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Abstract 

Drug development starts with preclinical studies which test the efficacy and 

toxicology of potential candidates in living animals, before proceeding to 

clinical trials examined on human subjects. Many drugs shown to be effective 

in preclinical animal studies fail in clinical trials, indicating the potential 

reproducibility issues and translation failure. To obtain less biased research 

findings, systematic reviews are performed to collate all relevant evidence from 

publications. However, systematic reviews are time-consuming and 

researchers have advocated the use of automation techniques to speed the 

process and reduce human efforts. Good progress has been made in 

implementing automation tools into reviews for clinical trials while the tools 

developed for preclinical systematic reviews are scarce. Tools for preclinical 

systematic reviews should be designed specifically because preclinical 

experiments differ from clinical trials. In this thesis, I explore natural language 

processing models for facilitating two stages in preclinical systematic reviews: 

risk of bias assessment and PICO extraction. 

There are a range of measures used to reduce bias in animal experiments and 

many checklist criteria require the reporting of those measures in publications. 

In the first part of the thesis, I implement several binary classification models 

to indicate the reporting of random allocation to groups, blinded assessment 

of outcome, conflict of interests, compliance of animal welfare regulations, and 

statement of animal exclusions in preclinical publications. I compare traditional 

machine learning classifiers with several text representation methods, 

convolutional/recurrent/hierarchical neural networks, and propose two 

strategies to adapt BERT models to long documents. My findings indicate that 

neural networks and BERT-based models achieve better performance than 

traditional classifiers and rule-based approaches. The attention mechanism 

and hierarchical architecture in neural networks do not improve performance 

but are useful for extracting relevant words or sentences from publications to 

inform users’ judgement. The advantages of the transformer structure are 

hindered when documents are long and computing resources are limited.  
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In literature retrieval and citation screening of published evidence, the key 

elements of interest are Population, Intervention, Comparator and Outcome, 

which compose the framework of PICO. In the second part of the thesis, I first 

apply several question answering models based on attention flows and 

transformers to extract phrases describing intervention or method of induction 

of disease models from clinical abstracts and preclinical full texts. For 

preclinical datasets describing multiple interventions or induction methods in 

the full texts, I apply additional unsupervised information retrieval methods to 

extract relevant sentences. The question answering models achieve good 

performance when the text is at abstract-level and contains only one 

intervention or induction method, while for truncated documents with multiple 

PICO mentions, the performance is less satisfactory. Considering this 

limitation, I then collect preclinical abstracts with finer-grained PICO 

annotations and develop named entity recognition models for extraction of 

preclinical PICO elements including Species, Strain, Induction, Intervention, 

Comparator and Outcome. I decompose PICO extraction into two independent 

tasks: 1) PICO sentences classification, and 2) PICO elements detection. For 

PICO extraction, BERT-based models pre-trained from biomedical corpus 

outperform recurrent networks and the conditional probabilistic module only 

shows advantages in recurrent networks. Self-training strategy applied to 

enlarge training set from unlabelled abstracts yields better performance for 

PICO elements which lack enough amount of instances. 

Experimental results demonstrate the possibilities of facilitating preclinical risk 

of bias assessment and PICO extraction by natural language processing.  
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Lay Summary 

In drug development, drug efficacy must be tested in preclinical animal 

experiments before the candidates proceed to clinical trials. Many drugs 

proven to be effective in living animals fail in clinical trials, suggesting the 

translation issue between preclinical to clinical research. Many factors affect 

the validity and credibility of preclinical animal studies and scientists obtain 

less biased research findings by conducting systematic reviews to collate all 

relevant evidence from publications. Systematic reviews are time-consuming, 

and automation techniques can be used to speed up the process and reduce 

human efforts, which have achieved good progress in clinical systematic 

reviews. Tools for preclinical systematic reviews are scarce and should be 

designed separately because preclinical experiments differ from clinical trials. 

The development of natural language processing (NLP) which uses computer 

programming to process, analyse and understand human language, enables 

the exploiting of such tools for preclinical systematic reviews. In this thesis, I 

explore NLP techniques to facilitate two stages for preclinical systematic 

reviews, risk of bias assessment and PICO extraction. 

There are a range of measures used to reduce bias in animal experiments and 

several checklist criteria require the reporting of these measures in 

publications. In the first past of the thesis, I focus on using text classification 

models to automatically indicate if random allocation to groups, blinded 

assessment of outcome, conflict of interests, compliance of animal welfare 

regulations, and animal exclusions are reported in preclinical publications. I 

compare traditional machine learning classifiers with several text 

representation methods, three neural networks, and propose two strategies to 

adapt transformer models to long documents. My findings suggest that neural 

networks and transformer models achieve better performance than traditional 

classifiers and rule-based approaches but some complicated structures do not 

show advantages for long documents.  
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When retrieving publications in the database and determining whether the 

studies should be included or excluded in a systematic review for a biomedical 

research question, the key elements of interest are Population, Intervention, 

Comparator and Outcome, which compose the framework of PICO. In the 

second part of the thesis, I focus on extracting PICO phrases from publications 

by NLP methods, which is further categorised into two types of tasks: question 

answering and named entity recognition, depending on the annotation format 

of datasets. The principle of the two tasks is to classify each word in the article 

into pre-defined PICO categories, and find the most possible combination of 

the starting and end words of a PICO phrase, which are then extracted from 

the text. I first apply question answering models to extract phrases describing 

intervention or method of induction of disease models from clinical abstracts 

and preclinical full texts. For preclinical datasets which have multiple 

interventions or induction methods described in the full texts, I apply additional 

unsupervised methods to extract relevant sentences. The question answering 

models achieve good performance when texts are at abstract-level and contain 

only one intervention or induction method, while for truncated documents with 

multiple PICO mentions, the performance is less satisfactory. Considering this 

limitation, I then collect preclinical abstracts with finer-grained PICO 

annotations and develop PICO recognition models for extraction of preclinical 

PICO elements including Species, Strain, Induction, Intervention, Comparator 

and Outcome. My findings suggest transformer models pre-trained from 

biomedical corpus outperform other neural networks and a probabilistic 

module which proved to be beneficial in neural networks does not show 

advantages in transformer models. A semi-supervised strategy is applied to 

enlarge the training set from unlabelled abstracts, which yields better 

performance for PICO elements lacking enough amount of instances. 

Experiments results demonstrate the possibilities of facilitating preclinical risk 

of bias assessment and PICO extraction by natural language processing.  
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Chapter 1 Introduction 

1.1 Preclinical Research 

Developing a new drug is time-consuming and costly. Scientists first conduct 

the basic research to understand the mechanism of a disease and discover 

potential compounds as drug candidates. This is followed by preclinical studies 

to test the efficacy and toxicology of drug candidates inside and outside of the 

living animals. Finally, clinical trials are conducted to test if the drug has similar 

effects on human subjects over five phases (Honek, 2017). It can take up to 

12 years to go from discovery to approval to reaching target patients, with an 

average cost of over 2 billion dollars (Wouters et al., 2020). 

Preclinical research is an important interlink between drug discovery and 

clinical testing. Researchers conduct preclinical studies in living animals (in 

vivo) and microorganisms, cells, or biological molecules (in vitro) to obtain 

information for how to treat the diseases by drug candidates, and whether the 

candidates are effective and safe. Regulatory agencies including Food and 

Drug Administration (FDA) and European Medicines Agency (EMA) require 

drug candidates to undergo a series of investigations including 

pharmacodynamics (biochemical and physiological effects of drugs on the 

living body), pharmacokinetics (uptake, distribution, metabolites and 

elimination of drugs in the living body) (Nordberg et al., 2004), and toxicology 

testing. These tests are used to determine the formulation, route, frequency, 

dosage, and duration of exposure of drugs, and must be accurate to guarantee 

the efficacy and safety. Candidates that do not pass the tests at the preclinical 

stage must be abandoned and cannot proceed into the clinical trials. 

Reproducibility Crisis and Translation Failure 

More than one hundred million animals are used for biomedical experiments 

every year and the number of preclinical studies is rapidly increasing (Taylor 

et al., 2008). Guidelines including the Good Laboratory Practice (GLP) and 

Good Scientific Practices (GSP) have been established to regulate the 
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implementation of animal experiments to ensure their reliability and 

reproducibility (Shegokar, 2020). However, evidence has uncovered a 

reproducibility crisis of preclinical studies and difficulties in translating findings 

from preclinical to clinical research. For example, when a pharmaceutical 

company investigated their 67 in-house projects in the fields of oncology, 

woman’s health and cardiovascular, they were able to reproduce only 21% of 

the results (Prinz et al., 2011). Scott et al analysed 70 drugs on their abilitiy to 

extending life in a murine model of amyotrophic lateral sclerosis, tested 18,000 

mice across 221 studies, but none of the significantly positive or negative 

results could be replicated (Scott et al., 2008). In experimental stroke research, 

1026 treatments were tested in preclinical experiments and 374 interventions 

were tested effective in in vivo experiments, but only one intervention was 

proved to be effective in clinical trials (O’Collins et al., 2006). The low success 

rate indicates that the preclinical studies are not robust as expected and the 

usability is limited. 

1.2 Systematic Review 

Traditionally, biomedical scientists make decisions on experimental design or 

clinical practice based on individual expertise, intuition, previous experience, 

or combined with a narrative review of relevant published work. This decision-

making process can produce rapid solutions but often lacks a clear definition 

of the research question, a systematic search and selection criteria of all 

relevant studies, and rigorous summarising and evaluation of results (Pae, 

2015). Findings from narrative reviews are subjective, biased, and can be 

inconsistent (Cipriani and Geddes, 2003). Systematic review is developed and 

advocated for in the field of evidence-based medicine which aims to inform the 

best decision making using all available research findings relevant to a pre-

specified research question (Sackett et al., 1996; Masic et al., 2008; Higgins 

et al., 2011).  

To conduct a systematic review, investigators first formulate the research 

question, and define the inclusion and exclusion criteria for studies (Uman, 
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2011). A search strategy is then developed based on a comprehensive list of 

Medical Subject Headings (MeSH) terms (Bodenreider, 2004), which are used 

to retrieve articles from databases such as PubMed, Embase and Web of 

Science. Next, two independent investigators perform citation screening to 

manually check if retrieved study should be included or excluded. They then 

extract data from the included full-text publications and organise the 

information for later analysis. Any disagreement during the process is solved 

by a senior expert. The validity of studies varies and quality assessment is 

applied to inform bias of the quantitative results from meta-analysis (Julian P. 

T. Higgins et al., 2011). Those stages are transparent and reproducible, and 

the conclusions from a systematic review are less biased.  

Preclinical vs. Clinical 

Systematic review of clinical studies has reshaped the evidenced-based 

medicine (Sackett et al., 1996; Szajewska, 2018) and contributed greatly to 

the clinical practice (Macleod et al., 2004) while the development of methods 

and standards in systematic review for laboratory animal experiments is 

relatively backward (de Vries et al., 2014). Preclinical systematic review is 

distinguished from clinical systematic review because the characteristics of 

animal experiments and clinical trials are different in many aspects 

(Muhlhausler et al., 2013). Preclinical animal studies aims to explore new 

hypotheses for treatment development and test the safety of interventions, 

while clinical trials mainly aim to examine the treatment efficacy on human 

patients (Hooijmans et al., 2014). Clinical trials enrol patients with naturally 

presenting disease, whilst preclinical studies rely on induction of disease 

models by human researchers. The sample size in preclinical experiments is 

relatively small due to concerns regarding the cost and ethics of using animals  

(Sena et al., 2014), and different species can be involved. Various lab 

outcomes including post-mortem outcomes such as histopathology of organs 

can be investigated in animal experiments, while outcomes in clinical trials are 

directly relevant to the patient. These factors induce more variations to 

outcomes of preclinical studies, thus the methods of interpreting the variations 
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and exploring the source of heterogeneity are different from that in the clinical 

systematic review (Hooijmans et al., 2018). The proper implementation of a 

preclinical systematic review can provide a reliable summary of research 

findings, inform future experimental design and animal model selection 

(Higgins et al., 2011; Hooijmans et al., 2014; Hooijmans et al., 2018), indicate 

if an intervention can proceed into clinical trials (Pound and Ritskes-Hoitinga, 

2020), and reduce research waste (Macleod et al., 2014; Ioannidis et al., 2014; 

Moher et al., 2016).   

Risk of Bias 

Systematic review is not bias free and many potential factors affect the validity 

and credibility of preclinical animal studies (Sena et al., 2014). The validity of 

an individual animal study affects its usability, generalisation and the 

evaluation of summarised findings from all relevant animal studies in the same 

topic domain, and further affects the transition to clinical trials. Four categories 

of validity are considered in preclinical animal studies. These are internal 

validity (how well the experiments were performed), external validity (whether 

the results can be generalised to experiments conducted in other conditions, 

population, time points, etc), construct validity (whether the animal models can 

represent the methodology behind), and reporting bias (non-significant results 

tend to take longer to be published) (van der Staay et al., 2009; Worp et al., 

2010). Particularly, internal validity is influenced by a range of biases including 

selection bias, performance bias, detection bias, attrition bias and other biases 

(Hooijmans et al., 2014). In animal experiments, these biases can be reduced 

by measures such as randomly allocating animals to groups, blinding scientists 

who perform the experiments and analyse the outcomes so they do not know 

which intervention an animal received, and specifying any exclusion of animals 

and outcome data (Macleod et al., 2015).  

Synthesis of results from experiments lacking these measures can lead to the 

efficacy of a treatment or intervention being overestimated or underestimated, 

which can be partially reflected by some reporting issues. For instance, in a 

preclinical systematic review of focal cerebral ischaemia, the intervention was 
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found 30% more effective in the studies that did not report blinded assessment 

of outcome than the studies that reported blinding (MacLeod et al., 2008); and 

the treatment effect of acute ischaemic stroke was 10% more effective in the 

studies that did not report randomisation than the studies that reported 

randomisation (Van Der Worp et al., 2007). Poor reporting does not directly 

mean the experiments were conducted in a biased manner, as sometimes 

investigators may not report the bias-related measures of a rigorous 

experimental study in the publication, for a certain reason. Once journals reach 

a consensus and widely require the reporting of a series of designs, measures 

and implementations in the publications, there is no doubt that the results in 

the publications which do not report those measures should be questioned. To 

raise the awareness of the importance of reporting, and enable the 

assessment process transparent and objective, standard checklists for risk of 

bias assessment in animal intervention studies have been developed, such as 

CAMARADES ten-item quality checklist (Macleod et al., 2004), ARRIVE 

guidelines (Kilkenny et al., 2010), Landis checklist (Landis et al., 2012) and 

SYRCLE’s risk of bias tool (Hooijmans et al., 2014). Although the specific 

criteria of risk of bias items may vary depending on the study, some checklist 

items are widely applicable across experiments with different treatments or 

interventions (Macleod et al., 2015), such as random allocation of animals to 

groups, blinded assessment of outcome, compliance of animal welfare 

regulations, potential conflict of interests, animal exclusions from the study, 

etc. Clear reporting of the risk of bias items provides more options for exploring 

the source of heterogeneity and discussing the effect of relevant measures on 

the overall efficacy in meta-analysis, hence reduce the risk of an intervention 

being overestimated or underestimated.  

PICO 

Literature search, citation screening and data extraction are the critical steps 

in systematic reviews. The key elements of interest in these procedures are 

the Population/Problem, Intervention, Comparator and Outcome, which 

compose the framework of PICO (Richardson et al., 1995). The PICO frame 
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has been used as the basis for retrieval, inclusion and classification of 

published evidence, and is beneficial to clinical evidence based medicine (Jin 

and Szolovits, 2018a). Empirical studies have shown the usage of PICO 

elements in literature retrieval facilitates more complex search strategies and 

yields more precise search results for systematic reviews or answering clinical 

questions (Huang et al., 2006; Schardt et al., 2007; Boudin et al., 2010; 

Chabou and Iglewski, 2018; Booth et al., 2000). During citation screening, 

investigators screen abstracts to determine the inclusion or exclusion of 

studies. Abstracts that are pre-structured according to the PICO frame or 

combine demonstration with PICO phrases enable faster judgement of study 

relevance for each PICO element (Jin and Szolovits, 2018b; Tsafnat et al., 

2018; Brockmeier et al., 2019). Pre-structured PICO information also allows 

investigators to locate relevant descriptions from full-text articles which may 

speed up the data extraction process (Wallace et al., 2016). 

The application PICO framework is less common in the preclinical field. 

Considering the leading clinical research and its difference compared to the 

preclinical experiments, the SYRCLE group have derived the definition of 

preclinical PICO from the clinical PICO frame, where “Population” does not 

represent patients but instead represents the animal species, strain and 

method of induction of disease model, and outcomes can involve survival, 

behavioural, histological and biochemical outcomes which are not directly 

relevant to clinical situations (Hooijmans et al., 2018). 

1.3 Automation for Systematic Review 

Both the number of biomedical publications and the number of systematic 

reviews are rapidly increasing (Bastian et al., 2010; Fontelo and Liu, 2018). In 

an investigation of 195 reviews registered in PROSPERO, the number of 

studies entered into a systematic literature search ranged from 27 to 92,020, 

and it took more than 2.5 years on average to complete a systematic review 

and publish the results (Borah et al., 2017). The large number of publications 

require many human efforts across all stages in a systematic review, and the 
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lengthy duration to reach publication means the findings of reviews may go out 

of date (Shojania et al., 2007).  

The evidence synthesis community has advocated for the use of automation 

techniques to assist systematic reviews (Elliott et al., 2017; Thomas et al., 

2017). Recent developments in machine learning and natural language 

processing have allowed the training and building of automation tools which 

can aid systematic reviews. The main tasks involved in systematic reviews can 

be formulated into text classification and data extraction (Marshall and 

Wallace, 2019).  

Text Classification 

Text classification is a categorisation task which aims to group documents into 

classess of interests. More formally, given a document 𝑥 ∈ 𝑋  and a set of 

classes 𝐶 = {𝑐1, 𝑐2, … } , where 𝑥  is the numeric representation of the 

document and 𝑋 is the document space, a classification function or model 𝑓  

is learned to map the representations of documents into classes, i.e. 𝑓 : 𝑋 →

𝐶 (Manning et al., 2008). For example, citation screening can be modelled to 

automatically classify abstracts or full-text articles into two classes, such as 

studies that describe in vivo experiments and those that do not, or studies 

which investigate a certain disease and those that do not. Similarly, risk of bias 

assessment can be modelled to classify the representations of full texts or their 

sentences into two classess including ‘reported’ and ‘unreported’, for each 

checklist item.  

Data Extraction 

Data extraction, including PICO extraction, aims to identify numeric values or 

precise words and then tabularise the information so it can be used directly in 

the following meta-analysis. However, in practice, considering the difficulties 

of identifying structured information, PICO extraction is often converted to 

identify sentences, snippets or phrases describing PICO elements from full 

texts. Particularly, identifying snippets or phrases requires the classification of 
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words (or tokens) in the given text, so the consecutive tokens with high 

probabilities can be then concatenated together to form the phrases. In the 

field of natural language processing, extracting words or phrases from context 

is the word or token classification task, which can be further categorised into 

question answering or named entity recognition (Manning et al., 2008), 

depending on the format of annotations in the labelled training data.  

More specifically, in the question answering architecture, given a question 

sequence such as “What is the intervention?” and its relevant context, i.e. the 

corresponding publication, a model is learned to find the position of answer 

strings from the publication context, by classifying the representation vector of 

each context token into two classes to indicate if the token belongs to the 

intervention answer strings or not respectively. While in the named entity 

recognition architecture, a model is learned to classify the representation of 

each token into pre-defined PICO entity types such as “Intervention” or 

“Outcome”. Both tasks belongs to the multi-class token classification problem: 

given an input text sequence 𝑋 = {𝑥1, 𝑥2, … }, where 𝑥𝑖 is the 𝑖-th token (word) 

in the sequence, the goal is to assign a label for each token and generate an 

output label sequence 𝑌 = {𝑦1, 𝑦2, … }. For each individual publication, the 

question answering architecture requires the annotation of the position of exact 

answer strings, which is more applicable for the situation where only one or 

two precise answer strings exist for the question, while the named entity 

recognition architecture requires the annotation of every mentioned PICO 

phrases,  which allows multiple mentions of a same PICO phrase.  

The basis of solving those tasks is first converting text into numeric 

representations of individual words, sentences or whole documents, and then 

training classifiers to learn patterns, relations and parameters across different 

dimensions and positions of text representations, which can then be used to 

score new articles for prediction. Both text representation methods and 

classifiers involve statistical methods and traditional machine learning models, 

and the development of neural network methods (Goldberg, 2016) enriches 

the field, especially the transformer-based models (Vaswani et al., 2017) which 
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achieve state-of-the-art performance on a wide range of tasks (Devlin et al., 

2018).  

Automation tools developed using machine learning and natural language 

processing algorithms have achieved great success in clinical fields, such as 

EPPI reviewer (Shemilt et al., 2016) for citation screening, ExaCT (Kiritchenko 

et al., 2010) for data extraction and RobotReviewer (Marshall et al., 2016) for 

bias assessment. However, tools for preclinical systematic reviews are scarce. 

Citation screening tools for automatically classifying in vivo abstracts (Liao et 

al., 2018) is well established, and a preclinical risk of bias assessment tool 

exists (Bahor et al., 2016) but it is built on a rule-based method which 

generates only binary labels and is limited to a certain disease. Tools for risk 

of bias assessment and PICO extraction using recent natural language 

processing techniques are waiting to be explored. 

1.4 Thesis overview 

Preclinical research is critical to decide which drugs to move forward to clinical 

trials but there are reproducibility crises and translation issues which limit 

clinical success. Scientists conduct systematic reviews on preclinical animal 

experiments to obtain less biased summarises of findings and explore the 

reliability of treatment efficacy. Procedures in systematic reviews including 

quality assessment and data extraction are time-consuming. Automation tools 

designed for preclinical systematic reviews are necessary to speed up the 

process and reduce human efforts, which may further contribute to the 

translation from preclinical to clinical research. 

The overall aim of the thesis is to investigate and apply natural language 

processing models for risk of bias assessment and PICO elements extraction 

in preclinical publications. More specifically, I formulate risk of bias 

assessment as a long document classification task, and PICO elements 

extraction as a token classification task, which is further categorised into 

question answering and named entity recognition, depending on the specific 
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format of annotations in the datasets. The remainder of this thesis is structured 

as follows.  

In Chapter 2, I perform a series of binary classification models for full-text 

preclinical publications, to automatically indicate if they reported five risk of 

bias items including random allocation to groups, blinded assessment of 

outcomes, conflict of interests, compliance of animal welfare regulations, and 

statement of animal exclusions. I perform traditional machine learning 

classifiers with several text representation methods as baselines. I illustrate 

the mechanism of the convolutional, recurrent and hierarchical neural 

networks, and how they are used to construct the classification model. I 

present critical elements in transformer models and propose two strategies to 

adapt BERT models to long documents. After implementation, training and 

parameters tuning procedures, I compare the validation performance of above 

models, and select the best model for each risk of bias item separately. I 

discuss whether the attention mechanism in the recurrent and hierarchical 

structure can be used to extract the most important words and relevant 

sentences for risk of bias assessment. I use the optimal models to build the 

preclinical risk of bias tool and compare the test performance with an existing 

text mining approach. 

In Chapter 3, I present question answering models and demonstrate the 

possibilities to extract phrases describing the intervention used or the method 

of induction of disease models from clinical abstracts and preclinical full texts. 

For clinical abstracts which focus on one intervention measure, I implement 

the classic question answering models based on attention flows and 

transformers to extract the exact phrases. For preclinical datasets which have 

multiple interventions or induction methods described in the full texts, I explore 

several information retrieval methods to extract relevant sentences which are 

concatenated into new passages, and implement the question answering 

models to extract and filter out a list of candidates for interventions or induction 

methods from the shortened passages. I compare the performance of 

information retrieval methods and question answering models, and 
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demonstrate the prototype of an interface developed using the best model 

trained from the preclinical datasets.  

In Chapter 4, I present the annotation of six PICO elements (Species, Strain, 

Induction, Intervention, Comparator and Outcome) in the collected preclinical 

abstracts, and use them to develop models for PICO phrases extraction. I 

decompose PICO extraction into two independent tasks: 1) PICO sentences 

classification, where I apply BERT to classify sentences from abstracts and 

remove non-PICO sentences to obtain the shortened texts; 2) PICO elements 

detection, where I implement recurrent networks and BERT-based models with 

or without a conditional probabilistic model, on the truncated abstracts to 

extract precise PICO phrases. I apply the self-training strategy to enlarge the 

training datasets and discuss whether it can enhance the test performance. 

In Chapter 5, I summarize the conclusions from previous chapters, and discuss 

directions for future work. 
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Chapter 2 Assessing Risk of Bias Reporting in 

Preclinical Literature: Text 

Classification 

Systematic review is believed to be the least biased method of collating 

evidence from research publications. It is not bias free and quality assessment 

is performed to evaluate the internal validity of individual studies (van der Staay 

et al., 2009; Worp et al., 2010). Flaws in experimental design reflect from some 

reporting issues in publications and studies have shown that publications 

lacking clear reporting of risk of bias leads to the treatment efficacy being 

overestimated or underestimated (Van Der Worp et al., 2007; MacLeod et al., 

2008; Sena et al., 2014), which further affect the translation to clinical research. 

To reduce risk of bias, regulate experimental designs and raise the awareness 

of reporting issues in preclinical systematic reviews, several risk of bias tools 

have been established, such as CAMARADES ten-item quality checklist 

(Macleod et al., 2004), ARRIVE guidelines (Kilkenny et al., 2010), Landis 

checklist (Landis et al., 2012) and SYRCLE’s risk of bias tool (Hooijmans et 

al., 2014). In the field of evidence synthesis, the risk of bias 'tools' often refer 

to the guidelines or checklist forms with a series of criteria of items related to 

experimental designs such as randomisation, blinding and sample size 

calculation. The assessment process is conducted by at least two independent 

investigators to check every included full-text publication separately, extract 

the relevant descriptions and then make the judgement if the publication has 

low, high, or unknown risk for a specific bias item. A senior adjudicator is also 

required to resolve any disagreements between the two investigators. The 

reviewing work is repetitive and workload is rapidly increasing due to the fast-

growing number of preclinical publications. To speed up the workflow and 

systematically evaluate the risk of bias, it is critical to develop tools to 

automatically appraise risk of bias reporting. Improving this workflow enables 

the processing and evaluation of large amounts of publications to guide 
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researches by institutions, journals and funders, which may improve research 

activities and provide more precise findings to inform clinical trials. 

2.1 Related Work 

Systematic reviewers have advocated the use of automated approaches to 

assist risk of bias assessment, using human effort and machine automation in 

mutually reinforcing ways (Elliott et al., 2017). The development of machine 

learning and natural language processing, including neural models and 

transfer learning, provides opportunities to create robust tools for risk of bias 

assessment.  

For clinical trials, Marshall et al have applied support vector machine with bag-

of-word representations at sentence/document/joint levels, using 2,200 full-

text clinical reports with annotated document labels (‘low risk’ and 

‘unknown/high risk’) and sentence quotes which indicate the justification. They 

found joint models using associated sentence-level annotations improve the 

predictions by between 1% and 9% for six bias domains, and the optimal model 

achieves F1 of 72% for random sequence generation and 67% for blinded 

assessment of outcome (Marshall et al., 2015). In a later development of 

RobotReviewer (Marshall et al., 2016), they use distant supervision (Mintz et 

al., 2009) to automatically derive pseudo document and sentence level 

annotations from unlabelled clinical reports, based on the 1,400 unique strings 

of bias domains from the Cochrane Database of Systematic Reviews. By 

training the support vector machine separately for each bias domain or jointly 

for all domains (multi-task learning (Ruder, 2017)) on 6,610 algorithmically 

annotated full texts, they obtain the accuracy of 76% for random sequence 

generation and 67% for blinded assessment of outcome. Experiments have 

shown their automation tool is quicker than pure manual assessment 

(Soboczenski et al., 2019). A risk of bias assessment function is also 

developed in Trialstreamer (Marshall et al., 2020), by training a logistic 

regression model on 13,463 abstracts of clinical trials which achieves a recall 

of 46% and precision of 44%. Similarly, Millard et al apply logistic regression 
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models on 1,467 full-text clinical reports for sentence and document 

classification separately, which achieves an area under the ROC curve over 

72% for randomisation sequence generation, allocation concealment and 

blinding (Millard et al., 2016).  

With the same datasets used in the development of RobotReviewer, Zhang et 

al consider the supported sentence annotations of bias domains as ‘rationales’ 

and use them to train convolutional neural networks (Kim, 2014) to classify 

sentences into three classes (positive, negative and neutral) for a bias item in 

each document (Zhang et al., 2016). They explore different approaches to 

summarise sentence vectors to obtain the document representation, by simply 

summarising, summarising by class weights, or summarising by sentence 

weights which are jointly learned in the convolutional neural network with an 

‘attention’ mechanism (Yang et al., 2016). The accuracies of four bias items 

are improved by 5% using the rationale-augmented convolutional neural 

networks, compared to their baseline support vector machines. 

Menke et al have reported the performance of a proprietary tool ‘SciScore’ 

(Menke et al., 2020) which trains conditional random fields (Sutton and 

McCallum, 2011) on 250 research articles manually labelled with entity 

mentions for random allocation and blinding. The training corpus is randomly 

selected from the PubMed Open Access articles, and the portion of clinical or 

preclinical publications is not clear.  

Compared with clinical trials, animal studies are conducted in relatively small 

teams, are reported in a different style, have been shown to have lower 

reporting of strategies to reduce risk of bias (Macleod et al., 2015), and are 

susceptible to different risk of bias items (Hooijmans et al., 2014). Hence, 

separate tools for RoB assessment in preclinical literature are necessary. 

Bahor et al. have previously reported the use of regular expressions based on 

rule-based string matching to recognise phrases related to bias reporting in 

experimental animal studies, which requires many hand-crafted term 

selections (Bahor et al., 2017). 
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2.2 Dataset 

I use a collection of full-text publications which have been annotated for risk of 

bias items in preclinical systematic reviews in three domains: 2,453 records of 

a focal ischaemic stroke study (McCann et al., 2016), 1,626 records of a 

chemotherapy-induced peripheral neuropathy study (Currie et al., 2019), 2,404 

records of a psychotic disorder study (Bahor et al., 2016); and from two studies 

assessing the effectiveness of interventions to improve reporting quality across 

in vivo research: 760 records of NPQIP (Nature Publication Quality 

Improvement Project) (The NPQIP Collaborative Group, 2019) and 665 

records from the IICARus project (Intervention to Improve Compliance with the 

ARRIVE guidelines) (Hair et al., 2019). The risk of bias labels are at the 

document level (1 for reported, 0 for not reported/unknown) which are derived 

from the annotations of two independent investigators followed by an internal 

validation process. 

I consider five risk of bias items: (1) Random Allocation (RA): animals are 

randomly allocated to treatment or control groups at the start of the experiment; 

(2) Blinded Assessment of Outcome (BAO): group identity is concealed from 

the scientist measuring the outcome; (3) Conflict of Interests (CI): the authors 

report any relationship which might be perceived to introduce a potential 

conflict of interests, or the absence of such relationships; (4) Compliance with 

Animal Welfare Regulations (CAWR): the researchers report that they 

complied with animal welfare regulations; (5) Animal Exclusions (AE): a 

statement of whether or not all animals, all data and all outcomes measured 

are accounted for and presented in the final analysis. Some example 

sentences indicating the reporting of each risk of bias item are displayed in 

Table 2.1.  

Publications are initially in PDF format and I convert them to plain texts using 

Xpdf (www.xpdfreader.com). I convert all text to lower case and use regular 

expression to remove references, citations, URLs, digits, non-ASCII 

characters and text which precedes the “Introduction” section, because they 



36 
 

are unlikely to report risk of bias. I use Stanford CoreNLP (Manning et al., 

2015) for word and sentence tokenisation. After removing invalid records (for 

instance where text conversion fails), 7,840 full-text publications have 

annotations for random allocation, blinded assessment and animal exclusions, 

and 7,089 of them have annotations for animal welfare regulations and conflict 

of interests. Records are shuffled and randomly split into training, validation 

and test set (80%/10%/10%). Some summary statistics of the dataset are 

shown in Table 2.2. 

Risk of bias item Positive example 

Random allocation 
…a randomisation code is used to allocate animals 
to treatment group… 

Blinded assessment of 
outcome 

…the midbrain sections from each animal were 
screened for … by a person unaware of the 
treatment condition of the animals… 

Conflict of interests 
The authors declare that they have no competing 
interests. 

Compliance of animal 
welfare regulations 

…experiments were performed in accordance with 
protocols by the Institutional Animal Care and Use 
Committee at… 

Animal exclusions 
... cases in which the lesion was assessed to involve 
less than <50% of the dopamine neurons, the animal 
was excluded from... 

Table 2.1: Example sentences from a full-text publication indicating the risk of bias 

reporting. 
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Samples for RA, 
BAO, AE 

Samples for 
CAWR, CI 

Train Valid Test Train Valid Test 

No. documents 6272 784 784 5671 708 710 

Avg no. tokens per document 4977 5112 5077 4947 5057 4964 

Avg no. sentences per document 180 186 184 178 182 178 

Avg no. tokens per sentence 28 28 28 28 28 28 

Ratio of records reported RA  27% 25% 30% -- -- -- 

Ratio of records reported BAO 30% 29% 33% -- -- -- 

Ratio of records reported AE 12% 14% 11% -- -- -- 

Ratio of records reported CAWR -- -- -- 78% 77% 75% 

Ratio of records reported CI -- -- -- 32% 28% 31% 

Table 2.2: Dataset statistics. Samples for random allocation, blinded assessment of 

outcomes and animal exclusions consist of 7,840 records; samples for animal 

welfare regulations and conflict of interests consist of 7,089 records. 

2.3 Methods 

Risk of bias assessment can be cast as a typical text classification task: the 

input is the full-text publication, and the output is the binary risk of bias label 

(reported/unreported) for each item. A classification model cannot be trained 

from the plain text directly and I need to convert text information into analysable 

data. The core concept is to map each document to a matrix consisting of fixed-

dimension word vectors or word embeddings (Daniel and Martin, 2020), before 

training a classification model which learns to map the numeric text 

representations to the binary output label. For text representation methods, I 

explore bag-of-words (Goldberg, 2017), word2vec (Mikolov, Chen, et al., 

2013), doc2vec (Le and Mikolov, 2014) and embeddings from BERT (Devlin 

et al., 2018). For classification models, I implement three baseline models 

(support vector machine, logistic regression and random forest), neural models 

(convolutional neural network, recurrent neural network with attention and 

hierarchical neural network) and BERT models using two strategies (document 
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chunk pooling and sentence extraction). An overview of the methods is 

demonstrated in Figure 2.1, and details are described in the following sections. 

 

Figure 2.1: An overview of text representation methods and classification models 

being explored. 

2.3.1 Text representations 

Bag-of-words (bow) uses the word frequency within a document to represent 

the word importance. In this method, a document with 𝑠 words is converted to 

a 𝑠-dimensional vector where the 𝑖-th element is the 𝑖-th word frequency. Stop 

words such as ‘the’ and ‘a’ should be assigned lower weights or removed as 

they usually have high counts but are less helpful to understand texts. Some 

words related to the topic may appear more common than other words among 

the documents and should be assigned higher weights. The common solution 

is using TF-IDF (Term Frequency-Inverse Document Frequency) weighting 



39 
 

(Goldberg, 2017). In a collection of full-text publications, the TF-IDF weight of 

the 𝑖-th word 𝑤𝑖 in the 𝑗-th document 𝑑𝑗  is: 

tfidf 𝑤𝑖, 𝑑𝑗 , 𝐷 =
𝑓 𝑤𝑖, 𝑑𝑗

𝑙 𝑑𝑗

× ln
𝑁(𝑑)

𝑛(𝑤𝑖)
(2. 1) 

where 𝑓(𝑤𝑖, 𝑑𝑗) is the frequency of word 𝑤𝑖 in the document 𝑑𝑗 , 𝑙(𝑑𝑗) is the total 

number of words in the document 𝑑𝑗 , i.e. document length, 𝑁(𝑑) is the total 

number of documents in the collection of full-text publications (corpus) 𝐷, and 

𝑛(𝑤𝑖) is the number of documents containing the word 𝑤𝑖 . Words can be 

counted by unigram (each word is counted alone as one token), bigram (every 

two adjacent words are counted as one token) and combination of unigram 

and bigram (Goldberg, 2016). 

Word2vec is a type of language modelling which learns to map words to 

continuous vectors which can preserve the semantic relationship among 

words. For example, the cosine distance of vector(‘King’) and vector(‘Man’) is 

similar to the distance of vector(‘Queen’) and vector(‘Woman’). These word 

vectors can be generated from the learning process jointly within the neural 

network and one commonly used method is the skip-gram model, which 

predicts surrounding context words given a centre word (Mikolov, Chen, et al., 

2013). Initially, from a large corpus with vocabulary size 𝑣, every single word 

is represented by a 𝑣-dimensional one-hot vector and is fed into a simple 

neural network. As Figure 2.1 shows, the input layer receives the one-hot 

vector of a centre word (‘treatment’), and the output layer generates the 

probability vectors 𝑦 ̂of the predicted context words (‘effects’ and ‘therapy’). 

The neural network is trained to update the parameter matrix 𝑊 ∈ ℝ𝑣×ℎ and 

𝑊 ∈ ℝℎ×𝑣 to get a low cross-entropy loss between the probability vectors 𝑦 ̂

and the actual one-hot vectors 𝑦, where ℎ is the size of the hidden layer. The 

parameter matrix 𝑊  obtained through this training process is the 

representation matrix consisting of 𝑣 word vectors or embeddings, which can 

be used for other natural language processing tasks. Word vectors are pre-

trained on a large amount of corpora like GoogleNews and Wikipedia, and are 
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then applied as the input of new tasks, either fixed or jointly updated with other 

new parameters. Large vocabulary size 𝑣 increases computing expenses of 

updating weight matrix 𝑊 , and negative sampling (Mikolov, Sutskever, et al., 

2013) is introduced to solve this issue. In the negative sampling method, 

instead of updating all ℎ × 𝑣 parameters in 𝑊 , a small amount of ‘negative’ 

words are selected, for example 10 words, by uniform distribution, and 

parameters of ‘positive’ words (‘effects’ and ‘therapy’ in Figure 2.2) and 10 

‘negative’ words (other words excluding ‘effects’ or ‘therapy’ in Figure 2.2) are 

selectively updated. The computation complexity is then reduced from 𝑂(ℎ × 𝑣) 

to 𝑂(ℎ × 10), where 𝑣 is often on billion-level.  

 

Figure 2.2: An example of a skip-gram model with window size 1 (considering one 

adjacent word of the central word, from both directions) 

Doc2vec is an unsupervised method which learns to represent a document by 

a dense vector (Le and Mikolov, 2014). For baseline classification models 

which only receive a vector representation as input, a document’s matrix 

representation from word2vec is needed to be summarised or averaged to 

reduce dimension. Representation from doc2vec can be fed to those baseline 
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classifiers directly, which often outperforms simply summarised or averaged 

word vectors. There are two methods to generate the document vector: 

Distributed Memory (DM) and Distributed Bag-of-Words (DBOW), see Figure 

2.3. In the distributed memory method, the 𝑖-th document is represented by a 

unique vector 𝑑𝑖 , and a matrix consisting of word vectors {𝑣𝑖,1, 𝑣𝑖,2 , …} in 

sequential order, where the vector of each unique word is the same across all 

documents in the training corpus. 𝑑𝑖  can be considered as a special word 

vector which summarises the topic of the document and contains information 

missed by individual word vectors. The document vector 𝑑𝑖 and word vectors 

{𝑣𝑖,𝑗} are concatenated or averaged, and are then trained by a linear classifier 

to predict the next word in a context window. Distributed bag-of-words is similar 

to the skip-gram model described in the word2vec section. Instead of using the 

one-hot vector of a centre word as input, DBOW uses an initialised document 

vector as input, and updates the vector by training a linear projection network 

to classify whether a randomly sampled word from the document belongs to a 

randomly sampled text window cut from the document. DBOW consumes less 

memory than DM because it does not require to store and update word vectors. 

From previous studies, DM alone works well for multiple tasks, but its 

combination with DBOW is more consistent across several tasks (Le and 

Mikolov, 2014). 
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Figure 2.3: An example of distributed memory and distributed bag-of-word model 

(with window size 3). The classifier is a linear neural network. 

All three text representation methods are explored for baseline classification 

models, and word2vec is used for neural models. Text representation for 

BERT models is described later in Section 2.3.4.1. 

2.3.2 Baseline Models 

I explore three baseline models for the classification task: Support Vector 

Machine (SVM), Logistic Regression (LogReg) and Random Forest (RF). I 

define the representation vector of the 𝑖-th document in the training collection 

of publications as 𝑋𝑖 ∈ ℝ𝑑, where 𝑑 is the vocabulary size when using the bag-

of-words approach, or pre-defined dimension of the continuous vector induced 

from word2vec or doc2vec. Support vector machine and logistic regression 

learn to map document vector 𝑋𝑖 to the target label 𝑌𝑖 by 𝑌𝑖 = 𝑊𝑋𝑖, where the 

weight matrix 𝑊  is trained to minimise the objective function: 

𝐿(𝑌𝑖, 𝑊𝑋𝑖) + 𝜆𝑅(𝑊 )
𝑁

𝑖=1
(2. 2) 

𝑁  is the number of document, 𝐿 is the loss function, 𝜆 is a constant and 𝑅 is 

a regularisation term defined as 𝑅(𝑊 ) = ‖𝑊 ‖2 2⁄ , which serves as a penalty 
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for a large number of features (Hastie, Trevor, Tibshirani, Robert, Friedman, 

2009).  

For support vector machine, 𝐿 is hinge-loss and the loss of 𝑖-th document is 

calculated by 

𝐿(𝑌𝑖, 𝑊𝑋𝑖) =
𝑚𝑎𝑥(0, 1 − 𝑊𝑋𝑖) ,               𝑌𝑖 = 1 (𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵)
1,                                    𝑌𝑖 = 0 (𝑛𝑜𝑡 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵) (2. 3) 

Stochastic gradient decent algorithm (Goldberg, 2016) is used to update 

parameter matrix 𝑊 . At one iteration step, the gradient of the loss is estimated 

by one record randomly sampled from the training data, and 𝑊  is then 

updated following the rule: 

𝑔 =
𝜕 𝐿 𝑌𝑗 , 𝑊 𝑇 𝑋𝑗 + 𝜆𝑅(𝑊 )

𝜕𝑊
(2. 4) 

𝜂 =
1

𝜆(𝑡0 + 𝑡)
(2. 5) 

𝑊 ← 𝑊 − 𝜂 × 𝑔 (2. 6) 

where 𝑗 is the index of one randomly sampled record from training data, 𝜂 is 

the decreasing learning rate by iteration step 𝑡 , 𝑔  is gradient, and 𝑡0  is a 

heuristic constant (Bottou, 2012). It is faster and less memory-consuming, 

compared to the gradient descent method (Lemaréchal and Lemaréchal, 

2012) which updates parameters using average gradients of all training data 

in one iteration step. 

For logistic regression, 𝐿 is log-loss and the loss of 𝑖-th document is calculated 

by 

𝐿 𝑌𝑖, 𝑊 𝑇 𝑋𝑖 =
log 1 + e−W𝑋𝑖 ,                 𝑌𝑖 = 1 (𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵)

log 1 + eW𝑋𝑖            𝑌𝑖 = −1 (𝑛𝑜𝑡 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵)
(2. 7) 

Limited-memory BFGS (Nocedal, 1980) is applied to update parameter matrix 

𝑊 , which uses a dimension-reduced approximation of the Hessian matrix of 

the loss function and is proved to be the best choice for log-linear models with 

L2 regularisation (Andrew and Gao, 2007). 
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Random forest is an ensemble-based method which combines several 

decision trees trained on sub-samples and then average results of multiple 

trees to avoid over-fitting (Breiman, 2001). Decision tree is a non-parametric 

method and the basic tree structure is displayed in Figure 2.4. For the text 

classification task, a decision tree first splits documents into two nodes 

(leaves) based on their representation vectors. Then within each node, it 

repeats the splitting process and forms its own branch, until a pre-defined 

maximum depth of trees, maximum number of leaf nodes, or the minimum 

number of samples required to form a leaf node, is reached.  

 

Figure 2.4: A decision tree structure. 

 

2.3.3 Neural Networks 

I explore three neural models: Convolutional Neural Network (CNN), a 

powerful model for text classification (Kim, 2014); Recurrent Neural Network 

(RNN) which is good at modelling sequential text data (Hochreiter and 

Schmidhuber, 1997); and Hierarchical Attention Network (HAN) which takes 

the hierarchical structure among word, sentence and document into 

consideration (Yang et al., 2016).  

2.3.3.1 Convolutional Neural Network 

An individual document can be considered as a long-text sentence and I use 

the one-layer convolutional neural network structure for sentence classification 
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(Kim, 2014). Critical elements of this architecture are described below and 

shown in Figure 2.5. 

Embedding layer. The CNN architecture begins with mapping each document 

into a representative matrix 𝑥 ∈ ℝ𝑙×d  by a pre-trained word embedding 𝐸 ∈

ℝv×d, where each row is a word vector representing one word, 𝑙 is the number 

of words in the document, d is the dimension of the pre-trained embedding and 

𝑣 is the vocabulary size which depends on the specific pre-training corpus. The 

shape of the weight matrices trained in CNN are fixed, but length 𝑙 varies 

among different documents. Hence, I define a threshold s for document length, 

and cut the document when its length 𝑙 is larger than s or pad the document 

with zeros when its length 𝑙 is smaller than s. This guarantees the embedding 

matrix of every document has the same dimension (ℝ𝑠×d).  

Convolution layer. The main characteristic of a convolution layer is the 

multiple filters (2D matrices) with different sizes. Let 𝑥[𝑖: 𝑗] denote the matrix 

extracted from row 𝑖 to row 𝑗 in the document matrix. For one document matrix 

𝑥 ∈ ℝ𝑠×d and one filter 𝑓 ∈ ℝℎ×d, where ℎ is the filter size, the convolution layer 

sequentially extracts a sub-matrix which has the same dimension as filter 𝑓 , 

and then summarise the element-wise productions between 𝑥[𝑖: 𝑖 − ℎ + 1] ∈

ℝℎ×d  and 𝑓 : 

𝑐𝑖 = 𝑥[𝑖: 𝑖 − ℎ + 1]
𝑑

𝑘=1
⨀𝑓

ℎ

𝑗=1
(2. 8) 

where 𝑖 = 1, … , 𝑠 − ℎ + 1, 𝑐𝑖 ∈ ℝ. This generates a summarised feature vector 

𝑐 = [𝑐1, 𝑐2, … , 𝑐𝑠−ℎ+1] ∈ ℝ𝑠−ℎ+1, by one filter 𝑓  with size ℎ. For each filter size, 

multiple filters are used to extract multiple features. As the example shown in 

Figure 2.5, a document with 8 words is mapped to a matrix by a 5-dimension 

word embedding, i.e. s=8, d=5. Four filters are used, where two of them have 

size 3 (h=3) and another two have size 4 (h=4). After the convolution operation, 

four feature vectors are generated, where two with 8-3+1=6 elements and 

another two with 8-4+1=5 elements, for each filter size respectively.  
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Figure 2.5: An example of convolutional neural network for document classification. 

A document with 8 words is mapped by a 5-dimension word embedding. Two filters 

size [3, 4] are used, and each of them has two filters. 

These feature vectors are then passed through an activation function to induce 

more non-linearity to the network, and the rectified linear activation function 

(ReLU) is a preferred default in convolutional neural networks (Krizhevsky et 

al., 2012), which is defined as ReLU(𝑐) = max (0, 𝑐) ∈ ℝ𝑠−ℎ+1. 

Max-pooling layer. Max-pooling (Dumoulin and Visin, 2016) is applied to take 

the maximum value of each feature vector 𝑐 , which represents the most 

important feature extracted by the corresponding filter. This layer generates 𝑞 

maximum scalars which are concatenated into one vector, where 𝑞 = total 

number of filters = number of different filter sizes ∗ number of filters for each 

filter size. 

Dropout layer. Dropout serves as a regularisation strategy to prevent over-

fitting (Srivastava et al., 2014). It randomly ignores some ‘neurons’ by setting 

some elements in the feature vector to zeros during the training process. The 

dropout rate refers to the proportion of neurons being ignored. 
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Fully connected layer. Fully connected (FC) layer performs a linear 

transformation to map the 𝑚-dimensional vector from the max-pooling layer 

into a 2-dimensional vector [𝑝1, 𝑝0], which refers to the score of ‘reported’ and 

‘unreported’ respectively.  

Batch normalisation layer. Batch normalisation (Ioffe and Szegedy, 2015) is 

performed before the final output layer. ‘Batch’ refers to the sub-sample split 

from the whole training set. In one training iteration (epoch), neural networks 

use a batch training strategy (Goodfellow et al., 2016), which splits the whole 

training sample into several subsets, i.e. ‘mini-batches’, and updates 

parameters after the calculation of gradients within every mini-batch. This 

strikes a balance between the gradient descent algorithm and stochastic 

gradient descent algorithm for memory, computing efficiency and convergence 

robustness. Batch normalisation performs normalisation within each mini-

batch to reduce the dependency of parameters' distribution changes among 

layers, where high dependency makes it more difficult to distinguish output 

values between classes. For a mini-batch 𝛣 including 𝑛 documents, the output 

from the fully connected layer is {[𝑝𝑖
1, 𝑝𝑖

0]} ∈ ℝ𝑛×2, 𝑖 = 1, … , 𝑛. The mean and 

variance of score of each class (reported/unreported) across the mini-batch 

are calculated by: 

𝜇1 =
1

𝑛
𝑝𝑖

1𝑛

𝑖=1
, 𝜎1 2

=
1

𝑛
𝑝𝑖

1 − 𝜇1 2𝑛

𝑖=1
 (2. 9) 

𝜇0 =
1

𝑛
𝑝𝑖

0𝑛

𝑖=1
, 𝜎0 2

=
1

𝑛
𝑝𝑖

0 − 𝜇0 2𝑛

𝑖=1
(2. 10) 

Scores are then normalised, scaled and shifted by: 

𝑝𝚤
1 = 𝛾

𝑝𝑖
1 − 𝜇1

√(𝜎1)2 + 𝜖
+ 𝛽, 𝑝𝚤

0 = 𝛾
𝑝𝑖

0 − 𝜇0

√(𝜎0)2 + 𝜖
+ 𝛽 (2. 11) 

where 𝛾 and 𝛽 are the scaled and shifted parameters to be trained.  

A softmax function is then applied to convert scores to probabilities ranging 

from 0 to 1: 
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𝑝𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 =
exp 𝑝1

exp 𝑝1 + exp 𝑝0
, 𝑝𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 =

exp 𝑝0

exp 𝑝1 + exp 𝑝0
(2. 12) 

Parameters in the network are trained and updated using Adam algorithm 

(Kingma and Ba, 2015) to minimise the cross-entropy loss for binary 

classification, calculated by:  

𝐿𝑜𝑠𝑠 = −[𝑦 × 𝑙𝑜𝑔 𝑝𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 + (1 − 𝑦) × 𝑙𝑜𝑔 1 − 𝑝𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 ] 

=
−𝑙𝑜𝑔 𝑝𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 ,                     𝑦 = 1 (𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵) 

−𝑙𝑜𝑔 1 − 𝑝𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 ,      𝑦 = 0 (𝑛𝑜𝑡 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑅𝑜𝐵)
(2. 13) 

Adam is a type of adaptive optimisation method, which updates different 

parameters with different learning rate based on the gradient values of the 

parameters. Parameters showing small gradient updates from previous 

iterations will be updated faster with a larger learning rate, and parameters with 

large gradient updates will be updated slower. More specifically, at an iteration 

time step 𝑡, it first updates two estimates 𝑚 and 𝑣, which are the mean and 

uncentred variance of gradients 𝑔, by: 

𝑔 ←
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊
+ 𝜆W (2. 14) 

𝑚 ← 𝛽1𝑚 + (1 − 𝛽1)𝑔 (2. 15) 

𝑣 ← 𝛽2𝑣 + (1 − 𝛽2)g2 (2. 16) 

where 𝑊  represents weight parameters, 𝜆 is the regularisation constant, 𝛽1 

and 𝛽2 are constants to control the decay rate of 𝑚 and 𝑣 separately. The two 

biased estimates are then rescaled by  

𝑚 =
𝑚

1 − 𝛽
1
𝑡

, 𝑣 =
𝑣

1 − 𝛽
2
𝑡

(2. 17) 

and the training parameters are updated by 

𝑊 ← 𝑊 −
𝛼𝑚

√𝑣 + 𝜖
(2. 18) 
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When gradients change slowly, the gradient variance 𝑣 approximately equals 

to the quadratic gradient mean 𝑚 2, so the decay value of 𝑊  is close to the 

learning rate 𝛼; when gradients change rapidly, 𝑚′2 is much smaller than 𝑣′, so 

the decay value is much smaller than 𝛼, which means the parameters would 

be updated slower (Kingma and Ba, 2015). 

2.3.3.2 Recurrent Neural Network 

Recurrent neural network (RNN) is a type of neural network which builds 

connections over time steps (Abiodun et al., 2018). It is good at modelling 

sequential data and capturing information from earlier or later time steps, 

where here a time step refers to a word or a token in the text sequence. Figure 

2.6 demonstrates a basic one-layer bidirectional RNN (BiRNN) for text 

classification. ‘Bidirectional’ means words are modelled in both positive and 

reverse order, so the model can learn from the text before and after the current 

word.  

Similar to the convolutional neural network, a document is first mapped into an 

embedding matrix 𝑥 ∈ ℝ𝑠×𝑑, and vector 𝑥𝑡 ∈ ℝ𝑑  is the embedding of the word 

at position 𝑡, where 𝑡 = 1, … , s,  𝑑  is the embedding dimension, and 𝑠 is the 

document length after padding or cutting. Then in the RNN layer, the RNN cell 

at position 𝑡 combines information from the corresponding input state 𝑥𝑡 and 

the previous hidden state ℎ𝑡−1 ∈ ℝℎ, where ℎ is the hidden dimension. The 

simplest structure of the RNN cell is the linear operation followed by an 

activation function (for one direction): 

ℎ𝑡 = 𝜎(𝑊ℎℎℎ𝑡−1 + 𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ) (2. 19) 

where 𝑊𝑥ℎ ∈ ℝ𝑑×ℎ is the weight between each pair of the input state and the 

hidden state, 𝑊ℎℎ ∈ ℝℎ×ℎ  is the weight between each pair of the previous 

hidden state and the current hidden state, and 𝜎 is the activation function such 

as the hyperbolic tangent function, Tanh(𝑎) =
exp(𝑎)−exp (−𝑎)

exp(𝑎)+exp (−𝑎)
. The same operation 

is applied in a reversed order to obtain another hidden state ℎ𝑡 , and the output 

of the RNN cell at position 𝑡 is the concatenation of two hidden states [ℎ𝑡, ℎ𝑡 ] ∈



50 
 

ℝ2ℎ. This generates a hidden matrix ∈ ℝ𝑠×2ℎ for a sequence with s words, and 

to reduce dimension, the output can be obtained from the last hidden state 

[ℎ𝑠, ℎ1] ∈ ℝ2ℎ, or element-wise maximum or mean of all hidden states [ℎ�̅�, ℎ𝑡
̅ ]. 

The rest of the operations to obtain probabilities for two classes 

(reported/unreported) are similar to what has been described in the 

convolutional neural network (see Section 02.3.3.1). RNN can have multiple 

hidden layers, which is supposed to capture more complicated text 

information. 

 

Figure 2.6: The architecture of bidirectional recurrent neural network for document 

classification. 

RNN can handle any-length texts and it is supposed to catch the memory of 

previous or future steps. However, if the sequence is very long, it is difficult to 

keep the information from very earlier steps to later steps because of the 

exploding or vanishing gradient problem (Pascanu et al., 2012). Following the 

logic in RNN, the weight matrices are multiplied by themselves multiple times 

which depends on the sequence length, so the gradients of the loss for a long 

sequence would expand to very large values (exploding gradient) or approach 
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to zero (vanishing gradient), which stops the network learning efficiently. To 

solve this ‘short-memory’ problem, two variants of RNN cell, Long Short-Term 

Memory (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit 

(Chung et al., 2014) are developed. They are supposed to be used in the same 

chain structure in Figure 2.6, but the module for each time step is different.  

Long Short-Term Memory (LSTM) 

The basic RNN cell passes the hidden state and the current input state through 

the simple linear and Tanh operation, while LSTM has a cell state 𝑐𝑡 for time 

step 𝑡 and three gates (forget gate, input gate and output gate) to control 

information which should be flowed straight, forgotten, stored and updated to 

the next step (Hochreiter and Schmidhuber, 1997), see the grey area in Figure 

2.7. Both the forget gate (block in green dash line) and input gate (block in red 

dash line block) check the information from the previous hidden state ℎ𝑡−1 and 

current input state 𝑥𝑡, and generate a value between 0 and 1 using the sigmoid 

function Sigmoid(𝑎) = 1

1+exp (−𝑎)
. The forget gate decides how much information 

should be forgotten in the previous cell state by 

𝑓𝑡 = Sigmoid 𝑊𝑓ℎℎ𝑡−1 + 𝑊𝑓𝑖𝑥𝑡 + 𝑏𝑓 (2. 20) 

where less information will be forgotten when the value is closer to 1. The input 

gate decides how much new information should be stored in the new cell state 

by 

𝑖𝑡 = Sigmoid(𝑊𝑖ℎℎ𝑡−1 + 𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖) (2. 21) 

Then the cell state is updated by combining the information kept from the forget 

gate and new information selected from the input gate: 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ c𝑡 (2. 22) 

where c𝑡 = Tanh(𝑊𝑐ℎℎ𝑡−1 + 𝑊𝑐𝑖𝑥𝑡 + 𝑏𝑐), which decides what new information 

will be updated to the cell state. The output gate (block in brown dash line) 

decides the portion of information for output: 
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𝑜𝑡 = 𝜎(𝑊𝑡ℎℎ𝑡−1 + 𝑊𝑡𝑖𝑥𝑡 + 𝑏𝑜) (2. 23) 

The new hidden state is then updated by multiplying the portion from the output 

gate and current cell state through the Tanh operation: 

ℎ𝑡 = 𝑜𝑡 ∗ Tanh (𝑐𝑡) (2. 24) 

𝑊 and 𝑏 in the above equations are parameters trained in the network. 

 

Figure 2.7: The architecture of a long short-term memory block (one direction). 

Gated Recurrent Unit (GRU) 

GRU (Chung et al., 2014) is a simplified variation of LSTM which converts the 

forget gate and input gate into a reset gate 𝑟𝑡 and update gate 𝑧𝑡, and merges 

the output gate and cell state together, see Figure 2.8. 

The reset gate 𝑟𝑡 decides how important the previous hidden state ℎ𝑡−1 is to 

the next step hidden state ℎ𝑡 by: 

𝑟𝑡 = Sigmoid(𝑊𝑟ℎℎ𝑡−1 + 𝑊𝑟𝑖𝑥𝑡 + 𝑏𝑟) (2. 25) 

A temporary hidden state ℎ𝑡  is calculated by combining the current input state 

and the important portion from the previous hidden state by: 

ℎ𝑡
′  = Tanh(𝑟𝑡 ∗ 𝑊ℎℎℎ𝑡−1 + 𝑊ℎ𝑖𝑥𝑡 + 𝑏ℎ) (2. 26) 
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The update gate decides what should be kept from the previous hidden state 

ℎ𝑡−1 and what should be updated from the new hidden state ℎ𝑡 : 

𝑧𝑡 = Sigmoid(𝑊𝑧ℎℎ𝑡−1 + 𝑊𝑧𝑖𝑥𝑡 + 𝑏𝑧) (2. 27) 

Then the hidden state is updated by combining the information from the 

previous hidden state ℎ𝑡−1 and the temporary hidden state ℎ𝑡 . When the output 

value 𝑧𝑡 from update gate is 1, the hidden state is entirely copied from the 

previous hidden state; when 𝑧𝑡 is 0, the hidden state is entirely updated from 

the temporary hidden state: 

ℎ𝑡 = 𝑧𝑡 ∗ ℎ𝑡−1 + (1 − 𝑧𝑡) ∗ ℎ𝑡 (2. 28) 

 

Figure 2.8: The architecture of a gated recurrent unit block (one direction). 

 

RNN with Attention 

In the general RNN structure, the output from the hidden layer is obtained by 

simply taking the hidden state of the last RNN cell (one cell in the unidirectional 

RNN or two cells in the bidirectional RNN), which lose some information from 

other RNN cells; or averaging hidden states of all RNN cells, which treats 

words at different positions equally. However, words contribute differently and 

the same word in different positions also plays a different role in the decision 

of the classification. As the example shown in Figure 2.9, ‘committee’ is the 
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most important word in the text piece, and the word ‘animals’ in the fifth line 

and seventh line contributes differently to the decision of the reporting of 

compliance of animal welfare regulations. Therefore, in my implementation, I 

add an attention module after the RNN hidden layer, which is analogous to the 

word-level weights used in the memory networks for machine translation 

(Bahdanau et al., 2015). It should be noted that the term ‘attention’ here is 

different from the ‘self-attention’ (Vaswani et al., 2017) in transformer models 

(see Section 0). The architecture of RNN with attention for document 

classification is displayed in Figure 2.10. 

 

Figure 2.9: A example text piece from a publication which reported compliance of 

animal welfare regulations. The colour demonstrates the importance of the word in 

the classification decision and deeper colour means the word has a larger 

contribution to the decision. 
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Figure 2.10: The architecture of bidirectional recurrent neural network with attention 

mechanism for document classification. 

Considering a document with 𝑠  words, after the embedding layer and the 

bidirectional RNN hidden layer, the output of word at position 𝑡 is the hidden 

state ℎ𝑡 ∈ ℝ2ℎ, which is passed to the Tanh function to obtain a new hidden 

representation 𝑢𝑡:  

𝑢𝑡 = Tanh(𝑊𝑤ℎ𝑡 + 𝑏𝑤),     𝑢𝑡 ∈ ℝ2ℎ, 𝑡 = {1, … , s} (2. 29)  

A global word context vector 𝑐𝑤 ∈ ℝ2ℎ  is initialised to represent the whole 

document. The word attention score is calculated by multiplying the new 

hidden state 𝑢𝑡 and the context vector 𝑐𝑤 to measure the importance of the 

word at position 𝑡 in the whole document, and then normalised by the Softmax 

function: 
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𝑎𝑡 = Softmax(𝑢𝑡 ⋅ 𝑐𝑤), 𝑎𝑡 ∈ [0, 1] (2. 30) 

The summarisation of the weighted hidden states ∑ ℎ𝑡 ⋅ 𝑎𝑡
𝑠
𝑡=1  ∈ ℝ2ℎ is then 

sent to the output layers. The training and optimisation strategies follow the 

same rule described in the convolutional neural network (Section 2.3.3.1). 

2.3.3.3 Hierarchical Attention Network 

In the document classification task, words contribute differently to an individual 

sentence and sentences contribute differently in the whole document. 

Hierarchical Attention Network (HAN) is proposed to imitate the hierarchical 

structure of documents, which has two levels of attention mechanisms applied 

at the word-level and sentence-level (Yang et al., 2016). The model 

architecture is shown in Figure 2.11. 

I assume a document has 𝐿 sentences, and the 𝑖-th sentence has 𝑇  words 

(the value of 𝑇  varies in different sentences). For the 𝑖-th sentence, 𝑇  word 

hidden states ℎ𝑖𝑡 ∈ ℝ2ℎ_𝑤, 𝑡 ∈ [1, 𝑇 ] are obtained from the bidirectional GRU 

layer, where ℎ_𝑤 is the dimension of word hidden states for one direction.  

In the word-level attention module, which is similar to the attention illustrated 

in Figure 2.10, a new hidden representation 𝑢𝑖𝑡 for the 𝑡-th word in the 𝑖-th 

sentence is obtained by 

𝑢𝑖𝑡 = 𝑇𝑎𝑛 ℎ(𝑊𝑤ℎ𝑖𝑡 + 𝑏𝑤),   𝑢𝑖𝑡 ∈ ℝ2ℎ𝑤 , 𝑡 ∈ [1, 𝑇 ] (2. 31)  

A local word context vector 𝑐𝑤 ∈ ℝ2ℎ_𝑤  is initialised to represent the 𝑖 -th 

sentence. The word attention scores in the 𝑖-th sentence are calculated by 

multiplying 𝑢𝑖𝑡 and 𝑐𝑤 to measure the importance of the 𝑡-th word in the 𝑖-th 

sentence, and are then normalised by the Softmax function: 

𝑎𝑖𝑡 = Softmax(𝑢𝑖𝑡 ⋅ 𝑐𝑤),     𝑎𝑖𝑡 ∈ [0, 1],   𝑡 ∈ [1, 𝑇 ] (2. 32) 

In the sentence-level attention module, the sentence representations are first 

calculated by summarising the weighted word attention scores for each 

sentence: 
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𝑠𝑖 = ℎ𝑖𝑡 ⋅ 𝑎𝑖𝑡
𝑇

𝑡=1
, 𝑠𝑖 ∈ ℝ2ℎ𝑤 , 𝑖 ∈ [1, 𝐿] (2. 33) 

Similar to the word-level attention module, sentence hidden states ℎ𝑖 ∈

ℝ2ℎ_𝑠, 𝑖 ∈ [1, 𝐿] are obtained from the bidirectional GRU layer, where ℎ_𝑠 is the 

dimension of sentence hidden states for one direction. Then the new sentence-

level hidden representations are calculated from the Tanh operation:  

𝑢𝑖 = Tanh(𝑊𝑠ℎ𝑖 + 𝑏𝑠), 𝑢𝑖 ∈ ℝ2ℎ𝑠, 𝑖 ∈ [1, 𝐿] (2. 34) 

A global sentence context vector 𝑐𝑠 ∈ ℝ2ℎ_𝑠×2ℎ_𝑠 is initialised to represent the 

whole document and multiplied by the new sentence-level hidden 

representation to measure the importance of each sentence in the whole 

document:  

𝑎𝑖 = Softmax(𝑢𝑖 ⋅ 𝑐𝑠),     𝑎𝑖 ∈ [0, 1],   𝑖 ∈ [1, 𝐿] (2. 35) 

Then the document representations are calculated and sent to the output 

layers, by: 

𝑑 = ℎ𝑖 ⋅ 𝑎𝑖
𝐿

𝑡=1
, 𝑠𝑖 ∈ ℝ2ℎ𝑠, 𝑖 ∈ [1, 𝐿] (2. 36) 

The training and optimisation strategies follow the same rule described in the 

convolutional neural network (section 2.3.3.1). 
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Figure 2.11: The architecture of hierarchical attention network for document 

classification. 𝑖 is the sentence index of the document and 𝑡 is the word index of the 

𝑖-th sentence. In the word-level attention module, the figure displays the part for the 

second sentence only (𝑖 = 2). 
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2.3.4 BERT with Two Strategies 

One limitation of word embeddings like word2vec is that the representation 

vector of the same word is fixed and independent, no matter what the context 

words are. To solve this issue, contextualised word representation models like 

ELMo (Peters et al., 2018) and BERT (Devlin et al., 2018) are proposed. ELMo 

generates the contextual word embeddings by training a bidirectional LSTM to 

predict the next word in the sequence; while BERT extracts the contextualised 

embeddings by training the bidirectional encoders from the Transformer 

(Vaswani et al., 2017) to finish two language modelling tasks: randomly 

masked words prediction and next sentence prediction. Transformers can 

learn long-range dependency better than LSTM models (Vaswani et al., 2017) 

and many state-of-the-art models for multiple NLP tasks are created based on 

transformers. The next section explains the structure of transformer encoders 

used in BERT and how I use BERT for risk of bias classification in long 

documents. 

2.3.4.1 Premise: Transformer Encoder and BERT 

Transformer encoders in BERT mainly consist of twelve identical blocks and 

each block contains two sub-layers: a multi-head self-attention layer and a 

feed-forward neural network layer. Each sub-layer has a residual connection 

around and is followed by the layer normalisation operation (Vaswani et al., 

2017), see Figure 2.12. Similar to the previous neural models, considering a 

document with 𝑠 tokens (after padding/cutting), each input token is mapped to 

an embedding vector 𝑥𝑖 ∈ ℝ𝑑𝑒𝑚𝑏𝑒𝑑 , 𝑖 ∈ [0, 𝑠 − 1]. Positional encoding vectors are 

added to the input vectors to inject the order information in the sequence: 

𝑥𝑖 ← 𝑥𝑖 + 𝑃𝐸𝑖,𝑗
𝑑𝑒𝑚𝑏𝑒𝑑−1

𝑗=0
(2. 37) 

𝑃𝐸𝑖,𝑗 =

⎩⎪
⎨
⎪⎧ sin

𝑖

10000𝑗 𝑑𝑒𝑚𝑏𝑒𝑑⁄
, 𝑗 = 0,2,4, …

cos
𝑖

10000𝑗−1 𝑑𝑒𝑚𝑏𝑒𝑑⁄
, 𝑗 = 1,3,5, …

(2. 38) 

where 𝑗 is the element index in the embedding vector.  
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Figure 2.12: The architecture of transformer encoders. Dash lines represent the 

residual connection. 

The self-attention calculation is illustrated in Figure 2.13. For a document with 

input representation 𝑋 ∈ ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 , three matrices 𝑄, 𝐾  and 𝑉  are calculated 

by 

𝑄 = 𝑋𝑊 𝑄 ∈ ℝ𝑠×𝑑𝑘, 𝑊 𝑄 ∈ ℝ𝑑𝑒𝑚𝑏𝑒𝑑×𝑑𝑘 (2. 39) 

𝐾 = 𝑋𝑊 𝐾 ∈ ℝ𝑠×𝑑𝑘, 𝑊 𝐾 ∈ ℝ𝑑𝑒𝑚𝑏𝑒𝑑×𝑑𝑘 (2. 40) 

𝑉 = 𝑋𝑊 𝑉 ∈ ℝ𝑠×𝑑𝑣, 𝑊 𝑉 ∈ ℝ𝑑𝑒𝑚𝑏𝑒𝑑×𝑑𝑣 (2. 41) 

where the 𝑖-th row of 𝑄, 𝐾  and 𝑉  refers to the query vector, key vector and 

value vector of the 𝑖-th token respectively; 𝑑𝑘 and 𝑑𝑣 are the dimension of the 

key vector and value vector; 𝑊 𝑄, 𝑊 𝐾  and 𝑊 𝑉  are initialised weight matrices. 

The single-head attention matrix is then computed by  

 

𝑍𝑠𝑖𝑛𝑔𝑙𝑒 = Softmax
𝑄𝐾𝑇

√𝑑𝑘

𝑉 ∈ ℝ𝑠×𝑑𝑣 (2. 42) 
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Vaswani et al pointed out that repeating the attention calculation with different 

linear projections multiple times, i.e. multi-head attention, improves the 

performance (Vaswani et al., 2017). After the self-attention layer with ℎ heads, 

the attention matrices are concatenated from different heads and are then 

multiplied by another initialised weight matrix 𝑊 ∈ ℝℎ𝑑𝑣×𝑑𝑒𝑚𝑏𝑒𝑑 , to generate the 

output matrix 𝑍 ∈ ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 . The followed layer normalisation is performed over 

the summation of 𝑋 and 𝑍, and the output are fed to the next sub-layer, i.e. a 

position-wise feedforward network for each token: 

𝑍′ = LayerNorm(𝑋 + 𝑍) ∈ ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 (2. 43) 

𝑍 = Feedforward(𝑍 ) = Linear(ReLU (Linear(𝑍 )) ∈ ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 (2. 44) 

Then the output after the first encoder block is LayerNorm(𝑍 + 𝑍 ) ∈

ℝ𝑠×𝑑𝑒𝑚𝑏𝑒𝑑 , which will be sent to the next identical encoder block. After repeating 

the procedure with the rest eleven encoder blocks, the new representation 

vectors of each token are generated as the final output. 

 

Figure 2.13: The illustration of calculations in the multi-head self-attention layer. In 

this example, the document length is 2, embedding dimension is 5, dimension of key 

and value vectors is 3, and the number of heads is 8. 
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BERT is developed with two stages: the pre-training stage and fine-tuning 

stage, as Figure 2.14 shows. In the pre-training stage, BERT trains transformer 

encoders on the collection of BooksCorpus (0.8 billion words) and English 

Wikipedia (2.5 billion words). In the fine-tuning stage, the same encoder 

architecture is used and initialised with the weights from the pre-training stage, 

and all the weights are then fine-tuned on the downstream task dataset (Devlin 

et al., 2018). The pre-training weights are expensive to train but they are made 

freely available to the public, so I can download them and only need to fine-

tune models on the custom dataset.  

Previous work indicates the domain corpus used for pre-training affects the 

performance of the downstream task (Beltagy et al., 2019). Since the risk of 

bias assessment task focus on the biomedical publications, I use BioBERT to 

initialise models, which applies the same architecture in BERT and is pre-

trained on the combinations of text corpora including BookCorpus, English 

Wikipedia, PubMed abstracts (4.5 billion words) and PubMed Central full-text 

articles (13.5 billion words) (Lee et al., 2019). 

 

Figure 2.14: Two development stages of BERT (Alammar, 2018)  

The input embeddings of BERT are the sum of three embeddings: token 

embeddings, segment embeddings and position embeddings. For token 
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embeddings, BERT uses WordPiece (Wu et al., 2016) with a 30,000-token 

vocabulary for tokenisation. It is a subword tokenisation algorithm which 

handles rare words better than ‘pure’ word embeddings and more efficiently 

than character embeddings. For example, ‘randomisation’ can be decomposed 

into two subwords ‘random’ and ‘isation’ which appear more frequently than 

‘randomisation’, while keeping the meaning of ‘randomisation’ at the same 

time. In BERT’s tokenizer, tokens of the two subwords are marked as 

['random', '##isation'], where ‘##’ means the rest characters ‘isation’ should be 

concatenated to the previous token ‘random’ when converting subword tokens 

back to the complete word in the decoding or prediction stage. Segment 

embeddings work for a special segmentation token ‘[SEP]’, which are 

designed for the ‘two-sequences’ tasks to indicate the first and the second 

portions of the sequence pair. For example, in a question answering task, the 

segment embeddings of the question tokens are marked as [A] while the 

segment embeddings of the context tokens are marked as [B]. In a text 

classification task, segment embeddings do not have any influence on the 

model result, but they are kept as a default input formatting of BERT. In 

addition, the first token of every sequence is a special classification token 

‘[CLS]’ and the corresponding embedding can be used to generate the 

decision of the sequence classification, see the embedding layer in Figure 

2.15. Position embeddings provide the order information of the tokens in the 

sequence as described in Section 2.3.4.1 

2.3.4.2 Applying BERT with Two Strategies 

One drawback of BERT is that it can only accept embeddings of maximum 512 

tokens as input, which limits the usage for tasks with long documents. There 

are other transformer models designed for long documents, such as 

Transformer XL (Dai et al., 2019) which has no limitation for sequence length 

and Longformer (Beltagy et al., 2020) which can process a maximum of 4096 

tokens. However, they are still computationally expensive and very memory-

consuming from my initial experiments on full-text publications containing 5000 
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tokens on average. To solve this issue, I propose two strategies as described 

below. 

BERT with Document Chunk Pooling (BERT-DCP). I split documents into 

text chunks, apply BioBERT to each chunk, and pool the hidden states from 

different chunks using multiple strategies. This is similar to the structure 

applied in the classification of clinical notes for patient smoking status (Mulyar 

et al., 2019), with some modifications (see Figure 2.15). Module in the 

red/black/blue box refers to the linear head, convolution head and LSTM head 

separately. After the WordPiece tokenisation, a document with 𝑠 tokens is split 

into 𝑚 = ⌈𝑠/(512 − 2)⌉ = ⌈𝑠/510⌉  chunks (excluding the classification token 

‘[CLS]’ and the segmentation token ‘[SEP]’). The input representation of the 

document is X ∈ ℝ𝑚×512×ℎ, where ℎ is the hidden dimension throughout the 

embedding layer and encoder layers in BioBERT. Instead of taking the hidden 

states from the last encoder layer, I perform the average pooling operation 

over several encoder layers to obtain the output (see the 1st pooling layer in 

Figure 2.15). I then summarise across tokens within each chunk using five 

different options: 1) max-pooling, 2) average-pooling, 3) concatenate output 

from max-pooling and average-pooling, 4) use hidden states of the ‘[CLS]’ 

token, and 5) concatenate hidden states of all tokens (see the 2nd pooling 

layer in Figure 2.15). The output dimension from the second pooling layer is 

[𝑚, 1, ℎ] for option 1), 2) and 4), [𝑚, 2, ℎ] for option 3), and [𝑚, 512, ℎ] for option 

5). After two pooling layers, I add a head layer for the downstream 

classification task, and I explore three different heads 

(linear/convolution/LSTM). The convolution head and LSTM head use the 

same architecture as described in the previous sections (see Section 2.3.3.1 

and 2.3.3.2 respectively). Unlike the convolution head or LSTM head, the 

linear head cannot handle sequences with different lengths, so I add another 

pooling layer to obtain the fixed-dimension output. The pooling methods use 

the same options applied in the second pooling layer, with the exclusion of 

‘concatenate hidden states of all tokens’, because it does not generate a fixed-

dimension output.  
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BERT with Sentence Extraction (BERT-SE). Instead of using the full-text 

documents as input, I extract the most relevant sentences to the risk of bias 

description. I first use scispaCy (Neumann et al., 2019) to split a document into 

sentences, and then apply SentenceTransformers (Reimers and Gurevych, 

2019) to obtain a representation vector for each individual sentence. I also feed 

the description sentence of each risk of bias item to SentenceTransformers to 

obtain the corresponding ‘RoB item vector’. The RoB description sentences 

are same across different documents. For example, the description sentence 

for random allocation is “animals are randomly allocated to treatment or control 

groups at the start of the experiment” (see description sentences for other 

items in section 0). Therefore, the five ‘RoB item vectors’ are also same across 

documents. Next, for each individual document, I calculate the cosine similarity 

score between each sentence vector and the RoB vector of one item. I take 

the first 𝑘 sentences with the highest similarity scores, i.e. the most 𝑘 relevant 

sentences, to form a new shorter passage. I then fine-tune DistilBERT (a 

smaller, faster and lighter version of BERT) (Sanh et al., 2019) with a 

linear/convolution/LSTM head on the new passage, to generate the 

probabilities of risk of bias reporting. The sentence extraction process is 

unsupervised and is independent of the actual training process. 
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Figure 2.15: The architecture of BERT with document chunk pooling strategy for 

long documents classification. The red/black/blue block on the bottom refers to the 

option of the linear/convolution/LSTM head on top respectively. 

In the training procedure, I apply gradient clipping with a maximum norm 0.1 

to rescale gradients, where all gradients are concatenated into a single vector 

and normalised, then the elements in the vector larger than 0.1 are replaced 

by 0.1. This can prevent vanishing/exploding gradients issues and accelerate 

training (Zhang et al., 2019). I use gradient accumulation every 16 steps (mini-

batches) to reduce memory consumption, where the model parameters are not 

updated from gradients after every mini-batch, but from gradients accumulated 

after every 16 mini-batches. Parameters are trained to minimise the cross-



67 
 

entropy loss using AdamW algorithm (Loshchilov and Hutter, 2017). I use the 

slanted triangular learning rate scheduler (Howard and Ruder, 2018), where 

the learning rate is linearly increased from zero to a threshold value over the 

warm-up training steps, then linearly drops to zero in the following steps. 

2.3.5 Evaluation metrics 

For all classification models described above, four metrics are reported for 

performance evaluation, which are calculated by:  

Recall =
True Positive

True Positive + False Negative
(2. 45) 

Precision =
True Positive

True Positive + False Positive
(2. 46) 

F1 =
2 ∗ Recall ∗ Precision

Recall + Precision
(2. 47) 

Specificity =
True Negative

True Negative + False Positive
(2. 48) 

where ‘True Positive’ is the number of records which report the risk of bias item 

and are predicted as reported; ‘True Negative’ is the number of records which 

do not report the risk of bias item and are predicted as unreported; ‘False 

Positive’ is the number of records which do not report the risk of bias item but 

are predicted as reported; and ‘False Negative’ is the number of records which 

report the risk of bias item but are predicted as unreported. Recall (or 

sensitivity) measures the portion of records which are identified as reported 

among all truly reported records. Precision measures the portion of truly 

reported records among all records identified reported. Specificity measures 

the portion of records identified as non-reported among all non-reported 

records. F1 is the harmonic mean of recall and precision, and I use it as the 

main metric for hyperparameter and model selection. 

For evaluation in batch training for neural models and BERT models, loss and 

four metric scores are calculated within every mini-batch, and the final training 



68 
 

loss, F1 and other scores are averaged by the number of mini-batches 

respectively. 

2.3.6 Comparison to Regular Expression 

A regular expression (Regex) tool developed for preclinical risk of bias 

assessment (Bahor et al., 2016) is evaluated on my test set, and the 

performance are compared with that of each item’s best NLP model selected 

from experiments of the previously described models. The Regex tool is built 

based on the rule-based string matching method to recognise phrases 

associated with the reporting of random allocation, blinded assessment of 

outcome, conflict of interest and animal welfare regulations in experimental 

animal studies. The McNemar’s test (Raschka, 2018) is performed to compare 

how the two methods perform differently, which includes two scenarios: 1) 

Regex tool predicts correctly but NLP model predicts wrong, and 2) Regex tool 

predicts wrong but NLP model predict correctly, as shown in Table 2.3. 

  NLP model 

  Correct Wrong 

R
eg

ex
 

C
o

rr
ec

t 

𝑁++ 𝑁+− 

W
ro

n
g

 

𝑁−+ 𝑁−− 

Table 2.3: The confusion matrix between the Regex tool and NLP model in the 

McNemar’s test. 𝑁  represents the number of cases - its first superscript represents 

the Regex tool predicts correctly (+) or wrong (-), and the second superscript 

represents the NLP model predict correctly (+) or wrong (-). 

A Chi-square statistic is computed as below: 

                                                              𝜒2 =
(|𝐵 − 𝐶| − 1)2

𝐵 + 𝐶
                                             (2. 49) 

to test the null hypothesis that the two methods do not perform differently. 
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2.4 Experiments 

This section describes details of training, implementation, parameters tuning 

and sensitivity analysis. Processed datasets are available in the Preclinical 

RoB Assessment repository (osf.io/fjwx6). 

2.4.1 Experiments of Baseline Models 

I roughly tune parameters for three baselined models with three text 

representation methods, which induces nine combinations. For bag-of-words, 

I tune word n-gram size among {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} where 

(p, q) means every p, p+1, …, q adjacent words are counted as features, with 

or without TF-IDF weighting. For word2vec, document representations are 

generated by averaging their word vectors as all baseline models require a 

single dimension vector as input. For doc2vec, I set the initial learning rate to 

0.01 and it drops linearly to 0.001 during 20 training epochs. I draw 5 ‘negative’ 

words in negative sampling. I average the context vectors to generate the 

document vector representation. I tune the dimension of feature vectors 

among {100, 200, 300, 400, 500}, and doc2vec training models among {DM, 

DBOW, concatenation of DM and DBOW}. For bag-of-words and word2vec, I 

tune minimum document frequency (words with a document frequency lower 

than this threshold are ignored) among {10, 20, 50, 100}, maximum vocabulary 

size (when building the corpus, only the top words ordered by term frequency 

are considered) among {500, 1000, 2000, 5000}. For doc2vec, I set the 

minimum document frequency to 10 and only tune the maximum vocabulary 

size among {5000, 10000} as these two parameters did not affect performance 

much from my initial experiments.  

I assign class weights for all three classification models to solve the data 

imbalance issue, calculated by  

number of samples

2 ∗ number of reported samples
,

number of  samples

2 ∗ number of  unreported samples
(2. 50) 
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for the positive and negative class respectively. For support vector machine, I 

tune 𝛼 which is used to multiply the 𝑙2 regularisation term and compute the 

learning rate (Pedregosa et al., 2011), from 5e-10 to 1e-2. 10% of the training 

samples were used for early stopping to terminate training. For logistic 

regression, I tune the inversed value of regularisation strength among {1, 100, 

1000}, which is a multiplier for loss function 𝐿 and large value means less 

strong regularization penalty. For random forest, I set the maximum depth of 

an individual tree to 2. I tune the number of trees in the forest among {100, 

500, 1000}, and the maximum number of features considered in the splitting 

process, which is selected from the total number of features (vocabulary size 

for bag-of-words, or dimension of document vector for wor2vec and doc2vec), 

𝑠𝑞𝑟𝑡(total number of features), or 𝑙𝑜𝑔2(total number of features).  

Bag-of-words and averaged word2vec are implemented using function 

CountVectorizer and TfidfTransformer from Python library scikit-learn 

(Pedregosa et al., 2011). Doc2vec is implemented via Doc2Vec from library 

Gensim (Rehurek and Sojka, 2010). Support vector machine, logistic 

regression and random forest are implemented using SGDClassifier, 

LogisticRegression and RandomForestClassifier in scikit-learn respectively. 

The hyperparameters in all the baseline experiments are tuned in the grid 

search manner. All baseline experiments are conducted using a CPU with 16 

cores and codes are available at github.com/qianyingw/rob-chia.  

Results 

After tuning parameters for each risk of bias item, I select the model with the 

highest F1 score on the validation set, and then evaluate performance on the 

test set, as reported in Table 2.4. Logistic regression with doc2vec works well 

for blinded assessment of outcomes and conflict of interests, with F1 around 

60% and 68% respectively. Support vector machine with word2vec shows 

strong performance for animal welfare regulations, with F1 of 90%. Random 

forest with bag-of-words achieves the best performance on the validation set 

for random allocation and animal exclusions, but proves to be over-fitting as 



71 
 

the large difference of results between validation and test set shows. The 

optimal setting for each risk of bias items are: {maximum vocabulary size 2000, 

minimum document frequency 10, 1-gram, applying TF-IDF weighting; 500 

trees in the forest, 2000 features considered for splitting trees} for random 

allocation, {maximum vocabulary size 10000, minimum document frequency 

10, using DBOW, document vector size 300; inverse regularization constant 

1} for blinded assessment of outcome, {maximum vocabulary size 10000, 

minimum document frequency 10, using DBOW, document vector size 400, 

inverse regularization constant 1} for conflict of interests, { 𝛼  of 5e-10, 

maximum vocabulary size 10000, minimum document frequency 10} for 

animal welfare regulations, {maximum vocabulary size 5000, minimum 

document frequency 20, 2-grams and 3-grams, not using TF-IDF; 100 trees in 

the forest, 5000 features considered for splitting trees} for animal exclusions. 

RoB  

item 
Model 

Valid Test 

F1 R P S F1 R P S 

RA RF + bow 67.2 79.9 58.1 81.0 10.1 6.3 26.3 92.3 

BAO LogReg + d2v 60.0 69.1 53.0 74.5 58.4 62.3 54.9 74.6 

CI LogReg + d2v 68.8 76.1 62.8 82.6 67.9 74.9 62.1 79.6 

CAWR SVM + w2v 90.1 96.3 84.6 42.8 89.6 94.0 85.6 51.1 

AE RF + bow 48.8 44.6 53.8 93.6 15.9 22.6 12.3 80.6 

Table 2.4: Performance of the best model for each risk of bias item on the validation 

set and final performance on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and 

specificity respectively.  

Within each baseline model, I compare the performance of three text 

representation methods on the validation set, as shown in Table 2.5, Table 2.6 

and Table 2.7. For support vector machine and logistic regression, doc2vec 

and word2vec outperform bag-of-words in general, and doc2vec performs 

slightly better than word2vec, with F1 increased by from 1% to 5%. For random 

forest, doc2vec and bag-of-words work better than word2vec, with the 

improvement of F1 ranging from 1% to 24%, but bag-of-words tends to be 

over-fitting easily. Doc2vec yields the best result in almost all baseline models, 
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which is reasonable because doc2vec is generated and updated from the 

training sample itself, which is closer to the preclinical domain, while the pre-

trained word vectors are induced from the more general biomedical corpus. 

RoB item Feature F1 Recall Precision Specificity 

Random 
allocation 

bow 44.1 72.7 31.6 48.3 

w2v 51.0 58.2 45.4 76.9 

d2v 51.9 72.2 40.5 65.1 

Blinded 
assessment 
of outcome 

bow 47.4 94.3 31.6 15.3 

w2v 53.4 74.8 41.5 56.3 

d2v 59.3 67.8 52.7 74.7 

Conflict of 
interests 

bow 52.4 83.2 38.2 48.1 

w2v 65.7 70.6 61.5 83.0 

d2v 67.1 79.7 57.9 77.7 

Compliance 
of animal 
welfare 
regulations 

bow 87.3 97.4 79.0 15.7 

w2v 90.1 96.3 84.6 42.8 

d2v 86.7 82.7 91.2 74.1 

Animal 
exclusions 

bow 29.4 81.3 17.9 38.1 

w2v 38.7 49.1 32.0 82.6 

d2v 39.0 64.3 28.0 72.5 

Table 2.5: Performance of support vector machine with three text representation 

methods for five risk of bias items on the validation set.   
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RoB item Feature F1 Recall Precision Specificity 

Random 
allocation 

bow 42.1 59.3 32.7 59.8 

w2v 56.3 75.3 44.9 69.7 

d2v 51.0 65.5 41.8 70.0 

Blinded 
assessment 
of outcome 

bow 46.6 78.3 33.1 34.5 

w2v 56.3 68.3 47.9 69.1 

d2v 60.0 69.1 53.0 74.5 

Conflict of 
interests 

bow 50.7 83.2 36.4 44.0 

w2v 66.1 74.6 59.3 80.2 

d2v 68.8 76.1 62.8 82.6 

Compliance 
of animal 
welfare 
regulations 

bow 86.9 100.0 76.9 1.8 

w2v 84.1 78.4 90.6 73.5 

d2v 87.6 85.4 89.9 68.7 

Animal 
exclusions 

bow 29.5 62.5 19.3 56.5 

w2v 36.8 65.2 25.6 68.5 

d2v 41.4 62.5 31.0 76.8 

Table 2.6: Performance of logistic regression with three text representation methods 

for five risk of bias items on the validation set. 

RoB item Feature F1 Recall Precision Specificity 

Random 
allocation 

bow 67.2 79.9 58.1 81.0 

w2v 43.4 60.3 33.9 61.4 

d2v 50.4 59.8 43.6 74.6 

Blinded 
assessment 
of outcome 

bow 50.7 57.8 45.1 70.8 

w2v 49.3 73.0 37.3 48.9 

d2v 57.8 68.3 50.2 71.8 

Conflict of 
interests 

bow 52.8 72.6 41.4 60.5 

w2v 55.1 60.4 50.6 77.3 

d2v 65.1 68.5 61.9 83.8 

Compliance 
of animal 
welfare 

regulations 

bow 87.7 92.1 83.7 41.6 

w2v 85.3 86.5 84.1 46.4 

d2v 88.8 89.7 88.0 60.2 

Animal 
exclusions 

bow 48.8 44.6 53.8 93.6 

w2v 35.0 64.3 24.1 66.2 

d2v 40.9 61.6 30.7 76.8 

Table 2.7: Performance of random forest with three text representation methods for 

five risk of bias items on the validation set. 
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Keeping other parameters constant, I compare methods used for generating 

document vectors in doc2vec, which includes DM, DBOW, and concatenation 

of DM and DBOW. The original study suggests using DM or concatenation of 

DM and DBOW (Le and Mikolov, 2014), but my experiments demonstrate that 

DBOW alone achieves the best performance on almost all cases of three 

baseline models for each risk of bias item, with exception of random forest for 

random allocation and animal exclusions, where the concatenation of DM and 

DBOW works better, as shown in Figure 2.16 and Appendix Table 1. The 

optimal dimension of document vectors generated from doc2vec depends on 

the specific risk of bias item and classification model, as shown in Figure 2.17 

and Appendix Table 2. Different dimensions of document vectors can induce 

10% changes to F1 for animal exclusions. For the other four items, logistic 

regression is less sensitive to the dimension of document vectors, with 

changes of F1 less than 2%, while support vector machine and random forests 

can change F1 by 6%. 

In practice, among baseline models, I recommend support vector machine or 

logistic regression with doc2vec which gives general good performance and is 

less prone to be over-fitting, compared to random forest or other combinations.  
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Figure 2.16: Effect of the method for generating document vectors in doc2vec. 

 

 

Figure 2.17: Effect of the dimension of document vectors generated from doc2vec. 
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2.4.2 Experiments of Neural Networks 

This section describes experiments and results of three neural network models 

including convolutional neural network, recurrent neural network and 

hierarchical attention network. For all three models, the pre-trained word 

vectors used in the embedding layer are induced on a combination of PubMed 

and PMC texts with texts extracted from a recent English Wikipedia dump (5.5 

billion words), using the skip-gram model with a window size of 5 (Pyysalo et 

al., 2013). Tokens with document frequency less than 10 are excluded when 

building the vocabulary. I set the number of samples included in every mini-

batch (batch size) to 32 according to the suggestion from previous studies 

(Masters and Luschi, 2018). In the Adam algorithm, I set the learning rate to 

1e-4, and coefficients for the mean and variance of gradients (𝛽1, 𝛽2) to 0.9 

and 0.999. I set dropout rate to 0.5. In default, I assign class weight [1/number 

of reported training samples, 1/number of unreported training samples] to 

records belonging to positive and negative class respectively and apply batch 

normalisation before the final softmax function. I use early stopping to 

terminate training and the stopping criteria are set based on the validation loss 

and F1 score. For one epoch, if (current validation loss - minimum validation 

loss of previous epochs) < 𝑐1 and (maximum validation F1 of previous epochs 

- current validation F1) > 𝑐2, this epoch is marked as ‘stopping’. When the 

number of ‘stopping’ epochs reaches a value ‘𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒’, training stops. The 

values of 𝑐1, 𝑐2 and 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 are determined for different models and risk of 

bias items separately, based on the learning curves. Other configurations are 

described separately for each model in the following sections. 

Hyperparameters of neural networks are tuned sequentially, i.e. tuning one 

hyperparameter each time and selecting the optimal value, and then tuning the 

next hyperparameter. 

Neural network models are implemented using PyTorch (Paszke et al., 2019) 

and all the experiments are conducted on a GTX 1080 GPU with 12GB 

memory. Codes are available at github.com/qianyingw/pre-rob. 
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2.4.2.1 Experiments of Convolutional Neural Networks 

As a starting configuration, I use three filter sizes [3,4,5] and apply 100 filters 

for each of the filter sizes. Documents are padded or cut when the number of 

words is less or more than 5000 respectively, and I consider 5000 most 

frequent words as features from the training corpus to build the vocabulary.  

With this setting unchanged, I tune maximum document length among {5000, 

10000, 15000}, number of filters for each filter size from 20 to 300, filter sizes 

among {[3,4,5], [4,5,6], …, [11,12,13]}, maximum number of features among 

{5000, 7000, 9000}, assigning class weight or not, applying batch 

normalisation or not, freeze embedding or not. I explore the undersampling 

strategy (Fernández et al., 2018) for animal exclusions particularly because it 

has the most imbalanced classes (reported/unreported=12%) compared to the 

other four items in the dataset. More specifically, I randomly remove some 

unreported records from the training set, to increase the ratio of reported to 

unreported records to 100%, 50% or 25%. Based on the results and learning 

curves from some initial experiments, the number of training epochs and early 

stopping criteria are set to {𝑐1=5e-3, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=9, 20 epochs} for 

random allocation, { 𝑐1=6e-3, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 =1, 20 epochs} for blinded 

assessment of outcome, {𝑐1=0.01, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=2, 20 epochs} for conflict 

of interests, and {𝑐1=0.01, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=3, 40 epochs} for animal welfare 

regulations and animal exclusions. 

Results 

After parameters tuning, I select configurations which achieve the highest F1 

score on the validation set, and evaluate performance on the final test set, as 

reported in Table 2.8. Compared to baseline models (Table 2.4), CNN models 

improve the F1 score by 10% to 20% for four items, with exception of 

compliance of animal welfare regulations, where the validation F1 decreases 

by 3%. CNN models are also more robust than baseline models in general, as 

the difference of F1 between the validation set and test set is smaller, except 

for animal welfare regulations, where the difference of F1 is 13% higher than 
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that of baseline models. The optimal setting for each risk of bias items are: 

{maximum 10000 tokens in each document, 120 filters for each filter size of 

[10,11,12], applying class weight balancing, no batch normalization, 7000 most 

frequent tokens considered for building vocabulary} for random allocation, 

{maximum 14000 tokens in each document, 140 filters for each filter size of 

[9,10,11], applying class weight balancing, no batch normalization, 5000 most 

frequent tokens considered for building vocabulary} for blinded assessment of 

outcomes, {maximum 14000 tokens in each document, 100 filters for each filter 

size of [3,4,5], applying class weight balancing, no batch normalisation, 5000 

most frequent tokens considered for building vocabulary} for conflict of 

interests, {maximum 10000 tokens in each document, 280 filters for each filter 

size of [3,4,5], no class weight balancing, applying batch normalization, 5000 

most frequent tokens considered for building vocabulary} for compliance of 

animal welfare regulations, and {no limitation for maximum document length, 

50 filters for each filter size of [3,4,5], applying class weight balancing, no batch 

normalisation, 9000 features considered for building vocabulary} for animal 

exclusions. 

RoB item 
Valid Test 

F1 R P S F1 R P S 

RA 86.4 93.2 81.8 92.8 84.4 88.1 82.0 91.5 

BAO 82.4 88.5 77.8 89.4 81.6 85.9 79.7 89.0 

CI 84.5 86.8 84.1 93.8 82.7 80.6 86.2 93.9 

CAWR 86.9 83.3 92.4 97.4 72.8 71.3 76.9 93.8 

AE 60.2 73.6 54.2 89.7 46.6 56.5 45.0 91.1 

Table 2.8: Performance of the convolutional neural network model with the optimal 

configuration for each risk of bias item on the validation set, and final performance 

on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity respectively. 

With other configurations constant, I explore the effect of the number of filters 

for each filter size, and the changes of F1 score on the validation set are 

displayed in Figure 2.18 and Appendix Table 3. For random allocation, blinded 

assessment of outcome and conflict of interests, the performance does not 
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vary much with the different number of filters (fluctuation of F1 is less than 2%), 

but the optimal number is between 100 to 140. For animal welfare regulations, 

there is a clearly ascending trend in F1, with 10% improvement when the 

number of filters rises from 40 to 300. For animal exclusions, the F1 score first 

rises then becomes relatively stable when the number of filters is larger than 

60, with fluctuation less than 5%. Consider the performance improvement and 

computation cost, it is unlikely worth trying a larger number of filters. For the 

effect of the filter size, [3,4,5] is a good choice for all risk of bias items, as 

shown in Figure 2.19 and Appendix Table 4. For conflict of interests, animal 

welfare regulations and animal exclusions, increasing filter size harms the 

performance, with a reduction of F1 by 2%, 4% and 20% respectively, while 

larger filter size like [9,10,11] or [10,11,12] provides the possibility of better 

performance for random allocation and blinded assessment of outcomes. 

Table 2.9 shows that freezing embeddings harms the performance by 0.2% to 

15%, which indicates the embeddings should be jointly trainable within the 

neural network in this task. 

 

Figure 2.18: Effect of the number of filters for each filter size in the convolutional 

neural network for risk of bias classification. 
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Figure 2.19: Effect of filter size in the convolutional neural network for risk of bias 

classification. 

 

RoB item Embedding F1 Recall Precision Specificity 

RA 
freeze 86.2 91.2 82.7 92.6 

trainable 86.4 93.2 81.8 92.9 

BAO 
freeze 79.9 87.2 75.7 87.6 

trainable 82.4 88.5 77.8 89.1 

CI 
freeze 81.9 83.5 82.0 90.5 

trainable 84.5 86.8 84.1 91.7 

CAWR 
freeze 82.9 80.1 86.5 93.3 

trainable 86.9 83.3 92.4 93.3 

AE 
freeze 45.6 76.1 36.2 76.3 

trainable 60.2 73.6 54.2 86.8 

Table 2.9: Effect of freezing embedding in the convolutional neural network for risk 

of bias classification. 
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2.4.2.2 Experiments of Recurrent Neural Network with Attention 

As a starting configuration, I use LSTM as the RNN cell in the one-layer 

bidirectional structure and set the dimension of hidden states to 50. I set the 

maximum document length to 10000, and consider 5000 most frequent words 

as features from the training corpus to building the vocabulary. With this setting 

unchanged, I explore the effect of the different structure of RNN cell (LSTM or 

GRU). I tune the dimension of hidden states from 2 to 100, maximum 

document length from 5000 to 20000, the maximum number of features 

considered for building vocabulary from 3000 to 20000, using bidirectional 

structure or not, assigning class weight or not, applying batch normalisation or 

not, and freezing embedding or not. For the number of hidden layers, I only 

explore models with one or two layers as my initial experiments showed that 

models with deeper layers tended to be over-fitting. Similar to the CNN 

experiments, I also explore an undersampling strategy for animal exclusions. 

For the context vector in the attention module, I use the Kaiming initialisation 

method which helps to prevent the gradients from growing or shrinking (He et 

al., 2015). It samples the values of weight 𝑊  following a uniform distribution 

𝑊 ~𝑈[− 2

ℎ
, 2

ℎ
], where ℎ  is the dimension of inputs to the hidden layer. 

Based on the results and learning curves from some initial experiments, the 

number of training epochs and early stopping criteria are set to {𝑐1=0.01, 

𝑐2 =0.008, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 =2, 20 epochs} for random allocation and conflict of 

interests, {𝑐1=0.02, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=6, 20 epochs} for blinded assessment of 

outcome, {𝑐1=0.01, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=3, 40 epochs} for compliance of animal 

welfare regulations, and {𝑐1=0.01, 𝑐2=0.01, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒=3, 20 epochs} for animal 

exclusions. 

Results 

After parameters tuning, I select configurations which achieve the highest F1 

score on the validation set, and evaluate performance on the final test set, as 

reported in Table 2.10. RNN with attention also outperforms baseline models 

(Table 2.4) with an improvement of F1 by 10% to 24% for four items, while the 
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validation F1 of animal welfare regulations decreases by 14%. Compared to 

CNN models (Table 2.8), RNN with attention does not show many advantages, 

as the validation F1 increases by less than 1% for random allocation and 

blinded assessment of outcome, but declines by 2% for conflict of interests 

and animal exclusions, and by 11% for animal welfare regulations. Similar to 

CNN models, the performance of RNN with attention is also less robust than 

that of the baseline model for animal welfare regulations, as the difference of 

F1 between the validation set and the test set is as high as 12%. 

The optimal setting for each risk of bias items are: {one-layer bidirectional 

LSTM with hidden dimension 14, applying class weight balancing, no batch 

normalisation} for random allocation, {two-layers bidirectional GRU with hidden 

dimension 100, applying class weight balancing, no batch normalisation} for 

blinded assessment of outcomes, {two-layers bidirectional GRU with hidden 

dimension 20, applying class weight balancing, no batch normalisation} for 

conflict of interests, {one-layer bidirectional GRU with hidden dimension 4, no 

class weight balancing, applying batch normalisation} for compliance of animal 

welfare regulations, and {one-layer bidirectional LSTM with hidden dimension 

6, applying class weight balancing and batch normalization, no under 

sampling} for animal exclusions. The optimal maximum document length is 

10000 and feature numbers for building vocabulary is 5000 for all items. 

RoB item 
Valid Test 

F1 R P S F1 R P S 

RA 87.2 92.4 83.7 93.7 82.0 86.8 79.5 89.6 

BAO 83.0 91.1 77.2 88.5 81.6 87.8 78.2 88.4 

CI 82.9 85.4 82.0 92.9 81.5 81.6 82.6 92.2 

CAWR 76.3 77.6 78.3 93.5 76.3 77.6 78.3 93.5 

AE 58.0 68.3 54.3 90.0 42.3 50.6 38.7 90.9 

Table 2.10: Performance of the recurrent neural network with attention using the 

optimal configuration for each risk of bias item on the validation set, and final 

performance on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity 

respectively. 
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For each risk of bias item, I use its optimal RNN model to output the attention 

scores of tokens in every individual papers which reported the item, thus I can 

extract the most important words in the decision of risk of bias classification. 

The five most important words are {"randomly", "induced", "supported", 

"randomized", "increase"} for random allocation, {"blind", "by", "observer", 

"experimenter", "investigator"} for blinded assessment of outcome, {"interest", 

"of", "no", "authors", "statement"} for conflict of interests, {"animal", "care", 

"procedures", "figure", "committee"} for animal welfare regulations, and 

{"excluded", "were", "from", "included", "died"} for animal exclusions, as shown 

in Figure 2.20. This may inform future rule-based approaches development. 

 

Figure 2.20: Most important words in the decision of classification for each risk of 

bias item, based on the average attention scores from RNN output across all 

positive samples. 

The effect of the hidden dimension on validation F1 are displayed in Figure 

2.21 and Appendix Table 6. For random allocation and blinded assessment of 

outcome, the performance is relatively stable and the optimal hidden 

dimension is around 20. For conflict of interests, a hidden dimension larger 

than 30 harms the performance by 20% and the model tends to be over-fitting. 

For animal welfare regulations, F1 reduces by 16% when the hidden 

dimension rises from 2 to 100. For animal exclusions, the changes of F1 

fluctuate and the model with 6-dimension hidden states achieves the best 

performance. Considering the performance reduction, memory consumption 
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and running cost, it is unnecessary to explore hidden dimensions larger than 

20 in RNN models for risk of bias classification. 

 

Figure 2.21: Effect of the number of hidden dimension in the recurrent neural 

network models for risk of bias classification.  

The effect of cell structure in RNN models on the validation performance is 

reported in Table 2.11. Bidirectional structure performs better than 

unidirectional structure, with the improvement of F1 ranging from 0.5% to 20% 

for four items, except for conflict of interests, where the validation F1 of the 

bidirectional GRU is 7% lower than that of the unidirectional GRU. The 

selection of RNN cell structure between LSTM and GRU depends on the 

specific risk of bias item and other model configurations. GRU performs slightly 

better than LSTM for random allocation, while LSTM is optimal for blinded 

assessment of outcome, although the difference is almost negligible. The 

conclusions for the other three items are different when the RNN cell is applied 

in the unidirectional or bidirectional manner. 
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RoB item RNN cell 
Bidirectional Unidirectional 

F1 R P S F1 R P S 

RATC 
LSTM 85.0 89.1 82.6 93.9 83.6 92.5 77.6 91.5 

GRU 85.2 91.6 80.7 92.9 84.9 89.7 81.7 93.6 

BAO 
LSTM 81.6 88.4 76.4 88.1 81.0 87.5 77.2 88.5 

GRU 81.2 88.4 76.1 88.4 79.6 87.4 74.7 87.7 

CI 
LSTM 73.4 72.3 76.2 91.6 53.5 50.0 59.1 87.4 

GRU 73.1 76.8 72.4 89.1 80.1 80.0 81.0 93.2 

CAWR 
LSTM 73.6 69.8 81.3 95.2 73.4 71.8 76.7 93.3 

GRU 76.3 77.6 78.3 93.5 71.4 75.9 72.1 90.9 

AE 
LSTM 58.0 68.3 54.3 90.0 46.4 73.1 36.4 79.1 

GRU 51.6 60.8 46.7 89.3 48.7 58.9 44.3 88.4 

Table 2.11: Effect of different cell structure in the recurrent neural network models. 

‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity respectively. 

2.4.2.3 Experiments of Hierarchical Attention Network 

As a starting configuration, each document is padded or cut when it has less 

or more than 500 sentences, and each sentence is padded or cut when it has 

less or more than 100 words. I set the dimension of word hidden states and 

sentence hidden states to 50. I consider the 5000 most frequent words as 

features when building the vocabulary. With the setting unchanged and 

considering the memory limitation of our GPU, I tune the maximum number of 

sentences in each document from 200 to 1000, the maximum number of words 

in each sentence from 10 to 100, dimension of word hidden states and 

sentence hidden states from 5 to 80, the maximum number of features from 

3000 to 9000, assigning class weight or not and applying batch normalisation 

or not. I also explore an undersampling strategy for animal exclusions like 

previous neural network experiments. I use the Kaiming initialisation method 

(He et al., 2015) to initialise the local word context vector and the global 

sentence context vector. Based on the results and learning curves from some 

initial experiments, the number of training epochs and early stopping criteria is 

set to {c1=0.01, c2=0.008, patience=2, 20 epochs} for random allocation, 
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blinded assessment of outcome and conflict of interests, and {c1=0.01, 

c2=0.01, patience=5, 30 epochs} for compliance of animal welfare regulations 

and animal exclusions. 

Results 

After parameters tuning, I select configurations which achieves the highest 

validation F1 score for each item and evaluate performance on the final test 

set, see Table 2.12. Similar to CNN and RNN with attention models, HAN 

outperforms baseline models (Table 2.4) with an improvement of F1 by 8% to 

21% for four items, while the validation F1 of animal welfare regulations 

decreases by 11%. Compared to CNN models (Table 2.8), HAN models do 

not show any advantages as the validation F1 decreases for all five items by 

1% to 8%. Compared to RNN models (Table 2.10), the validation F1 of HAN 

models declines by around 1% for random allocation, 2% for blinded 

assessment of outcome and 5% for animal exclusions, but increases by 0.3% 

and 3% for conflict of interests and animal welfare regulations respectively. 

The difference of HAN performance between the validation and test set is also 

less robust than that of baseline models for animal welfare regulations, as the 

difference of F1 increased by 13%. 

RoB item 
Valid Test 

F1 R P S F1 R P S 

RA 86.2 91.3 83.1 93.7 83.2 86.8 80.9 91.0 

BAO 81.3 86.4 77.5 89.1 80.2 83.4 78.4 89.0 

CI 83.2 84.7 82.8 93.2 81.0 79.7 84.1 92.9 

CAWR 79.3 77.8 84.5 94.9 73.5 73.1 75.3 93.1 

AE 53.4 58.4 54.0 88.9 42.4 53.3 38.2 88.9 

Table 2.12: Performance of the hierarchical attention network with the optimal 

configuration for each risk of bias item on the validation set, and final performance 

on the test set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity respectively. 

The optimal setting for each risk of bias items are: {maximum 500 sentences 

in each document, maximum 40 words in each sentence, word/sentence 
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hidden states with dimension 50, applying class weight balancing, no batch 

normalisation} for random allocation and conflict of interests, {maximum 500 

sentences in each document, maximum 50 words in each sentence, 

word/sentence hidden states with dimension 50, applying class weight 

balancing, no batch normalisation} for blinded assessment of outcomes, 

{maximum 600 sentences in each document, maximum 50 words in each 

sentence, word/sentence hidden states with dimension 50, not assigning class 

weight, applying batch normalisation} for compliance of animal welfare 

regulations, and {maximum 900 sentences in each document, maximum 100 

words in each sentence, word/sentence hidden states with dimension 20, 

applying class weight balancing, no batch normalisation, no undersampling} 

for animal exclusions. The optimal feature number for building vocabulary is 

5000 for all items. 

Table 2.13 demonstrates the prediction probability and relevant sentences 

extracted from the optimal HAN model for each risk of bias item on an example 

full-text publication. Unlike the previous regular expression approaches which 

generate the yes/no label only, HAN can be used to extract the most relevant 

sentences from full text, which can enhance the judgment from the prediction 

probabilities, or provide signals whether users need to re-check the full texts. 

As the example shows, sentences extracted for blinded assessment of 

outcome and animal exclusions indicate the clear relation with the items and 

positive evidence for the prediction probabilities, while sentences extracted for 

conflict of interests do not show any relation with the items, which proves the 

prediction in a different direction. For the other two items, the conclusions from 

the prediction probability and the extracted sentences are opposite, where 

users can find enough positive evidence from the extracted sentences for 

random allocation to reject the prediction, but may need to re-check full text for 

animal welfare regulations. 
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RoB item True Predicted High scored sentences 

Random 
allocation  

Yes 0.1712 

video records of randomly selected animals were 
recoded by an observer blind to the experimental 
conditions 

in the stress groups animals were presented with ten 
sec db white noise tones that coterminated with a sec 
ma footshock measured according to the method of 
sananes and davis one tonefootshock pair was 
presented randomly within each of consecutive min 
intervals 

Blinded 
assessment 
of outcome 

Yes 1.0000  

video records of randomly selected animals were 
recoded by an observer blind to the experimental 
conditions 

animals were coded initially by an observer not blind 
to the experimental conditions 

Conflict of 
interests 

No 2e-7 

schematic depictions of the regions dissected for 
neurochemical analysis are presented in figure 
tissue da and its metabolite dihydroxyphenylacetic 
acid dopac and ht and its metabolite hydroxy 
indoleacetic acid hiaa were isolated according to a 
modification of the procedure of reinhard et al 

** statistically significant difference versus the sham 
no stress group p statistically significant difference 
versus the sham no stress group p … 

Compliance 
of animal 
welfare 
regulations 

No 0.9998 

the journal of neuroscience august role of the 
amygdala in the coordination of behavioral 
neuroendocrine and prefrontal cortical monoamine 
responses to psychological stress in the rat … 

the present study used a conditioned stress model in 
which rats were trained to fear a substartle threshold 
tone paired previously with footshock and assessed 
for behavioral neuroendocrine and neurochemical 
stress responses 

Animal 
exclusions 

Yes 0.9989 

in of the original lesioned animals in the pretraining 
experiment the lesions were judged incomplete by 
the criteria above and were excluded from the data 
analyses 

animals were subjected to bilateral sham sham or 
excitotoxic lesions of the amygdala amyg d before 
conditioning 

Table 2.13: An example of prediction and relevant sentences extracted from the 

hierarchical attention network for risk of bias items on a full-text publication (PMCID: 

PMC6579011). Sentences are not exactly same as the original text because I 

remove digits and some punctuations in the text pre-processing step. 

For the configurations related to padding and cutting, I explore the effect of the 

maximum number of sentences in each document (Figure 2.22 and Appendix 
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Table 7) and the effect of the maximum number of words in each sentence 

(Figure 2.23 and Appendix Table 8). Although the average number of 

sentences in a document is 180 (Table 2.2), the optimal threshold for sentence 

numbers is around 600 for animal welfare regulations and 500 for the other 

four items because of some long publications. Sentence counts larger than 

those values cause some reductions on performance. For the maximum word 

count in each sentence, the optimal threshold is around 40 for random 

allocation and conflict of interests, 50 for blinded assessment of outcomes, and 

60 for animal exclusions. When the word count in each sentence is larger than 

those optimal values, the validation F1 first drops sharply and then goes up 

back to the peal value for four items, excluding random allocation where the 

performance remains stable after 60. There might be an improvement when 

the maximum word number in each sentence is larger than 100, but I am not 

able to continue the experiments with the limited GPU memory.  

The effect of the dimension of word and sentence hidden states is displayed 

in Figure 2.24 and Appendix Table 9. The trend of the validation F1 for random 

allocation, blinded assessment of outcome and conflict of interests is relatively 

stable as the hidden dimension changes. For animal welfare regulations, the 

validation F1 declines by 22% when the word/sentence hidden dimension 

increases from 5 to 40. It rises up to a peak value when the dimension is 50 

and then decreases again. For animal exclusions, the validation F1 fluctuates 

as the hidden dimension changes and there is no clear trend. 
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Figure 2.22: Effect of the maximum number of sentences in each document in the 

hierarchical neural network models for risk of bias classification. 

 

 

Figure 2.23: Effect of the maximum number of words in each sentence in the 

hierarchical neural network models for risk of bias classification. 
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Figure 2.24: Effect of the dimension of word/sentence hidden states in the 

hierarchical neural network models for risk of bias classification. 

 

2.4.3 Experiments of BERT with Two Strategies 

BERT models are implemented using PyTorch (Paszke et al., 2019) and 

HuggingFace Transformers (Wolf et al., 2019). All the experiments are 

conducted on a GTX 1080 GPU with 12GB memory. Codes are available at 

github.com/qianyingw/pre-rob. 

2.4.3.1 Experiments of BERT-Document Chunk Pooling 

After tokenisation, each document is split into chunks with 512 tokens 

(including the two special tokens ‘[CLS]’ and ‘[SEP]’) and the maximum 

number of chunks is set to 20 because of the memory limitation. Therefore, 

the model can process maximum 10,200 (510x20) tokens for each document, 

and documents with tokens more than 10,200 are cut. The last chunk with 

tokens less than 512 is padded when the total number of tokens is less than 

10,200. I use the default configuration of the BERT-Base-Uncased module, i.e. 

12 encoder layers, 768 units in hidden states, 12 attention heads (Devlin et al., 

2018). As a starting setting, I perform average pooling over the last 10 encoder 

layers for the first pooling layer; I concatenate hidden states of all the tokens 
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within every chunk for the second pooling layer, i.e. no pooling. I set batch size 

to 32 for models with the linear/convolution head and 16 for models with the 

LSTM head, and assign class weights to solve the data imbalance issue. 

Considering the memory issue, I freeze all the BERT layers and only fine-tune 

the linear/LSTM/convolution head for the classification task. For BERT with 

linear head, I use the average pooling method for the third pooling layer. For 

BERT with convolution head, I set three filter sizes to [3,4,5] and apply 100 

filters for each filter size. For BERT with LSTM head, I use one-layer 

unidirectional LSTM, and the hidden dimension is set to 768, which is same as 

the dimension in the BERT encoder layers. The threshold learning rate is 1e-

3, the weight decay rate is 1e-2, and coefficients of controlling decay rate of 

gradients mean and variance are 0.9 and 0.999 respectively. With these 

settings, I test models for 30 epochs for random allocation, and the learning 

curves are shown in Figure 2.25. Models with the linear head or LSTM head 

are not trained properly and do not show promising performance, with the 

highest validation F1 around 50%. Considering the running cost and 

performance gain, I continue experiments of models with the convolution head 

only.  

 

Figure 2.25: Learning curves of BERT-document chunk pooling models (with 

linear/convolution/LSTM head) for random allocation. Solid and dash lines refer to 

training and validation curves respectively; brown and cyan lines refer to loss and F1 

respectively. 

I tune three hyperparameters sequentially for BERT-DCP models with the 

convolution head. For the first pooling layer, I explore the different number of 

encoder layers being averaged from the last 10 to 1 encoder layers from 
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BERT. For the second pooling layer, I explore five pooling methods described 

in section 2.3.4.2. I freeze all BERT layers in default, which hinders the 

advantages of BERT architecture. With the available GPU, I can only fine-tune 

the last encoder layer but need to reduce batch size to 4, otherwise it causes 

the memory issue. Results reported in Table 2.14 indicate the number of 

encoder layers averaged at the first pooling layer does not have much effect 

on the performance. At the second pooling layer, pooling the output over 

tokens within each chunk with different methods harms the performance by 

40%, compared with concatenating the hidden states of all the tokens within 

each chunk. Fine-tuning the last encoder layer from BERT harms the 

performance by 20%. Considering the running cost and reduction of 

performance, I use the optimal default settings for the other four risk of bias 

items and do not continue tuning parameters for them. 

 BERT-DCP Settings F1 R P S 

Default 
10 layers, no pooling, 

freeze all 
85.4 92.7 80.1 92.2 

1) Encoder layers 
averaged in the 
1st pooling layer 

Last 8 layers 84.5 92.0 79.2 91.6 

Last 6 layers 84.8 92.6 79.5 92.3 

Last 4 layers 85.0 91.4 81.1 93.7 

Last 2 layers 85.3 92.3 80.2 91.9 

Last 1 layer 84.7 92.1 79.4 92.3 

2) Method in the 
2nd pooling layer 

Average-pooling 50.6 83.5 37.6 54.5 

Max-pooing 42.9 73.9 30.9 46.9 

Average- and max-pooling 48.1 82.5 35.3 52.2 

Hidden states from [CLS] 45.8 70.0 35.1 57.0 

3) Unfreeze Fine-tune the last encoder 62.0 65.8 61.1 91.0 

Table 2.14: Effect of three hyperparameters on validation performance of BERT-

document chunk pooling models with convolution head, for random allocation. The 

default settings are: 1) averaging output from the last 10 encoder layers at the first 

pooling layer; 2) concatenating hidden states of all tokens within each chunk at the 

second pooling layer; 3) freezing all BERT layers. ‘R’, ‘P’ and ‘S’ refer to recall, 

precision and specificity respectively. 
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2.4.3.2 Experiments of BERT-Sentence Extraction 

As a default setting, the maximum number of sentences extracted from full-

text publications is set to 30. The new passage concatenated from the most 

30 relevant sentences with the number of tokens larger than 512 is truncated. 

I use the default configuration of the DistilBERT-Base-Uncased module: 6 

encoder layers, 768 hidden units, 12 attention heads (Sanh et al., 2019). I set 

batch size to 16, and assign class weights to solve the data imbalance issue. 

The threshold learning rate is 2e-5, the weight decay rate is 1e-2, and 

coefficients of controlling decay rate of gradients mean and variance are 0.9 

and 0.999 respectively. As the new passages are much shorter compared to 

the full-text publications, I do not need to freeze any encoder layer like BERT-

DCP models and can fine-tune the whole DistilBERT with the additional 

linear/convolution/LSTM head for the classification task. For models with the 

linear head, I use the hidden states of the ‘[CLS]’ token from the last encoder 

layer as the output vectors. For models with the convolution head, I set three 

filter sizes to [3,4,5] and apply 100 filters for each filter size. For models with 

the LSTM head, I use a one-layer unidirectional LSTM and hidden dimension 

768. With these settings, I run each model for 30 epochs with the different 

number of sentences extracted, see Table 2.15. The performance of models 

with different head or number of sentences extracted does not show much 

difference. Considering the running cost and experience from previous 

experiments, I use model with the convolution head with default setting as the 

final choice, and do not continue tuning parameters for the other four risk of 

bias items. 
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BERT-SE No.sents F1 Recall Precision Specificity 

Linear  

head 

10 78.1 79.7 81.0 92.6 

20 80.1 83.6 81.6 92.9 

30 80.5 82.2 83.3 94.1 

40 80.5 82.2 83.3 94.1 

Convolution  

head 

10 77.9 78.7 80.6 92.5 

20 79.6 84.8 79.5 90.8 

30 80.6 82.0 82.0 92.7 

40 78.8 81.7 79.7 92.7 

LSTM  

head 

10 

20 

30 

40 

78.0 

79.3 

77.9 

78.7 

79.6 

83.6 

84.1 

82.1 

82.4 

80.6 

77.8 

78.9 

93.5 

92.3 

91.1 

92.6 

Table 2.15: Effect of the number of sentences extracted from full-text publications on 

validation performance of BERT-sentence extraction models with 

linear/convolution/LSTM head, for random allocation. 

BERT models using two strategies do not outperform neural models, except 

for animal welfare regulations, where the validation F1 is increased by 3% to 

4%, see the final performance in Table 2.16. This is reasonable because, in 

the document chunk pooling strategy, I do not take any advantage of BERT 

architecture by freezing all the encoder layers, and multiple pooling strategies 

help little to address this limitation; while in the sentence extraction strategy, 

although I can fine-tune all the encoder layers in DistilBERT, I still lose some 

information by using shorter texts extracted from full publications. 
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RoB item 
BERT-DCP BERT-SE 

F1 R P S F1 R P S 

RA 85.4 92.7 80.1 92.2 80.6 82.0 82.0 92.7 

BAO 83.1 91.8 77.0 87.7 79.9 84.7 79.8 89.9 

CI 79.5 84.6 76.8 90.1 64.0 64.3 70.9 88.3 

CAWR 93.8 92.1 95.8 87.7 94.0 94.6 93.8 75.1 

AE 56.2 77.0 46.8 84.7 34.4 46.5 30.5 79.5 

Table 2.16: Performance of the BERT-document chunk pooling and BERT-sentence 

extraction models using the optimal configuration for each risk of bias item on the 

validation set. ‘R’, ‘P’ and ‘S’ refer to recall, precision and specificity respectively. 

2.4.3.3 BERT embeddings in baseline models 

In the optimal BERT-DCP models with the convolution head where all encoder 

layers are untrainable, the essence of the architecture is analogous to the 

convolutional neural network, while the text representations are BERT 

embeddings instead of word2vec vectors. The inconspicuous difference of 

performance between BERT-DCP models with convolution head and CNN 

models indicate that BERT embeddings are not superior to word2vec vectors 

in neural network models for risk of bias classification, from another 

perspective. I then conduct experiments to test if BERT embeddings 

outperform word2vec embeddings in baseline models. For models using BERT 

embeddings, each document is split into sentences by scispaCy (Neumann et 

al., 2019) and each sentence is then encoded into an embedding by 

SentenceTransformer (Reimers and Gurevych, 2019) with the pre-trained 

weights from BioBERT (Lee et al., 2019). The text representation of the 

document is the averaged sentence embeddings. Other details of model 

implementation and parameters tuning are same as the models using 

word2vec which are described in Section 2.3.2. The validation results of three 

baseline models using averaged word embeddings from biomedical word2vec 

and averaged sentence embeddings from BioBERT are reported in Table 2.17. 

In support vector machines, F1 of BERT embeddings declines by 2% to 6% 

for four items; in logistic regression models, F1 reduces by 8% for random 
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allocation, but increase by 2% for animal welfare regulations;  in random 

forests, BERT embeddings improve F1 by 2% to 4% for blinded assessment 

of outcome and conflict of interests, but harm performance by 3% for animal 

exclusions, compared to word2vec embeddings. Other improvements or 

reductions are less than 1%. Although the selection of the embeddings in 

baseline models depends on the specific classifier and risk of bias item, none 

of the models using BERT embeddings outperform the best baseline model for 

each risk of bias item. Model architecture still plays a more important role than 

text representation methods on the risk of bias classification. 

RoB item Feature SVM LogReg RF 

RA 
bert 44.7 47.9 43.9 

w2v 51.0 56.3 43.4 

BAO 
bert 54.0 56.0 53.2 

w2v 53.4 56.3 49.3 

CI 
bert 64.2 65.6 57.4 

w2v 65.7 66.1 55.1 

CAWR 
bert 86.6 86.4 85.3 

w2v 90.1 84.1 85.3 

AE 
bert 35.8 37.6 31.6 

w2v 38.7 36.8 35.0 

Table 2.17: Validation F1 of three baseline models with averaged word embeddings 

from biomedical word2vec or averaged sentence embeddings from BioBERT for risk 

of bias classification. 

2.4.4 Comparison to Regular Expression 

With the best model and its optimal setting for each risk of bias item, I evaluate 

and compare the performance with the regular expression approach on the 

test set. Note that I select RNN with attention as the optimal model for blinded 

assessment of outcome rather than BERT with document chunk pooling 

strategy, considering the negligible improvement (0.1%) and complexity of pre-

processing by the latter approach. From Table 2.18, NLP models improve 

performance by between 13% and 36% for four RoB items tested, and these 
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improvements are significant with p < 0.05 according to McNemar’s test 

(Raschka, 2018). 

RoB item Method 
Test performance McNemar table 

F1 R P S  regex+ regex- 

RA 
RNN+Attn 82.0 86.8 79.5 89.7 nlp+ 548 156 

Regex 68.8 96.4 53.6 62.7 nlp- 22 58 

BAO 
RNN+Attn 81.6 87.8 78.2 88.4 nlp+ 601 87 

Regex 68.3 59.8 79.6 92.1 nlp- 28 68 

CI 
CNN 82.7 80.6 86.2 93.9 nlp+ 533 103 

Regex 48.7 33.8 87.1 97.8 nlp- 21 54 

CAWR 
BERT-SE 91.5 91.4 92.0 70.9 nlp+ 327 293 

Regex 55.2 40.9 85.2 78.2 nlp- 28 63 

AE 
CNN 60.2 73.6 54.2 89.7 nlp+ -- -- 

Regex -- -- -- -- nlp- -- -- 

Table 2.18: Performance of the best NLP model and regular expression approach 

for each risk of bias item on the test set, and the corresponding table of McNemar 

test. ‘+’ (‘-’) refers to records correctly (incorrectly) predicted by the approach. ‘R’, ‘P’ 

and ‘S’ means recall, precision and specificity respectively. A regular expression 

approach has not been developed for animal exclusions so the performance cannot 

be compared. 

2.5 Discussion 

I have shown that different models are optimal for the detection of reporting of 

different risks of bias. CNN is the best choice for conflict of interests and RNN 

with attention works well for random allocation and blinded assessment of 

outcome. For compliance with animal welfare regulations, models using BERT 

with sentence extraction strategy achieve the best performance. For animal 

exclusions, CNN achieves the best performance on the validation set, but no 

models provide reliable performance on the test set.  
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2.5.1 Tool and Streamlit interface 

I make the codes and weights of optimal models for five risk of bias items 

available at github.com/qianyingw/pre-rob. A Streamlit web application is 

developed to demonstrate the function of the risk of bias tool, as shown in 

Figure 2.26. After a single TXT file is uploaded by the user, the app processes 

the text and runs the optimal model for each item in the background. It then 

generates probabilities and the most three relevant sentences which can assist 

judgement. However, it is often slow and memory-consuming to use the app 

for a single prediction because the models involve large pre-trained weights 

loading and heavy computations for neural networks and BERT models. For 

batch processing, I recommend to clone the source codes and keep pre-

trained modules locally. More specifically, users need to have miniconda3 

installed under the Linux environment. The tool receives the path of a CSV file 

as input, where the CSV contains the absolute paths of individual full-text TXT 

files. The plain texts of preclinical publications can be obtained by 1) converting 

from PDFs using tools like Xpdf, 2) parsing from PubMed NXML files using 

tools like PubMed Parser (Achakulvisut et al., 2020), or 3) copy and paste. 

After activation of the virtual environment, installation of relevant python 

packages, downloading of pre-trained modules and configurations, users can 

obtain the prediction probabilities or relevant sentences (if the number of 

sentences is specified in the command) in an output CSV file by launching the 

python command, see Figure 2.27. 
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Figure 2.26: A demonstration Streamlit app for preclinical risk of bias assessment. 

 

Figure 2.27: Usage commands of the preclinical risk of bias tool. 
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2.5.2 Error Analysis 

Among the incorrect records, my models are more likely to conclude that 

publications report random allocation, blinded assessment of outcome and 

animal exclusions (false positive greater than false negative), and less likely to 

predict that publications report conflict of interests and animal welfare 

regulations (false negative greater than false positive), see Figure 2.28. To 

analyse sources of error I randomly select 10 incorrect records for each item 

from the test set. My models do not recognise phrases like ‘unaware’ for 

blinded assessment but consider that ‘animals are randomly selected for 

testing’ indicated random allocation to the experimental group. It may be that 

most records in the training set describe random allocation based on the 

presence of the word ‘random’ and blinded assessment based on the word 

‘blind’, and that the training corpus does not have sufficient examples of 

alternative valid descriptions for these to be learned. I also find two records 

where a conflict of interest is given before the ‘Introduction’ section or after the 

‘Reference’ section, where I have removed the relevant text in the text 

processing stage. 

 

Figure 2.28: Percentages of the false positive, false negative, true positive and true 

negative of the optimal model for each risk of bias item on the test set. 
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2.5.3 Limitation and Future Work 

This work has several limitations. First, the training dataset includes 

publications drawn from three datasets focusing on specific disease models 

(focal ischaemic stroke, chemotherapy-induced peripheral neuropathy, 

psychotic disorders), as well as two datasets from unselected preclinical 

studies published in PLOS One and Nature. This may influence the 

generalisability of the findings. Second, PDF to text conversion loses 

document structure and I cannot identify the main sections of publications. This 

introduces some noise (for instance text from figures and tables) to the training 

corpus. Tools like GROBID (github.com/kermitt2/grobid) can convert PDFs to 

structured XML but it highly depends on the quality of PDF, and in my 

experience it does not work well for some preclinical publications. However, 

enhanced approaches to PDF conversion, and increased availability of 

publications in XML format, means that this approach may become feasible in 

the future.  

In future work I will seek to improve performance further, using datasets 

involving more journals and a wider range of preclinical experiments (both 

disease modelling and mechanistic studies), and will exploit diseases and texts 

from structured PubMed XMLs, which may yield better performance. I will 

continue improving the attribution of animal exclusions to achieve more reliable 

performance and I will develop approaches for the other risk of bias items 

including sample size calculation and allocation concealment. I will also 

develop a user-friendly function embedded in the preclinical systematic review 

facility SyRF (http://syrf.org.uk/) and a standalone API, enabling usage to 

others. 

2.6 Summary 

In this chapter, I present multiple text classification models for risk of bias 

assessment in preclinical publications, including baselines (support vector 

machine, logistic regression, random forest), neural networks (convolutional 

neural network, recurrent neural network with attention, hierarchical neural 
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network) and BERT models using two strategies (document chunk pooling and 

sentence extraction); and text representation methods, including bag-of-

words, word2vec, doc2vec, BERT embeddings.  

Support vector machine and logistic regression are robust choices among 

baseline models, while neural models and BERT models have substantial 

improvements on performance compared to baselines, for four risk of bias 

items (random allocation, blinded assessment of outcome, conflict of interests 

and animal exclusions). For animal welfare regulations, baselines and BERT 

models have competitive performance and they both outperform neural 

models. Among three neural models, the difference on performance between 

CNN and RNN is not obvious, and the hierarchical structure in HAN does not 

show advantages. However, the attention mechanism can be used to develop 

the sentence extraction function to provide potentially relevant snippets as 

clues for users making judgements. Between the two BERT models, the 

document chunk pooling strategy works better than the sentence extraction 

strategy in general. Representations containing semantic information like 

word2vec or contextual embeddings yield better performance than the simple 

use of weighted frequency representations. If computational limitations require 

the implementation of a single tool, I recommend convolutional neural 

networks.  

Compared to the previous regular expression approach, the performance of 

the best NLP models is significantly improved for four risk of bias items. I 

encourage the use of NLP techniques to assist the risk of bias assessment 

and reduce workflow for the preclinical systematic review. The performance of 

these tools is such that they could be deployed in automated approaches to 

monitor risks of bias reporting as part of institutional research improvement 

activities.  
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Chapter 3 Identifying Intervention and Method 

of Induction of Disease Model: 

Question Answering 

Identifying information from publications can be cast as Question Answering 

(QA), which is defined as answering a question in natural language, by 

automatically copying or summarising a piece of text from available context or 

document(s). Answering biomedical questions varies from answering general-

domain questions because of the different data sources, knowledge taxonomy 

and more complicated constraints for answer candidates (Niu et al., 2003). 

Competitions such as the BioASQ challenge (Krallinger et al., 2020) are held 

annually which aims to solve the information retrieval and question answering 

particularly for biomedical research, and several biomedical QA systems have 

been developed, including MedQA (Lee et al., 2006), AskHERMES (Cao et al., 

2011), Olelo (Neves et al., 2017), and SemBioNLQA (Sarrouti and Ouatik El 

Alaoui, 2020), etc. The architecture of these systems is end-to-end which 

contains four main stages: 1) analysing and parsing a question, 2) retrieving 

and ranking documents from large databases or corpora, 3) ranking and 

extracting passages/snippets from the top relevant documents, and 4) 

extracting answers by copying or summarising pieces of text from the top-

ranking snippets (Prager, 2006). For PICO extraction in systematic reviews, 

the first two stages are not in my consideration because 1) the questions for 

PICO elements are generalised and fixed, such as ‘What are the 

interventions?’, and I cannot ask a more informative question for a specific 

disease or species without knowing other three PICO elements; 2) answers 

are extracted from each publication separately, where the publication is 

obtained by searching from biomedical database like PubMed or Embase via 

the MeSH (Medical Subject Headings) terms pre-defined by investigators. The 

publications are further checked by researchers or screened by some text 

mining algorithms to exclude irrelevant publications, so all the remaining 

documents are supposed to be relevant to the research topic of a systematic 
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review. Therefore, I focus on retrieving PICO snippet from each document and 

extracting short precise answers from those snippets. 

3.1 Related Work 

For snippet retrieval, early works apply keywords or medical concepts 

matching by TF-IDF and BM25 (Robertson and Zaragoza, 2009). More 

complicated methods are also explored to retrieve and re-rank snippets, 

including training neural networks like LSTM (Wang and Nyberg, 2015) and 

CNN based models (Pappas et al., 2020), and fine-tuning transformer-based 

model BERT (Nogueira and Cho, 2019). The advanced models demonstrate 

some improved performance but the improvement is limited, compared to the 

unsupervised baseline methods (Kazaryan et al., 2020). In addition, those re-

ranking models are supervised and require annotations of the relevance of 

snippets in the dataset, such as the Text REtrieval Conference (TREC) Data 

(Voorhees, 2001). For more precise answer extraction, similarly, hand-crafted 

matching patterns have been explored, while neural models like BiDAF (Seo 

et al., 2016), QANet (Yu et al., 2018) and more recent BERT models achieve 

promising performance. I describe these models in greater detail in the method 

section. 

Among a few question answering approaches designed specifically for PICO 

extraction, Demner-Fushman et al use 275 clinical abstracts with PICO 

annotations to manually derive rule-based patterns for population, intervention, 

and comparator, assisted by the software MetaMap (Aronson and Lang, 2010) 

which can identify the Unified Medical Language System (UMLS) concepts 

(Bodenreider, 2004). While for outcomes, they do not develop a similar rule-

based snippet-level extractor, but train a Naïve Bayes classifier to identify 

sentences containing outcome descriptions (Demner-Fushman and Lin, 

2005). More recent work has applied the transformer-based models to extract 

PICO elements (Schmidt et al., 2020), using a dataset converted from the 

‘EBM-NLP’ corpus (Nye et al., 2018) which contains 5000 clinical abstracts 

annotated with exact positions of PICO spans and is originally designed for 
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PICO extraction via named entity recognition models. To adapt the dataset to 

the question answering task, Schmidt et al split each abstract into sentences, 

convert the sentence-question-answer triplets into the SQuAD (Stanford 

Question Answering Dataset) format (Rajpurkar et al., 2016). They then inject 

additional records from the SQuAD dataset and fine-tune the 

BertForQuestionAnswering module from the Hugging Face Transformers 

library (Wolf et al., 2019), which achieves good performance (F1 over 75% for 

each PICO category) and outperforms the named entity recognition models on 

the EBM-NLP leaderboard (ebm-nlp.herokuapp.com/#Leaderboard). These 

works all focus on the clinical PICO extraction and no question answering 

approaches have been applied to the preclinical PICO extraction. 

3.2 Dataset 

The available datasets are from three systematic review projects: one focuses 

on clinical motor neuron disease, and the other two focus on preclinical 

psychotic disorders and chemotherapy-induced peripheral neuropathy. PICO 

annotations of each record contain only one answer phrase (factoid type) or a 

list of answer phrases (list type) and no position information is provided. The 

cleaning process and some summary statistics of the datasets are described 

below. 

3.2.1 Clinical dataset: MND 

MND dataset is obtained from the ReLiSyR-MND (Repurposing Living 

Systematic Review for Motor Neuron Disease) project, which aims to collect 

the clinical and preclinical evidence of motor neuron disease (MND) and other 

neurodegenerative diseases to inform the selection of drugs for repurposing in 

MND clinical trials (Macleod and Wong, 2019). 8,566 records with title and 

abstract from 3,122 papers annotated by multiple investigators were collected 

on 28th July 2020. I remove records without valid abstracts, where in most 

cases only titles can be found, and records without investigator information so 

I cannot trace back for data validation when necessary. The dataset includes 

two parent questions: ‘what is the intervention measure used?’ and ‘what is 
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the disease investigated?’. As the whole dataset focuses on MND disease, the 

number of unique answer strings of the disease question is limited to 6 and I 

decide to focus on the intervention question. After removing duplicate records 

and records with inconsistent annotations from multiple investigators, I obtain 

2,476 records with 1,812 unique answers in total. Among those, only 1,983 

records have annotations which can be exactly matched in the title and 

abstract, as demonstrated in Figure 3.1. On average, there are 12 sentences 

and 289 tokens in an abstract, 25 tokens in a sentence and 2 tokens in an 

answer string (Table 3.1). The distributions of these characteristics are shown 

in Figure 3.2. 

 

Figure 3.1: Preparation process of the clinical MND dataset. 
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Figure 3.2: Distributions of text characteristics in the clinical MND dataset. 

3.2.2 Preclinical Dataset: Psycho-CIPN 

Psycho-CIPN dataset is concatenated from two systematic reviews which aim 

to collect the preclinical evidence of psychotic disorders (Psychosis) (Bahor et 

al., 2016) and chemotherapy-induced peripheral neuropathy (CIPN) (Currie et 

al., 2019) respectively. In the Psycho dataset, 12,440 papers with abstracts 

were obtained on 29th March 2018 and 3,024 records (two records for each of 

the 1,512 papers) with annotations of “treatments tested” (interventions) and 

“method of model induction” were filtered out. The annotations of each record 

consist of one or more than one answer candidates delimitated by a comma 

and whitespace. In the CIPN dataset, 1,397 records were obtained from 694 

papers on 7th Sep 2020. Each record refers to a cohort in an individual study 

and some grouping process are required to generate the answer lists of 

intervention/model induction for each paper. 33% of records do not have 

answer matches (case insensitive) in titles and abstracts so I decided to work 

on full texts for preclinical intervention and induction identifications. I removed 

records without full texts and missing answer matches, and obtained 1,225 
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question-answer-context triplets from 906 papers, as demonstrated in Figure 

3.3. 

 

Figure 3.3: The preparation process of the preclinical Psycho-CIPN dataset. 

Psycho-CIPN-factoid & Psycho-CIPN-list 

Among the final 1,225 records, 796 of them have only one answer and 429 of 

them have more than one answer candidates. On average, there are 203 

sentences and 6,157 tokens in a full-text publication, 30 tokens in a sentence, 

and 1.1 tokens in an answer candidate (Table 3.1). The distributions of these 

characteristics are shown in Figure 3.4. In the actual experiments, I use the 

Psycho-CIPN data in two ways: 796 records with only one answer as Psycho-

CIPN-factoid dataset, and records with one or more than one answers as 

Psycho-CIPN-list dataset. Additional processing is implemented for Psycho-

CIPN-list records because it is not applicable to compare multiple positions of 

true answer candidates and predicted answer candidates, and compute loss 

during the training procedure. Therefore, a parent record with more than one 

answer candidates is split into separate sub-records for each answer 

candidate, which share the same id, context and question strings. This 



110 
 

generates 1,984 sub-records as Psycho-CIPN-list dataset, which can be 

trained like the factoid-type question answering task. After training, the sub-

records will be merged by ids for evaluation. 

 

Figure 3.4: The distributions of text characteristics in the Psycho-CIPN dataset. 

 MND Psycho-CIPN 

Avg no. sents per doc 12 203 

Avg no. tokens per sent 25 30 

Avg no. tokens per doc 289 6157 

Avg no. tokens per answer 2.5 1.1 

Avg no. answer candidates 1 1.6 

Number of records 1983 1225 (796 factoid, 1984 list) 

Table 3.1: Summary statistics of clinical MND dataset and preclinical Psycho-CIPN 

dataset. ‘1225’ is the number of preclinical records before splitting them by number 

of answer candidates. 
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3.3 Methods 

Identifying intervention/method of induction in biomedical literature can be 

formulated as a question answering (QA) task: given a question (“what is the 

intervention” or “what is the method of model induction of disease model”) and 

its corresponding context (an abstract or a full-text publication), I need to build 

a model to automatically extract answers (pieces of text describing 

interventions/induction) from the context, as demonstrated in Figure 3.5. I thus 

convert the datasets into the format in the standard reading comprehension 

challenge of Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 

2016), as shown in Figure 3.6. The inputs of a standard QA model are the 

numeric representations of the tokenised question and context, and the true 

starting/ending positions (indices) of the answer strings, which are then 

compared to the predicted answer positions for training/evaluation, or 

converted back to answer tokens for prediction. However, the datasets do not 

contain any position information of the answer strings and I cannot compute 

the training loss for a QA model without the exact answer positions. As a 

compromise, I use the position of the first answer match in the context as the 

plausible position, inspired by a pre-processing strategy applied in a 

biomedical question answering challenge (Yoon et al., 2019).  
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Figure 3.5: Task formulation for interventions identification of MND data. 

 

 

Figure 3.6: An example question answering record of intervention/induction 

identification in SQuAD format. 

The average context length of the Psycho-CIPN dataset is much longer than 

that of the MND dataset, which includes 203 sentences and 12 sentences 

respectively. The ‘true’ index of answer strings is obtained from the first answer 

match in the context and a longer context can make the ‘true’ answer index 

more plausible. In a real case, the first answer match in the abstract could be 

the real correct answer, while the first answer match in the full-text paper is 
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normally not. In a full-text publication, the answer is also mentioned in the 

introduction or background sections, which may not describe the actual 

intervention measures in the experiments. Context with full-text length also 

increases the training time and is likely to cause memory issues. To solve this, 

I add a sub-module for Psycho-CIPN datasets to retrieve relevant sentences 

which are then concatenated as new shorter passages, before training the 

question answering models, see Figure 3.7.  

 

Figure 3.7: Task formulation for interventions identification of Psycho-CIPN data. 

The following sections describe the sentence retrieval module and classical 

QA models including BiDAF (Seo et al., 2016), QANet (Yu et al., 2018), fine-

tuned DistilBERT (Sanh et al., 2019) and BERT (Devlin et al., 2018) with 

different pre-trained weights.  

3.3.1 Sentence Retrieval 

The sentence retrieval module is designed analogically to the document 

retriever (Chen et al., 2017) for the open-domain question answering task. The 
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open-domain question answering system takes a question as the only input 

and the answers are obtained through several processes including documents 

retrieval from the open-source knowledge base such as Wikipedia, 

passages/snippets retrieval, re-ranking from the top relevant documents, and 

answer span extraction from the top relevant snippets. Many retrieval modules 

use unsupervised approaches to extract the most relevant passages/snippets 

based on the ranked similarity scores between the question and each 

passage/snippet (Semnani and Pandey, 2020). Analogously, I can calculate 

the similarity scores between the question sentence and each sentence in the 

full-text publication to obtain the most relevant sentences. However, questions 

like ‘what is the intervention’ and ‘what is the method of model induction’ are 

not informative enough to retrieve sentences, so I concatenate the original 

question and the title of the publication to form a ‘new question’ for similarity 

calculation, as demonstrated in Figure 3.7. 

To calculate similarities, sentences should be converted to numerical vectors 

and here I explore three representation methods: bag-of-words with TF-IDF 

(Goldberg, 2017), bag-of-words with BM25 (Robertson and Zaragoza, 2009), 

and Sentence-Transformers or Sentence-BERT (SBERT) (Reimers and 

Gurevych, 2019). Bag-of-words with TF-IDF method uses word frequency with 

normalisation of term and inverse document frequency to represent word 

importance, as described in Section 2.3.1. The difference is now the whole 

corpus is one full-text publication and the document is an individual sentence 

in the publication. The TF-IDF weight of the word 𝑤𝑖 in the sentence 𝑠𝑗  is: 

tfidf 𝑤𝑖, 𝑠𝑗 , 𝑆 =
𝑓 𝑤𝑖, 𝑠𝑗

𝑙 𝑠𝑗

× ln
𝑁(𝑠)

𝑛(𝑤𝑖)
(3. 1) 

where 𝑓(𝑤𝑖, 𝑠𝑗) is the frequency of word 𝑤𝑖 in the sentence 𝑠𝑗 , 𝑙(𝑠𝑗) is the total 

number of words in the sentence 𝑠𝑗 , 𝑁(𝑠) is the total number of sentences in 

the full-text publication (corpus) 𝑆 , and 𝑛(𝑤𝑖) is the number of sentences 

containing the word 𝑤𝑖. Similar to the risk of bias project, words can be counted 

by unigram, bigram, or the combination of unigram and bigram.  
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BM25 is a modified version of TF-IDF weighting which takes the frequency 

saturation and average sentence length into consideration. The BM25 weight 

of the word 𝑤𝑖 in the sentence 𝑠𝑗  is calculated by: 

bm25 𝑤𝑖, 𝑠𝑗 , 𝑆

=
(𝑘1 + 1)𝑓 𝑤𝑖, 𝑠𝑗

𝑓 𝑤𝑖, 𝑠𝑗 + 𝑘1 1 − 𝑏 + 𝑏
𝑙 𝑠𝑗

𝐿

× 𝑙𝑛
𝑁(𝑠) − 𝑛(𝑤𝑖) + 0.5

𝑛(𝑤𝑖) + 0.5
+ 1 (3. 2) 

where constant 𝑘1 ∈ [1.2, 2] controls how much a single word can affect the 

weight of a sentence, constant 𝑏 ∈ [0.5, 0.8]  controls the effect of relative 

sentence length compared to the average length (sentence length 

normalisation), and 𝐿  is the average sentence length over corpus 𝑆 

(Robertson and Zaragoza, 2009). 

Sentence-BERT (SBERT) takes advantage of the powerful pre-trained 

transformer-based model, BERT (Devlin et al., 2018), to derive semantically 

meaningful sentence embeddings by averaging BERT output vectors of all 

tokens in the sentence (Reimers and Gurevych, 2019). I explore six pre-trained 

modules including 1) DistilBERT-NLI-STSb: DistilBERT (Sanh et al., 2019) 

trained on the combination of the multi-genre Natural Language Inference 

(NLI) dataset (Bowman et al., 2015), the Stanford Natural Language Inference 

(SNLI) dataset (Williams et al., 2017) and Semantic Textual Similarity 

benchmark (STSb) dataset (Cer et al., 2017); 2) DistilBERT-Marco: DistilBERT 

trained on a large scale MAchine Reading Comprehension (MS MARCO) 

dataset (Bajaj et al., 2016); 3) BERT-Base: the original BERT trained on the 

combination of BookCorpus, and English Wikipedia; 4) BioBERT (Lee et al., 

2019): BERT trained on the combination of BookCorpus, English Wikipedia, 

PubMed abstracts and PubMed Central full-text articles (mixed-domain 

pretraining); 5) PubMedBERT-Abs: BERT trained on PubMed abstracts only, 

and 6) PubMedBERT-Abs-Full on a combination of PubMed abstracts and 

PubMed Central full-text articles (domain-specific pretraining) (Gu et al., 2020). 

With the numerical sentence vectors, the similarity score of the question vector 

𝑞  and the 𝑖 -th sentence vector in the full-text publication is calculated by 
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similarity(𝑞, 𝑠𝑖) =
𝑞∙𝑠𝑖

‖𝑞‖×‖𝑠𝑖‖
. Then the top 𝑘 sentences with the highest similarity 

scores are concatenated to form a new passage for each context in the training 

of QA models. Some open-domain QA systems also train a document or 

passage re-ranker (Nogueira and Cho, 2019) to obtain more precise 

passages. I do not apply this strategy here for two reasons. First, when the 

answer consists of several intervention measures, one sentence may not 

contain all the answer candidates. Some candidates are mentioned more 

frequently than other candidates throughout the full-text publication, and 

sentences containing the same most mentioned candidates may be ranked 

higher than sentences containing the rest but less mentioned candidates, 

which may leave some truly relevant sentences out when constructing the new 

passage. Second, to train a sentence re-ranker, I need to know the true 

relevance label of each sentence, which is not applicable in my datasets. The 

relevance label could be generated by judging if the sentence contains the 

answer strings but this strategy may introduce extra errors.  

Metrics for Sentence Retrieval 

A widely used metric of the general document retrieval tasks is the Mean 

Average Precision (MAP). For one question (information need), average 

precision (AP) is obtained from precisions of the top 𝑘 relevant documents (𝑘 

is the pre-defined number of documents required to be retrieved in total). Then 

MAP is obtained by taking the mean value of the average precisions of multiple 

questions (information needs) (Manning et al., 2008). In the document retrieval 

task, the dataset used for training usually provides the relevance/irrelevance 

labels, which is different from my question answering datasets which do not 

have any relevance annotations at the sentence level. 

Therefore, I introduce and illustrate two modified metric scores based on 

different definitions of ‘relevance’: sMAP (strict MAP) and rMAP (ratio MAP). I 

explain these scores with an example demonstrated in Figure 3.8, where 

seven sentences are retrieved for a question and the cyan/orange rectangle 
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shapes represent two answer candidates. The precision of the 𝑖-th sentence 

is defined as 

Precision𝑖 =
accumulated number of  relevant sentences 

accumulated number of  retrieved sentences
(3. 3) 

In the strict mode, a sentence is considered relevant only when it contains all 

answer candidates (mark as 1). In the ratio mode, a sentence is considered 

relevant when it contains at least one answer candidate, but the accumulated 

relevance number is marked as the ratio of number of answer candidates 

included to the total number of answers in the sentence . 

 

Figure 3.8: An illustrated example for metric (mean average precision) calculation in 

sentence retrieval. ‘Acc sents retrieved’ refers to the accumulated number of 

retrieved sentences; ‘Acc relevant’ refers to the accumulated number of relevant 

sentences. 

Only precisions of relevant sentences are counted in the calculation of average 

precisions for one single record: 

AP =
∑ Precision𝑖 × Relevance𝑖

𝐾
𝑖=1

accumulated number of  relevant sentences
(3. 4) 

Relevance𝑖 = 1, ith sentence is relevant
0, else

(3. 5) 

Therefore in the example, the strict-mode AP is  
0
1
×0 + 0

2
×0 + 0

3
×0 + 1

4
×1 + 1

5
×0 + 2

6
×0 + 2

7
×0  

2
= 29.2% , and the ratio-mode AP is 

0.5
1

×1 + 0.5
2

×0 + 1
3
×1 + 2

4
×1 + 2.5

5
×1 + 3.5

6
×1 + 3.5

7
×0  

3.5
= 69.0% . Then sMAP and rMAP are 
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calculated by averaging the strict and ratio APs across all records, 

respectively.  

MAP scores measure the retrieval performance at the sentence level which is 

a little difficult to interpret for my task and datasets. Hence, I introduce another 

metric, Mean Match Ratio (MMR), to measure the retrieval performance on the 

entire passage (constructed from the relevant sentences). For one single 

record, in the strict-mode, the match ratio (MR) is set to 1 if the passage 

includes all the answer candidates, else zero; while in the ratio-mode, the 

match ratio is equal to the percentage between the number of answer 

candidates which can be found in the passage and the number of all true 

answer candidates. Then MMR is calculated by averaging match ratios across 

all records.  

3.3.2 Question Answering Models 

In this section, I present three question answering models: 1) Bidirectional 

Attention Flow (BiDAF) (Seo et al., 2016), an influential milestone in the 

question answering field, 2) QANet (Yu et al., 2018), a faster and the last 

superior model before BERT (Devlin et al., 2018), and 3) fine-tuning BERT with 

different pre-trained modules for the downstream question answering task. As 

the input of QA models, questions and contexts are converted to numeric 

representations. For BiDAF and QANet, I use the biomedical word2vec 

(Pyysalo et al., 2013) to generate text embeddings, as described in Chapter 2 

(see Section 2.3.1), and WordPiece tokenisation (Wu et al., 2016) for BERT 

models.  

3.3.2.1 BiDAF 

I implement BiDAF as the baseline QA model. The original BiDAF architecture 

includes three embedding layers for character embeddings, word embeddings 

and contextual embeddings, an attention flow layer, a modelling layer, and an 

output layer which are described in greater detail below. From the model 

ablation analysis in the original study, the semantics information is mainly 

represented by word-level embeddings and the absence of character-level 
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embeddings harms the performance by about 2% (Seo et al., 2016). 

Considering the little improvement and the training size of my dataset, I do not 

use character-level embeddings in the experiments and follow a simplified 

architecture described in the Stanford CS 224N project handout (Francois 

Chaubard, Michael Fang, Guillaume Genthial, Rohit Mundra, 2019), as shown 

in Figure 3.9. 

 

Figure 3.9: The architecture of the bidirectional attention flow (BiDAF) model. 

Word embedding layer  

The word embedding layer maps individual words in the context and question 

into fixed dimension vectors, by the pre-trained biomedical word vectors 

(Pyysalo et al., 2013). It generates a context representation 𝐶𝐸 ∈ ℝ𝑐𝑙𝑒𝑛×𝑑  and 
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a question representation 𝑄𝐸 ∈ ℝ𝑞𝑙𝑒𝑛×𝑑 , where 𝑐𝑙𝑒𝑛 is the number of tokens in 

the context, 𝑞𝑙𝑒𝑛  is the number of tokens in the question, and 𝑑  is the 

embedding dimension. Each row of 𝐶𝐸  and 𝑄𝐸  represents a word token in the 

text. A linear projection is applied to change the dimension of representation 

vectors from 𝑑 to ℎ:  

𝐶𝐸 ∈ ℝ𝑐𝑙𝑒𝑛×𝑑 → 𝐶𝐸 ∈ ℝ𝑐𝑙𝑒𝑛×ℎ (3. 6)  

𝑄𝐸 ∈ ℝ𝑞𝑙𝑒𝑛×𝑑 → 𝑄𝐸 ∈ ℝ𝑞𝑙𝑒𝑛×ℎ (3. 7) 

where ℎ is the universal hidden dimension across the model. 

Highway network layer 

A two-layer highway network is then applied to refine context and question 

representations. Highway network uses gates to control information flow, 

which is designed to ease gradient-based training of very deep networks 

(Srivastava et al., 2015). Highway network feeds the input 𝑥 to a transform 

gate 𝑓𝐻  and a carry gate 𝑓𝐶 , which decides how much the information of input 

is transformed or carried to generate the output: 

𝑦 = 𝑓𝐻 (𝑥) ∙ 𝑓𝑇 (𝑥) + 𝑓𝐶(𝑥) ∙ 𝑥 (3. 8) 

where 𝑓𝐻  and 𝑓𝑇  are functions consist of a linear projection followed by a non-

linear activation function:  

𝑓𝐻 (𝑥) = ReLU(𝑊𝐻𝑥 + 𝑏𝐻 ) (3. 9) 

𝑓𝑇 (𝑥) = Sigmoid(𝑊𝑇 𝑥 + 𝑏𝑇 ) (3. 10) 

and the carry gate 𝑓𝐶  is set as 1 − 𝑓𝑇 (𝑥). After the highway network layer, the 

context matrix and question matrix are converted from 𝐶𝐸  and 𝑄𝐸  to 

 𝐶�̿� ∈ ℝ𝑐𝑙𝑒𝑛×ℎ and 𝑄�̿� ∈ ℝ𝑞𝑙𝑒𝑛×ℎ, respectively. 

Encoder layer 
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The encoder layer uses a bidirectional LSTM to model the dependency 

between words at different positions, and generate hidden states for the 

context and question. 

𝐶 = 𝐵𝑖𝐿𝑆𝑇𝑀 𝐶�̿� ∈ ℝ𝑐𝑙𝑒𝑛×2ℎ (3. 11) 

𝑄 = 𝐵𝑖𝐿𝑆𝑇𝑀 𝑄�̿� ∈ ℝ𝑞𝑙𝑒𝑛×2ℎ (3. 12) 

Attention flow layer 

The attention flow layer is designed to connect and combine information 

between context and question from both directions, by calculating the Context-

to-Question (C2Q) attention and Question-to-Context (Q2C) attention. Both 

attentions are calculated based on a similarity matrix 𝑆 ∈ ℝ𝑐𝑙𝑒𝑛×𝑞𝑙𝑒𝑛. The 

similarity score of the 𝑖-th token in the context and the 𝑗-th token in the question 

is computed by:   

𝑆𝑖𝑗 = 𝑊𝑠 𝐶𝑖:; 𝑄:𝑗; 𝐶𝑖: ∘ 𝑄:𝑗 ∈ ℝ (3. 13) 

where 𝐶𝑖: ∈ ℝ2ℎ is the 𝑖-th row of the context hidden states 𝐶 from the encoder 

layer output, 𝑄:𝑗 ∈ ℝ2ℎ is the 𝑗-th column of the question hidden states 𝑄 from 

the encoder layer output, and 𝑊𝑠 ∈ ℝ6ℎ is the weight vector.  

To calculate the C2Q attention, we first take the row-wise softmax of the 

similarity matrix 𝑆  to obtain 𝑆̅ ∈ ℝ𝑐𝑙𝑒𝑛×𝑞𝑙𝑒𝑛, where the 𝑖-th row of 𝑆, i.e. 𝑆𝚤: ∈

ℝ𝑞𝑙𝑒𝑛 , indicating the importance of each question token to the 𝑖-th context 

token. Then the C2Q attention output 𝐴 is generated by: 

𝐴 = 𝑆̅𝑄 ∈ ℝ𝑐𝑙𝑒𝑛×2ℎ (3. 14) 

where each row refers to the context token representation weighted by the 

question attentions. 

Similarly, to calculate the Q2C attention, we take the column-wise softmax of 

the similarity matrix 𝑆 to obtain 𝑆̿ ∈ ℝ𝑐𝑙𝑒𝑛×𝑞𝑙𝑒𝑛, where the 𝑗-th column of 𝑆̿, i.e. 
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𝑆:𝚥
̿ ∈ ℝ𝑐𝑙𝑒𝑛, indicating the importance of each context token to the 𝑗-th question 

token. Then the Q2C attention output 𝐵 is generated by: 

𝐵 = 𝑆̅𝑆̿𝑇 𝐶 ∈ ℝ𝑐𝑙𝑒𝑛×2ℎ (3. 15) 

Finally, the context hidden states 𝐶, the C2Q attention output 𝐴 and the Q2C 

attention output 𝐵  is combined to generate the output of the bidirectional 

attention flow layer: 

𝐺 = [𝐶; 𝐴; 𝐶 ∘ 𝐴; 𝐶 ∘ 𝐵] ∈ ℝ𝑐𝑙𝑒𝑛×8ℎ (3. 16) 

Modelling layer 

The modelling layer uses a two-layer bidirectional LSTM to capture the 

dependencies between context tokens weighted by the question attentions 

and question tokens weighted by the context attentions. The structure is similar 

to that of the encoder layer, and the difference is the context hidden states are 

no longer independent with question hidden states. The hidden size in the 

modelling layer is set to ℎ and the modelling layer output is calculated by:  

𝑀 = BiLSTM(𝐺) ∈ ℝ𝑐𝑙𝑒𝑛×2ℎ (3. 17) 

Output layer 

To extract the answer from the context, I need to locate the relative answer 

position, which is obtained by generating distributions across context tokens 

for the answer start token and the answer end token separately. The output 

layer produces the probabilities of the start token and end token by 

𝑝𝑠𝑡𝑎𝑟𝑡 = Softmax(𝑊𝑠𝑡𝑎𝑟𝑡[𝐺; 𝑀]) ∈ ℝ𝑐𝑙𝑒𝑛 (3. 18) 

𝑝𝑒𝑛𝑑 = Softmax(𝑊𝑒𝑛𝑑 𝐺; 𝑀 ) ∈ ℝ𝑐𝑙𝑒𝑛 (3. 19) 

where 𝑀 ∈ ℝ𝑐𝑙𝑒𝑛×2ℎ is the output from another bidirectional LSTM module. 

The model is trained to minimise the sum of the cross-entropy loss for the 

answer start and end indices: 

𝐿𝑜𝑠𝑠 = CrossEntropy(𝑝𝑠𝑡𝑎𝑟𝑡, 𝑦𝑠𝑡𝑎𝑟𝑡) + CrossEntropy(𝑝𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑) 



123 
 

=
−1

𝑐𝑙𝑒𝑛

𝑦𝑠𝑡𝑎𝑟𝑡 log(𝑝𝑠𝑡𝑎𝑟𝑡) + (1 − 𝑦𝑠𝑡𝑎𝑟𝑡) log(1 − 𝑝𝑠𝑡𝑎𝑟𝑡)
+𝑦𝑒𝑛𝑑 log(𝑝𝑒𝑛𝑑) + (1 − 𝑦𝑒𝑛𝑑) log(1 − 𝑝𝑒𝑛𝑑)]

𝑐𝑙𝑒𝑛

𝑖=1

(3. 20) 

where 𝑦𝑠𝑡𝑎𝑟𝑡, 𝑦𝑒𝑛𝑑 ∈ ℝ𝑐𝑙𝑒𝑛 are the one-hot vectors indicating the true positions of 

answer start token and answer end token. For evaluation, I obtain the answer 

start index idx𝑠𝑡𝑎𝑟𝑡 and the answer end index idx𝑒𝑛𝑑  from the pairwise elements 

in (𝑝𝑖,𝑠𝑡𝑎𝑟𝑡 , 𝑝𝑖,𝑒𝑛𝑑 ) which has the maximum joint probability 𝑝𝑖,𝑠𝑡𝑎𝑟𝑡 × 𝑝𝑖,𝑒𝑛𝑑 , 𝑖 =

1, … , 𝑐𝑙𝑒𝑛 , subject to the constraints idx𝑠𝑡𝑎𝑟𝑡 < idx𝑒𝑛𝑑  and idx𝑒𝑛𝑑 − idx𝑠𝑡𝑎𝑟𝑡 < 

maximum answer length. I then convert idx𝑠𝑡𝑎𝑟𝑡 and idx𝑒𝑛𝑑  back to the actual 

text tokens and compare it with the true answer text. The calculation details of 

the evaluation metrics are described in Section 3.3.2.4. 

3.3.2.2 QANet 

QANet (Yu et al., 2018) is another classical question answering model which 

has a similar structure to BiDAF but replaces the recurrent modules (LSTM 

blocks) by the depthwise separable convolution (Kaiser et al., 2017) and self-

attention mechanism (Vaswani et al., 2017). The motivation to remove 

recurrent blocks is to speed up the training process and provide the possibility 

to inject more attention modules. From the architecture demonstrated in Figure 

3.10, the input embedding layer, attention flow layer and output layer are same 

as that of BiDAF, while the embedding encoder layer and modelling encoder 

layer are different which are described in greater detail below.  

The main elements in the embedding encoder layer and modelling encoder 

layer are the stacked encoder blocks which consist of repeated separable 

depthwise convolution layers, a self-attention layer and a feedforward network 

followed with layer normalisation each (see the blue block in the right top of 

Figure 3.10). The positional encoding input, multi-head self-attention and 

feedforward network are same as described in the transformer architecture 

(see Section 2.3.4.1).   
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Figure 3.10: The architecture of QANet model. 

The depthwise separable convolution is proposed to reduce the number of 

operations for more efficient training (Chollet, 2017). I demonstrate the 

advantage of depthwise separable convolution over normal convolution by an 

example displayed in Figure 3.11. The sequence in the example consists of  7 

tokens and each token is represented by a 4-dimensional vector, so the 

sequence is encoded by a matrix ∈ ℝ7×4 . After padding, the normal 

convolution uses two filters ∈ ℝ3×6 to generate a new representation matrix ∈

ℝ7×2  for the sequence, which involves 3 × 6 × (9 − 3 + 1) × 2 = 252 

multiplications. In the depthwise separate convolution, the padded input matrix 
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is first passed to the depthwise convolution, using four separate filters ∈ ℝ3×1 

to move vertically through the matrix and generate an intermediate 

representation matrix ∈ ℝ7×4 ; then to the pointwise convolution, using two 

filters ∈ ℝ3×1  to generate the final output matrix ∈ ℝ7×2  of the whole 

convolution operation. The two separate convolutions involve 4 × 3 × (9 − 3 +

1) + 7 × 4 × 2 = 140 multiplications, which are almost half less than the normal 

convolution. Applying depthwise separable convolution is more beneficial 

when the sequence length, hidden dimension or the number of filters is large. 

In my implementation, for dimension consistency, the depthwise separable 

convolution is also applied as the connection between the input embedding 

layer and embedding encoder layer, and between the context-question 

attention layer and modelling encoder layer, which is not explicitly described 

in the original work of QANet (Yu et al., 2018). 

 

Figure 3.11: A comparison of the normal convolution and depthwise separable 

convolution which includes the depthwise convolution and pointwise convolution. 

Another difference between QANet and BiDAF is how to generate the output 

matrix 𝑀  of the modelling layer from the output 𝐺  of the context-question 
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layer, which will be used to calculate probabilities of answer start token and 

answer end token.  

BiDAF uses two different encoders (LSTMs) to generate separate 𝑀  and 𝑀 , 

while QANet uses three identical encoders (stacked encoder blocks described 

earlier) which share the same weights to generate 𝑀0 , 𝑀1  and 𝑀2 

sequentially:   

𝑀0 = ModelEncoder(𝐺) (3. 21) 

𝑀1 = ModelEncoder 𝑀0 (3. 22) 

𝑀2 = ModelEncoder 𝑀1 (3. 23) 

Then the probabilities of the answer start tokenand answer end token from the 

output layer are computed by 

𝑝𝑠𝑡𝑎𝑟𝑡 = Softmax(𝑊𝑠𝑡𝑎𝑟𝑡 𝑀0; 𝑀1 ) (3. 24) 

𝑝𝑒𝑛𝑑 = Softmax(𝑊𝑒𝑛𝑑 𝑀0; 𝑀2 (3. 25) 

The training loss calculation and evaluation methods from these probabilities 

are same as that of BiDAF (see Section 3.3.2.1). 

3.3.2.3 Fine-tuning BERT 

Transformer models like BERT (Devlin et al., 2018) or DistilBERT (Sanh et al., 

2019) can be also trained for question answering tasks. As Figure 3.12 shows, 

words in each context-question pair are concatenated, tokenised by 

WordPiece (Wu et al., 2016) and then encoded into embeddings as input, 

where ‘[CLS]’ refers to the conventional classification token and ‘[SEP]’ 

represents the segmentation of the context and question sequences. 

BERT/DistilBERT combined with a linear layer is then fine-tuned to generate 

log probabilities for each token, and the indexes of answer tokens are inferred 

from the maximum joint probabilities (𝑝𝑠𝑡𝑎𝑟𝑡*𝑝𝑒𝑛𝑑), subject to idx𝑠𝑡𝑎𝑟𝑡 < idx𝑒𝑛𝑑  and 

idx𝑒𝑛𝑑 − idx𝑠𝑡𝑎𝑟𝑡 < maximum answer length. For pre-trained modules, I explore 

similar modules as described in Section 3.3.1, including DistilBERT-Base 
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(Sanh et al., 2019), BERT-base (Devlin et al., 2018), BioBERT-Base (Lee et 

al., 2019), PubMedBERT-Abs, and PubMedBERT-Abs-Full (Gu et al., 2020). 

 

Figure 3.12: Fine-tuning BERT/DistilBERT with a linear layer for question answering. 

‘E’ and ‘P’ refers to the embedding and probability of each token in the sequence, 

respectively. 

3.3.2.4 Evaluation Metrics 

Metrics for factoid-type dataset 

For the MND dataset and Psycho-CIPN-factoid dataset which have only one 

answer for each question, i.e. factoid-type datasets, the performance of a QA 

model is assessed by the Exact Match (EM) score and F1 score. For each 

context-question record, EM is marked as 1 if the predicted answer string is 

exactly same as the true answer string; otherwise 0. To calculate F1 score, I 

first compute the individual precision and recall for each record by: 

𝑝𝑖
factoid =

number of predicted tokens which belong to the true tokens 

number of predicted tokens
(3. 26) 

𝑟𝑖
factoid =

number of  predicted tokens which belong to the true tokens 

number of  true tokens
(3. 27) 

For example, in one record, if the true answer is "timed light therapy", and the 

predicted answer from the model is "light therapy", then the precision score is 
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2/2 = 100% (because the predicted answer tokens "light" and "therapy" all 

belong to the true answer tokens), and the recall is 2/3 = 66.7% (because the 

model predicts two tokens out of the true answer tokens). Then the individual 

F1 score is the harmonic mean of precision and recall: 𝐹1𝑖
factoid =

2 × 𝑝𝑖
factoid × 𝑟𝑖

factoid (𝑝𝑖
factoid + 𝑟𝑖

factoid). The overall EM and F1 scores are then 

obtained by averaging all individual EM and F1 scores across the entire 

evaluation set. 

Metrics for list-type dataset 

For the Psycho-CIPN-list dataset, each sub-record is learned to generate 

fixed-number answer candidates, which are then concatenated into an answer 

list for the parent record. A threshold is used to filter answer candidates in the 

list: candidates with the joint probabilities higher than the threshold form the 

final answer list for the parent record. Although the training process is 

conducted on the sub-records, the evaluation should be performed on the 

parent record. 

As the parent record may have more than one answer candidate and each 

candidate may consist of several tokens, I first calculate precision and recall 

for every pair of true and predicted answer candidates: 

𝑝𝑖
list =

1

𝑇𝐾
𝑝𝑡,𝑘

factoid𝐾

𝑘=1

𝑇

𝑡=1
(3. 28) 

𝑟𝑖
list =

1

𝑇𝐾
𝑟𝑡,𝑘

factoid𝐾

𝑘=1

𝑇

𝑡=1
(3. 29) 

where 𝑇  is the number of true answer candidates, 𝐾  is the number of 

predicted answer candidates; 𝑝𝑡,𝑘
factoid (𝑟𝑡,𝑘

factoid) refers to the precision (recall) of 

the 𝑡-th candidate in the true answer list and the 𝑘-th candidate in the predicted 

answer list, as how the precision (recall) for each factoid-type record is 

calculated. Then F1 score of the 𝑖 -th record is 𝐹1𝑖
list =

2 × 𝑝𝑖
list × 𝑟𝑖

list (𝑝𝑖
list + 𝑟𝑖

list).  For example, in one record, the true answer 

candidates are [“isolation rearing”, “DNA dopamine aptamer”, “clozapine”] and 
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the predicted answer candidates are [“clozapine”, “dopamine aptamer”]. After 

calculating the precision and recall of each pairwise candidates (Table 3.2), 

the precision of this record is (1+2/2)/6 = 33%, and recall is (1+2/3)/6 = 28%, 

so the F1 score is 2*33%*28%/(33%+28%) = 30%. 

          Pred 
True 

clozapine 
dopamine,  
aptamer 

isolation, 
rearing 

p = 0 
r = 0 

p = 0 
r = 0 

DNA, 
dopamine, 
aptamer 

p = 0 
r = 0 

p = 2/2 
r = 2/3 

clozapine 
p = 1 
r = 1 

p = 0 
r = 0 

Table 3.2: An example of precision and recall calculation for each pair of true and 

predicted answer candidates in one list-type record with multiple answer candidates. 

The overall F1 score is then obtained by averaging all the individual F1 scores 

across the evaluation set. 

3.4 Experiments 

Processed datasets are available in the Intervention/Induction Identification by 

Question Answering repository (osf.io/wr4xa) and codes of experiments are 

available at github.com/qianyingw/bioqa. 

3.4.1 Experiments of Sentence Retrieval 

I apply three sentence retrieval methods for the overall 1,225 Psycho-CIPN 

records (pre-processed Psycho-CIPN-list dataset before splitting into sub-

records) and 796 factoid-type records. For TF-IDF and BM25 methods, stop 

words and punctuations are removed, and tokenisation is implemented via 

scispaCy (Neumann et al., 2019). SBERT uses WordPiece tokenisation (Wu 

et al., 2016) like most transformer models. Sentence retrieval and ranking are 

implemented using scikit-learn (Pedregosa et al., 2011), Gensim (Rehurek and 

Sojka, 2010) and Sentence-Transformers (Reimers and Gurevych, 2019) for 

three retrieval methods respectively. As a default configuration, I use unigram 
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features in TF-IDF and ‘DistilBERT-NLI-STSb’ for the pre-trained weights in 

SBERT. 

I explore the effect of number of sentences on the strict mean match ratio 

(sMMR) and strict mean average precision (sMAP) among three retrieval 

methods. For the overall 1,225 Psycho-CIPN records, around 65% of 

passages concatenated from the top 5 relevant sentences contain all answer 

candidates, and achieving 90% of the strict mean match ratio requires over 30 

sentences to be extracted. For the 796 factoid records, around 75% of 

passages concatenated from the top 5 relevant sentences contain all answer 

candidates and achieving 90% of the strict mean match ratio requires over 20 

sentences to be extracted. In the overall dataset, SBERT shows slightly better 

performance than TF-IDF and BM25, with an average 1.8% and 2.8% 

improvement respectively; while in the factoid dataset, the improvements are 

less obvious (2.1% and 0.9% respectively), as demonstrated in Figure 3.13 

and Appendix Table 10-11. The strict mean average precision shows a 

decreasing trend when the number of extracted sentences increases, for all 

three retrieval methods in two datasets. This is because compared to the 

increased relevance of answers included, the number of sentences retrieved 

has a larger impact on the average precisions. SBERT outperforms other two 

methods with strict mean average precision improved by between 2% and 7%. 
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Figure 3.13: Effect of number of sentences extracted on strict mean match ratio 

(sMMR) and strict mean average precision (sMAP) for three sentence retrieval 

methods. Charts on the left are from the Psycho-CIPN-factoid dataset; charts on the 

right are from the overall Psycho-CIPN dataset (Psycho-CIPN-list dataset before 

splitting into sub-records). 

I also explore the effect of n-grams in TF-IDF and the effect of pre-trained 

modules in SBERT, as shown in Table 3.3. TF-IDF with unigram performs 

better than that with bigram (2.4% improvement of strict mean match ratio) or 

its combination with bigram (0.6% improvement). For SBERT method, different 

pre-trained modules do not show much difference,  but ‘DistilBERT-NLI-STSb’ 

gives slightly better scores and also spends at least twice less time than other 

modules. Therefore, I use SBERT with ‘DistilBERT-NLI-STSb’ as the final 

choice for the retrieval module to extract sentences and construct the input of 

the next question answering stage. For the Psycho-CIPN-factoid dataset, I use 

the passages concatenated from the top 20 sentences retrieved from the full 
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texts, with sMMR of 91.5%; while for the Psycho-CIPN-list dataset, I use the 

passages are concatenated from the top 30 sentences, with sMMR of 90.7%. 

Method Setting sMMR rMMR sMAP rMAP 

TF-IDF 

Unigram 88.7 91.5 36.3 46.8 

Bigram 86.3 89.5 33.6 42.9 

Uni- & Bi-gram 88.1 91.2 35.6 45.9 

SBERT 

DistilBERT-NLI-STSb 90.7 93.4 40.0 51.6 

DistilBERT-Marco 90.0 92.7 41.1 53.7 

BERT-Base 90.1 93.0 41.5 54.4 

BioBERT 89.4 92.5 43.2 55.6 

PubMedBERT-Abs 89.1 91.7 37.9 50.0 

PubMedBERT-Abs-Full 87.7 91.0 38.3 50.5 

Table 3.3: Effect of n-grams for TF-IDF method and pre-trained modules for SBERT 

on sentence retrieval performance. sMMR (rMMR) refers to strict (ratio) mean match 

ratio, and sMAP (rMAP) refers to strict (ratio) mean average precision. Here sMMR 

is the most important metric as it directly indicates whether the new passage 

contains the exact answer tokens. 

3.4.2 Experiments of Question Answering Models 

For all three models (BiDAF, QANet and fine-tuning BERT), parameters are 

trained to minimise the sum of the cross-entropy loss of answer start and 

answer end tokens using AdamW algorithm (Loshchilov and Hutter, 2017). I 

apply gradient clipping with the threshold norm 0.1 to rescale gradients and 

use gradient accumulation every 4 mini-batches to reduce memory 

consumption. The warm-up fraction in the slanted triangular learning rate 

scheduler (Howard and Ruder, 2018) is set to 0.1. Dropout rate is set to 0.1 

for all models. The maximum number of tokens in an answer string is 15. All 

three datasets (MND, Psycho-CIPN-factoid, and Psycho-CIPN-list) are split 

into train (80%), validation (10%) and test (10%) set separately. Scores from 

the epoch with the minimum validation loss are recorded for comparison. 
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3.4.2.1 Experiments of BiDAF 

For both two factoid datasets (MND and Psycho-CIPN-factoid), batch size is 

set to 32. Models are trained for 20 epochs. I explore the threshold learning 

rate in the slanted triangular scheduler and set it to 1e-3 in the end. The 

similarity matrix in the attention flow layer is initialised using Kaiming 

initialisation (He et al., 2015). For the Psycho-CIPN-list dataset, I set the 

maximum number of answers extracted from each sub-records to 5 and the 

threshold learning rate to 1e-4. Models are trained for 40 epochs. I tune the 

threshold for filtering answer candidates and use 0.1 as the final choice which 

yields the highest F1 score of 13.9%, as demonstrated in Figure 3.14. 

 

Figure 3.14: Validation performance of BiDAF model with different answer 

thresholds on the preclinical Psycho-CIPN-list dataset. 

With other configurations unchanged, I tune the universal hidden dimension in 

the model among {32, 64, 128, 256, 512} and the validation performance are 

reported in Table 3.4. I do not explore a larger dimension because of the over-

fitting issue. The BiDAF model achieves good performance on MND data, with 

the highest exact match around 60% and F1 around 80%. When the hidden 

dimension increases from 64 to 512, the validation F1 changes by between 

2% and 6%. For the Psycho-CIPN-factoid dataset, the best performance is 

achieved when the hidden dimension is 512, with F1 around 40%. Models 
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achieve poor performance on the Psycho-CIPN-list data, with F1 of only 13%, 

and the effect of the hidden dimension is trivial when the dimension changes 

from 128 to 512, with the fluctuation of F1 within 2%. 

Dataset Dimension EM F1 Recall Precision 

MND 

32 35.2 59.8 61.5 71.5 

64 58.8 76.6 76.8 82.6 

128 56.8 76.1 75.5 84.7 

256 61.3 79.0 79.6 85.0 

512 54.8 76.9 78.9 85.0 

Psycho-CIPN 

-factoid 

32 26.6 27.2 27.0 27.8 

64 31.6 32.6 33.3 33.1 

128 38.0 38.0 38.0 38.0 

256 39.2 39.2 39.2 39.2 

512 41.8 41.8 41.8 41.8 

Psycho-CIPN 

-list 

32* -- 5.9 7.3 5.4 

64* -- 7.6 10.1 6.5 

128 -- 12.0 14.2 11.1 

256 -- 13.8 16.1 12.7 

512 -- 12.4 14.5 11.5 

Table 3.4: Validation performance of BiDAF model with different hidden dimensions 

on the clinical MND dataset and preclinical Psycho-CIPN-factoid/list dataset. * For 

the Psycho-CIPN-list dataset, I increase the threshold learning rate to 1e-3 when the 

hidden dimension equals 32 or 64, because models with learning rate 1e-4 do not 

converge after 40 epochs. 

3.4.2.2 Experiments of QANet 

I use the same setting as described in the original QANet model (Yu et al., 

2018): in the embedding encoder layer, the number of separable convolution 

layers is 4, filter size is 7 and the number of blocks in the encoder is 1; in the 

modelling encoder layer, the number of separable convolution layers is 2, filter 

size is 5 and number of blocks in the encoder is 7. Models are trained for 20 

epochs. The similarity matrix in the attention flow layer is initialised using 
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Kaiming initialisation (He et al., 2015) with the values of weights 𝑊  following 

a normal distribution 𝑊 ~𝑁[0, 2

ℎ
]. I try different threshold learning rates in the 

slanted triangular scheduler and set the value to 1e-4 for MND and Psycho-

CIPN-list data, and 1e-3 for Psycho-CIPN-factoid data. I also explore different 

maximum context length (number of tokens in the context) and set the value 

to 512 for MND and 768 for Psycho-CIPN data. Batch size is set to 16. For 

Psycho-CIPN-list dataset, the number of answers extracted from each sub-

records is 5. I tune the threshold for filtering answer candidates and value 0.13 

achieves the highest F1 score of 14.8%, as demonstrated in Figure 3.15. 

 

Figure 3.15: Validation performance of QANet model with different answer threshold 

on the Psycho-CIPN-list dataset. 

I tune the number of encoder blocks in the model encoder layer and the 

performance is reported in Table 3.5. For MND data, the highest F1 (79.9%) 

is achieved by 7 blocks in the model encoder; while for Psycho-CIPN-factoid 

data, the highest F1 (45.6%) is achieved by 5 blocks. The deficiency in the 

performance of models with a small number of blocks is larger in Psycho-

CIPN-factoid data than that in MND data, with 6% and 12% reduction of F1 

respectively. However, for Psycho-CIPN-list data, the model using one block 

in the model encoder yields the best performance. Compared to BiDAF (Table 
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3.4), the validation F1 is slightly improved by 0.9%, 3.8% and 1% for MND, 

Psycho-CIPN-factoid and Psycho-CIPN-list datasets respectively. 

Dataset No. blocks EM F1 Recall Precision 

MND 

7 65.8 79.9 83.2 84.3 

5 62.8 78.6 84.3 81.5 

3 62.3 79.2 84.0 83.8 

1 59.3 75.8 80.2 80.9 

Psycho-CIPN 

-factoid 

7 44.3 44.5 45.6 44.4 

5 45.6 45.6 45.6 45.6 

3 31.6 31.6 31.6 31.6 

1 32.9 32.9 32.9 32.9 

Psycho-CIPN 

-list 

7 -- 12.3 15.7 10.7 

5 -- 14.1 17.2 12.6 

3 -- 14.1 18.1 12.2 

1 -- 14.8 18.2 13.3 

Table 3.5: Validation performance of QANet model with different number of blocks in 

the model encoder layer on the clinical MND dataset and preclinical Psycho-CIPN-

factoid/list dataset. 

3.4.2.3 Experiments of Fine-tuning BERT 

For all three datasets, bath size is set to 32 and the threshold learning rate in 

the slanted triangular scheduler is set to 5e-5. For the MND dataset, models 

are trained for 20 epochs for all pre-trained modules; for Psycho-CIPN-

factoid/list datasets, models are trained for 30 epochs for the DistilBERT-Base 

and BERT-Base modules, 20 epochs for BioBERT-Base, and 40 epochs for 

the PubMedBERT-Abs and PubMedBERT-Abs-Full modules. These are 

determined based on the learning curves from some initial experiments. For 

the Psycho-CIPN-list dataset, I set the number of answers extracted from each 

sub-records to 5. I also explore extracting 3 or 7 answers, but the changes in 

performance are negligible. I tune the threshold for filtering answer candidates 
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in the BERT/DistilBERT model and use 0.32 as the final value as it achieves 

the highest F1 score of 30.8%, as demonstrated in Figure 3.16.  

Table 3.6 demonstrates the validation performance of fine-tuning 

BERT/DistilBERT with different pre-trained modules on three datasets. For the 

MND data, all five modules achieve good performance with F1 over 84%, and 

BioBERT and PubMedBERT pre-trained on abstracts give the highest F1 

score of 88%. For the Psycho-CIPN-factoid data, fine-tuning PubMedBERT 

pre-trained only on the abstracts yields the highest F1 score of 92%, while fine-

tuning the module pre-trained on the combination of abstracts and full texts 

reduces the validation F1 by 3%. The other three pre-trained modules harm 

the performance severely, where F1 declines by around 20%, particularly for 

that of BioBERT, which has the poorest F1 of 66%. The performance on the 

Psycho-CIPN-list dataset is much lower than that of factoid-type datasets, as 

it is more difficult to filter the accurate number of answer candidates and extract 

strings. The best performances are achieved by the two PubMedBERT 

modules, with F1 around 44%. The performance of BioBERT is slightly lower 

(1.5% reduction), while that of DistilBERT and BERT-Base are 15% lower, 

compared to the best module. 

 

Figure 3.16: Validation performance of DistilBERT model with different answer 

thresholds on the Psycho-CIPN-list dataset. 
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Dataset Pre-trained module EM F1 Recall Precision 

MND 

DistilBERT-Base 76.9 87.4 88.1 89.7 

BERT-Base 73.9 84.1 85.0 86.0 

BioBERT-Base 78.4 88.0 88.0 91.0 

PubMedBERT-Abs 78.4 88.0 88.4 90.3 

PubMedBERT-Abs-Full 76.4 86.6 88.3 88.3 

Psycho-CIPN 

-factoid 

DistilBERT-Base 68.4 68.4 68.4 68.4 

BERT-Base 70.9 70.9 70.9 70.9 

BioBERT-Base 65.8 65.8 65.8 65.8 

PubMedBERT-Abs 91.1 92.4 92.8 92.8 

PubMedBERT-Abs-Full 89.9 89.9 89.9 89.9 

Psycho-CIPN 

-list 

DistilBERT-Base -- 30.8 32.9 29.8 

BERT-Base -- 28.9 30.8 28.0 

BioBERT-Base -- 42.9 44.6 42.1 

PubMedBERT-Abs -- 44.4 46.5 43.3 

PubMedBERT-Abs-Full -- 43.7 45.6 42.9 

Table 3.6: Performance of fine-tuning BERT/DistilBERT with different pre-trained 

modules on the clinical MND dataset and preclinical Psycho-CIPN-factoid/list 

dataset.  
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3.4.3 Overall Performance 

Table 3.7 demonstrates the overall validation performance of BiDAF, QANet 

and BERT with the corresponding optimal settings on the MND and Psycho-

CIPN-factoid/list datasets. Compared to BiDAF and QANet, BERT with the 

optimal pre-trained module improves the performance significantly, particularly 

for the preclinical datasets, by 50% for the factoid-type data and 30% for the 

list-type data. Fine-tuning BERT also requires less parameter tuning and 

achieves lower loss easily without overfitting, as shown in the learning curves 

in Figure 3.17.    

Dataset Model EM F1 Recall Precision 

MND 

BiDAF 61.3 79.0 79.6 85.0 

QANet 65.8 79.9 83.2 84.3 

BioBERT-Base 78.4 88.0 88.0 91.0 

Psycho-CIPN 

-factoid 

BiDAF 41.8 41.8 41.8 41.8 

QANet 45.6 45.6 45.6 45.6 

PubMedBERT-Abs 91.1 92.4 92.8 92.8 

Psycho-CIPN 

-list 

BiDAF -- 13.9 16.7 12.5 

QANet -- 14.8 18.2 13.3 

PubMedBERT-Abs -- 44.4 46.5 43.3 

Table 3.7: Overall validation performance of BiDAF, QANet and BERT with their 

optimal settings on the clinical MND, preclinical Psycho-CIPN-factoid/list datasets. 
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Figure 3.17: Learning curves of BiDAF, QANet and BERT models with their optimal 

settings on three datasets. Solid and dash lines represent training curves and 

validation curves separately. 

3.5 Discussion 

3.5.1 Streamlit Interface 

For a potential application, I develop an answer extraction module for 

identifying intervention and method of model induction in preclinical abstracts 

or full texts. In real-world cases, we cannot know how many interventions or 
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methods of induction are described in an abstract or a full-text paper, so 

models developed for MND and Psycho-CIPN-factoid datasets aiming to 

extract only one answer are not suitable. Hence, I build the answer extraction 

module using the best model trained for the Psycho-CIPN-list dataset, which 

can extract a list of answer candidates (test performance: 48.3% of F1, 51.6% 

of recall, 46.6% of precision; see validation performance in Table 3.7). If the 

input text is an abstract or a paragraph with abstract length, answers can be 

extracted by the question answering model directly, as demonstrated in the 

interface developed via Streamlit (Figure 3.18). If the input text is a full-text 

paper converted from PDF, the module first cleans the text including removing 

references and sections before ‘Introduction’, lines with 

digits/punctuations/line character only, and non-ASCII characters. Users are 

required to input the title for the sentence retrieval function constructed on 

SBERT with the ‘DistilBERT-NLI-STSb’ pre-trained module. 30 sentences 

extracted from the cleaned text are then concatenated as the final context for 

the question answering model. The maximum number of answer candidates 

are determined by users (5 candidates in default), and candidates consist of 

digits, punctuations and stop words only are removed from the final answer 

list. Relevant contexts for intervention and method of induction are also 

displayed to provide clues for users. 
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Figure 3.18: A demonstration Streamlit interface for intervention/induction 

identification in preclinical text. 

3.5.2 Error Analysis 

I randomly select 10 preclinical publications to inspect the answer extraction 

function. For each publication, I obtain the predicted answer candidates in two 

ways: 1) upload only abstract, and obtain 10 candidates from the abstract; 2) 

upload the full text converted from PDF, input title, get relevant sentences and 

obtain 10 candidates from the text concatenated from those sentences. I 

compare the two candidate lists and find that for some records, answers 

extracted from the abstract are more accurate than answers extracted from 

the ‘shortened’ full text; while for other records, vice versa. It may depend on 

whether the abstract mentions intervention or induction, and whether the 

sentence retrieval module can detect the true relevant sentences. The module 

sometimes ranks sentences from the introduction and discussion sections 
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higher than sentences from the method or result sections, which are unlikely 

to be the best answer positions and may affect the accuracy of the answer 

extraction.  

The main error is the module does not handle well with the boundary of answer 

strings. Some of the difficulties are from the punctuations in some chemical 

names. For example, the true interventions of a publication is ‘WIN 55,212-2’ 

and ‘minocycline’, while the top 5 answer candidates predicted from my 

module are {'WIN', 'WIN 55, 212', 'WIN 55, 212-', '55, 212-2', '212-2', 'WIN 55', 

', 212-2', '-2', 'in the present', 'in the present study'}. It does not identify the full 

string of ‘WIN 55,212-2’, and ranks several pieces of the string as the top 

candidates. This may make other potential candidates do not appear at the top 

of the list. Another error is the module does not capture the complete name of 

abbreviations. For instance, a method of model induction is ‘Stable Tubule 

Only Peptide’ which is abbreviated as ‘STOP’. 5 out of 10 answer candidates 

contain ‘STOP’ but none of the candidates contains the full name. For users 

who do not check context may not know the meaning of the abbreviation 

defined by authors. 

3.5.3 Limitation and Future Work 

The work has several limitations. First, the preclinical dataset is limited to two 

diseases (psychosis disorder and chemotherapy-induced peripheral 

neuropathy). Although there are 518 unique interventions and 79 unique 

induction methods in the overall 1,225 records, the optimal models, 

experiments and their performance are still task-dependent, and may not 

generalise enough to be applied to other diseases. Second, I use the first 

answer match in the context concatenated from retrieved sentences to obtain 

the plausible answer position, which induces extra noises. In some cases, the 

module does extract the true answer string, but most sentences in the context 

are from the introduction and discussion sections, which may not be the most 

appropriate places. Last, in the sentence retrieval module, I use the 

combination of question and title to extract relevant sentences, while I believe 

there should be better retrieval strategies. For example, using only biomedical 
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entities in the title to retrieve sentences would change the performance. Similar 

to the project of risk of bias assessment, all texts are converted from PDFs by 

Xpdf. The datasets do not contain PMIDs or PMCIDs of publications, which 

can be used to search the PubMed XML files to extract the method and result 

sections.  

In future work which aims to extract PICO elements from preclinical 

publications using question answering methods, datasets with more precise 

annotations are necessary. The annotations can be the exact string position in 

the full texts, passages, or complete text snippets/sentences which can be 

located or retrieved easily. For cases where it is difficult to determine the most 

‘appropriate’ position, separate annotation of relevant sentences can be 

provided. This can provide more flexible strategies for information retrieval and 

answer extraction modules. To develop more generalisable modules, datasets 

should also involve a wider range of preclinical studies, include more diverse 

disease models and mechanistic experiments.  

3.6 Summary 

In this chapter, I demonstrate three question answering models for identifying 

intervention and induction measures from clinical abstracts and preclinical full-

text publications, including BiDAF, QANet and fine-tuning BERT with different 

pre-trained weights. For preclinical full texts, to obtain shorter passages, I also 

explore three information retrieval methods (TF-IDF, BM25 and biomedical 

BERT embeddings) to extract relevant sentences, and the best retrieval 

method (biomedical BERT embeddings) require 30 sentences to be extracted 

to contain the answer strings. All three question answering models achieve 

good performance for clinical abstracts focusing on MND disease (F1 around 

80%), while fine-tuning biomedical BERT significantly outperforms BiDAF and 

QANet on preclinical publications focusing on psychosis disorder and 

chemotherapy-induced peripheral neuropathy, for both factoid and list type 

datasets. With some pre-processing and post-processing procedures, the 

question answering module can extract multiple answer candidates for one 
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publication, although the prediction module tends to put string candidates 

containing the same keyword on top of the answer list rather than other 

potential intervention/induction methods. Datasets focusing on a wider range 

of disease or mechanisms, and more granular sentence annotations to locate 

answers are necessary to develop question answering models for PICO 

extraction.  
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Chapter 4 Extracting PICO Elements in 

Preclinical Text: Named Entity 

Recognition 

In the previous chapter, I apply question answering models to extract 

interventions or methods of induction of disease model from clinical abstracts 

and preclinical full texts, which achieves satisfactory performance for records 

with only one answer candidate. The performance of records with multiple 

answer candidates is poor because of the difficulties of predicting the number 

of candidates and handling the span boundary of each candidate properly. In 

most cases, PICO elements are mentioned multiple times throughout an 

abstract or a full-text article, and it is difficult to determine the most appropriate 

or exact position of a candidate. In this scenario, the usability of question 

answering models is limited, and named entity recognition (Manning et al., 

2008) is more appropriate for PICO elements extraction. Named entity 

recognition seeks to classify each word in the text into pre-defined categories 

so adjacent words belonging to the same category can be extracted to 

formulate answer strings and repeated mentions are allowed. In this chapter, 

I annotate preclinical abstracts with PICO mentions and apply named entity 

recognition models to extract PICO elements. 

4.1 Related Work 

While extracting PICO elements from clinical reports is relatively well-explored, 

no method has been developed or evaluated for preclinical animal literature. 

Here I discuss related work of PICO extraction for clinical trials. 

Most of the previous work casts PICO extraction as a sentence classification 

task, which aims to identify sentences containing at least one PICO concept. 

The training datasets are often small-size abstracts annotated by human 

reviewers, or large-size data derived from structured PubMed abstracts which 

contain explicit keywords in subheadings like ‘Patients’, ‘Interventions’ and 
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‘Outcomes’, so sentences that belong to the corresponding sections can be 

annotated automatically (Boudin et al., 2010; Jin and Szolovits, 2018a; Jin and 

Szolovits, 2018b). Some early studies represent sentences by numeric vectors 

based on a series of text features, including sentence position, sentence 

length, number of words, digits, and UMLS (Unified Medical Language 

System) concepts (Bodenreider, 2004), etc. Classification models are then 

trained on the sentence representations to classify PICO sentences, including 

conditional random fields (Chabou and Iglewski, 2018), support vector 

machine, random forest and Naïve Bayes (Boudin et al., 2010). Differently, 

Wallace et al use a collection of free-text PICO summaries from the Cochrane 

Database of Systematic Reviews (www.cochranelibrary.com/cdsr/about-cdsr) 

to automatically derive PICO annotations by checking if each sentence shares 

at least 4 common words with the summary descriptions of a review. Using the 

pseudo labels, they trained logistic regression models assisted by distant 

supervision for PICO sentence classification (Wallace et al., 2016). More 

recent studies have used recent neural network models for PICO sentence 

classification such as the bidirectional LSTM (Jin and Szolovits, 2018a) with 

some variations (Jin and Szolovits, 2018b) and texts are mainly represented 

by word vectors, which requires less feature engineering. 

More precise PICO phrases extraction is formulated as a named-entity 

recognition task, and LSTM or BERT models with a conditional random field 

layer are common approaches (Brockmeier et al., 2019; Nye et al., 2018). The 

training datasets involved contain fine-grained PICO span annotations 

(DeYoung et al., 2020). In a less common approach, Zhang et al trains a graph 

learning model (Perozzi et al., 2014) on the UMLS concepts to obtain graph 

representations for PICO entities, which achieves small marginal 

improvements for disease identification in sentences describing population 

and outcomes (Zhang et al., 2020). 

There are also some work aiming to predict the result of a clinical treatment 

given partial of PICO elements (Lehman et al., 2019) and additional trial 

proposal (Jin et al., 2020), or extract relations among PICO entities (Nye et al., 
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2020), which are beyond the discussion here due to the limited format of 

preclinical datasets I can obtain. 

4.2 Dataset 

2,207,654 articles from PubMed Central Open Access Subset database 

(www.ncbi.nlm.nih.gov/pmc/tools/openftlist) published from 2010 to 2019 are 

downloaded, and a citation screening filter is used to identify in vivo research 

from title and abstract (developed by EPPI-Centre, UCL, (Liao et al., 2018)). I 

choose an inclusion cut-point with a precision of 99% and obtain 50,653 

abstracts describing in vivo animal experiments. I randomly select 400 

abstracts for the annotation task and another 10,000 for the self-training 

experiments. 

I use the online platform tagtog (https://www.tagtog.net) for PICO phrases 

annotation. In addition to Intervention, Comparator and Outcome, I divide the 

Population category into three sub-entities: the Species, the Strain, and the 

method of Induction of the disease model. After the initial annotation process 

and discussion with a senior clinician, I propose with some general rules for 

the annotation task: 

 Only PICO spans describing in vivo experiments are annotated, i.e. 
interventions or treatments should be conducted within an entire, living 
organism. Interventions applied to tissues derived from an animal or in 
cell culture (ex vivo or in vitro experiments) should not be annotated; 
 

 Texts describing the introduction, conclusion or objectives should not 
be annotated in most cases because these might relate to work other 
than that described in the publication. They should be annotated only 
when the remaining text lacks a clear description of the method, or 
where the text gives the meaning of abbreviations; 
 

 The first occurrence of abbreviation should be annotated together with 
the parent text. For example, "vascular endothelial growth factor 
(VEGF)" should be tagged as one entity for its first occurrence; in the 
remainder of the text, "VEGF" or "vascular endothelial growth factor" 
could be annotated separately if they are not mentioned together; 
 

 Uninformative phrases like "control" or "wild-type" should not be 
annotated; 
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 Any extra punctuations between phrases (such as commas) should not 

be annotated. However, if the entity appears only one time in the text, 
punctuations can be included in a long span of text which consists of 
several phrases; 
 

 Entity spans cannot be overlapped. Annotations in tagtog are output in 
EntitiesTsv format which resembles the tsv output in the Stanford NER 
tool (Finkel et al., 2005), and this does not support overlapped entities. 
 

Figure 4.1 demonstrates an example of annotated abstract (PMC3541238) 

using tagtog. After excluding the title, introduction sentence, first part of the 

objective sentence and the conclusion sentence which do not explicitly 

describe experimental elements, PICO entities are extracted from the rest of 

the sentences: 1) Species: mice; 2) Strain: C57BL/6; 3) Induction: fed normal 

chow (NC), fed high-fat diet (HFD); 4) Intervention: aerobic exercise training, 

exercise, treadmill running; 5) Comparator: sedentary; and 6) Outcome: 

protein spots. 
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Figure 4.1: Example of PICO phrases annotation for a preclinical abstract. 

Screenshot from tagtog. 

On average, there are 11 sentences in an abstract, and 5 of them describe 

PICO elements. Among 400 abstracts, 6,837 entities are annotated in total, 

where around 41% of entities belong to outcomes, 24% to interventions, 20% 

to species, 11% to the method of induction of disease, 3% to strain and less 

than 2% belong to comparators, as shown in Table 4.1. Almost all abstracts 

describe outcomes and species, 90% of documents describe interventions, 60% 

describe the method of induction of disease, 30% describe animal strains, and 

16% describe comparators. Each abstract mentions around 7 entities for 

outcomes, 4 entities for interventions, 3 entities for species, 1 entity for the 

method of induction of disease and less than 1 entity for comparator and 

animal strain. 
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Distribution of 

PICO entities  

across  

all abstracts 

Percentage of 

abstracts 

annotated 

with PICO entity 

Avg number. of 

PICO entities 

in each abstract 

Intervention 24.1% 92.5% 4.1 

Comparator 1.8% 16.8% 0.3 

Outcome 40.6% 99.8% 6.9 

Induction 10.6% 64.0% 1.8 

Species 19.6% 98.3% 3.4 

Strain 3.3% 30.5% 0.6 

Total 100% 100% 17.1 

Table 4.1: Statistics of PICO entities in the 400 annotated preclinical abstracts. 

To check the ambiguity of PICO entities, I convert all the 6,873 PICO phrases 

into text embeddings and apply the t-distribution stochastic neighbouring 

embedding (t-SNE) algorithm (Van Der Maaten and Hinton, 2008) to project 

the high-dimensional embeddings into the 2-dimensional space. I use five 

embeddings for phrases conversion: biomedical word2vec (Pyysalo et al., 

2013) and BERT embeddings with four pre-trained modules including 1) 

BERT-Base, the original BERT trained on the combination of BookCorpus, and 

English Wikipedia (Devlin et al., 2018); 2) BioBERT-Base, which trains BERT 

on the combination of BookCorpus, English Wikipedia, PubMed abstracts and 

PubMed Central full-text articles (Lee et al., 2019); 3) PubMedBERT-Abs, 

which trains BERT on PubMed abstracts only, and 4) PubMedBERT-Abs-Full 

on a combination of PubMed abstracts and PubMed Central full-text articles 

(Gu et al., 2020). For word2vec embeddings, each PICO phrase is split into 

words by scispaCy (Neumann et al., 2019) and the phrase embedding is 

obtained by averaging its word embeddings (dimension 200); while for BERT 

embeddings, each PICO phrase is tokenised by WordPiece (Wu et al., 2016), 

and the phrase embeddings are generated by averaging its token embeddings 

(dimension 768). The visualisation of PICO entities by t-SNE is displayed in 

Figure 4.2. The iteration step is 1000 and I compare the scatter charts using 

different perplexity from 2 to 50, and set the final perplexity as 5. For all five 
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representation approaches, points of Species are clearly separated from 

points of other entities. The boundary between points of Intervention and 

Outcome is less clear, especially for embeddings from biomedical word2vec 

and BERT-Base. Points of Induction and Intervention are overlapped, which 

implies the ambiguity of these two PICO types and the difficulties of 

distinguishing those two elements in the following entity recognition task. 
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Figure 4.2: Visualisation of 6,837 PICO phrases represented by vectors using 

biomedical word2vec and BERT embeddings from four pre-trained modules. Axes 

refer to the two most important dimensions selected by the t-SNE algorithm.  
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4.3 Methods 

From the last section, less than 50% of sentences in each abstract contain 

PICO phrases and using the entire abstracts to train an entity recognition 

model is inefficient. Therefore, I decompose the PICO phrases extraction task 

into two subtasks: 1) PICO sentence classification, and 2) PICO entity 

recognition, as the workflow demonstrated in Figure 4.3. The training materials 

of the first task are individual sentences from the annotated abstracts, where 

each sentence is labelled as yes/no if it contains or does not contain any PICO 

phrases. The training materials for the second task are the truncated abstracts 

consisting of only PICO sentences, where non-PICO sentences (sentences do 

not contain any PICO phrases) are removed automatically. For PICO entity 

prediction in the future application, sentences in an individual abstract are 

classified by the best PICO sentence classifier from the first task, and the non-

PICO sentences are then removed automatically based on the sentence 

classification labels. The two tasks are trained independently, which 

guarantees the quality of training samples for the PICO entity recogniser and 

the efficiency of training programs.  

 

Figure 4.3: The workflow of PICO extraction.  
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4.3.1 PICO Sentence Classification 

Text from 400 abstracts are split into 4,247 sentences by scispaCy (Neumann 

et al., 2019) and sentences containing at least one PICO entity are labelled as 

‘yes’ for PICO sentence. Sentences are shuffled and split into training, 

validation and test set (80%/10%/10%). For the sentence-level classification 

task, I fine-tune BERT (Vaswani et al., 2017) with four pre-trained weights 

(BERT-Base, BioBERT-Base, PubMedBERT-Abs and PubMedBERT-Abs-

Full). The validation metrics including F1, recall, precision and specificity are 

same as what has been described in Chapter 2 (see Section 2.3.5).  

4.3.2 PICO Entity Recognition 

Identifying specific PICO phrases from the remaining texts in each abstract is 

a standard named entity recognition (NER) task, and NER models aim to 

assign an entity tag for each word/token. As a PICO phrase may consist of 

several tokens, labelling all those tokens with the same entity tag is 

ambiguous. For example, if the tokens of an intervention phrase are [‘aerobic’, 

‘exercise’, ‘training’] and they are tagged as [‘Intervention’, ‘Intervention’, 

‘Intervention’], we cannot tell if these tokens are three different interventions or 

they are part of one intervention. To solve this, the BIO (Beginning-Inside-

Outside) tagging format (Ramshaw and Marcus, 1995) is proposed where the 

beginning token of an entity phrase is labelled as ‘B-XX’, and the remaining 

tokens of the phrase are labelled as ‘I-XX’ (‘XX’ refers to one unique entity 

type). All other tokens which do not belong to any entities are tagged as ‘O’. In 

the example described above, the entity tags in BIO format are [‘B-Intervention’, 

‘I-Intervention’, ‘I-Intervention’], which clearly indicates the three tokens belong 

to one PICO phrase. This tagging format generates 13 unique tags for 6 PICO 

entities (two tags for each entity type, plus tag ‘O’). 

The following sections describe PICO entity recognition models including 

conditional random field (CRF) (Sutton and McCallum, 2011), the bidirectional 

LSTM with a CRF layer on top (BiLSTM-CRF) (Lample et al., 2016), which is 

a classic NER model, fine-tuning BERT model with CRF/LSTM layer on top, 
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and self-training strategy (van Engelen and Hoos, 2020) which aims to solve 

the data-hungry issue.  

4.3.2.1 CRF, BiLSTM and BiLSTM-CRF 

Conditional random field (CRF) is a discriminative probabilistic model (Sutton 

and McCallum, 2011) which aims to find the optimal path (predicted tag 

sequence) achieving the maximum joint probabilities and learn the transition 

constraints among predicted tags. One example of the transition constraint is: 

if the tag of a word in the sequence is ‘I-Outcome’, the tag of the previous word 

can only be ‘B-Outcome’ or ‘I-Outcome’, and impossible to be ‘I-Intervention’, 

‘O’ or other tags. CRF is supposed to reduce the transition errors among tags 

and has been proved beneficial when it is added on top of other layers (Lample 

et al., 2016). 

Formally, in the scenario of a linear-chain CRF applied in named entity 

recognition, given a text sequence with 𝑇  tokens �⃗� = {𝑥1,  𝑥2, … , 𝑥𝑇 }, the goal 

is to assign an entity tag for each word token, which forms the corresponding 

tag (state) sequence 𝑦 = {𝑦1,  𝑦2, … , 𝑦𝑇 }. We need to build a model to estimate 

the conditional probability  

𝑝(𝑦|𝑥; �⃗�) = 𝑝(𝑦1, … , 𝑦𝑇 |𝑥1, … , 𝑥𝑇 ; �⃗�) (4. 1) 

where 𝑤 ∈ ℝ𝑑  refer to the parameters learned from the training process. 

According to the chain rule of conditional probabilities and the Markov 

assumption (Collins, 2011) - the tag of the token at position 𝑡 only depends on 

the tag of its previous token at position 𝑡-1, the conditional probability can be 

written as 

𝑝(𝑦|�⃗�; 𝑤) = 𝑝(𝑦1, … , 𝑦𝑇 |𝑥1, … , 𝑥𝑇 ; 𝑤) 

= 𝑝(𝑦1|�⃗�; 𝑤)𝑝(𝑦2|𝑦1, �⃗�; 𝑤) … 𝑝(𝑦𝑇 |𝑦1, … , 𝑦𝑇 −1, �⃗�; 𝑤) 

= 𝑝(𝑦𝑡|𝑦1, … , 𝑦𝑡−1, �⃗� ; 𝑤)
𝑇

𝑡=1
 

= 𝑝(𝑦𝑡|𝑦𝑡−1, 𝑥 ; �⃗�)
𝑇

𝑡=1
(4. 2) 



157 
 

The term 𝑝(𝑦𝑡|𝑦𝑡−1, �⃗� ; 𝑤) can be modelled by a log-linear model as 

𝑝(𝑦𝑡|𝑦𝑡−1, 𝑥 ; �⃗�) =
exp �⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡)

∑ exp �⃗� ∙ 𝜙 𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡𝑦𝑡 𝜖Υ

(4. 3) 

where 𝜙 is defined as a feature function constructed by all tokens in the text 

sequence (𝑥1, … , 𝑥𝑇 ), the position of the token being tagged (𝑡), the previous 

tag (𝑦𝑡−1) and the new tag (𝑦𝑡); 𝑦𝑡  is the tag of 𝑡-𝑡ℎ token and can take any value 

in the set Υ of all possible entity tags. Therefore, 

𝑝(𝑦|�⃗�; 𝑤) =
𝑒𝑥𝑝 𝑤 ∙ 𝜙(�⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡)

∑ 𝑒𝑥𝑝 𝑤 ∙ 𝜙 �⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡𝑦𝑡 𝜖Υ

𝑇

𝑡=1
 

=
exp ∑ �⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡)

𝑇
𝑡=1

∏ ∑ 𝑒𝑥𝑝 �⃗� ∙ 𝜙 𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡𝑦𝑡 𝜖Υ
𝑇
𝑡=1

(4. 4) 

We need to find the most likely tag sequence for the given text sequence: 

𝑎𝑟𝑔𝑚𝑎𝑥
𝑦

 𝑝(𝑦|�⃗�; 𝑤) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦1,…,𝑦𝑇

𝑒𝑥𝑝 [∑ 𝑤 ∙ 𝜙(�⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡)
𝑇
𝑡=1 ]

∏ ∑ 𝑒𝑥𝑝 𝑤 ∙ 𝜙 �⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡𝑦𝑡 𝜖Υ
𝑇
𝑡=1

 

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦1,…,𝑦𝑇

𝑒𝑥𝑝 [ 𝑤 ∙ 𝜙(�⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡)
𝑇

𝑡=1
] 

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦1,…,𝑦𝑇

�⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡)
𝑇

𝑡=1
(4. 5) 

The most straightforward solution is to traverse all possible paths to find the 

optimal tag combination which has the maximum joint conditional probability. 

However, if the total number of entity types is 𝐾 (𝐾 = 13 for my dataset) and 

the sequence length is 𝑇 , there are 𝐾𝑇  possible tag combinations, which is 

inefficient and memory-consuming especially when 𝑇  is large. Viterbi 

algorithm is applied to find the optimal path recursively (Forney, 1973), which 

reduces the computing complexity from 𝑂(𝐾𝑇 ) to 𝑂(𝑇𝐾2). Specifically, 𝛿𝑡,𝑦𝑡
 is 

defined as the maximum probability of any tag sequence which ends with tag 

𝑦𝑡 at position 𝑡. Then for sequence with 𝑇  words, 
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𝛿1,𝑦1
= �⃗� ∙ 𝜙(�⃗�, 1, 𝑦0, 𝑦1), 𝑦1 ∈ Υ (4. 6) 

𝛿𝑡,𝑦𝑡
= 𝑚𝑎𝑥

𝑦𝑡−1∈Υ
𝛿𝑡−1,𝑦𝑡−1

+ �⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡) , 𝑡 = 2, … , 𝑇 , 𝑦𝑡 ∈ Υ (4. 7) 

By calculating 𝑦𝑡 forward from the first word (𝑡 = 1) to the final word (𝑡 = 𝑇 ), the 

highest probability can be obtained by 

𝑚𝑎𝑥
𝑦1,…,𝑦𝑇

𝑝(𝑦|𝑥; �⃗�) = 𝑚𝑎𝑥
𝑦1,…,𝑦𝑇

�⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡)
𝑇

𝑡=1
= 𝑚𝑎𝑥(𝛿𝑇 ,𝑦𝑇

) (4. 8) 

and the optimal tag sequence can be obtained by backpointers (Collins, 2011). 

The term 𝑤 ∙ 𝜙(�⃗�, 𝑡, 𝑦𝑡−1, 𝑦𝑡) can be decomposed as  

�⃗� ∙ 𝜙(𝑥, 𝑡, 𝑦𝑡−1, 𝑦𝑡) = 𝑎(𝑦𝑡, 𝑦𝑡−1, 𝑥, 𝑡 ) + 𝑏(𝑦𝑡, 𝑥, 𝑡) (4. 9) 

where 𝑎(𝑦𝑡, 𝑦𝑡−1, �⃗�, 𝑡 ) denotes the transition score of the tag at step 𝑡 switched 

from the previous step 𝑡-1, and 𝑏(𝑦𝑡, �⃗�, 𝑡) represents the emission score of the 

tag at step 𝑡  given the text sequence. In the actual training, parameters 

including the transition matrix 𝐴 ∈ ℝ𝐾×𝐾  between every unique pair of entity 

types are updated to minimise the negative log-likelihood loss function 

𝐿(�⃗�) = −
1

𝑛
𝑙𝑜𝑔 𝑝 𝑦�⃗� 𝑥�⃗�; �⃗�

𝑛

𝑖=1
−

𝜆‖�⃗�‖2

2
(4. 10) 

where 𝜆‖𝑤‖2/2 is the regularisation term to penalise large parameter values.  

The architecture of the CRF model for PICO entity recognition is shown in 

Figure 4.4. Each word in the text sequence �⃗� = {𝑥1,  𝑥2, … , 𝑥𝑇 } is first mapped 

into embeddings 𝑒𝑡={1,…,𝑇 } ∈  ℝ𝑑  by the pre-trained biomedical word vectors 

(Pyysalo et al., 2013), where 𝑑 is the dimension of word vectors. A dropout 

layer is then applied for regularisation, and a linear layer is used to convert the 

dimension of word embedding from 𝑑  to 𝐾  (the output of the linear layer 

corresponds to the emission scores 𝐵 ∈ ℝ𝑇 ×𝐾 ). Finally, the CRF layer is 

applied to learn the transition matrix among each unique pair of tags, and 

update the probability of the 𝑡-𝑡ℎ word belonging to the 𝑘-𝑡ℎ entity, 𝑝𝑡,𝑘 , by 

summarising the emission score and the transition score, where 𝑡 = 1, … , 𝑇  

and 𝑘 = 1, … , 𝐾. The entity with the highest probability is the prediction tag of 
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the token. The architecture of the BiLSTM-CRF model is demonstrated in 

Figure 4.5. The only difference between the BiLSTM-CRF and CRF model is 

the bidirectional LSTM layer before the linear layer, which generates a new 

hidden representation for each token (dimension switched from 𝑑 to 2ℎ, where 

ℎ is the hidden dimension in LSTM). I do not show the architecture of BiLSTM 

model separately because the main components are same to that of BiLSTM-

CRF, but without the CRF layer on top.  

 

Figure 4.4: The architecture of CRF model for PICO entity recognition. 
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Figure 4.5: The architecture of BiLSTM-CRF model for PICO entity recognition. 

4.3.2.2 BERT Models 

Similar to the PICO sentence classification, I fine-tune BERT with different pre-

trained weights for the entity recognition task, using 

BertForTokenClassification module from Hugging Face Transformers library 

(Wolf et al., 2019). I also explore the effect of adding CRF and LSTM layers 

on top of BERT, by the BERT-CRF and BERT-LSTM-CRF models. The 

architecture of the BERT-LSTM-CRF model for PICO entity recognition is 

displayed in Figure 4.6, and the BERT-CRF model just removes the LSTM 

layer. There are some extra pre- and post- processing steps for BERT models 

because of the WordPiece (Wu et al., 2016) tokeniser. Although the input 

sequences are individual words pre-tokenised by sciSpacy (Neumann et al., 

2019), BERT’s tokeniser further splits each word into sub-tokens which do not 

have any tags assigned. To solve this, at the training stage, each sub-token is 

assigned the tag of the word they come from (same as the tag of the first sub-
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token of the word). However, this increases the number of entity instances 

which makes the evaluation results not comparable to the previous CRF or 

LSTM models. For example, an intervention phrase 'aerobic treadmill training' 

is tokenised as ['aero', '##bic', 'tread', '##mill', 'training'] and the corresponding 

tags are ['B-Intervention', 'B-Intervention', 'I-Intervention', 'I-Intervention', 'I-

Intervention'], which is misleading because the tag sequence indicates two 

separate interventions and the performance may be ‘improved’ due to the 

increasing number of instances. To make the evaluations comparable, I record 

the word ids (sub-tokens from the same word share the same word id), and at 

the evaluation stage, the tags of sub-tokens with the same word ids are 

merged as one entity tag so the number of instances is same as that of 

previous models. 

 

Figure 4.6: The architecture of BERT-LSTM-CRF model for PICO entity recognition. 



162 
 

4.3.2.3 Self-Training 

One limitation of this project is the small amount of training data so I explore a 

semi-supervised learning strategy, self-training, which utilises the unlabelled 

corpus to generate pseudo labels for training (Ruder and Plank, 2018). I use 

400 annotated abstracts as gold data, and 10,000 unlabelled abstracts 

randomly selected from 50,653 in vivo animal records as silver data. Non-

PICO sentences are removed from the unlabelled abstracts by the best PICO 

sentence classification model, and the truncated abstracts are used for self-

training. As Figure 4.7 shows, I first use the fine-tuned PICO entity recogniser 

from the gold set (80% of 400 labelled records for training, 10% for validation) 

to predict the tag of each token in the silver set. For each abstract in the silver 

set, I calculate the average prediction probabilities of all tokens within that 

abstract. Silver records with average probabilities larger than a threshold are 

then combined with the original gold training/validation set; the enlarged new 

dataset is used to fine-tune a newly initialised PICO entity recogniser. Then I 

repeat the prediction, pseudo data generation, data selection and supervised 

fine-tuning procedures, until no more unlabelled records with average 

prediction probabilities larger than the threshold can be added. In every data 

enlarging step, newly included silver records are split into the training set (80%) 

and validation set (20%), then combined with the gold training records (320 

records) and gold validation records (40 records) separately. This guarantees 

the gold validation set is only ever used for validation. The original gold test 

set is only used for final evaluation. 
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Figure 4.7: The workflow of self-training experiments. 

4.3.2.4 Evaluation Metrics 

For evaluation, the true tags and predicted tags of all records construct 

separate lists and the entity-level metrics (Hiroki Nakayama, 2018) including 

precision, recall and F1 are calculated for each of the 6 PICO entity types by: 

Precision =
number of correctly predicted entities

number of predicted entities
(4. 11) 

Recall =
number of  correctly predicted entities

number of true entities
(4. 12) 

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(4. 13) 

The calculation for an example sample containing two records is demonstrated 

in Table 4.2. After calculation for each entity types, the overall metrics are 

micro-average scores across all entity types, which are (1+1) / (1+2) = 2/3 of 

precision, (1+1) / (1+1) = 1 for recall, and 0.8 for F1 in the example. The micro-

average F1 of validation samples is used for model and parameters selection. 
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 Record 1 Record 2 

True tags 
[‘O’, ‘O’, ‘O’, ‘B-Intervention’, ‘I-Intervention’, 

‘O’] 

[‘O’, ‘O’, ‘B-
Outcome’, ‘I-
Outcome’] 

Predicted 
tags 

[‘O’, ‘B-Intervention’, ‘I-Intervention’, ‘B-
Intervention’, ‘I-Intervention’, ‘O’] 

[‘O’, ‘O’, ‘B-
Outcome’, ‘I-
Outcome’] 

No. true 
entities 

1 for Intervention, 0 for Outcome 
0 for Intervention, 1 

for Outcome 

No. predicted 
entities 

2 for Intervention, 0 for Outcome 
0 for Intervention, 1 

for Outcome 

No. correctly 
predicted 
entities 

1 for Intervention, 0 for Outcome 
0 for Intervention, 1 

for Outcome 

 Precision Recall F1 

Intervention 1/2 1/1 0.67 

Outcome 1/1 1/1 1 

Table 4.2: The calculation of entity-level metrics for an example sample containing 

two records. 

4.4 Experiments 

Annotation project is available at www.tagtog.net/qwang/pre-pico/pool; 

processed datasets are available in the Preclinical PICO extraction repository 

(osf.io/2dqcg); and codes of experiments are available at 

github.com/qianyingw/pre-pico. 

4.4.1 Experiments of PICO Sentence Classification 

For PICO sentence classification, I fine-tune BERT with different pre-trained 

modules as described earlier. Parameters are trained to minimise the cross-

entropy loss using the AdamW algorithm (Loshchilov and Hutter, 2017). I use 

the slanted triangular learning rate scheduler (Howard and Ruder, 2018) with 

a threshold learning rate 5e-5. I apply gradient clipping (Zhang et al., 2019) 

with a threshold norm 0.1 to rescale gradients and use gradient accumulation 

every 4 mini-batches to reduce memory consumption. Batch size is set to 16. 

All models are trained for 10 epochs and scores from the epoch with the 

minimum loss on the validation set are recorded. From Table 4.3, the 
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performance of PICO sentence classifier does not show much difference 

among different pre-trained modules in BERT, with F1 scores all over 80%. 

BERT pre-trained on the biomedical corpus (BioBERT and two PubMedBERT) 

can identify more PICO sentences, as recalls are 2%~4% higher than that of 

the general-domain BERT. BERT pre-trained on PubMed abstracts achieves 

the highest validation F1 of 89%, which is selected to detect PICO sentences 

from abstracts for the prediction module. 

 Valid Test 

Pre-trained modules F R P S F R P S 

BERT-Base 86.6 87.7 87.2 91.0 80.6 81.4 82.1 86.8 

BioBERT-Base 87.7 89.6 88.1 92.4 84.3 81.0 90.0 92.6 

PubMedBERT-Abs 89.3 91.3 89.1 91.3 85.4 88.4 85.0 88.5 

PubMedBERT-Abs-Full 85.8 89.3 84.6 88.5 84.2 87.1 83.8 87.7 

Table 4.3: Performance of PICO sentence classification by fine-tuning BERT with 

different pre-trained modules on the validation and test set. ‘F’, ‘R’, ‘P’, ‘S’ 

represents F1, recall, precision and specificity separately. 

4.4.2 Experiments of PICO Entity Recognition 

4.4.2.1 Experiments of CRF, BiLSTM and BiLSTM-CRF 

For all entity recognition models, batch size is set to 16. I compare Adam and 

AdamW optimizers with the constant or slanted triangular learning rate 

scheduler and explore the different threshold learning rates. I also compare 

the effect of freezing word embeddings or not. Models are trained for 20 

epochs. The optimal settings for CRF, BiLSTM and BiLSTM-CRF are using 

Adam optimizer with a constant learning rate (1e-2, 1e-3 and 5e-3 for CRF, 

BiLSTM and BiLSTM-CRF respectively). Freezing word embeddings achieves 

better performance for CRF and BiLSTM-CRF, while for BiLSTM, updating 

word embeddings jointly with the entity recognition model yields better results, 

see Appendix Table 12. The best overall validation performance and the 

corresponding test performance are shown in Table 4.4. The results of CRF 

and BiLSTM are competitive, where the validation F1 of CRF is 4% higher than 
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that of BiLSTM, but test F1 is 2% lower. The CRF layer added to the BiLSTM 

model enhances the performance, as the overall F1 score is increased by 14% 

on the test set. 

Model 
Valid Test 

F R P F R P 

CRF 46.2 40.7 53.4 41.9 33.7 55.3 

BiLSTM 41.7 44.2 39.5 43.5 38.1 50.6 

BiLSTM-CRF 58.8 56.9 61.0 57.9 54.7 61.6 

Table 4.4: Overall performance of CRF, BiLSTM and BiLSTM-CRF for PICO entity 

recognition on validation and test set. ‘F’, ‘R’, ‘P’ represents F1, recall and precision 

separately. 

The entity-level performance of three models is demonstrated in Table 4.5. All 

three models achieve good performance for Species and Strain, with validation 

F1 around 95% and 80% respectively, because these two entities are limited 

to certain types in preclinical animal studies (like mice, fish for species; Wistar, 

Sprague Dawley for strain), so their identification is not complicated. The 

performance does not differ greatly among three models for Species (less than 

2% difference of validation F1), while BiLSTM-CRF has F1 10% higher than 

that of BiLSTM for Strain. For Intervention, Outcome and Induction, the 

performance is less satisfactory, with F1 around 45%, 52% and 35% 

respectively, which is remained to be improved. The advantages of adding the 

CRF layer on top of the BiLSTM model are more obvious for Intervention and 

Outcome, as F1 improved by 30% and 16% respectively. The test F1 is around 

20%~30% for Comparator, but the scores are zeros on the validation set. The 

poor and inconsistent performance may be caused by the lack of Comparator 

instances in the training corpus, and unclear boundary of the definition of 

comparator and intervention in some experiments which includes multiple 

pairs of comparator and intervention. 
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Entity Model 
Valid Test 

F R P F R P 

Induction 

CRF 14.6 10.2 26.1 7.2 31.6 25.7 

BiLSTM 16.9 20.3 14.5 20.0 16.9 24.6 

BiLSTM-CRF 35.2 32.2 38.8 20.0 14.5 32.4 

Species 

CRF 96.4 100.0 93.1 97.0 95.5 95.7 

BiLSTM 94.7 99.1 90.7 95.9 97.0 94.8 

BiLSTM-CRF 96.0 100.0 92.3 96.6 97.0 96.2 

Strain 

CRF 80.0 96.0 68.6 72.2 92.9 86.7 

BiLSTM 69.0 80.0 60.6 75.0 66.7 85.7 

BiLSTM-CRF 81.4 96.0 70.6 81.3 72.2 92.9 

Intervention 

CRF 32.7 27.0 41.2 11.6 18.8 12.5 

BiLSTM 17.0 15.5 18.9 7.8 5.1 16.7 

BiLSTM-CRF 44.7 42.6 47.0 45.0 52.2 39.6 

Comparator 

CRF 0.0 0.0 0.0 20.0 100.0 44.4 

BiLSTM 0.0 0.0 0.0 25.0 15.0 75.0 

BiLSTM-CRF 0.0 0.0 0.0 33.3 20.0 100.0 

Outcome 

CRF 28.4 24.4 34.1 20.2 37.3 33.3 

BiLSTM 35.8 39.7 32.5 33.9 32.4 35.4 

BiLSTM-CRF 52.2 48.7 56.2 54.2 48.9 61.0 

Table 4.5: Entity-level performance of CRF, BiLSTM and BiLSTM-CRF for PICO 

entity recognition on validation and test set. ‘F’, ‘R’, ‘P’ represents F1, recall and 

precision separately. 

Figure 4.8 demonstrates an example of the transition matrix of PICO entity 

tags trained from the best BiLSTM-CRF model, where each element refers to 

the transition score between each pair of tags. Note the high transition score 

does not mean the final sequential tags of the text sequence will follow this 

transition because the final probabilities of the tag sequence consist of the 

transition scores and emission scores. However, it still reflects some patterns. 

For example, the induction method, comparator, and intervention are likely to 

be mentioned before the species: B-Induction → B-Species (score 0.85), I-
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Comparator → B-Species (score 0.93), I-Intervention → B-Species (score 

0.69). Species often consist of one word: B-Species → O (score 1.09); and 

interventions consist of several words: B-Intervention → I-Intervention (score 

0.87), I-Intervention → I-Intervention (score 0.89). 

 

Figure 4.8: Transition matrix of PICO entity tags from the best BiLSTM-CRF model. 

Rows refer to the tag of the previous token, and columns refer to the tag of the 

current token. 

For BiLSTM models with or without the CRF layer on top, I also explore the 

effect of hidden dimension in LSTM modules. The optimal dimension for 

BiLSTM is around 64 to 256, while the impact of dimension is negligible for 

BiLSTM-CRF, as shown in Table 4.6.  
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 Hidden dim F1 Recall Precision 

BiLSTM 

32 34.8 32.8 37.2 

64 41.7 43.5 40.0 

128 40.8 42.1 39.6 

256 41.7 44.2 39.5 

512 37.3 38.7 36.1 

BiLSTM-CRF 

32 57.0 56.7 57.3 

64 58.5 57.2 59.8 

128 57.7 53.7 62.3 

256 58.8 56.9 61.0 

512 57.1 55.3 59.1 

Table 4.6: Validation performance of BiLSTM models with different hidden 

dimension. 

4.4.2.2 Experiments of BERT models 

For BERT-based models, I fine-tune BERT for 30 epochs, BERT-CRF for 40 

epochs and BERT-LSTM-CRF for 60 epochs. I use the slanted learning rate 

scheduler with the threshold learning rate 1e-4 but remove warm-up steps. 

The hidden dimension in BERT-LSTM-CRF is set to 64. Other settings are 

similar to that of the PICO sentence classification task. These are determined 

by checking overfitting or convergence issues from their learning curves. 

The overall performance of three BERT-based models with different pre-

trained weights is shown in Table 4.7. Compared with the previous best model 

BiLSTM-CRF, BERT and BERT-CRF pre-trained from the general-domain 

knowledge do not outperform BiLSTM-CRF, as the validation F1 are 3% and 

1% lower respectively, while BERT-LSTM-CRF slightly improves F1 by 2%. 

Other BERT models pre-trained from the biomedical-domain knowledge all 

achieve better performance than BiLSTM-CRF, with F1 improved by 5% to 9%. 

Within three biomedical pre-trained weights, models with domain-specific pre-

trained modules (two PubMedBERT) yield better performance than models 

with the mixed-domain pre-trained module (BioBERT). The advantage of the 
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CRF layer is trivial compared to the benefit of the large-scale pre-trained 

domain knowledge as there is not much difference among the performance of 

BERT, BERT-CRF and BERT-LSTM-CRF.  

Model Pre-trained weights 
Valid Test 

F R P F R P 

BERT 

BERT-Base 56.0 62.7 50.6 61.3 66.3 57.1 

BioBERT-Base 64.2 69.8 59.4 65.4 69.8 61.5 

PubMed-Abs 65.0 70.5 60.2 70.1 73.2 67.3 

PubMed-Abs-Full 68.1 73.0 63.8 69.9 73.4 66.7 

BERT-CRF 

BERT-Base 57.7 62.9 53.3 62.1 67.2 57.8 

BioBERT-Base 65.1 70.0 60.9 66.5 70.1 63.3 

PubMed-Abs 65.5 70.9 60.9 68.0 71.5 64.9 

PubMed-Abs-Full 68.0 72.8 63.7 67.5 70.9 64.5 

BERT 

-BiLSTM 

-CRF 

BERT-Base 60.8 66.4 56.1 64.6 69.5 60.3 

BioBERT-Base 66.0 70.0 62.5 68.3 71.2 65.6 

PubMed-Abs 68.1 73.3 63.5 67.2 70.8 64.0 

PubMed-Abs-Full 68.0 72.8 63.8 68.5 72.6 64.8 

Table 4.7: Overall performance of BERT, BERT-CRF and BERT-LSTM-CRF with 

different pre-trained weights on validation and test set. ‘F’, ‘R’, ‘P’ represents F1, 

recall and precision separately. 

The entity-level performance of three BERT models is demonstrated in Table 

4.8. The performance of Species is as good as previous CRF/LSTM based 

models, with F1 scores over 95%. The highest validation F1 of Strain is 

increased by 4% but the test F1 is reduced by between 4% and 18%. The 

performance of Intervention, Outcome and Induction is improved a lot, as the 

validation F1 of the best BERT-based model is increased by 22%, 12% and 

12% respectively, compared to the best LSTM/CRF based model. For 

Comparator, BERT-CRF has robust but still poor performance, with F1 around 

30%. Considering the consistency of performance between the validation and 

test set, the best model is BERT-CRF for Comparator and Outcome, BERT-
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LSTM-CRF for Induction and Species, BiLSTM-CRF for Strain, and BERT for 

Intervention.   

Entity Model 
Valid Test 

F R P F R P 

Induction 

BERT 46.2 50.9 42.3 49.1 50.6 47.7 

BERT-CRF 45.7 49.2 42.7 41.2 41.0 41.5 

BERT-LSTM-CRF 47.5 55.9 41.3 42.2 41.0 43.6 

Species 

BERT 96.4 99.1 93.9 98.1 100.0 96.4 

BERT-CRF 96.4 100.0 93.1 98.1 100.0 96.4 

BERT-LSTM-CRF 97.3 99.1 95.5 98.1 100.0 96.4 

Strain 

BERT 80.0 80.0 80.0 63.4 72.2 56.5 

BERT-CRF 75.5 80.0 71.4 65.0 72.2 59.1 

BERT-LSTM-CRF 85.2 92.0 79.3 68.3 77.8 60.9 

Intervention 

BERT 67.3 69.6 65.2 70.2 76.1 65.2 

BERT-CRF 63.9 66.9 61.1 69.6 75.4 64.6 

BERT-LSTM-CRF 63.2 65.5 61.0 71.1 78.3 65.1 

Comparator 

BERT 33.3 66.7 22.2 16.0 10.0 40.0 

BERT-CRF 30.8 66.7 20.0 43.8 35.0 58.3 

BERT-LSTM-CRF 0.0 0.0 0.0 0.0 0.0 0.0 

Outcome 

BERT 61.5 68.0 56.2 65.4 70.6 60.9 

BERT-CRF 63.7 69.2 58.9 61.1 66.0 56.9 

BERT-LSTM-CRF 63.3 69.7 58.0 60.5 66.4 55.6 

Table 4.8: Entity-level performance of BERT, BERT-CRF and BERT-LSTM-CRF 

with the optimal pre-trained weight on validation and test set. ‘F’, ‘R’, ‘P’ represents 

F1, recall and precision separately. 

4.4.2.3 Experiments of Self-Training 

In self-training experiments, the best PICO sentence classifier (BERT pre-

trained on PubMed abstracts) is used to remove non-PICO sentences for 

unlabelled data, and the best PICO entity recogniser (BERT pre-trained on 

PubMed abstracts and full texts) is used to identify PICO phrases and calculate 
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prediction scores across all tokens in each individual text. I explore two 

thresholds (0.95, 0.99) for records selection, and the results are shown in 

Figure 4.9. When the threshold is 0.99, no more silver records are included in 

the training set beyond the first iteration, and self-training does not improve 

performance. When the threshold is 0.95, the performance fluctuates and the 

best F1 score is improved by 5% and 1% on the gold validation set and test 

set respectively, achieved at the sixth iteration step. I terminated the training 

program after 15 iterations because the training size tends to saturate and the 

improvement of performance is very limited. For specific PICO entities, the test 

performance of Comparator and Strain is improved by over 30% and 6% 

respectively. The enlarged dataset does not help much for other entity types 

because the changes of test F1 scores are less than 2%, as shown in Table 

4.9.  

 

Figure 4.9: Performance of BERT (pre-trained on PubMed abstracts and full texts) 

for PICO entity recognition using self-training. ‘F’, ‘R’, ‘P’ represents F1, recall and 

precision separately. 
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Gold valid Gold test 

F1 R P F1 R P 

Comparator +46.7 0.0 +77.8 +32.5 +30.0 +21.5 

Induction -0.4 -10.2 +9.9 -1.2 -1.2 -1.1 

Intervention +2.3 +5.4 -0.3 -0.4 -1.5 +0.4 

Outcome +8.4 +5.6 +10.5 +1.5 0.0 +2.7 

Species 0.0 0.0 0.0 0.0 0.0 0.0 

Strain +10.9 +20.0 +3.3 +6.6 +5.6 +7.1 

Table 4.9: Improvement of entity-level performance of PubMedBERT from the best 

self-training iteration compared to that of PubMedBERT without self-training on the 

gold validation and test set (threshold = 0.95). 

4.4.3 Overall Performance 

In this work, I demonstrate PICO sentence classification models and PICO 

entity recognition models for PICO extraction in abstracts describing preclinical 

animal studies. For sentence classification, BERT models with different pre-

trained weights have generally good performance (F1 over 80%), and 

biomedical BERT (BioBERT or PubMedBERT) have slightly better 

performance than general BERT. For PICO entity recognition, all BERT-based 

models with biomedical pre-trained weights outperform BiLSTM with or without 

CRF layer, with an improvement of F1 by between 5% and 9%. It is 

unnecessary to use more complicated structures based on BERT, as the 

results of BERT, BERT-BiLSTM and BERT-BiLSTM-CRF do not have much 

difference, but the latter two require longer training time and resources. Within 

LSTM based models, adding a CRF layer is beneficial, where recall is 

increased by 16% and precision is increased by 9%. The training time of LSTM 

based models is much shorter than fine-tuning BERT, and this could be a quick 

alternative solution when computing resources are limited. F1 scores are 

generally good for identifying Species and Strain (over 95% and 70% 

respectively), satisfactory for Intervention and Outcome (around 60%), 

acceptable for Induction (around 45%), but very low for Comparator (only 30%) 

which may need a larger collection of instances and clearer definition 
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distinguished from Intervention. The self-training method helps to identify more 

comparators and strains which lack an adequate amount of instances in the 

original training set, although the improvement of overall performance is 

limited. The enhanced performance of the best PICO entity recogniser is 

shown in Table 4.10, achieved by fine-tuning BERT pre-trained on PubMed 

abstracts and full texts and applying self-training.  

 
Validation Test 

F1 R P F1 R P 

Overall 73.6 76.4 71.0 71.0 74.0 68.2 

Comparator 80.0 66.7 100.0 48.5 40.0 61.5 

Induction 45.7 40.7 52.2 48.0 49.4 46.6 

Intervention 69.6 75.0 64.9 69.8 74.6 65.6 

Outcome 69.9 73.5 66.7 66.9 70.6 63.6 

Species 96.4 99.1 93.9 98.1 100.0 96.4 

Strain 90.9 100.0 83.3 70.0 77.8 63.6 

Table 4.10: Performance of the best PICO entity recognition model (after self-

training applied) on the validation and test set. ‘F’, ‘R’, ‘P’ represents F1, recall and 

precision separately. 

4.5 Discussion 

4.5.1 Streamlit Interface 

I develop an interactive app via Streamlit for potential use which can give a 

quick overview of PICO elements of an experimental study (see Figure 4.10; 

codes are available at github.com/qianyingw/pre-pico/tree/master/app). When 

the user inputs the PMID, the app will call the PubMed Parser (Achakulvisut et 

al., 2020) to return its title and abstract if the corresponding record is available 

from the PubMed Open Access Subset database. The background sentence 

model (pre-trained on PubMedBERT abstracts and fine-tuned on our 

preclinical PICO sentences) classifies and removes non-PICO sentences. The 

shortened text consisting of the remaining PICO sentences are then sent into 

the best PICO entity recogniser (pre-trained on PubMedBERT abstracts and 
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full texts, fine-tuned on the gold preclinical PICO texts and self-trained on the 

silver preclinical PICO texts) to identify PICO phrases. Some post-processing 

steps are added to generate the list of candidates for each type of the PICO 

entity. First, the pre-trained module from PubMedBERT is uncased and its 

tokeniser converts all words into lower cases, so the extracted PICO strings 

which are converted directly from the tokens are also in lower cases. The 

lower-cased PICO strings may be misleading especially for some chemical 

names. To solve this, I use scispaCy to tokenise the PICO text, where each 

word is not split into sub-tokens or converted to lower cases without 

specification. Although BERT’s tokeniser further splits those word tokens into 

sub-word pieces, by recording the word ids of sub-tokens, the sub-word pieces 

which share the same word id can be merged back to an entire word which 

can be matched in the list of cased tokens from scispaCy. The entity tag is set 

to the tag of the first sub-word; other sub-words from the same word may have 

different entity tags but they are ignored in this processing strategy. Second, 

the previous training and validation procedures are at token or entity level and 

the model outputs are a sequence of token tags in BIO format which are not 

intuitionistic to users, so I also add a function to merge tokens and tags from 

the same entity, and generate a list of candidates for each entity type. Finally, 

the duplicate candidates, incomplete brackets and single characters are 

removed from each string inside each candidate list. 
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Figure 4.10: A demonstration Streamlit interface for PICO extraction in preclinical 

abstracts. 

4.5.2 Error Analysis 

I randomly select 10 abstracts from the test set to investigate the modules of 

PICO sentence classification and PICO entity recognition. 

The PICO sentence classifier works well in most cases as the performance 

demonstrates. The main error comes from the judgements of the definition of 

PICO sentences in the annotation process. In some cases, the first 

introduction sentence explains a PICO phrase and its abbreviation, and the 
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following texts mention only the abbreviation word. I annotate that sentence as 

PICO sentence because my original purpose is to enable the model to extract 

the full name which indicates the meaning of the abbreviation word. However, 

my model does not recognise it as a PICO sentence because most general 

introduction sentences in an abstract do not describe the actual experimental 

procedures. In other cases, the model extracts some sentences describing the 

purpose of the study, explaining the research findings, or discussing the 

background mechanism as PICO sentences. Those sentences are often 

placed before the method sentences or after the result sentences, and some 

of them mention PICO phrases but do not explicitly describe the experimental 

procedures or the specific outcomes and interventions. Considering the 

functionality and relative position of those sentences in the entire abstract, I do 

not annotate them as PICO sentences, but it is ambiguous in the model 

training. 

For PICO entity recognition, one issue is the boundary of PICO phrases. For 

example, an outcome phrase is ‘level of plasma corticosterone’ but my model 

extracts ‘plasma corticosterone’. In another example, the outcome annotations 

are ‘VEGF mRNA’ and ‘VEGF protein’ but my model combines two text spans 

into one phrase ‘VEGF mRNA and VEGF protein’, which reduces the scores 

calculated in the validation process but does not affect users to obtain 

information from the output. The second issue is I did not annotate summarised 

or indirect phrases but my model extracts those types of outcomes. For 

example, in the sentence ‘Met-knockdown reduced tumour burden correlating 

with decreased cell survival and tumour angiogenesis, with minimal effect on 

cell growth’, my annotation of Outcome includes ‘cell survival’, ‘tumour 

angiogenesis’ and ‘cell growth’ but excludes ‘tumour burden’ which is extracted 

by the model. The third issue is the model cannot distinguish induction 

methods and interventions in some cases. Broadly speaking, the method of 

induction of disease models belongs to interventions, but it is not the 

intervention being investigated in the study. The pattern of sentences 

describing induction methods and interventions are similar, such as ‘applied 
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…’ or ‘after … treatment’, which increases the difficulties to distinguish the two 

types of PICO entity. 

4.5.3 Limitation and Future Work 

One limitation of my work is that the training corpus is at the abstract level but 

PICO elements are often not described in the abstract particularly for 

preclinical animal studies. This limits the usage of my applications and I cannot 

transfer it to full-text identification without further evaluation. Of note, this same 

limitation applies to manual approaches to identifying PICO elements based 

on the abstract alone. In a related literature search, for instance, that manual 

screening for inclusion based on title and abstract has substantially lower 

sensitivity than manual screening of full texts (https://osf.io/nhjeg). Another 

limitation is the amount of training/validation/test data is not adequate. 

Although my best models do not show very inconsistent results between 

validation and test set (excluding Comparator), the conclusions may still be 

biased using a small dataset. Previous studies show that self-training can 

propagate both knowledge and error from high confidence predictions on 

unlabelled samples (Gao et al., 2021), training from a larger annotated corpus 

may reduce the error propagation and boost performance. Large datasets also 

provide possibilities for exploring more complicated models which are proved 

effective in other tasks.  

Future work can evaluate the PICO sentence classification and entity 

recognition models on some full-text publications to observe any heuristic 

implications. Existing clinical PICO extraction tools can also be evaluated on 

preclinical text to identify interventions and outcomes because these two 

categories may be more similar in preclinical and clinical studies than other 

PICO elements. The annotated corpus for clinical PICO is relatively larger and 

more standard and training using combined corpus may yield better 

performance.   
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4.6 Summary 

I demonstrate a workflow of PICO extraction in preclinical animal text using 

CRF, LSTM and BERT based models. Without feature engineering,  BERT 

pre-trained on PubMed abstracts is optimal for preclinical PICO sentence 

classification, and PubMedBERT pre-trained on the combination of PubMed 

abstracts and full texts achieves the best performance for preclinical PICO 

entity recognition. PICO entities including Intervention, Outcome, Species, 

Strain and Strain have acceptable precisions and recalls, while Comparator 

has a low recall due to the lack of the instances in the training corpus which 

can be partially solved by the self-training approach. 
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

In this thesis, I apply natural language processing techniques on two tasks in 

preclinical systematic reviews - risk of bias assessment and PICO element 

extraction, and demonstrate the prototype of the automation interface for each 

task. According to the annotation format of the training samples, the risk of 

bias assessment is cast as long document classification (Chapter 2), and PICO 

element extraction is cast as question answering (Chapter 3) and named entity 

recognition (Chapter 4). The principle of these natural language processing 

tasks is to first convert a word, sentence or document into numerical 

representations, and then train classifiers, either traditional machine learning 

models or recent neural networks, to map the text representations to pre-

defined finite categories, such as classifying a full-text publication into the 

reported/unreported group, or classifying words in publications into different 

PICO elements. 

For automatic risk of bias assessment in preclinical publications (Chapter 2), I 

implement a range of text representation methods and text classification 

models for each of five risk of bias items including random allocation, blinded 

assessment of outcome, conflict of interests, compliance of animal welfare 

regulations, and animal exclusions. Text representation methods including 

bag-of-words, word2vec, doc2vec and BERT embeddings are mainly explored 

in three baseline classifiers. Among text representation methods, word2vec 

and doc2vec outperform bag-of-words because bag-of-words represent words 

based on the frequency and do not contain any semantic information. Doc2vec 

performs better than word2vec in most cases because document vectors from 

doc2vec are trained from the preclinical training set, while the document 

vectors from word2vec are averaged fixed word vectors pre-trained on a 

general PubMed corpus, which may not be as close as to the preclinical 

domain and the averaging operation across words weakens the information 

contained. When using the doc2vec method to generate representation 
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vectors, the distributed bag-of-words method outperforms distributed memory 

or the combination of two methods, which differs from the suggestion in the 

original study (Le and Mikolov, 2014). Similarly, document vectors generated 

from the averaged BioBERT embeddings do not show any advantages and 

perform worse than the averaged biomedical word2vec. Among three baseline 

models, support vector machine and logistic regression generally achieve 

better performance than random forest, and are less likely to be over-fitting. 

Neural network models including convolutional neural network, recurrent 

neural network with attention mechanism and hierarchical neural network 

yields better performance than baseline models, increasing F1 by 10%-24%, 

for all items except compliance of animal welfare regulations. Neural network 

models enable the word embeddings jointly trainable within the network and 

unfreezing embedding achieves better results. The performance of RNN with 

attention does not differ much from that of CNN, and the selection of RNN cell 

structure (LSTM or GRU) depends on the specific item and whether the 

bidirectional structure is applied. The hierarchical attention structure among 

words and sentences in HAN does not yield a better performance compared 

to CNN and RNN, but the attention weights can be used to score sentences 

and extract the most relevant sentence for each risk of bias item in a 

publication. BERT has proved to be the state-of-the-art method in a wide range 

of NLP tasks (Devlin et al., 2018), but its usage is limited to short documents. 

To meet the requirement of document length, I propose two strategies of 

adapting BERT for long documents: document chunk pooling (DCP) and 

sentence extraction (SE). These two strategies only demonstrate advantages 

for compliance of animal welfare regulations and results for other items are 

competitive with neural network models. The best pooling method in the DCP 

strategy is concatenating hidden states from the output of all BERT chunks. 

The number of sentences extracted in the SE strategy does not have a big 

impact on the performance. I also explore adding an additional 

linear/convolutional/LSTM layer on top of BERT layers, and find the 

convolutional layer is the optimal selection in the DCP strategy, while three 

layers do not show much difference in the SE strategy. Considering the 
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unpromising performance gain from BERT-based models and limited 

computing resources, CNN or RNN with attention are recommended for risk of 

bias classification in general. The best model for each risk of bias item 

improves performance significantly by 13%-36%, compared to the previous 

regular expression approaches. 

When question answering approaches are applied to extract PICO elements 

from biomedical publications (Chapter 3), some extra processing steps are 

required especially when the context is at full-text level or the publication 

reports multiple different PICO elements. For the preclinical dataset where I 

extract the method of intervention/induction from full texts, I explore three 

unsupervised sentence retrieval methods including bag-of-words with TF-IDF, 

BM25 and Sentence-BERT, to extract relevant sentences related to 

intervention or induction method. Around 20 to 30 sentences should be 

extracted from full texts so 90% of the shorter passages concatenated from 

the extracted sentences can contain the answer strings. Among three retrieval 

methods, Sentence-BERT performs slightly better than TF-IDF and BM25 with 

an improvement of performance around 2%, and the difference of performance 

between TF-IDF and BM25 is small especially when the number of extracted 

sentences is high. After sentence retrieval, I implement three question 

answering models to extract precise intervention/induction answer candidates 

on three datasets. Baseline question answering models including BiDAF and 

QANet achieve satisfactory performance on the clinical factoid-type data (F1 

over 60%), while the performance for two preclinical data is low (F1 around 

40% and 14% respectively). An explanation for this might be that the clinical 

abstracts are relatively well-written, while preclinical texts often contain 

multiple interventions which are less explicit. QANet slightly improves 

performance by 1% to 4% compared to that of BiDAF, and a high number of 

blocks in the modelling encoder layer does not guarantee better performance. 

The best question answering approach is fine-tuning BERT, which improves 

the answer extraction performance by 30% to 50% on preclinical data, and 

20% on clinical data. The selection of pre-trained weights in BERT does not 

have a significant effect on clinical data, but different choices can induce 20% 
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difference of F1 score on preclinical data. The weight induced from pre-training 

BERT on only PubMed abstracts is the best choice across all three datasets. 

The poor performance on the preclinical list-type data indicates the difficulties 

of extracting the correct number of answer candidates and handling the 

boundary of an intervention/induction phrase properly. 

Considering the limitations of extracting PICO elements by question answering 

methods with the existing datasets, I annotate 400 preclinical abstracts and 

implement named entity recognition models to identify six types of PICO 

elements (Chapter 4). Less than half of the sentences in an abstract describe 

PICO elements so I fine-tune BERT to classify PICO sentences in the 

abstracts. All four pre-trained weights in BERT show good performance and 

the module pre-trained on PubMed abstracts achieves the highest F1 of 89%, 

for identifying PICO sentences. Then I explore several named entity 

recognition models based on the conditional random fields, bidirectional 

LSTM, BERT and their combinations, and train them on the truncated 

abstracts where all non-PICO sentences are removed. For overall 

performance, CRF and BiLSTM alone achieve competitive results, and 

BiLSTM-CRF outperforms those two models with F1 improved by 14%. 

BiLSTM-CRF is also less sensitive to hidden dimension than CRF and 

BiLSTM. Fine-tuning BERT pre-trained on the biomedical corpus (BioBERT 

and two PubMedBERT) improves the overall F1 by 10% compared to BiLSTM-

CRF, while the result from BERT pre-trained on the general domain corpus is 

even worse than BiLSTM-CRF. I also implement BERT-LSTM and BERT-

LSTM-CRF with different pre-trained modules, but the additional LSTM or CRF 

layer does not show any advantages. By PICO entity level, all models achieve 

good performance for Species and Strain, with F1 over 95% and 70% 

separately, because the phrases of those two elements are limited to certain 

types so the task is relatively easy. The performance for Intervention, Outcome 

and Induction is less satisfactory by BiLSTM or CRF based models, but is 

improved greatly by BERT models, with F1 around 70%, 70% and 50% 

respectively. The performance for Comparator is poor and the highest F1 is 

only 30%, which is caused by the limited number of comparator instances. To 
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solve the data-hungry issue, I apply a self-training approach to obtain silver 

data from unlabelled abstracts, and the model trained on the enlarged dataset 

improved the test performance for Comparator and Strain, with F1 increased 

by 30% and 7% respectively. 

Across all three projects, BERT models with biomedical pre-trained module 

are good selections for the automation of risk of bias assessment and PICO 

extraction, which require less feature engineering and hyperparameters tuning 

procedures, but always achieve better performance than baseline machine 

learning models or neural models in general. BERT models often have a large 

number of training parameters and require a long training time, which is prone 

to be over-fitting on the small biomedical training samples. These attributes 

may be also the reason that models with more complicated architecture based 

on BERT do not help with performance much. When the training documents 

are long or the computing resources (GPU, memory space) are limited, the 

advantages of the powerful transformer structure and pre-trained domain 

knowledge associated with BERT are hindered, and extra procedures are 

needed such as splitting documents into chunks or extracting relevant 

sentences are needed. Some simple neural networks such as CNN, LSTM or 

probabilistic models such as CRF based classifiers may be good substitutions 

to achieve relatively robust performance. 

5.2 Future Work 

There are remaining challenges for automatic preclinical systematic reviews. I 

discuss some directions for future work as follows.  

More datasets 

One direction is to obtain more datasets for developing automation tools for 

preclinical systematic reviews. Large training samples provide possibilities for 

developing deep neural networks or other complicated models such as BERT 

which often achieve the state-of-the-art performance in many NLP tasks. The 

large training samples also guarantee a sufficient amount and the variation of 
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types of certain instances. With more training samples, in risk of bias 

assessment, models would have more opportunities to learn different 

description patterns of risk of bias reporting in publications; in PICO entity 

recognition, it is possible to develop less biased models for comparators. Large 

datasets would reduce the risk of models which tend to be over-fitting due to 

the small training size, hence the evaluation performance on validation or test 

samples would be more reliable.  

There are also concerns about the generalisability. The PICO sentence 

classifier and entity recogniser are developed on a small number of preclinical 

abstracts (Chapter 4). Both the text classification (Chapter 2) and question 

answering (Chapter 3) tasks use the preclinical datasets which are limited to 

two or three cardiovascular or neurological diseases. It may affect the 

generalisability of model performance and evaluations of publications focusing 

on other preclinical studies are necessary. Therefore, the collection of datasets 

from a variety of preclinical research topics is needed to enable the evaluations 

and the development of general models.  

In addition, the preclinical datasets should be easily accessible. The number 

of preclinical systematic reviews is rapidly increasing but the open-access 

datasets or structured databases are scarce, compared with datasets of 

clinical systematic reviews, such as the Cochrane Database of Systematic 

Reviews. Many preclinical protocols or publications do not cover the details 

and statistics of data collection, data curation, data structures and validation of 

annotations. Those information could be published in a separate report or 

publication to enable a wider application of the datasets, which would also 

benefit the NLP or computer science field. 

Better annotations 

Another direction is the collection of fine-grained annotations. First, preclinical 

texts of better quality should be obtained. In most of my datasets, plain full 

texts are converted from PDFs by Xpdf, which contains a lot of noisy 

information and requires some cleaning process. Although structured PubMed 
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XMLs are widely available for many recent publications, only PDFs exist for 

some publications included in preclinical systematic reviews not limited by date. 

For those publications, potential solutions include retrieving databases by title, 

PMID or PMCID to obtain XMLs, or parsing PDFs to XMLs via tools such as 

Grobid, which may need further evaluation.  

Second, the annotation strategies and tools could be improved to obtain 

precise and informative annotations. Many preclinical systematic reviewers 

annotate experimental characteristics from publications by taking notes in 

Word or Excel; some may complete the process assisted by a systematic 

review platform such as SyRF (Bahor et al., 2021). In those cases, typos might 

be generated when they record PICO phrases or sentences from a large 

amount of collection of publications, which brings difficulties to locate the exact 

information from the whole publication or validate annotations among different 

reviewers. In an ideal scenario, the preclinical texts are demonstrated in a 

structured HTML webpage or PDF reviewer (when the XMLs of publications 

are unavailable), and systematic reviewers can just highlight the sentences of 

each risk of bias item or PICO phrases of each experiment, with different 

colours to indicate different items or experimental group information. The 

background program of the annotation tool would record the annotated texts, 

the corresponding labels and their positions, and all the information would be 

automatically stored in a database with pre-defined structures. Annotation 

tools for general NLP usages exist such as tagtog (https://www.tagtog.net), but 

annotations tools designed for preclinical systematic reviews remained to be 

developed, which should contain some specific functions to reduce the effort 

of data conversion and curation for the following systematic review procedures.  

Another concern is the granularity of annotations. For risk of bias assessment, 

I have demonstrated the good performance of a range of classification models 

for four risk of bias items. However, almost all models are trained on full texts, 

while the risk of bias descriptions often consist of only one or two sentences. 

This makes the training inefficient, and the error analysis indicates that my 

models do not correctly locate and recognise the risk of bias sentences in 
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some cases. Models for other risk of bias items including sample size 

calculation and allocation concealment remain to be developed and if future 

annotators can record the complete sentences which indicate the reporting of 

a risk of bias item, more flexible and efficient approaches can be designed. For 

example, the collected risk of bias sentences can be analysed to develop the 

generalised preclinical risk of bias embeddings for unsupervised strategies, as 

the reporting should follow certain patterns. For PICO extraction, I do not 

recommend using question answering models because there are always 

multiple mentions for one PICO element and it is difficult to predict the number 

of mentions and the most appropriate candidate. However, it might be 

promising to develop better sentence retrieval methods or classifiers if the top 

relevant sentences or summary descriptions of PICO elements are available. 

In addition, annotations among different reviewers should be evaluated by 

some statistical methods such as  Dawid-Skene model which estimates the 

reliability of reviewers and Cohen's Kappa statistic to measure the agreement 

among multiple reviewers (Nye et al., 2018). These evaluation functions could 

also be embedded in annotation platforms so reviewers could adjust their 

annotation behaviours when necessary. 

Extrinsic evaluation 

With a large number of datasets and fine-grained annotations, some 

automation tools based on NLP techniques could be developed for preclinical 

systematic review tasks. Before applying tools to the practical projects, 

reviewers need to perform extrinsic evaluation on some of their own datasets 

to estimate the applicability of tools.  

For risk of bias assessment, if researchers have annotated publications from 

previous projects, they could apply the tools to those annotated publications to 

obtain a prediction probability for each risk of bias item in each individual 

publication. If the annotations contain only the decision of a risk of bias item, 

such as “yes”, “no” or “unclear”, reviewers could compare it with the prediction 

label generated from the prediction probability by setting thresholds. For 

example, when the probability is smaller than 0.4, the prediction of the risk of 
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bias is high; when the probability is larger than 0.6, the prediction of the risk of 

bias is low; and when the probability is between 0.4 and 0.6, the prediction of 

the risk of bias is unclear, which may need further investigation of the full texts. 

The ranges can be changed to <0.1, >0.9, and 0.1~0.9 to obtain more 

confident predictions. The tools can calculate general evaluation scores 

including recall, precision and F1, and they can also provide the elements of 

the confusion matrix, i.e. true positive, true negative, false positive and false 

negative, so users could calculate other evaluate scores when needed. When 

sentence-level annotations are available, such as text snippets or a whole 

sentences indicating the risk of bias reporting, reviewers could compare them 

with the relevant sentences extracted by the hierarchical neural networks 

(Section 2.4.2.3) or other sentence extraction methods, where the extracted 

sentences can be output as a list or shown in the original publications 

embedded in the PDF/HTML reviewer with highlight colours, so users can 

check the context sentences. Based on the comparison above, reviewers 

could have a general idea of whether the tools can be applied to their field or 

how confident the prediction results are.  

For PICO extraction, where it might be difficult to obtain a large amount of 

annotated datasets in short times, reviewers can randomly select 10 to 20 

samples from the included publications and annotate PICO phrases or 

sentences manually. Then they need to compare the machine-extracted and 

human extracted PICO phrases, where the performance can be evaluated by 

reviewers’ own experiences or understandings, the holistic metrics such as 

recall and F1 scores, or a more interpretable evaluation methodology which 

considers multiple entity attributes at the same time, including entity length, 

entity/token frequency, label consistency of entity/token, etc (Fu et al., 2020). 

The extracted PICO phrases can be demonstrated in the original publications 

embedded in the PDF/HTML reviewer with multiple highlight colours for 

different PICO entity types, so users can easily check the location of the PICO 

phrases and the context sentences. With the general/interpretable evaluation 

scores and reviewers’ own understandings, reviewers can decide if they want 
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to apply the tools to extract one or multiple types of PICO entities from all their 

publications. 

Cross-field evaluation 

Although there are some differences between preclinical and clinical 

systematic reviews, some reporting strategies and characteristics of 

experiments or trials are common, and some automation tools developed for 

clinical systematic reviews could be evaluated on preclinical publications. For 

example, RobotReviewer (Marshall et al., 2016), the clinical risk of bias 

assessment tool, could be used to identify the reporting of blinded assessment 

of outcomes in preclinical publications; and Trialstreamer (Marshall et al., 2020) 

could be used to identify interventions and outcomes in preclinical experiments.  

Easier, quicker and lighter tools 

Automation tools for risk of bias assessment, PICO extraction and other 

preclinical systematic review tasks should be easier to use, without the need 

for specialist operating systems, complicated installation or other preparation 

steps. Users do not need to have any NLP or computer science knowledge, 

and ideally, all the actions just include uploading files, selecting 

models/settings and obtaining results in some user-defined formats which are 

convenient to process for further analyses. The tools can also include some 

interactive functions, such as modifying the annotation and recording the 

modification in the background so models can be re-trained and updated to 

adapt to users’ datasets from different fields. Cloud platforms sometimes are 

better than locally deployed tools, where the former allow collaborations and 

evaluations among multiple reviewers; if there is a demand for processing a 

large amount of publications, the computations can be done in the background 

modules and the platform can send a notification to users when results are 

produced, so they do not need to check progress frequently. The reaction 

speed is also important, especially for small evaluations which may affect 

users’ intention to continue using it for processing a large amount of 

publications. BERT-based models often achieve decent performance but they 
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are associated with large trained modules, which are heavy and slow to load 

and conduct the computations when GPU is unavailable. Developing lighter 

and quicker tools is necessary to promote usability. 
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Appendix 

Appendix Table 1: Validation performance of baseline models using different 

doc2vec methods to generate document vectors for risk of bias classification. 

Classifier RoB item d2v method F1 Recall Precision Specificity 

Support 
vector 
machine 

Random 
allocation 

DM 40.7 57.2 31.5 59.2 

DBOW 51.9 72.2 40.5 65.1 

DM+DBOW 44.9 62.4 35.1 62.0 

Blinded 
assessment 
of outcome 

DM 48.5 60.4 40.5 63.2 

DBOW 59.3 67.8 52.7 74.7 

DM+DBOW 54.0 79.1 41.0 52.7 

Conflict of 
interests 

DM 57.0 67.5 49.3 73.2 

DBOW 67.1 79.7 57.9 77.7 

DM+DBOW 59.6 60.4 58.9 83.8 

Compliance 
of animal 
welfare 
regulations 

DM 80.8 74.0 88.9 69.9 

DBOW 86.7 82.7 91.2 74.1 

DM+DBOW 74.9 62.9 92.7 83.7 

Animal 
exclusions 

DM 34.1 49.1 26.1 76.8 

DBOW 39.0 64.3 28.0 72.5 

DM+DBOW 34.0 48.2 26.2 77.4 

Logistic 
regression 

Random 
allocation 

DM 48.2 62.9 39.1 67.8 

DBOW 51.0 65.5 41.8 70.0 

DM+DBOW 48.8 61.3 40.5 70.3 

Blinded 
assessment 
of outcome 

DM 54.1 61.7 48.1 72.4 

DBOW 60.0 69.1 53.0 74.5 

DM+DBOW 54.9 61.7 49.5 73.8 

Conflict of 
interests 

DM 60.8 65.0 57.1 81.2 

DBOW 68.8 76.1 62.8 82.6 

DM+DBOW 63.9 69.5 59.1 81.4 

Compliance 
of animal 
welfare 
regulations 

DM 82.5 76.9 88.9 68.7 

DBOW 87.6 85.4 89.9 68.7 

DM+DBOW 87.0 84.9 89.1 66.3 

Animal 
exclusions 

DM 32.1 44.6 25.0 77.7 

DBOW 41.4 62.5 31.0 76.8 
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DM+DBOW 34.0 42.9 28.2 81.8 

Random 
forest 

Random 
allocation 

DM 39.7 46.9 34.5 70.7 

DBOW 41.4 51.5 34.6 68.0 

DM+DBOW 50.4 59.8 43.6 74.6 

Blinded 
assessment 
of outcome 

DM 46.8 55.2 40.6 66.4 

DBOW 57.8 68.3 50.2 71.8 

DM+DBOW 52.7 61.7 46.0 69.9 

Conflict of 
interests 

DM 53.9 58.4 50.0 77.5 

DBOW 65.1 68.5 61.9 83.8 

DM+DBOW 61.8 64.5 59.3 83.0 

Compliance 
of animal 
welfare 
regulations 

DM 85.2 86.2 84.3 47.6 

DBOW 88.8 89.7 88.0 60.2 

DM+DBOW 88.1 89.5 86.8 55.4 

Animal 
exclusions 

DM 33.8 54.5 24.5 72.0 

DBOW 36.4 50.0 28.6 79.2 

DM+DBOW 40.9 61.6 30.7 76.8 
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Appendix Table 2: Validation performance of baseline models with different 

dimensions of document vectors generated from doc2vec in the risk of bias 

classification task. 

Classifier RoB item vector dim F1 Recall Precision Specificity 

Support 
vector 
machine 

Random 
allocation 

100 46.5 59.3 38.2 68.5 

200 49.4 69.1 38.4 63.6 

300 51.9 72.2 40.5 65.1 

400 47.0 65.5 36.7 62.9 

500 47.9 79.9 34.2 49.5 

Blinded 
assessment of 
outcome 

100 57.5 68.3 49.7 71.3 

200 59.3 67.8 52.7 74.7 

300 55.7 76.5 43.8 59.2 

400 57.3 70.4 48.4 68.8 

500 57.6 67.4 50.3 72.4 

Conflict of 
interests 

100 60.3 84.8 46.8 62.8 

200 66.1 76.6 58.1 78.7 

500 67.1 79.7 57.9 77.7 

400 65.2 66.5 63.9 85.5 

300 65.2 74.1 58.2 79.5 

Compliance of 
animal welfare 
regulations 

100 86.7 82.7 91.2 74.1 

200 86.6 82.8 90.7 72.3 

300 83.0 76.9 90.1 72.3 

400 83.3 78.2 89.1 68.7 

500 83.7 78.4 89.9 71.1 

Animal 
exclusions 

100 35.1 55.4 25.7 73.4 

200 39.0 64.3 28.0 72.5 

300 35.7 56.3 26.1 73.5 

400 37.9 58.0 28.1 75.3 

500 37.7 50.0 30.3 80.8 

Logistic 
regression 

Random 
allocation 

100 48.8 64.9 39.1 66.8 

200 50.0 64.9 40.6 68.8 

300 51.0 65.5 41.8 70.0 

400 48.8 63.9 39.5 67.8 

500 50.0 63.4 41.3 70.3 

100 57.7 65.7 51.5 74.4 
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Blinded 
assessment of 
outcome 

200 57.2 65.7 50.7 73.5 

300 60.0 69.1 53.0 74.5 

400 58.9 68.3 51.8 73.6 

500 59.5 69.6 51.9 73.3 

Conflict of 
interests 

100 66.4 75.1 59.4 80.2 

200 65.6 75.6 58.0 78.9 

300 67.1 76.1 60.0 80.4 

400 68.8 76.1 62.8 82.6 

500 66.4 73.6 60.4 81.4 

Compliance of 
animal welfare 
regulations 

100 87.1 83.9 90.5 71.1 

200 87.6 85.4 89.9 68.7 

300 86.8 83.8 90.1 69.9 

400 85.9 82.8 89.3 67.5 

500 87.0 84.9 89.3 66.9 

Animal 
exclusions 

100 35.0 53.6 26.0 74.6 

200 38.3 56.3 29.0 77.1 

300 39.3 57.1 29.9 77.7 

400 41.4 62.5 31.0 76.8 

500 40.3 57.1 31.1 78.9 

Random 
forest 

Random 
allocation 

100 45.5 57.2 37.8 69.0 

200 41.7 51.0 35.2 69.2 

300 44.4 54.6 37.3 69.8 

400 50.4 59.8 43.6 74.6 

500 48.3 58.8 41.0 72.2 

Blinded 
assessment of 
outcome 

100 55.6 67.4 47.3 68.8 

200 53.0 64.3 45.1 67.5 

300 50.3 58.3 44.2 69.5 

400 49.3 57.8 42.9 68.1 

500 57.8 68.3 50.2 71.8 

Conflict of 
interests 

100 65.1 68.5 61.9 83.8 

200 64.8 69.0 61.0 83.0 

500 64.4 63.5 65.4 87.1 

400 63.8 67.0 60.8 83.4 

300 61.0 61.9 60.1 84.1 

100 86.5 86.0 87.1 58.4 
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Compliance of 
animal welfare 
regulations 

200 85.5 85.4 85.6 53.0 

300 87.0 86.9 87.1 57.8 

400 86.6 86.2 87.0 57.8 

500 88.8 89.7 88.0 60.2 

Animal 
exclusions 

100 30.6 50.9 21.8 69.6 

200 40.9 61.6 30.7 76.8 

300 35.0 50.0 26.9 77.4 

400 36.0 51.8 27.6 77.4 

500 33.3 45.5 26.3 78.7 
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Appendix Table 3: Validation performance of the convolutional neural network with 

different number of filters for each filter size in the risk of bias classification task. 

 No. filters F1 Recall Precision Specificity 

Random 
allocation 

20 82.4 88.8 77.9 91.6 

40 83.3 91.3 77.7 91.3 

60 82.8 86.7 81.1 93.0 

80 82.9 88.5 79.1 92.6 

100 83.7 90.0 79.2 91.5 

120 84.0 89.9 80.6 92.3 

140 83.3 88.7 79.3 92.6 

160 83.7 89.9 79.7 91.8 

180 83.1 89.4 78.5 92.0 

200 83.4 90.8 78.1 91.7 

300 82.8 90.9 77.8 91.2 

Blinded 
assessment of 
outcome 

20 81.4 88.6 76.0 88.3 

40 79.4 89.2 73.0 86.6 

60 79.7 90.5 71.8 85.0 

80 80.7 89.8 74.0 86.6 

100 81.2 92.6 73.8 86.2 

120 79.8 89.7 73.3 86.6 

140 81.6 89.2 76.0 87.5 

160 80.4 90.1 74.3 87.1 

180 79.6 89.6 72.7 85.6 

200 80.1 88.4 73.9 86.6 

300 80.2 89.0 74.0 87.3 

Conflict of 
interests 

20 83.1 86.9 81.5 92.2 

40 83.3 85.3 82.7 93.0 

60 84.0 86.5 83.5 93.4 

80 84.4 87.6 83.1 93.2 

100 84.5 86.8 84.1 93.8 

120 84.2 87.2 83.3 93.4 

140 83.9 86.6 82.4 92.2 

160 84.4 87.6 83.0 93.5 

180 84.2 87.6 82.8 93.0 

200 84.4 87.6 83.1 93.5 
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300 83.5 83.9 85.3 94.6 

Compliance of 
animal welfare 
regulations 

20 76.2 70.9 84.0 96.3 

40 76.2 71.0 86.0 96.2 

60 80.1 77.0 87.9 96.5 

80 80.3 76.1 89.0 97.0 

100 81.1 77.3 89.1 97.2 

120 83.1 82.1 86.0 95.8 

140 83.8 82.3 88.7 96.9 

160 84.8 82.9 88.4 96.7 

180 84.1 81.8 88.1 96.5 

200 85.5 82.5 90.5 96.9 

300 85.1 82.5 89.5 97.1 

Animal exclusions 

20 38.7 64.7 29.7 76.0 

40 47.5 56.6 43.6 87.9 

60 53.5 70.8 45.1 84.1 

80 53.4 67.5 46.3 85.6 

100 55.5 66.4 51.7 88.7 

120 56.0 68.2 49.4 87.7 

140 51.7 75.1 43.7 85.0 

160 54.2 71.0 48.2 87.1 

180 52.8 65.0 49.3 90.2 

200 51.5 69.9 46.1 87.3 

300 54.8 68.0 50.0 88.9 
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Appendix Table 4: Validation performance of the convolutional neural network with 

different filter sizes for risk of bias classification. 

 filter size F1 Recall Precision Specificity 

Random 
allocation 

3,4,5 84.0 89.9 80.6 92.3 

4,5,6 83.2 89.8 79.5 91.8 

5,6,7 83.4 91.6 77.8 90.5 

6,7,8 84.1 90.6 79.5 92.4 

7,8,9 83.5 90.7 78.3 91.3 

8,9,10 83.5 90.2 79.0 91.6 

9,10,11 83.6 92.8 77.1 91.1 

10,11,12 85.7 90.6 82.7 93.1 

11,12,13 84.3 90.6 79.8 92.5 

Blinded 
assessment 
of outcome 

3,4,5 81.6 89.2 76.0 87.5 

4,5,6 80.3 88.5 74.6 87.9 

5,6,7 80.4 90.8 73.8 87.1 

6,7,8 81.2 89.4 74.9 87.2 

7,8,9 81.1 88.5 75.5 87.8 

8,9,10 80.7 90.1 74.5 86.3 

9,10,11 82.4 88.5 77.8 89.4 

10,11,12 80.6 89.6 74.8 87.7 

11,12,13 81.0 90.1 75.1 87.6 

Conflict of 
interests 

3,4,5 84.5 86.8 84.1 93.8 

4,5,6 83.2 84.7 84.1 94.0 

5,6,7 83.5 83.9 85.1 94.5 

6,7,8 83.0 84.9 83.1 93.6 

7,8,9 83.6 85.6 83.7 93.8 

8,9,10 83.5 85.6 83.4 93.6 

9,10,11 83.5 85.7 83.6 93.6 

10,11,12 84.0 85.2 85.1 94.3 

11,12,13 84.4 85.7 85.2 94.3 

Compliance 
of animal 
welfare 
regulations 

3,4,5 86.9 83.3 92.4 97.4 

4,5,6 85.8 84.0 88.6 96.8 

5,6,7 83.9 79.1 92.3 97.7 

6,7,8 85.2 81.8 90.7 96.6 

7,8,9 84.7 84.1 86.4 95.2 



199 
 

8,9,10 83.9 82.2 87.6 96.3 

9,10,11 83.8 82.4 86.8 96.0 

10,11,12 82.5 80.2 87.4 96.3 

11,12,13 83.7 81.9 87.4 96.2 

Animal 
exclusions 

3,4,5 56.7 67.6 53.7 90.8 

4,5,6 53.1 66.1 46.3 85.8 

5,6,7 51.8 65.2 46.1 85.3 

6,7,8 54.6 66.8 52.2 90.3 

7,8,9 56.0 70.9 51.3 89.5 

8,9,10 42.0 50.0 45.8 90.0 

9,10,11 54.1 60.1 53.7 90.8 

10,11,12 56.3 68.0 51.6 87.9 

11,12,13 35.4 50.1 29.1 79.5 
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Appendix Table 5: Validation performance of the convolutional neural network with 

different maximum vocabulary sizes for risk of bias classification. 

 vocab size F1 Recall Precision Specificity 

Random 
allocation 

3000 78.6 83.4 75.6 91.1 

5000 85.7 90.6 82.7 93.1 

7000 86.4 93.2 81.8 92.8 

9000 84.7 90.8 80.7 93.3 

Blinded 
assessment 
of outcome 

5000 82.4 88.5 77.8 89.4 

7000 81.6 89.7 75.6 87.7 

9000 81.2 92.5 73.8 85.4 

Conflict of 
interests 

5000 84.5 86.8 84.1 93.8 

7000 83.7 86.8 83.3 93.5 

9000 84.1 89.1 80.8 91.7 

Compliance 
of animal 
welfare 
regulations 

5000 86.9 83.3 92.4 97.4 

7000 84.3 81.1 89.6 97.0 

9000 85.0 84.7 87.2 96.2 

Animal 
exclusions 

5000 56.7 67.6 53.7 90.8 

7000 54.1 60.1 53.7 90.8 

9000 60.2 73.6 54.2 89.7 
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Appendix Table 6: Validation performance of the recurrent neural network with 

different hidden dimension for risk of bias classification. 

 hidden dim F1 Recall Precision Specificity 

Random 
allocation 

2 83.1 88.2 80.2 92.8 

6 85.4 89.6 82.9 93.5 

10 86.3 86.5 86.9 95.7 

20 86.3 89.5 84.7 94.7 

30 83.5 93.4 76.6 90.7 

40 84.0 89.6 81.4 93.0 

50 85.7 92.7 80.9 92.2 

100 84.6 89.9 81.2 92.9 

Blinded 
assessment 
of outcome 

2 78.7 85.6 74.3 88.2 

6 81.2 87.8 76.1 88.5 

10 82.1 86.6 79.6 89.8 

20 82.1 90.6 75.8 87.9 

30 80.9 87.2 76.6 89.0 

40 80.2 86.2 75.7 88.5 

50 82.0 87.8 78.3 90.2 

100 80.7 89.9 74.6 87.4 

Conflict of 
interests 

2 78.6 82.4 77.4 90.8 

6 77.7 78.0 79.1 91.7 

10 77.9 81.9 76.7 90.9 

20 79.6 83.0 77.8 91.3 

30 78.0 78.9 79.0 91.8 

40 53.5 66.9 46.1 70.5 

50 55.9 56.6 57.3 83.7 

100 75.6 73.1 80.2 93.7 

Compliance 
of animal 
welfare 
regulations 

2 74.8 72.9 81.9 94.0 

6 70.3 70.4 75.5 90.7 

10 66.1 59.9 78.2 94.6 

20 60.4 53.6 76.3 94.8 

30 60.5 55.0 75.2 93.9 

40 54.8 47.4 68.0 93.8 

50 55.3 47.2 72.9 94.2 

100 54.7 43.5 83.0 96.7 
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Animal 
exclusions 

2 35.3 54.5 30.6 79.5 

6 58.0 68.3 54.3 90.0 

10 44.3 58.4 37.7 83.4 

20 57.3 66.7 55.5 90.9 

30 52.8 66.1 46.2 87.2 

40 28.2 68.0 18.4 46.3 

50 54.1 74.0 44.1 83.9 

100 22.1 48.2 15.1 54.6 
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Appendix Table 7: Validation performance of the hierarchical neural network with 

different sentence length limitation for risk of bias classification. 

 Sentence 
length 

F1 Recall Precision Specificity 

Random 
allocation 

10 72.0 67.0 82.5 95.1 

20 77.4 80.6 76.0 91.5 

30 83.8 89.5 80.1 92.0 

40 86.2 91.3 83.1 93.7 

50 83.8 91.3 79.4 91.8 

60 85.4 90.6 81.8 93.0 

70 84.8 94.1 78.8 91.3 

80 84.5 88.7 82.0 93.8 

90 84.2 91.6 79.6 91.9 

100 85.4 90.3 82.1 93.2 

Blinded 
assessment 
of outcome 

10 68.3 75.7 64.3 82.3 

20 75.4 80.3 73.5 87.7 

30 78.0 81.9 76.5 89.2 

40 80.6 86.1 77.7 90.0 

50 81.3 86.4 77.5 89.1 

60 78.7 86.3 73.4 87.3 

70 51.9 56.2 50.6 78.5 

80 81.2 88.3 76.6 88.6 

90 80.4 84.5 77.4 89.4 

100 81.0 87.8 75.9 88.7 

Conflict of 
interests 

10 72.1 75.3 71.4 89.1 

20 81.6 81.0 83.6 93.9 

30 80.5 83.1 79.6 91.8 

40 83.2 84.7 82.8 93.2 

50 82.0 85.7 80.0 92.1 

60 80.5 80.1 83.6 94.2 

70 74.7 77.7 73.8 91.4 

80 59.9 60.4 63.4 85.4 

90 82.1 82.3 82.7 93.2 

100 81.2 82.9 80.4 92.2 

10 54.2 49.6 63.6 91.7 
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Compliance 
of animal 
welfare 
regulations 

20 54.2 49.6 63.6 91.7 

30 50.3 39.5 77.4 97.2 

40 53.9 49.6 62.7 91.3 

50 77.4 78.1 79.7 93.2 

60 53.8 45.2 74.9 96.1 

70 52.1 46.1 68.6 93.6 

80 52.8 49.9 64.4 92.6 

90 53.5 46.0 68.7 94.5 

100 74.5 69.9 85.2 97.3 

Animal 
exclusions 

10 30.2 59.7 21.6 60.3 

20 27.7 55.8 19.9 63.7 

30 30.2 59.6 21.1 60.4 

40 35.2 76.7 23.8 55.0 

50 31.9 72.4 21.0 53.9 

60 45.3 58.9 38.5 83.2 

70 26.9 63.2 18.1 55.6 

80 31.8 82.3 21.1 50.3 

90 32.0 69.2 21.2 54.8 

100 46.7 67.8 37.8 81.6 
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Appendix Table 8: Validation performance of the hierarchical neural network with 

different document length limitation for risk of bias classification. 

 

Document 
length 

F1 Recall Precision Specificity 

Random 
allocation 

200 82.4 88.5 78.7 91.7 

400 84.8 92.2 80.0 92.1 

500 86.2 91.3 83.1 93.7 

600 80.7 92.7 73.5 89.4 

800 84.2 88.7 81.5 93.4 

1000 85.5 91.7 81.3 93.3 

Blinded 
assessment 
of outcome 

200 76.9 83.4 72.7 87.2 

400 79.2 85.6 75.3 88.3 

500 81.3 86.4 77.5 89.1 

600 80.1 85.5 76.7 89.1 

800 79.3 83.9 76.6 89.7 

1000 80.9 87.5 76.7 89.3 

Conflict of 
interests 

200 72.9 74.3 74.1 89.8 

400 79.5 79.6 82.2 93.5 

500 83.2 84.7 82.8 93.2 

600 59.5 60.2 60.7 85.5 

800 80.3 80.2 82.6 93.6 

1000 81.2 82.7 81.1 92.4 

Compliance 
of animal 
welfare 
regulations 

200 63.8 54.9 83.3 96.9 

400 58.3 49.9 79.2 95.4 

500 77.4 78.1 79.7 93.2 

600 79.3 77.8 84.5 94.9 

800 52.4 43.0 73.5 95.0 

1000 38.1 27.5 74.9 98.6 

Animal 
exclusions 

200 47.0 56.6 45.4 88.6 

400 52.8 65.3 46.1 87.3 

500 51.2 62.8 46.1 86.9 

600 43.7 68.9 34.5 79.0 

800 52.8 61.9 49.7 90.2 

1000 43.8 67.2 35.2 79.8 
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Appendix Table 9: Validation performance of the hierarchical neural network with 

different hidden dimension of word/sentence hidden states in the risk of bias 

classification task. 

 

Hidden  

dim 
F1 Recall Precision Specificity 

Random allocation 

5 84.3 89.5 81.7 92.8 

10 85.8 84.9 88.0 95.9 

20 84.0 85.4 84.3 95.1 

30 86.0 90.6 83.2 94.1 

40 85.8 90.8 83.3 94.1 

50 86.2 91.3 83.1 93.7 

60 84.4 91.8 78.9 91.9 

80 85.0 91.5 80.6 92.9 

Blinded assessment of 
outcome 

5 80.0 87.7 74.9 87.9 

10 80.4 87.9 76.3 87.4 

20 80.1 86.0 76.4 89.4 

30 80.7 86.9 77.0 89.1 

40 79.6 86.3 74.7 88.3 

50 81.3 86.4 77.5 89.1 

60 79.8 86.9 74.2 87.0 

80 80.9 87.6 76.7 89.3 

Conflict of interests 

5 79.2 81.2 78.8 91.1 

10 78.6 82.4 77.2 90.9 

20 80.0 84.3 78.5 91.5 

30 81.0 80.6 82.7 93.4 

40 79.3 79.1 81.6 92.9 

50 83.2 84.7 82.8 93.2 

60 79.4 77.8 83.5 94.1 

80 75.3 73.4 79.1 94.3 

Compliance of animal 
welfare regulations 

5 78.6 79.5 80.9 94.3 

10 64.0 64.6 67.0 89.2 

20 59.0 51.9 74.7 95.4 

30 56.3 50.7 70.5 94.1 

40 57.3 59.4 58.0 87.0 

50 77.4 78.1 79.7 93.2 
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60 56.1 48.8 70.7 94.8 

80 0.0 0.0 0.0 99.8 

Animal exclusions 

5 51.1 59.0 49.8 91.3 

10 35.2 60.6 27.1 74.1 

20 51.2 62.8 46.1 86.9 

30 32.1 60.1 22.7 66.6 

40 34.9 61.6 25.6 69.3 

50 46.7 67.8 37.8 81.6 

60 31.5 43.3 25.9 78.1 

80 -- -- -- -- 
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Appendix Table 10: Effect of number of sentences extracted on sentence retrieval 

performance for the Psycho-CIPN-factoid dataset. sMMR (rMMR) refers to strict 

(ratio) mean match ratio, and sMAP (rMAP) refers to strict (ratio) mean average 

precision. 

Method No. sents sMAP rMAP sMMR rMMR 

TF-IDF 

5 54.1 54.1 76.5 76.5 

10 51.7 51.7 85.1 85.1 

20 48.0 48.0 90.3 90.3 

25 46.8 46.8 91.7 91.7 

30 45.8 45.8 93.3 93.3 

35 45.1 45.1 94.4 94.4 

40 44.4 44.4 95.0 95.0 

60 42.5 42.5 97.4 97.4 

BM25 

5 51.6 51.6 74.1 74.1 

10 48.8 48.8 82.4 82.4 

20 45.7 45.7 89.5 89.5 

25 44.5 44.5 91.2 91.2 

30 43.5 43.5 92.3 92.3 

35 42.8 42.8 93.3 93.3 

40 42.1 42.1 94.6 94.6 

60 40.2 40.2 96.7 96.7 

SBERT 

5 58.7 58.7 77.6 77.6 

10 55.9 55.9 84.7 84.7 

20 51.9 51.9 91.5 91.5 

25 50.4 50.4 93.3 93.3 

30 49.4 49.4 94.6 94.6 

35 48.5 48.5 95.4 95.4 

40 47.8 47.8 95.7 95.7 

60 45.3 45.3 98.2 98.2 
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Appendix Table 11: Effect of number of sentences extracted on sentence retrieval 

performance for the overall Psycho-CIPN dataset (Psycho-CIPN-list dataset before 

splitting into sub-records). sMMR (rMMR) refers to strict (ratio) mean match ratio, 

and sMAP (rMAP) refers to strict (ratio) mean average precision. 

Method No. sents sMAP rMAP sMMR rMMR 

TF-IDF 

5 42.2 54.5 64.3 70.3 

10 40.7 52.4 74.7 80.4 

20 38.0 48.8 84.7 88.1 

30 36.3 46.8 88.7 91.5 

40 35.0 45.5 91.5 93.8 

50 33.9 44.4 93.4 95.3 

60 33.3 43.7 94.8 96.6 

70 32.7 43.1 95.5 97.0 

80 32.2 42.6 96.5 97.6 

BM25 

5 40.3 51.9 61.9 68.0 

10 38.6 49.6 72.7 78.4 

20 36.4 46.7 83.4 87.2 

30 34.7 44.8 87.8 90.7 

40 33.5 43.4 91.3 93.5 

50 32.5 42.4 93.1 95.1 

60 31.8 41.7 94.4 96.1 

70 31.1 41.0 95.1 96.6 

80 30.6 40.5 95.6 96.9 

SBERT 

5 47.8 60.5 67.5 73.3 

10 45.5 57.7 77.2 81.9 

20 42.3 54.0 86.6 89.9 

30 40.0 51.6 90.7 93.4 

40 38.5 50.1 93.3 95.2 

50 37.3 48.8 95.3 96.7 

60 36.3 47.7 96.2 97.5 

70 35.5 46.8 96.9 98.1 

80 34.8 46.1 97.1 98.3 
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Appendix Table 12: Effect of optimizer, learning rate scheduler and freezing 

embedding on overall PICO entity recognition performance of CRF, BiLSTM and 

BiLSTM-CRF. 

Model Optimizer & Scheduler F1 Recall Precision 

CRF 

Adam 43.0 38.8 48.2 

Adam + Freeze 46.2 40.7 53.4 

Adam + STLR 42.5 40.2 45.1 

Adam + STLR + Freeze 44.7 38.8 52.6 

AdamW 41.6 39.9 43.6 

AdamW + Freeze 39.4 31.4 53.1 

AdamW + STLR 40.5 40.6 40.5 

AdamW + STLR + Freeze  37.3 28.4 54.1 

BiLSTM 

Adam 41.7 44.2 39.5 

Adam + Freeze 40.8 41.9 39.8 

Adam + STLR 39.4 40.4 38.4 

Adam + STLR + Freeze 36.7 38.1 35.4 

AdamW 29.6 26.2 34.2 

AdamW + Freeze 26.8 22.7 32.8 

AdamW + STLR 26.1 24.4 28.0 

AdamW + STLR + Freeze  23.9 19.4 31.2 

BiLSTM-CRF 

Adam 42.9 42.5 43.3 

Adam + Freeze 57.7 53.7 62.3 

Adam + STLR 46.6 46.1 47.1 

Adam + STLR + Freeze 51.1 48.5 54.0 

AdamW 36.4 35.9 36.8 

AdamW + Freeze 50.8 46.3 56.2 

AdamW + STLR 45.3 44.2 46.5 

AdamW + STLR + Freeze  50.0 48.5 51.7 
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Appendix Table 13: Performance of BERT (pre-trained on PubMed abstracts and full 

texts) for PICO entity recognition using self-training with thresholds 0.99 and 0.95. 

Scores at iteration 0 refer to the performance of the original model before using self-

training. 

Threshold Iteration gold valid gold test  
  f1 rec prec f1 rec prec train size 

 0 68.1 73.0 63.8 69.9 73.4 66.7 320 

0.99 1 63.1 68.6 58.3 67.2 70.3 64.3 324 

0.95 

1 70.5 75.4 66.2 70.9 75.3 66.9 1845 

2 72.4 75.7 69.3 70.5 74.6 66.9 5385 

3 71.5 75.0 68.3 70.5 72.9 68.3 5760 

4 72.1 74.9 69.5 70.9 72.9 69.0 6533 

5 72.4 75.6 69.5 69.5 72.1 67.1 6626 

6 73.6 76.4 71.0 71.0 74.0 68.2 6757 

7 70.3 74.2 66.9 69.4 72.6 66.4 6921 

8 70.7 74.7 67.1 69.6 74.0 65.6 7053 

9 71.7 75.6 68.2 69.1 73.4 65.4 7089 

10 72.0 74.5 69.6 71.5 74.1 69.1 7115 

11 72.6 75.6 69.9 69.6 72.7 66.6 7139 

12 71.5 75.6 67.8 70.7 74.3 67.4 7163 

13 72.1 74.9 69.5 69.6 72.1 67.2 7167 

14 71.7 75.6 68.1 70.3 73.8 67.1 7227 

15 71.4 75.0 68.1 70.6 74.0 67.5 7328 
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