalise large parameter values.

The architecture of the CRF model for PICO entity recognition is shown in

Figure 4.4. Each word in the text sequence �⃗� = {𝑥1, 𝑥2, … , 𝑥𝑇 } is first mapped

into embeddings 𝑒𝑡={1,…,𝑇 } ∈ ℝ𝑑 by the pre-trained biomedical word vectors

(Pyysalo et al., 2013), where 𝑑 is the dimension of word vectors. A dropout

layer is then applied for regularisation, and a linear layer is used to convert the

dimension of word embedding from 𝑑 to 𝐾 (the output of the linear layer

corresponds to the emission scores 𝐵 ∈ ℝ𝑇 ×𝐾). Finally, the CRF layer is

applied to learn the transition matrix among each unique pair of tags, and

update the probability of the 𝑡-𝑡ℎ word belonging to the 𝑘-𝑡ℎ entity, 𝑝𝑡,𝑘 , by

summarising the emission score and the transition score, where 𝑡 = 1, … , 𝑇

and 𝑘 = 1, … , 𝐾. The entity with the highest probability is the prediction tag of

159

the token. The architecture of the BiLSTM-CRF model is demonstrated in

Figure 4.5. The only difference between the BiLSTM-CRF and CRF model is

the bidirectional LSTM layer before the linear layer, which generates a new

hidden representation for each token (dimension switched from 𝑑 to 2ℎ, where

ℎ is the hidden dimension in LSTM). I do not show the architecture of BiLSTM

model separately because the main components are same to that of BiLSTM-

CRF, but without the CRF layer on top.

Figure 4.4: The architecture of CRF model for PICO entity recognition.

160

Figure 4.5: The architecture of BiLSTM-CRF model for PICO entity recognition.

4.3.2.2 BERT Models

Similar to the PICO sentence classification, I fine-tune BERT with different pre-

trained weights for the entity recognition task, using

BertForTokenClassification module from Hugging Face Transformers library

(Wolf et al., 2019). I also explore the effect of adding CRF and LSTM layers

on top of BERT, by the BERT-CRF and BERT-LSTM-CRF models. The

architecture of the BERT-LSTM-CRF model for PICO entity recognition is

displayed in Figure 4.6, and the BERT-CRF model just removes the LSTM

layer. There are some extra pre- and post- processing steps for BERT models

because of the WordPiece (Wu et al., 2016) tokeniser. Although the input

sequences are individual words pre-tokenised by sciSpacy (Neumann et al.,

2019), BERT’s tokeniser further splits each word into sub-tokens which do not

have any tags assigned. To solve this, at the training stage, each sub-token is

assigned the tag of the word they come from (same as the tag of the first sub-

161

token of the word). However, this increases the number of entity instances

which makes the evaluation results not comparable to the previous CRF or

LSTM models. For example, an intervention phrase 'aerobic treadmill training'

is tokenised as ['aero', '##bic', 'tread', '##mill', 'training'] and the corresponding

tags are ['B-Intervention', 'B-Intervention', 'I-Intervention', 'I-Intervention', 'I-

Intervention'], which is misleading because the tag sequence indicates two

separate interventions and the performance may be ‘improved’ due to the

increasing number of instances. To make the evaluations comparable, I record

the word ids (sub-tokens from the same word share the same word id), and at

the evaluation stage, the tags of sub-tokens with the same word ids are

merged as one entity tag so the number of instances is same as that of

previous models.

Figure 4.6: The architecture of BERT-LSTM-CRF model for PICO entity recognition.

162

4.3.2.3 Self-Training

One limitation of this project is the small amount of training data so I explore a

semi-supervised learning strategy, self-training, which utilises the unlabelled

corpus to generate pseudo labels for training (Ruder and Plank, 2018). I use

400 annotated abstracts as gold data, and 10,000 unlabelled abstracts

randomly selected from 50,653 in vivo animal records as silver data. Non-

PICO sentences are removed from the unlabelled abstracts by the best PICO

sentence classification model, and the truncated abstracts are used for self-

training. As Figure 4.7 shows, I first use the fine-tuned PICO entity recogniser

from the gold set (80% of 400 labelled records for training, 10% for validation)

to predict the tag of each token in the silver set. For each abstract in the silver

set, I calculate the average prediction probabilities of all tokens within that

abstract. Silver records with average probabilities larger than a threshold are

then combined with the original gold training/validation set; the enlarged new

dataset is used to fine-tune a newly initialised PICO entity recogniser. Then I

repeat the prediction, pseudo data generation, data selection and supervised

fine-tuning procedures, until no more unlabelled records with average

prediction probabilities larger than the threshold can be added. In every data

enlarging step, newly included silver records are split into the training set (80%)

and validation set (20%), then combined with the gold training records (320

records) and gold validation records (40 records) separately. This guarantees

the gold validation set is only ever used for validation. The original gold test

set is only used for final evaluation.

163

Figure 4.7: The workflow of self-training experiments.

4.3.2.4 Evaluation Metrics

For evaluation, the true tags and predicted tags of all records construct

separate lists and the entity-level metrics (Hiroki Nakayama, 2018) including

precision, recall and F1 are calculated for each of the 6 PICO entity types by:

Precision =
number of correctly predicted entities

number of predicted entities
(4. 11)

Recall =
number of correctly predicted entities

number of true entities
(4. 12)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(4. 13)

The calculation for an example sample containing two records is demonstrated

in Table 4.2. After calculation for each entity types, the overall metrics are

micro-average scores across all entity types, which are (1+1) / (1+2) = 2/3 of

precision, (1+1) / (1+1) = 1 for recall, and 0.8 for F1 in the example. The micro-

average F1 of validation samples is used for model and parameters selection.

164

 Record 1 Record 2

True tags
[‘O’, ‘O’, ‘O’, ‘B-Intervention’, ‘I-Intervention’,

‘O’]

[‘O’, ‘O’, ‘B-
Outcome’, ‘I-
Outcome’]

Predicted
tags

[‘O’, ‘B-Intervention’, ‘I-Intervention’, ‘B-
Intervention’, ‘I-Intervention’, ‘O’]

[‘O’, ‘O’, ‘B-
Outcome’, ‘I-
Outcome’]

No. true
entities

1 for Intervention, 0 for Outcome
0 for Intervention, 1

for Outcome

No. predicted
entities

2 for Intervention, 0 for Outcome
0 for Intervention, 1

for Outcome

No. correctly
predicted
entities

1 for Intervention, 0 for Outcome
0 for Intervention, 1

for Outcome

 Precision Recall F1

Intervention 1/2 1/1 0.67

Outcome 1/1 1/1 1

Table 4.2: The calculation of entity-level metrics for an example sample containing

two records.

4.4 Experiments

Annotation project is available at www.tagtog.net/qwang/pre-pico/pool;

processed datasets are available in the Preclinical PICO extraction repository

(osf.io/2dqcg); and codes of experiments are available at

github.com/qianyingw/pre-pico.

4.4.1 Experiments of PICO Sentence Classification

For PICO sentence classification, I fine-tune BERT with different pre-trained

modules as described earlier. Parameters are trained to minimise the cross-

entropy loss using the AdamW algorithm (Loshchilov and Hutter, 2017). I use

the slanted triangular learning rate scheduler (Howard and Ruder, 2018) with

a threshold learning rate 5e-5. I apply gradient clipping (Zhang et al., 2019)

with a threshold norm 0.1 to rescale gradients and use gradient accumulation

every 4 mini-batches to reduce memory consumption. Batch size is set to 16.

All models are trained for 10 epochs and scores from the epoch with the

minimum loss on the validation set are recorded. From Table 4.3, the

165

performance of PICO sentence classifier does not show much difference

among different pre-trained modules in BERT, with F1 scores all over 80%.

BERT pre-trained on the biomedical corpus (BioBERT and two PubMedBERT)

can identify more PICO sentences, as recalls are 2%~4% higher than that of

the general-domain BERT. BERT pre-trained on PubMed abstracts achieves

the highest validation F1 of 89%, which is selected to detect PICO sentences

from abstracts for the prediction module.

 Valid Test

Pre-trained modules F R P S F R P S

BERT-Base 86.6 87.7 87.2 91.0 80.6 81.4 82.1 86.8

BioBERT-Base 87.7 89.6 88.1 92.4 84.3 81.0 90.0 92.6

PubMedBERT-Abs 89.3 91.3 89.1 91.3 85.4 88.4 85.0 88.5

PubMedBERT-Abs-Full 85.8 89.3 84.6 88.5 84.2 87.1 83.8 87.7

Table 4.3: Performance of PICO sentence classification by fine-tuning BERT with

different pre-trained modules on the validation and test set. ‘F’, ‘R’, ‘P’, ‘S’

represents F1, recall, precision and specificity separately.

4.4.2 Experiments of PICO Entity Recognition

4.4.2.1 Experiments of CRF, BiLSTM and BiLSTM-CRF

For all entity recognition models, batch size is set to 16. I compare Adam and

AdamW optimizers with the constant or slanted triangular learning rate

scheduler and explore the different threshold learning rates. I also compare

the effect of freezing word embeddings or not. Models are trained for 20

epochs. The optimal settings for CRF, BiLSTM and BiLSTM-CRF are using

Adam optimizer with a constant learning rate (1e-2, 1e-3 and 5e-3 for CRF,

BiLSTM and BiLSTM-CRF respectively). Freezing word embeddings achieves

better performance for CRF and BiLSTM-CRF, while for BiLSTM, updating

word embeddings jointly with the entity recognition model yields better results,

see Appendix Table 12. The best overall validation performance and the

corresponding test performance are shown in Table 4.4. The results of CRF

and BiLSTM are competitive, where the validation F1 of CRF is 4% higher than

166

that of BiLSTM, but test F1 is 2% lower. The CRF layer added to the BiLSTM

model enhances the performance, as the overall F1 score is increased by 14%

on the test set.

Model
Valid Test

F R P F R P

CRF 46.2 40.7 53.4 41.9 33.7 55.3

BiLSTM 41.7 44.2 39.5 43.5 38.1 50.6

BiLSTM-CRF 58.8 56.9 61.0 57.9 54.7 61.6

Table 4.4: Overall performance of CRF, BiLSTM and BiLSTM-CRF for PICO entity

recognition on validation and test set. ‘F’, ‘R’, ‘P’ represents F1, recall and precision

separately.

The entity-level performance of three models is demonstrated in Table 4.5. All

three models achieve good performance for Species and Strain, with validation

F1 around 95% and 80% respectively, because these two entities are limited

to certain types in preclinical animal studies (like mice, fish for species; Wistar,

Sprague Dawley for strain), so their identification is not complicated. The

performance does not differ greatly among three models for Species (less than

2% difference of validation F1), while BiLSTM-CRF has F1 10% higher than

that of BiLSTM for Strain. For Intervention, Outcome and Induction, the

performance is less satisfactory, with F1 around 45%, 52% and 35%

respectively, which is remained to be improved. The advantages of adding the

CRF layer on top of the BiLSTM model are more obvious for Intervention and

Outcome, as F1 improved by 30% and 16% respectively. The test F1 is around

20%~30% for Comparator, but the scores are zeros on the validation set. The

poor and inconsistent performance may be caused by the lack of Comparator

instances in the training corpus, and unclear boundary of the definition of

comparator and intervention in some experiments which includes multiple

pairs of comparator and intervention.

167

Entity Model
Valid Test

F R P F R P

Induction

CRF 14.6 10.2 26.1 7.2 31.6 25.7

BiLSTM 16.9 20.3 14.5 20.0 16.9 24.6

BiLSTM-CRF 35.2 32.2 38.8 20.0 14.5 32.4

Species

CRF 96.4 100.0 93.1 97.0 95.5 95.7

BiLSTM 94.7 99.1 90.7 95.9 97.0 94.8

BiLSTM-CRF 96.0 100.0 92.3 96.6 97.0 96.2

Strain

CRF 80.0 96.0 68.6 72.2 92.9 86.7

BiLSTM 69.0 80.0 60.6 75.0 66.7 85.7

BiLSTM-CRF 81.4 96.0 70.6 81.3 72.2 92.9

Intervention

CRF 32.7 27.0 41.2 11.6 18.8 12.5

BiLSTM 17.0 15.5 18.9 7.8 5.1 16.7

BiLSTM-CRF 44.7 42.6 47.0 45.0 52.2 39.6

Comparator

CRF 0.0 0.0 0.0 20.0 100.0 44.4

BiLSTM 0.0 0.0 0.0 25.0 15.0 75.0

BiLSTM-CRF 0.0 0.0 0.0 33.3 20.0 100.0

Outcome

CRF 28.4 24.4 34.1 20.2 37.3 33.3

BiLSTM 35.8 39.7 32.5 33.9 32.4 35.4

BiLSTM-CRF 52.2 48.7 56.2 54.2 48.9 61.0

Table 4.5: Entity-level performance of CRF, BiLSTM and BiLSTM-CRF for PICO

entity recognition on validation and test set. ‘F’, ‘R’, ‘P’ represents F1, recall and

precision separately.

Figure 4.8 demonstrates an example of the transition matrix of PICO entity

tags trained from the best BiLSTM-CRF model, where each element refers to

the transition score between each pair of tags. Note the high transition score

does not mean the final sequential tags of the text sequence will follow this

transition because the final probabilities of the tag sequence consist of the

transition scores and emission scores. However, it still reflects some patterns.

For example, the induction method, comparator, and intervention are likely to

be mentioned before the species: B-Induction → B-Species (score 0.85), I-

168

Comparator → B-Species (score 0.93), I-Intervention → B-Species (score

0.69). Species often consist of one word: B-Species → O (score 1.09); and

interventions consist of several words: B-Intervention → I-Intervention (score

0.87), I-Intervention → I-Intervention (score 0.89).

Figure 4.8: Transition matrix of PICO entity tags from the best BiLSTM-CRF model.

Rows refer to the tag of the previous token, and columns refer to the tag of the

current token.

For BiLSTM models with or without the CRF layer on top, I also explore the

effect of hidden dimension in LSTM modules. The optimal dimension for

BiLSTM is around 64 to 256, while the impact of dimension is negligible for

BiLSTM-CRF, as shown in Table 4.6.

169

 Hidden dim F1 Recall Precision

BiLSTM

32 34.8 32.8 37.2

64 41.7 43.5 40.0

128 40.8 42.1 39.6

256 41.7 44.2 39.5

512 37.3 38.7 36.1

BiLSTM-CRF

32 57.0 56.7 57.3

64 58.5 57.2 59.8

128 57.7 53.7 62.3

256 58.8 56.9 61.0

512 57.1 55.3 59.1

Table 4.6: Validation performance of BiLSTM models with different hidden

dimension.

4.4.2.2 Experiments of BERT models

For BERT-based models, I fine-tune BERT for 30 epochs, BERT-CRF for 40

epochs and BERT-LSTM-CRF for 60 epochs. I use the slanted learning rate

scheduler with the threshold learning rate 1e-4 but remove warm-up steps.

The hidden dimension in BERT-LSTM-CRF is set to 64. Other settings are

similar to that of the PICO sentence classification task. These are determined

by checking overfitting or convergence issues from their learning curves.

The overall performance of three BERT-based models with different pre-

trained weights is shown in Table 4.7. Compared with the previous best model

BiLSTM-CRF, BERT and BERT-CRF pre-trained from the general-domain

knowledge do not outperform BiLSTM-CRF, as the validation F1 are 3% and

1% lower respectively, while BERT-LSTM-CRF slightly improves F1 by 2%.

Other BERT models pre-trained from the biomedical-domain knowledge all

achieve better performance than BiLSTM-CRF, with F1 improved by 5% to 9%.

Within three biomedical pre-trained weights, models with domain-specific pre-

trained modules (two PubMedBERT) yield better performance than models

with the mixed-domain pre-trained module (BioBERT). The advantage of the

170

CRF layer is trivial compared to the benefit of the large-scale pre-trained

domain knowledge as there is not much difference among the performance of

BERT, BERT-CRF and BERT-LSTM-CRF.

Model Pre-trained weights
Valid Test

F R P F R P

BERT

BERT-Base 56.0 62.7 50.6 61.3 66.3 57.1

BioBERT-Base 64.2 69.8 59.4 65.4 69.8 61.5

PubMed-Abs 65.0 70.5 60.2 70.1 73.2 67.3

PubMed-Abs-Full 68.1 73.0 63.8 69.9 73.4 66.7

BERT-CRF

BERT-Base 57.7 62.9 53.3 62.1 67.2 57.8

BioBERT-Base 65.1 70.0 60.9 66.5 70.1 63.3

PubMed-Abs 65.5 70.9 60.9 68.0 71.5 64.9

PubMed-Abs-Full 68.0 72.8 63.7 67.5 70.9 64.5

BERT

-BiLSTM

-CRF

BERT-Base 60.8 66.4 56.1 64.6 69.5 60.3

BioBERT-Base 66.0 70.0 62.5 68.3 71.2 65.6

PubMed-Abs 68.1 73.3 63.5 67.2 70.8 64.0

PubMed-Abs-Full 68.0 72.8 63.8 68.5 72.6 64.8

Table 4.7: Overall performance of BERT, BERT-CRF and BERT-LSTM-CRF with

different pre-trained weights on validation and test set. ‘F’, ‘R’, ‘P’ represents F1,

recall and precision separately.

The entity-level performance of three BERT models is demonstrated in Table

4.8. The performance of Species is as good as previous CRF/LSTM based

models, with F1 scores over 95%. The highest validation F1 of Strain is

increased by 4% but the test F1 is reduced by between 4% and 18%. The

performance of Intervention, Outcome and Induction is improved a lot, as the

validation F1 of the best BERT-based model is increased by 22%, 12% and

12% respectively, compared to the best LSTM/CRF based model. For

Comparator, BERT-CRF has robust but still poor performance, with F1 around

30%. Considering the consistency of performance between the validation and

test set, the best model is BERT-CRF for Comparator and Outcome, BERT-

171

LSTM-CRF for Induction and Species, BiLSTM-CRF for Strain, and BERT for

Intervention.

Entity Model
Valid Test

F R P F R P

Induction

BERT 46.2 50.9 42.3 49.1 50.6 47.7

BERT-CRF 45.7 49.2 42.7 41.2 41.0 41.5

BERT-LSTM-CRF 47.5 55.9 41.3 42.2 41.0 43.6

Species

BERT 96.4 99.1 93.9 98.1 100.0 96.4

BERT-CRF 96.4 100.0 93.1 98.1 100.0 96.4

BERT-LSTM-CRF 97.3 99.1 95.5 98.1 100.0 96.4

Strain

BERT 80.0 80.0 80.0 63.4 72.2 56.5

BERT-CRF 75.5 80.0 71.4 65.0 72.2 59.1

BERT-LSTM-CRF 85.2 92.0 79.3 68.3 77.8 60.9

Intervention

BERT 67.3 69.6 65.2 70.2 76.1 65.2

BERT-CRF 63.9 66.9 61.1 69.6 75.4 64.6

BERT-LSTM-CRF 63.2 65.5 61.0 71.1 78.3 65.1

Comparator

BERT 33.3 66.7 22.2 16.0 10.0 40.0

BERT-CRF 30.8 66.7 20.0 43.8 35.0 58.3

BERT-LSTM-CRF 0.0 0.0 0.0 0.0 0.0 0.0

Outcome

BERT 61.5 68.0 56.2 65.4 70.6 60.9

BERT-CRF 63.7 69.2 58.9 61.1 66.0 56.9

BERT-LSTM-CRF 63.3 69.7 58.0 60.5 66.4 55.6

Table 4.8: Entity-level performance of BERT, BERT-CRF and BERT-LSTM-CRF

with the optimal pre-trained weight on validation and test set. ‘F’, ‘R’, ‘P’ represents

F1, recall and precision separately.

4.4.2.3 Experiments of Self-Training

In self-training experiments, the best PICO sentence classifier (BERT pre-

trained on PubMed abstracts) is used to remove non-PICO sentences for

unlabelled data, and the best PICO entity recogniser (BERT pre-trained on

PubMed abstracts and full texts) is used to identify PICO phrases and calculate

172

prediction scores across all tokens in each individual text. I explore two

thresholds (0.95, 0.99) for records selection, and the results are shown in

Figure 4.9. When the threshold is 0.99, no more silver records are included in

the training set beyond the first iteration, and self-training does not improve

performance. When the threshold is 0.95, the performance fluctuates and the

best F1 score is improved by 5% and 1% on the gold validation set and test

set respectively, achieved at the sixth iteration step. I terminated the training

program after 15 iterations because the training size tends to saturate and the

improvement of performance is very limited. For specific PICO entities, the test

performance of Comparator and Strain is improved by over 30% and 6%

respectively. The enlarged dataset does not help much for other entity types

because the changes of test F1 scores are less than 2%, as shown in Table

4.9.

Figure 4.9: Performance of BERT (pre-trained on PubMed abstracts and full texts)

for PICO entity recognition using self-training. ‘F’, ‘R’, ‘P’ represents F1, recall and

precision separately.

173

Gold valid Gold test

F1 R P F1 R P

Comparator +46.7 0.0 +77.8 +32.5 +30.0 +21.5

Induction -0.4 -10.2 +9.9 -1.2 -1.2 -1.1

Intervention +2.3 +5.4 -0.3 -0.4 -1.5 +0.4

Outcome +8.4 +5.6 +10.5 +1.5 0.0 +2.7

Species 0.0 0.0 0.0 0.0 0.0 0.0

Strain +10.9 +20.0 +3.3 +6.6 +5.6 +7.1

Table 4.9: Improvement of entity-level performance of PubMedBERT from the best

self-training iteration compared to that of PubMedBERT without self-training on the

gold validation and test set (threshold = 0.95).

4.4.3 Overall Performance

In this work, I demonstrate PICO sentence classification models and PICO

entity recognition models for PICO extraction in abstracts describing preclinical

animal studies. For sentence classification, BERT models with different pre-

trained weights have generally good performance (F1 over 80%), and

biomedical BERT (BioBERT or PubMedBERT) have slightly better

performance than general BERT. For PICO entity recognition, all BERT-based

models with biomedical pre-trained weights outperform BiLSTM with or without

CRF layer, with an improvement of F1 by between 5% and 9%. It is

unnecessary to use more complicated structures based on BERT, as the

results of BERT, BERT-BiLSTM and BERT-BiLSTM-CRF do not have much

difference, but the latter two require longer training time and resources. Within

LSTM based models, adding a CRF layer is beneficial, where recall is

increased by 16% and precision is increased by 9%. The training time of LSTM

based models is much shorter than fine-tuning BERT, and this could be a quick

alternative solution when computing resources are limited. F1 scores are

generally good for identifying Species and Strain (over 95% and 70%

respectively), satisfactory for Intervention and Outcome (around 60%),

acceptable for Induction (around 45%), but very low for Comparator (only 30%)

which may need a larger collection of instances and clearer definition

174

distinguished from Intervention. The self-training method helps to identify more

comparators and strains which lack an adequate amount of instances in the

original training set, although the improvement of overall performance is

limited. The enhanced performance of the best PICO entity recogniser is

shown in Table 4.10, achieved by fine-tuning BERT pre-trained on PubMed

abstracts and full texts and applying self-training.

Validation Test

F1 R P F1 R P

Overall 73.6 76.4 71.0 71.0 74.0 68.2

Comparator 80.0 66.7 100.0 48.5 40.0 61.5

Induction 45.7 40.7 52.2 48.0 49.4 46.6

Intervention 69.6 75.0 64.9 69.8 74.6 65.6

Outcome 69.9 73.5 66.7 66.9 70.6 63.6

Species 96.4 99.1 93.9 98.1 100.0 96.4

Strain 90.9 100.0 83.3 70.0 77.8 63.6

Table 4.10: Performance of the best PICO entity recognition model (after self-

training applied) on the validation and test set. ‘F’, ‘R’, ‘P’ represents F1, recall and

precision separately.

4.5 Discussion

4.5.1 Streamlit Interface

I develop an interactive app via Streamlit for potential use which can give a

quick overview of PICO elements of an experimental study (see Figure 4.10;

codes are available at github.com/qianyingw/pre-pico/tree/master/app). When

the user inputs the PMID, the app will call the PubMed Parser (Achakulvisut et

al., 2020) to return its title and abstract if the corresponding record is available

from the PubMed Open Access Subset database. The background sentence

model (pre-trained on PubMedBERT abstracts and fine-tuned on our

preclinical PICO sentences) classifies and removes non-PICO sentences. The

shortened text consisting of the remaining PICO sentences are then sent into

the best PICO entity recogniser (pre-trained on PubMedBERT abstracts and

175

full texts, fine-tuned on the gold preclinical PICO texts and self-trained on the

silver preclinical PICO texts) to identify PICO phrases. Some post-processing

steps are added to generate the list of candidates for each type of the PICO

entity. First, the pre-trained module from PubMedBERT is uncased and its

tokeniser converts all words into lower cases, so the extracted PICO strings

which are converted directly from the tokens are also in lower cases. The

lower-cased PICO strings may be misleading especially for some chemical

names. To solve this, I use scispaCy to tokenise the PICO text, where each

word is not split into sub-tokens or converted to lower cases without

specification. Although BERT’s tokeniser further splits those word tokens into

sub-word pieces, by recording the word ids of sub-tokens, the sub-word pieces

which share the same word id can be merged back to an entire word which

can be matched in the list of cased tokens from scispaCy. The entity tag is set

to the tag of the first sub-word; other sub-words from the same word may have

different entity tags but they are ignored in this processing strategy. Second,

the previous training and validation procedures are at token or entity level and

the model outputs are a sequence of token tags in BIO format which are not

intuitionistic to users, so I also add a function to merge tokens and tags from

the same entity, and generate a list of candidates for each entity type. Finally,

the duplicate candidates, incomplete brackets and single characters are

removed from each string inside each candidate list.

176

Figure 4.10: A demonstration Streamlit interface for PICO extraction in preclinical

abstracts.

4.5.2 Error Analysis

I randomly select 10 abstracts from the test set to investigate the modules of

PICO sentence classification and PICO entity recognition.

The PICO sentence classifier works well in most cases as the performance

demonstrates. The main error comes from the judgements of the definition of

PICO sentences in the annotation process. In some cases, the first

introduction sentence explains a PICO phrase and its abbreviation, and the

177

following texts mention only the abbreviation word. I annotate that sentence as

PICO sentence because my original purpose is to enable the model to extract

the full name which indicates the meaning of the abbreviation word. However,

my model does not recognise it as a PICO sentence because most general

introduction sentences in an abstract do not describe the actual experimental

procedures. In other cases, the model extracts some sentences describing the

purpose of the study, explaining the research findings, or discussing the

background mechanism as PICO sentences. Those sentences are often

placed before the method sentences or after the result sentences, and some

of them mention PICO phrases but do not explicitly describe the experimental

procedures or the specific outcomes and interventions. Considering the

functionality and relative position of those sentences in the entire abstract, I do

not annotate them as PICO sentences, but it is ambiguous in the model

training.

For PICO entity recognition, one issue is the boundary of PICO phrases. For

example, an outcome phrase is ‘level of plasma corticosterone’ but my model

extracts ‘plasma corticosterone’. In another example, the outcome annotations

are ‘VEGF mRNA’ and ‘VEGF protein’ but my model combines two text spans

into one phrase ‘VEGF mRNA and VEGF protein’, which reduces the scores

calculated in the validation process but does not affect users to obtain

information from the output. The second issue is I did not annotate summarised

or indirect phrases but my model extracts those types of outcomes. For

example, in the sentence ‘Met-knockdown reduced tumour burden correlating

with decreased cell survival and tumour angiogenesis, with minimal effect on

cell growth’, my annotation of Outcome includes ‘cell survival’, ‘tumour

angiogenesis’ and ‘cell growth’ but excludes ‘tumour burden’ which is extracted

by the model. The third issue is the model cannot distinguish induction

methods and interventions in some cases. Broadly speaking, the method of

induction of disease models belongs to interventions, but it is not the

intervention being investigated in the study. The pattern of sentences

describing induction methods and interventions are similar, such as ‘applied

178

…’ or ‘after … treatment’, which increases the difficulties to distinguish the two

types of PICO entity.

4.5.3 Limitation and Future Work

One limitation of my work is that the training corpus is at the abstract level but

PICO elements are often not described in the abstract particularly for

preclinical animal studies. This limits the usage of my applications and I cannot

transfer it to full-text identification without further evaluation. Of note, this same

limitation applies to manual approaches to identifying PICO elements based

on the abstract alone. In a related literature search, for instance, that manual

screening for inclusion based on title and abstract has substantially lower

sensitivity than manual screening of full texts (https://osf.io/nhjeg). Another

limitation is the amount of training/validation/test data is not adequate.

Although my best models do not show very inconsistent results between

validation and test set (excluding Comparator), the conclusions may still be

biased using a small dataset. Previous studies show that self-training can

propagate both knowledge and error from high confidence predictions on

unlabelled samples (Gao et al., 2021), training from a larger annotated corpus

may reduce the error propagation and boost performance. Large datasets also

provide possibilities for exploring more complicated models which are proved

effective in other tasks.

Future work can evaluate the PICO sentence classification and entity

recognition models on some full-text publications to observe any heuristic

implications. Existing clinical PICO extraction tools can also be evaluated on

preclinical text to identify interventions and outcomes because these two

categories may be more similar in preclinical and clinical studies than other

PICO elements. The annotated corpus for clinical PICO is relatively larger and

more standard and training using combined corpus may yield better

performance.

179

4.6 Summary

I demonstrate a workflow of PICO extraction in preclinical animal text using

CRF, LSTM and BERT based models. Without feature engineering, BERT

pre-trained on PubMed abstracts is optimal for preclinical PICO sentence

classification, and PubMedBERT pre-trained on the combination of PubMed

abstracts and full texts achieves the best performance for preclinical PICO

entity recognition. PICO entities including Intervention, Outcome, Species,

Strain and Strain have acceptable precisions and recalls, while Comparator

has a low recall due to the lack of the instances in the training corpus which

can be partially solved by the self-training approach.

180

Chapter 5 Conclusions and Future Work

5.1 Conclusions

In this thesis, I apply natural language processing techniques on two tasks in

preclinical systematic reviews - risk of bias assessment and PICO element

extraction, and demonstrate the prototype of the automation interface for each

task. According to the annotation format of the training samples, the risk of

bias assessment is cast as long document classification (Chapter 2), and PICO

element extraction is cast as question answering (Chapter 3) and named entity

recognition (Chapter 4). The principle of these natural language processing

tasks is to first convert a word, sentence or document into numerical

representations, and then train classifiers, either traditional machine learning

models or recent neural networks, to map the text representations to pre-

defined finite categories, such as classifying a full-text publication into the

reported/unreported group, or classifying words in publications into different

PICO elements.

For automatic risk of bias assessment in preclinical publications (Chapter 2), I

implement a range of text representation methods and text classification

models for each of five risk of bias items including random allocation, blinded

assessment of outcome, conflict of interests, compliance of animal welfare

regulations, and animal exclusions. Text representation methods including

bag-of-words, word2vec, doc2vec and BERT embeddings are mainly explored

in three baseline classifiers. Among text representation methods, word2vec

and doc2vec outperform bag-of-words because bag-of-words represent words

based on the frequency and do not contain any semantic information. Doc2vec

performs better than word2vec in most cases because document vectors from

doc2vec are trained from the preclinical training set, while the document

vectors from word2vec are averaged fixed word vectors pre-trained on a

general PubMed corpus, which may not be as close as to the preclinical

domain and the averaging operation across words weakens the information

contained. When using the doc2vec method to generate representation

181

vectors, the distributed bag-of-words method outperforms distributed memory

or the combination of two methods, which differs from the suggestion in the

original study (Le and Mikolov, 2014). Similarly, document vectors generated

from the averaged BioBERT embeddings do not show any advantages and

perform worse than the averaged biomedical word2vec. Among three baseline

models, support vector machine and logistic regression generally achieve

better performance than random forest, and are less likely to be over-fitting.

Neural network models including convolutional neural network, recurrent

neural network with attention mechanism and hierarchical neural network

yields better performance than baseline models, increasing F1 by 10%-24%,

for all items except compliance of animal welfare regulations. Neural network

models enable the word embeddings jointly trainable within the network and

unfreezing embedding achieves better results. The performance of RNN with

attention does not differ much from that of CNN, and the selection of RNN cell

structure (LSTM or GRU) depends on the specific item and whether the

bidirectional structure is applied. The hierarchical attention structure among

words and sentences in HAN does not yield a better performance compared

to CNN and RNN, but the attention weights can be used to score sentences

and extract the most relevant sentence for each risk of bias item in a

publication. BERT has proved to be the state-of-the-art method in a wide range

of NLP tasks (Devlin et al., 2018), but its usage is limited to short documents.

To meet the requirement of document length, I propose two strategies of

adapting BERT for long documents: document chunk pooling (DCP) and

sentence extraction (SE). These two strategies only demonstrate advantages

for compliance of animal welfare regulations and results for other items are

competitive with neural network models. The best pooling method in the DCP

strategy is concatenating hidden states from the output of all BERT chunks.

The number of sentences extracted in the SE strategy does not have a big

impact on the performance. I also explore adding an additional

linear/convolutional/LSTM layer on top of BERT layers, and find the

convolutional layer is the optimal selection in the DCP strategy, while three

layers do not show much difference in the SE strategy. Considering the

182

unpromising performance gain from BERT-based models and limited

computing resources, CNN or RNN with attention are recommended for risk of

bias classification in general. The best model for each risk of bias item

improves performance significantly by 13%-36%, compared to the previous

regular expression approaches.

When question answering approaches are applied to extract PICO elements

from biomedical publications (Chapter 3), some extra processing steps are

required especially when the context is at full-text level or the publication

reports multiple different PICO elements. For the preclinical dataset where I

extract the method of intervention/induction from full texts, I explore three

unsupervised sentence retrieval methods including bag-of-words with TF-IDF,

BM25 and Sentence-BERT, to extract relevant sentences related to

intervention or induction method. Around 20 to 30 sentences should be

extracted from full texts so 90% of the shorter passages concatenated from

the extracted sentences can contain the answer strings. Among three retrieval

methods, Sentence-BERT performs slightly better than TF-IDF and BM25 with

an improvement of performance around 2%, and the difference of performance

between TF-IDF and BM25 is small especially when the number of extracted

sentences is high. After sentence retrieval, I implement three question

answering models to extract precise intervention/induction answer candidates

on three datasets. Baseline question answering models including BiDAF and

QANet achieve satisfactory performance on the clinical factoid-type data (F1

over 60%), while the performance for two preclinical data is low (F1 around

40% and 14% respectively). An explanation for this might be that the clinical

abstracts are relatively well-written, while preclinical texts often contain

multiple interventions which are less explicit. QANet slightly improves

performance by 1% to 4% compared to that of BiDAF, and a high number of

blocks in the modelling encoder layer does not guarantee better performance.

The best question answering approach is fine-tuning BERT, which improves

the answer extraction performance by 30% to 50% on preclinical data, and

20% on clinical data. The selection of pre-trained weights in BERT does not

have a significant effect on clinical data, but different choices can induce 20%

183

difference of F1 score on preclinical data. The weight induced from pre-training

BERT on only PubMed abstracts is the best choice across all three datasets.

The poor performance on the preclinical list-type data indicates the difficulties

of extracting the correct number of answer candidates and handling the

boundary of an intervention/induction phrase properly.

Considering the limitations of extracting PICO elements by question answering

methods with the existing datasets, I annotate 400 preclinical abstracts and

implement named entity recognition models to identify six types of PICO

elements (Chapter 4). Less than half of the sentences in an abstract describe

PICO elements so I fine-tune BERT to classify PICO sentences in the

abstracts. All four pre-trained weights in BERT show good performance and

the module pre-trained on PubMed abstracts achieves the highest F1 of 89%,

for identifying PICO sentences. Then I explore several named entity

recognition models based on the conditional random fields, bidirectional

LSTM, BERT and their combinations, and train them on the truncated

abstracts where all non-PICO sentences are removed. For overall

performance, CRF and BiLSTM alone achieve competitive results, and

BiLSTM-CRF outperforms those two models with F1 improved by 14%.

BiLSTM-CRF is also less sensitive to hidden dimension than CRF and

BiLSTM. Fine-tuning BERT pre-trained on the biomedical corpus (BioBERT

and two PubMedBERT) improves the overall F1 by 10% compared to BiLSTM-

CRF, while the result from BERT pre-trained on the general domain corpus is

even worse than BiLSTM-CRF. I also implement BERT-LSTM and BERT-

LSTM-CRF with different pre-trained modules, but the additional LSTM or CRF

layer does not show any advantages. By PICO entity level, all models achieve

good performance for Species and Strain, with F1 over 95% and 70%

separately, because the phrases of those two elements are limited to certain

types so the task is relatively easy. The performance for Intervention, Outcome

and Induction is less satisfactory by BiLSTM or CRF based models, but is

improved greatly by BERT models, with F1 around 70%, 70% and 50%

respectively. The performance for Comparator is poor and the highest F1 is

only 30%, which is caused by the limited number of comparator instances. To

184

solve the data-hungry issue, I apply a self-training approach to obtain silver

data from unlabelled abstracts, and the model trained on the enlarged dataset

improved the test performance for Comparator and Strain, with F1 increased

by 30% and 7% respectively.

Across all three projects, BERT models with biomedical pre-trained module

are good selections for the automation of risk of bias assessment and PICO

extraction, which require less feature engineering and hyperparameters tuning

procedures, but always achieve better performance than baseline machine

learning models or neural models in general. BERT models often have a large

number of training parameters and require a long training time, which is prone

to be over-fitting on the small biomedical training samples. These attributes

may be also the reason that models with more complicated architecture based

on BERT do not help with performance much. When the training documents

are long or the computing resources (GPU, memory space) are limited, the

advantages of the powerful transformer structure and pre-trained domain

knowledge associated with BERT are hindered, and extra procedures are

needed such as splitting documents into chunks or extracting relevant

sentences are needed. Some simple neural networks such as CNN, LSTM or

probabilistic models such as CRF based classifiers may be good substitutions

to achieve relatively robust performance.

5.2 Future Work

There are remaining challenges for automatic preclinical systematic reviews. I

discuss some directions for future work as follows.

More datasets

One direction is to obtain more datasets for developing automation tools for

preclinical systematic reviews. Large training samples provide possibilities for

developing deep neural networks or other complicated models such as BERT

which often achieve the state-of-the-art performance in many NLP tasks. The

large training samples also guarantee a sufficient amount and the variation of

185

types of certain instances. With more training samples, in risk of bias

assessment, models would have more opportunities to learn different

description patterns of risk of bias reporting in publications; in PICO entity

recognition, it is possible to develop less biased models for comparators. Large

datasets would reduce the risk of models which tend to be over-fitting due to

the small training size, hence the evaluation performance on validation or test

samples would be more reliable.

There are also concerns about the generalisability. The PICO sentence

classifier and entity recogniser are developed on a small number of preclinical

abstracts (Chapter 4). Both the text classification (Chapter 2) and question

answering (Chapter 3) tasks use the preclinical datasets which are limited to

two or three cardiovascular or neurological diseases. It may affect the

generalisability of model performance and evaluations of publications focusing

on other preclinical studies are necessary. Therefore, the collection of datasets

from a variety of preclinical research topics is needed to enable the evaluations

and the development of general models.

In addition, the preclinical datasets should be easily accessible. The number

of preclinical systematic reviews is rapidly increasing but the open-access

datasets or structured databases are scarce, compared with datasets of

clinical systematic reviews, such as the Cochrane Database of Systematic

Reviews. Many preclinical protocols or publications do not cover the details

and statistics of data collection, data curation, data structures and validation of

annotations. Those information could be published in a separate report or

publication to enable a wider application of the datasets, which would also

benefit the NLP or computer science field.

Better annotations

Another direction is the collection of fine-grained annotations. First, preclinical

texts of better quality should be obtained. In most of my datasets, plain full

texts are converted from PDFs by Xpdf, which contains a lot of noisy

information and requires some cleaning process. Although structured PubMed

186

XMLs are widely available for many recent publications, only PDFs exist for

some publications included in preclinical systematic reviews not limited by date.

For those publications, potential solutions include retrieving databases by title,

PMID or PMCID to obtain XMLs, or parsing PDFs to XMLs via tools such as

Grobid, which may need further evaluation.

Second, the annotation strategies and tools could be improved to obtain

precise and informative annotations. Many preclinical systematic reviewers

annotate experimental characteristics from publications by taking notes in

Word or Excel; some may complete the process assisted by a systematic

review platform such as SyRF (Bahor et al., 2021). In those cases, typos might

be generated when they record PICO phrases or sentences from a large

amount of collection of publications, which brings difficulties to locate the exact

information from the whole publication or validate annotations among different

reviewers. In an ideal scenario, the preclinical texts are demonstrated in a

structured HTML webpage or PDF reviewer (when the XMLs of publications

are unavailable), and systematic reviewers can just highlight the sentences of

each risk of bias item or PICO phrases of each experiment, with different

colours to indicate different items or experimental group information. The

background program of the annotation tool would record the annotated texts,

the corresponding labels and their positions, and all the information would be

automatically stored in a database with pre-defined structures. Annotation

tools for general NLP usages exist such as tagtog (https://www.tagtog.net), but

annotations tools designed for preclinical systematic reviews remained to be

developed, which should contain some specific functions to reduce the effort

of data conversion and curation for the following systematic review procedures.

Another concern is the granularity of annotations. For risk of bias assessment,

I have demonstrated the good performance of a range of classification models

for four risk of bias items. However, almost all models are trained on full texts,

while the risk of bias descriptions often consist of only one or two sentences.

This makes the training inefficient, and the error analysis indicates that my

models do not correctly locate and recognise the risk of bias sentences in

187

some cases. Models for other risk of bias items including sample size

calculation and allocation concealment remain to be developed and if future

annotators can record the complete sentences which indicate the reporting of

a risk of bias item, more flexible and efficient approaches can be designed. For

example, the collected risk of bias sentences can be analysed to develop the

generalised preclinical risk of bias embeddings for unsupervised strategies, as

the reporting should follow certain patterns. For PICO extraction, I do not

recommend using question answering models because there are always

multiple mentions for one PICO element and it is difficult to predict the number

of mentions and the most appropriate candidate. However, it might be

promising to develop better sentence retrieval methods or classifiers if the top

relevant sentences or summary descriptions of PICO elements are available.

In addition, annotations among different reviewers should be evaluated by

some statistical methods such as Dawid-Skene model which estimates the

reliability of reviewers and Cohen's Kappa statistic to measure the agreement

among multiple reviewers (Nye et al., 2018). These evaluation functions could

also be embedded in annotation platforms so reviewers could adjust their

annotation behaviours when necessary.

Extrinsic evaluation

With a large number of datasets and fine-grained annotations, some

automation tools based on NLP techniques could be developed for preclinical

systematic review tasks. Before applying tools to the practical projects,

reviewers need to perform extrinsic evaluation on some of their own datasets

to estimate the applicability of tools.

For risk of bias assessment, if researchers have annotated publications from

previous projects, they could apply the tools to those annotated publications to

obtain a prediction probability for each risk of bias item in each individual

publication. If the annotations contain only the decision of a risk of bias item,

such as “yes”, “no” or “unclear”, reviewers could compare it with the prediction

label generated from the prediction probability by setting thresholds. For

example, when the probability is smaller than 0.4, the prediction of the risk of

188

bias is high; when the probability is larger than 0.6, the prediction of the risk of

bias is low; and when the probability is between 0.4 and 0.6, the prediction of

the risk of bias is unclear, which may need further investigation of the full texts.

The ranges can be changed to <0.1, >0.9, and 0.1~0.9 to obtain more

confident predictions. The tools can calculate general evaluation scores

including recall, precision and F1, and they can also provide the elements of

the confusion matrix, i.e. true positive, true negative, false positive and false

negative, so users could calculate other evaluate scores when needed. When

sentence-level annotations are available, such as text snippets or a whole

sentences indicating the risk of bias reporting, reviewers could compare them

with the relevant sentences extracted by the hierarchical neural networks

(Section 2.4.2.3) or other sentence extraction methods, where the extracted

sentences can be output as a list or shown in the original publications

embedded in the PDF/HTML reviewer with highlight colours, so users can

check the context sentences. Based on the comparison above, reviewers

could have a general idea of whether the tools can be applied to their field or

how confident the prediction results are.

For PICO extraction, where it might be difficult to obtain a large amount of

annotated datasets in short times, reviewers can randomly select 10 to 20

samples from the included publications and annotate PICO phrases or

sentences manually. Then they need to compare the machine-extracted and

human extracted PICO phrases, where the performance can be evaluated by

reviewers’ own experiences or understandings, the holistic metrics such as

recall and F1 scores, or a more interpretable evaluation methodology which

considers multiple entity attributes at the same time, including entity length,

entity/token frequency, label consistency of entity/token, etc (Fu et al., 2020).

The extracted PICO phrases can be demonstrated in the original publications

embedded in the PDF/HTML reviewer with multiple highlight colours for

different PICO entity types, so users can easily check the location of the PICO

phrases and the context sentences. With the general/interpretable evaluation

scores and reviewers’ own understandings, reviewers can decide if they want

189

to apply the tools to extract one or multiple types of PICO entities from all their

publications.

Cross-field evaluation

Although there are some differences between preclinical and clinical

systematic reviews, some reporting strategies and characteristics of

experiments or trials are common, and some automation tools developed for

clinical systematic reviews could be evaluated on preclinical publications. For

example, RobotReviewer (Marshall et al., 2016), the clinical risk of bias

assessment tool, could be used to identify the reporting of blinded assessment

of outcomes in preclinical publications; and Trialstreamer (Marshall et al., 2020)

could be used to identify interventions and outcomes in preclinical experiments.

Easier, quicker and lighter tools

Automation tools for risk of bias assessment, PICO extraction and other

preclinical systematic review tasks should be easier to use, without the need

for specialist operating systems, complicated installation or other preparation

steps. Users do not need to have any NLP or computer science knowledge,

and ideally, all the actions just include uploading files, selecting

models/settings and obtaining results in some user-defined formats which are

convenient to process for further analyses. The tools can also include some

interactive functions, such as modifying the annotation and recording the

modification in the background so models can be re-trained and updated to

adapt to users’ datasets from different fields. Cloud platforms sometimes are

better than locally deployed tools, where the former allow collaborations and

evaluations among multiple reviewers; if there is a demand for processing a

large amount of publications, the computations can be done in the background

modules and the platform can send a notification to users when results are

produced, so they do not need to check progress frequently. The reaction

speed is also important, especially for small evaluations which may affect

users’ intention to continue using it for processing a large amount of

publications. BERT-based models often achieve decent performance but they

190

are associated with large trained modules, which are heavy and slow to load

and conduct the computations when GPU is unavailable. Developing lighter

and quicker tools is necessary to promote usability.

191

Appendix

Appendix Table 1: Validation performance of baseline models using different

doc2vec methods to generate document vectors for risk of bias classification.

Classifier RoB item d2v method F1 Recall Precision Specificity

Support
vector
machine

Random
allocation

DM 40.7 57.2 31.5 59.2

DBOW 51.9 72.2 40.5 65.1

DM+DBOW 44.9 62.4 35.1 62.0

Blinded
assessment
of outcome

DM 48.5 60.4 40.5 63.2

DBOW 59.3 67.8 52.7 74.7

DM+DBOW 54.0 79.1 41.0 52.7

Conflict of
interests

DM 57.0 67.5 49.3 73.2

DBOW 67.1 79.7 57.9 77.7

DM+DBOW 59.6 60.4 58.9 83.8

Compliance
of animal
welfare
regulations

DM 80.8 74.0 88.9 69.9

DBOW 86.7 82.7 91.2 74.1

DM+DBOW 74.9 62.9 92.7 83.7

Animal
exclusions

DM 34.1 49.1 26.1 76.8

DBOW 39.0 64.3 28.0 72.5

DM+DBOW 34.0 48.2 26.2 77.4

Logistic
regression

Random
allocation

DM 48.2 62.9 39.1 67.8

DBOW 51.0 65.5 41.8 70.0

DM+DBOW 48.8 61.3 40.5 70.3

Blinded
assessment
of outcome

DM 54.1 61.7 48.1 72.4

DBOW 60.0 69.1 53.0 74.5

DM+DBOW 54.9 61.7 49.5 73.8

Conflict of
interests

DM 60.8 65.0 57.1 81.2

DBOW 68.8 76.1 62.8 82.6

DM+DBOW 63.9 69.5 59.1 81.4

Compliance
of animal
welfare
regulations

DM 82.5 76.9 88.9 68.7

DBOW 87.6 85.4 89.9 68.7

DM+DBOW 87.0 84.9 89.1 66.3

Animal
exclusions

DM 32.1 44.6 25.0 77.7

DBOW 41.4 62.5 31.0 76.8

192

DM+DBOW 34.0 42.9 28.2 81.8

Random
forest

Random
allocation

DM 39.7 46.9 34.5 70.7

DBOW 41.4 51.5 34.6 68.0

DM+DBOW 50.4 59.8 43.6 74.6

Blinded
assessment
of outcome

DM 46.8 55.2 40.6 66.4

DBOW 57.8 68.3 50.2 71.8

DM+DBOW 52.7 61.7 46.0 69.9

Conflict of
interests

DM 53.9 58.4 50.0 77.5

DBOW 65.1 68.5 61.9 83.8

DM+DBOW 61.8 64.5 59.3 83.0

Compliance
of animal
welfare
regulations

DM 85.2 86.2 84.3 47.6

DBOW 88.8 89.7 88.0 60.2

DM+DBOW 88.1 89.5 86.8 55.4

Animal
exclusions

DM 33.8 54.5 24.5 72.0

DBOW 36.4 50.0 28.6 79.2

DM+DBOW 40.9 61.6 30.7 76.8

193

Appendix Table 2: Validation performance of baseline models with different

dimensions of document vectors generated from doc2vec in the risk of bias

classification task.

Classifier RoB item vector dim F1 Recall Precision Specificity

Support
vector
machine

Random
allocation

100 46.5 59.3 38.2 68.5

200 49.4 69.1 38.4 63.6

300 51.9 72.2 40.5 65.1

400 47.0 65.5 36.7 62.9

500 47.9 79.9 34.2 49.5

Blinded
assessment of
outcome

100 57.5 68.3 49.7 71.3

200 59.3 67.8 52.7 74.7

300 55.7 76.5 43.8 59.2

400 57.3 70.4 48.4 68.8

500 57.6 67.4 50.3 72.4

Conflict of
interests

100 60.3 84.8 46.8 62.8

200 66.1 76.6 58.1 78.7

500 67.1 79.7 57.9 77.7

400 65.2 66.5 63.9 85.5

300 65.2 74.1 58.2 79.5

Compliance of
animal welfare
regulations

100 86.7 82.7 91.2 74.1

200 86.6 82.8 90.7 72.3

300 83.0 76.9 90.1 72.3

400 83.3 78.2 89.1 68.7

500 83.7 78.4 89.9 71.1

Animal
exclusions

100 35.1 55.4 25.7 73.4

200 39.0 64.3 28.0 72.5

300 35.7 56.3 26.1 73.5

400 37.9 58.0 28.1 75.3

500 37.7 50.0 30.3 80.8

Logistic
regression

Random
allocation

100 48.8 64.9 39.1 66.8

200 50.0 64.9 40.6 68.8

300 51.0 65.5 41.8 70.0

400 48.8 63.9 39.5 67.8

500 50.0 63.4 41.3 70.3

100 57.7 65.7 51.5 74.4

194

Blinded
assessment of
outcome

200 57.2 65.7 50.7 73.5

300 60.0 69.1 53.0 74.5

400 58.9 68.3 51.8 73.6

500 59.5 69.6 51.9 73.3

Conflict of
interests

100 66.4 75.1 59.4 80.2

200 65.6 75.6 58.0 78.9

300 67.1 76.1 60.0 80.4

400 68.8 76.1 62.8 82.6

500 66.4 73.6 60.4 81.4

Compliance of
animal welfare
regulations

100 87.1 83.9 90.5 71.1

200 87.6 85.4 89.9 68.7

300 86.8 83.8 90.1 69.9

400 85.9 82.8 89.3 67.5

500 87.0 84.9 89.3 66.9

Animal
exclusions

100 35.0 53.6 26.0 74.6

200 38.3 56.3 29.0 77.1

300 39.3 57.1 29.9 77.7

400 41.4 62.5 31.0 76.8

500 40.3 57.1 31.1 78.9

Random
forest

Random
allocation

100 45.5 57.2 37.8 69.0

200 41.7 51.0 35.2 69.2

300 44.4 54.6 37.3 69.8

400 50.4 59.8 43.6 74.6

500 48.3 58.8 41.0 72.2

Blinded
assessment of
outcome

100 55.6 67.4 47.3 68.8

200 53.0 64.3 45.1 67.5

300 50.3 58.3 44.2 69.5

400 49.3 57.8 42.9 68.1

500 57.8 68.3 50.2 71.8

Conflict of
interests

100 65.1 68.5 61.9 83.8

200 64.8 69.0 61.0 83.0

500 64.4 63.5 65.4 87.1

400 63.8 67.0 60.8 83.4

300 61.0 61.9 60.1 84.1

100 86.5 86.0 87.1 58.4

195

Compliance of
animal welfare
regulations

200 85.5 85.4 85.6 53.0

300 87.0 86.9 87.1 57.8

400 86.6 86.2 87.0 57.8

500 88.8 89.7 88.0 60.2

Animal
exclusions

100 30.6 50.9 21.8 69.6

200 40.9 61.6 30.7 76.8

300 35.0 50.0 26.9 77.4

400 36.0 51.8 27.6 77.4

500 33.3 45.5 26.3 78.7

196

Appendix Table 3: Validation performance of the convolutional neural network with

different number of filters for each filter size in the risk of bias classification task.

 No. filters F1 Recall Precision Specificity

Random
allocation

20 82.4 88.8 77.9 91.6

40 83.3 91.3 77.7 91.3

60 82.8 86.7 81.1 93.0

80 82.9 88.5 79.1 92.6

100 83.7 90.0 79.2 91.5

120 84.0 89.9 80.6 92.3

140 83.3 88.7 79.3 92.6

160 83.7 89.9 79.7 91.8

180 83.1 89.4 78.5 92.0

200 83.4 90.8 78.1 91.7

300 82.8 90.9 77.8 91.2

Blinded
assessment of
outcome

20 81.4 88.6 76.0 88.3

40 79.4 89.2 73.0 86.6

60 79.7 90.5 71.8 85.0

80 80.7 89.8 74.0 86.6

100 81.2 92.6 73.8 86.2

120 79.8 89.7 73.3 86.6

140 81.6 89.2 76.0 87.5

160 80.4 90.1 74.3 87.1

180 79.6 89.6 72.7 85.6

200 80.1 88.4 73.9 86.6

300 80.2 89.0 74.0 87.3

Conflict of
interests

20 83.1 86.9 81.5 92.2

40 83.3 85.3 82.7 93.0

60 84.0 86.5 83.5 93.4

80 84.4 87.6 83.1 93.2

100 84.5 86.8 84.1 93.8

120 84.2 87.2 83.3 93.4

140 83.9 86.6 82.4 92.2

160 84.4 87.6 83.0 93.5

180 84.2 87.6 82.8 93.0

200 84.4 87.6 83.1 93.5

197

300 83.5 83.9 85.3 94.6

Compliance of
animal welfare
regulations

20 76.2 70.9 84.0 96.3

40 76.2 71.0 86.0 96.2

60 80.1 77.0 87.9 96.5

80 80.3 76.1 89.0 97.0

100 81.1 77.3 89.1 97.2

120 83.1 82.1 86.0 95.8

140 83.8 82.3 88.7 96.9

160 84.8 82.9 88.4 96.7

180 84.1 81.8 88.1 96.5

200 85.5 82.5 90.5 96.9

300 85.1 82.5 89.5 97.1

Animal exclusions

20 38.7 64.7 29.7 76.0

40 47.5 56.6 43.6 87.9

60 53.5 70.8 45.1 84.1

80 53.4 67.5 46.3 85.6

100 55.5 66.4 51.7 88.7

120 56.0 68.2 49.4 87.7

140 51.7 75.1 43.7 85.0

160 54.2 71.0 48.2 87.1

180 52.8 65.0 49.3 90.2

200 51.5 69.9 46.1 87.3

300 54.8 68.0 50.0 88.9

198

Appendix Table 4: Validation performance of the convolutional neural network with

different filter sizes for risk of bias classification.

 filter size F1 Recall Precision Specificity

Random
allocation

3,4,5 84.0 89.9 80.6 92.3

4,5,6 83.2 89.8 79.5 91.8

5,6,7 83.4 91.6 77.8 90.5

6,7,8 84.1 90.6 79.5 92.4

7,8,9 83.5 90.7 78.3 91.3

8,9,10 83.5 90.2 79.0 91.6

9,10,11 83.6 92.8 77.1 91.1

10,11,12 85.7 90.6 82.7 93.1

11,12,13 84.3 90.6 79.8 92.5

Blinded
assessment
of outcome

3,4,5 81.6 89.2 76.0 87.5

4,5,6 80.3 88.5 74.6 87.9

5,6,7 80.4 90.8 73.8 87.1

6,7,8 81.2 89.4 74.9 87.2

7,8,9 81.1 88.5 75.5 87.8

8,9,10 80.7 90.1 74.5 86.3

9,10,11 82.4 88.5 77.8 89.4

10,11,12 80.6 89.6 74.8 87.7

11,12,13 81.0 90.1 75.1 87.6

Conflict of
interests

3,4,5 84.5 86.8 84.1 93.8

4,5,6 83.2 84.7 84.1 94.0

5,6,7 83.5 83.9 85.1 94.5

6,7,8 83.0 84.9 83.1 93.6

7,8,9 83.6 85.6 83.7 93.8

8,9,10 83.5 85.6 83.4 93.6

9,10,11 83.5 85.7 83.6 93.6

10,11,12 84.0 85.2 85.1 94.3

11,12,13 84.4 85.7 85.2 94.3

Compliance
of animal
welfare
regulations

3,4,5 86.9 83.3 92.4 97.4

4,5,6 85.8 84.0 88.6 96.8

5,6,7 83.9 79.1 92.3 97.7

6,7,8 85.2 81.8 90.7 96.6

7,8,9 84.7 84.1 86.4 95.2

199

8,9,10 83.9 82.2 87.6 96.3

9,10,11 83.8 82.4 86.8 96.0

10,11,12 82.5 80.2 87.4 96.3

11,12,13 83.7 81.9 87.4 96.2

Animal
exclusions

3,4,5 56.7 67.6 53.7 90.8

4,5,6 53.1 66.1 46.3 85.8

5,6,7 51.8 65.2 46.1 85.3

6,7,8 54.6 66.8 52.2 90.3

7,8,9 56.0 70.9 51.3 89.5

8,9,10 42.0 50.0 45.8 90.0

9,10,11 54.1 60.1 53.7 90.8

10,11,12 56.3 68.0 51.6 87.9

11,12,13 35.4 50.1 29.1 79.5

200

Appendix Table 5: Validation performance of the convolutional neural network with

different maximum vocabulary sizes for risk of bias classification.

 vocab size F1 Recall Precision Specificity

Random
allocation

3000 78.6 83.4 75.6 91.1

5000 85.7 90.6 82.7 93.1

7000 86.4 93.2 81.8 92.8

9000 84.7 90.8 80.7 93.3

Blinded
assessment
of outcome

5000 82.4 88.5 77.8 89.4

7000 81.6 89.7 75.6 87.7

9000 81.2 92.5 73.8 85.4

Conflict of
interests

5000 84.5 86.8 84.1 93.8

7000 83.7 86.8 83.3 93.5

9000 84.1 89.1 80.8 91.7

Compliance
of animal
welfare
regulations

5000 86.9 83.3 92.4 97.4

7000 84.3 81.1 89.6 97.0

9000 85.0 84.7 87.2 96.2

Animal
exclusions

5000 56.7 67.6 53.7 90.8

7000 54.1 60.1 53.7 90.8

9000 60.2 73.6 54.2 89.7

201

Appendix Table 6: Validation performance of the recurrent neural network with

different hidden dimension for risk of bias classification.

 hidden dim F1 Recall Precision Specificity

Random
allocation

2 83.1 88.2 80.2 92.8

6 85.4 89.6 82.9 93.5

10 86.3 86.5 86.9 95.7

20 86.3 89.5 84.7 94.7

30 83.5 93.4 76.6 90.7

40 84.0 89.6 81.4 93.0

50 85.7 92.7 80.9 92.2

100 84.6 89.9 81.2 92.9

Blinded
assessment
of outcome

2 78.7 85.6 74.3 88.2

6 81.2 87.8 76.1 88.5

10 82.1 86.6 79.6 89.8

20 82.1 90.6 75.8 87.9

30 80.9 87.2 76.6 89.0

40 80.2 86.2 75.7 88.5

50 82.0 87.8 78.3 90.2

100 80.7 89.9 74.6 87.4

Conflict of
interests

2 78.6 82.4 77.4 90.8

6 77.7 78.0 79.1 91.7

10 77.9 81.9 76.7 90.9

20 79.6 83.0 77.8 91.3

30 78.0 78.9 79.0 91.8

40 53.5 66.9 46.1 70.5

50 55.9 56.6 57.3 83.7

100 75.6 73.1 80.2 93.7

Compliance
of animal
welfare
regulations

2 74.8 72.9 81.9 94.0

6 70.3 70.4 75.5 90.7

10 66.1 59.9 78.2 94.6

20 60.4 53.6 76.3 94.8

30 60.5 55.0 75.2 93.9

40 54.8 47.4 68.0 93.8

50 55.3 47.2 72.9 94.2

100 54.7 43.5 83.0 96.7

202

Animal
exclusions

2 35.3 54.5 30.6 79.5

6 58.0 68.3 54.3 90.0

10 44.3 58.4 37.7 83.4

20 57.3 66.7 55.5 90.9

30 52.8 66.1 46.2 87.2

40 28.2 68.0 18.4 46.3

50 54.1 74.0 44.1 83.9

100 22.1 48.2 15.1 54.6

203

Appendix Table 7: Validation performance of the hierarchical neural network with

different sentence length limitation for risk of bias classification.

 Sentence
length

F1 Recall Precision Specificity

Random
allocation

10 72.0 67.0 82.5 95.1

20 77.4 80.6 76.0 91.5

30 83.8 89.5 80.1 92.0

40 86.2 91.3 83.1 93.7

50 83.8 91.3 79.4 91.8

60 85.4 90.6 81.8 93.0

70 84.8 94.1 78.8 91.3

80 84.5 88.7 82.0 93.8

90 84.2 91.6 79.6 91.9

100 85.4 90.3 82.1 93.2

Blinded
assessment
of outcome

10 68.3 75.7 64.3 82.3

20 75.4 80.3 73.5 87.7

30 78.0 81.9 76.5 89.2

40 80.6 86.1 77.7 90.0

50 81.3 86.4 77.5 89.1

60 78.7 86.3 73.4 87.3

70 51.9 56.2 50.6 78.5

80 81.2 88.3 76.6 88.6

90 80.4 84.5 77.4 89.4

100 81.0 87.8 75.9 88.7

Conflict of
interests

10 72.1 75.3 71.4 89.1

20 81.6 81.0 83.6 93.9

30 80.5 83.1 79.6 91.8

40 83.2 84.7 82.8 93.2

50 82.0 85.7 80.0 92.1

60 80.5 80.1 83.6 94.2

70 74.7 77.7 73.8 91.4

80 59.9 60.4 63.4 85.4

90 82.1 82.3 82.7 93.2

100 81.2 82.9 80.4 92.2

10 54.2 49.6 63.6 91.7

204

Compliance
of animal
welfare
regulations

20 54.2 49.6 63.6 91.7

30 50.3 39.5 77.4 97.2

40 53.9 49.6 62.7 91.3

50 77.4 78.1 79.7 93.2

60 53.8 45.2 74.9 96.1

70 52.1 46.1 68.6 93.6

80 52.8 49.9 64.4 92.6

90 53.5 46.0 68.7 94.5

100 74.5 69.9 85.2 97.3

Animal
exclusions

10 30.2 59.7 21.6 60.3

20 27.7 55.8 19.9 63.7

30 30.2 59.6 21.1 60.4

40 35.2 76.7 23.8 55.0

50 31.9 72.4 21.0 53.9

60 45.3 58.9 38.5 83.2

70 26.9 63.2 18.1 55.6

80 31.8 82.3 21.1 50.3

90 32.0 69.2 21.2 54.8

100 46.7 67.8 37.8 81.6

205

Appendix Table 8: Validation performance of the hierarchical neural network with

different document length limitation for risk of bias classification.

Document
length

F1 Recall Precision Specificity

Random
allocation

200 82.4 88.5 78.7 91.7

400 84.8 92.2 80.0 92.1

500 86.2 91.3 83.1 93.7

600 80.7 92.7 73.5 89.4

800 84.2 88.7 81.5 93.4

1000 85.5 91.7 81.3 93.3

Blinded
assessment
of outcome

200 76.9 83.4 72.7 87.2

400 79.2 85.6 75.3 88.3

500 81.3 86.4 77.5 89.1

600 80.1 85.5 76.7 89.1

800 79.3 83.9 76.6 89.7

1000 80.9 87.5 76.7 89.3

Conflict of
interests

200 72.9 74.3 74.1 89.8

400 79.5 79.6 82.2 93.5

500 83.2 84.7 82.8 93.2

600 59.5 60.2 60.7 85.5

800 80.3 80.2 82.6 93.6

1000 81.2 82.7 81.1 92.4

Compliance
of animal
welfare
regulations

200 63.8 54.9 83.3 96.9

400 58.3 49.9 79.2 95.4

500 77.4 78.1 79.7 93.2

600 79.3 77.8 84.5 94.9

800 52.4 43.0 73.5 95.0

1000 38.1 27.5 74.9 98.6

Animal
exclusions

200 47.0 56.6 45.4 88.6

400 52.8 65.3 46.1 87.3

500 51.2 62.8 46.1 86.9

600 43.7 68.9 34.5 79.0

800 52.8 61.9 49.7 90.2

1000 43.8 67.2 35.2 79.8

206

Appendix Table 9: Validation performance of the hierarchical neural network with

different hidden dimension of word/sentence hidden states in the risk of bias

classification task.

Hidden

dim
F1 Recall Precision Specificity

Random allocation

5 84.3 89.5 81.7 92.8

10 85.8 84.9 88.0 95.9

20 84.0 85.4 84.3 95.1

30 86.0 90.6 83.2 94.1

40 85.8 90.8 83.3 94.1

50 86.2 91.3 83.1 93.7

60 84.4 91.8 78.9 91.9

80 85.0 91.5 80.6 92.9

Blinded assessment of
outcome

5 80.0 87.7 74.9 87.9

10 80.4 87.9 76.3 87.4

20 80.1 86.0 76.4 89.4

30 80.7 86.9 77.0 89.1

40 79.6 86.3 74.7 88.3

50 81.3 86.4 77.5 89.1

60 79.8 86.9 74.2 87.0

80 80.9 87.6 76.7 89.3

Conflict of interests

5 79.2 81.2 78.8 91.1

10 78.6 82.4 77.2 90.9

20 80.0 84.3 78.5 91.5

30 81.0 80.6 82.7 93.4

40 79.3 79.1 81.6 92.9

50 83.2 84.7 82.8 93.2

60 79.4 77.8 83.5 94.1

80 75.3 73.4 79.1 94.3

Compliance of animal
welfare regulations

5 78.6 79.5 80.9 94.3

10 64.0 64.6 67.0 89.2

20 59.0 51.9 74.7 95.4

30 56.3 50.7 70.5 94.1

40 57.3 59.4 58.0 87.0

50 77.4 78.1 79.7 93.2

207

60 56.1 48.8 70.7 94.8

80 0.0 0.0 0.0 99.8

Animal exclusions

5 51.1 59.0 49.8 91.3

10 35.2 60.6 27.1 74.1

20 51.2 62.8 46.1 86.9

30 32.1 60.1 22.7 66.6

40 34.9 61.6 25.6 69.3

50 46.7 67.8 37.8 81.6

60 31.5 43.3 25.9 78.1

80 -- -- -- --

208

Appendix Table 10: Effect of number of sentences extracted on sentence retrieval

performance for the Psycho-CIPN-factoid dataset. sMMR (rMMR) refers to strict

(ratio) mean match ratio, and sMAP (rMAP) refers to strict (ratio) mean average

precision.

Method No. sents sMAP rMAP sMMR rMMR

TF-IDF

5 54.1 54.1 76.5 76.5

10 51.7 51.7 85.1 85.1

20 48.0 48.0 90.3 90.3

25 46.8 46.8 91.7 91.7

30 45.8 45.8 93.3 93.3

35 45.1 45.1 94.4 94.4

40 44.4 44.4 95.0 95.0

60 42.5 42.5 97.4 97.4

BM25

5 51.6 51.6 74.1 74.1

10 48.8 48.8 82.4 82.4

20 45.7 45.7 89.5 89.5

25 44.5 44.5 91.2 91.2

30 43.5 43.5 92.3 92.3

35 42.8 42.8 93.3 93.3

40 42.1 42.1 94.6 94.6

60 40.2 40.2 96.7 96.7

SBERT

5 58.7 58.7 77.6 77.6

10 55.9 55.9 84.7 84.7

20 51.9 51.9 91.5 91.5

25 50.4 50.4 93.3 93.3

30 49.4 49.4 94.6 94.6

35 48.5 48.5 95.4 95.4

40 47.8 47.8 95.7 95.7

60 45.3 45.3 98.2 98.2

209

Appendix Table 11: Effect of number of sentences extracted on sentence retrieval

performance for the overall Psycho-CIPN dataset (Psycho-CIPN-list dataset before

splitting into sub-records). sMMR (rMMR) refers to strict (ratio) mean match ratio,

and sMAP (rMAP) refers to strict (ratio) mean average precision.

Method No. sents sMAP rMAP sMMR rMMR

TF-IDF

5 42.2 54.5 64.3 70.3

10 40.7 52.4 74.7 80.4

20 38.0 48.8 84.7 88.1

30 36.3 46.8 88.7 91.5

40 35.0 45.5 91.5 93.8

50 33.9 44.4 93.4 95.3

60 33.3 43.7 94.8 96.6

70 32.7 43.1 95.5 97.0

80 32.2 42.6 96.5 97.6

BM25

5 40.3 51.9 61.9 68.0

10 38.6 49.6 72.7 78.4

20 36.4 46.7 83.4 87.2

30 34.7 44.8 87.8 90.7

40 33.5 43.4 91.3 93.5

50 32.5 42.4 93.1 95.1

60 31.8 41.7 94.4 96.1

70 31.1 41.0 95.1 96.6

80 30.6 40.5 95.6 96.9

SBERT

5 47.8 60.5 67.5 73.3

10 45.5 57.7 77.2 81.9

20 42.3 54.0 86.6 89.9

30 40.0 51.6 90.7 93.4

40 38.5 50.1 93.3 95.2

50 37.3 48.8 95.3 96.7

60 36.3 47.7 96.2 97.5

70 35.5 46.8 96.9 98.1

80 34.8 46.1 97.1 98.3

210

Appendix Table 12: Effect of optimizer, learning rate scheduler and freezing

embedding on overall PICO entity recognition performance of CRF, BiLSTM and

BiLSTM-CRF.

Model Optimizer & Scheduler F1 Recall Precision

CRF

Adam 43.0 38.8 48.2

Adam + Freeze 46.2 40.7 53.4

Adam + STLR 42.5 40.2 45.1

Adam + STLR + Freeze 44.7 38.8 52.6

AdamW 41.6 39.9 43.6

AdamW + Freeze 39.4 31.4 53.1

AdamW + STLR 40.5 40.6 40.5

AdamW + STLR + Freeze 37.3 28.4 54.1

BiLSTM

Adam 41.7 44.2 39.5

Adam + Freeze 40.8 41.9 39.8

Adam + STLR 39.4 40.4 38.4

Adam + STLR + Freeze 36.7 38.1 35.4

AdamW 29.6 26.2 34.2

AdamW + Freeze 26.8 22.7 32.8

AdamW + STLR 26.1 24.4 28.0

AdamW + STLR + Freeze 23.9 19.4 31.2

BiLSTM-CRF

Adam 42.9 42.5 43.3

Adam + Freeze 57.7 53.7 62.3

Adam + STLR 46.6 46.1 47.1

Adam + STLR + Freeze 51.1 48.5 54.0

AdamW 36.4 35.9 36.8

AdamW + Freeze 50.8 46.3 56.2

AdamW + STLR 45.3 44.2 46.5

AdamW + STLR + Freeze 50.0 48.5 51.7

211

Appendix Table 13: Performance of BERT (pre-trained on PubMed abstracts and full

texts) for PICO entity recognition using self-training with thresholds 0.99 and 0.95.

Scores at iteration 0 refer to the performance of the original model before using self-

training.

Threshold Iteration gold valid gold test
 f1 rec prec f1 rec prec train size

 0 68.1 73.0 63.8 69.9 73.4 66.7 320

0.99 1 63.1 68.6 58.3 67.2 70.3 64.3 324

0.95

1 70.5 75.4 66.2 70.9 75.3 66.9 1845

2 72.4 75.7 69.3 70.5 74.6 66.9 5385

3 71.5 75.0 68.3 70.5 72.9 68.3 5760

4 72.1 74.9 69.5 70.9 72.9 69.0 6533

5 72.4 75.6 69.5 69.5 72.1 67.1 6626

6 73.6 76.4 71.0 71.0 74.0 68.2 6757

7 70.3 74.2 66.9 69.4 72.6 66.4 6921

8 70.7 74.7 67.1 69.6 74.0 65.6 7053

9 71.7 75.6 68.2 69.1 73.4 65.4 7089

10 72.0 74.5 69.6 71.5 74.1 69.1 7115

11 72.6 75.6 69.9 69.6 72.7 66.6 7139

12 71.5 75.6 67.8 70.7 74.3 67.4 7163

13 72.1 74.9 69.5 69.6 72.1 67.2 7167

14 71.7 75.6 68.1 70.3 73.8 67.1 7227

15 71.4 75.0 68.1 70.6 74.0 67.5 7328

212

Bibliography

Abiodun,O.I. et al. (2018) State-of-the-art in artificial neural network

applications: A survey. Heliyon, 4, e00938.

Achakulvisut,T. et al. (2020) Pubmed Parser: A Python Parser for PubMed

Open-Access XML Subset and MEDLINE XML Dataset XML Dataset. J.

Open Source Softw., 5, 1979.

Alammar,J. (2018) The Illustrated BERT, ELMo, and co. (How NLP Cracked

Transfer Learning) – Jay Alammar – Visualizing machine learning one

concept at a time.

Andrew,G. and Gao,J. (2007) Scalable training of L1-regularized log-linear

models. In, ACM International Conference Proceeding Series., pp. 33–40.

Aronson,A.R. and Lang,F.M. (2010) An overview of MetaMap: Historical

perspective and recent advances. J. Am. Med. Informatics Assoc., 17,

229–236.

Bahdanau,D. et al. (2015) Neural machine translation by jointly learning to

align and translate. In, 3rd International Conference on Learning

Representations, ICLR 2015 - Conference Track Proceedings.

International Conference on Learning Representations, ICLR.

Bahor,Z. et al. (2016) Improving our understanding of the in vivo modelling of

psychotic disorders: A protocol for a systematic review and meta-analysis

. Evidence-based Preclin. Med., 3, e00022.

Bahor,Z. et al. (2017) Risk of bias reporting in the recent animal focal cerebral

ischaemia literature. Clin. Sci., 131, 2525 LP – 2532.

Bahor,Z. et al. (2021) Development and uptake of an online systematic review

platform: The early years of the CAMARADES Systematic Review Facility

(SyRF). BMJ Open Sci., 5, 100103.

213

Bajaj,P. et al. (2016) MS MARCO: A Human Generated MAchine Reading

COmprehension Dataset. CEUR Workshop Proc., 1773.

Bastian,H. et al. (2010) Seventy-five trials and eleven systematic reviews a

day: How will we ever keep up? PLoS Med., 7.

Beltagy,I. et al. (2020) Longformer: The Long-Document Transformer.

Beltagy,I. et al. (2019) SCIBERT: A Pretrained Language Model for Scientific

Text.

Bodenreider,O. (2004) The Unified Medical Language System (UMLS):

Integrating biomedical terminology. Nucleic Acids Res., 32.

Booth,A. et al. (2000) Structuring the pre-search reference interview: A useful

technique for handling clinical questions. Bull. Med. Libr. Assoc., 88, 239–

247.

Borah,R. et al. (2017) Analysis of the time and workers needed to conduct

systematic reviews of medical interventions using data from the

PROSPERO registry. BMJ Open, 7, e012545.

Bottou,L. (2012) Stochastic gradient descent tricks. Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),

7700 LECTU, 421–436.

Boudin,F. et al. (2010) Improving medical information retrieval with PICO

element detection. In, Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). Springer Verlag, pp. 50–61.

Bowman,S.R. et al. (2015) A large annotated corpus for learning natural

language inference. Conf. Proc. - EMNLP 2015 Conf. Empir. Methods

Nat. Lang. Process., 632–642.

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.

214

Brockmeier,A.J. et al. (2019) Improving reference prioritisation with PICO

recognition. BMC Med. Inform. Decis. Mak., 19, 256.

Cao,Y.G. et al. (2011) AskHERMES: An online question answering system for

complex clinical questions. J. Biomed. Inform., 44, 277–288.

Cer,D. et al. (2017) SemEval-2017 Task 1: Semantic Textual Similarity -

Multilingual and Cross-lingual Focused Evaluation. arXiv.

Chabou,S. and Iglewski,M. (2018) Combination of conditional random field

with a rule based method in the extraction of PICO elements. BMC Med.

Inform. Decis. Mak., 18, 128.

Chen,D. et al. (2017) Reading Wikipedia to Answer Open-Domain Questions.

ACL 2017 - 55th Annu. Meet. Assoc. Comput. Linguist. Proc. Conf. (Long

Pap., 1, 1870–1879.

Chollet,F. (2017) Xception: Deep learning with depthwise separable

convolutions. In, Proceedings - 30th IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2017. Institute of Electrical and

Electronics Engineers Inc., pp. 1800–1807.

Chung,J. et al. (2014) Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling.

Cipriani,A. and Geddes,J. (2003) Comparison of systematic and narrative

reviews: the example of the atypical antipsychotics. Epidemiol. Psychiatr.

Sci., 12, 146–153.

Collins,M. (2011) Log-Linear Models , MEMMs , and CRFs.

Currie,G.L. et al. (2019) Animal models of chemotherapy-induced peripheral

neuropathy: A machine-assisted systematic review and meta-analysis.

PLOS Biol., 17, e3000243.

Dai,Z. et al. (2019) Transformer-XL: Attentive Language Models Beyond a

215

Fixed-Length Context. 2978–2988.

Daniel,J. and Martin,J.H. (2020) Speech and Language Processing: Vector

Semantics and Embeddings. In, Speech and Language Processing.

Demner-Fushman,D. and Lin,J. (2005) Knowledge Extraction for Clinical

Question Answering: Preliminary results. In, AAAI Workshop - Technical

Report., pp. 1–9.

Devlin,J. et al. (2018) BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding. CoRR.

DeYoung,J. et al. (2020) Evidence Inference 2.0: More Data, Better Models.

Dumoulin,V. and Visin,F. (2016) A guide to convolution arithmetic for deep

learning.

Elliott,J.H. et al. (2017) Living systematic review: 1. Introduction—the why,

what, when, and how. J. Clin. Epidemiol., 91, 23–30.

van Engelen,J.E. and Hoos,H.H. (2020) A survey on semi-supervised learning.

Mach. Learn., 109, 373–440.

Fernández,A. et al. (2018) Learning from Imbalanced Data Sets Springer

International Publishing.

Finkel,J.R. et al. (2005) Incorporating non-local information into information

extraction systems by Gibbs sampling. In, ACL-05 - 43rd Annual Meeting

of the Association for Computational Linguistics, Proceedings of the

Conference. Association for Computational Linguistics (ACL), pp. 363–

370.

Fontelo,P. and Liu,F. (2018) A review of recent publication trends from top

publishing countries. Syst. Rev. 2018 71, 7, 1–9.

Forney,G.D. (1973) The Viterbi Algorithm. Proc. IEEE, 61, 268–278.

216

Francois Chaubard, Michael Fang, Guillaume Genthial, Rohit Mundra,R.S.

(2019) CS224n: Natural Language Processing with Deep Learning,

Lecture Notes: Part I.

Fu,J. et al. (2020) Interpretable multi-dataset evaluation for named entity

recognition. EMNLP 2020 - 2020 Conf. Empir. Methods Nat. Lang.

Process. Proc. Conf., 6058–6069.

Gao,S. et al. (2021) A pre-training and self-training approach for biomedical

named entity recognition. PLoS One, 16.

Goldberg,Y. (2016) A primer on neural network models for natural language

processing. J. Artif. Intell. Res., 57, 345–420.

Goldberg,Y. (2017) Neural Network Methods for Natural Language

Processing. Synth. Lect. Hum. Lang. Technol., 10, 1–311.

Goodfellow,I. et al. (2016) Deep Learning MIT Press.

Gu,Y. et al. (2020) Domain-Specific Language Model Pretraining for

Biomedical Natural Language Processing.

Hair,K. et al. (2019) A randomised controlled trial of an Intervention to Improve

Compliance with the ARRIVE guidelines (IICARus). Res. Integr. Peer

Rev., 4, 12.

Hastie, Trevor, Tibshirani, Robert, Friedman,J. (2009) The Elements of

Statistical Learning Springer New York, New York, NY.

He,K. et al. (2015) Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification. In, Proceedings of the IEEE

International Conference on Computer Vision., pp. 1026–1034.

Higgins,Julian P. T. et al. (2011) Cochrane Handbook for Systematic Reviews

of Interventions Version 5.1.0 [updated March 2011].

Higgins,Julian P.T. et al. (2011) The Cochrane Collaboration’s tool for

217

assessing risk of bias in randomised trials. BMJ, 343.

Hiroki Nakayama (2018) seqeval: A Python framework for sequence labeling

evaluation.

Hochreiter,S. and Schmidhuber,J. (1997) Long Short-Term Memory. Neural

Comput., 9, 1735–1780.

Honek,J. (2017) Preclinical Research in Drug Development. Med. Writ., 26, 5–

8.

Hooijmans,C.R. et al. (2018) Facilitating healthcare decisions by assessing the

certainty in the evidence from preclinical animal studies. PLoS One, 13.

Hooijmans,C.R. et al. (2014) SYRCLE’s risk of bias tool for animal studies.

BMC Med. Res. Methodol., 14, 43.

Howard,J. and Ruder,S. (2018) Universal language model fine-tuning for text

classification. In, ACL 2018 - 56th Annual Meeting of the Association for

Computational Linguistics, Proceedings of the Conference (Long

Papers)., pp. 328–339.

Huang,X. et al. (2006) Evaluation of PICO as a knowledge representation for

clinical questions. AMIA Annu. Symp. Proc., 2006, 359–363.

Ioannidis,J.P.A. et al. (2014) Increasing value and reducing waste in research

design, conduct, and analysis. Lancet, 383, 166–175.

Ioffe,S. and Szegedy,C. (2015) Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift.

Jin,D. and Szolovits,P. (2018a) Advancing PICO Element Detection in

Biomedical Text via Deep Neural Networks. Bioinformatics, 36, 3856–

3862.

Jin,D. and Szolovits,P. (2018b) PICO Element Detection in Medical Text via

Long Short-Term Memory Neural Networks. In, Proceedings of the

218

BioNLP 2018 workshop. Association for Computational Linguistics,

Stroudsburg, PA, USA, pp. 67–75.

Jin,Q. et al. (2020) Predicting Clinical Trial Results by Implicit Evidence

Integration. arXiv.

Kaiser,L. et al. (2017) Depthwise Separable Convolutions for Neural Machine

Translation. arXiv.

Kazaryan,A. et al. (2020) Transformer-Based Open Domain Biomedical

Question Answering at BioASQ8 Challenge. CLEF 2020 Work. Notes, 22–

25.

Kilkenny,C. et al. (2010) Improving Bioscience Research Reporting: The

ARRIVE Guidelines for Reporting Animal Research. PLOS Biol., 8,

e1000412.

Kim,Y. (2014) Convolutional neural networks for sentence classification. In,

EMNLP 2014 - 2014 Conference on Empirical Methods in Natural

Language Processing, Proceedings of the Conference.

Kingma,D.P. and Ba,J.L. (2015) Adam: A method for stochastic optimization.

In, 3rd International Conference on Learning Representations, ICLR 2015

- Conference Track Proceedings. International Conference on Learning

Representations, ICLR.

Kiritchenko,S. et al. (2010) ExaCT: Automatic extraction of clinical trial

characteristics from journal publications. BMC Med. Inform. Decis. Mak.,

10.

Krallinger,M. et al. (2020) BioASQ at CLEF2020: Large-scale biomedical

semantic indexing and question answering. In, Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). Springer, pp. 550–556.

Krizhevsky,A. et al. (2012) ImageNet Classification with Deep Convolutional

219

Neural Networks.

Lample,G. et al. (2016) Neural Architectures for Named Entity Recognition.

2016 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang.

Technol. NAACL HLT 2016 - Proc. Conf., 260–270.

Landis,S.C. et al. (2012) A call for transparent reporting to optimize the

predictive value of preclinical research. Nature, 490, 187–191.

Le,Q. and Mikolov,T. (2014) Distributed representations of sentences and

documents. In, 31st International Conference on Machine Learning, ICML

2014., pp. 2931–2939.

Lee,J. et al. (2019) BioBERT: a pre-trained biomedical language

representation model for biomedical text mining. Bioinformatics.

Lee,M. et al. (2006) Beyond information retrieval--medical question answering.

AMIA Annu. Symp. Proc., 2006, 469–473.

Lehman,E. et al. (2019) Inferring which medical treatments work from reports

of clinical trials. In, NAACL HLT 2019 - 2019 Conference of the North

American Chapter of the Association for Computational Linguistics:

Human Language Technologies - Proceedings of the Conference.

Association for Computational Linguistics (ACL), pp. 3705–3717.

Lemaréchal,C. and Lemaréchal,C. (2012) Cauchy and the Gradient Method.

Doc. MATH. .

Liao,J. et al. (2018) Automation of citation screening in pre-clinical systematic

reviews. bioRxiv, 280131.

Loshchilov,I. and Hutter,F. (2017) Decoupled Weight Decay Regularization.

7th Int. Conf. Learn. Represent. ICLR 2019.

Van Der Maaten,L. and Hinton,G. (2008) Visualizing Data using t-SNE.

Macleod,M. and Wong,C. (2019) ReLiSyR MND.

220

Macleod,M.R. et al. (2014) Biomedical research: increasing value, reducing

waste. Lancet, 383, 101–104.

Macleod,M.R. et al. (2004) Pooling of animal experimental data reveals

influence of study design and publication bias. Stroke, 35, 1203–1208.

Macleod,M.R. et al. (2015) Risk of Bias in Reports of In Vivo Research: A

Focus for Improvement. PLOS Biol., 13, e1002273.

MacLeod,M.R. et al. (2008) Evidence for the efficacy of NXY-059 in

experimental focal cerebral ischaemia is confounded by study quality.

Stroke, 39, 2824–2829.

Manning,C.D. et al. (2008) Introduction to Information Retrieval.

Marshall,I.J. et al. (2015) Automating Risk of Bias Assessment for Clinical

Trials. IEEE J. Biomed. Heal. Informatics, 19, 1406–1412.

Marshall,I.J. et al. (2016) RobotReviewer: evaluation of a system for

automatically assessing bias in clinical trials. J. Am. Med. Informatics

Assoc., 23, 193–201.

Marshall,I.J. et al. (2020) Trialstreamer: A living, automatically updated

database of clinical trial reports. J. Am. Med. Inform. Assoc., 00, 1–10.

Marshall,I.J. and Wallace,B.C. (2019) Toward systematic review automation:

A practical guide to using machine learning tools in research synthesis.

Syst. Rev., 8, 163.

Masic,I. et al. (2008) Evidence Based Medicine – New Approaches and

Challenges. Acta Inform. Medica, 16, 219.

Masters,D. and Luschi,C. (2018) Revisiting Small Batch Training for Deep

Neural Networks. arXiv.

McCann,S.K. et al. (2016) Systematic Review and Meta-Analysis of the

Efficacy of Interleukin-1 Receptor Antagonist in Animal Models of Stroke:

221

an Update. Transl. Stroke Res., 7, 395–406.

Menke,J. et al. (2020) The Rigor and Transparency Index Quality Metric for

Assessing Biological and Medical Science Methods. iScience, 23.

Mikolov,T., Sutskever,I., et al. (2013) Distributed Representations of Words

and Phrases and their Compositionality. Adv. Neural Inf. Process. Syst.

Mikolov,T., Chen,K., et al. (2013) Efficient Estimation of Word Representations

in Vector Space.

Millard,L.A. et al. (2016) Machine learning to assist risk-of-bias assessments

in systematic reviews. Int. J. Epidemiol., 45, 266–277.

Mintz,M. et al. (2009) Distant Supervision for Relation Extraction Without

Labeled Data. In, Proceedings of the Joint Conference of the 47th Annual

Meeting of the ACL and the 4th International Joint Conference on Natural

Language Processing of the AFNLP: Volume 2 - Volume 2, ACL ’09.

Association for Computational Linguistics, Stroudsburg, PA, USA, pp.

1003–1011.

Moher,D. et al. (2016) Increasing value and reducing waste in biomedical

research: Who’s listening? Lancet, 387, 1573–1586.

Muhlhausler,B.S. et al. (2013) Whole Animal Experiments Should Be More

Like Human Randomized Controlled Trials. PLoS Biol., 11.

Mulyar,A. et al. (2019) Phenotyping of Clinical Notes with Improved Document

Classification Models Using Contextualized Neural Language Models.

arXiv.

Neumann,M. et al. (2019) ScispaCy: Fast and Robust Models for Biomedical

Natural Language Processing. Association for Computational Linguistics

(ACL), pp. 319–327.

Neves,M. et al. (2017) Olelo: A Question Answering Application for

222

Biomedicine. 61–66.

Niu,Y. et al. (2003) Answering clinical questions with role identification.

Association for Computational Linguistics (ACL), pp. 73–80.

Nocedal,J. (1980) Updating Quasi-Newton Matrices with Limited Storage.

Math. Comput., 35, 773.

Nogueira,R. and Cho,K. (2019) Passage Re-ranking with BERT.

Nordberg,M. et al. (2004) Glossary of terms used in toxicokinetics (IUPAC

Recommendations 2003). Pure Appl. Chem., 76, 1033–1082.

Nye,B. et al. (2018) A corpus with multi-level annotations of patients,

interventions and outcomes to support language processing for medical

literature. In, ACL 2018 - 56th Annual Meeting of the Association for

Computational Linguistics, Proceedings of the Conference (Long

Papers)., pp. 197–207.

Nye,B.E. et al. (2020) Understanding Clinical Trial Reports: Extracting Medical

Entities and Their Relations.

O’Collins,V.E. et al. (2006) 1,026 Experimental treatments in acute stroke.

Ann. Neurol., 59, 467–477.

Pae,C.-U. (2015) Why Systematic Review rather than Narrative Review?

Psychiatry Investig., 12, 417.

Pappas,D. et al. (2020) AUEB at BioASQ 7: Document and Snippet Retrieval.

In, Communications in Computer and Information Science. Springer, pp.

607–623.

Pascanu,R. et al. (2012) On the difficulty of training Recurrent Neural

Networks. 30th Int. Conf. Mach. Learn. ICML 2013, 2347–2355.

Paszke,A. et al. (2019) PyTorch: An Imperative Style, High-Performance Deep

Learning Library. arXiv.

223

Pedregosa,F. et al. (2011) Scikit-learn: Machine Learning in Python. J. Mach.

Learn. Res., 12, 2825–2830.

Perozzi,B. et al. (2014) DeepWalk: Online Learning of Social Representations.

Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 701–710.

Peters,M. et al. (2018) Deep Contextualized Word Representations., pp.

2227–2237.

Pound,P. and Ritskes-Hoitinga,M. (2020) Can prospective systematic reviews

of animal studies improve clinical translation? J. Transl. Med. 2020 181,

18, 1–6.

Prager,J. (2006) Open-domain question-answering. Found. Trends Inf. Retr.,

1, 91–233.

Prinz,F. et al. (2011) Believe it or not: how much can we rely on published data

on potential drug targets? Nat. Rev. Drug Discov. 2011 109, 10, 712–712.

Pyysalo,S. et al. (2013) Distributional Semantics Resources for Biomedical

Text Processing. Proc. 5th Lang. Biol. Med. Conf. (LBM 2013), 39–44.

Rajpurkar,P. et al. (2016) SQuAD: 100,000+ Questions for Machine

Comprehension of Text.

Ramshaw,L.A. and Marcus,M.P. (1995) Text Chunking using Transformation-

Based Learning. 157–176.

Raschka,S. (2018) Model Evaluation, Model Selection, and Algorithm

Selection in Machine Learning. arXiv.

Rehurek,R. and Sojka,P. (2010) Software Framework for Topic Modelling with

Large Corpora. undefined.

Reimers,N. and Gurevych,I. (2019) Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. EMNLP-IJCNLP 2019 - 2019 Conf.

Empir. Methods Nat. Lang. Process. 9th Int. Jt. Conf. Nat. Lang. Process.

224

Proc. Conf., 3982–3992.

Richardson,W.S. et al. (1995) The well-built clinical question: a key to

evidence-based decisions. ACP J. Club, 123.

Robertson,S. and Zaragoza,H. (2009) The probabilistic relevance framework:

BM25 and beyond. Found. Trends Inf. Retr., 3, 333–389.

Ruder,S. (2017) An Overview of Multi-Task Learning in Deep Neural Networks.

Ruder,S. and Plank,B. (2018) Strong Baselines for Neural Semi-supervised

Learning under Domain Shift. ACL 2018 - 56th Annu. Meet. Assoc.

Comput. Linguist. Proc. Conf. (Long Pap., 1, 1044–1054.

Sackett,D.L. et al. (1996) Evidence based medicine: what it is and what it isn’t.

1996. BMJ, 312.

Sanh,V. et al. (2019) DistilBERT, a distilled version of BERT: smaller, faster,

cheaper and lighter.

Sarrouti,M. and Ouatik El Alaoui,S. (2020) SemBioNLQA: A semantic

biomedical question answering system for retrieving exact and ideal

answers to natural language questions. Artif. Intell. Med., 102, 101767.

Schardt,C. et al. (2007) Utilization of the PICO framework to improve searching

PubMed for clinical questions. BMC Med. Inform. Decis. Mak., 7, 1–6.

Schmidt,L. et al. (2020) Data Mining in Clinical Trial Text: Transformers for

Classification and Question Answering Tasks. Heal. 2020 - 13th Int. Conf.

Heal. Informatics, Proceedings; Part 13th Int. Jt. Conf. Biomed. Eng. Syst.

Technol. BIOSTEC 2020, 83–94.

Scott,S. et al. (2008) Design, power, and interpretation of studies in the

standard murine model of ALS. Amyotroph. Lateral Scler., 9, 4–15.

Semnani,S.J. and Pandey,M. (2020) Revisiting the open-domain question

answering pipeline. In, arXiv.

225

Sena,E.S. et al. (2014) Systematic reviews and meta-analysis of preclinical

studies: Why perform them and how to appraise them critically. J. Cereb.

Blood Flow Metab., 34, 737–742.

Seo,M. et al. (2016) Bidirectional Attention Flow for Machine Comprehension.

Shegokar,R. (2020) Preclinical testing—Understanding the basics first. In,

Drug Delivery Aspects. Elsevier, pp. 19–32.

Shemilt,I. et al. (2016) Use of cost-effectiveness analysis to compare the

efficiency of study identification methods in systematic reviews. Syst. Rev.

2016 51, 5, 1–13.

Shojania,K.G. et al. (2007) How quickly do systematic reviews go out of date?

A survival analysis. Ann. Intern. Med., 147, 224–233.

Soboczenski,F. et al. (2019) Machine learning to help researchers evaluate

biases in clinical trials: A prospective, randomized user study. BMC Med.

Inform. Decis. Mak., 19, 96.

Srivastava,N. et al. (2014) Dropout: A Simple Way to Prevent Neural Networks

from Overfitting.

van der Staay,F.J. et al. (2009) Evaluation of animal models of

neurobehavioral disorders. Behav. Brain Funct., 5, 1–23.

Sutton,C. and McCallum,A. (2011) An introduction to conditional random

fields. Found. Trends Mach. Learn., 4, 267–373.

Szajewska,H. (2018) Evidence-Based Medicine and Clinical Research: Both

Are Needed, Neither Is Perfect. Ann. Nutr. Metab., 72, 13–23.

Taylor,K. et al. (2008) Estimates for worldwide laboratory animal use in 2005.

ATLA Altern. to Lab. Anim., 36, 327–342.

The NPQIP Collaborative Group (2019) Did a change in Nature journals’

editorial policy for life sciences research improve reporting? BMJ Open

226

Sci., 3, e000035.

Thomas,J. et al. (2017) Living systematic reviews: 2. Combining human and

machine effort. J. Clin. Epidemiol., 91, 31–37.

Tsafnat,G. et al. (2018) Automated screening of research studies for

systematic reviews using study characteristics. Syst. Rev. 2018 71, 7, 1–

9.

Uman,L.S. (2011) Systematic Reviews and Meta-Analyses. J. Can. Acad.

Child Adolesc. Psychiatry, 20, 57.

Vaswani,A. et al. (2017) Attention is all you need. In, Advances in Neural

Information Processing Systems., pp. 5999–6009.

Voorhees,E.M. (2001) Question answering in TREC. In, International

Conference on Information and Knowledge Management, Proceedings.

Association for Computing Machinery (ACM), pp. 535–537.

de Vries,R.B.M. et al. (2014) The usefulness of systematic reviews of animal

experiments for the design of preclinical and clinical studies. ILAR J., 55,

427–437.

Wallace,B.C. et al. (2016) Extracting PICO Sentences from Clinical Trial

Reports using Supervised Distant Supervision. J. Mach. Learn. Res., 17.

Wang,D. and Nyberg,E. (2015) A long short-term memory model for answer

sentence selection in question answering. In, ACL-IJCNLP 2015 - 53rd

Annual Meeting of the Association for Computational Linguistics and the

7th International Joint Conference on Natural Language Processing of the

Asian Federation of Natural Language Processing, Proceedings of the

Conference. Association for Computational Linguistics (ACL), pp. 707–

712.

Williams,A. et al. (2017) A Broad-Coverage Challenge Corpus for Sentence

Understanding through Inference. NAACL HLT 2018 - 2018 Conf. North

227

Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf.,

1, 1112–1122.

Wolf,T. et al. (2019) HuggingFace’s Transformers: State-of-the-art Natural

Language Processing.

Worp,H.B. van der et al. (2010) Can Animal Models of Disease Reliably Inform

Human Studies? PLOS Med., 7, e1000245.

Van Der Worp,H.B. et al. (2007) Hypothermia in animal models of acute

ischaemic stroke: A systematic review and meta-analysis. Brain, 130,

3063–3074.

Wouters,O.J. et al. (2020) Estimated Research and Development Investment

Needed to Bring a New Medicine to Market, 2009-2018. JAMA, 323, 844–

853.

Wu,Y. et al. (2016) Google’s Neural Machine Translation System: Bridging the

Gap between Human and Machine Translation.

Yang,Z. et al. (2016) Hierarchical Attention Networks for Document

Classification. In, HLT-NAACL.

Yoon,W. et al. (2019) Pre-trained Language Model for Biomedical Question

Answering. Commun. Comput. Inf. Sci., 1168 CCIS, 727–740.

Yu,A.W. et al. (2018) QANet: Combining Local Convolution with Global Self-

Attention for Reading Comprehension. 6th Int. Conf. Learn. Represent.

ICLR 2018 - Conf. Track Proc.

Zhang,J. et al. (2019) Why gradient clipping accelerates training: A theoretical

justification for adaptivity.

Zhang,T. et al. (2020) Unlocking the Power of Deep PICO Extraction: Step-

wise Medical NER Identification. arXiv.

Zhang,Y. et al. (2016) Rationale-Augmented Convolutional Neural Networks

228

for Text Classification. CoRR, abs/1605.0.

	cover sheet.pdf
	Thesis_Qianying_Wang_Final_submission.pdf

